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Abstract

The importance of software security is undeniable given
the impact of software on our lives. Assurance about the security
properties of a software artifact should ultimately translate into a
quantitative measure of vulnerabilities. In this paper, we present
the idea of vulnerability likelihood as a probabilistic approach
to software assurance. Gaining assurance early in the software
development cycle is of immense value in directing future efforts.
So we first discuss vulnerability likelihood in the context of vul-
nerability prediction in software artifacts. We propose four types
of program properties that can be observed in software artifacts
to potentially determine their vulnerability likelihood. Then we
discuss vulnerability likelihood in the context of vulnerability
detection. We propose a technique to quantify the assurance
in the solutions of checkers for vulnerability detection that use
static analysis. And finally, we illustrate the importance of
vulnerability likelihood in a software development methodology
to measurably increase software assurance.

1. INTRODUCTION

The present state of software development is more an art
than science—therefore producing software artifacts. The
subjectivity involved in art appreciation is unacceptable
with software, especially when it’s impact on human life is
tremendous and continuously increasing. Assurance about
software properties should be guaranteed by objective mea-
sures of software attributes. One such attribute that is of
immense concern is software security.

To Err is Human: as long as programming involves human
activity, software vulnerabilities will exist. A software vul-
nerability is an instance of an error in the specification, de-
velopment, or configuration of software such that its execu-
tion can violate the security policy [33]. As such, any as-
surance about the security properties of a software artifact
should ultimately translate into a quantitative assessment
of the vulnerabilities in that artifact. While the areas of
software engineering, software quality, and software reliabil-

ity have been studied extensively over the last three decades,
they are mostly concerned with assuring the usability of soft-
ware under normal conditions. Accidental failures resulting
from accidental faults are their subject of concern and not
malicious attacks resulting from vulnerability exploits. Soft-
ware security has to deal with both accidental and malicious
failures resulting from faults introduced either accidentally
or deliberately [35]. It is this differentiating factor of inten-
tion that makes software security a challenging task.

Boehm et al.[13] define software quality in terms of the high-
level software characteristics of portability, reliability, ef-
ficiency, human engineering, testability, understandability,
and modifiability. The degree to which the software has
these characteristics determines the quality of the software.
Software reliability, a characteristic of software quality, is
the probability that software will provide failure-free opera-
tion in a fixed environment for a fixed period of time. The
errors and the faults leading to failures in this context are
accidental in nature and not malicious.

Deliberate attempts to cause failure by triggering faults is
what software security is concerned with and has to protect
against. While improving the quality of software could in
general reduce the number of faults because of all the con-
tributing characteristics, it might not eliminate faults that
have a low likelihood of being triggered accidentally. How-
ever, such faults could be exploited by someone deliberately
looking for flaws in the software and therefore should be
avoided to secure (w.r.t a given policy) the software from
malicious events. Nonetheless, a majority of the problems
in software security today can be attributed to commonly
repeated mistakes—an indicator of poor quality. Therefore,
improving software quality in a manner such that the com-
mon mistakes are avoided would greatly improve software
security.

Conte et al. [43] define software metrics as those metrics
that are used to characterize the essential features of soft-
ware quantitatively, so that classification, comparison, and
mathematical analysis can be applied. Software metrics can
be classified into process metrics and product metrics. While
process metrics quantify attributes of the development pro-
cess and of the development environment, product metrics
quantify attributes of the software artifact itself. Software
metrics have been proposed for software quality in general
and software complexity and software reliability in particu-
lar.



The 2001 workshop on information security system rating
and ranking [4] discussed different aspects of security met-
rics. “What should we count and what do the numbers
mean?” as pertaining to software security metrics was one of
the challenge problems discussed by security experts at the
2003 UW-MSR Summer Institute [7]. The development of
meaningful security metrics was chosen as a grand challenge
at the CRA Conference on “Grand Research Challenges”
consecutively in 2002 [5] and 2003 [8]. This exemplifies the
immediate need for meaningful measures of software security
as perceived by experts in the field.

