CERIAS Tech Report 2005-10
ALGORITHMSFOR VARIABLE LENGTH SUBNET ADDRESS ASSIGNMENT
by Mike Atallah, Sundararaman Jeyaraman
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086

Algorithms for Variable Length Subnet Address
Assignment

Mike Atallah, Sundararaman Jeyaraman
CERIAS and Department of Computer Sciences
Purdue University, West Lafayette, IN 47906

{nj a,j sr}@s. purdue. edu

Abstract

In a computer network that consistsaf subnetworks, thé-bit address
of a machine consists of two parts: A prefix that contains the address
of the subnetwork to which the machine belongs, and a suffiXefodth
L — |s;|) containing the address of that particular machine withsnsitb-
network. In fixed-length subnetwork addressihg, is independent of,
whereas in variable-length subnetwork addresgisigvaries from one sub-
network to another. To avoid ambiguity when decoding adéiegbere is a
requirementthat ns; be a prefix of anothey;. An interesting practical prob-
lem is how to find a suitable set ef's in order to maximise the total number
of addressable machines, when tliesubnetwork containg; machines. A
solution might leave some subnetworks completely unsatisfnd the rest of
the subnetworks completely satisfied; The abstract probigplied by this
formulation is: Given an integek, and givenM (not necessarily distinct)
positive integersiy, - - - ,nyr, find M binary stringssy, - - - , sps (Ssome of
which may be empty) such that (i) no nonempty striags a prefix of an-
other strings;, (i) no s; is more thary bits long (iii) the quantityz‘sl, 0 T
is maximised and (iv) Every nonempty prefix completely $itssthe corre-
sponding subnetworkize., |s;| # 0 = 2715l > n; 1 < i < M. We
present a polynomial time algorithm for solving the aforaetened abstract
problem. We also provide an algorithm to solve the case whehre has

a priority associated with it and there is an additional cast involving
priorities: Some subnetworks are then more important ttihare and are
treated preferentially when assigning addresses. We alke ofzservations
about the case where there is a hierarchy of subnetworksprese

1 Introduction

This introduction discusses about the motivation for thisknand the connection
between computer networking and the abstract problemsHa@haalgorithms are
subsequently given. It also introduces some terminology.

In this introduction, we provide just enough backgrounainfation to make
this paper self-contained. The reader interested in rgadliare about standard
subnet addressing, variable length subnet addressingthedrelated IETF spec-
ifi cations is encouraged to peruse through [4, 12—-17]. A ngereeral discussion
on hierarchical addressing, its benefits in large netwonkktle various IP lookup
solution methods could be found in [5-7]. We also assumetltieateader is famil-
iar with basic techniques from the algorithms and data siras literature found
in standard references like [1-3].

Variable length subnet address assignment is typicallg tmeeffective utili-
sation of the address space at the disposal of an orgamisatemy administrative
domain — especially in the presence of subnetworks withedademands i.e.,
varied number of hosts. In a mobile world, where subnetwadkssisting par-
tially or entirely of mobile nodes (possibly MANETS) are therm, the problem
of automated dynamic allocation of subnet addresses becperénent. Another
problem that could come to the fore is allocation of subnelreskes in the pres-
ence of constraints like a limited address space. (e.g..a¢atemic department
with limited IP addresses having to cope with a sudden isgré@ademand during
a conference. Solutions based on address-confi guratibnitems[8][21] could be
used for solving the automated dynamic allocation problBot.such solutions do
not perform correctly in the presence of partitions and hasbility. A NAT based
approach could be used to handle the resource constraised Bat some of the

subnetworks might contain hosts that do not wish to functiehind a NAT box.
Also, the NAT based approach does not work in the presenceobflenhosts that
travel across administrative domains.

In this paper, we develop algorithms and insights for eiffectlynamic allo-
cation of subnet addresses. We examine the scenarios wielertand is greater
than the existing reseources and when constraints likeifdictate the alloca-
tion of addresses to the different subnetworks. We showabaithough the gen-
eral allocation problem (which we define later in this sagttimoks deceptively
similar to other resource allocation problems, most of Whiave been proven to
be NP-complete, polynomial time solutions are possibleeitiain scenarios.

