CERIAS Tech Report 2005-02
SECURITY ANALYSISIN ROLE-BASED ACCESS CONTROL
by Ninghui Li and Mahesh V. Tripunitara
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086

Security Analysis in Role-Based Access Control

NINGHUI LI and MAHESH V. TRIPUNITARA
Purdue University

The administration of large Role-Based Access Control (RBAC) systems is a challenging prob-
lem. In order to administer such systems, decentralization of administration tasks by the use of
delegation is an effective approach. While the use of delegation greatly enhances flexibility and
scalability, it may reduce the control that an organization has over its resources, thereby dimin-
ishing a major advantage RBAC has over Discretionary Access Control (DAC). We propose to use
security analysis techniques to maintain desirable security properties while delegating administra-
tive privileges. We give a precise definition of a family of security analysis problems in RBAC,
which is more general than safety analysis that is studied in the literature. We show that two
classes of problems in the family can be reduced to similar analysis in the RT[«, N] role-based
trust-management language, thereby establishing an interesting relationship between RBAC and
the RT framework. The reduction gives efficient algorithms for answering most kinds of queries
in these two classes and establishes the complexity bounds for the intractable cases.

Categories and Subject Descriptors: K.@Wbgnagement of Computing and Information Systems]: Security
and Protection; D.4.6)perating Systems]: Security and Protection — Access Controls

General Terms: Security, Theory, Languages
Additional Key Words and Phrases: Role-based access control, role-based administration, delega-
tion, trust management

1. INTRODUCTION

The administration of large Role-Based Access Control (RB&\Gtems is a challenging
problem. A case study carried out with Dresdner Bank, a majoofi@an bank, resulted
in an RBAC system that has around 40,000 users and 1300 fdbadd et al. 2001]. In
systems of such size, it is impossible for a single systemrggofficer (SSO) to admin-

ister the entire system. Several administrative model&RBBAC have been proposed in
recent years, e.g., ARBAC97 [Sandhu et al. 1999], ARABCO02 [OhSarttihu 2002], and

CLO3 (Crampton and Loizou) [Crampton and Loizou 2003]. Irnttaése models, delega-
tion is used to decentralize the administration tasks.

A major advantage that RBAC has over discretionary accassaldDAC) is that if an
organization uses RBAC as its access control model, theortemization (represented
by the SSO in the system) has central control over its resgurghis is different from
DAC, in which the creator of a resource determines who can a¢hesesource. In most

Authors’ address: CERIAS, Purdue University, 656 Oval Drive, Weafayette, IN 47907; email:
{ni nghui , tripunit}@eri as. purdue. edu

A preliminary verion of this paper appears in the proceeslimighe ACM Symposium on Access Control, Models
and Technologies (SACMAT) [Li and Tripunitara 2004].

Permission to make digital/hard copy of all or part of thistenial without fee for personal or classroom use
provided that the copies are not made or distributed fortppofiommercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead @motice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on serverdo redistribute to lists requires prior specific
permission and/or a fee.

© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 20

organizations, even when a resource is created by an emptbgaesource is still owned
by the organization and the organization wants some levagiatirol over how the resource
is to be shared. In most administrative models for RBAC, t8®$lelegates to other users
the authority to assign users to certain roles (therebytm@gthose users certain access
permissions), to remove users from certain roles (therekgking certain permissions
those users have), etc. While the use of delegation in thénéstration of an RBAC system
greatly enhances flexibility and scalability, it may redtioe control that the organization
has over its resources, thereby diminishing a major adgan®BAC has over DAC. As
delegation gives a certain degree of control to a user thatheaonly partially trusted,

a natural security concern is whether the organization mahets has some guarantees
about who can access its resources. To the best of our knowlkbegeffect of delegation
on the persistence of security properties in RBAC has nat beasidered in the literature
as such.

In this paper, we propose to use security analysis techn[guesal. 2003a] to maintain
desirable security properties while delegating admirtisgarivileges. In security analy-
sis, one views an access control system as a state-trarsygtem. In an RBAC system,
state changes occur via administrative operations. Sgcamalysis techniques answer
guestions such as whether an undesirable state is reachallleshether every reachable
state satisfies some safety or availability properties.niptas of undesirable states are a
state in which an untrusted user gets access and a state in avbgdr who is entitled to
an access permission does not get it.

Our contributions in this paper are as follows.

—We give a precise definition of a family of security analygi®blems in RBAC. In
this family, we consider queries that are more general thaniegithat are considered
in safety analysis [Harrison et al. 1976; Koch et al. 2002@tdn and Snyder 1977;
Sandhu 1988].

—We show that two classes of the security analysis problerRBAC can be reduced to
similar ones inRT[«, N], a role-based trust-management language for which security
analysis has been studied [Li et al. 2003a]. The reductieesgefficient algorithms for
answering most kinds of queries in these two classes andlisebthe complexity
bounds for the intractable cases.

The rest of this paper is organized as follows. In Section 2,efiae a family of security
analysis problems in RBAC and summarize our main result$at&e work is discussed
in Section 3. We gave an overview of the results for secunitglysis inRT[«,N] in
Section 4 and present the reduction from security analgdRBAC to that inRT[«, N] in
Section 5. We conclude with Section 6. An appendix containefgroot included in the
main body.

2. PROBLEM DEFINITION AND MAIN RESULTS

In [Li et al. 2003a], an abstract version of security analysidefined in the context of
trust management. In this section we restate the definititimeircontext of general access
control schemes.

Definition 1. (Access Control Scheme&n access control scheme is modelled as a
state-transition systefl’, @, -,), in whichT is a set of states) is a set of queriedl is
a set of state-change rules, and® x Q — {true, false} is called the entailment relation,

ACM Journal Name, Vol. V, No. N, Month 20YY.

determining whether gueryis true or not in a given state. #tate v € T", contains all
the information necessary for making access control detisat a given time. When a
query,q € @, arises from an access request; ¢ means that the access corresponding
to the requesy is granted in the state, and~ t/ ¢ means that the access corresponding
to ¢ is not granted. One may also ask queries other than thosespon@éing to a specific
request, e.g., whether every principal that has access teoanee is an employee of the
organization. Such queries are useful for understandmgtbperties of a complex access
control system.

A state-change rule) € ¥, determines how the access control system changes state.
Given two states andy; and a state-change rule we writey —, 1 if the change from

~ to v, is allowed by, andy .i>w ~1 if a sequence of zero or more allowed state changes

leads fromry to ;. If v 5y 1, we say thaty; is ¢-reachablefrom ~, or simply~y; is
reachable when~ and+) are clear from the context.

An example of an access control scheme is the HRU scheme, thatived from the
work by Harrison et al. [Harrison et al. 1976]. The HRU schemeaiselnl on the access
matrix model [Graham and Denning 1972; Lampson 1971]. We assheexistence of
three countably infinite setsS, O, andR, which are the sets of all possible subjects,
objects, and rights. We assume further tat O. In the HRU scheme:

—T is the set of all possible access matrices. Formally, eaehl” is identified by three
finite sets,5, ¢ S, O, C O, andR, C R, and a functionM,[]: S, x O, —
27t where M, [s, o] gives the set of rights has overo. An example of a statey,
is one in whichS, = {Admin},O, = {employeeData} U S,, R, = {own,r}, and
M, [Admin, Admin] = 0, and M, [Admin, employeeData] = {own,r}. In this state,
two objects exist, of which one is a subject, and the systerasecated with the two
rights, own andr.

—Q is the set of all queries of the form: € [s, 0], wherer € R is aright,s € Sis a
subject, and € O is an object. This query asks whether the righexists in the cell
corresponding to subjestand objecb.

—The entailment relation is defined as followst r € [s, o] ifand only if s € S, 0 €
O, andr € M, |[s, o]. For example, let the query ber € M[admin, employeeData].
and the query;; be own € M[admin,admin] Then, for the statey, discussed above,
v g1 andy i/ go.

—Each state-transition rulg is given by a set of commands. Givénthe change frony
to~; is allowed if there exists commandinsuch that the execution of the command in
the statey results in the state;. An example ofy is the following set of commands.

command createObject (s, 0) command grant_r(s,s’, o)
create object o if own € [s,0]
enter own into [s, o enter r into [s', o]

The set of queries is not explicitly specified in [Harrison letl@76]. It is conceivable
to consider other classes of queries, e.g., comparing thed akt subjects that have a given
right over a given object with another set of subjects. In camiework, HRU with different
classes of queries can be viewed as different schemes.

Definition 2. (Security Analysis in an Abstract Sett)r@iven an access control scheme
(T, Q,F, ¥), a security analysis instance takes the fdsny, «, IT), wherey € T is a state,

ACM Journal Name, Vol. V, No. N, Month 20YY.

4

q € Qisaqueryy € ¥ is a state-change rule, ahde {3,V} is a quantifier. An instance
(v, ¢, ¥, 3) asks whether there exists such thaty ninz; ~1 andy; F ¢. When the answer
is affirmative, we say is possible(giveny and). An instance(v, ¢, v, V) asks whether
for every~; such thaty »i>¢ 71,71 F ¢. If SO, we sayy is necessarygiven~ andi).

For our example HRU scheme from above, adpps the start state. I, there is only
one subject (namelyddmin) and the access matrix is empty. The system is associated
with the two rights,own andr. Let the queryg ber € M][Alice, employeeData] for
Alice € S andemployeeData € O. Let the state-change rujebe the set of two commands
createObject and grant_r. Then, the security analysis instanege ¢, ¢, 3) is true. The
reason is that although in the start stafeAlice does not have the right over the object
employeeData, there exists a reachable state frenm which she has such access. The
security analysis instandg, ¢, ¢, V) is false, as there exists at least one state reachable
from v (v itself) that does not entail the query.

Security analysis generalizes safety analysis. As we disoude following section,
with security analysis we can study not only safety, but alserse other interesting prop-
erties, such as availability and mutual-exclusion.

2.1 A family of security analysis problems in Role-Based Access Control

We now define a family of security analysis problems in theextof RBAC by specifying
T, Q, andr, while leaving¥ abstract. By considering different possibilities f6r one
obtains different classes of RBAC security analysis pnoislén this family. We consider
two specific instances df in sections 2.3 and 2.4.

