
CERIAS Tech Report 2004-81

BOUNDING THE STACK SIZE OF INTERRUPT-DRIVEN
PROGRAMS

by Di Ma

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

BOUNDING THE STACK SIZE OF INTERRUPT-DRIVEN PROGRAMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Di Ma

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2004

ii

To my grandparents

for bringing me up, for their love and support

iii

ACKNOWLEDGMENTS

This thesis would not have existed without the help of many people. Among them,

I own a great debt to my adviser, Jens Palsberg. It is his enthusiasm about the field

of programming languages and about academic research in general that influenced

me to embark on my journey to a Ph.D.. His deep insights have always helped me

overcome my difficulties. His interest and facility with mathematical proofs prompted

me to develop a similar taste. He is intimately familiar with the literature in the field

of programming languages, from which I have constantly benefited in the course of

my research. I would also like to thank him for his patience in guiding me into the

realm of scientific research, especially at the beginning, when I felt so ignorant and

thought that perhaps no one else would be patient enough to bother.

I thank Tian Zhao for his collaboration on the work on type inference for interrupt

calculus. Section 2.3 of this thesis is largely based on our paper manuscript [64],

which grew out of our numerous discussions in the summer of 2002. I thank Mayur

Naik for illuminating me the interesting topic of model checking and type systems,

which ultimately became the third chapter of this thesis. I was also influenced by his

elegant style in writing mathematical proofs. I thank Dennis Brylow for providing

me with interesting interrupt-driven example programs, without which there would

be no interrupt calculi.

I am also grateful to Scott J. Baxter of the English department for carefully reading

all the English text in this thesis and giving many suggestions for improvement.

Thanks to Professor Mitchell Wand of Northeastern University for commenting on

my thesis draft and suggesting many improvements. Thanks to Thomas VanDrunen,

Bogdan Carbunar, Deepak Rao Bobbarjung, and Lukasz Ziarek of the S3 lab who

each read part of an early draft of this thesis and gave helpful comments.

iv

Thanks to Professor Jan Vitek for graciously providing me with financial support

in the fall semester of 2003.

Thanks to my thesis committee: Jens Palsberg, Jan Vitek, Antony Hosking,

Suresh Jagannathan and Mitchell Wand for giving me many advices.

Thanks to all the lab members of the S3 lab for their kindness over the last five

years.

I would also like to thank my grandparents and my parents for their patience and

support over the years. My grandfather’s health had been my greatest concern in

the last two years. Although he did not make it to see my graduation, his love and

support will be a strong and firm pillar in my heart for the rest of my life.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . viii

ABSTRACT . ix

1 Introduction . 1

1.1 Interrupt-driven systems . 1

1.2 Formal software verification . 3

1.2.1 Contributions of the thesis . 4

1.3 The interrupt computation model . 5

1.4 The stack size problem and goals of the thesis 7

1.5 Interrupt calculi . 9

1.6 Typed interrupt calculus . 10

1.7 Outline of the remainder of the thesis 16

2 Typed interrupt calculus . 18

2.1 Interrupt calculus . 18

2.1.1 Syntax . 18

2.1.2 Semantics . 19

2.1.3 Nontermination . 21

2.1.4 Monotonicity . 22

2.2 A type system for interrupt calculus 23

2.2.1 Types . 23

2.2.2 Type rules . 24

2.2.3 Stack-size boundedness . 27

2.3 Type inference . 36

2.3.1 Summary of the results on complexity 36

vi

Page

2.3.2 Constraints . 38

2.3.3 From types to constraints . 39

2.3.4 Solving constraints . 44

2.3.5 Stack-size checking is in PSPACE 47

2.3.6 Type inference is in PSPACE 48

2.3.7 Maximum stack size problem is PSPACE-hard 49

2.3.8 Stack-size checking is PSPACE-hard 60

2.4 Related work . 62

2.4.1 Stack checking for interrupt-driven programs 62

2.4.2 Sized types and dependent types 63

2.4.3 Event-driven FRP . 64

2.4.4 The Giotto language and the embedded machine 65

2.4.5 Esterel . 66

2.5 Future directions . 67

3 Periodic interrupt calculus . 68

3.1 Background . 68

3.2 Periodic interrupt calculus . 70

3.2.1 Syntax . 70

3.2.2 Semantics . 71

3.2.3 Nontermination . 74

3.2.4 Latency-space safety analysis 76

3.3 Abstract semantics . 76

3.4 Type system . 83

3.4.1 Types . 83

3.4.2 Type rules . 86

3.4.3 Type soundness . 90

3.5 An example . 107

3.6 Type construction . 114

vii

Page

3.6.1 ψ function . 115

3.6.2 Soundness, stack-irrelevancy and completeness of ψ 121

3.6.3 Constructing types and type judgments 153

3.6.4 Well-formedness of types and type judgments 155

3.6.5 Constructing type derivations 161

3.7 Equivalence relation . 181

3.7.1 Model checking vs. type checking 182

3.8 Related work . 183

3.8.1 Model checking . 184

3.8.2 Type systems . 186

4 Conclusion . 188

LIST OF REFERENCES . 190

VITA . 195

viii

LIST OF FIGURES

Figure Page

1.1 An example of indefinitely interrupting 7

1.2 A program for copying data from one device to another device. 12

1.3 Two selfish handlers . 13

1.4 Two prioritized handlers . 14

1.5 Two cooperative handlers . 15

1.6 Two fancy handlers . 16

1.7 A timer . 17

2.1 Syntax of interrupt calculus . 19

2.2 Semantics of interrupt calculus . 20

2.3 Summary of results . 37

2.4 Enable relation of interrupt handlers 55

3.1 Syntax of periodic interrupt calculus 70

3.2 Semantics of the periodic interrupt calculus 73

3.3 Abstract semantics of the periodic interrupt calculus 79

3.4 The example program . 108

3.5 Excerpt of the reachable states of the example program 109

3.6 Stack size growth over time . 110

ix

ABSTRACT

Ma, Di. Ph.D., Purdue University, August, 2004. Bounding the Stack Size of
Interrupt-driven Programs. Major Professor: Jens Palsberg.

A widely-used class of real-time, reactive, embedded systems is called interrupt-

driven systems [8]. Programming of interrupt-driven systems is notoriously difficult

and error-prone. This is because such systems are usually equipped with a small

amount of memory while being asked to handle as many external interrupts as pos-

sible. Furthermore, such systems demand responsive handling of interrupts. Due to

the fact that an interrupt may happen at any time, a handler can be interrupted by

another interrupt, making the stack grow in order to store the context information

for the current handler. The problem with such a scenario is that it may lead to stack

overflow. Traditionally, this problem has been avoided by forbidding other interrupts

during the execution of the handler. However, doing this puts tremendous limit on

the number of interrupts which can be handled. Moreover, it greatly increases the

response time for interrupts, resulting in an inefficient system and causing a potential

predictability problem: the handling of an interrupt can be so long that the next

interrupt occurrence is missed.

In this thesis, we lay a formal framework, which, to the best of our knowledge, is

the first in the field, to ensure stack boundedness, to give the tightest possible upper

bound of the stack usage for interrupt-driven programs, and to guarantee predictabil-

ity. Specifically, we develop two formal languages, interrupt calculus and periodic

interrupt calculus, to capture the characteristics of interrupt-driven systems. We ad-

vocate intersection types and union types from the field of programming languages

as a convenient vehicle to solve these problems. We base our analysis on two type

systems which are designed for the two calculi. Our results show that the calculi

x

demonstrate the desired capability for characterizing interrupt-driven programs. We

show that once an interrupt calculus program type checks, there can be no stack over-

flow; we prove that the type inference problem for interrupt calculus is in PSPACE.

For type-checked periodic interrupt calculus programs, we show that not only can

the stack not overflow, but that it is also guaranteed that no single interrupt can be

missed. In addition, our building of the types and type derivations of the periodic

interrupt calculus programs unveils an equivalence relation between model checking

and type systems, which may be of interest in its own right.

1

1 INTRODUCTION

1.1 Interrupt-driven systems

Real-time, reactive and embedded systems are becoming increasingly widely used

nowadays. At the same time, there is also an increasing demand that those systems

not only meet real-time requirements but also be free of run-time errors, such as stack

overflow. For example, Klaus Brunnstein reported that a software glitch in the real-

time system that controlled the railway switch at Hamburg-Altona station caused the

entire Altona switch tower to shutdown on the first day of its on-site testing (“Stack

overflow shuts down new Altona switch tower on first day” [41].) It was later found

out that the glitch caused a stack overflow under certain conditions. It is fortunate

that the software bug showed up in the testing in Altona case. These kinds of program

errors are usually difficult to find out under most conditions, and, therefore, are often

difficult to reproduce.

In this thesis, we will focus the scope of our study on a common class of real-time,

reactive embedded systems which are called interrupt-driven systems as described by

Brylow, Damgaard and Palsberg [8]. In particular, we study the stack boundedness

problem and the predictable interrupt latency problem of such a class of systems.

Programming in interrupt-driven systems is notoriously difficult and error-prone

because (1) such systems are usually equipped with only a very small amount of

memory while being asked to handle as many external interrupts as possible; (2)

interrupts may happen at any time, which makes it difficult for programs to control

and manage the use of the system hardware. Furthermore, such systems demand

fast and responsive handling of interrupts in order to promote high efficiency. Due

to the fact that an interrupt may be triggered at any time, an interrupt handler can

be written in such a way so that it is allowed to be interrupted by another interrupt,

2

leading to a larger stack size because the context information of the current handler

has to be stored on the stack. The problem with this is that, in such a scenario, there

is no guarantee that the stack will not overflow. Traditionally, the problem has been

avoided by writing a handler in such a way that it forbids other interrupts during

the execution of the handler. However, doing this tremendously limits the number

of interrupts which can be handled. Moreover, it greatly increases the response time

for interrupts, which not only results in a very inefficient system, but also introduces

a potential predictability problem: the handling of an interrupt is too long to allow

the next interrupt occurrence to be handled.

We thus identify two important issues for designing and developing software for

such systems:

1. Constrained resources Most embedded software runs on resource-constrained

processors which are not equipped with computation hardware matching those

on today’s personal computers because of economic concerns, low power con-

sumption, size, or other constraints.

For example, consider the system that uses the Zilog Z80 micro-controller de-

scribed in [8]. The memory space of the micro-controller consists of only 256

8-bit on-chip registers. Despite this limitation, the programmers need to write

programs to fit in the controller’s available space in order to allow the device to

perform network communications, fan control, temperature control and a digit

panel control interface, as well as other operations.

Once the processor, RAM, and other specifications have been chosen for an

embedded system, the programmers will face a particularly vexing problem:

the software has to be written so that program never runs out of stack space

during execution.

2. Predictability Real-time, reactive embedded systems require that most external

events be handled in a timely and predictable fashion. That is, real-time em-

bedded systems should guarantee a pre-specified, finite response time to each

3

external stimulus. For example, the auto-piloting control software running on

jet airplanes should handle the changes in external air turbulence responsively

(a pre-defined time interval) in order to guarantee the safe and comfortable

operation of the plane. It is well known that writing predictable software that

meets real-time constraints is notoriously difficult

This thesis concentrates on these two important issues. Specifically, we lay a

formal framework, which, to the best of our knowledge, is the first in the field to

ensure the stack boundedness, to give the tightest upper bound of the stack usage

for interrupt-driven programs, and to guarantee the predictability. We develop two

formal languages, interrupt calculus and periodic interrupt calculus, to capture the

characteristics of the interrupt-driven systems. We advocate types and type systems

from the field of programming languages as a convenient vehicle for solving these

problems.

1.2 Formal software verification

The issues described in the previous section are well-known to the software com-

munity. These problems have traditionally been dealt with, in reality, by exhaustive

software testing or worst-case execution time [15,19,42,50]. More recently, formal soft-

ware verification has been receiving increasingly greater attention. Many techniques

have been explored to validate certain properties regarding the software implemen-

tations. Among them, formal language verification techniques such as type based

program analysis [36, 37, 43] and software model checking [3, 4, 8, 9, 11, 17, 18, 20, 53]

seem to be gaining momentum recently as powerful program verification techniques.

There is a large body of work which tries to apply formal language verification

techniques to the field of real-time, embedded systems to deal with the constrained-

resource problem and predictability. Hughes, Pareto and Sabry [30, 47, 48] use sized

types to reason the boundedness of data structure in the context of employing func-

tional languages (ML) in real-time, embedded systems. A number of languages have

4

been designed to facilitate the correct real-time system designs and implementations:

Wan, Taha and Hudak describe Event-driven FRP (Functional Reactive Program-

ming) [28]; Henzinger, Horowitz and Kirsch devise the Giotto Language and Embed-

ded machine [22–25]. Both languages are used to ensure the predictable behaviors of

real-time embedded systems. Basu, Kumar, Polorny and Ramakrishan [6] develop a

resource-constrained model checking technique which is capable of predicting whether

program execution requires unbounded stack size.

