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Abstract

A mobile portable device will often make queries, to a
remote database, that depend on its location: It may ask
for the nearest coffee shop, restaurant, pharmacy, etc. For
privacy reasons, the mobile unit may not wish to disclose
its precise location to the remote database – while it is un-
avoidable that the cell phone company already knows the
rough location of the customer (“somewhere in Lafayette”),
it is quite another matter if the customer’s precise lo-
cation can be tracked over time through his pattern of
location-dependent queries to the remote database. This
paper describes an efficient protocol, between the client and
database, through which a client can learn the answer to its
location-dependent query without revealing to the remote
database anything about his location, other than what the
database can infer from the answer it gives to the query
(which is unavoidable). We also analyze the performance
of some other, simpler solutions, that do not require the
database to run a protocol with the client, but that can re-
veal more information about the private location and also
introduce inaccuracies in the answer – we quantify how
much error these simpler schemes introduce in the answer.

1. Introduction

One of the drawbacks of pervasive computing is that it
can mean invasive, detailed tracking of individuals. The
tracking information could possibly be used for unintended
or unauthorized purposes. For a mobile device to ask for
a location-dependent information from a remote database
would seem to necessitate revealing the location of that mo-
bile device: How can the remote database return the address
of the post-office that is nearest to the mobile unit, without
knowing precisely the location of that mobile unit? This pa-
per describes techniques for doing this. The main reason for
not wanting to reveal one’s location information is privacy:
Whereas the very act of using a wireless device inherently

reveals (e.g., to the cell phone company) the general area of
the mobile unit’s location at a coarse level of granularity, the
database query may be formulated using finer-grain loca-
tion information, and the user may be reluctant to unneces-
sarily reveal such detailed information to the many remote
databases that he uses. This paper deals with how to an-
swer such location-dependent queries without revealing to
the remote database one’s fine-grain location information.
The solutions in this paper are efficient in terms of commu-
nication in that they have much less communication than
the trivial private solution of sending the entire database to
the client.

There has been much previous work on location-
dependent query processing (see, for example, [2, 7, 8, 9,
11, 15, 16, 17], to name just a few – they contain a more ex-
haustive list of references to related work). Our work differs
from the existing literature in that we put most emphasis on
privacy, and in such a first step do not consider many of
the other issues that the previous location-dependent query-
processing literature concerned itself with (such as continu-
ous motion over time, the use of caching and related per-
formance issues, updating strategies for handling rapidly
changing information,. . .etc). For future work, it would be
interesting to combine privacy-preservation with the elegant
previous techniques already documented in the existing lit-
erature on location-dependent query processing. Our contri-
bution, for now, is mainly in efficiently achieving privacy-
preservation in the processing of queries, and quantifying
the tradeoffs involved therein.

The next few sections (Sections 2 to 4) give the sim-
pler solutions, that typically have lower overhead, but at the
costs of a lower-quality answer to the query and of more
potential for leakage of information about the private loca-
tion. The protocol-based solution is given in Section 5, and
shows how the client can obtain exactly the same answer to
the queryas if the database knew the private location, yet
without revealing anything about that private location to the
database(other than, of course, what the database can infer
from the answer it gives to the query, e.g., from the location



of the nearest post-office).
To make the discussion that follows specific, we focus on

proximity queries of the “nearest-neighbour” type, such as
“give me the address of the post-office that is nearest to my
current position”. Our protocol-based approach of Section
5 can handle more general queries, as will be pointed out.

2. Random Perturbation of the Client’s Posi-
tion

This section presents a solution that is simple in the sense
that it does not require any modification to the way the
database does its query-processing. It suffers from draw-
backs that will be pointed out below.

Let ~P denote the position vector of the client, given as a
pair of geographic coordinates. The database containssites
of the kind specified in the query (e.g., “gas station”, or
“post-office”), and the answer to the query is the database
site nearest to~P . The results of this section hold for any
distance metric, not only the Euclidean one.

A simple solution consists of the following steps:

1. The client selects a distanceδ large enough that the
client deems it acceptable if his location was known
by the remote database with an error ofδ. Note thatδ
is not known to the database, and may vary from one
query to the next even for the same client (because the
privacy/accuracy tradeoff for that client may change
over time, or from one query to the next).