We assume a basic level of familiarity with RBAC; readers afenred to [Ferraiolo
etal. 2001; Sandhu et al. 1996]for an introduction to RBA@.a%sume that there are three
countable setd4 (the set of all possible usersy, (the set of all possible roles), afiti(the
set of all possible permissions). The family of analysishyems is given by specializing
the analysis problem defined in Definition 2 to consider accensrol schemes that have
T', Q, and+ specified as follows.

States(I"): T is the set of all RBAC states. An RBAC state,is a 3-tuple{UA, PA, RH),

in which the user assignment relati@ C U x R associates users with roles, the per-
mission assignment relatiad®4 C P x R associates permissions with roles, and the role
hierarchy relatiolRH C R x R is a partial order among roles . We denote the partial
order by>-. r; = r, means that every user who is a memberofs also a member of,

and every permission that is associated witlis also associated with .

ExampPLE 1. Figure 1 is an example of an RBAC state. It reflects an orgaioin that
has engineers, and whose human-resource needs are outise@rcuman-resource per-
sonnel are not employees). Everyone in the organization &ngployee, and therefore a
member of the rol&mployee. Some of the employees are full-time (members of the role
FullTime), and the others are part-time (members of the PaleTime). All managers are
full-time employees. All employees have access to the ofind,therefore have the per-
missionAccess. Engineers may edit code (have the permis&idin), and human resource
personnel may view employee-details (have the permisgion).

We now discuss some example member#&/df, PA and RH. The uselAlice is an en-
gineer who is a part-time employee. Therefdwlice, Engineer) and (Alice, PartTime)
are members ofUA. All employees have access to the office, and therefore,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Bob _Carol > Users
Role
@‘@ Hierarchy

‘ Engineer‘ ‘ PartTime‘ ‘ FuIITime‘ ‘ HumanResourc%

| Permission

RH = { (Engineer, Employee) , (FullTime, Employee),
(PartTime, Employee) , (ProjectLead, Engineer),
(Manager, FullTime) }.

PA = { (Access, Employee) , (View, HumanResource),
(Edit, Engineer) }.

UA = { (Alice, PartTime) , (Alice, Engineer),

(Bob, Manager) , (Carol, HumanResource) }.

Fig. 1. An example RBAC state with a role hierarchy, users and peratissi Roles are shown in
solid boxes, permissions in dashed boxes and users in okdise segment represents a role-role
relationship, the assignment of a permission to a role oasisggnment of a user to a role.

(Access, Employee) is a member ofPA. Project leads are engineers, and therefore
(ProjectLead, Engineer) is a member oRRH (i.e.,ProjectLead = Engineer).

Given a statey, every role has a set of users who are members of that role a&mg ev
permission is associated with a set of users who have that ggoni We formalize this
by having every state define a functiomsers, : RU P — 2V, as follows. For any € R
andu € U, u € users,[r] if and only if either(u,r) € UA or there exists; such that
ry > rand(u,r) € UA. Foranyp € P andu € U, u € users,[p] if and only if there
existsry such that(p, 1) € PA andu € users,[r1]. Note that the effect of permission
propagation through the role hierarchy is already takemdonnsideration by the definition
of users, [r1].

EXAMPLE 2. Letthe RBAC state shown in Figure 1 beThen, for the rolé&ngineer,
users,[Engineer] = {Alice}. Similarly, for the permissiorAccess, users.[Access| =
{Alice, Bob}.

Queries (Q): A queryq has the forms; J s, wheres;, so € S, andS is the set of all
user setsdefined to be the least set satisfying the following condgio1)R U P C S,

ACM Journal Name, Vol. V, No. N, Month 20YY.

i.e., every roler and every permissiop is a user set; (2Juy,ug, - ,ur} € S, where
k> 0andu; € Uforl < ¢ < k, ie., a finite set of users is a user set; and (3)
s1Usa, s1Ns2, (s1) € S, wheresy, so € S, i.e., the set of all user sets is closed with respect
to union, intersection and paranthesization. We extentlihetionusers., in a straightfor-
ward way to give a valuation for all user sets. The extendedtfanusers.,: S — 2V is de-
fined as follows:users., [{u1,u2, - - ,ur}] = {w1,ua, - ,ux}, usersy[(s)] = users,[s],
users, [s1 U sa] = users,[s1] U users,[ss], andusers,[s; N s2] = users,[s1] N users,[sa].

We say a queryg; J s, is semi-staticif one of sq, s3 can be evaluated independent of
the state, i.e., no role or permission appears in it. Theoreag distinguish semi-static
gueries is that (as we assert in Sections 5.1 and 5.2) a seanalysis instance involving
only such queries can be solved efficiently.

Entailment (F): Given a statey and a querys; 3O s9, v b s1 O so if and only if
users,[s1] D users,[sa].

ExampPLE 3. Continuing from the previous examples, an example of aygue is
Full Time N Access O {Alice}, for the roleFull Time, the permissiorccess and the user
Alice. This query is semi-static; the user $élice} can be evaluated (to itself) independent
of the state.

The queryg asks whetheAlice is a full-time employee that has access to the office. To
find out whethery entailsq or not, we evaluatg as follows. We evaluate the user set
FullTime to the set of user$Bob}. We evaluate the user sAtcess to the set of users
{Alice, Bob}. We intersect the two sets of users to obtain the set of y&is}. The user
set{Alice} does not need further evaluation; it is already a set of uséks now check
whether the set of usefg\lice} is a subset of the set of usefBob} and determine that
~ I/ q. If another query,’ is Edit 3 ProjectLead (i.e., whether project leads can edit code),
theny - ¢'.

The state of an RBAC system changes when a modification is nsadecdmponent of
(UA, PA, RH). For example, a user may be assigned to a role, or a role tigrae-
lationship may be added. In existing RBAC models, both gairds and administrative
models affect state changes in an RBAC system. For examglenstraint may declare
that rolesr; andry are mutually exclusive, meaning that no user can be a menfibetio
roles. If a usew is a member of; in a state, then the state is not allowed to change to a
state in whichu is a member of, as well. Anadministrative modahcludes administra-
tive relations that dictates who has the authority to chahgevérious components of an
RBAC state and what are the requirements these changes hsatisfy. Thus, in RBAC
security analysis, a state-change rule may include canstradministrative relations, and
possibly other information.

In this section, we leave the state-change rule abstrachéofollowing reasons. First,
there are several competing proposals for constraint Egesi [Ahn and Sandhu 2000;
Jaeger and Tidswell 2001; Crampton 2003] and for adminiegratodels in RBAC [Sandhu
etal. 1999; Oh and Sandhu 2002; Crampton and Loizou 2003 iBkret al. 2003]; a con-
sensus has not been reached within the community. Further®RBAC is used in diverse
applications. It is conceivable that different applicasovould use different classes of
constraints and/or administrative models; thereforeeddfit classes of problems in this
family are of interest.

Given a statey and a state-change rulg one can ask the following questions using

ACM Journal Name, Vol. V, No. N, Month 20YY.

security analysis.

—Simple Safetyis s J {u} possible? This asks whether there exists a reachable state in
which the user set includes the (presumably untrusted) ugserA ‘no’ answer means
that the system is safe.

—Simple Availabilityis s 3 {u} necessary? This asks whether in every reachable state,
the (presumably trusted) useris always included in the user set A ‘yes’ answer
means that the resources associated with the userasetalways available to the user
u.

—Bounded Safetys {u1, us, ..., u,} 3 s necessary? This asks whether in every reach-
able state, the user seis bounded by the set of useg;, us, . . ., u, }. A'yes’ answer
means that the system is safe. A special case of boundeg &fdutual Exclusion
which asks: ig) 3 (s1 N s2) necessary? This asks whether in every reachable state, no
user is a member of both user sefsands,. A ‘yes’ answer means that the two user
sets are mutually exclusive.

—Livenessis () O s possible? This asks whether the userssatways has at least one
user. A ‘no’ answer means that the liveness of the resoursesiased withs holds in
the system.

—Containmentis s; O s, necessary? This asks whether in every reachable state, every
user in the user set, is in the user set;. Containment can be used to express a
safety property, in which case, a ‘yes’ answer means that fie¢ygaroperty holds. An
example of containment for the RBAC state in Figure 1 and sstaie-change rule is:
“is Employee 1 Access necessary?”, for the roEemployee and the permissioAccess.
This asks whether in every reachable state, every user whdageetmissiorccess
(i.e., has access to the office) is a member of theEaiployee (i.€., is an employee). A
‘yes’ answer means that our desired safety property holds.

Containment can express availability properties also.., Eig Access J Employee
necessary?” asks whether the permisghaness (i.e., access to the office) is always
available to members of the rolignployee (i.e., employees). A ‘yes’ answer means that
the availability property holds.

We point out that that all the above properties (except fart@ioment) use semi-static
queries, and therefore, as we mention in the context of gai@mi¢his section, we can
efficiently determine whether those properties are satisfied

2.2 Usage of RBAC security analysis

In an RBAC security analysis instance, ¢, v, I1), the statey fully determines who can
access which resources. In addition to administrative patiformation, the state-change
rule ¢ also contains information about which users are trusted. nineccess control
system there arusted usersthese are users who have the authority to take the system
to a state that violates security requirements but areetdusot to do so. An SSO is an
example of a trusted user.

Security analysis provides a means to ensure that secagtyirements (such as safety
and availability) are always met, as long as users identi#fgetlusted behave according to
the usage patterns discussed in this section. In other weedarity analysis helps ensure
that the security of the system does not depend on usersthtrethose that are trusted.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Each security requirement is formalized as a security aimigstance, together with an
answer that is acceptable for secure operation. For examplee context of the RBAC
system whose state in shown in Figure 1, a security requiremaybe that only employ-
ees may access the office. This can be formalized as an iestanc v, V), wherey is the
current stateg is Employee 1 Access, andy specifies administrative policy information.
The rulety should precisely capture the capabilities of users thahatérusted. In other
words, any change that could be made by such users shouldbbedlby+). The rule
1) could restrict the changes that trusted users can makeydetiaese are trusted not to
make a change without verifying that desirable security prigs are maintained subse-
guent to the change. For the example discussed above, thptable answer is “yes”, as
we want to ensure that everyone who has the permigsiosss is an employee. The goal
is to ensure that such a security requirement is alwaydisdltis

Suppose that the system starts in a staseich that the answer 9/, ¢, ¥, V) is “yes”.
Further, suppose a trusted user (such as the SSO) attemptk®archange that is not
allowed by, e.g., the SSO decides to grant certain administratival@gies to a user
u. Before making the change, SSO performs security analysis, ¢, V), wherey’ and
" are resulted from the prospective change. Only if the answhgess’, does the SSO
actually make the change. The fact thalimits the SSO from making changes does not
mean that we require that the SSO never make such changefiedtsehe requirement
that the SSO perform security analysis and make only thoaaggs that do not violate
security properties.