Although a large body of research on model checking has been dedicated to the

problem, there is little work that looks into the field of interrupt-driven software, ex-

cept for the following two, which study the problem in the context of interrupt-driven

software. Brylow, Damgaard and Palsberg [8] abstract the interrupt program into a

control flow graph; they then model check the size of bounded stack of interrupt driven

programs by running a context free reachability algorithm on the graph. Brylow and

Palsberg [9] use almost the same model checking strategy to analyze the problem

of whether each interrupt’s deadline can be met. Their method involves identifying

different loops in the program, as well as worst case execution time analysis.

Our approach to the problem is to employ types and type systems of programming

languages in order to solve the problems. Moreover, we try to bridge the gap between

resource constraint, predictability problem of interrupt-driven, real-time embedded

systems and the application of formal language analysis in this field. Our work can

be viewed as a synergistic combination between formal programming language, real-

time embedded systems and resource-aware compilation [39].

We will give a more detailed summary of related work and compare their results

with ours at the end of Chapter 2 and Chapter 3.

1.2.1 Contributions of the thesis

This thesis offers the following four technical contributions [12, 44, 64].

5

• We introduce two formal languages, namely, interrupt calculus and periodic

interrupt calculus, as the basic tools to formally analyze the stack size for

interrupt-driven programs.

• We design two type systems for the interrupt calculi to ensure stack bounded-

ness, to give the tightest upper bound of the stack usage, which shows our type

system is sound with respect to stack size. Our method of incorporating the

stack size values into type systems is novel.

• We build timing information into the type system for the periodic interrupt

calculus, which allows the stack size to be analyzed under the constraints of

interrupt latencies.

• Our study of the periodic interrupt calculus reveals an interesting equivalence

relation between model checking and type systems with respect to bounding the

stack size of interrupt-driven programs. The relation itself may be of interest

in its own right.

1.3 The interrupt computation model

Interrupt-driven embedded systems generally have a fixed number of interrupt

sources (interrupt devices) with a software handler defined for each source. When an

interrupt occurs, control is transferred automatically to the handler for that interrupt

source, unless interrupt processing is disabled. If disabled, the processing of the

interrupt will wait for interrupt processing to be enabled.

Interrupt Mask Register While some modern, general-purpose CPUs have so-

phisticated ways of handling internal and external interrupts, the notion of an inter-

rupt mask register (imr) is widely used. This is especially true for the processors that

are used in embedded systems with small memory size, a need for low power con-

sumption, as well as other constraints. We list some characteristics of four processors

that are often used in embedded systems as follows:

6

product Processor # of interrupt master

sources bit

Microcontroller Zilog Z86 6 yes

iPAQ Pocket PC Intel strongARM, XScale 21 no

Palm Motorola Dragonball (68000 Family) 22 yes

Microcontroller Intel MCS-51 Family (8051 etc) 6 yes

Each of these processors have similar-looking imr’s. For example, consider the imr

for the MCS-51 (The imr is called interrupt enable (IE) register):

EA – ET2 ES ET1 EX1 ET0 EX0

These bits have the following meanings respectively:

• EA: enable/disable all interrupt handling,

• –: reserved (not used), and

• each of the remaining six bits corresponds to a specific interrupt source.

We will refer to the EA bit (and similar bits on other processors) as the master bit.

The idea is that for a particular interrupt handler to be enabled, both the master bit

and the bit for that interrupt handler have to be enabled. This particular semantics

is supported by the Z86, Dragonball, MCS-51, and many other processors.

Interrupt Handling The processors used in embedded interrupt-driven systems

usually save the current processor status, including the values in general registers,

the current program counter, interrupt mask register, when starting to handle an

interrupt. We model this kind of handling in the following manner: when an interrupt

handler is called, a return address is saved on the stack, the processor automatically

turns off the master bit, and then starts to execute the code of the handler. At

the time of return, the processor turns the master bit back on, restores the program

counter to the previously saved return address and starts to execute code from the

return address.

7

1.4 The stack size problem and goals of the thesis

In order to obtain responsive handling, it is necessary to keep interrupt processing

enabled most of the time, including in the body of lower priority interrupt handlers.

However, this allows the possibility that interrupt handlers could be themselves in-

terrupted, thus making it difficult to understand whether real-time constraints can

be met. Conversely, to write reliable code with a given real-time property, it is often

simplest to disable interrupts in the body of interrupt handlers. This may delay the

handling of other interrupts, therefore making it difficult for the system to have other

desired real-time properties. The resultant tension between fast response times, easy-

to-understand and reliable code encourages developers to write code which is often

difficult to test and debug.

A particularly notorious programming error in the interrupt-driven software occurs

when the interrupt handlers are allowed to interrupt each other indefinitely. Such a

situation leads to both an unbounded stack and a potential unbounded handling time

which leads to two serious violations: a violation of the resource constraints and a

violation of the predictability properties of the system.

handler 1 {

// do something

enable-handling-of-interrupt-2

// do something else

iret

}

handler 2 {

// do something

enable-handling-of-interrupt-1

// do something else

iret

}

Figure 1.1. An example of indefinitely interrupting

Consider the two interrupt handlers in Figure 1.1. Suppose an interrupt from

source 1 arrives first, so handler 1 is called. Before returning, handler 1 enables

handling of interrupts from source 2, and, unfortunately, an interrupt from source

8

2 arrives before handler 1 has returned. Thus, handler 2 is called, and it, in turn,

enables handling of interrupts from source 1 before returning, thus, allowing a highly

undesirable cyclic handling which results in an unbounded stack and an indefinite

handling time.

Clearly, the error is not about misusing data; rather, it is about the need for

unbounded resources. Previously, static checking for such errors could only be done

using model checking. However, what is needed for model checking is the whole-

program analysis which cannot check program fragments [8, 54]; if the program is

altered, model checking has to be run again on the entire program.

Another closely related problem is predicting the tightest upper bound of the stack

size caused by the interrupts. This problem is of particular interest because in the

process of designing the real-world embedded systems, it is often the case that the

amount of memory is small and fixed, due to the economic reasons, and designers are

constantly asked the question: does the stack fit into the amount of available RAM?

This need can be met by providing the tightest upper bound to the designers. In this

context, modular program checking of the stack size property would be also beneficial

because it saves both design and development time.

A traditional type system does not (1) check for stack unboundedness error; or

(2) give the tightest upper bound of the stack size usage. The goal of this thesis is

to present type systems that guarantee stack boundedness by enabling modular type

checking and to give the tightest upper bound for the stack size.

Each type contains information about the stack size and also serves as documen-

tation for the program. When an interrupt handler is altered, it is sufficient to re-type

check only that particular interrupt handler. Thus, we see that type checking is more

modular than model checking in this setting.

We study this problem in two different yet closely related settings: interrupt

calculus and periodic interrupt calculus.

9

1.5 Interrupt calculi

In order to design type systems for the stack size problem, we need a mini-

mal setting in which to study interrupt-driven systems. For many programming

paradigms, there is a small calculus which allows the study of properties in a language-

independent way and which makes it tractable to prove key properties. For example,

for functional programming there is the λ-calculus [5], for concurrent programming

there is Milner’s calculus of communicating systems [34], for object-oriented program-

ming there is the Abadi-Cardelli object calculus [1], and for mobile computation there

is the π-calculus [35] and the ambient calculus [10]. However, these calculi do not

offer any notion of interrupts and interrupt handling. While such concepts might be

introduced on top of one of those calculi, we believe that it is better to design a new

calculus with interrupts at the core. This new calculus should focus on the essential

concepts and ignore everything else.

In this thesis, we introduce two versions of interrupt calculus: interrupt calculus

and periodic interrupt calculus which contain essential constructs for programming

interrupt-driven systems. A program in the calculi consists of two parts: a main part

and a number of interrupt handlers. The program execution has access to:

• an interrupt mask register that can be updated during computation,

• a stack for storing return addresses, and

• a memory of integer variables; output is done via memory-mapped I/O.

The calculi are intended for modeling embedded systems that should run “forever,”

and for which termination would be considered a disastrous error. To model such a

situation, the calculi are designed such that no program can terminate; nontermina-

tion is guaranteed.

Each element on the stack is a return address. In order to measure the size of the

stack, we simply count the number of elements on the stack.

10

Interrupt calculus Interrupt calculus is a viable and convenient vehicle for us to

study the stack size problem for interrupt-driven programs. It captures the interrupt

mechanism at its core by explicitly designating an imr register of N bits. Specifically,

we represent the imr as a bit sequence b0b1 . . . bn, where bi ∈ {0, 1}, b0 is the master

bit, and, for i > 0, bi is the bit for interrupts from source i which is handled by

handler i. It is important to notice that the master bit is the most significant bit,

and that the bit for handler 1 is the second-most significant bit, and so on. This

layout is different from some processors, and it simplifies the notation used later. We

assume that if the master bit and the bit that corresponds to interrupt source i are

both turned on, then there is a call of the interrupt handler i.

Periodic interrupt calculus Periodic interrupt calculus is an extension of the

interrupt calculus in the sense that it incorporates a temporal (periods) dimension into

the interrupt mechanism: each interrupt source periodically generates an interrupt.

We focus on the predictability property that no interrupt can be missed, which means

that an interrupt should start to be handled before the next interrupt comes, and its

impact on the stack size. Therefore, in the context of periodic interrupt calculus,

the stack size is further bound by the latency constraints. Specifically, all interrupt

sources have their own periods and the periods are part of the program specification.

The system semantics also takes a timer (latency) for each interrupt source that: (1)

ticks down whenever an instruction is executed, and (2) is incremented whenever the

hander is called. We assume that if (1) the master bit and the bit that corresponds

to interrupt source i are both turned on, and (2) the timer holds a negative value,

then there is a call of the interrupt handler i.

1.6 Typed interrupt calculus

Our approach is to use types to analyze the stack size problem. To this end,

we present type systems that guarantee stack boundedness and enable modular type

checking.

11

In this section, we will focus our attention on illustrating the type system for

interrupt calculus. We will introduce the type system for periodic interrupt calculus

in Chapter 3.

A type for a handler contains information about the imr on entry and the imr

at the point of return. Given that a handler can be called at different points in

the program where the imr may have different values, the type of a handler is an

intersection type [13, 26] of the form:

n∧

j=1

((îmr)j δj

−→ (îmr
′
)j).

where the jth component of the intersection means:

if the handler is called in a situation where the imr can be conservatively

approximated by (îmr)j, then at the point of return, the imr can conser-

vatively be approximated by (îmr
′
)j, and during that call, the stack will

grow by at most δj elements, excluding the return address for the call

itself.

The annotations δj help in checking that the stack is bounded. Our type system with

annotated types is an example of a type-based analysis [43].

We will illustrate our use of types with six examples of increasing sophistication.

Among these example programs, the first five type check, while the sixth program

illustrates the limitations of our type system. We will use the concrete syntax that is

supported by our type checker; later, in Chapter 2, we will give an abstract syntax

that is similar to the concrete syntax used here.

Note that an imr value, say, 11, will be written as 11b in the concrete syntax,

to remind the reader that it is a binary value. In addition, the following type of a

handler
n∧

j=1

((îmr)j δj

−→ (îmr
′
)j).

will be written ((îmr)1 -> (îmr
′
)1 : δ1) ... ((îmr)n -> (îmr

′
)n : δn).

12

Maximum stack size: 1

imr = imr or 11b

loop {

if (gotchar == 0) {

outdata = achar

gotchar = 1

} else {

skip

}

}

handler 1 [(11b -> 11b : 0)] {

achar = indata

gotchar = 0

iret

}

Figure 1.2. A program for copying data from one device to another device.

The program in Figure 1.2 is an interrupt calculus version of Example 3-5 from

Wolf’s textbook [60, p.113]. The program uses memory-mapped I/O; two variables

map to the device registers; and copies data from one device to another device.

• indata: the input device writes data in this register and

• outdata: the output device reads data from this register.

The line maximum stack size: 1 is a part of the program text. It tells the type

checker to check that the stack can never be of a size greater than one. The number 1

is a count of return addresses on the stack; nothing other than return addresses can be

put on the stack in our calculus. The header of the handler contains the annotation

11b -> 11b : 0. This header is a type which says that if the handler is called in a

situation where the imr can be conservatively approximated by 11, then it will return

in a situation where the imr can be conservatively approximated by 11, and the stack

will not grow during the call. The value 11 in this example should be read as follows:

13

maximum stack size: 1

imr = imr or 111b

loop {

skip

imr = imr or 111b

}

handler 1 [(111b -> 111b : 0)] {

skip

iret

}

handler 2 [(111b -> 111b : 0)] {

skip

iret

}

Figure 1.3. Two selfish handlers

the leftmost bit is the master bit, and the next bit is the bit for handler 1. The value

11 means that handler 1 is enabled.

The program in Figure 1.3 has two handlers which do not enable the master bit

of imr in their code. with the difference being that there are now two handlers. The

handlers cannot be interrupted so the maximum stack size is 1. Notice that since

there are two handlers, the imr has three bits. Those bits are organized as follows.

