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ABSTRACT
To support privacy-preserving video sharing, we have pro-
posed a novel framework that is able to protect the video
content privacy at the individual video clip level and pre-
vent statistical inferences from video collections. To protect
the video content privacy at the individual video clip level,
we have developed an effective algorithm to automatically
detect privacy-sensitive video objects and video events. To
prevent the statistical inferences from video collections, we
have developed a distributed framework for privacy-preserving
classifier training, which is able to significantly reduce the
costs of data transmission and reliably limit the privacy
breaches by determining the optimal size of blurred test
samples for classifier validation. Our experiments on a spe-
cific domain of patient training and counseling videos show
convincing results.

Categories and Subject Descriptors

I.4.8 [Image Processing and Computer Vision]: Scene
Analysis-object recognition, H.2.8 [Database Management]:
Database Applications - video databases.

General Terms

Algorithms, Measurement, Experimentation

Keywords: Video content privacy, statistical inferences,
privacy-preserving video sharing, unlabeled samples.

1. INTRODUCTION
Digital video plays an important role in supporting online

patient training and counseling by illustrating real medical
treatment procedures by means of videos [1]. In order to im-
prove the quality of online patient training and counseling,
it is very important to share patient training and counsel-
ing videos among multiple competitive groups and organiza-
tions (i.e., video owners). Increasing the amount of available
videos results in a better offering for patients. However, pri-
vacy regulations, such as HIPAA, consumer backlash, and
other privacy concerns often prevent multiple competitive
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video owners from sharing their patient training and coun-
seling videos [2-4], because no good comprehensive frame-
work is today available addressing all the following inter-
related challenging problems:

(a) Owner-Adaptive Video Privacy Modeling: Many
approaches to privacy protection have been recently devel-
oped [5-7]; these approaches however have a limited applica-
bility because they do not cater for individual privacy pref-
erences. We believe that a suitable approach for privacy-
preserving video sharing must take into account a funda-
mental aspect of privacy well expressed by Alan Westin ac-
cording to whom “privacy is the claim of individuals, groups,
or institutes to determine for themselves when, how and to
what extend information is communicated to others”. We
thus need techniques supporting owner-adaptive video pri-
vacy modeling.

(b) Video Content Privacy Protection: At the indi-
vidual video clip level, the content privacy for the patient
training and counseling videos encompasses two major as-
pects: (1) privacy for the human objects shown in video
as the professional patient trainers or doctors; and (2) pri-
vacy for the human objects shown in video as the patients
to illustrate the relevant clinic examples. In addition, video
content privacy is also highly context-dependent and thus
there is an urgent need to detect the privacy-sensitive video
events. To protect the video content privacy, some tech-
niques have been proposed that simply block the human
faces [9-11]. However, in order to achieve more effective
online patient training and counseling, it is also very impor-
tant to let the patients see the real clinic examples at a high
quality. Therefore, protecting the human object’s privacy
by simply blocking human faces may seriously reduce the
video quality.

(c) Statistical Inference Control: Protecting the con-
tent privacy for individual video clips may not be enough to
ensure privacy-preserving video sharing; we may also need to
prevent statistical inferences from video collections [8, 17].
Statistical inferences represent an important challenge for
video privacy protection because of non-sensitive data can
be exploited to infer privacy-sensitive information. Such a
challenge is beyond the reach of most existing privacy pro-
tection methods.

Based on these observations, we propose a novel frame-
work able to assure the privacy of the video contents and
control the statistical inferences in the specific domain of
patient training and counseling videos. This paper is orga-
nized as follows. Section 2 presents the proposed framework
for owner-adaptive video privacy modeling. To protect the
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Figure 1: The proposed framework for owner-adaptive

video privacy modeling.

video content privacy at the individual video clip level, Sec-
tion 3 and Section 4 introduce a new algorithm for auto-
matic detection of the privacy-sensitive video objects and
video events. Section 5 introduces our approach to privacy-
preserving video sharing for distributed classifier training
and for preventing statistical inferences from video collec-
tions. Section 6 reports the results of an extensive evalua-
tion we have performed on the proposed techniques. Finally,
we conclude this paper in Section 7.