In a computer network consisting @ff subnetworks, the L-bit address of a
machine in the network is composed of two parts: A prefi x tantifi es the sub-
network to which the machine belongs and a suffi x that coathia address of that
particular machine within its subnetwork. If all the subwetks contain roughly
the same number of machinedjxedpartitioning of the address space works well
in practise. In such &ixedlength scheme, each subnetwork is assigned the same
number of addresses — Tliebit address of any machine consists of a fi xed length
t-bit prefix and an L — ¢)-bit suffi x, wheret = [log M|. However, if theM sub-
networks were to consist of different number of machineg,»samachines for the
ith subnetwork, such a fi xed length scheme proves to be whshietould poten-
tially leave many machinasnsatisfiedi.e.,) they will have no address assigned to
them and the only way to satisfy those machines is to incrésaddress space.

In avariable partition scheme, the length of the prefi x containing thenstb
work’s address varies from one subnetwork to another. lerotords, if we let
s; be the prefix that is the address of tile subnetwork, then we now can have
|si| # |s;|. However, to avoid ambiguity (or having to store and transayi),
there is a requirement that g be a prefix of anothes;. Variable length sub-
network addressing is easily shown to satisfy a larger tatatber of addressable
machines than the fixed length scheme: There are examplag Vitked length
subnetwork addressing cannot satisfy all of fie= ny + --- + ny; machines,

whereas variable length subnetwork addressing can. Mqueriantly, we are in-
terested in the cases where even variable length addressimgt satisfy all of the
N machines.

In such cases we want to use thebits available as effectively as possible,
subject to certain constraints. [18]describes a polynbtimee algorithm when the
optimal solution is allowed to contapartially satisfi ed subnetworks. In this paper,
we describe a polynomial time algorithm to find the optimdlgon when it is
constrained to contain onlsompletelysatisfi ed subnetworks. An optimal solution
therefore consists of binary strings, - - - , sy, such thatis;| # 0 = 2L-Isil >
n;, 1 < ¢ < M and maximise the following sum

Z oL—|skl

|sx]#0

The prioritised version of the problem models the situatidrere some sub-
networks are more important than others. We use the follgiiority policy.
Priority Policy: “The number of satisfied machines of a subnetwork is the same
as if all lower-priority subnetworks did not exist”. We pesd a polynomial time
algorithm to handle the prioritised version. Finally, wergnent on the case where
there is a hierarchy of networks present.

This paper is organised as follows: Section 2 reviews relaterk and com-
pares and contrasts them with our work. Section 3 discusseddfi nitions and
observations that lead to our algorithm. Section 4 intredube unprioritised ver-
sion of the algorithm. Section 5 presents the prioritisedioa of the algorithm.
Section 6 discusses future research and fi nally, the caonkiare summarised in
section 7.

2 Related Work

The problem of subnet address allocation is an instance afllakmwown general
resource allocation problem in which blocks of resourcesadlocated from a re-
source “pool”, based on a series of requests. Resourceatiiogproblems arise

4

very frequently in a variety of contexts ranging from memargnagement, dis-
tribution of zip codes and telephone numbers to bandwidtication in computer
networks. In this section, we briefly go over various apphescto solve those
resource allocation problems that closely resemble theetudddress allocation
problem.

Menory Management involves contiguous bytes of memory being allocated
and de-allocated over time. While there are many memorgatilon algorithms,
the buddy allocation strategy [19] exhibits characteristimilar to those required
to solve the subnet address allocation problem. Since memaheap, there is
no notion of resource constraint and having to share théadélairesources in the
most effi cient manner.