This way, as long as trusted users are cooperating, theityeofiman access control
system is preserved. One can delegate administrativeqgaslto partially trusted users
with the assurance that desirable security properties alWwaid. By using different’s,
one can evaluate which sets of users are trusted for a giveritygaroperty. In general, it
is impossible to completely eliminate the need to trust peddowever, security analysis
enables one to ensure that the extent of this trust is wellngiwmkzd.

2.3 Assignment and trusted users (AATU)

In this paper, we present solutions to two classes of secamiyysis problems in RBAC.
Both classes use variants of the URA97 component of the ARBAG@BVrastrative model
for RBAC [Sandhu et al. 1999]. URA97 specifies how g relation may change.

The first class is called Assignment And Trusted Users (AATU), ircivlai state-change
rule ¢ has the formcan_assign, T). The relationcan_assign C R x C x 2 determines
who can assign users to roles and the preconditions thesehaar to satisfyC' is the set
of conditions, which are expressions formed using rolespileoperators) andu, and
parentheseqr,, ¢, rset) € can_assign means that members of the rolgcan assign any
user whose role memberships satisfy the conditicd any roler € rset. For example,
(ro, (r1 Urg) Nrs, {re,r5}) € can_assign means that a user that is a member of the role
ro is allowed to assign a user that is a member of at least one afdr,, and is also a
member ofr3, to be a member of, orrs. T' C U is a set of trusted users; these users are
assumed not to initiate any role assignment operation ptirpose of security analysis.
The setl is allowed to be empty.

Definition 3. (Assignment And Trusted Users — AATThe class AATU is given by
parameterizing the family of RBAC analysis problems in sc®.1 with the following
set of state-change rules. Each state-changeiriias the form(can_assign,T) such

ACM Journal Name, Vol. V, No. N, Month 20YY.

that a state change from = (UA, PA,RH) toy; = (UA;, PA,, RH,) is allowed by
¥ = (can_assign,T) if PA = PA;, RH = RHq, UA; = UAU {(u,r)}, where(u, r) ¢

UA and there exist$r,, c, rset) € can_assign such thatr € rset, u satisfiesc, and
users,[rq] € T (i.e., there exists at least one user who is a member of the y@led is not
in T, so that such a user can perform the assignment operation).

ExAaMPLE 4. For the statey, shown in Figure 1 and discussed in the previous exam-
ples, a state-change rulg, in the class AATU i< can _assign, T'), where

can_assign = {{Manager, Engineer A FullTime, {ProjectLead}),
(HumanResource, true, {FullTime, PartTime})}

T = {Carol}

That is,v authorizes managers to assign a user to theRalgctLead provided that the
user is a member of the rol&ngineer andFullTime. In addition,) authorizes anyone
that is a member of the roldumanResource to assign users to the rol&sllTime and
PartTime. SettingT to {Carol} implies that we wish to analyze what kinds of states can
be reached via changes made by users otherGharh.

Let ¢ be the queryProjectLead J {Alice}. Then,~y t/ ¢. The analysis instance
(v, q,%,3) asks whether there exists a reachable state in whligh is a project lead.
The instance is false. This is becauseAdite to become a member &frojectLead, she
would first need to be a full-time employee, and o@hrol can grant anyone membership
to FullTime. As Carol is in T', she cannot initiate any operation. If we consider, instead,
the state-change rulg, with the samean_assign asy from above, but with" =), then
the analysis instandg, ¢, ¢’, 3) is true.

Main resultsfor AATU

—If ¢ is semi-static (see Section 2.1), then an AATU instapce, ¢, IT) can be answered
efficiently, i.e., in time polynomial in the size of the instae.

—Answering general AATU instancesy, ¢, v, V) is decidable but intractable¢NP-
hard).

2.4 Assignment and revocation (AAR)

In this class, a state-change rule has the form{can_assign, can_revoke), where
can_assign is the same as in AATU, andan_revoke C R x 27 determines who can
remove users from roles. That,, rset) € can_revoke means that the members of role
re, Can remove a user from a rotec rset. No explicit set of trusted users is specified
in AAR, unlike AATU. In AATU and AAR, the relationsan _assign andcan _revoke are
fixed in+. This means that we are assuming that changes to these twionslare made
only by trusted users.

Definition 4. (Assignment And Revocation — AARe class AAR is given by parame-
terizing the family of RBAC analysis problems in Section #ith the following set of
state-change rules. Each state-change ¢uleas the form(can_assign, can_revoke)
such that a state-change from= (UA, PA,RH) to v1 = (UA,, PA;,RH,) is al-
lowed by = {(can_assign, can_revoke) if PA = PA,, RH = RH,, and either (1)
UAy = UAU {(u,r)} where(u,r) ¢ UA and there existér,, c, rset) € can_assign
such thatr € rset, u satisfiesc, andusers,[r,] # 0, i.e., the usew being assigned to

ACM Journal Name, Vol. V, No. N, Month 20YY.

10

r is not already a member ofand satisfies the preconditienand there is at least one
user that is a member of the rotg that can perform the assignment operation; or (2)
UA; U (u,r) = UA where(u,r) ¢ UA;, and there existér,, rset) € can_revoke such
thatr € rset andusers,[r,] # 0, i.e., there exists at least one user in the rql¢hat can
revoke the user’s membership in the role.

We assume that an AAR instance satisfies the following threesptiep. (1) The admin-
istrative roles are not affected layn_assign andcan_revoke. The administrative roles are
given by those that appear in the first component of amy assign or can _revoke tuple.
These roles should not appear in the last component ofcamyassign or can_revoke
tuple. This condition is easily satisfied in URA97, as it asssithe existence of a set of
administrative roles that is disjoint from the set of normudés. (2) If a role is an adminis-
trative role (i.e., appears as the first componentafra.assign or can_revoke tuple), then
it has at least one user assigned to it. This is reasonabée, agministrative role with no
members has no effect on the system’s protection statef #3h _assign tuple exists for
arole, then aan_revoke tuple also exists for that role.

ExamMpPLE 5. Forthe statey, from Figure 1, an example of a state-change rule in AAR
is ¥ = (can_assign, can_revoke), where

can_assign = {{(Manager, Engineer A FullTime, {ProjectLead}),
(HumanResource, true, {FullTime, PartTime})}

can_revoke = {(Manager, {ProjectLead, Engineer}),
(HumanResource, {FullTime, PartTime}) }

We point out that thean_assign we use in this example is the same asdte_assign we
use in Example 4. Then, if is the queryProjectLead J Access (i.e., only project leads
have access to the office), the AAR analysis instance, v, 3) is true. If¢’ is the query
Edit 3 {Alice} (i.e.,Alice can edit code), then the analysis instatieg;’, ¢, V) is false.

Main resultsfor AAR

—If ¢ is semi-static (see Section 2.1), then an AAR instapce, ¢, IT) can be answered
efficiently, i.e., in time polynomial in the size of the instae.

—Answering general AAR instancés, ¢, ¢, V) is coNP-complete.

2.5 Discussion of the definitions

Our specifications otan_assign and can_revoke are from URA97, which is one of the
three components of ARBAC97 [Sandhu et al. 1999]. The stadésge rules considered
in AAR are similar to those in URA97, but they differ in the followgitwo ways. One,
URA97 allows negation of roles to be used in a precondition; AARsdua allow this.
Two, URA97 has separate administrative roles; AAR does not rediné complete sep-
aration of administrative roles from ordinary roles. AATUfdis from URA97 in two
additional ways. One, AATU does not have revocation rules. ,TWTU has a set of
trusted users, which does not exist in URA97.

The other components of ARBAC97 are PRA97 and RRA97, for adteiting permission-
role assignment/revocation, and the role hierarchy, tis@dy. In this paper, we study the
effect of decentralizing user-role assignment and revocatnd assume that changes to
the permission-role assignment relation and the role ribyaare centralized, i.e, made

ACM Journal Name, Vol. V, No. N, Month 20YY.

11

only by trusted users. In other words, whoever is allowed toewdilanges to permission-
role assignment and the role hierarchy will run the secunsjysis and only make changes
that do not violate the security properties. The adminiistnaof the user-role relation is
most likely to be delegated, as that is the component of an®RBate that changes most
frequently.

AATU and AAR represent two basic cases of security analysis il\@BAlthough
we believe that they are useful cases, they are only thergjgrbint. Many other more
sophisticated cases of security analysis in RBAC remaimogeor example, it is not
clear how to deal with negative preconditions in role assignimand how to deal with
constraints such as mutually exclusive roles.

3. RELATED WORK

Simple safety analysis, i.e., determining whether an accestol system can reach a
state in which an unsafe access is allowed, was first formdligétarrison et al. [Harrison
et al. 1976] in the context of the well-known access matrix nhfigempson 1971; Graham
and Denning 1972], and was shown to be undecidable in the HRU Irftdaeison et al.
1976]. There are special cases for which safety is decidabkhé HRU model; safety is
decidable if (1) no subjects or objects are allowed to be etkd®) at most one condition
is used in a command but subjects or objects cannot be dedtror(3) only one operation
is allowed in a command.

Following that, there have been various efforts in desigrangess control systems
in which simple safety analysis is decidable or efficientlgidable, e.g., the take-grant
model [Lipton and Snyder 1977], the schematic protectiod@hfSandhu 1988], and the
typed access matrix model [Sandhu 1992].

One may be tempted to reduce the security analysis problemedefi this paper to a
problem in one of the other models such as HRU and use exigigdts. However, this
approach has several difficulties. First, we consider diffekinds of queries, while only
safety is considered in other models. It is not clear, fotanse, how one would reduce
containment in RBAC to safety in HRU. Second, even when we résiucattention to
simple safety, the reduction of either AATU or AAR into HRU resdiit a set of command
schemas that does not fall into any known decidable special GaHRU. (1) New users
are implicitly created when being assigned to roles. (2) Bseaf preconditions in AATU
and AAR, an assignment operation requires checking both timenamd initiator’s privi-
leges and the user’s role memberships. The resulting HRU @rdischema would not be
mono-conditional. (3) Adding a user to a role results in ther agtaining several permis-
sions simultaneously. The resulting command in HRU is uhjikebe mono-operational.
Last but not least, even if some further restricted subcasSB8AC security analysis can
be reduced to decidable subcases of HRU, no efficient algoagisis for those cases. For
example, even in the subcase where no subjects or objecttoavedto be created, safety
analysis in HRU remainBSPA CE-complete (which implies that it BNP-hard).