2. The client generates a random vector~Q of length
|| ~Q|| = δ, and sends as query the “fake” position
~P + ~Q.

3. The database responds with a position vector~R of the
database site nearest to~P + ~Q.

The privacy parameterδ changes from one query to the
next, depending on how important privacy is to the client at
that moment of time, relative to the importance of an accu-
rate answer (if he is very low on gas and wants the nearest
gas station then he may chooseδ = 0).

We now quantify how much “damage” is done, to the
quality of the answer, by the perturbation distance ofδ. Let
~S be the true answer, the one that would be returned by
the database ifδ had been zero. Thedamageis the differ-
ence between the two distances~P -to-~R and ~P -to-~S where
~R is the answer returned by the database in Step 3. In other
words, the damage is

||~P − ~R|| − ||~P − ~S||.

2.1. Worst-case analysis

This subsection deals with the worst-case value of the
damage to the query’s answer, that results from perturbing
the query’s location byδ.

Theorem 1 If, in a nearest-neighbour proximity query, the
client position is randomized by adding to it a random vec-
tor of lengthδ, then the damage to the answer is no greater
than2δ:

||~P − ~R|| − ||~P − ~S|| ≤ 2δ.

Furthermore, this bound of2δ is tight, i.e., there is an ex-
ample where it is achieved.

Proof. We begin with the proof of the upper bound of2δ
on the damage. The vectors~P , ~Q, ~R, ~S are as defined in
the above query-processing algorithm. If~R = ~S then the
damage is zero, hence smaller than2δ and the proof is done.
So assume henceforth that~R 6= ~S.
First, observe that:

||~P− ~R|| = ||~P + ~Q− ~Q− ~R|| ≤ || ~Q||+||~P + ~Q− ~R|| =

δ + ||~P + ~Q− ~R|| (1)

where the triangle inequality was used.
Now, the fact that the answer returned is~R rather than~S
implies the following

||~P + ~Q− ~R|| ≤ ||~P + ~Q− ~S||

which, using the triangle inequality, gives

||~P + ~Q− ~R|| ≤ || ~Q||+ ||~P − ~S|| =

δ + ||~P − ~S|| (2)

Combining (1) and (2) gives

||~P − ~R|| ≤ δ + δ + ||~P − ~S||

which gives

||~P − ~R|| − ||~P − ~S|| ≤ 2δ.

This completes the proof of the upper bound.
We now give an example that achieves the bound of2δ

just proved. It suffices to give a one-dimensional example
(in which case the vectors are scalars). ChooseS = 0,
Q = +δ, R = 6δ, andP = 2δ + ε whereε is arbitrarily
small (much smaller thanδ). The database gets queried for
the site nearest toP + Q = 3δ + ε, so it returns the site
R = 6δ. The site nearest toP is S = 0. The damage in that
case is

|P −R| − |P − S| = |2δ + ε− 6δ| − (2δ + ε) =

(4δ − ε)− 2δ − ε = 2δ − 2ε

which goes to2δ asε is made arbitrarily small. QED



2.2. Average-case analysis

The case of worst-case damage is unlikely to occur, in
fact it has measure zero in a probabilistic model of ran-
dom (understood henceforth to mean independent and uni-
formly distributed) sites, queries, and “perturbation vec-
tors” ~Q (with a fixed modulusδ for the perturbation, so
only its direction is random). In such a probabilistic model,
what is the expected value of the damage? This section pro-
vides an answer, under one assumption we need to make
so as to handle the case of the perturbation vector~Q tak-
ing the query “outside the map”, i.e., outside the region in
which then sites lie; to avoid this troublesome situation,
and for the sake of making the analysis tractable, we hence-
forth assume that the map wraps around as on the surface
of a sphere (hence no perturbation can result in crossing the
map’s boundary, as there is no boundary). If the map in re-
ality does have a boundary, then our analysis still has some
validity as an approximation because what it means then is
that we are only concerning ourselves with points that are
“well within” the bounding box containing then sites, that
we exclude from the analysis “boundary effects” caused by
perturbations that cause boundary-crossing, or due to sites
close to the boundary of the bounding box. In such a case,
the justification for excluding the boundary sites from the
analysis is that they are a negligible fraction of the total
numbern of sites – in fact they are zero percent for an in-
finitely largen (the ratio of boundary to total has a

√
n in its

denominator and hence goes to zero asn goes to infinity).