In this paper, we introduce the concept of vulnerability like-
lihood of a software artifact, which we define as a probabilis-
tic assessment of vulnerabilities in the software artifact. We
focus on two dimensions of the idea of quantifying vulner-
ability likelihood. First, we discuss the idea of quantifying
the vulnerability likelihood of software artifacts. This deals
with predicting the number and location of vulnerabilities
in a software artifact at different phases of it’s development
life-cycle. We propose four types of program properties that
can potentially be used in a software vulnerability predic-
tion model and discuss the challenges in using them. We
consider this as a new paradigm in the context of prediction
because previous work has concentrated on predicting soft-
ware faults, failures, and intrusions but not vulnerabilities.
Vulnerabilities have been investigated primarily from the de-
tection viewpoint. Second, we propose a technique based on
probabilistic static analysis for quantifying the likelihood of
a vulnerability as detected by a static security checker. Al-
though the use of static analysis to detect vulnerabilities
is not new, the concept of quantifying the approximations
in static analysis to estimate the likelihood of the detected
vulnerabilities is a new paradigm that we believe will sig-
nificantly impact the usefulness of static security checkers
by ranking vulnerabilities by their “false positiveness.” And
finally, we describe the role of vulnerability likelihood in a
software assurance methodology.

2. VULNERABILITY LIKELIHOOD OF A
SOFTWARE ARTIFACT

An error is a mistake made by a developer. It might be a
typographical error, a misreading of a specification, a mis-
understanding of what a subroutine does, and so on [29]. An
error might lead to one or more faults. Faults (also known
as defects) are located in the text of the program. More
precisely, a fault is the difference between the incorrect pro-
gram and the correct version [29]. The execution of faulty
code may lead to zero or more failures, where a failure is the
(non-empty) difference between the results of the incorrect
and correct program [29].

A study released by the U.S Department of Commerce’s Na-
tional Institute of Standards and Technology (NIST) in 2002
estimated that software defects cost U.S economy $59.5 bil-
lion annually [6]. The study also found that over half of
those defects are not found till late in the development cy-
cle and that more than a third of the costs could have been
eliminated if the defects been identified and removed ear-
lier in the cycle. Therefore, it would be useful in a number
of ways to predict the number and location of defects in a
software artifact at different phases in it’s life-cycle. For
example, predicting the number of defects in different soft-

ware modules can help prioritize testing efforts to the more
defect-prone modules. Predicting the number of residual
defects (post-release defects) in a software product can help
guage the quality of the delivered product and determine
the maintenance effort.

A software vulnerability is an instance of an error in the
specification, development, or configuration of software such
that its execution can violate the security policy [33]. In
other words, a defect whose execution can violate the secu-
rity policy is a vulnerability. So all vulnerabilties are defects
but all defects are not vulnerabilties. And as mentioned ear-
lier, triggering of defects leading to failures is accidental in
nature but triggering of vulnerabilities leading to security
violations or intrusions may be deliberate and malicious. A
malicious intrusion can, in general, do more harm than an
accidental failure. Some of the losses may also be intangible
such as the reputation of both the software developer whose
software had the vulnerability and the software user who
experienced the intrusion. As such, it would be a higher
priority for both the developer and the user to be able to
predict vulnerabilities than defects.

In this section, we look at the work in the area of software de-
fect prediction. We identify a model based on a probabilistic
and holistic approach that has the potential to overcome the
drawbacks of the previously proposed models. We believe
that this software defect prediction model can also serve as
a basis for a software vulnerability prediction model because
vulnerabilities are also defects. We then propose four types
of program properties that can be used within the frame-
work of such a model towards predicting vulnerabilities.

2.1 Software Defect Prediction

There are numerous studies in this area of software defect
prediction. Here we briefly summarize the different defect
prediction models as discussed in Fenton and Neil [25] and
describe the probabilistic model proposed by them.

1. Prediction using Complexity Metrics

Most defect prediction research has focussed on estab-
lishing defects as a function of complexity metrics with
the hypothesis that programming complexity affects
the introduction and persistence of defects. Complex-
ity metrics can be considered under four categories as
proposed by Conte et al. [43]:

(a) Size metrics that measure the size of software
using parameters such as lines of code, token
count, and function count. For example, Akiyama
[10] computes the following equation relating the
number of defects D and the lines of code L:

D = 4.86 +0.018L (1)

This equation suggests that larger software mod-
ules have lower defect densities (defects/size).
Other studies that observe the same phenomenon
of larger modules having lower defect densities at-
tempt to explain it by hypothesizing that larger
modules may be developed more carefully than
smaller modules or that larger modules may



still have numerous residual defects because of
smaller test case coverage. Compton and With-
row [16] compute the following polynomial regres-
sion equation for Ada modules:

D = 0.069 + 0.00156 L + 0.00000047L>  (2)

And based on this equation, they propose the
“Goldilock’s Principle,” which suggests that there
is an optimum module size that is neither too big
nor too small with respect to defect density.