Recently, Li et al. [Li et al. 2003a] proposed the notion afigity analysis, and studied
security analysis in the context &T[«,N], a role-based trust management language.
They showed that a security analysis instanc&ri{«, N] involving only semi-static
gueries can be solved efficiently (in time polynomial in tleesof the start-state in the
analysis), and for more general queries, they showed thaanbbysis is decidable, but
intractable.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12

Crampton and Loizou [Crampton and Loizou 2003] claim thiadiministrative (or con-
trol) permissions are assigned to subjects, then the safeblem is undecidable. Indeed,
Munawer and Sandhu [Munawer and Sandhu 1999] and Cramptomffoa 2002] have
shown independently that the safety problem for RBAC96 isegidthble.” We disagree
with this claim, and we show in this paper that simple safetyl @ren more sophisticated
analysis) can be decidable when administrative permissoagiven to subjects. The
simulation by Munawer and Sandhu [Munawer and Sandhu 199gkstigjonly that when
an overly complicated administrative model is added to RBaGafety analysis may be
undecidable.

The work by Koch et al. [Koch et al. 2002a] considers safetRBAC with the RBAC
state and state-change rules posed as a graph formalisrh f€ad. 2002b]. They show
that safety (defined as whether a given graph can become arapb-gf another graph)
is decidable provided that a state-change rule does notrbothve and add components
to the graph that represents the protection state. It isleat evhat import the property
of safety, as defined in the context of the graph-based fismahas in the context of
an RBAC system. In particular, it is not clear whether the arotf safety as defined in
that work captures the notions of simple or bounded safegpntainment that we discuss
in Section 2.1. Also, specific complexity bounds for decidéadety are not provided in
that work, and therefore it is not clear how useful the dduilitg result for safety is. In
particular, we do not know whether safety can be decided effigie Furthermore, the
administrative model (set of state-change rules) constigr that work is limited in that
all roles are considered to be of the same type, and therafta® correspond to nodes in
the graph each of which has the same label as another. Com$lggue cannot express
preconditions to user-role assignment as we can with ARBAC@7tl@ administrative
models considered in this paper. Such preconditions, as seeish in Section 2.3, are
expressions formed using roles. Recently, the graph-tHasedlism [Koch et al. 2002b]
has been extended to consider a more realistic and flexilphénéstrative model [Koch
et al. 2004]. This new administrative model considers sthsnge rules that consist of
commands such a&ldEdge and deleteEdge. The commands do not satisfy a criterion
for the decidability of the safety property that was shownkingh et al. 2002a]; some of
the commands remove and add components to the graph. Wisefleéy (as defined for
the graph-based formalism) is indeed decidable or not glvemew state-change rules is
not known. Our work differs from that work in that we consider agml class of queries,
and provide specific algorithms and complexity bounds. bfitah, our state-change rules
are based on ARBAC97, whose usefulness has been argued iteth&ulie [Sandhu et al.
1999].

Previous work on ensuring security properties in RBAC takesapproach of using
constraints [Ahn and Sandhu 2000; Crampton 2003; Jaegeridsdll 2001]. In this ap-
proach, a set of desirable properties are explicitly spetidis constraints on the relations
in an RBAC state. Each time the state of an access contr@myistabout to change, these
constraints are checked. A change is allowed only when thes&traints are satisfied.
We believe that security analysis and constraints are cemrmgahtary. Constraints directly
specify desirable properties on the state of an RBAC systeaurity analysis uses con-
ditions specified on what kinds of state changes are allowedrdedsecurity properties
on all reachable states. An advantage of using constraitiaisophisticated conditions
can be specified and enforced efficiently. In the securityyarsapproach, fewer security

ACM Journal Name, Vol. V, No. N, Month 20YY.

13

Simple Member
syntax: Kr— K;
meaning: members(K.r) D {K;}
LP clause: m(K,r, K1)
Simple Inclusion
syntax: Kor+— K.
meaning: members(K.r) O members(K;.r1)
LP clause: m(K,r,?Z) :— m(K1,r1,?Z)
Linking Inclusion
syntax: Kr— Kuryrg
meaning: members(K.r) 2 Uy, cx.,., members(Kj.r2)
LP clause: m(K,r,?Z) :— m(K,r1,?Y), m(?Y,r9,72)
Intersection Inclusion
syntax: Kr«— KiriNKsyry
meaning: members(K.r) O members(K.r1) N members(Ks.rz)
LP clause: m(K,r,?Z) :— m(K1,r1,7Z), m(Ka,r2,?2)

Fig. 2. Statements iRT[«,N]. There are four types of statements. For each type, we
give the syntax, the intuitive meaning of the statement,taed_P (Logic-Programming)
clause corresponding to the statement. The clause usemwreyt predicaten, where
m(K,r, K1) means thaf(; is a member of the rol&.r Symbols that start with?” rep-
resent logical variables.

properties can be analyzed efficiently, because of the meadalyze potentially infinitely
many reachable states. On the other hand, the constraidagiprequires that the system
controls all changes to the RBAC state, because of the ngeerform constraint check-
ing. Security analysis can handle decentralized contrallloyving the parts of a state that
are not controlled by the system to change freely. It can ke ts help enforce security
properties even when the RBAC system itself is maintaineddecentralized manner and
one cannot ensure that constraints are checked when sonué e RBAC state changes.
Another advantage of security analysis is that it can be padd less often than checking
constraints. Analysis only needs to be performed when chamgesllowed by the state-
transition rule are made, while constraints need to evadugdeh time a state changes.

4. OVERVIEW OF SECURITY ANALYSIS IN RT[«, N]

In[Lietal. 2003a], Li et al. study security analysis in th@text of theRT family of Role-
based Trust-management languages [Li et al. 2002; Li eD@BE)]. In particular, security
analysis inRT[«,N] and its sub-languages is studieRIT [«, N] is a slightly simplified
(yet expressively equivalent) version of thd, language introduced in [Li et al. 2003b]
(RT[«,N] is calledSRTin [Li et al. 2003a]). In this section we summarize the results
for security analysis ifRT[«, N]. In Section 5 we reduce security analysis in AATU and
AAR to that inRT[«, N].

Syntax of RT[«,N] The most important concept in theT" languages is also that of
roles A role in RT[«,N] is denoted by a principal (corresponding to a user in RBAC)
followed by a role name, separated by a dot. For example, ithesna principal and- is a
role nameK.r is arole. Each principal has its own name space for roles.>ample, the

ACM Journal Name, Vol. V, No. N, Month 20YY.

14

‘employee’ role of one company is different from the ‘empeyrole of another company.
A role has a value which is a set of principals that are members obthe r

Each principalK has the authority to designate the members of a role of tha for
K.r. Roles are defined bgtatements Figure 2 shows the four types of statements in
RT[«,N]; each corresponds to a way of defining role membership. Alsimember
statementX.r «—— K; means that{; is a member ofK’’s r role. This is similar to a
user assignment in RBAC. A simple inclusion statem&nt «— K;.r; means thaf’’s
r role includes (all members ofi’;’s r; role. This is similar to a role-role dominance re-
lationshipK;.r; = K.r. Alinking inclusion statemenk’.r «— K.r;.ro means thaf.r
includesK.r, for every K; that is a member of(.r;. An intersection inclusion state-
mentK.r «— K;.r1 N Ky.ro means thafk(.r includes every principal who is a member of
both K;.r; and K5.r. Linking and intersection inclusion statements do notadiyecor-
respond to constructs in RBAC, but they are useful in exjimgsaemberships in roles that
result from administrative operations. Our reduction athars in Sections 5.1 and 5.2 use
linking and intersection inclusion statements to captser-wole memberships affected by
administrative operations.

States An RT[«,N] statey? consists of a set dRT[«,N] statements. The semantics
of RT[«,N] is given by translating each statement into a datalog cla{Batalog is a
restricted form of logic programming (LP) with variablesgegicates, and constants, but
without function symbols.) See Figure 2 for the datalog @aiorresponding R T [«—, N]
statements. We call the datalog program resulting fromstading each statement in”
into a clause that is theemantic progranof v, denoted bySP(y 7).

Given a datalog program?P, its semantics can be defined through several equivalent
approaches. The model-theoretic approach viB#sas a set of first-order sentences and
uses the minimal Herbrand model as the semantics. We Wite/ ") = m(K,r, K')
whenm(K,r, K') is in the minimal Herbrand model &P (v 7).

State-change Rules A state-change rule is of the forg?’ = (G, S), whereG andS are
finite sets of roles.

—Roles inG are calledgrowth-restricted(or g-restricted; no statements defining these
roles can be added. (A statement defines a role if it has tleetodthe left of «+—'.)
Roles not inG are calledgrowth-unrestricteqor g-unrestrictedl.

—Roles inS are calledshrink-restricted(or s-restricted; statements defining these roles
cannot be removed. Roles not$hare calledshrink-unrestrictedor s-unrestrictedl.

Queries Li et al. [Li et al. 2003a] consider the following three formisqueries:

— Membership Axr 34{Dy,...,D,}
Intuitively, this means that all the principalsD,,...,D, are mem-
bers of Ar. Formally, v + Ar 23 {Di,...,D,} if and only if
{Z|SP(yT) Em(A,r,Z2)} D{D1,...,Dy}.

— Boundedness {Di,...,D,} JAr
Intuitively, this means that the member setAf- is bounded by the given set of prin-
cipals. Formallyy” + {Ds,...,D,} 3 Arifandonly if {Dy,...,D,} 2 {Z |
SP(vT) Em(A,r, Z)}.

— Inclusion XudAr
Intuitively, this means that all the members4f- are also members of.u. Formally,

ACM Journal Name, Vol. V, No. N, Month 20YY.

15

I+ X 3 Arifandonly if {Z | SP(vT) &= m(X,u,Z)} 2 {Z | SP(vT) &
m(A,r, Z)}.