The leftmost bit is, as always, the master bit. The next bit is the bit for handler 1,

and the rightmost bit is the bit for handler 2.

The program in Figure 1.4 illustrates how to program a notion of prioritized

handlers where handler 1 has a higher priority than handler 2. While handler 1

cannot be interrupted by handler 2, it is possible for handler 2 to be interrupted by

handler 1. Handler 2 achieves such a situation by disabling its own bit in the imr

with the statement imr = imr and 110b, and then enabling the master bit with the

statement imr = imr or 100b. Thus, handler 2 can be interrupted before it returns.

Accordingly, the maximum stack size is 2. The type for handler 1 is an intersection

type which reflects the fact that handler 1 can be called both from the main part of

the program and from handler 2. If it is called from the main part, then the imr is

111, and if it is called from handler 2, then the imr is 110. The type for handler 2

14

maximum stack size: 2

imr = imr or 111b

loop {

skip

imr = imr or 111b

}

handler 1 [(111b -> 111b : 0)

(110b -> 110b : 0)] {

skip

iret

}

handler 2 [(111b -> 111b : 1)] {

skip

imr = imr and 110b

imr = imr or 100b

iret

}

Figure 1.4. Two prioritized handlers

has been given the annotation 1 because handler 2 can be interrupted by handler 1,

which, in turn, cannot be interrupted.

The program in Figure 1.5 illustrates how both handlers can allow the other

handler to interrupt. Each handler uses the discipline of disabling its own bit in the

imr before setting the master bit to 1. Doing this ensures that the maximum stack

size is two.

Finally, the program in Figure 1.6 illustrates that n handlers can lead to a bounded

stack where the bound is greater than n. In this case, we have two handlers and a

maximum stack size of three. A stack size of three is achieved by first calling handler

1, then calling handler 2, and finally calling handler 1 again.

While our type system can type check many common programming idioms, as

illustrated above, there are useful programs that it cannot type check. For example,

the program in Figure 1.7, written by Dennis Brylow, is a 60 second timer. The

OUT variable will be 0 for 60 seconds after a request for interrupt 2. There are two

interrupt handlers:

15

maximum stack size: 2

imr = imr or 111b

loop {

imr = imr or 111b

}

handler 1 [(111b -> 101b : 1)

(110b -> 100b : 0)] {

imr = imr and 101b

imr = imr or 100b

iret

}

handler 2 [(111b -> 110b : 1)

(101b -> 100b : 0)] {

imr = imr and 110b

imr = imr or 100b

iret

}

Figure 1.5. Two cooperative handlers

• The first handler is for an external timer that is expected to request an interrupt

once each second.

• The second handler is a trigger. When it arrives, the OUT variable will become

0 for 60 seconds. Then OUT will become 1, and will remain so until the next

trigger event.

Our type system cannot handle this pattern where handler 2 disables itself and then

enables handler 1, and where the main program disables handler 1 and enables handler

2. Thus, while the program in Figure 1.7 has a maximum stack size of 2, it does not

type check in our type system.

16

maximum stack size: 3

imr = imr or 111b

loop {

imr = imr or 111b

}

handler 1 [(111b -> 111b : 2)

(110b -> 100b : 0)] {

imr = imr and 101b

imr = imr or 100b

iret

}

handler 2 [(111b -> 100b : 1)

(101b -> 100b : 1)] {

imr = imr and 110b

imr = imr or 010b

imr = imr or 100b

imr = imr and 101b

iret

}

Figure 1.6. Two fancy handlers

1.7 Outline of the remainder of the thesis

In Chapter 2, we introduce our interrupt calculus, its syntax and semantics; and

we prove that no program can terminate. We also present a type system which ensures

the stack boundedness, and we present algorithms of how to automatically infer the

types that we need.

In Chapter 3, we present the syntax and semantics of the periodic interrupt cal-

culus. We give an abstract semantics of the concrete semantics, and, based on the

abstract semantics, we introduce our type system. We show how to construct the

types out of the abstract model. This construction illustrates an interesting equiva-

lence relation between model checking and type checking.

In Chapter 4, we make concluding remarks about our work by highlighting poten-

tial applications of this work.

17

maximum stack size: 1

SEC = SEC + 60

imr = imr or 110b

loop {

if(SEC == 0) {

OUT = 1

imr = imr and 101b

imr = imr or 001b

} else {

OUT = 0

}

}

handler 1 [(111b -> 111b : 0)

(110b -> 110b : 0)] {

SEC = SEC + (-1)

iret

}

handler 2 [(111b -> 110b : 0)

(101b -> 110b : 0)] {

SEC = 60

imr = imr and 110b

imr = imr or 010b

iret

}

Figure 1.7. A timer

18

2 TYPED INTERRUPT CALCULUS

In this chapter, we formally introduce the interrupt calculus, its syntax and semantics,

and we show that no program can terminate. We also present a type system for the

calculus and prove stack boundedness; that is, once the program type checks, it

guarantees a bounded stack size. Furthermore, we provide algorithms on how to

infer the types for the interrupt calculus programs and study the complexity of type

inference. We conclude the chapter by summarizing related work and by providing

suggestions for future research.

2.1 Interrupt calculus

2.1.1 Syntax

Figure 2.1.1 gives the syntax of the interrupt calculus. We use x to range over a

set of program variables, we use imr to range over bit strings, and we use c to range

over integer constants. The over bar notation h̄ denotes a sequence h1 . . . hn; we will

use the notation h̄(i) = hi. We use a to range over m and h.

We identify programs which are equivalent under the smallest congruence gener-

ated by the following rules:

(s1 ; s2) ; m = s1 ; (s2 ; m)

(s1 ; s2) ; h = s1 ; (s2 ; h)

(s1 ; s2) ; s = s1 ; (s2 ; s).

With these rules, we can rearrange any m or h into one of the following seven forms:

loop s iret x = e; a imr = imr ∧ imr; a imr = imr ∨ imr; a

19

(program) p ::= (m, h̄)

(main) m ::= loop s | s ; m

(handler) h ::= iret | s ; h

(statements) s ::= x = e | imr = imr ∧ imr | imr = imr ∨ imr |

if0 (x) s1 else s2 | s1 ; s2 | skip

(expression) e ::= c | x | x + c | x1 + x2

Figure 2.1. Syntax of interrupt calculus

(if0 (x) s1 else s2); a skip; a.

2.1.2 Semantics

We use R to denote a store, that is, a partial function which maps program

variables to integers.

We use σ to denote a stack generated by the grammar: σ ::= nil | a :: σ. We

define the size of a stack as follows: |nil| = 0 and |a :: σ| = 1 + |σ|.

If imr = b0b1 . . . bn, where bi ∈ {0, 1}, then we will use the notation imr(i) = bi.

The predicate enabled is defined as follows:

enabled(imr, i) = (imr(0) = 1) ∧ (imr(i) = 1) i ∈ 1..n.

We use 0 to denote the imr value where all bits are 0. We use ti to denote the

imr value where all bits are 0’s except that the ith bit is set to 1. We will use ∧

to denote bitwise logical conjunction, ∨ to denote bitwise logical disjunction, ≤ to

denote bitwise logical implication, and ¬(·) to denote bitwise logical negation. Notice

that enabled(t0 ∨ ti, j) is true for i = j and false otherwise. The imr values, ordered

by ≤, form a lattice with the bottom element 0.

A program state is a tuple 〈h̄, R, imr, σ, a〉. We will refer to a as the current

statement; it models the instruction pointer of a CPU. We use P to range over program

20

states. If P = 〈h̄, R, imr, σ, a〉, then we use the notation P.stk = σ. For p = (m, h̄),

the initial program state for executing p is Pp = 〈h̄, λx.0, 0, nil, m〉, where the function

λx.0 is defined on the variables which are used in the program p.

A small-step operational semantics for the language is given by the reflexive,

transitive closure of the relation → on program states in Figure 2.1.2.

〈h̄, R, imr, σ, a〉 → 〈h̄, R, imr ∧ ¬t0, a :: σ, h̄(i)〉

if enabled(imr, i)

(2.1)

〈h̄, R, imr, σ, iret〉 → 〈h̄, R, imr ∨ t0, σ
′, a〉 if σ = a :: σ′(2.2)

〈h̄, R, imr, σ, loop s〉 → 〈h̄, R, imr, σ, s; loop s〉 (2.3)

〈h̄, R, imr, σ, x = e; a〉 → 〈h̄, R{x 7→ evalR(e)}, imr, σ, a〉 (2.4)

〈h̄, R, imr, σ, imr = imr ∧ imr′; a〉 → 〈h̄, R, imr ∧ imr′, σ, a〉 (2.5)

〈h̄, R, imr, σ, imr = imr ∨ imr′; a〉 → 〈h̄, R, imr ∨ imr′, σ, a〉 (2.6)

〈h̄, R, imr, σ, (if0 (x) s1 else s2); a〉 → 〈h̄, R, imr, σ, s1; a〉 if R(x) = 0 (2.7)

〈h̄, R, imr, σ, (if0 (x) s1 else s2); a〉 → 〈h̄, R, imr, σ, s2; a〉 if R(x) 6= 0 (2.8)

〈h̄, R, imr, σ, skip; a〉 → 〈h̄, R, imr, σ, a〉 (2.9)

Figure 2.2. Semantics of interrupt calculus

We define the function evalR(e) as follows:

evalR(c) = c

evalR(x) = R(x)

evalR(x + c) = R(x) + c

evalR(x1 + x2) = R(x1) +R(x2).

21

Rule (2.1) states that if an interrupt is enabled, then it may occur. The rule says

that if enabled(imr, i), then it is a possible transition to push the current statement

on the stack, make h̄(i) the current statement, and turn off the master bit in the imr.

Notice that we make no assumptions about the arrivals of interrupts; any enabled

interrupt can occur at any time, and, conversely, no interrupt must occur.

Rule (2.2) models interrupt return. The rule says that to return from an interrupt,

remove the top element of the stack, make the removed top element the current

statement, and turn on the master bit.

Rule (2.3) is an unfolding rule for loops, and Rules (2.4)–(2.9) are standard rules

for statements.

2.1.3 Nontermination

We say that a program p can terminate if Pp →
∗ P ′ and there is no P ′′ such that

P ′ → P ′′.

We say that a program state 〈h̄, R, imr, σ, a〉 is consistent if and only if (1) σ = nil

and a = m; or (2) σ = hk :: . . . :: h1 :: m :: nil and a = h, for k ≥ 0, where k = 0

means σ = m :: nil.

Lemma 2.1.1 (Consistency Preservation) If P is consistent and P → P ′, then

P ′ is consistent.

Proof A straightforward case analysis of P → P ′.

Lemma 2.1.2 (Progress) If P is consistent, then there exists P ′ such that P → P ′.

Proof There are two cases of P :

• P = 〈h̄, R, imr, nil, m〉. There are two cases of m:

– if m = loop s, then Rule (2.3) gives P ′ = 〈h̄, R, imr, nil, s; loop s〉, and

22

– if m = s;m′, then Rules (2.4)–(2.9) ensure that there exists a state P ′ such

that P → P ′.

• P = 〈h̄, R, imr, hk :: . . . :: h1 :: m :: nil, h〉, k ≥ 0. There are two cases of h:

– if h = iret, then either k = 0 and s = m :: nil, and Rule (2.2) gives

P ′ = 〈h̄, R, imr ∨ t0, nil, m〉, or k > 0 and hence

P ′ = 〈h̄, R, imr ∨ t0, h
k−1 :: . . . :: h1 :: m :: nil, hk〉, and

– if h = s; h′, then Rules (2.4)–(2.9) ensure that there exists a state P ′ such

that P → P ′.

We obtain the following result regarding the termination of interrupt calculus

programs.

Theorem 2.1.1 (Nontermination) No program can terminate.

Proof Suppose a program p can terminate; that is, suppose Pp →∗ P ′ and there is

no P ′′ such that P ′ → P ′′. Notice first that Pp is consistent by consistency criterion

(1). From Lemma 2.1.1 and induction on the number of execution steps in Pp →∗ P ′,

we have that P ′ is consistent. From Lemma 2.1.2 we have that there exists P ′′ such

that P ′ → P ′′, a contradiction.

2.1.4 Monotonicity

We will differentiate two versions of the interrupt calculus: monotonic interrupt

calculus programs and non-monotonic interrupt calculus programs.

A monotonic interrupt calculus programs is a program such that all handler call-

ings observe the following behavioral property: when the handler returns (immedi-

ately after executing the iret statement), the imr value is less than or equal to the

23

imr value at the time when the handler is called. A non-monotonic interrupt calculus

program does not follow this property.

We will focus on the monotonic interrupt calculus programs in the remaining

sections of this chapter. Chatterjee et al. [12] present an enriched version of the

interrupt calculus. They give an algorithm which does not require the monotonicity

restriction. In addition, the algorithm they use is based on the context-free graph.