Mul ti cast address all ocation problem (Mlloc). TheAny
Source Multicast (ASM) requires that applications sharengls, global address
space. A multicast address identifi es a logical group of neembnd any source
may send data to this dynamic set of members any time. Thelkegaton prob-
lem here is to assign a unique address to each applicationgdimited globally-
shared address space. [9, 10] describe the MASC addresataio architecture
for dynamically allocating multicast addresses. [11] niedkee Malloc problem
theoretically and provides complexity results for variallscation strategies. The
key difference between the malloc problem and our problethat while a solu-
tion to our problem is restricted to using a prefi x-basedcalion scheme, malloc
solutions are also free to use contiguous and non-contgyaoldress allocation
schemes [11]. Figure 2 illustrates the difference betweefi y-based, contiguous
and non-contiguous allocation schemes.

Subcube all ocation in HyperCubes. A hypercube is a recursive
mathematical structure that served as the underlying caruation network of
the Intel iPSC and N-Cube parallel processors. A hypercubsists of2™ pro-
cessors where each processor is labeled with-bit address. Processors whose
labels differ in exactly one bit position are connectedsubcubeof a hypercube
is a subset of its nodes and edges that themselves form aesimghiercube. In a

Address space 19 addresses

Address block - 2addresses

Prefix Based - 00100XXXXX

Contiguous - 001XXXXX01, XX00110XXX
Non-Contiguous - XO0OXX10XX0

Figure 1: Examples for prefi x-based, contiguous and notignoous allocation
schemes

hypercube machine, parallel applications request sulsciiodd them for the run-
time of the application, and then release the subcubes bdhk bperating system
scheduler. Considerable research has gone into develepbaybe allocation al-
gorithms[22—-25]. [26] proves that the malloc problem and the suballoeation
problem are infact quite similar to each other. Similarihsube allocation strate-
gies do not face the constraint of having to use only prefisedaschemes as we
do.

Despite the key differences between our problem and thes-af@mtioned
problems, we hope to benefit from the theory developed ireticostexts.

3 Prdimnaries

The following defi nitions and observations will be usefuelaon. We assume,
without loss of generality, that; > --- > ny;. LetT be a full binary tree of
heightL, i.e., T has2’ leaves an®” — 1 internal nodes. For any solutidf, one
can map each nonempty to a node off" in the obvious way: The node of T
corresponding to subnetwotikis obtained by starting at the root @f and going
down as dictated by the bits of the string(where a 0 means “go to the left child”
and a 1 means “go to the right child”). Note that the depth,dh T (its distance
from the root) is|s;|, and that na; is ancestor of another; in 7' (because of the

requirement that no nonempsy is a prefi x of anothes;). For any nodew in T,
we useparent(w) to denote the parent @f in 7', and we usé(w) to denote the
number of leaves df that are in the subtree af; hencel(v;) = 2-~1%:|. Observe
that solutionS completely satisfies subnetwoikiff (1) > n;, in which case
we can extend our terminology by saying that “nades completely satisfi ed by
S” rather than the more accurate “the subnetwodorresponding to node; is
completely satisfi ed by.”

lemma l. LetS = (vy,...,v;) be any solution (not necessarily optimal). Then
there is a solutior’ = (v}, ..., v}, that, for each subnetworl(1 < i < k), hasv

at the same depth as, and is such that < j implies thatv; has smaller preorder
number inT than 1;3 (which is equivalent to saying that is lexicographically
smaller thans’).

Proof: S’ can be obtained fron$ by a sequence of “interchanges” of various
subtrees off’, as follows. Set = 1, letT” be initially a copy ofT’, and repeat the
following until 7 = k:

1. Perform an “interchange” if” of the subtree rooted at nodg with the
subtree rooted at the leftmost node Bf having same depth as; v} is
simply the new position occupied hy after this “interchange”.

2. Delete fromI” the subtree rooted af, and set =i + 1.

Performing inT" the interchanges done @ gives a newI” where thev!'s have
the desired property.

