
P-Hera: Scalable fine-grained access control for P2P infrastructures

Bruno Crispo, Swaminathan Sivasubramanian
Department of Computer Science

Vrije Universiteit, Amsterdam
{crispo,swami}@cs.vu.nl

Pietro Mazzoleni
Department of Computer Science

University of Milan,Italy
mazzolen@dico.unimi.it

Elisa Bertino
Department of Computer Science

Purdue University and Cerias, USA
bertino@cerias.purdue.edu

Abstract

In this paper, we present P-Hera, a peer-to-peer (P2P)
infrastructure for scalable and secure content hosting. P-
Hera allows the users and content owners to dynamically
establish trust using fine-grained access control. In P-Hera,
resource owners can specify fine-grained restrictions on
who can access their resources and which user can access
which part of data. We differentiate our work with tradi-
tional works of fine-grained access control on Web services,
as our system in addition to handling access constrains of
the service provider (which is the case in Web services),
it also handles security constrains regarding actions per-
formed on data: replication and modification. We believe
this is of immense significance for wide-range of applica-
tions such as data Grids, Information Grids and Web Con-
tent Delivery Networks. In addition to presenting the over-
all system architecture, we also study the problem of eval-
uating these fine-grained access policies in depth and pro-
pose a novel means of organizing these policies that can re-
sult in faster evaluation. We demonstrate the effectiveness
of our approach using prototype implementation.

1. Introduction

1.1. Background

During the last years, Grid systems have gained immense
interest in both research and industry community. The rea-
son behind the interest is that Grid enables resource shar-
ing and collaboration across many resources in the Internet.
This allows users to focus on the application without hav-
ing to be worried about on which machine the application
code will run, provided that their trust requirements are met.

While the Grid started as an infrastructure that allows
seamless access to remote resources for executing computa-
tionally intensive jobs, it is now evolving to new Grid appli-
cations such as data Grid and information Grid. Compared
to traditional computing infrastructures, data Grid aims at
finding a reliable set of nodes that can host and manage a
particular piece of data. Possible applications of data Grid
include replication of documents, as in Content Delivery
Networks [16], or storing scientific data to enhance relia-
bility and to provide convenient access to remote compu-
tations. Similarly, information Grid aims at enabling seam-
less access to trusted information and is being considered as
the next generation World-Wide Web.

To implement data and informational Grid infrastructure,
researchers have recently advocated the possibility of us-
ing peer-to-peer (P2P) technologies [8] and some projects
started to appear [10, 11]. In fact, P2P technologies (e.g.,
Chord [17], Pastry [15], Gnutella and Kazaa [12]) provide
scalable decentralized infrastructures which well address is-
sues of scalability and reliability of the processes of storing
and locating information.

However, an effective deployment and large scale use of
P2P technologies in applications dealing with content distri-
bution require a proper security framework and access con-
trol to be in place. Such a requirement is crucial given the in-
creasing value that digital contents today has. Usually, P2P
infrastructures assume that all participants of a P2P network
are equally ‘trustable’ and thereby it remains unsuitable for
applications such as wide-area storage for Grid-like systems
or Content Delivery Networks (CDNs) [16] due to security
concerns. To promote the usage of those systems in busi-
ness domain, we therefore believe each subject should be
able to express its own authorization constrains based on
the role played in the network and accept only the other par-
ties’ constrains only if it feels appropriate. Possible roles a

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 



subject can play in the network are Resource Owner (RO),
which makes available its data storage to collect user in-
formation, Data Owner (DO), which has the ownership of
a data made available into the network, and Content client
(CC), which is the subjects requesting access to data.

In this paper, we propose the design of P-Hera, a P2P in-
frastructure that allows ROs, DOs, and CCs to dynamically
establish trust using fine-grained access control. In P-Hera,
ROs can specify fine-grained restrictions on which DOs can
replicate data into their resources and which CCs can access
which part of data. For example, resource owners from Vrije
Universiteit can stipulate that only users from IBM can ac-
cess their resources. Similarly, DOs can specify access con-
strains on where (which ROs) their information/data can be
replicated and which CCs are allowed to read their informa-
tion.