Each form of query can be generalized to allow compound refgessions that use
linking and intersection. These generalized queries caedeced to the forms above by
adding new roles and statements to the state. For instahce, A.r N A;.r1.72 can be
answered by addingg.u; «<— A.r N B.ug, B.us «+— B.ugz.rs, and B.ug «— Aj.rq to
~T, in which B.u,, B.us, andB.us are new g/s-restricted roles, and by posing the query

Main resultsfor security analysisin RT[«, M|

Membership and boundedness queries (both whether a queogsihfe and whether
a query is necessary) can be answered in time polynomial isideeof the input. The
approach taken in [Li et al. 2003a] uses logic programs tve@nswers to those security
analysis problems. This approach exploits the factRfidt—, N] is monotonic in the sense
that more statements will derive more role membership fatiés follows from the fact
that the semantic program is a positive logic program.

Inclusion queries are more complicated than the other twdski In [Li et al. 2003a],
only theV case (i.e., whether an inclusion query is necessary) isestudt is not clear
what the security intuition is of af inclusion query (whether an inclusion query is possi-
ble); therefore, it is not studied in [Li et al. 2003a]. The@blem of deciding whether an
inclusion query is necessary, i.e., whether the set of mesrdd@me role is always a super-
set of the set of members of another role is cattedtainment analysislt turns out that
the computational complexity of containment analysis dejgeon the language features.
In RT[], the language that allows only simple member and simple simfustatements,
containment analysis is iR. It becomes more complex when additional policy language
features are used. Containment analysi®®P-complete foRT[N] (RT[] plus intersec-
tion inclusion statementsPSPACE-complete forRT[«] (RT[] plus linking inclusion
statements), and decidabledaNEXP for RT[«, N].

5. REDUCING AATU AND AAR TO SECURITY ANALYSIS IN RT[«, N]

In this section, we solve AATU (Definition 3) and AAR (Definition 4). Capproach is to
reduce each of them to security analysi®if[«, M.

5.1 Reduction for AATU

The reduction algorithrMATU_Reduce is given in Figure 4; it uses the subroutines de-
fined in Figure 3. Given an AATU instande = (UA, PA,RH), q¢ = s1 d 89, ¥ =
(can_assign, T, 11 € {3,V}), AATU_Reduce takes(v, ¢,v) and outputgy?, ¢*, 1)
such that thi&RT[«, N] analysis instancéy”, ¢*', 47, 1) has the same answer as the orig-
inal AATU instance.

In the reduction, we use one principal for every user that aggpm v, and the spe-
cial principalSys to represent the RBAC system. TR&[«,N| role names used in the
reduction include the RBAC roles and permissionsyiand some additional temporary
role names. Th&kT[«,N] role Sys.r represents the RBAC role and theRT[«,N]
role Sys.p represents the RBAC permissipn Each(u,r) € UA is translated into the
RT[«,N] statemenBys.r «—— u. Eachr; > rq is translated into th&T[«, N] state-
mentSys.ro «— Sys.ry (asry is senior tory, any member of; is also a member afs.)

ACM Journal Name, Vol. V, No. N, Month 20YY.

16

1 Subroutine Trans(s, %) {

2 /* Trans(s,7T) returns an RT[«,N] rol e correspondi ng
3 to the user set s*/

4 if sis an RBAC role then return Sys.s;

5 else if s is an RBAC permission then return Sys.s;

6 elseif sis a set of users then {

7 name=newName(); foreach ues {

8 vT+= Sys.name —u; }

9 return Sys.name; }

10 elseif (s = s1 U s2) then {

11 name=newName(); ~T+=Sys.name «— Trans(s1,77);
12 vT+= Sys.name «— Trans(s2,v7);

13 return Sys.name; }

14 elseif (s = s1 N s2) then {

15 name=newName() ;

16 yT+=Sys.name «— Trans(s1,v7) N Trans(s2,v7);
17 return Sys.name; }

18 } /* End Trans */

19

20 Subroutine QTrans(s, 77) {

21 /* Translation for users sets that are used at top
22 I evel in a query */

23 if sis a set of users then return s;

24 else return Trans(s, v7);

25 } /* End QTrans */

26

27 Subroutine HTrans(s, ~v7) {

28 if sis an RBAC role then return HSys.s;

29 elseif (s = s1 U s2) then {

30 name=newName(); ~7+= Sys.name«— HTrans(s1,~77);
31 vT+= Sys.name«—HTrans(s2,747); return Sys.name; }
32 elseif (s = s1 N s2) then {

33 name=newName() ;

34 T +=Sys.name «— HTrans(s1,77) N HTrans(s2,v7);

35 return Sys.name; }

36 } /* End HTrans */

Fig. 3. SubroutineSrans, QTrans, andHTrans are used by the two reduction algorithms. We assume call-by-
reference for the parametet .

Each(p,r) € PA is translated int®ys.p < Sys.r (each member of the role has the
permissiorp.)

The translation of thean_assign relation is less straightforward. Each,,r.,r) €
can_assign is translated into th&T[«, N] statemenBys.r «—— Sys.r,.r N Sys.r.. The
intuition is that a user, who is a member of the role, assigning the usex to be a
member of the: role is represented as adding Ri€[«, N| statementi,.r «— u. ASu, iS
a member of th&ys.r, role, the user, is added as a member to thes.r role if and only
if the useru is also a member of the. role.

In the reduction, all th&ys roles (i.e.,Sys.x) are fixed (i.e., both g-restricted and s-
restricted). In addition, for each trusted usein T', all the roles starting with: is also

ACM Journal Name, Vol. V, No. N, Month 20YY.

17

37 AATU_Reduce ((y=(UA,PA,RH), q=s1 Js2, ¢ = {can-assign,T)))
38 {

39 /* Reduction algorithmfor AATU */

40

41 47 = 0 ¢" = QTrans(s1,4") IQTrans(s2,77);

42 foreach (ui,r;) € UA { vT+= Sysrje—u;; }

43 foreach (ry,r;) € RH { vT+= Sys.rj«—Sys.r;; }

44 foreach (p;,r;) € PA { vT+= Sys.p;«—Sys.r;; }

45 foreach (as,s,rset) € can_assign {

46 if (s==true) { foreach r € rset {

47 yT+= Sys.r«—Sys.ai.r; } }

48 el se { tmpRole=Trans(s, y7);

49 foreach r € rset { name=newNane();

50 vT+= Sys.name «— Sys.a;.7;

51 ~T+= Sys.r«—Sys.name N tmpRole

52)})

53 foreach RT role name z appearing in 47 {

54 G+=Sys.z; S+=Sys.z; foreach user we T { G+=u.z; } }

54 return (7, ¢%, (G,9));
55 } /* End AATU_Reduce */

Fig. 4. Reduction Algorithm for AATU

g-restricted; this is because we assume that trusted usénsotviperform operations to
change the state (i.e., user-role assignment operatigvessynay also make roles starting
with trusted users s-restricted; however, this has no effecipastatement defining these
roles exists in the initial state.

ExaMPLE 6. Consider the state-change rutewe discuss in Example 4, in which
can_assign consists of the two tuple@anager, Engineer A Full Time, ProjectLead) and
(HumanResource, true, {FullTime, PartTime}), andT = {Carol}. Let~ be the RBAC
state shown in Figure 1, and lgbe the queryrojectLead O Alice. Then, we represent the
output of AATU_Reduce ({7, ¢,%)) as{yT, q",4T). ¢q* is Sys.ProjectLead I {Alice}.
The following RT statements i’ result fromUA:

Sys.Engineer «—— Alice Sys.PartTime «—— Alice
Sys.Manager «—— Bob Sys.HumanResource «— Carol

The following statements in’ result fromRH:

Sys.Employee «+— Sys.Engineer Sys.Employee «—— Sys.FullTime
Sys.Employee «— Sys.PartTime Sys.Engineer «—— Sys.ProjectLead
Sys.FullTime «— Sys.Manager

The following statements in”' result fromPA:

Sys.View «— Sys.HumanResource Sys.Access «— Sys.Employee
Sys.Edit «— Sys.Engineer

The following statements in” result fromcan_assign. The first two statements reflect
the ability of a member adflumanResource to assign users teull Time andPartTime with
no precondition, and the remaining statements reflect thigyadf a member ofManager

ACM Journal Name, Vol. V, No. N, Month 20YY.

18

to assign users tBrojectLead provided that they are already membersFofiTime and
Engineer.

Sys.FullTime «— Sys.HumanResource.Full Time
Sys.PartTime «— Sys.HumanResource.PartTime
Sys.NewRole; «— Sys.Engineer N Sys.FullTime
Sys.NewRole, «— Sys.Manager.ProjectLead
Sys.ProjectLead «— Sys.NewRole; N Sys.NewRole;

T = (G, S), whereG is the growth-restricted set of roles, afids the shrink-restricted
set of roles consists of every role of the forBys.x and every role of the forMarol.x.
The latter is included ids becaus€arol is in the set of trusted use¥s S consists of every
role of the formSys.z. Itis clear that the security analysis instarteé, g7, 7, 3) is false,
asAlice can never become a memberSys.ProjectLead. If we adopt as the state-change
rule!, that is the same as’ except thafl’ = (), then roles of the fornG€arol.z would be
growth-unrestricted. And there exists a stafethat is reachable from? which has the
following statements in addition to all the statementsin

Carol.FullTime «— Alice Bob.ProjectLead «— Alice

These statements are necessary and sufficieByédProjectLead «— Alice to be inferred
in v{ . Thus, the security analysis instangé , ¢*, «T, 3) is true.

The following proposition asserts that the reduction is shumeaning that one can use
RT security analysis techniques to answer RBAC securityyaisaproblems.

PROPOSITION 1. Given an AATU instance(y,q,v,II), let (v7 ¢7,4T) =
AATU_Reduce((v, ¢, %)), then:

—Assertion 1:For every RBAC statg’ such thaty +, 4/, there exists aRT[«, N] state
v such thaty” +,r 47" and’ - ¢ if and only ify”" + 7.