Theorem 2 If, in a nearest-neighbour proximity query, the
client position is randomized by adding to it a random vec-
tor of lengthδ, then the expected damage is no larger than
δ, that is,

E(||~P − ~R|| − ||~P − ~S||) ≤ δ

.

Proof. First, observe that the “nearest-neighbour” distance
statistics are location-independent. This implies the follow-
ing

E(||~P − ~S||) = E(||~P + ~Q− ~R||) (3)

because~S is to ~P what ~R is to ~P + ~Q (namely, the site
nearest to it). Now observe that

||~P − ~R|| = ||~P + ~Q− ~Q− ~R|| ≤
|| ~Q||+ ||~P + ~Q− ~R|| (4)

where the triangle inequality was used. Taking expectations
in Equation (4) and then using Equation (3) gives

E(||~P − ~R||) ≤ δ + E(||~P − ~S||)
and we therefore have:

Expected Damage= E(||~P − ~R|| − ||~P − ~S||) ≤ δ

which completes the proof. QED

2.3. Discussion of location perturbation

The above approach, of randomly perturbing the client’s
position, becomes unsatisfactory when one realizes that it is
possible (as we show in Section 5) to achieve privacy with-
out any compromise of the quality of the answer: Zero dam-
age, yet without revealing anything about one’s position~P
(other that what can be inferred about it from the answer
to the query). This will come at the expense of both sides
having to run a special protocol for the purpose of achieving
this goal, whereas the above simple scheme did not require
any modification to the way the database handles queries.
But before we present the powerful approach of Section 5,
we briefly describe in the next two sections other possible
approaches to the problem: The approach in Section 3 is
related to (and suffers from similar drawbacks) the above
perturbation method, whereas the approach in Section 4 re-
sults in zero damage but requires the client to trust that one
(or more) intermediaries will not collude with the database.

3. Grid Method

In this section, we present a variation on the scheme pre-
sented in the previous section: Unlike the previous section,
this variant does not result in any loss of accuracy, but it
potentially requires more communication. The idea behind
this scheme is to “grid” the plane, covering it with tiles of
dimensionsλ×λ; after this gridding of the plane, the client
queries the database with the tile that contains the client’s
location. The database answers the query with all sites that
are closest to at least one point in the query tile; that is, if
v is any point of the query tile (not necessarily a site) and
sitew is the closest site tov, thenw is a part of the answer
that the database will return to the client (note thatw could
be inside the query tile, or outside of it, and that a site in-
side the query tile is always chosen as a part of the answer).
Upon receiving these sites the client determines which of
them is closest to his actual location. The disadvantage of
this scheme is that the client has potential to receive many
sites in response to the query – the expected number re-
ceived depends onλ but also on the average densityρ of
sites per unit area (the two determine the expected number
of sites per tile, which isλ2d). Note that, if then points are
inside a∆×∆ bounding box, thenρ = n/∆2. It would be
interesting to determine precisely the expected number of
sites returned (with the correct constant factors), assuming
a randomly selected query tile and (as usual) uniformly dis-
tributed sites. Since we already know that points inside the
query tile are always included in the answer, their expected
numberλ2ρ (= nλ2/∆2) is a lower bound on the expected
number of sites returned.

A refinement of the above scheme is to have the database
treat the answers that would be returned by the above



scheme merely as “candidates” for the one site that is re-
turned as answer: The site that has the largest number of
“votes” from within the tile. In other words, ifv andw are
as above, then the winning candidatew is the one with the
largest number ofv’s in the tile that “choose it” as the near-
est site to them. This variant, which we callone-answer
variant of the grid method, does not have the increased
communication because a single site is returned as answer,
but it does have an accuracy tradeoff that is quantified be-
low.