The “interchange” operations used to prove the above lemithaat be ac-
tually performed by our algorithm — their only use is for thegf of the lemma.
O

lemma 2. Let.S be a solution set (optimal or otherwisef = {v; |1 < i <
M,l(v;) > n;}. If S has more than one element, th&rcan be partitioned into
two disjoint subsets’ and .S” such that, for some,

S ={v, |v, €8,1<z<k}, S"={v,|vy€Sk+1<y<M}

Proof: Let S = (v1,...,v;) be a solution. Use lemma 3 to get a soluti®h==
(vi,...,v;) sothati < j implies thatn; > n;. LetT be the binary tree of which
vy, ...,v; are interior nodes. Let’, T” be the left and right subtrees of the root
of the binary tre€l’ respectively. It is easy to see that there existg gsuch that

(vi,...,v;) are found inl” and (v}, + 1,...,v;) in T". O
lemma 3. LetS be an optimal solutionS = {v; | 1 <i < M}. If S has only one
elementj.e., |S| = 1, then the node; that corresponds to the root of the binary
treeT is assigned to the subnetwairkuch that

N(v:) > ns
1I§I%XM{W| (vi) = ni}

4 Algorithm for the unprioritised case

4.1 A pseudo-polynomial time algorithm

LetS = {s1,...,sn} be an optimal solution. We defi ré(i, j, ¢) to be the maxi-
mum number of machines satisfi ed by any solution ugibis, if the solution set
were to contain only those subnetworks in theiset- 1, - - - j i.e., in the solution
set, if for anyk, |sx| # 0 = i < k < j. We use the convention that(i, j, /) is

0 when undefi nedi.e.,when: > j. If S were to contain more than one element,
according to Lemma 2, the optimal solution can be obtaine@rims of optimal
solutions of subproblems. It allows us to defiRéi, 5, ¢) using the following re-
cursive formula,

If S were to contain only one element, then Lemma 3 can be useditoede

F(i, 3, 2) with the following formula,

F(i,j,0) = max {ny,if nj <2})

8

Since we do not know i will consist of only one subnetworl; (i, j, ¢) is the
maximum of the two values specifi ed in equations 1 and 2,

0 if j<i
F(i,j,0) = max{ max; <p<pr{F (i, k, 0 — 1) + F(k + 1,5, — 1)}, } stherwise
max << {ng, if ng < 2}
o (3)

Clearly, the maximum number of machines that can be satigfydlde optimal
solution usingL bits isF'(1, M, L).

The algorithmCal cul at eOpt i mal described below takes and then;'s
as inputs and computes the entries in#@ --- M,1--- M,1--- L) table. It also
maintains the tablef(1--- M,1---M,1--- L) to help us keep track of how to
construct the optimal solution. Intuitivelyi, 7, ¢) points to the subnetwork that
“gives F(i, j, ¢) its value”. The algorithm returns thé and f tables.

The running time of the algorithm i©(m3L), since the calculation of each
table entry take®) (M) time (stepss — 17) and there aré x m?L table entries.

The f table returned by algorithi@al cul at eOpt i mal can be used to con-
struct an optimal solutio' as follows: For any'(i, j, ¢) that resulted because of
equation 1, therf (4, j, £) corresponds to that subnetwdtkhat is the sole member
of the solution set. In this case, we just print out the lefibmmdew; of the binary
treeT" that has the same depth As- [log,, |. On the other hand, it'(i, j,)
had resulted because of equation 2, tifén j, ¢) corresponds to that subnetwork
k that 'splits’ the solution sef into two disjoint setsS’ and S” (refer to lemma
2). In this case, we call the same procedure recursively ®tvth disjoint portions
of the table split byk. The following recursive algorithr®r i nt Opt i mal prints
out the optimal solution as described above.

It is easy to observe that the running timeRufi nt Opt i mal is O(M). Ob-
serve that there can be atmdsgtrecursive calls tér i nt Opt i mal .