—Assertion 2:For everyRT[«, N] statey”” such thaty” +>,,r 477, there exists an RBAC
statey’ such thaty +, 7/ andy’ - ¢ if and only ify”" I ¢

See Appendix A.1 for the proof. As we discuss in detail in [Trigara and Li 2004],
the above proposition asserts tA&T U_Reduce is security-preserving in the sense that an
AATU analysis instance is true if and only if tiT [«—, N] analysis instance that is the out-
put of AATU_Reduce is true. ThatisAATU_Reduce preserves the answer to every security
analysis instance. We argue the need for assertion 1 in tpogition by considering the
case that there exists a reachable state the RBAC system, but no corresponding reach-
able statey’” in the RT[«, N] system produced b&ATU_Reduce. Let the corresponding
query bey. If 4" F ¢, then letll bed, and ify’ t/ ¢, then letlI beV. In the former case, the
security analysis instance in RBAC is true, but the instandke RT[«, N] system that is
the output ofAATU_Reduce is false. In the latter case, the analysis instance in RBAC is
false, but the instance iIRT[«, N] is true. Therefore, foAATU_Reduce to preserve the
answer to every analysis instance, we need assertion 1.

Similarly, we argue the need for assertion 2 by consideriegctintrary situation. Let
+T" be a reachable state RIT[«,N] for which there exists no corresponding state in
RBAC. Let the corresponding query RT[«, N] beq”. If 477 I- ¢, then letl] be 3, and
let IT be V otherwise. AgainAATU_Reduce would not preserve the answer to a security

ACM Journal Name, Vol. V, No. N, Month 20YY.

19

analysis instance, and we would not be able to use the answaranadysis instance in
RT[«,N] as the answer to the corresponding instance in RBAC.

THEOREM 2. An AATU instancey, ¢, ¢, IT) can be solved efficiently, i.e., in time poly-
nomial in the size of the instancegifs semi-static.

PROOF Let the output of AATU_Reduce corresponding to the inputy, g,) be
(vT,q",yT). If q is semi-static, we observe that is semi-static as well. Furthermore,
AATU_Reduce runs in time polynomial in its input. We know from Li et al. [kt al. 2003a]
that inRT[«, N], a security analysis instance with a semi-static query canbeered in
time polynomial in the size of 7. Therefore, in conjunction with Proposition 1, we can
conclude that a security analysis instance with a semiegjagry in the RBAC system can
be answered in time polynomial in the size of the system the.size of(vy, ¢,)). O

THEOREM 3. An AATU instancéy, ¢, ¢, IT) is coNP-hard.

PrROOF We show that the general AATU problemdsNP-hard by reducing the mono-
tone 3SAT problem to the complement of the AATU problem. Mamet 3SAT is the
problem of determining whether a boolean expression in cmtixe normal form with at
most three literals in each clause such that the literal€lawse are either all positive or all
negative, is satisfiable. Monotone 3SAT is known taNdiB-complete [Garey and Johnson
1979].

Let ¢ be an instance of monotone 3SAT. Thea=c1 A ...¢i AGy1 A ... A G, Where
c1, ..., ¢ are the clauses with positive literals, aad7, ..., ¢, are the clauses with
negative literals. Lep, . .., ps be all the propositional variablesn For each clause with
negative literalsy, = (- pr, V 2 pr, V 7 Piy), defined, = = = (pry A Dy A Pis)-
Then, ¢ is satisfiable if and only i3 A ...c; A = (dj41 V...V d,) Is satisfiable. Let
n = (1AN...N¢) — (di41V...Vd,) where— is logical implication. Theng; A
.o A= (dig1 V... Vd,) = - . Thereforeg is satisfiable if and only ify is not valid.
We now constructy, ¢» andg in an AATU instance such that= z; 3 29 is true for user
setsz; andz, in all states reachable fromif and only if n is valid.

In v, we have a role (which is for administrators) antA contains(A, a) whereA is
a user (i.e., the role is not empty in terms of user-membership). With each prdjorsil
variablep; in 7, we associate a role. For eachr;, we add(a, true,r;) to can_assign.
That is, anyone can be assigned to the rgléNe letT (the set of trusted users) be empty.
For eachj such thatl < j <, we associate the clause= (p;, V p;, V pj,), with a user
sets; = (r;, Ur;, Urj,). For eachk such thatl 4+ 1) < k& < n, we associate the clause
dr, = (Pky N Dky A Dis), With @ user set, = (rg, N7k, N7ry). INOUr queryy = z; 3 29,
weletz; = 541 U...Us, andzy = 51N ... N s;. We now need to show that 3 25 in
every state reachable fromif and only if is valid. We show that; 3 25 is nottrue in
every state reachable fromif and only if , is notvalid.

For the “only if” part, we assume that there exists a stdtéhat is reachable fromy
such that iny’ there exists a userthat is a member of the user sgt but notz;. Consider
a truth-assignment for the propositional variables in as follows: ifu is a member of
the roler; in v/, thenI(p;) = true. Otherwisel(p;) = false. UnderI, n is not true, as
(c1 A...A¢)istrue, but(d;41 V...V d,) is false. Therefore; is not valid.

For the “if” part, we assume thatis not valid. Therefore, there exists a truth-assignment
I such that{c; A ... A ¢) is true, but(d;+1 V...V d,) is false. Consider a statg that
has the following members itfA in addition to the ones in: for eachp; that is true under

ACM Journal Name, Vol. V, No. N, Month 20YY.

20

56 AAR_Reduce ((v = (UA,PA,RH), q=s1dsa,

57 1 = {can-assign, can_revoke)))

58 { /* Reduction algorithmfor AAR */

59 ~T=0; ¢% = QTrans(s1, v7) JQTrans(s2, v7);
60 foreach (u;,r;) e UA {

61 fyT+= HSys.7j «—u; fyT+= RSys.rj «—u;

62 vT+= Sys.rj«—RSys.rj; }

63 foreach (r;,r;) € RH {

64 vT+= Sys.r; «—Sys.ri; T += HSys.rj «——HSys.r;; }

65 foreach (pi,r;) € PA { vT+= Sys.p;«—Sys.r;; }
66 foreach (ai,s,rset) € can-assign {

67 if (s==true) {

68 foreach r € rset {

69 4T+= HSys.r«—BSys.r; ~T+= Sys.r<—ASys.r; }

70 } el se { tmpRole = HTrans(s,y7); [/* precondition */
71 foreach r €rset {

72 4T+= HSys.r — BSys.r N tmpRole;

73 yT+= Sys.r«— ASys.r N tmpRole; }

74}

75 foreach RT role name z appearing in 7 {

76 G+=Sys.x; S+=Sys.z; G+=HSys.z; S+=HSys.z; G+=RSys.z;
77 S+=BSys.z; S+=RSys.z; S+=ASys.z;

78 } /* when a can_revoke rule exists for r, ASys.r and
79 RSys. r can shrink */

80 foreach (ai,rset) € can_-revoke {

81 foreach r in rset { S-=RSys.r; S-=ASys.r; } }

82 return (v, ¢%, (G,9));
83 } /* End AAR_Reduce */

Fig. 5. AAR_Reduce: the reduction algorithm for AAR

1, (u,r;) € UA. Otherwiseu,r;) ¢ UA. ~' is reachable fromy, and inv’, z; 3 23 is
not true. O

We observe from the above proof that the AATU problem remassiNP-hard even
when every precondition that occurs inn_assign is specified agrue; the expressive
power of the queries is sufficient for reducing the monoton&T3&oblem to the general
AATU problem. We infer from our reduction and results frdtii [«—, N] that an AATU
instance is iFPSPACE.

5.2 Reduction for AAR

The reduction algorithm for AAR is given in Figure 5. The redoctalgorithm includes in
the set of principals a principal for every userlinand five special principalSys, RSys,
HSys, ASys, andBSys. Again, theSys roles simulate RBAC roles and permissions. In this
reduction, we do not distinguish whether a role assignmentatipa is effected by one
user or another, and use only one princigeys, to represent every user that exercises
the user-role assignment operation. The roles of the @h&iSys contain all the initial
role memberships irV4; these may be revoked in state changdSys.r maintains the
history of the RBAC roler; its necessity is argued using the following scenario. A iser
a member of-;, which is the precondition for being added to another rele After one

ACM Journal Name, Vol. V, No. N, Month 20YY.

21

assigns the user t@ and revokes the user from. The user's membership i, should
maintain, even though the precondition is no longer sati¢fiesimilar justification for this
approach is provided in the context of ARBAC97 [Sandhu et 209] as well). BSys is
similar to ASys, but it is used to construct tHéSys roles. An administrative operation to
try to add a user; to the roler; is represented by adding the statem&fys.r; «— u;
andBSys.r; «— u; to v7. An administrative operation to revoke a usgrfrom the role
r; is represented by removing the statemétigs.r; «— u; andASys.r; «— u;, if either
exists iny”.

ExamMPLE 7. Consider the state-change rutewe discuss in Example 5, in which
can_assign consists of the two tuple@anager, Engineer A Full Time, ProjectLead) and
(HumanResource, true, {FullTime, PartTime}), and can_revoke consists of the two tu-
ples(Manager, {Engineer, ProjectLead}) and(HumanResource, {FullTime, PartTime}).
Let v be the RBAC state shown in Figure 1, and debe the queryProjectLead O
Alice. Then, we represent the output SATU_Reduce ({7, ¢,v)) as (v, ¢%,vT). ¢F
is Sys.ProjectLead 1 {Alice}. The following RT statements in” result fromUA:

HSys.Engineer «—— Alice RSys.Engineer «— Alice
HSys.PartTime «— Alice RSys.PartTime «— Alice
HSys.Manager «— Bob RSys.Manager «— Bob
HSys.HumanResource «— Carol RSys.HumanResource «—— Carol
Sys.Engineer «— RSys.Engineer Sys.FullTime «— RSys.FullTime

Sys.HumanResource «— RSys.HumanResource
Sys.PartTime «— RSys.PartTime

The following statements in” result fromRH:

Sys.Employee «— Sys.Engineer HSys.Employee «— HSys.Engineer
Sys.Employee «— Sys.FullTime HSys.Employee «— HSys.FullTime
Sys.Employee «— Sys.PartTime HSys.Employee «— HSys.PartTime
Sys.Engineer «—— Sys.ProjectLead HSys.Engineer «—— HSys.ProjectLead
Sys.FullTime «— Sys.Manager HSys.FullTime «— HSys.Manager

The following statements in”’ result fromPA:

Sys.View «— Sys.HumanResource Sys.Access «— Sys.Employee
Sys.Edit «— Sys.Engineer

The following statements in” result fromcan_assign:

HSys.FullTime «— BSys.FullTime Sys.FullTime «— ASys.FullTime
HSys.PartTime «— BSys.PartTime Sys.PartTime «— ASys.PartTime
Sys.NewRole; «— HSys.Engineer N HSys.Full Time

HSys.ProjectLead «— BSys.ProjectLead N Sys.NewRole;

Sys.ProjectLead «— ASys.ProjectLead N Sys.NewRole;

YT = (G, S), whereG is the growth-restricted set of roles, afids the shrink-restricted
set of roles. Unlikecan _assign, can_revoke results only in some roles not being added to
S. G is comprised of all roles of the for8ys.z, HSys.x andRSys.z (but notBSys.z or
ASys.x). S is comprised of all roles of the for8ys.x, HSys.x, RSys.x andASys.z, except

ACM Journal Name, Vol. V, No. N, Month 20YY.