3.1. Worst-case analysis of one-answer variant

Theorem 3 In the one-answer variant of the grid method,
the worst-case damage to a query’s answer is no greater
than the tile diameterD. Furthermore, this bound is tight,
i.e., there is an example where it is achieved.

Proof. In what follows we use~P to denote the client’s lo-
cation vector,~C to denote the position vector of the tile’s
centroid, ~R to denote the database’s answer vector, and~S
to denote the true answer to the client’s query. IfD denotes
the diameter of a tile, then we must prove that

||~P − ~R|| − ||~P − ~S|| ≤ D.

Since the above holds trivially if~R = ~S, we henceforth
assume that~R 6= ~S.

We claim that the answer~R that is returned is the site
that is closest to the centroid of the tile, i.e., it is the cen-
troid that determines that answer. We prove the claim by
contradiction. Suppose that, contrary to the claim, the site
closest to position~C is ~R′ where

|| ~R′ − ~C|| < ||~R− ~C||.

Let lineL be the perpendicular bisector of the line segment
that joins positions~R′ and ~R. The centroid is on the same
side of that lineL as position~R′ (because the centroid is
closer to position~R′ than to position~R); without loss of
generality, assume that both the centroid and~R′ are below
line L (hence position~R is above that lineL). The fact that
~R rather than~R′ was returned as the answer implies that the
area of the query tile that is aboveL is larger than the area of
the query tile that is belowL (otherwise the answer would
have been~R′), which requires that the centroid is aboveL,
contradicting the fact that the centroid is belowL. This
proves the claim, and implies that the centroid’s distance to
site ~R is no greater than the centroid’s distance to site~S:

||~R− ~C|| ≤ ||~S − ~C|| = ||~S − ~P + ~P − ~C||
which, using the triangle inequality, gives

||~R− ~C|| ≤ ||~S − ~P ||+ ||~P − ~C|| (5)

Now observe that:

||~P − ~R|| = ||~P + ~C − ~C − ~R|| ≤
||~P − ~C||+ ||~C − ~R|| (6)

where the triangle inequality was used.
Combining (5) and (6) gives

||~P − ~R|| ≤ 2||~P − ~C||+ ||~S − ~P || ≤ D + ||~S − ~P ||
where we used the fact that the distance from the centroid
to any point inside the tile is at most half the tile diameter,
i.e., that||~P − ~C|| ≤ D/2. Re-arranging the above gives

||~P − ~R|| − ||~S − ~P || ≤ D

which completes the proof of the upper bound.
We now give an example that achieves the bound ofD

that was just proved. We give the example for the Euclidean
distance, so thatD = λ

√
2, but it is easy to create similar

examples for other distance metrics. Consider a query tile
whose centroid is the origin of coordinates(0, 0). Let the
client position be at(ε−λ/2, ε−λ/2), i.e., near the bottom-
left corner of the tile. Let the only two sites be at respective
positions(−λ,−λ) and(λ− ε, λ− ε) whereε is arbitrarily
small. In this example the correct answer is~S = (−λ,−λ)
but the answer that is actually returned is~R = (λ−ε, λ−ε).
The damage for this specific example is

||~P− ~R||−||~P−~S|| = (1.5D−2ε
√

2)−(0.5D+ε
√

2) =
D − 3ε

√
2

which goes toD asε is made arbitrarily small. QED

Corollary 1 In the one-answer variant of the grid method,
using the Euclidean distance metric, the worst-case dam-
age to a query’s answer is no greater than

√
2λ. Using the

Manhattan distanceL1 the worst-case damage is no more
than2λ. Using theL∞ distance it is no more thanλ.

3.2. Average-case analysis of one-answer variant

The probabilistic model we use is of random (uniformly
distributed) sites and random client locations. Tile size is
fixed atλ. We no longer need the “wraparound” assump-
tion which was made in the random-perturbation section
(we cannot “fall outside the map” in the grid model).

Theorem 4 In the one-answer variant of the grid method,
the expected damage to a query’s answer is no larger than
the expected distance between a random point in a tile, and
the center of that tile. For the Euclidean metric, this bound
is

(λ/6)(
√

2− 0.5 ln((
√

2− 1)/(
√

2 + 1))

which is approximately0.3826λ = 0.27D.