A naive implementation of FGAC is to let each node
evaluating each and every user request to see whether it
meets its access control constrains. However, this might re-
sult in erroneous scheduling of requests as users are not
aware of the policy constrains of the nodes they manage.
This can lead to increased bandwidth utilization, as even-
tually the request needs to be forwarded to each and every
node, and turn-around time for each request, as contacted
nodes may reject a request.

For the same reason, FGAC for P2P systems warrants a
smart organization of resources’ FGAC policies so that the
process of policy evaluation of resources do not result in a
scalability bottleneck.

P-Hera efficiently organizes FGAC policies so that re-
quests for information/data/resources are evaluated much
faster. As the results of our preliminary performance evalua-
tion experiments show, our policy organization results in an
order of magnitude speed up in the policy evaluation time
and avoid situations in which user requests are sent to a node
that cannot execute the operation because of the lack of au-
thorization.

The contributions of this paper are thus threefold. First,
we identity the need of supporting FGAC policies in P2P in-
frastructures and present the design and implementation of
a Grid infrastructure to specify and enforce such policies.
Second, we propose a scalable evaluation strategy for these
policies which is integrated with the resource search activ-
ity. Third, we present and compare different algorithms for
the evaluation of fine-grained policies, and determine which
is the most efficient policy evaluation algorithm.

The rest of the paper is organized as follows. Section 2
describes the system architecture and briefly introduces the
methodology we propose to support FGAC in the Grid. Sec-
tion 3 discusses the schema according to which policies are
organized. Section 4 presents the implementation of the pol-
icy evaluation strategies and reports performance evaluation
results. Section 5 reviews the state of the art while Section

6 concludes the paper and outlines future work.

2. System Architecture

2.1. System Model

The development of a subsystem supporting fine access
control policies for a P2P system requires the identification
of a reference architecture, among the various proposed ar-
chitectures, and of a set of system primitives, dealing with
data management. In the remainder of this subsection we
thus define the system model we assume in our work.

2.1.1. System infrastructure In this paper, we restrict our
design to unstructured P2P networks for the afore stated ad-
vantages. Among unstructured P2P networks, there are tra-
ditional complete unstructured networks such as Gnutella
where there is no organization and any search is executed
by broadcasting the query to all nodes in the network. This
can result in a huge waste of network bandwidth. A vari-
ant of this model is to introduce some hierarchy in which
a special set of nodes is dynamically elected to manage the
other nodes in the network. These nodes, usually called su-
pernodes, store the directory information of the contents of
the nodes they manage. In such systems, a query is then an-
swered only by a subset of nodes and the amount of mes-
sages is reduced by two to three orders of magnitude. In this
paper, we assume such a hierarchical unstructured P2P in-
frastructure and we investigate how to extend it with fine-
grained access control.

2.1.2. System primitives In general, a P2P infrastructure
does the following basic operations:

• search(data): This operation supports searches for
a specific data item in the system. Such a query
is sent from a user, possibly through a web inter-
face, to its representative supernode. This supernode
queries other supernodes and each supernode re-
turns the list of nodes under its management that have
the required data.

• get(data): This operation concerns retrieving the data
from one of the nodes that has it (result of the previ-
ous primitive). In a traditional P2P network, this just
boils down to establishing a direct network connection
to the node.

• place(data): This operation supports placing a replica
of a data item in a P2P network. Replication is usu-
ally adopted to improve reliability, in the case the data
owner is not available, and performance in that data is
located closer to users as in CDNs. Data placement re-
quires selecting a node that satisfies the resource con-
strains, such as disk space, availability, and bandwidth,
of the user requesting a replica.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 



In this paper, we present the design of a system that
integrates FGAC in the context of these three primitives.
Whereas several research efforts have been devoted to the
performance optimization for each of these primitives, very
little work has been carried out dealing with the extension
of these primitives with FGAC.