(b) Data structure metrics that measure the amount
of data input to, processed in, and output
from software such as variable count, Halstead’s
operand count (72) and total occurrences of
operands (N3), live variables, variable spans, fan-
in, and fan-out.

(c) Logic structure metrics that measure the control
flow aspects of software such as decision count,
McCabe’s cyclomatic complexity, Schneidewind
and Hoffmann’s minimum number of paths and
reachability metrics, depth of nesting, and knots.

(d) Composite metrics that combine two or more of
the above metrics such as Halstead’s Software Sci-
ence metrics. Halstead derives the following re-
lationship between the number of defects D and
the Volume metric V (which in turn is defined
in terms of the number of unique operands and
unique operators):

D = V/3000 3)

To explain the negative correlation between module
size (in terms of lines of code L) and defect den-
sity (D/L), Rosenberg [41] suggests that because there
must be a negative correlation between values of L and
1/L, the correlation between size and defect density
must also be negative whenever defects are growing at
most linearly in size. The negative correlation and the
Goldilock’s principle challenge the fundamental con-
cept of software decomposition in software engineer-
ing. Program complexity is certainly one of the con-
tributing factors to defects but it is not the only cause.
Models that predict the defects as a function of only
program complexity do not consider the causal effects
of programmers and designers, problem difficulty, and
design complexity. The relationship between defects
and program complexity is therefore not a straightfor-
ward one.

. Prediction using Testing Metrics

The defects detected during the testing phases can be
used to predict residual defects using statistical extrap-
olation techniques. Test coverage, which is a metric
of completeness according to a test selection criterion
such as a branch or statement, can be used to derive
the Test Effectiveness Ratio (TER) metric for a given
set of test cases. The TER for a set of test cases is the
proportion of the coverage achieved. The relationship
between test coverage metrics and defect density has
also been studied [36].

3. Prediction based on Process Quality Data

Process metrics quantify the attributes of the software
development process including process quality. The
argument is that process quality is a good predictor of
product quality in terms of the residual defect density.
The 5-level SEI Capability Maturity Model (CMM) is
an example of a process quality metric whose influ-
ence on residual defect density has been empirically
shown by Diaz and Sligo [21]. Other software devel-
opment process methodologies include the Cleanroom
approach [22], Extreme Programming [11], and Per-
sonal/Team Software Process [27, 28].

Fenton and Neil [25] suggest that although a lot of research
has been conducted in the area of software defect prediction,
the problem remains largely unsolved and the solutions un-
satisfactory. Univariate approaches to prediction modeling
are simple, intuitive, and appealing, but inaccurate. Multi-
variate approaches (that use more than one predictor vari-
able) have suffered from the problem of collinearity where
two or more predictor variables capture the same under-
lying factor when multivariate regression depends on the
assumption of zero correlation between predictor variables.
They argue that the problem is mainly of understanding
and representing the complex inter-relationships in the soft-
ware development process and propose a holistic approach to
software defect prediction modeling based on a probabilistic
technique known as Bayesian Belief Networks.

211 A Modd Based on Bayesian Belief Networks
A Bayesian Belief Network (BBN) is a directed graph
that represents probabilistic relationships among the graph
nodes. The nodes represent variables and the arcs represent
the causal or influential relationships among the variables.
Each node is associated with a node probability table (NPT)
that contains the (Bayesian) conditional probability of the
node given the state of it’s parent nodes. The probabilities
in the table are derived from previously observed statistical
data or from expert opinions in its absence.

BBNs enable one to model and reason in the presence of un-
certainty. The sound mathematical basis of Bayesian proba-
bility and the intuitive graphical representation make them
suitable for modeling and visualizing complex relationships
among variables such as those in the software development
process. A prototype BBN for defect prediction (as illus-
trated in [25]) representing the relationships between defects
and the processes of specification, design (including coding),
and testing is shown in figure 1. Testing the model on data
from 28 projects has shown that the predictions are reliable
and encouraging [24].