2.2 A type system for interrupt calculus

We now present a type system for the interrupt calculus. This type system type

checks the monotonic version of the interrupt calculus.

2.2.1 Types

We will use imr values as types. When we intend an imr value to be used as a

type, we will use the mnemonic device of writing it with a hat, for example, îmr.

We will use the bitwise logical implication ≤ as the subtype relation. For example,

101 ≤ 111. We will also use ≤ to specify the relationship between an imr value and

its type. When we want to express that an imr value imr has type îmr, we will

write imr ≤ îmr. The meaning of this expression is that îmr is a conservative

approximation of imr, that is, if a bit in imr is 1, then the corresponding bit in îmr

is also 1.

We use K to range over the integers, and we use δ to range over the nonnegative

integers.

We use τ to range over intersection types of the form:

q∧

j=1

((îmr)j δj

−→ (îmr)j).

We use τ to range over a sequence τ1 . . . τn; we will use the notation τ(i) = τi.

24

2.2.2 Type rules

We will use the following forms of type judgments:

Type Judgment Meaning

τ `K p Program p type checks

τ `K P Program state P type checks

τ , îmr `K σ Stack σ type checks

τ ` h : τ Interrupt handler h has type τ

τ , îmr `K m Main part m type checks

τ , îmr `K h : îmr
′

Handler h type checks

τ , îmr `K s : îmr
′

Statement s type checks

A judgment τ `K p for a program is related to the concrete syntax used in

Section 1.6 as follows. We can dissect the concrete syntax into four parts: (1) a

maximum stack size K, (2) the types τ for the handlers, (3) a main part m, and

(4) a collection h̄ of handlers. When we talk about a program (m, h̄) in the abstract

syntax, the two other parts K and τ seem left out. However, they reappear in the

judgment: τ `K (m, h̄). Thus, that judgment can be read simply as: “the program

type checks.”

The judgment τ `K P for a program state extends the typing of programs to

program states.

The judgment τ , îmr `K m means that if the handlers are of type τ , and the

imr has type îmr, then m type checks. The integer K bounds the stack size so that

it is at most K. We can view K as a “stack budget” in the sense that any time an

element is placed on the stack, the budget goes down by one, and when an element

is removed from the stack, the budget goes up by one. This type system ensures that

the budget does not go below zero.

The judgment τ , îmr `K h : îmr
′
means that if the handlers are of type τ ,

and the imr has type îmr, then h type checks, and at the point of returning from the

handler, the imr has type îmr
′
. The integer K means that during the call, the stack

25

will grow by at most K elements. Notice that “during the call” may include calls to

other interrupt handlers.

The judgment τ , îmr `K s : îmr
′
has a meaning similar to that of τ , îmr `K

h : îmr
′
.

For two sequences h̄, τ of the same length, we will use the abbreviation:

τ ` h̄ : τ

to denote the family of judgments

τ ` h̄(i) : τ(i)

for all i in the common domain of h̄ and τ .

We will use the abbreviation:

safe(τ , îmr,K) =

∀i ∈ 1 . . . n

if enabled(îmr, i)

then, whenever τ̄ (i) = . . .
∧

(îmr
δ

−→ îmr)
∧
. . . ,

we have δ + 1 ≤ K

.

The side condition of safe(τ , îmr,K) is used to guarantee that it is safe for an in-

terrupt handler to be called. Intuitively, the stack should grow at most δ elements

during the call, plus a return address for the call itself.

We will sometimes use imrb, as a mnemonic, for the return imr value of an inter-

rupt handler.

τ ` h̄ : τ τ , 0 `K m

τ `K (m, h̄)
(2.10)

τ ` h̄ : τ imr ≤ îmr τ , îmr `K m

τ `K 〈h̄, R, imr, nil, m〉
(2.11)

τ ` h̄ : τ imr ≤ îmr τ , îmr `K h : îmrb τ , îmrb `K σ

τ `K 〈h̄, R, imr, σ, h〉
(2.12)

26

τ , îmr `K+1 m

τ, îmr `K m :: nil
(2.13)

τ , îmr `K+1 h : îmrb τ , îmrb `K+1 σ

τ, îmr `K h :: σ
(2.14)

τ , (îmr)j ∧ ¬t0 `δj h : (îmr)j j ∈ 1..n

τ ` h :
∧n

j=1((îmr)
j δj

−→ (îmr)j)
(2.15)

τ , îmr `K s : îmr

τ , îmr `K loop s

[
safe(τ , îmr,K)

]
(2.16)

τ , îmr `K s : îmr
′

τ , îmr
′
`K m

τ, îmr `K s;m
(2.17)

τ , îmr `K iret : îmr
′

[
îmr ∨ t0 ≤ îmr

′
and safe(τ , îmr,K)

]
(2.18)

τ , îmr `K s : îmr
′

τ , îmr
′
`K h : îmr

′′

τ , îmr `K s; h : îmr
′′ (2.19)

τ , îmr `K x = e : îmr
[
safe(τ , îmr,K)

]
(2.20)

τ , îmr `K imr = imr ∧ imr′ : îmr ∧ imr′
[
safe(τ , îmr,K)

]
(2.21)

τ , îmr `K imr = imr ∨ imr′ : îmr ∨ imr′
[
safe(τ , îmr,K)

]
(2.22)

τ , îmr `K s1 : îmr
′

τ , îmr `K s2 : îmr
′

τ , îmr `K if0 (x) s1 else s2 : îmr
′

[
safe(τ , îmr,K)

]
(2.23)

27

τ , îmr `K s1 : îmr1 τ , îmr1 `K s2 : îmr2

τ , îmr `K s1; s2 : îmr2

(2.24)

τ , îmr `K skip : îmr
[
safe(τ , îmr,K)

]
(2.25)

Rule (2.10) is for type checking whole programs.

Rules (2.11)–(2.12) are for type checking program states. The actual imr value

imr is abstracted to a type îmr which is used to type check the current statement. In

Rule (2.12), the last two hypotheses ensure that interrupts can return to their callers

in a type-safe way. In particular, the last hypothesis in Rule (2.12) type checks the

stack, which is done by Rules (2.13)–(2.14).

Rule (2.15) says that the type of handler is an intersection type, so the handler

must have all of the component types of the intersection. For each component type,

the annotation δj is used as the bound on how much the stack can grow during a call

to the handler. Notice that an intersection of different components cannot be reduced

to a single component. The rule type checks the handler with the master bit initially

turned off.

Rules (2.16)–(2.25) are type rules for statements. They are flow-sensitive to the

imr, and most of them have the side condition safe(τ , îmr,K). The side condition

ensures that if an enabled interrupt occurs, then the handler can both be called and

return in a type-safe way.

2.2.3 Stack-size boundedness

This subsection is devoted to type checking of type-annotated interrupt calculus

programs and to proving the following soundness property about the type system of

interrupt calculus: given a natural number K, once an interrupt calculus program

is type checked, then it is guaranteed that the maximum stack size of executing the

program is bounded by K.

28

Formally, for a program state P , define maxStackSize(P) to be either

• the least K ≥ 0 such that for all P ′, if P →∗ P ′, then |P ′.stk| ≤ K, or

• “infinite” if no such K exists.

We will show that if τ `K p, then maxStackSize(Pp) ≤ K.

We now prove the following lemmas which will be used later in this section.

Lemma 2.2.1 (Safe-Guarantee, Statements) If τ , îmr `K s : îmr
′
, then

safe(τ , îmr,K).

Proof By induction on the derivation of τ , îmr `K s : îmr
′
; we omit the details.

Lemma 2.2.2 (Safe-Guarantee, Handlers) If τ , îmr `K h : îmr
′
, then

safe(τ , îmr,K).

Proof By induction on the derivation of τ , îmr `K h : îmr
′
, using Lemma 2.2.1;

we omit the details.

Lemma 2.2.3 (Safe-Guarantee, Main) If τ , îmr `K m, then safe(τ , îmr,K).

Proof By induction on the derivation of τ , îmr `K m, using Lemma 2.2.1; we omit

the details.

Lemma 2.2.4 (Safe-Weakening) If K1 ≤ K2 and safe(τ , îmr,K1),

then safe(τ , îmr,K2).

Proof From K1 ≤ K2 and

safe(τ , îmr,K1) =

∀i ∈ 1 . . . n

if enabled(îmr, i)

then, whenever τ̄ (i) = . . .
∧

(îmr
δ

−→ îmr)
∧
. . . ,

we have δ + 1 ≤ K1

29

we have

∀i ∈ 1 . . . n

if enabled(îmr, i)

then, whenever τ̄(i) = . . .
∧

(îmr
δ

−→ îmr)
∧
. . . ,

we have δ + 1 ≤ K2

that is, safe(τ , îmr,K2).

Lemma 2.2.5 (K-Weakening, Statements) If K1 ≤ K2 and τ , îmr `K1 s :

îmr
′
, then τ , îmr `K2 s : îmr

′
.

Proof We proceed by induction on the derivation of τ , îmr `K1 s : îmr
′
. There

are six subcases, depending on which one of Rules (2.20)–(2.25) was last used in the

derivation of τ , îmr `K1 s : îmr
′
.

• Rule (2.20). We have

τ , îmr `K1 x = e : îmr
[
safe(τ , îmr,K1)

]
.

From K1 ≤ K2, safe(τ , îmr,K1), and Lemma 2.2.4, we have safe(τ , îmr,K2).

Hence, τ , îmr `K2 x = e : îmr.

• Rule (2.21). The proof is similar to that for Rule (2.20).

• Rule (2.22). The proof is similar to that for Rule (2.20).

• Rule (2.23). We have

τ , îmr `K1 s1 : îmr
′

τ , îmr `K1 s2 : îmr
′

τ , îmr `K1 if0 (x) s1 else s2 : îmr
′

[
safe(τ , îmr,K1)

]
.

From the induction hypothesis, we have τ , îmr `K2 s1 : îmr
′
and τ , îmr `K2

s2 : îmr
′
. From K1 ≤ K2, safe(τ , îmr,K1), and Lemma 2.2.4, we have

safe(τ , îmr,K2). Hence, τ , îmr `K2 if0 (x) s1 else s2 : îmr
′
.

30

• Rule (2.24). We have

τ , îmr `K1 s1 : îmr1 τ , îmr1 `K1 s2 : îmr2

τ , îmr `K1 s1; s2 : îmr2

.

From the induction hypothesis, we have τ , îmr `K2 s1 : îmr1 and τ , îmr1 `K2

s2 : îmr2. Hence, τ , îmr `K2 s1; s2 : îmr2.

• Rule (2.25). The proof is similar to that for Rule (2.20).

Lemma 2.2.6 (K-Weakening, Handlers) If K1 ≤ K2 and τ , îmr `K1 h : îmr
′
,

then τ , îmr `K2 h : îmr
′
.

Proof We proceed by induction on the derivation of τ , îmr `K1 h : îmr
′
. There

are two subcases depending on which one of Rules (2.18)–(2.19) was the last one used

in the derivation of τ , îmr `K1 h : îmr
′
.

• Rule (2.18). We have

τ , îmr `K1 iret : îmr
′

[
îmr ∨ t0 ≤ îmr

′
and safe(τ , îmr,K1)

]

From K1 ≤ K2, safe(τ , îmr,K1), and Lemma 2.2.4, we have safe(τ , îmr,K2).

From safe(τ , îmr,K2) and îmr ∨ t0 ≤ îmr
′
, we have

τ , îmr `K2 iret : îmr
′

• Rule (2.19). We have

τ , îmr `K1 s : îmr
′

τ , îmr
′
`K1 h : îmr

′′

τ , îmr `K1 s; h : îmr
′′ .

From Lemma 2.2.5, we have

τ , îmr `K2 s : îmr
′
.

From the induction hypothesis, we have

τ , îmr
′
`K2 h : îmr

′′
.

31

From τ , îmr `K2 s : îmr
′
and τ , îmr

′
`K2 h : îmr

′′
, we can use Rule (2.19)

to derive τ , îmr `K2 s; h : îmr
′′
.

Type preservation

We now prove the type preservation theorem which is stated in Theorem (2.2.2).

Theorem 2.2.1 (Single-step type preservation) Suppose P is a consistent pro-

gram state. If τ `K P , K ≥ 0, and P → P ′, then τ `K′ P ′ and K ′ ≥ 0, where

K ′ = K + |P.stk| − |P ′.stk|.

Proof There are nine cases depending on which one of Rules (2.1)–(2.9) was used

to derive P → P ′.

• Rule (2.1). We have 〈h̄, R, imr, σ, a〉 → 〈h̄, R, imr ∧ ¬t0, a :: σ, h̄(i)〉 and

enabled(imr, i). Since P is consistent, there are two subcases.

Subcase 1: We have P = 〈h̄, R, imr, nil, m〉 and

P ′ = 〈h̄, R, imr ∧ ¬t0, m :: nil, h̄(i)〉. From τ `K P and Rule (2.11), we have

the derivation:

τ ` h̄ : τ imr ≤ îmr τ , îmr `K m

τ `K 〈h̄, R, imr, nil, m〉
.