2. VIDEO PRIVACY MODELING
The definition of video privacy largely depends on three

inter-related factors [10]: video content sensitivity, video re-
ceiver, and receiver’s usage of video contents. Obviously,
video privacy also depends on the video owner’s percep-
tions/judgement of privacy of the videos being shared be-
cause privacy means different things to different people. In
order to achieve owner-adaptive video privacy modeling, six
inter-related factors need to be taken into account as shown
in Fig. 1: video content sensitivity, video receiver, receiver’s
usage of video contents, video owner’s perceptions/judgement
of video privacy, trust between the video owner and the video
receiver, and risks/benefits for video sharing. In addition, a
good balance is crucial between the risks of privacy breaches
and the benefits of video sharing. Based on this motivation,
we propose a novel framework by taking all these inter-
related factors into account in a comprehensive approach
to achieve owner-adaptive video privacy modeling.

In order to implement the proposed framework for owner-
adaptive video privacy modeling, we have defined a basic
vocabulary of privacy-sensitive video objects in the specific
domain of patient training and counseling videos; each video
owner is thus able to select a subset of these privacy-sensitive
video objects according to his/her individual privacy con-
cerns.

3. VIDEO OBJECT DETECTION
To support our framework, the basic vocabulary of privacy-

sensitive video objects is pre-defined by the video owners.
To detect these privacy-sensitive video objects, video shots
are first detected automatically [1]. To detect the privacy-
sensitive video objects associated with each video shot, we
have designed a set of automatic video object detection func-
tions, where each video object detection function is able to
detect only one certain type of these privacy-sensitive video
objects in the basic vocabulary.

After the video shots are detected from a given video clip,
our automatic video object detection functions are executed.
To detect a given type of privacy-sensitive video object, our

Figure 2: The flowchart of the proposed algorithm for

human object detection and tracking.

detection function takes the following steps as shown in Fig.
2: (a) Automatic image segmentation is first performed on
each video frame to obtain the homogeneous image regions
[1, 16, 18]; (b) The given type of video object may have
very different visual properties because of presence/absence
of distinctive parts, variability in overall shape, changing ap-
pearance due to lighting conditions, viewpoints etc. Thus,
automatic image segmentation itself is unable to directly de-
tect the privacy-sensitive video objects and machine learning
should be involved for region classification and object gener-
ation. Based on this understanding, the homogeneous image
regions are classified into two classes by using SVM binary
classifier, that is, into object regions versus non-object re-
gions; (c) The connected object regions are then merged and
aggregated according to a knowledge-based object model for
generating the given type of privacy-sensitive video object;
(d) Object tracking is finally performed to obtain the tempo-
ral relationships of object regions among video frames within
the same video shot.

After the privacy-sensitive video objects are extracted, the
original video streams are decomposed into a set of privacy-
sensitive video objects such as human beings with race and
gender, background, and areas of interest.

4. VIDEO EVENT DETECTION
Another difficulty in video privacy protection is that the

video privacy is also highly context-dependent. To detect
the privacy-sensitive video events, the video shots for a given
video clip are classified into a set of pre-defined semantic
video concepts that are sensitive to the context-dependent
privacy breaches. The contextual relationships, between a
given semantic video concept Cj and the relevant video ob-
jects, are interpreted by using a finite mixture model:

P (X,Cj ,Θcj
) =

κjX
i=1

ωiP (X|Cj , θi),

κjX
i=1

ωi = 1 (1)

where Θcj
= {κj , ωcj

, θcj
} is the parameter set for model

structure, weights, and model parameters; in particular, κj

is the model structure, ωcj
= {ω1, · · · , ωκj

} is the set of
weights for κj mixture components; θcj

= {θ1, · · · , θκj
} is

the set of model parameters for κj mixture components,
P (X|Cj , θi) is the mixture component (i.e., one specific
video context class) that is used to approximate the class
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distribution for one specific type of the relevant video ob-
jects, X is a set of m-dimensional object-based features.

4.1 Adaptive EM Algorithm
To learn the semantic video concept accurately, we have

developed an adaptive EM algorithm to achieve more ef-
fective model selection and parameter estimation by using a
maximum likelihood approach. Based on a limited number
of labeled samples Ωcj

, the optimal model parameters Θ̂cj

for the specific semantic video concept Cj are determined
by:

Θ̂cj
= arg max

�
L(Θcj

)
	

(2)

where L(Θcj
) = −

P
Xi∈Ωcj

logP (Xi, Cj ,Θcj
) + log p(Θcj

)

is the objective function, −
P

Xi∈Ωcj
logP (Xi, Cj , Θcj

) is

the likelihood function, and log p(Θcj
) = −m+κj+3

2

Pκj

l=1

log Nωl

12
− κj

2
log N

12
− κj(N+1)

2
is the minimum description

length (MDL) term to penalize the complex models [14-15],
N is the total number of samples that are used for classifier
training, m is the feature dimensions.