2.2. Fine-grained Authorization policy

Authorization policies, or policies, are logical ex-
pressions specifying the constrains used to restrict ac-
cess to a given resource. By abstracting from the lan-
guage used, a policy can be defined as the combina-
tion of one or multiple policy rules. Each policy rule
pol ruli is defined as a pair 〈pol expi, Effecti〉 where
pol expi is a logical expression built using a pol-
icy attribute (e.g., User.Name, User.Affiliation, Re-
source.Amount, Time), and Effect represents the action
(Permit or Deny) to be executed when the policy ex-
pression is verified. Some examples of policy rules
are 〈Time, (TimeInRange, 8am . . . 5pm), P ermit〉,
〈(Affiliation, (StringEqual, Unimi), P ermit〉 which
restrict access only to users whose Affiliation is Unimi
and requests being entered from 8am to 5pm. Multi-
ple rules composing a policy are combined via com-
bination algorithms such as Deny Override (i.e., a re-
quest is denied if even one rule is denied), Permit Override,
(i.e., a request is authorized if even one rule is permit-
ted), First Rule Applicable, Only One Applicable, and
so on. Recently, several alternatives have been proposed
as standard language to define policies. XML-based lan-
guages such as XACML, SAML, WS-Policy and Author-X
[21] [5] [1] [7], are all rich in semantics and very flexi-
ble, thus allowing resource owners to specify articulated
access control policies. Although our solution can be ap-
plied to any of the above languages, we focus our atten-
tion on XACML. XACML - Extensible Access Control
Markup Language, is the standard OASIS to specify au-
thorization policies; it supports all the above combination
algorithms and each policy rule can be issued to re-
strict a specific operation (e.g., read, write) on a single
resource. Figure 1 shows an example of policy speci-
fied by using such formalism.

FGAC is therefore intended not only as a detailed list
of constrains to restrict access to a resource, but also as the
possibility to specify different authorizations for each possi-
ble action and each possible resource owned by a user. It is
important to notice that in P2P systems, both data owner
(DO) and resource owner (RO) can specify access con-
trol policies. The former can place constrains about where
its data can be placed and which users can access them,
whereas the latter can place constrains on which users can
replicate data in its resources and who can access data

<Policy PolicyId=" Example_of_Hosting _Policy"  

    RuleCombiningAlgId="deny -overrides"> 

<Description>  XACML Policy composed by 2 policy rules  

</Description>

  <Target> 

    <Subjects>     <AnySubject/>    </Subjects> 

    <Resources> <AnyResource/> < /Resources> 

    <Actions>       <Write>      </Actions> 

  </Target> 

  <Rule RuleId="Condition_On_ Affiliation" Effect="Permit"> 

    <Condition FunctionId="  function:string-equal"> 

      <Apply FunctionId="function:string -one-and-only"> 

        <SubjectAttributeD esignator  AttributeId="Affiliation"  

DataType=" #string"/> 

      </Apply> 

      <AttributeValue DataType="#string">Unimi  </AttributeValue>  

    </Condition> 

  </Rule> 

  <Rule RuleId="Condition_On_ Time" Effect="Deny"> 

    <Condition FunctionId="  function#time-in-range"> 

      <Apply FunctionId="  function:time-one-and-only"> 

        <EnvironmentAttributeDesignator AttributeId="current -time"  

 DataType="#time"/>  

      </Apply> 

      <AttributeValue DataType="  #time">08:00:00</AttributeValue>   

      <AttributeValue DataType=" #time">20:00:00</AttributeValue>  

    </Condition> 

  </Rule> 

</Policy> 

Figure 1. XACML authorization Policy

hosted into its resources. In addition to these constrains,
users requiring access to contents, referred to as data read-
ers, can also specify restrictions to avoid receiving informa-
tion from nodes they do not trust. In this context, we dis-
tinguish three types of policies: (i) Placement policy: speci-
fied by the DO, it concerns the nodes where data can/cannot
be replicated, (ii) Hosting policy: specified by the RO, it
concerns which DO can replicate its information in its re-
source, and (iii) Access control: specified by both RO (and
user) regarding who can access information replicated in
its resource (or for the user, which resource it trusts in ob-
taining information). Note that these three different types of
policy and their corresponding players differentiate our sys-
tem from the traditional client-server model of access con-
trol in Web services. With respect to the primitives intro-
duced earlier, hosting and access policies are relevant for
the get(data) primitive, while placements constrains are rel-
evant to the place(data) primitive.

2.3. System Architecture

The proposed system architecture is given in Figure 2.
As shown by the figure, we consider an hierarchical un-
structured P2P system the main components of which are
supernodes, nodes and users.