Proof. As before, we use~P to denote the client’s location
vector, ~C to denote the (position vector of) the query tile’s
centroid,~R to denote the database’s answer vector, and~S to
denote the true answer to the client’s query. LetT (~U, ~W )



denote the perpendicular bisector of the line segment be-
tween site positions~U and ~W . Since site and query posi-
tions are random (independent and uniformly distributed),
the probability that~C and ~P lie on the same side of any
such lineT (~U, ~W ) is the same as the probability that they
are on opposite sides of it. This implies that the probability
that ~R = ~S is 0.5, in which case the damage is zero. The
other case, when~C and~P are on opposite sides ofT (~R, ~S),
has probability0.5 and is analyzed next.

Following the same geometric-inequality steps as in the
proof of Theorem 3, up until the place where that proof
combines (5) and (6), gives

||~P − ~R|| ≤ 2||~P − ~C||+ ||~S − ~P ||.
Re-arranging the above gives gives

Damage= ||~P − ~R|| − ||~P − ~S|| ≤ 2||~P − ~C||.
When computing the contribution of the above case to the
overall expected damage, we must multiply by 0.5 to ac-
count for the probability of that case. Doing so gives us an
overall expected damage of

Overall Expected Damage≤
0.5 ∗ 2∗ (Expected Distance Between~P and ~C )

which proves the claimed bound. The exact value of the
expected distance between a random point in aλ × λ tile
and the center of that tile, varies depending on the distance
metric considered. For the Euclidean distance, a straight-
forward analysis shows that it is as claimed in the theorem’s
statement. QED

3.3. Discussion of the grid method

Comparing the grid method to the random perturbation
method of the previous section, we note that theλ for the
grid method has to be known to the database (otherwise it
cannot process the query), whereas theδ of the perturbation
method was not known to the database.

The grid method is also more rigid for the following
practical reasons. If the tiling is rigid andλ fixed, then
the database can pre-compute, off-line, the site-proximity
set of each tile, making it possible to subsequently per-
form on-line query-processing very fast (because process-
ing a query tile is then a simple lookup operation). If, how-
ever, the tiling is not fixed, then it can be expensive (in
terms of query-processing computations at the database’s
end) to allow the client to dynamically change the value
of λ from one query to the next – this would mean more
computational overhead that cannot be pre-computed by the
database. (As mentioned earlier, the client may wish to
adjust theλ parameter from one query to another, as his
privacy/accuracy tradeoff valuation changes.) One compro-
mise solution would be to have a fixed menu ofk available
λ values that the client could choose from, which would
give some flexibility to the client while the database retains

the ability to do off-line pre-processing of each tiling’s site-
proximity information; of course the database now hask
separate tilings to maintain.

4. Anonymization

Another approach consists of accurately revealing to the
database the client’s location but hiding from the database
the identity of the client. This can be done by interpos-
ing an anonymizing intermediary – a mix [3] – between the
clients and the database, so the database knows the exact
client location for each query but does not know who asked
the query (thus there is no damage to the quality of the an-
swer to the query). The intermediary knows the client is
askingsomequery from the database but does not learn any-
thing about the nature of the query or its parameters because
the client-to-database traffic is encrypted [3] in both direc-
tions after the establishment of a session key through the
usual cryptographic techniques [14]. Achieving the nec-
essary “hiding in a crowd” effect, that is needed for foil-
ing traffic analysis, requires that queries from many clients
are handled by the same intermediary. Making such an in-
termediary act like a mix [3] provides resistance to traffic
analysis: An eavesdropper could not make the connection
between the traffic incoming from the many clients and the
queries outgoing to the (possibly many) database(s).

The main problem with this kind of approach is its vul-
nerability to misbehavior by an intermediary: Even though
the use of encryption easily hides from the intermediary the
query coming from each client (only the database can de-
crypt it), all is lost if the intermediary were to collude with
the database (the database could then associate the client’s
query and location with the client’s identity). A cascade of
mixes increases the security (collusion by all intermediaries
would be needed for the system to fail), but also the cost
and complexity.