To achieve more effective classifier training, our adaptive
EM algorithm can re-organize the distribution of mixture
components and select the optimal number of mixture com-
ponents by performing automatic merging, splitting and
elimination of mixture components.

Our adaptive EM algorithm uses symmetric Jensen-Shannon
(JS) divergence JS(Cj , θl, θk) to measure the divergence
between two mixture components P (X|Cj , θl) and P (X|Cj ,
θk) for the same concept model Cj .

JS(Cj , θl, θk) = H(π1P (X|Cj , θl) + π2P (X|Cj , θk))
−π1H(P (X|Cj , θl)) − π2H(P (X|Cj , θl))

(3)
where H(P (·)) = −PP (·) logP (·) is the well-known Shan-
non entropy, π1 and π2 are the weights. In our experiments,
we set π1 = π2 = 1

2
.

If the intra-concept JS divergence JS(Cj , θl, θk) is too
small, these two mixture components are strongly overlapped
and may overpopulate the relevant sample areas; thus they
are merged into a single mixture component P (X|Cj , θlk).
In addition, the local JS divergence JS(Cj , θlk) is used to
measure the divergence between the merged mixture compo-
nent P (X|Cj , θlk) and the local sample density P (X, θlk).

Our adaptive EM algorithm tests
κj(κj−1)

2
pairs of mixture

components that could be merged and the pair with the
minimum value of the local JS divergence is selected as the
best candidate for merging.

Two types of mixture components may be split: (a) The
elongated mixture components which underpopulate the rel-
evant samples (i.e., characterized by the local JS divergence);
(b) The tailed mixture components which overlap with the
mixture components from other concept models (i.e., char-
acterized by the inter-concept JS divergence). To select the
mixture component for splitting, two criteria are combined:
(1) The local JS divergence JS(Cj , θi) to characterize the
divergence between the ith mixture component P (X|Cj , θi)
and the local sample density P (X|θi); (2) The inter-concept
JS divergence JS(Cj , Ch, θi, θm) to characterize the over-
lapping between the mixture components P (X|Cj , θi) and
P (X|Ch, θm) from two relevant semantic video concepts Cj

and Ch.
By splitting the elongated and tailed mixture components,

some mixture components locating at the sample distribu-

tion boundary may be unrepresentative and be supported
by few samples. If a specific mixture component is only
supported by few samples, it may be removed from the un-
derlying concept model. To determine the unrepresentative
mixture component for elimination, our adaptive EM al-
gorithm uses the local JS divergence JS(Cj , θi) to charac-
terize the representation of the mixture component P (X|Cj ,
θi) for the relevant samples. The mixture component with
the maximum value of the local JS divergence is selected as
the candidate for elimination.

To jointly optimize these three operations of merging,
splitting and elimination, their probabilities are defined as:8>>>><>>>>: Jm(i, k, θik) = JS(Cj , θik) + ϕJS(Cj , θi, θk)

Js(i,m, θi) =
ϕJS(Cj ,Ch,θi,θm)

JS(Cj ,θi)

Je(i, θi) = ϕ

JS(Cj ,θi)

(4)

where ϕ is a normalized factor and it is determined by:

κjX
i=1

Je(i, θi)+

κjX
i=1

κjX
k=i+1

Jm(i, k, θik)+

κjX
i=1

κhX
m=1

Js(i,m, θi) = 1

(5)
The acceptance probability to prevent poor operation of
merging, splitting or elimination is defined by:

Paccept = min

�
exp

�
−|L(Cj ,Θ1) − L(Cj ,Θ2)|

τ

�
, 1

�
(6)

where L(Cj ,Θ1) and L(Cj ,Θ2) are the objective functions
for the models Θ1 and Θ2 (i.e., before and after performing
the merging, splitting or elimination operation) as described
in Eq. (2), τ is a constant that is determined experimentally.
In our current experiments, τ is set as τ = 9.8.