From τ , îmr `K m, and Lemma 2.2.3, we have that:

safe(τ , îmr,K) =

∀i ∈ 1 . . . n

if enabled(îmr, i)

then, whenever τ̄ (i) = . . .
∧

(îmr
δ

−→ îmr)
∧
. . . ,

we have δ + 1 ≤ K

is true. From safe(τ , îmr,K) and enabled(îmr, i), it follows that:

τ (i) = . . .
∧

(îmr
δ

−→ îmr)
∧

. . . δ + 1 ≤ K.

32

From τ ` h̄ : τ and Rule (2.15), we have τ , îmr ∧ ¬t0 `δ hi : îmr. From

δ ≤ K − 1, τ , îmr ∧ ¬t0 `δ hi : îmr, and Lemma 2.2.6, we have

τ , îmr ∧ ¬t0 `K−1 hi : îmr

From τ , îmr `K m and Rule (2.13), we have τ , îmr `K−1 m :: nil. From

τ ` h̄ : τ , imr ∧ ¬t0 ≤ îmr ∧ ¬t0, τ , îmr ∧ ¬t0 `K−1 hi : îmr,

τ , îmr `K−1 m :: nil, and K ′ = K + |P.stk| − |P ′.stk| = K − 1 ≥ δ ≥ 0, we

can use Rule (2.12) to derive τ `K′ P ′.

Subcase 2: We have P = 〈h̄, R, imr, σ, h〉, P ′ = 〈h̄, R, imr ∧ ¬t0, h :: σ, h̄(i)〉.

From τ `K P and Rule (2.12), we have the derivation:

τ ` h̄ : τ imr ≤ îmr τ , îmr `K h : îmrb τ , îmrb `K σ

τ `K 〈h̄, R, imr, σ, h〉
.

From τ , îmr `K h : îmrb, and Lemma 2.2.2, we have that

safe(τ , îmr,K) =

∀i ∈ 1 . . . n

if enabled(îmr, i)

then, whenever τ̄ (i) = . . .
∧

(îmr
δ

−→ îmr)
∧
. . . ,

we have δ + 1 ≤ K

is true. From safe(τ , îmr,K) and enabled(îmr, i), it follows that

τ (i) = . . .
∧

(îmr
δ

−→ îmr)
∧

. . . δ + 1 ≤ K.

From τ ` h̄ : τ and Rule (2.15), we have τ , îmr ∧ ¬t0 `δ hi : îmr. From

δ ≤ K − 1, τ , îmr ∧ ¬t0 `δ hi : îmr, and Lemma 2.2.6, we have

τ , îmr ∧ ¬t0 `K−1 hi : îmr.

From τ , îmr `K h : îmrb, τ , îmrb `K σ, and Rule (2.14), we have

τ , îmr `K−1 h :: σ.

From τ ` h̄ : τ , imr ∧ ¬t0 ≤ îmr ∧ ¬t0, τ , îmr ∧ ¬t0 `K−1 hi : îmr,

τ , îmr `K−1 h :: σ, and K ′ = K + |P.stk| − |P ′.stk| = K − 1 ≥ δ ≥ 0, we can

use Rule (2.12) to derive τ `K′ P ′.

33

• Rule (2.2). We have 〈h̄, R, imr, σ, iret〉 → 〈h̄, R, imr ∨ t0, σ
′, a〉, and σ = a :: σ′.

Since P is consistent, there are two subcases.

Subcase 1: We have P = 〈h̄, R, imr,m :: nil, iret〉 and

P ′ = 〈h̄, R, imr ∨ t0, nil, m〉. From τ `K P , Rule (2.12), and Rule (2.13), we

have the derivation:

τ ` h̄ : τ imr ≤ îmr τ , îmr `K iret : îmrb
τ , îmrb `K+1 m

τ, îmrb `K m :: nil

τ `K 〈h̄, R, imr,m :: nil, iret〉
.

From τ , îmr `K iret : îmrb, we have îmr ∨ t0 ≤ îmrb. From τ ` h̄ : τ ,

imr∨t0 ≤ îmr∨t0 ≤ îmrb, τ , îmrb `K+1 m, and K ′ = K+ |P.stk|−|P ′.stk| =

K + 1, we can use Rule (2.11) to derive τ `K′ P ′.

Subcase 2: We have P = 〈h̄, R, imr, hk :: σ′, iret〉 and

P ′ = 〈h̄, R, imr ∨ t0, σ
′, hk〉. From τ `K P , Rule (2.12), and Rule (2.14), we

have the derivation:

τ ` h̄ : τ imr ≤ îmr τ , îmr `K iret : îmrb τ , îmrb `K hk :: σ′

τ `K 〈h̄, R, imr, hk :: σ′, iret〉
.

where τ , îmrb `K hk :: σ′ is derived as follows:

τ , îmrb `K+1 hk : îmr
k

b τ , îmr
k

b `K+1 σ′

τ , îmrb `K hk :: σ′
.

From τ ` h̄ : τ , imr ∨ t0 ≤ îmr ∨ t0 ≤ îmrb, τ , îmrb `K+1 hk : îmr
k

b ,

τ , îmr
k

b `K+1 σ′, and K ′ = K+|P.stk|−|P ′.stk| = K+1 we can use Rule (2.12)

to derive τ `K′ P ′.

• Rule (2.3). We have 〈h̄, R, imr, nil, loop s〉 → 〈h̄, R, imr, nil, s; loop s〉. From

τ `K P , Rule (2.11), and Rule (2.16), we have the derivation:

τ ` h̄ : τ imr ≤ îmr
τ , îmr `K s : îmr

τ , îmr `K loop s

τ `K 〈h̄, R, imr, nil, loop s〉
.

From τ , îmr `K s : îmr, τ , îmr `K loop s, and Rule (2.17) we have

τ , îmr `K s; loop s. From τ ` h̄ : τ , imr ≤ îmr, τ , îmr `K s; loop s, and

K ′ = K + |P.stk| − |P ′.stk| = K, we can use Rule (2.11) to derive τ `K′ P ′.

34

• Rule (2.4). We have 〈h̄, R, imr, σ, x = e; a〉 → 〈h̄, R{x 7→ evalR(e)}, imr, σ, a〉.

Since P is consistent, there are two subcases.

Subcase 1: P = 〈h̄, R, imr, nil, x = e;m〉 and

P ′ = 〈h̄, R{x 7→ evalR(e)}, imr, nil, m〉.

From τ `K P , Rule (2.11), and Rule (2.17), we have the derivation:

τ ` h̄ : τ imr ≤ îmr
τ , îmr `K x = e : îmr τ , îmr `K m

τ, îmr `K x = e;m

τ `K 〈h̄, R, imr, nil, x = e;m〉
.

From τ ` h̄ : τ , imr ≤ îmr, τ , îmr `K m, and K ′ = K+ |P.stk|−|P ′.stk| =

K, we can use Rule (2.11) to derive τ `K′ P ′.

Subcase 2: P = 〈h̄, R, imr, σ, x = e; h〉 and

P ′ = 〈h̄, R{x 7→ evalR(e)}, imr, σ, h〉. From τ `K P , Rule (2.12), and

Rule (2.19), we have the derivation:

τ ` h̄ : τ imr ≤ îmr

τ , îmr `K x = e : îmr

τ , îmr `K h : îmrb

τ , îmr `K x = e; h : îmrb

τ , îmrb `K σ

τ `K 〈h̄, R, imr, σ, x = e; h〉
.

From τ ` h̄ : τ , imr ≤ îmr, τ , îmr `K h : îmrb, τ , îmrb `K σ, and

K ′ = K + |P.stk| − |P ′.stk| = K, we can use Rule (2.12) to derive τ `K′ P ′.

• Rules (2.5)–(2.9). The proofs are similar to that for Rule (2.4); we omit the

details.

Theorem 2.2.2 (Multi-Step Type Preservation) Suppose P is a consistent pro-

gram state. If τ `K P , K ≥ 0, and P →∗ P ′, then τ `K′ P ′ and K ′ ≥ 0, where

K ′ = K + |P.stk| − |P ′.stk|.

35

Proof We need to prove that

∀n ≥ 0, if τ `K P , K ≥ 0, and P →n P ′, then τ `K′ P ′ and K ′ ≥ 0,

where K ′ = K + |P.stk| − |P ′.stk|.

We proceed by induction on n. In the base case of n = 0, we have P = P ′, so

K ′ = K + |P.stk| − |P.stk| = K. From P ′ = P and K ′ = K, we have τ `K′ P ′ and

K ′ ≥ 0.

In the induction step, assume that the property is true for n. Suppose τ `K P ,

K ≥ 0, and P →n P ′ → P ′′. From the induction hypothesis, we have τ `K′ P ′ and

K ′ ≥ 0, where

K ′ = K + |P.stk| − |P ′.stk| (2.26)

From Lemma 2.1.1 we have that P ′ is consistent. From Theorem 2.2.1, we have

τ `K′′ P ′′ and K ′′ ≥ 0, where

K ′′ = K ′ + |P ′.stk| − |P ′′.stk| (2.27)

From Equations (2.26) and (2.27), we have

K ′′ = K ′ + |P ′.stk| − |P ′′.stk|

= K + |P.stk| − |P ′.stk| + |P ′.stk| − |P ′′.stk|

= K + |P.stk| − |P ′′.stk|

as desired.

Theorem 2.2.3 (Stack Boundedness) If τ `K p, then maxStackSize(Pp) ≤ K.

Proof Suppose τ `K p. For K ≥ 0 and any program state P ′, we need to prove that

if Pp →∗ P ′, then |P ′.stk| ≤ K. Notice first that Pp is consistent, and that τ `K Pp

is derivable. From τ `K Pp, K ≥ 0, Pp →∗ P ′, and Theorem 2.2.2, we have τ `K′ P ′

and K ′ ≥ 0, where K ′ = K + |Pp.stk| − |P ′.stk|. From K ′ = K + |Pp.stk| − |P ′.stk|

and |Pp.stk| = 0, we have K ′ = K − |P ′.stk|, so, since K ′ ≥ 0, we have |P ′.stk| ≤ K,

as desired.

36

2.3 Type inference

In Section 2.2, we introduced a type system for interrupt calculus and described

how the type checking process guarantees stack boundedness and certifies that the

stack size is within a given bound. In an ideal world, the engineering of interrupt-

driven software would proceed by first specifying the types of all interrupt handlers,

then checking that those types guarantee a stack with a size within a desired bound,

and finally, writing and type checking the actual code in a modular fashion.

In this section, we will answer the following fundamental question: How do we take

interrupt-driven software and automatically annotate it with types that guarantee

stack boundedness and a stack size within a given bound? Translated into the setting

of the typed interrupt calculus, this question becomes a type inference problem. In

Section 2.3.1, we summarize our results on complexity. After that, we analyze the

complexity of the type inference problem.

2.3.1 Summary of the results on complexity

We present algorithms and lower bounds for two variants of the type inference

problem for the interrupt calculus. Our main result is that, given a program and

a bound on the stack size, a variant of type inference called stack-size checking is

in PSPACE. In addition to the PSPACE result of Stack-Size Checking, there are

other naturally-occurring type inference problems that are PSPACE-complete. For

example, type inference with finite types and atomic subtyping over a general partial

order of base types is PSPACE-complete [21, 57].

We study four problems, concerning an untyped program p, a natural number K,

and types τ̄ :

• Maximum Stack Size. Given p,K, is maxStackSize(Pp) ≤ K ?

• Type Checking. Given p,K, τ̄ , is τ̄ `K p derivable?

37

• Stack-Size Checking. Given p,K, does there exist τ̄ such that τ̄ `K p is

derivable?

• Type Inference. Given p, does there exist τ̄ and K such that τ̄ `K p is

derivable?

Pp is the initial program state for a program p, maxStackSize(Pp), defined in subsec-

tion 2.2.3, is the least upper bound on the sizes of all stacks which can occur during

an execution starting at Pp, and τ̄ `K p is a type judgment which says that, with the

types τ̄ for the interrupt handlers, the program p type checks and has a maximum

stack size of no more than K. The table in Figure 2.3.1 below summarizes our results:

Problem Lower Bound Upper Bound

Maximum Stack Size PSPACE-hard (Theorem 2.3.5) Open

Type Checking Open polynomial time (Sec. 2.2)

Stack-Size Checking PSPACE-hard (Theorem 2.3.7) PSPACE (Theorem 2.3.3)

Type Inference Open PSPACE (Theorem 2.3.4)

Figure 2.3. Summary of results

A basic observation which can be made is that the types can be exponentially

large in the size of the program. The Type Checking problem is in polynomial time

because the types are part of the input. Thus, Type Checking is polynomial in a

possibly large input. A related phenomenon can happen with ML programs [32, 33].