In our system, supernodes, in addition to maintaining in-
dices of data contained in the nodes, also maintain the ac-
cess control policies of the nodes under their management.
Supernodes have the following components: query evalua-
tor, content manager and policy manager. The query evalu-

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 



Super
Node

Super
Node

Super
Node

Super
Node

Node/Users

Node/Users

Node/Users

Node/Users

Search/Place/Get

Figure 2. System architecture

Response

Query

Policy 
Information

Information
Resource

Manager
Policy 

Manager
Content

Eval-
uator

Query

Figure 3. SuperNode Architecture

ator has the same functionalities as in the conventional su-
pernodes. Its responsibility is to receive queries from other
supernodes and to perform appropriate actions. The content
manager component is in charge of finding the set of ROs,
among the ones administered by the supernode, that have
the data requested by the query evaluator. Finally, the pol-
icy manager determines the set of ROs, among the ones se-
lected by the content manager, that authorize the request by
evaluating the access policies of the DO, ROs and CCs.

We now briefly look at how the system performs the
above described basic operations.

• Search: For searching a data item, a user submits his
profile information concerning his identify (in addition
to information regarding the requested data) to the su-
pernode of his node. The supernode forwards the query
along with the user profile to other supernodes. These
supernodes in turn match the user profile with the ac-
cess control policies of the nodes under their manage-
ment and return the nodes which not only have the re-
quired data item but also the ones that authorizes the
user’s request.

• Get: When a user actually contacts a node for getting a
data, the user submits his identity and the node can de-
cide to check the user privileges again or not, depend-
ing on whether it trusts the decisions of the supernode,

before serving the content.

• Placement: Like the search operation, each user for-
wards the placement request and his placement con-
strains to the supernode of his node, which in turn for-
wards it to other supernodes. Each of these supernodes
checks the hosting policies of its nodes in addition to
the resource constrains and returns the list of nodes that
authorize the node’s placement request.

3. Policy Management

Because of the large number of nodes and users and the
different types of policy we support in our system, policy
management is a crucial issue. Two are the most relevant
issues concerning the management of FGAC policies: pol-
icy storage and policy organization. The first issue concerns
where the policies of the individual nodes and users must be
stored. The second issue deals with how these policies must
be organized so that the evaluation process of multiple poli-
cies can be efficiently performed. We discuss our solutions
in the following sections.

3.1. Policy Storage

A naive approach to policy storage is to store the policies
in the respective nodes. Thereby, each RO stores its own
placement and hosting constrains. Under such an approach
the three basic data management primitives (i.e., search, get,
placement) can be scheduled without taking into account se-
curity constrains. This can result in erroneous scheduling of
requests by the supernodes as they are not aware of the pol-
icy constrains of the nodes they manage. This can lead to
increased bandwidth utilization, as eventually the request
needs to be forwarded to each and every node, and turn-
around time for each request, as nodes that are selected by
a supernode may not authorize the request. Hence, such an
approach cannot be adopted. We also rule out the opposite
approach which consist of storing the policies of all nodes
and users in each node for reasons of poor scalability.

In order to develop approaches overcoming the above
drawbacks we choice to extend the request schedulers, re-
siding in supernodes, so to be aware of the access control
policies of individual nodes. As discussed into the previ-
ous sections, each supernode stores the access control and
hosting policies of the nodes that it manages. Such an or-
ganization makes possible for supernodes the selection of
nodes that not only satisfy the resource constrains of the re-
quest, such as whether a node has the data or not, whether
a node has enough disk space or not, but also that authorize
the user’s placement or search request. This mechanism can
also improve the system scalability as each request is sched-
uled just by the supernodes without contacting the individ-

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 



ual nodes, leading to reduced response times and bandwidth
utilization.

Storing the policies in supernodes has the underlying
limitation that the individual nodes should trust to some
extent the supernode. For example, if a supernode is not
trustable and alters the policy of a node, then a node can
receive a user request for data access or placement even
though the authorization constrains are not met. However,
this is not a major problem as the node holds the data can
still decide to perform its evaluation of the user request to
see if the request is really authorized. Therefore, a node
upon receiving a request from a user, can check if it is certi-
fied by the supernode (assuming supernodes and nodes store
public-private key pair). If so, it can accept the request with
or without rechecking authorization constrains.