4.2 Learning with Unlabeled Samples
To learn the underlying concept model accurately, a large

number of labeled samples is needed. When only a limited
number of labeled samples is available for classifier train-
ing, it is difficult to select the optimal model structure and
estimate the accurate model parameters. However, obtain-
ing a large number of labeled samples is very expensive,
and incorporating the outlying unlabeled samples for clas-
sifier training may lead to worse performance rather than
improvement [12-13]. Thus, it is very important to develop
new techniques able to eliminate the misleading effects of
the outlying unlabeled samples.

After the weak classifier for the given semantic video con-
cept Cj is learned from a limited number of available labeled
samples, the Bayesian framework is used to achieve “soft”
classification of unlabeled video clips. The confidence score
for an unlabeled sample with the given semantic video con-
cept Cj is defined as:

ψ(Xl, Cj , t) =
p
ψα(Xl, Cj , t)ψβ(Xl, Cj , t) (7)

where ψα(Xl, Cj , t) = P (Cj |Xl,Θcj
) is the posterior prob-

ability for the unlabeled sample {Xl, Sl} with the given se-
mantic video concept Cj , ψβ(Xl, Cj , t) = − logP (Xl, Cj ,Θcj

)
is the log-likelihood value of the unlabeled sample {Xl, Sl}
with the given semantic video concept Ch. For one specific
unlabeled sample {Xl, Sl}, its confidence score ψ(Xl, Cj , t)
can be used as the criterion to indicate the possibility to be
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taken as an outlier for the given semantic video concept
Cj .

In order to eliminate the misleading effects of the outly-
ing unlabeled samples for semi-supervised classifier training,
the unlabeled samples are first categorized into two classes
according to their confidence scores: (a) certain unlabeled
samples with high confidence scores may originate from the
known video context classes that have already been learned
from the available labeled samples; (b) uncertain unlabeled
samples with low confidence scores may originate from new
concept, outliers or unknown video context classes that can-
not be directly learned from a limited number of available
labeled samples.

The certain unlabeled samples can be incorporated to im-
prove the mixture density estimation incrementally (i.e., reg-
ularly updating the model parameters without changing the
model structure) by reducing the density variance. With the
updated concept model for the given semantic video con-
cept Cj (i.e., incremental classifier), the confidence scores
for some uncertain unlabeled samples may be changed over
time when they originate from the unknown video context
classes that cannot be interpreted intuitively by a limited
number of labeled samples. For the uncertain unlabeled
sample, the changing scale of its confidence scores with the
given semantic video concept Cj is defined as:

yl = |ψ(Xl, Cj , t+ 1) − ψ(Xl, Cj , t)| (8)

where yl ≥ 0, ψ(Xl, Cj , t) and ψ(Xl, Cj , t + 1) indicate its
confidence scores with the same concept model Cj before
and after the model update. The uncertain unlabeled sam-
ples with a large value of yl may originate from the unknown
video context classes induced by concept drift, and should
therefore be used to achieve more accurate video concept
interpretation and semi-supervised classifier training. Thus,
we name the uncertain unlabeled samples with a large val-
ues of yl as informative unlabeled samples. To address the
concept drift problem, one or more new mixture components
can be added to the residing areas for the informative unla-
beled samples (i.e. birth).

P (X,Cj ,Θcj
) = ωκj+1P (X|Cj , θκj+1)

+(1 − ωκj+1)

κjX
l=1

P (X|Cj , θl)ωl (9)

where ωκj+1 is the weight for the (κj + 1)th mixture com-
ponent P (X|Cj , θκj+1) to characterize the appearance of
unknown video context class for the given semantic video
concept Cj .

On the other hand, the outlying unlabeled samples with
the yl value close to zero may originate from new concept or
outliers. To eliminate the misleading effects of the outlying
unlabeled samples, a penalty term γl is defined as:

γl =

8<: 1, certain unlabeled samples

eyl−e−yl

eyl+e−yl
, uncertain unalbeled samples

(10)
where 0 ≤ γl ≤ 1, γl = 0 if yl = 0. Thus, the penalty term
γl can provide an effective solution to select the informative
unlabeled samples for semi-supervised classifier training.