An astute reader would have observed that@te:* L) running time of algo-
rithm Cal cul at eOpt i mal is not polynomial time, but infact pseudo-polynomial

Al

gorithm 1 CalculateOptimal - Calculating the optimal solution

1

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21

:for ¢ =1to L do
fori=1to M do
for j =1to M do
F(i,5,0) =0
£, 5,0)=0
if ¢ > j then
F(i,3,0) =0
for k =1to M do
qg=F(i,k,0 —1)+F(k+1,5,0—1)
if ¢ < ny then
q =ng
end if
if g > F(i,7,¢) then
F(Z,],E) =4q
f(l,],f):k‘
end if
end for
end if
end for
end for
. end for

Algorithm 2 PrintOptimalg, 7, £) - Printing the optimal Solution

[EEY

© 0N a R WD

c Letk = f(i,4,0).
: LetT” be initially a copy of the binary tre€.
if £(i,j,¢) = F(i,k, — 1)+ F(k+1,7,¢ — 1) then
CallPrint Opti mal (i,k,¢— 1).
CallPrintOptimal (k+1,5,¢—1).
. dse
Print out the leftmost node; of 7" having the same depth @s— [log,,, 1.
Delete fromI” the subtree rooted at.
end if

10

time. The size of the input i§_, ., , n; + log L and the factor of. (instead of
log L) present in the running time makes it pseudo-polynomiathémext section,
we describe a polynomial time solution.

4.2 Polynomial time solution

In this section, we show that the optimal solution can beattarised in a way that
yields a polynomial time dynamic programming solution.

We call level ¢ the 2¢ nodes of the binary tre& whose depth (distance from
the root) is/. We number the nodes of levélas follows: (¢,1),(¢,2), ---,
(¢,2%), where(¢, k) is the kth leftmost node of levef. We know from our prob-
lem defi nition that subnetwork is either assigned a nodg at depthd;, where
d; = L — [logn;] oritis not assigned any node at all (i.e;| = 0). This limits
the number of choices for where to placeto 2% choices at depth;, if at all
placed. For every, j pair wherel <i < M andl < j < 2%, we defineF (i, 5) to
be the maximum number of machines of subnetwarks. , i that can be satisfi ed
by using only the portion df” having preorder numbets the preorder number of
(di, 7). Let A be a corresponding optimal solution.

Another notion used by the algorithm is that of thpredecessoof a nodev of
T, wherel is an integer no greater thafs depth: It is the node df" at level/ that
is immediately to the left of the ancestorwét level/ (if no such node exists then
v has no/-predecessor). In other wordszyifis the ancestor af at level/ (possibly
w = v), then thel-predecessor af is the rightmost node to the left of at level’.
The algorithms will implicitly make use of the fact that th@redecessor of a given
nodev can be obtained in constant timexlfs represented as a péit, b) wherea
is v's depth and is the left-to-right rank ob at that depth (i.ey is thebth leftmost
node at deptfa), then thel-predecessor dfa, b) is (¢, c) wherec = [b2¢72] — 1.
We uselpred(¢,v) or lpred(¢,a,b) interchangeably, to denote tligpredecessor
of a nodev = (a, b), with the convention thdpred(¢, a,b) is (—1, —1) whenitis
undefined, i.e., wheh> a or (a, b) has no/-predecessor.

If di—1 > d;, v; can be safely placed &tl;, j). Because of the difference in

11

depth, none of they, ..., v;—; nodes can be placed @t;, j). In that caseF(i, j)
can be defined as

F(i,j) = F(i — 1,lpred(d;—1,7)) 4+ n; 4)

If d;—1 = d;, the node(d;, j) can be used to satisfy any of the subnetworks
1,...,4 having the same depth ds Hence,F'(i, j) is defi ned as

F(i,7) = max{F(i — 1,5), F(i — 1,lpred(d;—1,7)) + n:} (5)

Since the substructure of the optimal solutidnis not known beforehand,
F(i,j) is defi ned as the maximum of equation 4 and 5. Clearly, if weli@d;)’s
for all ¢, j pairs, then the maximum number of machines satisfi ed by amalpt
solution is obtained by choosing the maximum among them:

max F(i,j) (6)
1<i<M,1<5<2%

We can avoid calculating”(i, j)’'s for the entire range of’s from 1 to 2
because of the following claim: there is an optimal solutioat, of the2® nodes
of any levela, does not use any of the leftmast — M nodes of that level. Le$
be an optimal solution that has the smallest possible nufch#iit ¢) of violations
of the claim, i.e., the smallest number of nodesh) whereb < 2¢ — M and some
v; is at(a,b). We prove that = 0 by contradiction: Suppose that> 0, and
let a be the smallest depth at which the claim is violated. (keb) be a node of
level a that violates the claim, i.eb, < 2% — M and some; is placed ata, b) by
optimal solutionS. Since there are more thad nodes to the right of; at levela,
the value ofS would surely not decrease if we were to mod#fiy re-positioning
all of v;,v;41,...,vp in the subtrees of the rightmost — i + 1 nodes of level
a (without changing their depth). Such a modifi cation, howeweuld decrease,
contradicting the defi nition of. Hencet must be zero, and the claim holds. Hence

12

the maximum number of machines satisfi ed by an optimal swius:

max {F(i,j)} (7)

max{1,2% — M }<j<2%

The algorithmPol yCal cul at eOpt i mal described below calculates the
entries inthe(1--- M, 1---2%) table. It taked. and then;’s as inputs. Inorder to
help us construct the optimal solution, it also maintairestéiblef (1 --- M, 1---2%),
f(i,7) tells us if the optimal solution corresponding ki, j) hasv; assigned to
the node(d;, 7) or not.

Algorithm 3 PolyCalculateOptimal - Calculating the optimal solution
1: for i =1to M do

2. for j = max{1,2% — M } to 2% do
3: F(i,j) = F(i — 1,lpred(d;—1,7)) + n;
&) =1

5: if d;_1 =d; then

6: if F(i,j) < F(i—1,7) then
7: F(i,j) =F@G—1,j)

8: f@i,75)=0

9: end if

10: end if

11: end for

12: end for

The time complexity oPol yCal cul at eQpt i mal is O(M?), since we it-
erate overV/2 distincti, j pairs in the worst case and do constant work during each
iteration.

The recursive algorithrRol yPr i nt Opt i mal prints out the optimal solution
using thef and F' tables returned bjPol yCal cul at eQpti nal . It is initially
invoked with thei, 5 pair that produces the maximuf(i, j) value.

The running time ofPol yPri nt Opti mal is O(M) since there are at the
mostM recursive calls.

The following summarizes the result of this section.

Theorem 1. The unprioritized case can be solved®M 2) time.

13

Algorithm 4 PolyPrintOptimal - Printing the optimal solution
1 if f(i,7) =1 then
2: Output the strings; corresponding to the nodgl;, j). Calculation ofs;
given the(d;, j) pair takes constant time.

3: Call PolyPrintOptimal withi — 1, ipred(d;—1, j)
4: ese

5. Call PolyPrintOptimal withi — 1, j

6: end if

5 Algorithm for the Prioritised Case

In this section, we present an algorithm for the prioritisege. In the prioritised
case, each subnetwoikhas a priorityp; associated with it and there is an addi-
tional constraint involving priorities: Some subnetwogdg then more important
than others and are treated preferentially when assigrddgeases. We use the
following priority policy.

Priority Policy: “The number of satisfi ed machines of a subnetwork is the same a
if all lower-priority subnetworks did not exist.’

In order to solve the prioritised case, we make use ofgtheedy algorithm
described in [18], as a subroutine. We describe the algortihefly before pro-
ceeding to explain how it can be used to solved the priodtis@se. The greedy
algorithm solves a related (easier) version of our probl&men M subnetworks,
either completely satisfy them or report that it is not pokesto do so. It is pre-
sented as follows:

Algorithm 5 Greedy Algorithm

1. Sort then;'s corresponding to thé/ subnetworks in decreasing order, say
ny = Zny.

2: For eachn;, compute the deptty; of v; in T: d; = L — [log n;].

3: Repeat the following foi = 1,--- , M: Placev; on the leftmost node df’
that is at depthi; and has none ofy, - -- ,v;_1 as ancestor (if no such node
exists then stop and output “No Solution Exists”).

Step 3 can be implemented as a construction and (simultaly@qureorder

14

traversal of the relevant portion @ — call it 7’; i.e., we start at the root and
stop at the first preorder node of depth label itv; and consider it a leaf of”,
then resume until the preorder traversal reaches anotlugr ofodepthds, which
is labeledvy and considered to be another leafidf etc. Note that in the end the
leaves ofl” are thev;’s in left to right order.