3.2. Policy Organization

As noted earlier, supernodes need to evaluate the policies
of each node for each user request. Such a process can be-
come another scalability bottleneck if there are many users
requests and the number of nodes and number of policy ex-
pressions within a policy is high, which is typically the case
of large-scale P2P infrastructures.

This calls for efficient organizations of information con-
cerning nodes policies at supernodes so that the evaluation
process can be much faster. In this section, we present dif-
ferent strategies for organizing and grouping policies and
discuss their relative merits/demerits.

1. No grouping: Under this strategy policies are not or-
ganized or grouped. For each request, the policies of
each node are evaluated individually.

2. Group by policies: Under this strategy nodes with
same policies are grouped together. For each request,
evaluations are executed only at the group level. The
intuition behind this heuristic is that if many nodes
have same policies then a redundant evaluation of these
nodes is avoided. This approach is used in Gangmatch-
ing [18].

3. Group by policy expressions: Under this strategy
nodes using the same policy expressions in the defini-
tion of their policy are grouped together. For example,
consider two nodes that use the policy expression af-
filiation=‘IBM’; then these two nodes are grouped to-
gether. This strategy is motivated by the fact that in
fine-grained access control environments, it is more
likely to find nodes that use same policy expressions
compared to nodes that use same LP (which can be
made of multiple policy expressions).

In the next section, we analyze the performance of each
organization and evaluate the response time for evaluating a
request under each organization.

4. Evaluation of Policy Organization Strate-
gies

4.1. Implementation

A proof of concept for our system has been built at Uni-
versity of Milan. The implementation focuses on the policy
storage organization strategies proposed into Section 3.2 be-
cause we believe scalability is the most critical issue when
supernodes are required to evaluate authorization policies
expressed by a high number of peers.

We have implemented all the three strategies. However,
while the first two, no grouping and group by policies are
quite straightforward, we are not aware of any distributed
policy engine using the third strategy. We call this strat-
egy as Policy Expression Grouping (PEGs). PEGs are de-
fined as a pair 〈atti, expri〉 where atti is a policy attribute
(e.g., Time, User.Affiliation, etc) and expri is a possible
logical expression defined using atti. An example of PEG
is 〈Country, StringEqual = Italy〉. PEGs are dynami-
cally generated based on the occurrence of similar policy
rules defined by the nodes.

Such organization offers several advantages in terms of
scalability of the evaluation process, confirmed by the pre-
liminary performance evaluation results reported below. In
brief: (i) For each node, only a few information (i.e., type
of relation between PEG and node) need to be collected in-
stead of the complete LP; (ii) PEGs are defined as policies
and they can be evaluated using available policy evaluation
systems; (iii) by construction, if a request validates a PEG,
it validates the policy rules of the nodes belonging to that
PEG.

Our solution has been built extending the
XACML implementation developed by Sun
(http://sunxacml.sourceforge.net/). SUNXACML 1.2
is the open source project providing complete support for
all the mandatory features of XACML. The system is im-
plemented using two components.

The first component is the PEP (Policy Enforcement
Point) which is in charge of collecting a request and sending
it to the second component, a PDP (Policy Decision Point)
which examines the request, and evaluates the policies ap-
plicable to the request.

4.2. Performance Evaluation

We have analyzed the evaluation time for each of these
three organization methods in our prototype. The experi-
ments were conducted on Pentium4 3.2 Ghz, 1 Gb Ram
machine. The OS on this machine is Windows 2000 Pro-
fessional. The runtime JVM for the processes involved was
JRE 1.4.2. In our experiments, a PEG was generated for
each pair attribute/value specified by a node.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 



0

2

4

6

8

10

12

0% 20% 40% 60% 80% 100%

% of equal policies over a total of 5000 w ith 

3 rules  

T
im

e
 S

e
c

. NOGroup

LPGroup

RuleGrup

Figure 4. Performance of varying number of
equal policies

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

2000 4000 6000 8000 10000

1 Rule

4 RulesSe
co

nd
s

Num  peers

Figure 5. Performance of PEG policy evalua-
tor for different number of policies

In the first experiment, we compared the efficiency of
the three strategies in evaluating 5000 policies, a subset of
which are equal. Each policy was composed of 3 policy ex-
pressions. We varied the attribute values of one of the policy
expressions to vary the percentage of equal policies in the
set. We evaluated all the three strategies and the results are
shown in Figure 4. The results show the strategy of group-
ing nodes based on similar policy expressions scales better
than the others, especially for low similarity ratios. Such be-
havior is explained by observing that a request can be vali-
dated even if it matches one of the PEGs. So, PEG strategy
by virtue of grouping nodes by policy expression, identi-
fies precisely which groups need to be checked for validat-
ing a given request.