Another drawback is that implementing a mix is a com-
plicated business. To achieve a sort of “hiding in a crowd”
without a mix, a simple solution would be for the client to
send several locations to the database. All that the database
learns is that the client is at one of several locations. This
could be modified to use the techniques in Section 2 (i.e.,
the client sends several perturbed points to the database).
The advantages of this scheme are its simplicity in that the
database does not need to do anything other than answer
queries. However, the disadvantages are that the level of
privacy-protection is minimal and the communication com-
plexity is larger than previous solutions.

Contrast the above approach (with or without using
a mix) with the powerful approach of the next section,
where there are only 2 parties involved (the client and the
database) and there is therefore no vulnerability to collu-
sion: The client’s private location cannot become known to



the database, yet he gets the same quality of answer to his
location-dependent query as if the database knew his loca-
tion.

5. The Protocol-Based Solution

As before, we illustrate the technique using nearest-
neighbour proximity queries, but it can be used for other
query criteria as long as they involve a partitioning of the
map into regions, and processing a query point requires
finding the region containing that point. One of the lessons
of this section is that, at least for this problem, speed and
efficiency inherently give better security; this is somewhat
surprising, in view of our experience with so many other
situations where there is a security-performance tradeoff.

5.1. Pre-processing done by the database

This subsection describes how the database processes
the information at its end, so that it can later run the
privacy-preserving query-processing protocol with the re-
mote client. The following steps construct the data structure
once, and then update it (additions/deletions of sites) incre-
mentally later on. Therefore the initialO(n log n) construc-
tion time, and the subsequent polylogarithmic updates as
site insertions and deletions occur, can be amortized later on
over a large number of queries coming from many clients.
Each query takesO(log n) amount of communication for
its processing by the protocol.

The data structure used is a hierarchical-search directed
acyclic graph (DAG) for query point location in a planar
subdivision [10], where the planar subdivision is a Voronoi
Diagram [6, 13, 12] of the sites at the database. Other
location-dependent query processing papers [17] also make
use of Voronoi Diagrams; our use of these has a different
emphasis – as stated earlier, here we put most emphasis
on privacy, whereas other considerations were more central
in the previous location-dependent query-processing liter-
ature. We are constrained in our use of this DAG search
structure by the strict privacy requirement, namely, that the
database should not learn anything other than what it can
infer from the query’s answer; this rules out revealing such
things as whether the query point is closer to one non-
answer site than to another, or revealing the specific reason
for which the query point is outside of a Voronoi cell (only
yes/no is allowed), etc.

The search DAG is constructed as follows.

1. The setS of n sites in the database are processed so
as to produce a Voronoi Diagram [6, 13, 12], a sub-
division of the plane into cells such that each cell is
associated with one of the sitesp of S and consists of
that portion of the plane that is closer top than to any

of the sites inS − {p}. Each such cell is therefore a
closed convex region that has a polygonal boundary,
because it is (by definition) the intersection ofn − 1
closed half-planes. The Voronoi Diagram ofS is the
union of all these cell boundaries, which is an em-
bedded planar graph withn faces, one for each site.
Hence the Voronoi Diagram hasO(n) edges and ver-
tices. Detailed discussions of Voronoi Diagrams, and
of theO(n log n) time algorithm for their construction,
abound in the literature (see [6, 13] for a textbook-style
presentation and an extensive list of references). There
are also techniques for dynamically updating a Voronoi
diagram as sites are added and removed.

2. The planar subdivision (representing the Voronoi Dia-
gram) is triangulated.

3. A planar-point-location search data structureDAG is
built on the Voronoi Diagram ofS, a structure of log-
arithmic depth and linear size, that supports point lo-
cation queries: Given any query pointp, the structure
can in logarithmic time find the Voronoi cell that con-
tains that query pointp. The structureDAG is a hier-
archical directed acyclic graph, that is, a graph whose
vertex set can be partitioned intoh = O(log n) lev-
els,L0, . . . , Lh, such that every directed edge is from
someLi to Li+1, |L0| = 1, andc1µ