The time complexity of the first step (sorting) @M log M). The second
and the third step each take timEM). So, the time complexity of thgr eedy
algorithm isO(M log M).

Now, we describe how the greedy algorithm can be used foirgplur pri-
oritised case. Let the priorities of the subnetworksphe, - - - , pi,, wherepy,
is the priority of subnetworkk;. Without loss of generality, let us assume that
Pk, > Dk, > -+ > Dk, - Usegr eedy in a binary search for the largestcall it 7)
such that the subnetworks, - - - , k; can be completely satisfi ed, i.e. dfis such a
solution in which all subnetworksy, - - - , k; are completely satisfi ed, it is impos-

sible to completely satisfy all of subnetworks, - - - , Each “comparison” in

i1
the binary search corresponds to a caljteedy.

This takes total time) (M log M) instead ofO(M log?(M)) even though we
might end up callingr eedy log(M) times in the worst case. The reason being,
step 1 ofgr eedy which takesO(M log M) time needs to be executed only once.
Hence the first call tgr eedy costsO(M log M) and every subsequent call takes
only O(M) time.

The following summarizes the result of this section.

Theorem 2. The prioritized case can be solvedGi{ M log L) time.

6 FutureResearch

In this paper, we have dealt with scenarios where blocks difesdes are allocated
to subnetworks which contain only hosts. The allocated esidblocks do not
get divided further. We would like to look into scenarios tibeating addresses
amongst competing networks that contain a multi-levelarghry of subnetworks,

15

where the allocated address blocks get subdivided intolackdaccording to the
structure of the hierarchy of the networks. Intuitivelye fpotentially arbitrary sub-
structure of the competing networks makes the problem appers diffi cult to

solve. Infact we believe that it might be NP-Complete. If fneblem is proved to
be NP-Complete, then developing approximation algoritiwitk tight bounds is
an interesting direction we would like to explore.

The algorithms described in this paper help solve subneteaddallocation
when the requests for addresses are static and do not vantimee This is a
simplifi ed view of reality where the requests are dynamic g over time. So,
there is a need to develop theory and algorithms for optitiadation of addresses
for dynamic requests i.e., something on the lines of DHCP[30me interesting
guestions in this regard are: In an online version of thelprabthe dynamic nature
of the requests means operating with a very fragmented ssldmace. Does the
online version become more diffi cult than the static verdienause of that? Can
the solution for the static version be leveraged to solveottime version?

In the prioritised version of the problem discussed in s&ch we describe
our priority policy and the constraint involving the pritieis. We are interested in
exploring scenarios with other types of constraints. Argmamial time solutions
possible for those constrained versions? Or do they degingy NP-complete
optimisation problems? If they infact degenerate to NP{gete problems, we are
interested in developing approximation algorithms.

We believe that, the subnet address allocation problemiisstéance of a broad
class of resource allocation problems. Hence cross ptitlimavith theory devel-
oped for other problems is another potentially fruitfuledition we are interested
in exploring.

Finally, we are interested in implementing our algorithmd performing real-
istic simulations with arbitrary address demand functitmstudy address utilisa-
tion and the performance of our algorithms.

16

7 Conclusion

In this paper, we have developed a theoretical frameworkhfersubnet address
allocation problem. We have a developed a pseudo-polyrdimia algorithm for
the unprioritised version of the problem. We then showetlttie@algorithm can be
improved to a polynomial time solution. We discuss aboutpheritised version
of the problem and show that it can be solved in polynomiaétikVe then proceed
to discuss about the various problems that need to be workéutbe future.

References

[1] A. Apostolico and Z. Galil (Eds)Combinatorial Algorithms on Words,
Springer, 1985.

[2] T. Cormen, C. Leiserson, R. Rivesintroduction to Algorithms
McGraw-Hill, 1990.

[3] M. Crochemore and W. Ryttefext AlgorithmsOxford University Press,
1994.