22

the roleskRSys.Manager, ASys.Manager, RSys.Engineer, ASys.Engineer, RSys.FullTime,
ASys.FullTime, RSys.PartTime, andASys.PartTime. This is because those roles appear
in can_revoke rules, and therefore may shrink.

There exists a statg] that is reachable from? that has the following statements in
addition to the ones in”.

BSys.FullTime «— Alice ASys.ProjectLead «—— Alice

We can now infer that iny{, HSys.FullTime <«— Alice, and therefore,
HSys.NewRole; «— Alice, and so,Sys.ProjectLead «— Alice. Thus, the security
analysis instancé&y”, ¢, 47, 3) is true. If we consider, instead, the quefy which is
Sys.PartTime O Alice, then asRSys.PartTime is a shrink-unrestricted role, there exists
a statey? that is reachable from® in which the statemerRRSys.PartTime «— Alice is
absent. Therefore, we would conclude tBad.ProjectLead does not includélice. Con-
sequently, the analysis instange’, ¢¥', 77, V) is false.

We are able to also demonstrate the need for the roles atsbweih the principal$iSys
andBSys. Consider the state// that can be reached fron{ by removing the statement
RSys.FullTime «— Alice. Now, Sys.FullTime does not includélice. This is equivalent
to Carol revoking the membership of the usalice to the roleFullTime. This affects
the precondition that one can be assigned to the PedgectLead only if one is already
a member of the roleEngineer andFullTime. Nonetheless, we observe thgf - ¢7,
as indeed it should. That ig\lice should continue to be a member BfojectLead even
if subsequent to her becoming a memberPedjectLead, her membership is removed
from FullTime. We observe that this is the case because theB®¥e.Full Time is shrink-
restricted, and therefore one cannot remove the stateBtsmtFull Time «— Alice once
it has been added, and consequetttfyys.Full Time «— Alice is true, and thereforAlice
continues to be a member of the rélmjectLead (i.e., is included irbys.ProjectLead). Of
courseAlice can later have her membership revoked from the PetgectLead (by Bob),
and this is equivalent to the statem@éiys.ProjectLead «— Alice being removed.

The following proposition asserts that the reduction is sbun

PROPOSITION 4. Given an AAR instance(y,q,v,II), let (7, ¢7,9T) =
AAR_Reduce({v, g, ®)), then:

—Assertion 1:For every RBAC state’ such thaty ~,, 7/, there exists aRT[«, N] state
v such thaty” +,» 47" andy’ I ¢ if and only ify7" - ¢7.
—Assertion 2:For everyRT [«, N] statey?” such thaty” +,,r 477, there exists an RBAC
statey’ such thaty +,, 7" andy’ I ¢ if and only ify™" F ¢
The proofisin Appendix A.2. Our comments regarding the needdesertions 1 and 2 to
preserve answers to security analysis instances, that weimgieprevious section in the
context of AATU_Reduce, apply to the above proposition in the context?dfR_Reduce

as well. If either of the assertions does not hold, then we dans® the answer to the
RT[«,N] analysis instance as the answer to the corresponding RBA&GhTe

THEOREM 5. An AAR instancéy, q, ¢, IT) can be solved efficiently, i.e., in time poly-
nomial in the size of the instanceyifs semi-static.

ACM Journal Name, Vol. V, No. N, Month 20YY.

23

PROOF. Let the output oAAR_Reduce for the input(y, ¢,v) be (v, ¢, »T). If ¢ is
semi-static, so ig”. As AAR_Reduce runs in time polynomial in its input ang” can
be answered in time polynomial in the size/gf (which is shown by Li et al. [Li et al.
2003a)),q can be answered in time polynomial in the size of the systeam the size of
(v, ¢,¥)). Thus, an AAR instance with a semi-static query can be solMedeeftly. [

THEOREM 6. An AAR instancéy, ¢, v, IT) is coNP-complete.

PrROOF We deduce that an AAR instance isdtaNP from the fact tha®h AR _Reduce
runs in time polynomial in the size of the system, and theesgonding security analy-
sis problem in theRT[N] system that is the output &AR_Reduce is coNP-complete.
(RT[N] is a sub-language &t T[«, N] that allows only the first, second and fourth kinds
of statements from Figure 2.) That isgifs not true in every state reachable franthen
we offer as counterproof the algorittif\R_Reduce and the counterproof in tHeT [«—, N]
system thay” is not true in every state reachable fror.

We can show that the general AAR problencisNP-hard in almost exactly the same
way that we show the result for the AATU problem in the proof ftiedrem 3. The only
difference is that for every role; that is associated with a propositional variabjeapart
from a rule incan_assign, we add the ruléa, r;) to can_revoke. We construct the query
q the same way as in that proof, and show in the same waygtigatrue in every state
reachable fromy if and only if n is valid. O

6. CONCLUSION AND FUTURE WORK

We have proposed the use of security analysis techniquesitttain desirable security
properties while delegating administrative privileges.rMspecifically, we have defined a
family of security analysis problems in RBAC and two classegroblems in this family,
namely AATU and AAR, based on the URA97 component of the ARBAC97 adtna-
tive model for RBAC. We have also shown that AATU and AAR can be ceduo similar
analysis problems in thRT[«, N] trust-management language, establishing an interest-
ing relationship between RBAC and tli&I" (Role-based Trust-management) framework.
The reduction gives efficient algorithms for answering masti& of queries in these two
classes and helps establish the complexity bounds for trectable cases.

Much work remains to be done for understanding securityyaisin RBAC. The family
of RBAC security analysis defined in this paper can be paranzed with more sophisti-
cated administrative models, e.g., those that allow negatieconditions, those that allow
changes to the role hierarchy or role-permission assigtsnamd those that allow the
specification of constraints such as mutually exclusivesol

REFERENCES

AHN, G.-J.AND SANDHU, R. S. 2000. Role-based authorization constraints spatific ACM Transactions
on Information and System Security43Nov.), 207-226.

CRAMPTON, J. 2002. Authorizations and antichains. Ph.D. thesis, Bkltollege, University of London, UK.
CRAMPTON, J. 2003. Specifying and enforcing constraints in rolesbdaaccess control. IRroceedings of the
Eighth ACM Symposium on Access Control Models and Techesl¢§ACMAT 2003ACM Press, 43-50.
CRAMPTON, J.AND Lolizou, G. 2003. Administrative scope: A foundation for role-baaddinistrative mod-

els. ACM Transactions on Information and System Securig @/ay), 201-231.
FERRAIOLO, D. F., AHN, G.-J., GHANDRAMOULI, R., AND GAVRILA, S. 2003. The role control center:

Features and case studies. Rroceedings of the eighth ACM Symposium on Access Controélsachd
Technologies

ACM Journal Name, Vol. V, No. N, Month 20YY.

24

FERRAIOLO, D. F., SANDHU, R. S., GVRILA, S., KUHN, D. R.,AND CHANDRAMOULI, R. 2001. Proposed
NIST standard for role-based access contr@CM Transactions on Information and Systems Securiy 4,
(Aug.), 224-274.

GAREY, M. R. AND JOHNSON, D. J. 1979. Computers And Intractability: A Guide to the Theory of NP-
CompletenessW.H. Freeman and Company.

GRAHAM, G. S.AND DENNING, P. J. 1972. Protection — principles and practicePtaceedings of the AFIPS
Spring Joint Computer Conferencéol. 40. AFIPS Press, 417—-429.

HARRISON, M. A., Ruzzo, W. L., AND ULLMAN, J. D. 1976. Protection in operating syster@@mmunica-
tions of the ACM 198 (Aug.), 461-471.

JAEGER, T. AND TIDSWELL, J. E. 2001. Practical safety in fexible access control isodeCM Transactions
on Information and System Security24(May), 158-190.

KocCH, M., MANCINI, L. V., AND PARISI-PRESICCE F. 2002a. Decidability of safety in graph-based models
for access control. IiProceedings of the Seventh European Symposium on Reseatdmiputer Security
(ESORICS 20025pringer, 229-243.

KocH, M., MANCINI, L. V., AND PARISI-PRESICCE F. 2002b. A graph-based formalism for RBAGCM
Transactions on Information and System Security Gug.), 332—-365.

KOCH, M., MANCINI, L. V., AND PARISI-PRESICCE F. 2004. Administrative scope in the graph-based frame-
work. InProceedings of the Ninth ACM Symposium on Access Control Iladd Technologies (SACMAT
2004) 97-104.

LAMPSON, B. W. 1971. Protection. Ifroceedings of the 5th Princeton Conference on Informatiderges
and SystemsReprinted in ACM Operating Systems Review, 8(1):18-24,18#4.

L1, N., MITCHELL, J. C.,AND WINSBOROUGH W. H. 2002. Design of a role-based trust management frame-
work. InProceedings of the 2002 IEEE Symposium on Security and RrilBEE Computer Society Press,
114-130.

L1, N. AND TRIPUNITARA, M. V. 2004. Security analysis in role-based access cantroProceedings of the
Ninth ACM Symposium on Access Control Models and Technsl¢§@&CMAT 2004)126-135.

L1, N., WINSBOROUGH W. H.,AND MITCHELL, J. C. 2003a. Beyond proof-of-compliance: Safety and avail
ability analysis in trust management. Rroceedings of IEEE Symposium on Security and PriviEgE
Computer Society Press, 123-139.

L1, N., WINSBOROUGH W. H.,AND MITCHELL, J. C. 2003b. Distributed credential chain discovery inttrus
managementJournal of Computer Security 11,(Feb.), 35-86.

LIPTON, R. J.AND SNYDER, L. 1977. A linear time algorithm for deciding subject setyur Journal of the
ACM 24,3, 455-464.