2.2 Software Vulnerability Prediction

A defect prediction model such as the one based on BBN
should also be able to predict vulnerabilities. Our hypothe-
sis is that we can enhance the model towards predicting vul-
nerabilities by incorporating our knowledge about vulnera-
bilities into the model. We should consider both the general
characteristics of vulnerabilities and the specific characteris-
tics of different types of vulnerabilities in the model consid-
ering that a drawback of most empirical research on defect
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Figure 1: BBN topology for defect prediction as il-
lustrated in [25]. It represents the causal/influential
relationships between defects and the processes of
specification, design (including coding), and testing.
In the figure, Problem complexity can be interpreted
as the complexity inherent in the functional require-
ments of the specification and the term Design in-
cludes both design and coding. KLOC: 1000 Lines
of Code.
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prediction is that they have failed to distinguish between
different classes of defects [25].

In this section, we describe program properties that we be-
lieve could affect the vulnerability likelihood of a software
artifact and thus influence the vulnerability prediction. We
focus only on the vulnerabilities introduced in the coding
phase and not on the other contributing factors such as
problem complexity, design effort, or the testing effort. It
is important to note that we are not interested in actually
detecting vulnerabilities at this stage of predicting vulner-
ability likelihood. We are interested only in determining
program properties that indicate the presence of vulnerabil-
ities.

We use C as the programming language for illustrating most
of our ideas. This is because, a majority of the critical and
vulnerable programs continue to be written in C [3]. There
is also a lot of legacy code written in C. We expect many
of the observations and results to be applicable to programs
written in other languages such as C++ and Java. We also
conjecture that there will be language-specific features that
will have influence on the vulnerability likelihood.

1. Privileged Lines of Code

The notion of privilege is fundamental to the concept
of access control where principals (processes or users)
have different levels of privileges and can access only
those system resources that their privilege level is al-
lowed to access. Higher privilege levels are allowed
access to the more critical system resources and are
susceptible to greater abuse.

Different modules of a software artifact may require
different levels of privileges in which case they execute
under the identity of users that have the necessary

privileges. When different parts of a single module
differ in their privilege requirement because of the na-
ture of operations they perform, privileges can be el-
evated and dropped within the modules using certain
mechanisms (such as setuid in Unix). So not all the
lines of code of an artifact necessarily run with the
same privileges. And those that run with greater priv-
ileges are capable of greater damage because they have
access to critical system resources. Therefore, any er-
ror made by a programmer while writing code that
executes with high privileges (henceforth refereed to
as Privileged Lines of Code or PLOC) may result in
a vulnerability. For example, an instance of a buffer
overflow in a block of code that executes with the priv-
ileges of a root in Unix or SYSTEM in Windows leads
to a vulnerability.

Now if we assume that programmers have a certain
error rate that can be expressed in terms of lines of
code then we can hypothesize that greater the PLOC
in a software artifact or module, greater it’s vulnera-
bility likelihood. Although this seems to be intuitively
valid and is epitomized in the principle of granting
least privilege for the least length of time, we need
empirical evidence for a positive correlation between
PLOC and the number of vulnerabilities in software
artifacts. Then we can use PLOC as a factor for pre-
dicting vulnerability likelihood analogous to the use of
LOC as a size metric of software complexity in pre-
dicting defects.

. Error-prone Constructs

These refer to specific constructs and certain ways of
using such constructs that have a history of flaws.
They may either be library functions or system calls
(invoked through library stubs). They could also
be user-written functions that have been error-prone
in the past. The very presence of such constructs
might be error-prone or might depend on the nature
of their arguments or their environment of use. For
instance, the length of arguments should be carefully
checked while using functions such as gets, strcpy,
and strcat to avoid buffer overflows. Format ar-
guments of functions such as printf and sprintf
should be checked, especially if they are variables and
user-modifiable, to avoid format string vulnerabilities
[17]. And functions that operate on file names should
be avoided and alternatives that use file descriptors
should be used to prevent race condition vulnerabili-
ties [12].

Absence of such error-prone constructs does not im-
ply the absence of vulnerabilities resulting from their
use. Programmers often write their own safe versions
of error-prone C library functions and use them in-
stead. While reproducing the functionality of the li-
brary functions, the errors might also have been du-
plicated in which case the use of such programmer-
written functions is as error-prone as their C library
counterparts.