To avoid the problem of overfitting the unlabeled samples,
the MDL term for model selection is updated by including

Figure 3: The experimental results for video event de-

tection: (a) standing; (b) walking; (c) picking up; (d)

carrying.

the size of unlabeled samples which have nonzero-value of
γl. In addition, the likelihood function as described in Eq.
(2) is replaced by a joint likelihood function for both the
labeled samples and the unlabeled samples. Thus, the joint
objective function is defined as:

L(Cj ,Θcj
) = log p(Θcj

) −
X

Xi∈Ωcj

logP (Xi|Cj , θl)ωl

−λ
X

Xn∈Ωcj

γn log

 κjX
m=1

P (Xn|Cj , θm)ωm

!
(11)

where the discount factor λ = Nu

NL+Nu
is used to control

the relative contribution of the unlabeled samples for semi-
supervised classifier training, Nu is the total number of un-
labeled training samples, NL is the total number of labeled
training samples. Using the joint objective function in Eq.
(11) to replace the objective function in Eq. (2), our adap-
tive EM algorithm is applied to the mixture training sample
set, both originally and probabilistically labeled, to learn
the classifier accurately.

Once the classifiers for the semantic video concepts of par-
ticular interest are available, they are used to classify the
video shots for the given video clip into a set of privacy-
sensitive semantic video concepts. Semantic understand-
ing of the given video clip is thus achieved. The context-
dependent video shots that are mapped onto the same privacy-
sensitive semantic video concept are then merged as the
privacy-sensitive video event. Our experimental results for
privacy-preserving video event detection are given in Fig. 3.

4.3 Video Content Privacy Protection
Once the detection functions for the privacy-sensitive video

objects and video events are available, they are used to pro-
tect the content privacy at the individual video clip level.
To filter out the privacy-sensitive human objects (i.e., doc-
tors, professional patient trainers, patients in video), we use
digital human models (i.e., virtual human objects) to re-
place the appearances of privacy-sensitive human objects in
video. Thus, the blurred video streams are able to pro-
tect the privacy-sensitive information about who are in the
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Figure 4: Experimental results for video content pri-

vacy protection: (a) original video; (b) face detection;

(c) object detection; (d) simple object blocking; (e) sim-

ple background blocking; (f) virtual objects.

Figure 5: Experimental results for video content pri-

vacy protection: (a) original video; (b) face detection;

(c) object detection; (d) simple object blocking; (e) sim-

ple background blocking; (f) virtual objects.

video scene. The blurred video streams are still able to pro-
vide enough non-sensitive information about the real med-
ical treatment procedure for one certain infectious disease
and enable high-quality online patient training and coun-
seling. In addition, the blurred video streams are able to
provide the non-sensitive information about the number of
people in the scene and a rough idea about their postures,
but it makes impossible for the receivers to guess who these
persons are because no image details are conveyed in the
blurred video streams. Experimental results on video con-
tent privacy protection are given in Fig. 4, Fig. 5, and Fig.
6.

To protect the context-dependent video content privacy, a
set of video shots that are relevant to the detected privacy-
sensitive video events are removed from the original video
clip, and the residual non-sensitive video shots are re-packaged
as a new MPEG video stream.

5. STATISTICAL INFERENCE CONTROL
To support more effective online patient training and coun-

seling, it is very important to enable privacy-preserving video
sharing among multiple competitive groups and organiza-
tions. However, sharing large-scale video clips may induce
the privacy breaches because the dishonest users may use
statistical inference techniques to infer the individual video
owner’s privacy. To prevent the statistical inferences from
video collections, we propose a distributed framework that
enables a privacy-preserving classifier training by treat-
ing κ individual video owners as κ horizontally partitioned
data sources. For a given semantic video concept Cj , each

Figure 6: The experimental results for video content

privacy protection: (a) original video; (b) face detec-

tion; (c) object detection; (d) simple object blocking;

(e) simple background blocking; (f) virtual objects.

video owner can independently learn an individual weak con-
cept model (i.e., local classifier) by using his/her own train-
ing samples (as shown in Fig. 7). Our model-based clas-
sifier training technique described in Section 4 can be used
to select the optimal model structures and to estimate the
accurate model parameters for these κ weak concept models.