Our approach to showing the PSPACE upper bounds is to first reduce the Stack-

Size Checking problem to a constraint problem and then solve the constraint problem

in PSPACE. We also show that the Type Inference problem is polynomial-time re-

ducible to the Stack-Size Checking problem. Our approach to showing the PSPACE

lower bounds is to reduce the Maximal Stack Size problem to the Stack-Size Checking

problem, and then show that the Maximal Stack Size problem is PSPACE-hard.

38

2.3.2 Constraints

We build a constraint system out of the un-typed interrupt calculus program

whose solutions are all viable types for the program.

Let IMR be the set of bit vectors of length n + 1: IMR = {b b . . . b︸ ︷︷ ︸
n

| b = 0, 1}.

Let V = ∪n
i=0Vi be a set of variables ranging over IMR, where the sets V1, . . . , Vn are

pairwise disjoint. We assume that there are distinct variables vinit
i ∈ Vi, for i ∈ 0..n.

We use v, w to range over V. The constraints are of the following forms

(v = v′)

(v ≤ v′)

(v = v′ ∧ imr′)

(v = v′ ∨ imr′)

v, v′ ∈ Vi i ∈ 0..N

(v) v ∈ Vi i ∈ 0..N

We will use X →p Y to denote a space of partial function from X to Y . We will

use D(F) to denote the domain of a partial function F .

A solution to the constraint set C is a pair (F̄ , Ḡ):

Fi : IMR →p (Vi → IMR)

Gi : IMR →p Nat

D(Fi) = D(Gi)

∀ i ∈ 0..N

D(F0) = D(G0) = {0 0 . . .0︸ ︷︷ ︸
n

}

imr ∈ D(Fi) ⇒ Fi(imr)v
init
i = imr ∧ ¬t0 ∀ i ∈ 1..N

such that for imr ∈ D(Fi) and v, v′ ∈ Vi

39

Constraints Solutions

(v = v′) Fi(imr)v = Fi(imr)v
′

(v ≤ v′) Fi(imr)v ≤ Fi(imr)v
′

(v = v′ ∧ imr′) Fi(imr)v = Fi(imr)v
′ ∧ imr′

(v = v′ ∨ imr′) Fi(imr)v = Fi(imr)v
′ ∨ imr′

(v) ∀j ∈ 1..N : enabled(Fi(imr)v, j) ⇒

Fi(imr)v ∈ D(Fj) ∧

Gj(Fi(imr)v) + 1 ≤ Gi(imr).

Intuitively, a solution (F̄ , Ḡ) consists of: (1) a sequence of functions F̄ that each,

for a given initial imr value, maps variables to imr values and (2) a sequence of

functions Ḡ that each, for a given initial imr value, gives a integer which is intended

to be the δ for a given component of an intersection type.

For each i ∈ 0..n, we use C imr
i to denote the union of (1) the constraints of the

first four forms where the variables are in Vi and (2) the constraint vinit
i = imr∧¬t0.

the last constraint is satisfied by (F̄ , Ḡ) if and only if Fi(imr)v
init
i = imr ∧ ¬t0.

2.3.3 From types to constraints

For a program p, we will define a constraint system that uses the following vari-

ables: (1) for each occurrence of a, the variables va and wa, (2) for each occurrence

of iret, the variable v′iret, in addition to the variables vinit
i , i ∈ 0..n.

From a program p, we generate a set of constraints C(p) in the following manner.

40

for each occurrence of s: constraint

s1;m (vs1 = vs), (vm = ws1)

loop s1 (vs1 = vs), (vs1 = ws1), (vs)

s1; h (vs1 = vs), (ws1 = vh)

iret (ws = vs ∨ t0), (vs), (v′s = vinit ∨ t0), (ws ≤ v′s)

s1; s2 (vs1 = vs), (ws1 = vs2), (ws = ws2)

x = e (ws = vs), (vs)

imr = imr ∧ imr (ws = vs ∧ imr), (vs)

imr = imr ∨ imr (ws = vs ∨ imr), (vs)

if0 (x) then s1else s2 (vs), (ws = ws1), (ws = ws2), (vs1 = vs), (vs2 = vs)

skip (ws = vs), (vs)

where vs ∈ Vi i ∈ 0..N . (If s occurs more than once, then the variables vs and ws

will be ambiguous. However, it will always be clear from the context which occurrence

is meant.)

Notice that the size of C(p) is linear in the size of p. The following connection

between Stack-Size Checking and constraint solving can be proved using standard

techniques.

Theorem 2.3.1 Let p be a program and let K be a natural number. There exists τ

such that τ `K p if and only if the constraint system C(p) has a solution (F̄ , Ḡ) such

that G0(0) ≤ K.

Proof Suppose that there exists τ such that τ `K p. Let

D(τ(i)) = {îmr | τ (i) = . . . ∧ îmr
δ

−→ îmr ∧ . . .}

We construct the domain of the solution (F̄ , Ḡ):

D(Fi) = D(Gi) = D(τ(i)) ∀ i ∈ 1..N

D(F0) = D(G0) = 0

41

We construct Ḡ as the following:

Gi(îmr) = δ if τ (i) = . . . ∧ îmr
δ

−→ îmr ∧ . . .

where i ∈ 1..N and G0(0) = K.

We construct F̄ by the following method. (We only give the construction of the

F function for the statement iret and loop; the other cases are similar.)

For the statement iret, we have the following fragment from its occurrence in the

type derivation tree:

τ , îmr1 `δ iret : îmr
[
îmr1 ∨ t0 ≤ îmr and safe(τ , îmr1, δ)

]

. . .

τ , îmr ∧ ¬t0 `δ hi : îmr

τ ` hi : . . . ∧ îmr
δ

−→ îmr ∧ . . .

We construct Fi(îmr) as follows: Fi(îmr)viret = îmr1, Fi(îmr)wiret = îmr1 ∨ t0,

Fi(îmr)v
′
iret = Fi(îmr)v

init ∨ t0 = îmr, therefore, we have Fi(îmr)wiret = îmr1 ∨ t0 ≤

îmr = Fi(îmr)v
′
iret.

For the statement loop, we have the following fragment from its occurrence in the

type derivation tree:

τ , îmr1 `K s1 : îmr1

τ , îmr1 `K loop s1

[
safe(τ , îmr1, K)

]

. . .

τ , 0 `K m

We construct Fi(îmr) as follows: F0(îmr)vloop s1 = F0(îmr)vs1 = îmr1, F0(îmr)ws1 =

F0(îmr)vs1 = îmr1.

The F̄ constructed by the above method trivially satisfy the constraints of the

forms: (v = v′), (v = v′ ∧ imrc), (v = v′ ∨ imrc), and (v ≤ v′).

It remains to be shown that the constraints of the form (v) are satisfied by (F̄ , Ḡ).

Here we only prove that the constraint (viret) generated by statement iret is satisfied.

Other constraints are proved in a similar manner.

42

Since

τ , îmr1 `δ′ iret : îmr
[
îmr1 ∨ t0 ≤ îmr and safe(τ , îmr1, δ

′)
]

. . .

τ , îmr ∧ ¬t0 `δ′ hi : îmr

τ ` hi : . . . ∧ îmr
δ′

−→ îmr ∧ . . .

we have îmr ∈ D(Fi) = D(Gi), Fi(îmr)viret = îmr1 and Gi(îmr) = δ′. Since

safe(τ , îmr1, δ
′), we have

∀j ∈ 1 . . . n

if enabled(îmr1, j)

then, whenever τ̄ (j) = . . .
∧

(îmr1
δ

−→ îmr1)
∧
. . . ,

we have δ + 1 ≤ δ′

.

Therefore, if enabled(îmr1, j) is true, then îmr1 ∈ D(Gj) = D(Fj) and Gj(îmr1) = δ.

Hence, we have

∀j ∈ 1 . . . n

enabled(Fi(îmr)viret, j) ⇒

Fi(îmr)viret ∈ D(Fj) ∧

Gj(Fi(îmr)viret) + 1 ≤ Gi(îmr)

which is constraint (viret).

Hence, (F̄ , Ḡ) is a solution to constraints C(p).

Conversely, suppose the constraint system C(p) has a solution (F̄ , Ḡ) and G0(0) ≤

K. We build types τ of the handlers h̄ as follows:

τ(i) =
∧

îmr∈D(Fi)

îmr
Gi(îmr)
−→ îmr

and Fi(îmr)v
init = îmr ∧ t0. where i ∈ 1..N .

We inductively build type derivations of τ , 0 `K m and τ ` h̄ from the (F̄ , Ḡ).

We only show the building of derivation of iret and loop. Others are similarly

built.

43

For iret, the constraint variables are viret, wiret and v′iret. Suppose we are building

the type derivation of iret in the following context

τ , îmr1 `δ′ iret : îmr
[
îmr1 ∨ t0 ≤ îmr and safe(τ , imr1, δ

′)
]

. . .

τ , îmr ∧ ¬t0 `δ′ hi : îmr

τ ` hi : . . . ∧ îmr
δ′

−→ îmr ∧ . . .

where îmr ∈ D(Fi) = D(Gi), δ
′ = Gi(îmr), Fi(îmr)viret = îmr1, Fi(îmr)wiret =

Fi(îmr)viret ∨ t0 = îmr1 ∨ t0, Fi(îmr)v
′
iret = Fi(îmr)v

init ∨ t0 = îmr. It is necessary to

1. îmr1 ∨ t0 ≤ îmr

2. the safe(τ , imr1, K) condition is satisfied

Since iret generates the following constraints, which the solutions satisfy, we have:

(wiret ≤ v′iret)

Fi(îmr)wiret = îmr1 ∨ t0 ≤ Fi(îmr)v
′
iret = îmr

So (1) is satisfied.

Since the solutions also satisfy the constraint (viret) generated at iret, we have

∀j ∈ 1 . . . n

enabled(Fi(îmr)viret, j) ⇒

Fi(îmr)viret ∈ D(Fj) ∧

Gj(Fi(îmr)viret) + 1 ≤ Gi(îmr)

which is

∀j ∈ 1 . . . n

if enabled(îmr1, j)

then, whenever τ̄(j) = . . .
∧

(îmr1
δ

−→ îmr1)
∧
. . . ,

we have δ + 1 ≤ δ′

where δ = Gj(Fi(îmr)viret) = Gj(îmr1). Therefore, 2 is satisfied.

44

For loop, suppose we are building its type derivation in the following context

τ , îmr1 `K s1 : îmr1

τ , îmr1 `K loop s1

[
safe(τ , îmr1, K)

]

. . .

τ , 0 `K m

where 0 ∈ D(F0) = D(G0) and F0(îmr)vloop s1 = F0(îmr)vs1 = F0(îmr)ws1 = îmr1.

We now need to show that the safe(τ , imr1, K) condition is satisfied.

Since the solutions satisfy the constraint (vloop s1), we have

∀j ∈ 1 . . . n

enabled(F0(îmr)vloop s1, j) ⇒

F0(îmr)vloop s1 ∈ D(Fj) ∧

Gj(Fi(îmr)vloop s1) + 1 ≤ G0(0) ≤ K

which is

∀j ∈ 1 . . . n

if enabled(îmr1, j)

then, whenever τ̄(j) = . . .
∧

(îmr1
δ

−→ îmr1)
∧
. . . ,

we have δ + 1 ≤ K

where δ = Gj(F0(îmr)vloop s1) = Gj(îmr1).

2.3.4 Solving constraints

A simple constraint system is a constraint system with the property that for each

i ∈ 0..n, C imr
i either has a unique solution or is unsatisfiable. It is straightforward to

show that every constraint system C(p) is simple. So, in the remainder of this section,

we focus on solving simple constraint systems.

For a simple constraint system C, define:

D = { error } ∪

{ F̄ | ∃Ḡ :

45

Fi : IMR →p (Vi → IMR)

Gi : IMR →p Nat

D(Fi) = D(Gi)

∀ i ∈ 0..N

D(F0) = D(G0) = {0 0 . . . 0︸ ︷︷ ︸
n

}

∀i ∈ 1..n, if imr ∈ D(Fi), then

Fi(imr) is the unique solution of C imr
i

and, for each constraint (v), where v ∈ Vi,

∀j ∈ 1..N : enabled(Fi(imr)v, j) ∧ Fi(imr)v ∈ D(Fj) ⇒

Gj(Fi(imr)v) + 1 ≤ Gi(imr) }.

We can consider D to be the space of candidates for the F̄ part of a solution to a

simple constraint system, or error in case no solution exists. We equip D with an

ordering ≤ which is defined as follows:

∀d ∈ D : d ≤ error

F̄ ≤ F̄ ′ if and only if ∀i, imr : Fi(imr) = ⊥ ∨ Fi(imr) = F ′
i (imr).

Notice that (D,≤) is a finite partial order in which λimr.⊥ is the bottom element

and error is the top element.