Presence of such error-prone constructs does not nec-
essarily constitute vulnerabilities. They might have
been used in an appropriate manner with knowledge
of their error-prone variations. But this is not always



the case. Programmers often do not completely un-
derstand the dangers of using such functions. Even if
they do, they might not be aware of safer alternatives.
Ultimately, such functions end up getting used because
of lack of awareness or lack of concern. Although pro-
grammers might get lucky in that their use of such
constructs turn out to be harmless because of the na-
ture of their arguments or the environment, making
it a habit would result in their repeated use and ul-
timately result in vulnerabilities. However, there is
no empirical evidence for this conjecture. If we can
empirically demonstrate the existence of such a phe-
nomenon then that would justify the use of error-prone
constructs as a factor for predicting the vulnerability
likelihood of a software artifact.

Checkers that detect occurrences of error-prone con-
structs include RATS [2], Flawfinder [1], and ITS4 [46].
These checkers perform lexical analysis using regular
expressions and detect matches with error-prone con-
structs stored in their databases. Arguments are min-
imally checked in certain cases. They produce a list
of “hits” with descriptions of the problems, their loca-
tion in the code, associated level of risk, and potential
safer alternatives. Such checkers are better than using
the grep utility to search for error-prone constructs for
many reasons [46]. Although they use simple pattern
matching, these checkers indicate portions of the code
that at least deserve a careful scrutiny. The use of only
lexical analysis makes these checkers faster than those
that work on parsed code. This also enables them to
work on non-preprocessed code, which makes it possi-
ble to analyze all possible builds of a program.

. Programming mistakes

In March 2004, a critical security vulnerability was
found in the Linux kernel memory management code
inside the mremap system call because of a failure to
check the return value of a function called in the sys-
tem call code (identified as CAN-2004-0077 by CVE).
Checking the return values of functions especially sys-
tem calls has long been recognized as a good program-
ming practice. Failure to do so may not always lead
to a vulnerability. But it might when an exceptional
condition occurs (such as the function fails and returns
an error code) as in the case of the Linux vulnerability.

Xie and Engler [47] check for redundant assignments,
dead code, and redundant conditionals in Linux. They
found strong correlation between such redundant pro-
gram properties and what they refer to as “hard er-
rors” that include use of freed memory, dereferences
of null pointers, potential deadlocks, and unreleased
locks. They further found that a file containing such a
redundancy was roughly 45% to 100% more likely to
have a hard error than a randomly chosen file.

Tools such as 1int, LCLint [23], and the -Wall option
in the GNU C compiler check for program properties
such as dead code, unused declarations, type incon-
sistencies, use before definition, ignored return values,
statements with no effects, likely infinite loops, and
fall through cases in switch statements. Such pro-
gram properties are not defects or vulnerabilities in
themselves but they could be indicators of potential

ones. They might be the result of mistakes made by
a programmer who is either unaware or unconcerned.
Or the programmer might have ignored them after
checking them to be harmless. Empirically observing a
correlation between such program properties and vul-
nerabilities would justify their use in predicting the
vulnerability likelihood of software artifacts. The fact
that Xie and Engler [47] have found positive correla-
tion between three such properties and hard errors is
encouraging.

. Program Style

Programming style is concerned with the readability
of programs. A program that is difficult to read will
be difficult to understand, modify, test, and maintain
because humans (mostly different ones in a collabora-
tive development environment) are involved in these
activities. It would therefore affect the psychological
complexity of the programs. Issues of readability and
complexity would either introduce new vulnerabilities
(or defects) or allow the existing ones to persist by
avoiding detection. In this manner, program proper-
ties concerned with style affect the vulnerability like-
lihood of software artifacts.

There are several books and articles on programming
style. Kernighan and Plauger [31] give 77 rules of
“good” programming style. Oman and Cook [40] pro-
vide a list of 236 style rules and also propose a taxon-
omy [39] that has the following four categories:

(a) General practices related to the programming
process such as understanding and defining the
problem before coding and rewriting code instead
of patching or commenting bad code.

(b) Typographic style related to the layout and com-
menting of code such as using spacing, blank lines,
comments, parentheses, and meaningful identifier
names to improve clarity and readability.

(c) Control structure style related to the control flow
aspects that affect the execution of the program
such as issues of modularity, nesting, looping, and
branching.

(d) Information structure style related to data struc-
ture and data flow techniques such as choice of
data structures, initialization of variables, and
validation of inputs.