i ≤ |Li| ≤ c2µ
i,

for someµ > 1 and positive constantsc1 andc2. The
search starts atL0 and proceeds to a vertex inL1, then
to one inL2, etc. It ends atLh, in the Voronoi cell that
contains the query pointp and, because of the defini-
tion of a Voronoi Diagram, that Voronoi cell containing
p corresponds to the site that is nearest top: That site
is the answer to the nearest-neighbor proximity query.
For the details of this data structureDAG and of how
it can do all of the above, see the paper by Kirkpatrick
[10] (see also [6, 13]). Each of the comparisons during
the search consists of comparing the pointp to O(1)
triangles to determine in which triangle it lies (is is
guaranteed to lie in one of these triangles): The trian-
gle in which it lies determines to which node ofDAG
the search moves down for the next comparison.

The following details in the operation ofDAG [10, 6]
will have consequences for the security of the scheme.

• During the processing of a query, not every edge taken
from anLi toLi+1 necessitates point-to-triangle inclu-
sion comparisons: Some do not require such a compar-
ison, because the triangle ofLi+1 that containsp can
be the same as the triangle ofLi that containsp. So
the number of levels where such comparisons are done,
during the processing of a query, may be less thanh.



• Even when moving fromLi to Li+1, during the pro-
cessing of a query does necessitate point-to-triangle in-
clusion comparisons, the number of such comparisons
is variable (although upper-bounded by a constantd).

The reason for the above two items is thatDAG is con-
structed “bottom up” starting withLh and ending withL0,
and the construction ofLi from Li+1 is done by

1. removing an independent set ofO(1)-degree vertices
from Li+1 (vertices that do not share a common edge),
and then

2. re-triangulating.

The fact thath is logarithmic is because the independent
set removed in the above Step 1 has a number of vertices
linear in the size ofLi+1, that is, a fixed fraction ofLi+1 is
removed. The fact that processing a queryp at a levelLi in-
volvesO(1) point-to-triangle inclusion comparisons, is be-
cause each vertexv of the independent set removed in Step
1 has degreeO(1), i.e., it is upper-bounded by a constantd
because each new triangle, created in the re-triangulation of
Step 2 after the removal ofv, does not overlap with more
thandegree(v) old triangles. Now, clearly not all of the
triangles ofLi+1 are impacted by the removal of that inde-
pendent set in Step 1, and therefore some triangles ofLi+1

will remain, unchanged, inLi; if, during a top-down search
for a query pointp, that point is in such a triangle common
toLi andLi+1, then moving the query fromLi toLi+1 does
not require any new point-to-triangle inclusion comparison.

The implication of the above is that the total number of
point-to-triangle inclusion comparisons, that are involved in
processing a particular query, is not entirely predictable a
priori to the client, except for the knowledge that it is upper-
bounded byhd whered is the maximum degree of a vertex
of the independent set mentioned in the above Step 1. This
should be kept in mind for the query-processing discussion
in the next section.

5.2. Processing a query

As should be clear from the above, we need a way for
the client and database to cooperatively allow the database
to determine whether a query pointp that is known to the
client but not to the database, is inside a triangleT that is
known to the database but not to the client. A protocol was
given in [1] for doing this without revealing to the database
anything other than the Yes/No answer to the question of
whether the client’s query point is inT or not. Here we use
this protocol up tohd times, at mostd times for each step
of theh-step path throughDAG, starting atL0 and ending
atLh.

5.3. Security Analysis

The above approach of building and searching the hi-
erarchyDAG works well in thehonest-but-curiousmodel
of the participants, which assumes that the participants will
follow the protocols exactly, but may try to use the data the
protocol makes available to them to compute things they are
not supposed to know. The honest-but-curious model may
be a reasonable one for this kind of application: Not fol-
lowing the protocol (i.e., not being “honest”) is a more de-
tectable activity than merely being “curious” (which would
involve harder-to-detect computations done “on the side”
for the purpose of learning what the protocol foolishly re-
veals). Dishonesty leaves more of a trail (audit records, or
employees who could whistle-blow, etc) than curiosity. A
database operated by a public company cannot afford to be
caught deviating from the agreed-upon protocol, for a va-
riety of reasons (regulatory, fear of embarrassment and of
damage to the corporate image, fear of lawsuits, etc).