Define

ψ : D → D

ψ(error) = error

ψ(F̄) =

F̄ ′ F̄ ′ = F̄∪
⋃
{Fj : Fi(imr)v 7→ the unique solution of C

Fi(imr)v
j |

i ∈ 0..n, imr ∈ D(Fi), (v) ∈ C where v ∈ Vi, j ∈ 1..n :

enabled(Fi(imr)v, j)} ∧

∃Ḡ : G0(0) ≤ K ∧

∀i ∈ 0..n, ∀imr ∈ D(Fi), ∀(v) ∈ C where v ∈ Vi, ∀j ∈ 1..n :

enabled(Fi(imr)v, j) ⇒ Gj(Fi(imr)v) + 1 ≤ Gi(imr)

error otherwise.

46

The case of “otherwise” covers two subcases. First, there may be a situation where:

∃i ∈ 0..n, ∃imr ∈ D(Fi), ∃(v) ∈ C where v ∈ Vi, ∃j ∈ 1..n :

enabled(Fi(imr)v, j) ∧ C
Fi(imr)v
j is unsatisfiable,

that is, we would like to define Fj on Fi(imr)v, but no suitable definition is possible.

Second, there may be a situation where:

∀Ḡ, G0(0) > K ∨ ∃i ∈ 0..n, ∃imr ∈ D(Fi), ∃(v) ∈ C where v ∈ Vi, ∃j ∈ 1..n :

enabled(Fi(imr)v, j) ∧ Fi(imr)v ∈ D(Fj) ∧Gj(Fi(imr)v) + 1 6≤ Gi(imr),

that is, we cannot find a suitable Ḡ to pair up with F̄ .

Notice that ψ is monotone. From the least fixed-point theorem, we have that ψ

has a least fixed point, which we denote lfp ψ, and that lfp ψ = tn≥0ψ
n(λimr.⊥).

It is straightforward to prove the following relationship between solutions of C and

fixed points of ψ.

Lemma 2.3.1 Given a simple constraint system C and K, F̄ , we have that there

exists Ḡ such that (F̄ , Ḡ) satisfies C and G0(0) ≤ K if and only if F̄ 6= error and F̄

is a fixed point of ψ.

Lemma 2.3.2 Given a simple constraint system C and a natural number K, we have

that C has a solution (F̄ , Ḡ) such that G0(0) ≤ K if and only if lfp ψ 6= error.

Proof Suppose lfp ψ 6= error. From Lemma 2.3.1 we have that there exists Ḡ such

that (F̄ , Ḡ) satisfies C and G0(0) ≤ K.

Conversely, suppose C has solution (F̄ , Ḡ) such thatG0(0) ≤ K. From Lemma 2.3.1

we have that F̄ 6= error and F̄ is a fixed point of ψ. Since F̄ is a fixed point of ψ we

have lfp ψ ≤ F̄ , and since F̄ 6= error, we have lfp ψ 6= error.

From Lemma 2.3.2 we know that we can check whether C has a solution (F̄ , Ḡ)

such that G0(0) ≤ K simply by checking whether lfp ψ 6= error. One approach to

checking the condition is to first compute lfp ψ and then check whether it is equal

47

to error. It is straightforward to use the characterization lfp ψ = tn≥0ψ
n(λimr.⊥)

to compute lfp ψ in exponential time. If the goal is to annotate a program with

inferred types, then this is the right approach. However, if all we are concerned with

is whether inferred types exist, then we can use the nondeterministic algorithm which

will be presented in the proof of Theorem 2.3.2 in the following section.

2.3.5 Stack-size checking is in PSPACE

Theorem 2.3.2 Given a simple constraint system C and natural number K, we can

decide in PSPACE whether C has a solution (F̄ , Ḡ) such that G0(0) ≤ K.

Proof Since PSPACE=co-NPSPACE, the following co-NPSPACE algorithm is suf-

ficient.

Step 0: Let imr = 0, i = 0, F = λimr.⊥, and d = 0.

Step 1: If C imr
i is unsatisfiable, then terminate with error. Otherwise, let F be the

unique solution of C imr
i .

Step 2: Nondeterministically choose a constraint (v) where v ∈ Vi. If there does not

exist j ∈ {1..n} such that enabled(F (imr)v, j) is true, then terminate with

success.

Otherwise, nondeterministically choose j ∈ {1..n} such that enabled(F (imr)v, j)

is true; we let d = d+ 1, imr = F (imr)v, i = j.

If d > K, then we terminate the algorithm with error, otherwise, repeat Step

1.

This algorithm nondeterministically checks whether lfp ψ = error, using polyno-

mial space for storing each F -function plus some extra constant space.

Theorem 2.3.3 Stack-Size Checking is in PSPACE.

Proof Combine Theorem 2.3.1, and Theorem 2.3.2.

48

2.3.6 Type inference is in PSPACE

Lemma 2.3.3 Type Inference is polynomial-time reducible to Stack-Size Checking.

Proof Given an instance p of the Type Inference problem, where p has n interrupt

handlers, we define an instance p, 2n of the Stack Size Checking problem.

We need to prove that there exists τ̄ , K such that τ̄ `K p is derivable if and only

if there exists τ̄ such that τ̄ `2n p is derivable.

The “if” direction is immediate. Conversely, suppose ∃τ̄ , K such that τ̄ `K p is

derivable and that τ̄(i) =
∧

∀j(îmr
j

i

δj
i−→ îmr

j

i).

In the derivation of τ̄ `K p, every safe condition is of the form safe(τ , îmr, U),

where U is either K or δj
i . If we collect all the inequalities in each safe condition, we

then have a set of inequalities I of the form δj′

i′ + 1 ≤ δj
i and δj

i + 1 ≤ K.

We can represent I by a directed graphG consisting of nodes δj
i andK, in addition,

there is an edge from a to b iff the inequality b + 1 ≤ a is in I. It is clear that the

least value we can assign to node a in G is equal to the longest path starting from a.

The graph G should be acyclic because, otherwise, at least one node in G would be

assigned an infinite value.

Suppose that δj′

i′ is reachable from δj
i and imrj′

i′ = imrj
i . Then there exists a node

U reachable from δj
i and an edge from U to δj′

i′ , which means that δj′

i′ + 1 ≤ U is in

I. By definition of the safe condition, if imrj′

i′ = imrj
i , then δj′

i′ + 1 ≤ U is in I iff

δj
i + 1 ≤ U is in I. Thus, there exists an edge from U to δj

i , and, consequently, there

is a cycle in G from δj
i to U and back to δj

i .

Therefore, if δj′

i′ is reachable from δj
i , then imrj′

i′ 6= imrj
i . For any two nodes δj

i

and δj′

i′ on any path of G, we have imrj
i 6= imrj′

i′ . Since there are at most 2n number

of distinct imr values, the length of the longest path starting from K is at most 2n.

If we construct τ̄ ′ by replacing every δj
i in τ̄ with the length of the longest path

from δj
i in G and let K ′ equal to the length of longest path from K in G, then τ̄ ′ `K′ p

is still derivable.

Since K ′ ≤ 2n, τ̄ ′ `2n p is derivable as well.

49

Theorem 2.3.4 Type Inference is in PSPACE.

Proof Combine Lemma 2.3.3 and Theorem 2.3.3.

2.3.7 Maximum stack size problem is PSPACE-hard

We now prove that the maximum stack size problem is PSPACE-hard. We first

show that the problem is co-NP-hard and, then, further prove that it is PSPACE-

hard.

We define a subclass of monotonic interrupt calculus which we call simple interrupt

calculus and show the maximum stack size problem is co-NP-hard and PSPACE-hard

for this class. It follows that maximum stack size is PSPACE-hard for monotonic

interrupt driven programs.

For imr′, imr′′ where imr′(0) = 0 and imr′′(0) = 0, define H(imr′; imr′′) to be

the interrupt handler

imr = imr ∧ ¬imr′;

imr = imr ∨ (t0 ∨ imr′′);

imr = imr ∧ ¬(t0 ∨ imr′′);

iret.

A simple interrupt calculus program is an interrupt calculus program whose main

part is of the form

imr = imr ∨ (imrS ∨ t0);

loop skip

where imrS(0) = 0 and every interrupt handler is of the form H(imr′; imr′′). Intu-

itively, a handler of a simple interrupt calculus program first disables some handlers,

it then enables other handlers and enables interrupt handling. Such a situation would

allow a handler to be interrupted by other handlers. After that, it disables interrupt

50

handling, and makes certain that the handlers that are enabled on exit are a subset

of those that were enabled on entry to the handler.

For a handler h(i) of the form H(imr′; imr′′), we define function fi(imr) =

imr ∧ (¬imr′) ∨ imr′′. Given a simple interrupt calculus program p, we define a

directed graph G(p) = (V,E) such that

• V = { imr | imr(0) = 0 },

• E = { (imr, fi(imr), i) | ti ≤ imr} is a set of labeled edges from imr to

fi(imr) with label i ∈ {1..n}.

The edge (imr, fi(imr), i) in G(p) represents the call to the interrupt handler

h(i) when imr value is imr. We define imrS as the start node of G(p) and we

define M(imr) as the longest path in G(p) from node imr. The notation M(imr)

is ambiguous because it leaves the graph unspecified; however, in all cases below, the

graph in question can be inferred from the context.

Lemma 2.3.4 For a simple interrupt calculus program p, we have that

maxStackSize(Pp) = |M(imrS)|.

Proof By definition, the state of a simple interrupt program p = (m, h̄) is of the

form 〈h̄, 0, imr, σ, a〉, in addition, the stack size of p increases whenever an interrupt

is handled, and we have state transition of the form

〈h̄, 0, imr, σ, a〉 → 〈h̄, 0, imr ∧ ¬t0, a :: σ, h̄(i)〉 if imr ≥ ti ∨ t0.

Let ai, i ∈ {1..4} represent the four statements in the body of an interrupt

handler such that any handler is of the form a1; a2; a3; a4. By definition of the simple

interrupt program, the master bit is enabled only between a2 and a3, where calls to

other handlers may occur. In addition, after a call to a interrupt handler returns, the

imr value is always less than or equal to the imr value before the call. So, we know

that, during a call to handler hi with initial imr value equal to imr, the only possible

states where interrupts maybe be handled are of the form

〈h̄, 0, imr′, σ, a3; a4〉,where imr′ ≤ fi(imr).

51

Let →∗ be the reflexive, transitive closure of →. Equipped with this notation, we only

need to examine state transitions of the following form to compute maxStackSize(Pp):

〈h̄, 0, imr, σ, a〉 →∗ 〈h̄, 0, imr′, a :: σ, a3; a4〉,

where imr′ ≤ fi(imr) ∀i, such that ti ∨ t0 ≤ imr.

Let P = 〈h̄, 0, imr, σ, a〉 and P ′ = 〈h̄, 0, imr′, σ, a〉. We can show by induction

that maxStackSize(P) ≤ maxStackSize(P ′) if imr ≤ imr′.

Therefore, it is sufficient to consider state transitions of the form

〈h̄, 0, imr, σ, a〉 →∗ 〈h̄, 0, fi(imr), a :: σ, a3; a4〉, where imr ≥ ti ∨ t0.

In the main loop, the possible states where interrupts may be handled are of the form

〈h̄, 0, imrS ∨ t0, nil, loop skip〉

〈h̄, 0, imrS ∨ t0, nil, skip; loop skip〉.

Let a0 be the statements of the form loop skip or skip;loop skip.

To compute maxStackSize(Pp), we only need to consider transitions of the form

〈h̄, 0, imrS ∨ t0, σ, a0〉 →
∗ 〈h̄, 0, fi(imrS) ∨ t0, a0 :: σ, a3; a4〉,

where imrS ≥ ti, and

〈h̄, 0, imr, σ, a3; a4〉 →
∗ 〈h̄, 0, fj(imr), a3; a4 :: σ, a′3; a

′
4〉,

where imr ≥ tj ∨ t0.

It should now be clear that it is sufficient to use imr ∧ ¬t0 to represent states that

we are interested in with starting states represented by imrS. These two kinds of

transitions described above can be uniquely represented by edges of the form

(imrS, fi(imrS), i), (imr ∧ ¬t0, fj(imr ∧ ¬t0), j) in graph G(p).

Therefore, maxStackSize(Pp) is equal to the length of the longest path in G(p)

from the start node imrS.

Lemma 2.3.5 For a simple interrupt calculus program p, and a subgraph of G(p),

we have that if imr ≤ imr1 ∨ imr2, then |M(imr)| ≤ |M(imr1)| + |M(imr2)|.

52

Proof We first prove the following claim.

Claim 1: If imr ≤ imr1∨ imr2, and P is a path from node imr to imr′, then we

can find a path P1 from imr1 to imr′1 and a path P2 from node imr2 to imr′2 such

that |P | = |P1| + |P2| and imr′ ≤ imr′1 ∨ imr′2.