In the second experiment, we studied the effect of the
number of rules used in composing a policy on the effi-
ciency of PEG policy evaluation strategy and the results are
given in Figure 5. The results show that the impact is mini-
mal, and the PEG strategy scales well in scenarios with sim-
ple as well as complex policies.

5. Related Work

The problem of building security in systems that enable
resource sharing across large number of nodes has been ad-
dressed into many domains such as: P2P systems, Grid sys-
tems and CDNs.
P2P systems. Security in P2P systems has been investigated
with respect to both the underlying routing protocol and
the storage-retrieval process . A considerable amount of re-
search has been carried out for both the areas. Possible rout-
ing attacks and available systems preventing them are sur-
veyed in [20]. For security issues concerning the storage-
retrieval process, we can distinguish between user privacy
- addressed for instance by Freenet [4] or Turtle [14] and
its aim of creating an “uncensorable and secure global in-
formation storage system”, and data security - which is the
problem addressed in this paper. Traditional P2P systems
assume a high level of trust between partners, which is in-
adequate for applications such as Web caches or file sharing
across organizations. Subsequently, solutions such as [6, 3]
propose finer authorization controls. In [6] the authors ap-
ply the concept of Virtual Organization [9]. A finer level
of authorization is proposed in [2]. Here, information secu-
rity is organized at peer level. Each peer can autonomously
specify authorization constrains for each information item
and the enforcement is performed directly by the node with
an ad-hoc implementation of the Akenti authorization sys-
tem [19] distributed thought the peers. Those solutions are
interesting. However, they consider only one of the types of
authorization presented into Section 3.2. Specifically, they
only support user constrains and do not consider placement
and hosting constrains. We believe this is a serious limita-
tion for the large application of the P2P paradigm.
Grid systems. Grid systems enable resource sharing across
multiple administrative domains. However, Grid systems
assume that users form virtual communities called virtual
organizations [9]. This leads to situations in which all par-
ticipants are assumed to be in the same trust domain. This
actually reduces the social adoption of the system as then
participating nodes are forced to trust all Grid users by just
joining them. We believe our work is very useful for also
data grid systems as it enables users and nodes to establish
trust dynamically at a fine-grained level using FGAC poli-
cies.
Content Delivery Networks (CDNs). CDNs are specialized
distributed systems that have multiple servers placed in
prime locations across the Internet hosting multiple copies
of a Web site [16]. Each client request is usually served
by the closest server. These systems have been tradition-
ally built by a single corporate (e.g., Akamai) that owns
all the resources. Recently, there have been proposals to
use P2P technologies to perform content distribution in the
Internet [10, 11]. However, the impediment to these tech-

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 



nologies is the trust relationships among nodes. We believe
our mechanism enabling FGAC in combination with secure
replication mechanisms such as [13] can enable P2P infras-
tructures to provide a viable alternative to perform Internet-
scale content distribution.

6. Conclusions and Future Work

In this paper, we have described the design of P-Hera, a
P2P infrastructure that makes it possible for users and own-
ers of data to dynamically establish trust using fine-grained
access control. We have shown how P-Hera enables data
owners/resource owners to place/host data while consider-
ing security constrains at a very fine-grained level. Further-
more, data can be searched and made available to users by
considering the security constrains of CCs, DOs, and ROs.
P-Hera has being carefully designed to address scalability
and efficiency issues. It can be easily integrated with ex-
isting P2P infrastructures and in particular the ones based
on supenodes. We have proposed and tested a novel and
efficient strategy to organize and evaluate FGAC policies.
Based on our preliminary analysis results, we can conclude
that existing organization can be improved by adopting our
proposed organization. However, we believe more research
needs to be carried out dealing with techniques for the scal-
able evaluation of FGAC policies. We plan to extend our or-
ganization to deal with cases in which data, owned by DOs,
are stored by ROs that do not grant access to CCs that are
customers of these DOs.