Although these style rules are believed to have emerged
from a consensus of experienced programmers and re-
searchers, there are many contradictory guidelines as
noted by Oman and Cook [39]. Lack of sufficient em-
pirical results and the use of improper methodology in
studying the benefits of programming style have also
been observed [45]. There hasn’t been much progress
in the empirical validation of style factors. The widely-
used style rules have been accepted as best practices.
For example, the Motor Industry Software Reliabil-
ity Association (MISRA) in its guidelines for the use
of C software in automobiles [37] has several program
style factors. Checking for style factors and observing
how they correlate with vulnerabilities would provide
a basis for including them as a factor in software vul-
nerability prediction.



3. LIKELIHOOD OF A VULNERABILITY

A program’s compliance with a property can be checked
either at run-time (dynamic checking and conventional test-
ing) or at compile-time. Static analysis is the process of
extracting semantic information about a program at com-
pile time. The ability to check program properties without
having to execute the program is especially appealing for
security properties. A variety of static analysis checkers for
detecting software vulnerabilities have been proposed [12,
15, 20, 44].

Intraprocedural static analysis is undecidable [9] and many
interprocedural static analysis problems are NP-complete
[38]. This implies that interprocedural static analysis must
make approximations to be decidable and tractable (finish
in polynomial time). Alias analysis, which is the problem of
statically finding aliases, is a fundamental problem of static
analysis because any data-flow analysis in the presence of
pointers and procedures (call-by-reference kind) has to deal
with aliases. What makes alias analysis particularly difficult
is the fact that even with the simplifying assumption that
all paths in a program are executable (necessary to make
intraprocedural static analysis decidable), intraprocedural
alias analysis is still undecidable for languages with condi-
tionals, loops, dynamic storage, and recursive data struc-
tures [34].

This means that intraprocedural alias analysis for a language
such as C has to make approximations to be decidable and
further approximations to be tractable. These approxima-
tions result in inaccurate solutions to data-flow problems.
From the viewpoint of checking program properties, these
approximations affect the accuracy of our assertions. Safe
approximations, those that preserve the externally observed
program behavior, resulting in overestimates may lead to
false positives. And unsafe approximations may lead to both
false positives and false negatives.

Current static analysis based security checkers approach the
detection of vulnerabilities in a binary manner—a vulnera-
bility is either present or absent. This binary treatment cou-
pled with the fact that the checkers make approximations to
keep the analysis decidable, tractable, and scalable leads to
both false negatives and false positives. Furthermore, a vul-
nerability detected by such checkers can be classified as a
false positive only by manual inspection. Increased occur-
rence of false positives and the effort involved in identifying
false positives make security checkers less useful.

In our research, we are investigating safe approximations re-
lated to flow-sensitivity, context-sensitivity, path-sensitivity,
heap modeling, aggregate modeling (structures and arrays),
and recursive data structures, and unsafe approximations
such as ignoring function pointers, pointer arithmetic, and
signal handlers. The hypothesis is that if instances of safe
and unsafe approximations present in alias analysis and in
it’s client analyses such as reaching definition analysis are
tracked, measured, and combined using certain heuristics,
then the security checkers built on top of these analyses
can use these measurements to associate a confidence value
(probability) with each report of a vulnerability.

The confidence in a vulnerability report, which signifies the

likelihood of the vulnerability being actually present, will be
inversely proportional to the extent of approximations in-
volved in all the analyses that lead to the detection of that
vulnerability. This is because, the more the approximations
made while detecting a vulnerability, the greater the proba-
bility of that detection being a false positive. This technique
can be used to rank the vulnerability reports based on their
“false positiveness” which we believe will significantly im-
pact the usefulness of security checkers. The analysis of
vulnerability reports from security checkers can then be pri-
oritized by first analyzing those reports that have a greater
likelihood of being actual vulnerabilities and not false posi-
tives.

4. ROLE OF VULNERABILITY LIKELI-
HOOD IN SOFTWARE ASSURANCE
METHODOLOGY

We have described the concept of vulnerability likelihood in
the two contexts of vulnerability prediction in software arti-
facts and vulnerability detection using static analysis check-
ers. In this section, we describe how a methodology based
on vulnerability likelihood can help prioritize and concen-
trate the resources in the testing phase to a subset of the
modules in a software artifact.

Let us assume that the four types of program properties de-
scribed in section 2 are empirically shown to correlate with
the number of vulnerabilities in the modules of a software
artifact. When a software artifact is ready to be tested, the
different modules of the artifact can be run through a vul-
nerability predictor which checks for the four property types.
Metrics can be generated for each property type. For exam-
ple, in the case of PLOC, it would be the number of lines of
code in the module that run with elevated privileges. And
in the other three cases, it could be the number of instances
of error-prone constructs, programming mistakes, and poor
programming style. Instances occurring in privileged lines
of code would be considered more severe than others.