In order to achieve more accurate classification of distrib-
uted video contents, it is very important to learn the clas-
sifier accurately by collecting the training samples from all
these κ video owners. However, sending the training sam-
ples to the central site is undesirable from the privacy per-
spective because the dishonest users may be able to infer
the individual video owners’ privacy-sensitive information
by using statistical inference techniques. To prevent statis-
tical inference from video collections, we have proposed a
distributed approach to enable privacy-preserving classifier
training. Instead of sending the original training samples
to the central site, each individual video owner has to send
his/her weak concept model to the central site for combined
classifier training (i.e., learning global concept model for ac-
curately interpreting the given semantic video concept).

To enable privacy-preserving distributed classifier train-
ing, virtual samples are directly generated from the avail-
able weak concept models at the central site by using Markov
Chain Monte Carlo sampling technique [7]. We call these
training samples generated from the κ weak concept mod-
els at the central site as the virtual samples because they
are not obtained directly from the original video streams.
The virtual samples asymptotically have the same statistical
properties as the original video data because both of them
originate from the same mixture density function (i.e., same
weak concept model). Such virtual samples are thus able to
effectively train the combined classifier [7]. In addition, the
virtual samples are also sufficiently different from the origi-
nal video data and thus they are able to protect the privacy
of the original video streams. Without having available the
blurred video streams, it is impossible for the dishonest users
at the central site to reliably relate the virtual samples to
the original video streams and to violate the individual video
owner’s privacy. Thus, generating the virtual samples from
these κ weak concept models at the central site can signifi-
cantly reduce the privacy breaches and can also drastically
reduce the costs for data transmission.

Based on these observations, our framework for combined
classifier training takes the following steps: (a) The mix-
ture components from the κ weak concept models are com-
bined to obtain a “pseudo-complete” global concept model
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Figure 7: The distributed framework for privacy-

preserving classifier training.

for interpreting the given semantic video concept Cj more
accurately. The virtual samples from these κ weak concept
models are integrated as the combined virtual samples to
learn the underlying global concept model for accurately in-
terpreting the given semantic video concept Cj . (b) Based
on the available mixture components shared from these κ
weak concept models, our adaptive EM algorithm is used
to select the optimal model structure and estimate the ac-
curate model parameters for the global concept model by
performing automatic merging, splitting, and elimination of
mixture components. (c) The mixture components with less
prediction power on the combined virtual samples are elim-
inated. The overlapped mixture components from different
weak concept models are merged into a single mixture com-
ponent. The elongated mixture components that underpop-
ulate the combined virtual samples are split into multiple
representative mixture components.

By integrating all these κ weak concept models shared
from κ data sites, the global concept model for interpreting
the given pattern or concept Cj is defined as:

P (X,Cj ,Θcj
) =

κcjX
l=1

P (X|Cj , θl)ωl

where κcj
=
Pκ

h=1Mh is the total number of the mixture
components shared from the κ individual data sites, Mh ≤
κh, and Mh is the number of mixture components shared
from the hth data site (i.e., the hth weak concept model has
κh mixture components totally).

If one mixture component, P (X|Cj , θm), is eliminated,
the global concept model for accurately interpreting the
given pattern or concept Cj is then refined as:

P (X,Cj ,Θcj
) =

1

1 − ωm

κcj
−1X

l=1

P (X|Cj , θl)ωl, m 6= l (12)

If two mixture components P (X|Cj , θm) and P (X|Cj ,
θl) are merged as a single mixture component P (X|Cj ,
θml), the global concept model for accurately interpreting
the given semantic video concept Cj is refined as:

P (X,Cj ,Θcj
) =

κcj
−2X

h=1

P (X|Cj , θh)ωh + P (X|Cj , θml)ωml

(13)
If one mixture component, P (X|Cj , θh), is split into two

new mixture components, P (X|Cj , θr) and P (X|Cj , θt), the
global concept model for accurately interpreting the given
semantic video concept Cj is refined as:

P (X,Cj ,Θcj
) =

κcj
−1X

h=1

P (X|Cj , θh)ωh + P (X|Cj , θr)ωr

+P (X|Cj , θt)ωt (14)

By using our adaptive EM algorithm to directly combine
these κ weak concept models that are independently learned

Figure 8: The classifier performance (i.e., precision ρ)

under different combinations of operations: parkinson

disease self-treatment.

from κ individual video sources, our framework for combined
classifier training is expected to derive the global concept
model able to interpret the given semantic video concept Cj

more accurately.
In order to validate the combined classifier (i.e., global

concept model) at the central site, each individual video
owner has to share a limited number of blurred test samples.
However, it is impossible to prevent misuse of these blurred
test samples once they are released. In order to prevent
statistical inferences from the blurred test samples at the
central site, we have proposed a novel approach whose goal is
to estimate the optimal size of such samples. Such optimally
sized samples are able to prevent statistical inferences while
reliably validating the combined classifier.