Acknowledgements The work of Elisa Bertino is par-
tially supported by the National Science Foundation NSF
under the Project “Collaborative Research: A Comprehen-
sive Policy - Driven Framework For Online Privacy Protec-
tion: Integrating IT, Human, Legal and Economic Perspec-
tives”, by an IBM Fellowship, and by the sponsors of CE-
RIAS.

References
[1] M. BEA, IBM and SAP. Web servies policy language (ws-

policy). 2002.
[2] K. Berket, A. Essiari, and A. Muratas. Pki-based security for

peer-to-peer information sharing. 4th International Confer-
ence on Peer-to-Peer Computing (P2P 2004) Zurich Switzer-
land, 2004.

[3] G. Boella and L. van der Torre. Access control in virtual
communities: Prohibition, permission, authorization and del-
egation of power in the grid. In Proc. Knowledge Grid and
Grid Intelligence workshop at WI/IAT’03 (KGGI’03), 2003.

[4] I. Clarke, O. Sandberg, B. Wiley, , and T. Hong. Freenet: A
distributed anonymous information,storage and retrieval sys-
tem. Int. Workshop on Design Issues in Anonymity and Un-
observability, pages 46–66, 2001.

[5] O. S. S. T. Committee. Assertions and protocol for the oasis
security assertion markup language (saml), Sept 2003.

[6] I. Djordjevic and T. Dimitrakos. Towards dynamic secu-
rity perimeters for virtual collaborative networks. Trust
Management- Second International Conference (iTrust
2004) Oxford UK, 2004.

[7] E. F. E. Bertino, S. Castano. On specifying security policies
for web documents with an xml-based language. SACMAT01
ACM Symposium on Access Control Models and Technolo-
gies, 2001.

[8] I. foster and A. Iamnitchi. On death, taxes, and the con-
vergence of peer-to-peer and grid computing. In Proc. of
the Second International Workshop on Peer-to-Peer Systems,
2003.

[9] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
Grid: Enabling scalable virtual organizations. Lecture Notes
in Computer Science, 2150, 2001.

[10] J. Hibbard. Forget the music business. in the latest attempt
to commercialize peer-to-peer technology, startups want aka-
mai’s market.

[11] D. Kaye. Peer-to-peer content delivery using information ad-
ditive codecs.

[12] Kazaa. http://www.kazaa.com.
[13] B. C. Popescu, B. Crispo, and A. S. Tanenbaum. Secure Data

Replication over Untrusted Hosts. In Proc. 9th Workshop on
Hot Topics in Operating Systems (HotOS IX), pages 121–
126. USENIX, May 2003.

[14] B. C. Popescu, B. Crispo, and A. S. Tanenbaum. Safe and
Private Data Sharing with Turtle: Friends Team-Up and Beat
the System. In Proc. 12th Cambridge International Work-
shop on Security Protocols. Springer-Verlag, April 2004.

[15] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proc. IFIP/ACM Int. Conf. Distributed Systems
Platforms, pages pp.329–350, Nov. 2001.

[16] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van
Steen. Replication for web hosting systems. ACM Comput-
ing Surveys, 36(3):291–334, 2004.

[17] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In SIGCOMM ’01: Proceedings of
the 2001 conference on Applications, technologies, architec-
tures, and protocols for computer communications, 2001.

[18] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor
– a distributed job scheduler. In T. Sterling, editor, Beowulf
Cluster Computing with Linux. MIT Press, October 2001.

[19] M. Thompson, A. Essiari, K.KIeahey, V. Welch, S. Lang, and
B. Liu. Fine-grained authorization fo job and resource man-
agement using akenti and the globus toolkit. Sept 2003.

[20] D. S. Wallach. A security architecture for computational
grids. International Symposium on Software Security, 2002.

[21] XAMCL and O. S. S. T. Committee. eXtendible Access Con-
trol Markup Language (xacml) committee specification 1.0,
Feb 2003.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 