[4] Internet Assigned Numbers Authority (IANA), “Class A Buet Experi-
ment”, RFC 1797, 04/25/1995.

[5] A.J. McAuley and P.J. Francis, “Fast routing table lopkising CAMS,”
Proceedings of the 12th Annual Joint Conference of the IEREB@Liter
and Communications Societies - IEEE INFOCOM, '&an Francisco,
CA, v 3, 1993, pp. 1382-1891.

[6] D. Knox and S. Panchanathan, “Parallel searching tegtas for routing
table lookup,”Proceedings of the 12th Annual Joint Conference of the
IEEE Computer and Communications Societies - IEEE INFOCO3/’
San Francisco, CA, v 3, 1993, pp. 1400-1405.

17

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

V. Srinivasan , George Varghese, "Faster IP lookupsgusontrolled pre-

fi x expansion,”’Proceedings of the 1998 ACM SIGMETRICS joint inter-

national conference on Measurement and modeling of compyséems
pp. 1-10, June 22-26, 1998, Madison, Wisconsin, UnitedeStat

Nitin Vaidya, “Weak Duplicate Address Detection in M&dbiAd Hoc
Networks” inACM MobiHog June 2002.

S. Kumar, P. Radoslavov, D. Thaler, C. Alaettinoglu, B, and M.
Handley, “The MASC/BGMP Architecture for Inter-domain Miahst
Routing,” inACM SIGCOMM August 1998.

P. Radoslavov, D. Estrin, R. Govindan, M. Handley, S, and
D. Thaler, “The Multicast Address-Set Claim (MASC) Protc&®FC
2909, September 2000.

V. Lo, D. Zappala, C. GauthierDickey, and T. Singer, ‘Bebretical
framework for multicast address allocation,” Tech. Rep.-UR-2002-
01, University of Oregon, 2002.

B. Manning, “Class A Subnet Experiment Results and Renenda-
tions”, RFC 1879, 01/15/1996.

J. Mogul and J. Postel, “Internet standard subnettiraggdure”, RFC
0950, 08/01/1985.

J. Mogul, “Broadcasting Internet datagrams in the enee of subnets”,
RFC 0922, 10/01/1984.

J. Mogul, “Internet subnets”, RFC 0917, 10/01/1984.

T. Pummill and B. Manning, “Variable Length Subnet Talflor IPv4”,
RFC 1878, 12/26/1995.

P. Tsuchiya, “On the Assignment of Subnet Numbers”, REX19,
04/16/1991.

18

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. Atallah and D. Comer, “Algorithms for Variable LerigSubnet Ad-
dress Assignmentl|EEE Transactions on Computeml. 47, no. 6, pp.
693-699, 1998.

D. E. Knuth, The Art of Computer Programming Vol |, Fundamental
Algorithms 3rd EditionAddison Wesley, 1997.

R.Droms, “Dynamic Host Configuration Protocol”, RFC31 March
1997.

S. Thomson and T. Narten, “IPv6 Stateless Address Aatfhguration”,
RFC 1971, August 1996.

S. Dutt and J. P. Hayes, “Subcube Allocation in Hypesc@@mputers”,
IEEE Transactions on Computersl. 40, no. 3, March 1991.

M. Chen and K. G. Shin, “Process Allocation in an N-Cubalfipro-
cessor Using Gray CodelEEEE Transactions on Computesgl. 36, no.
12, December 1987.

A. AlDhelaan and B. Bose, “A new strategy for procesdtmcation in an
n-cube multiprocessorRProceedings of the International Phoenix Con-
ference on Computers and Communicatistarch 1989.

V. M. Lo, W. Liu, B. Nitzberg, and K.Windisch, “Noncomuous Proces-
sor Allocation Algorithms for Mesh-Connected Multicomprd”, IEEE
Transactions on Parallel and Distributed Systegdy 1997.

M. Livingston, V. Lo, D. Zappala, and K. Windisch, “CycIBlock Al-
location”, First International Workshop on Networked Group Communi-
cation, 1999.

19