Because each individual video owner Ol sends not only
the blurred test sample set S but also his/her weak con-
cept model to the central site, it is possible for the dishon-
est users to incorporate the Ol’s weak concept model with
his/her blurred test sample set S to infer the Ol’s private
information. In order to present our approach for prevent-
ing statistical inferences, we first need to define a metrics
to estimate the individual video owner Ol’s privacy disclo-
sure induced when sharing the weak concept model and the
blurred test sample set S with size n. The metrics we adopt
is defined as follows:

ρ(C, n,Ol) = |H(P (C,Ol|X,Θc, S)) −H(P (C))| (15)

where H(·) is the well-known Shannon entropy, P (C,Ol|X,
Θc, S) is the posterior probability of the users’ prediction
of the Ol’s privacy C after exploiting the Ol’s blurred test
sample set S and his/her weak concept model, P (C) is the
prior probability of the users’ prediction of the Ol’s privacy
C.

To incorporate the Ol’s blurred test sample set S for clas-
sifier validation, it is very important to determine what size
of the blurred test sample set gives statistically significant
validation results while preventing the dishonest users from
inferring the individual video owner’s private information.
We use the well-known distribution-independent bound (i.e.,
Chebychev inequality [8]) to determine the minimum size
nmin of the blurred test sample set S:

Prob(p− p̂ ≥ σ√
2αnmin

) ≤ α (16)

where Prob(·) is the underlying probability distribution such
as Gaussian distribution, α is the pre-defined bound for the
expected error rate of the combined classifier, 0 ≤ α ≤ 1, p
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is the error rate.8<: p̂ = 1
nmin

Pnmin

i=1 xi

σ2 = 1
nmin−1

Pnmin

i=1 (p̂− xi)
2

(17)

where p̂ is the average error rate of the blurred test sample
set S, σ2 is the variance of the blurred test sample set S.

On the other hand, it is also critical to determine the
maximum size nmax of the blurred sample set S that may
result in privacy breaches [8, 17]; this size is etimated as
follows:

%(C, nmax, Ol) =
inf

X ∈ S

( X
Θc∈<

P (C,Ol|X,Θc, S)

)
≤ δ

(18)
where δ is the pre-defined confidence bound, P (C,Ol|X, Θc,
S) is the highest posterior probability for the user’s predic-
tion of the Ol’s privacy C, and < is credible set for the
potential predictors which have the highest posterior prob-
ability close to δ. In our experiments, we set δ = 50% so
that data mining tools cannot obtain reliable results [5-12].

Thus, the optimal size noptimal of the blurred test sample
set S is determined by the following low and up bounds:

noptimal ∈ [nmin, nmax) (19)

where the nmin and nmax are the low and up bounds deter-
mined by Eqs. (16) and (18).

To achieve a good balance between limiting the privacy
breaches and enabling reliable classifier validation, the opti-
mal size noptimal of the Ol’s blurred test sample set S to be
shared is determined by an optimization procedure:

Min{ρ(C, noptimal, Ol)}
subject to :

noptimal ∈ [nmin, nmax)
(20)

By optimizing the criterion given by Eq. (20), the optimal
size noptimal of the blurred test samples from each individ-
ual video owner, that are necessary to reliably validate the
combined classifier while limiting the privacy breaches, can
be obtained accurately.

By determining the optimal size of the blurred test sam-
ples to be shared, our framework is able to enable privacy
preserving distributed classifier training and to effectively
prevent statistical inferences from video collections.

6. ALGORITHM EVALUATION
Our experimental algorithm evaluation focuses on: (a)

evaluating the performance of our adaptive EM algorithm
with different combinations of merging, splitting and elimi-
nation; (b) evaluating the performance of our classifier train-
ing technique when using different sizes of unlabeled sam-
ples; (c) evaluating our distributed framework for privacy
preserving classifier training to prevent statistical inferences.