But there is a problem with this whole approach if more
powerful models of the adversary are assumed, e.g., if the
database can be malicious rather than merely honest-but-
curious. A malicious database cancontinue running the
query protocol with the client even though it already knows
the answer to the query, thereby refining its knowledge
of the client’s private location; we call this thecontinu-
ous refinement attack. Note that we do not, on the other
hand, worry about the database not following the structure
of DAG to guide the search because that would be self-
defeating –DAG is an asymptotically optimal way of doing
point location. As will be pointed out below, the efficiency
of DAG is a form of protection, increasing the security of
the scheme by making it difficult for the adversary to devi-
ate from the agreed-upon use ofDAG (more on this below).

To prevent the above continuous refinement attack by a
malicious adversary, the client has to storehd, and must
refuse to engage in more thanhd rounds of point-triangle
inclusion comparisons. But this still has drawbacks:

• It requires the client to store thehd bound for the
database. This is burdensome as it must be done se-
curely (not just by the database “informing” all clients
of a newhd value), but it is mitigated by the fact that
such changes are rare becaused is fixed (it is a charac-
teristic of Kirkpatrick’s algorithm [10]), and although
h can change over time as the database evolves (it in-
creases as sites are added toS, decreases as sites are
removed fromS), these changes inh occur rarely (e.g.,
n must roughly double beforeh increases by 1).

• Because the number of point-to-triangle inclusion
comparisons for processing a query can be less than
hd, a malicious database can continue (even after it
learns the answer) until it uses up the fullhd quota of



comparisons – it uses the extra point-to-triangle inclu-
sion comparisons to refine its knowledge of the client’s
location to a smaller portion of the Voronoi cell that
contains it (i.e., it cheats).

• If the malicious database discovered a new data struc-
ture, better thanDAG, for processing a query with
t point-to-triangle inclusion comparisons, wheret is
much smaller thanhd, then it could use that data struc-
ture rather thanDAG (without telling the client that it
is doing so), thereby obtainingt−hd additional point-
to-triangle inclusion comparisons as extra “ammuni-
tion” in the above-mentioned continuous refinement
attack. It is therefore fortunate thatDAG is asymptot-
ically optimal (although there are in fact documented
constant-factor improvements in its performance). An
optimalDAG, and the correspondingly lowhd count
stored at the client, would leave no room for the ad-
versary to obtain sucht − hd extra comparisons for
its attack. This is a situation where better efficiency in
DAG implies higher security for the overall scheme.

We are not aware of any data structure for point loca-
tion queries in a planar subdivision (Voronoi or otherwise)
that processes every query in precisely the same number of
comparison operations, rather than with a variable number
that is upper-bounded byO(log n). This was not an issue in
the previous planar point location literature, because there
was no reason for it to be an issue: optimality “to within
a constant factor” was the goal. It is the need for privacy-
preservation that, as we pointed out, brings to the fore such
a new requirement, both for planar point location and for
other problems. But even if we were somehow able to de-
sign a hypothetical data structureT that does manage to
process every query in precisely the same predictable num-
ber of comparison operations, there is no way to know that
the database is actually usingT and notDAG if both in-
volve point-to-triangle inclusion comparisons,unlessT is
much better thanDAG and results in a lower count being
stored in the client (in that case the database would have to
useT ).

6. Concluding Remarks

This paper described schemes through which a client can
obtain an answer to a location-dependent query (one whose
answer depends on the client’s location), without revealing
the client’s location to the remote database that processes
the query. The more elaborate of our schemes requires the
remote database to run a special protocol with the client, as
a result of which the client gets the correct answer, yet the
remote database learns nothing about the client’s location
(other than what it can deduce from the answer to the query,
which is unavoidable). We also give simpler solutions, that

do not require the database to run a special protocol with
the client. These involve obfuscation (through random per-
turbation, or tiling, etc) of the client’s exact location, and
introduce inaccuracies in the answer; we analyze and quan-
tify the relation between these inaccuracies and the amount
of obfuscation.
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