These metrics may be weighted based on the extent of their
correlations with vulnerabilities during prior empirical vali-
dations. They may also be normalized based on the size of
the software module and the number of properties checked
under each type. The multidimensional metrics of vulnera-
bility likelihood associated with the modules can be used to
rank them. Such a ranking methodology would help iden-
tify the more vulnerability-prone software modules from the
others. This can then be used to prioritize the time and
effort involved in the testing phase. A validation of this
methodology would require the testing phase to actually
discover more vulnerabilities in modules identified as more
vulnerability-prone than in the other modules and without
any prior knowledge of the vulnerability-proneness of mod-
ules.

We could further incorporate into this methodology, the
technique we propose to quantify the likelihood of vulnera-
bilities detected by static security checkers. This technique
can be used to associate a likelihood metric with each vulner-
ability detected by static checkers. Heuristics may be used
to combine such metrics for all the vulnerabilities detected
in a module. These metrics can be used along with the mul-



tidimensional metrics in ranking modules to determine the
extent of further testing efforts based on test coverage and
manual source code audits.

Such a metric-based and focussed testing methodology
would lead to increased software assurance from the secu-
rity viewpoint. Furthermore, metrics based on vulnerability
likelihood would give a probabilistic measure of software as-
surance. And on improving the metrics by addressing the
contributing factors, one could also demonstrate measurable
gains in assurance.

5. OTHER RELATED WORK

Browne et al. [14] study statistical trends in reported intru-
sions incidents involving exploited vulnerabilities and derive
a regression equation that represents the cumulative count
of reported incidents as a function of the time since the start
of the exploit cycle.

There are a number of studies that attempt to quantify the
assurance of an operational system as opposed to quantify-
ing static attributes in the design and development of a sys-
tem [18, 30, 35, 42]. Such approaches model the intrusion
process analogous to modeling failure in reliability studies.
However, the difficulty here lies in modeling the intention-
ality present in the intrusion process.

DaCosta et al. [19] attempt to identify functions in a soft-
ware program that have a greater vulnerability likelihood
than the other functions in the program. Their hypoth-
esis is that a small percentage of functions near a source
of input (such as those containing read, getlogin, getenv,
scanf, and getc) is most likely to contain vulnerabilities.
They provide limited empirical validation (using only four
software artifacts) of their hypothesis. This approach is in-
teresting but has to be tested with more software artifacts
before being used as one of the heuristics to classify the
functions in a software program into “more vulnerable” and
“less vulnerable” sets.

Kremenek and Engler [32] propose a statistical technique
called z-ranking to rank error reports generated by static
program analysis tools. They classify checks for program
properties into successful checks (program locations that
satisfy the checked property) and failed checks (program lo-
cations that violated the checked property thereby constitut-
ing error reports). The underlying hypothesis is that “true”
error reports are generally few in number. So for a particular
property, they compare the number of successful checks to
the number of failed checks. If there are fewer failed checks
(error reports) compared to successful checks, then there is a
greater chance that those failed checks are true error reports
and not false positives. They use this factor to rank error
reports and their measurements indicate that this ranking
technique is better than a randomized ranking 98.5% of the
time. This technique determines the false positiveness of an
error report by comparing it with the number of other er-
ror reports and successful checks, and not by analyzing the
reasons behind the generation of the report. We anticipate
our approach of ranking an error report based on the extent
of approximation used in its generation to do much better
than their relative ranking method.

6. CONCLUSIONS

The concept of vulnerability likelihood as an approach
to probabilistically measuring and demonstrably improving
software assurance is a new paradigm that deviates from the
traditional binary approach to vulnerability detection. And
to the best of our knowledge, this is also the first holistic
approach to software vulnerability prediction.

We are currently identifying software artifacts and software
development environments to empirically validate our hy-
pothesis about software vulnerability prediction. And to-
wards validating our hypothesis on the likelihood of vulner-
abilities detected by static checkers, we have implemented
prototype checkers for buffer overflow and format string vul-
nerabilities using the PAF framework [26] and it’s associated
algorithms as the basis for our implementation platform. We
are working on tracking and measuring the approximations
to associate a probabilistic metric with vulnerabilities de-
tected.
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