The benchmark metric for the classifier evaluation includes
precision ρ and recall %. They are defined as:

ρ =
ϑ

ϑ+ γ
, % =

ϑ

ϑ+ ν
(21)

where ϑ is the set of true positive samples that are related
to the corresponding concept and are classified correctly, γ
is the set of true negative samples that are irrelevant to the
corresponding concept and are classified incorrectly, and ν

Figure 9: The empirical relationship between the classi-

fier performance (i.e., precision ρ) and the ratio between

the unlabeled samples and the labeled samples, ρ versus

λ′ = Nu

NL
: parkinson disease self-treatment.

is the set of false positive samples that are related to the
corresponding concept but are misclassified.

In our adaptive EM algorithm, multiple operations, such
as merging, splitting, and elimination, have been integrated
to re-organize the distributions of mixture components, se-
lect the optimal model structure and construct more flexible
decision boundaries among different concepts according to
the real class distributions of the training samples. Thus,
our adaptive EM algorithm is expected to have better per-
formance than the traditional EM algorithm and its recent
variants [14-15].

In order to evaluate the real benefits of the integration
of these three operations (i.e. merging, splitting, and elim-
ination), we have tested the performance differences of our
adaptive EM algorithm with different combinations of these
three operations. As shown in Fig. 8, we have tested the
performance of the classifiers under different combinations
of three operations: only splitting, only merging, combining
splitting and merging (i.e. SM), combining splitting, merg-
ing and elimination (i.e., SM + Neg). From these experi-
mental results, one can find that our adaptive EM algorithm
can improve the classifiers’ performance significantly.

Given a limited number of labeled samples, we have tested
the performance of our classifiers by using different sizes of
unlabeled samples for classifier training (i.e. with different
size ratios λ′ = Nu

NL
between the unlabeled samples Nu and

the labeled samples NL). The average performance differ-
ences are given in Fig. 9 and Fig. 10.

When a limited number of labeled samples is available
and more unlabeled samples are involved for semi-supervised
classifier training (i.e., λ′ = Nu

NL
becomes bigger), we have

also obtained a decrease in the classifier’s performance be-
cause large-scale outlying unlabeled samples have dominated
the statistical properties of the joint class distribution and
misleaded the classifier. Ideally, it is possible for the dishon-
est users to integrate large-scale non-sensitive data (i.e., un-
labeled samples) with a limited number of privacy-sensitive
blurred test samples (i.e., labeled samples) to infer the indi-
vidual video owner’s privacy. However, this empirical obser-
vation (i.e., decrease of prediction accuracy) has provided
very convincing evidence for the efficiency of our proposed
solution on preventing statistical inferences: It is impossible
for the dishonest users to obtain reliable results when only a
limited number of blurred test samples are shared.

To evaluate our distributed framework for privacy pre-
serving classifier training, we partitioned each data set into
three individual groups and performed classifier training on
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Figure 10: The empirical relationship between the clas-

sifier performance (i.e., precision ρ) and the ratio be-

tween the unlabeled samples and the labeled samples, ρ

versus λ′ = Nu

NL
: diabetic disease self-treatment.

these three individual data groups independently. We have
obtained the empirical relationships between the quality of
the global concept model (i.e., precision of the combined
classifier) and the privacy disclosures as shown in Fig. 11.

For validating the combined classifier at the central site,
each individual video owner has to share not only his/her
weak concept model but also a limited number of blurred
test samples. To prevent statistical inferences, we have also
obtained the empirical relationships between the privacy dis-
closures and the number of blurred test samples to be shared
as shown in Fig. 12. One can find that sharing more blurred
test samples decreases the individual video owner’s ability
on controlling the statistical inferences and results in the
privacy breaches.

7. CONCLUSIONS
To enable privacy-preserving video sharing among multi-

ple competitive groups and organizations, we have proposed
a novel framework able to both protect the video content pri-
vacy and control the statistical inferences. By detecting the
privacy-sensitive video objects and video events automati-
cally, our proposed algorithm is able to effectively protect
the video content privacy at the individual video clip level.
By determining the optimal size of blurred test samples for
classifier validation, our proposed framework for privacy-
preserving distributed classifier training is able to not only
limit the privacy breaches but also improve the classifier’s
accuracy significantly. Our experiments in the specific do-
main of online patient training and counseling videos show
that our techniques are effective.
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