MUNAWER, Q. AND SANDHU, R. S. 1999. Simulation of the augmented typed access nmatidel (ATAM)
using roles. IrProceedings of INFOSECU99 International Conference on mfdion and Security

OH, S.AND SANDHU, R. S. 2002. A model for role admininstration using orgatiirestructure. IrProceedings
of the Seventh ACM Symposium on Access Control Models andolegies (SACMAT 2002)

SANDHU, R. S. 1988. The schematic protection model: Its definitiod analysis for acyclic attenuating sys-
tems.Journal of the ACM 352, 404-432.

SANDHU, R. S. 1992. The typed access matrix modePioceedings of the 1992 IEEE Symposium on Security
and Privacy IEEE Computer Society Press, 122-136.

SANDHU, R. S., BHAMIDIPATI, V., AND MUNAWER, Q. 1999. The ARBAC97 model for role-based aminis-
tration of roles.ACM Transactions on Information and Systems Security(Egb.), 105-135.

SANDHU, R. S., ®YNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access control
models.IEEE Computer 292 (February), 38-47.

SCHAAD, A., MOFFETT, J.,AND JACOB, J. 2001. The role-based access control system of a Eurdyaedn
A case study and discussion. Rroceedings of the Sixth ACM Symposium on Access ControlI¢Madéd
TechnologiesACM Press, 3-9.

TRIPUNITARA, M. V. AND L1, N. 2004. Comparing the expressive power of access contrdelso InPro-
ceedings of the 11th ACM Conference on Computer and Commuamsafecurity (CCS-11ACM Press,
Washington, D.C., USA, 62-71.

ACM Journal Name, Vol. V, No. N, Month 20YY.

25

A.1 Proof for Proposition 1

PROOF For Assertion 1: A state change in AATU occurs when a user assignment
operation is successfully performed. For every RBAC stdtsuch thaty »i>¢ ~', let
V0,71, -+ »Ym D€ RBAC states such thagt = vy —y 71—y - oy Ym = 7. We
construct a sequence BfT [«—, N] statesy', 77, - -+ , 7L as follows:v = ~47; for each
i = [0..m — 1], consider the assignment operation that changes ~,1, let it be the
operation in which a user; adds(u,) to the user-role assignment relation; the steftg
is obtained by adding;.r < uto~!. LetyT’ be~L.

Step one:Prove that ify’ F ¢ theny™’ ¢T. It is sufficient to prove the following:
for eachi € [0..m], if ; implies that a certain user is a member of a role (or has
the permissiorp), then~? implies thatu is a member of th&RT[«,N] role Sys.r (or
Sys.p). We use induction onto prove this. The base case (i=0) follows directly from the
AATU_Reduce algorithm; lines 42—44 reproducé&!, RH, PA in theRT[«,N] stateyl .
For the step, assumes that the induction hypothesis hotdgfe- - ,v;, considery; ;.
Let the operation leading t;+1 be one in whichu; assignsu to a roler. Since both
sequences of states are increasing, we only need to considenemberships implied by
~;+1 but not+;; these are caused (directly or indirectly) by this assignm&here must
exists a(r,, ¢, r) € can_assign to enable this assignment; thus+n «, is a member of
the roler, andu satisfies the condition By induction hypothesis, in}, u; is a member
of Sys.r, andu satisfies the condition. From the translation and the construction of
vE 1, v}, has the following statementsi;.r «— w, Sys.r «— Sys.rq.r, andSys.r «—
Sys.name N tmpRole (WheretmpRole corresponds to the precondition Furthermore,
in %‘TH- w1 is a member of the role, andu satisfies the condition. Thereforeu is a
member of théSys.r role in~/, ;.

Step two:Prove that ity”” I- ¢* theny’ - q. It is sufficient to show that if aRT [«—,]
role membership is implied by””, then the corresponding RBAC role membership (or
permission possession) is also implied. A detailed proesusduction on the number of
rounds in which a bottom-up datalog evaluation algorithnpatg a ground fact. Here, we
only point out the key observations. (For details of simiesofs, see the Appendix in [Li
et al. 2003a].) ART[«,N] role membership is proved by statements generated on lines
42-52. The first three cases correspond tolltle RH, PA. For the last case, there must
exist a statemeni;.r «—— w in 47’, and it implies that. is a member of the rol8ys.r.
By the construction ofy?’, the usen, has been assigned to the reléuring the changes
leading toy’.

For Assertion 2:Given anRT[«,] statey”’ such thaty” +>,r 47", we can assume
without loss of generality thai”” adds toy” only simple member statements. Also, we
only need to consider statements defining;, whereu; is a user iny andr; is a role in
~. Consider the set of all statements)ifi’ having the formu;.r; «— uy,. For each such
statement, we perform the following operation on the RBACeststarting fromy, have
u; assighuy, to the roler;. Such an operation may not succeed either becap#enot
in the right administrative role or becausg does not satisfy the required precondition.
We repeat to perform all operations that could be performiHuhat is, we loop through
all such statements and repeat the loop whenever the lastdsafis in a new successful
assignment. Let’ be the resulting RBAC state. It is not difficult to see thatmplies the
same role memberships a$’; using arguments similar to those used abova.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26

A.2 Proof for Proposition 4

PROOF For Assertion 1:A state change in AAR occurs when a user assignment or a
revocation operation is successfully performed. Given aBj@® statey’ such thaty .i>w
v, letyo,v1, -+, vm be RBAC states such that= vy —y 71—y - =y Tm = 7.
We construct a sequence R [«, N] statesyl ,7{, -+ ,7L as follows: ¢ = 47T for
eachi = [0..m — 1], consider the operation that changedo ;1. If it is an assignment
operation in which a user; adds(u,) to the user-role assignment relation; the stgftg
is obtained by addin§ys.r «+— u andBSys.r «—— u to~}. For each revocation that revokes
a useru from a roler, we remove (if they exist) from thRT[«, N] state the statements
ASys.r «——u and RSys.r «——u. LetyT" be~L.

Step 1:Prove that ify - ¢ theny”’ F ¢7. Step la:We prove that iny”’, HSys.r
captures all users that are ever a member of the roé¢ some time, i.e., for each
i € [0..m], if u € users,,[r], thenu is a member of th&kT[«,N] role HSys.r in vL,
(SP(vL) = m(HSys,r,u)). We prove this by induction on The basisi{ = 0) is true,
since inyT we reproducel/A and RH in the definition of theHSys roles (see lines 60—
64 in Figure 5); furthermore, thlSys roles never shrink. For the step, we show that if
(u,r) € UA;41, thenu is a member of th&T[«, N] role HSys.r in 4L,. This is sufficient
for proving the induction hypothesis because the effectopagation through role hierar-
chy is captured by the definition 6fSys roles. If (u,r) € UA;41, then eithefu,r) € UA
(in which caseHSys.r «—— u € "), or there is an assignment operation that assigtos
r (in which caseBSys.r «— u € v1). Let (rq,c,7) € can_assign be an administrative
rule used for this assignment, themjip the usem satisfiesc. By induction hypothesig’s
role memberships in; is captured inu’s role memberships iRSys.r; thereforeu, would
satisfy the translated preconditiompRole. Thereforeu is a member of the rolelSys.r
in v (because of the statemett$ys.u «— BSys.r N tmpRole).

Step 1b:We prove that imy”’ the Sys roles capture all the role membershipsyih
It is sufficient to prove the following: le/A’ be the user assignment relationfy if
(u,r) € UA’, thenu is a member of the rol8ys.r in v7’. If (u,r) € UA, then either
(u,r) € UA and this is never revoked (in which caR8ys.r —— u € 4T and this statement
is never removed, therefoRSys.r —— u € y1”); or there is an assignment operatior{in
and this assignment is not revoked after it (in which o&Sgs.r «—u € y7").

Step two:Prove that ify”” I ¢7 theny’ - q. Itis sufficient to show that if aRT[«, N]
role membership is implied by””, then the corresponding RBAC role membership (or
permission possession) is also implied. A detailed proe§usduction on the number of
rounds in which a bottom-up datalog evaluation algorithnpatg a ground fact. Here, we
only point out the key observation. RT[«, N] role membership is proved by statements
generated on lines 60-65 or 71-74. The first three casessporid to theUA, RH, PA.
For the last case, there must exist a statemégs.r «—— v in v7”, and it implies that is
a member of the rol8ys.r. By the construction of”’, the usew has been assigned to the
roler during the changes leading46 and the assignment is not revoked after that.

Also, we only need to consider statements defining;, whereu; is a user iny andr;
is a role iny. Consider the set of all statements)ii’ having the formu;.r; «— . For
each such statement, we perform the following operation oRB¥C state, starting from
~, haveu; assignuy, to the roler;. Such an operation may not succeed either becauise
not in the right administrative role or becauggdoes not satisfy the required precondition.
We repeat to perform all operations that could be perforriéat is, we loop through all

ACM Journal Name, Vol. V, No. N, Month 20YY.

27

such statements and repeat the loop whenever the last loolpsresa new successful
assignment. Let’ be the resulting RBAC state. It is not difficult to see thaimplies the
same role memberships @%’; using arguments similar to those used above.

For Assertion 2:Among theRT[«, N] roles,Sys roles andHSys roles are fixedASys
roles can grow or shrinlRSys roles can shrink but not grow; afgbys roles can grow but
not shrink. Given aRT[«, N statey”’ such thaty” +>,,» 47’, we can assume without
loss of generality that”” adds toy” only simple member statements. Consider the set of
all statements in/”” definingASys, BSys, andRSys roles. We construct the RBAC state
~/ as follows. (1) For every statemeBSys.r «—— u in 47", assign the usei to the role
r. Repeat through all such statements until no new assignsneneeds. Using arguments
similar to those used for proving assertion 1, it can be shtatrtow the RBAC roles have
the same memberships as tH&ys roles. (2) Do the same thing for all th#&Sys.r «— u
statements. At this point, all the role memberships foiSjreroles iny?” are replicated in
the RBAC roles, because all thiSys memberships have been added. (3) Remove the extra
role membership in the RBAC state, i.e., those not inSyeroles. The ability to carry out
this step depends upon the requirement (in Definition 4) fitaere is acan _assign rule
for arole, then there is also revoke rule for the rolel

ACM Journal Name, Vol. V, No. N, Month 20YY.