Proof of Claim 1. We proceed by induction on the length of P . The base case

of |P | = 0 is trivially true. Suppose Claim 1 is true for |P | = k and that P ′ is

P appended with an edge to imr′′. We need to prove the case of P ′. Since P

ends at imr′, ∃ti ≤ imr′ such that imr′′ = fi(imr
′). By the induction hypothesis,

ti ≤ imr′ ≤ imr′1 ∨ imr′2. Thus, ∃a ∈ {1, 2} such that ti ≤ imr′a. Suppose that

ti ≤ imr′1 (the case of ti ≤ imr′2 is similar and is omitted). We can let P ′
1 be P1

appended with an edge to imr′′1 where imr′′1 = fi(imr
′
1). By definition of fi, we have

fi(imr
′) ≤ fi(imr

′
1)∨imr′2. Thus, we have |P ′| = |P |+1 = |P1|+1+|P2| = |P ′

1|+|P2|

and imr′′ ≤ imr′′1 ∨ imr′2.

We can apply Claim 1 to the situation with M(imr) as the path P from imr to

0. Since |M(imr1)| ≥ |P1| and |M(imr2)| ≥ |P2|, we have |M(imr)| ≤ |M(imr1)|+

|M(imr2)|.

co-NP-hardness for simple interrupt calculus

We begin by first showing that the Maximum Stack Size problem is co-NP-hard.

Later, we show for the simple interrupt calculus problems, then problem is PSPACE-

hard. Lastly, we show that the Maximum Stack Size problem for monotonic interrupt

calculus programs is PSPACE-hard.

Lemma 2.3.6 The Maximum Stack Size problem is co-NP-hard.

Proof We will do a reduction from the SAT problem. Suppose we are given a SAT

instance φ with L boolean clauses and n boolean variables x1, x2, . . . , xn, where φij

is the jth literal of the ith clause of φ. We construct a simple interrupt program

53

p = (m, h̄) as follows. Let h̄ = { hij | φij is a clause of φ }, hij = H((
∨

∀j tij) ∨

(
∨

∀φi′j′=¬φij
ti′j′); 0), and imr0 =

∨
∀i,j tij.

Recall that if hij = H(imr′; imr′′), then fij(x) = x ∧ imr′ ∨ imr′′. We use eij to

represent edges of the form (imr, fij(imr)) in G(p).

Claim 1: |M(imr0)| ≤ L.

Proof of Claim 1. By definition, every edge in G(p) is of the form (imr, fij(imr)),

where tij ≤ imr. By definition, fij(imr) = imr ∧ (¬
∨

∀j tij) ∧ (¬
∨

∀φi′j′=¬φij
ti′j′).

Thus, M(imr0) contains at most one edge per clause in φ and hence |M(imr0)| ≤ L.

Claim 2: φ is satisfiable if and only if |M(imr0)| = L.

Proof of Claim 2. Suppose that T is a satisfiable truth assignment to φ. For each

i, we let M(imr0) contain an edge eij for the first j such that T (φij) = true. This

composition of M(imr0) is possible because if eij is in M(imr0), then any edge ei′j′

with φi′j′ = ¬φij is not in M(imr0), since T (φi′j′) = false. Since, for each i, there is

one edge eij in M(imr0), we have |M(imr0)| = L.

Conversely, if |M(imr0)| = L, then for each i, there exists an edge eij in M(imr0).

Let T (φij) = true iff M(imr0) contains edge eij. T is a truth assignment to φ because

T (φij) = true iff T (φi′j′) = false for all φi′j′ = ¬φij. Since for each i, at least one

T (φij) = true, truth assignment T satisfies φ.

We conclude

φ is not satisfiable

iff |M(imr0)| ≤ L− 1 (Claims 1+2)

iff maxStackSize(Pp) ≤ L− 1 (Theorem 2.3.4),

so the Maximum Stack Size problem is co-NP-hard.

54

PSPACE-hardness for simple interrupt calculus

We now show PSPACE-hardness for simple interrupt calculus. Our proof is based

on a polynomial-time reduction from the quantified boolean satisfiability (QSAT) prob-

lem [46].

We first illustrate our reduction by a small example. Suppose we are given a

QSAT instance S = ∃x2∀x1 φ with φ = (l11 ∨ l12) ∧ (l21 ∨ l22) = (x2 ∨ ¬x1) ∧ (x2 ∨ x1),

We construct a simple interrupt program p = (m, h̄) with an imr register, where

h̄ = {h(xi), h(x̄i), h(wi), h(w̄i), h(lij) | i, j = 1, 2} are 12 handlers. The imr contains

13 bits: a master bit, and each remaining bit maps one-to-one to each handler in h̄.

Let D = {xi, x̄i, wi, w̄i, lij | i, j = 1, 2}. We use tx, where x ∈ D, to denote the imr

value where all bits are 0’s except for the bit corresponding to handler h(x), which is

set to 1. The initial imr value imrS is set to imrS = tx2 ∨ tx̄2 .

We now construct h̄. Let E(h(x)), x ∈ D, be the set of handlers that h(x) enables.

This enable relation between the handlers of our example is illustrated in Figure 2.4,

where there is an edge from h(xi) to h(xj) iff h(xi) enables h(xj). Let D(h(x)),

x ∈ D, be the set of handlers that h(x) disables. Let L = {h(lij) | i, j = 1, 2}. The

D(h(x)),x ∈ D, are defined as follows:

D(h(x2)) = D(h(x̄2)) = {h(x2), h(x̄2)} (2.28)

D(h(x1)) = {h(x1)} D(h(x̄1)) = {h(x̄1)} (2.29)

D(h(w2)) = D(h(w̄2)) = {h(x1), h(x̄1)} ∪ {h(wi), h(w̄i) | i = 1, 2} ∪ L (2.30)

D(h(w1)) = D(h(w̄1)) = {h(w1), h(w̄1)} ∪ L (2.31)

D(h(lij)) = {h(li1), h(li2)} ∪ {h(wk) | lij = ¬xk} ∪ {h(w̄k) | lij = xk}. (2.32)

If h(x) = H(imr′; imr′′), then imr′ =
∨

h(y)∈E(h(x)) ty and imr′′ =
∨

h(z)∈D(h(x)) tz,

where x, y, z ∈ D.

We claim that the QSAT instance S is satisfiable iff |M(imrS)| = 10, where

imrS = tx2 ∨ tx̄2 . We sketch the proof as follows.

55

h(x2) h(x̄2)

h(x1) h(x̄1)h(w2) h(w̄2)

h(l12) h(l21) h(l22)h(l11)h(w1) h(w̄1)

? ?

�
�

��=

PPPPPPPq

��������)

Z
Z

ZZ~

������

�
�
�

@
@
@R

HHHHHHj

XXXXXXXXXz

��������)

�
�

�
��+

S
S
Sw

�
�
��

HHHHHHj

Figure 2.4. Enable relation of interrupt handlers

Let imrL =
∨

h(l)∈L tl, where l ∈ D. From (2.32) and Figure 2.4, it can be shown

that |M(imrL)| = 2. From Figure 2.4, we have E(h(x1)) = {h(w1)}∪L; and together

with (2.31), and (2.32), it can be shown that

|M(tx1)| = 1 + |M(tw1 ∨ imrL)| ≤ 2 + |M(imrL)| = 4

and this equality holds iff ∃j1, j2 ∈ 1, 2, such that l1j1 , l2j2 6= ¬x1, because otherwise

handler h(w1) would certainly be disabled. Similarly, it can be shown that |M(tx̄1)| ≤

4, and that

|M(tx1 ∨ tx̄1)| ≤ |M(tx1)| + |M(tx̄1)| ≤ 8,

where the equality holds iff ∃j1, j2, such that l1j1, l2j2 6= ¬x1 and ∃j′1, j
′
2, such that

l1j′1 , l2j′2 6= x1. From Figure 2.4, we have E(h(x2)) = {h(w2), h(x1), h(x̄1)}. Thus,

|M(tx2)| = 1 + |M(tw2 ∨ tx1 ∨ tx̄1)| ≤ 2 + |M(tx1 ∨ tx̄1)| = 10,

and it can be shown from (2.30) and (2.32) that the equality holds iff ∃j1, j2 such

that lij1, lij2 6= ¬x2,¬x1 and ∃j′1, j
′
2 such that lij′1 , lij′2 6= ¬x2, x1, which implies that both

x2 = true, x1 = true and x2 = true, x1 = false are satisfiable truth assignments to φ.

Similarly, it can be shown that |M(tx̄2)| = 10 iff both x2 = false, x1 = true and

x2 = false, x1 = false are satisfiable truth assignments to φ.

From (2.28), we have |M(tx2 ∨ tx̄2)| = max(|M(tx2)|, |M(tx̄2)|). Therefore,

|M(imrS)| = 10 iff there exists x2 such that for all x1, φ is satisfiable, or equivalently

iff S is satisfiable. For our example, S is satisfiable since ∃x2 = true such that ∀x1, φ

is satisfiable. Correspondingly, |M(imrS)| = |M(x2)| = 10.

56

Theorem 2.3.5 The exact maximum stack size problem for monotonic interrupt pro-

grams is PSPACE-hard.

Proof We will do a reduction from the QSAT problem. Suppose we are given an

instance of QSAT problem

S = ∃xn∀xn−1 . . .∃x2∀x1 φ,

where φ is a 3SAT instance in conjunctive normal form of n variables xn, . . . , x1 and L

boolean clauses. Let φij be the jth literal of the ith clause in φ and φ =
∧L

i=1

∨3
j=1 φij.

We construct a program p = (m, h̄) and h̄ = {h(i) | i ∈ {1 . . . 3L+ 4n} }.

As we did earlier, we define a graph G(p) = (V,E) such that V = {imr | imr(0) =

0} and E = {(imr, fi(imr), i) | ti ≤ imr}, where fi(imr) = imr ∧ ¬imr′ ∨ imr′′ iff

h(i) = H(imr′; imr′′).

For the sake of clarity, we define three kinds of indices: dij = 3(i− 1) + j, where

i ∈ {1..L}, j ∈ {1..3}; qa
i = 3L + 4i − 3 + a, and wa

i = 3L + 4i − 1 + a, where

i ∈ {1..n}, a ∈ {0, 1}.

Let

D = {di1, di2, di3 | ∀i ∈ {1..L}}

Dij = {di1, di2, di3} ∪ {wa
k | (a = 1 ∧ φij = xk) ∨ (a = 0 ∧ φij = ¬xk)}

Wi = {wa
j | ∀j ∈ {1..i}, ∀a ∈ {0, 1}}

Qi = {qa
j | ∀j ∈ {1..i}, ∀a ∈ {0, 1}}.

We will use the abbreviation

imr0 =
∨

i∈D

ti, imrk = tq0
k
∨ tq1

k
∀k ∈ {1..n}.

Assume that n is even. For all a ∈ {0, 1}, let

fqa
2k−1

(x) = x ∧ ¬tqa
2k−1

∨ (imr2k−2 ∨ twa
2k−1

), ∀k ∈ {1..n/2}

fqa
2k

(x) = x ∧ ¬imr2k ∨ (imr2k−1 ∨ twa
2k

), ∀k ∈ {1..n/2}

57

fwa
k
(x) = x ∧ ¬

∨

i∈D∪Qk−1∪Wk

ti, ∀k ∈ {1..n}

fdij
(x) = x ∧ ¬

∨

k∈Dij

tk, ∀i ∈ {1..L}, j ∈ {1, 2, 3}.

Given an imr value r, we define the graph Gr(p) to be the subgraph of G(p) such

that any edge labeled dij is removed for all i, j such that φij = ¬xk and tw0
k
≤ r, or

φij = xk and tw1
k
≤ r. We use Mr(imr) to denote the longest path in Gr(p) from

imr.

Claim 1: ∀k ∈ {1..n
2
}, |Mr(imr2k)| = maxa∈{0,1} |Mr(tqa

2k
)|, and |Mr(imr0)| ≤

L.

Proof of Claim 1. By definition, we have that ∀a ∈ {0, 1}, fqa
2k

(x) = x∧¬imr2k ∨

(imr2k−1 ∨ twa
2k

), from which the claim follows.

By definition of fdij
, for each i ∈ {1..L}, M(imr0) can contain at most one edge

with label dij, where j ∈ {1, 2, 3}. Thus, |M(imr0)| ≤ L.

Claim 2: |Mr(imr2k−1)| =
∑

b∈{0,1} |Mr(tqb
2k−1

)|.

Proof of Claim 2. From Lemma 2.3.5, we have |Mr(imr2k−1)| ≤
∑

b∈{0,1} |Mr(tqb
2k−1

)|.

Let P be the path from imr2k−1 to tq1
2k−1

constructed from Mr(tq0
2k−1

) by replacing

any node imr on Mr(tq0
2k−1

) with imr ∨ tq1
2k−1

. It is straightforward to show that if

edge (imr, imr′, i) is on Mr(tq0
2k−1

), then (imr ∨ tq1
2k−1

, imr′ ∨ tq1
2k−1

, i) is on P . If

we concatenate P with Mr(tq1
2k−1

), then we have a path from imr2k−1 of length

|Mr(tq0
2k−1

)| + |Mr(tq1
2k−1

)|.

Claim 3: |M(imrn)| ≤ 2n/2(6 + L) − 6.

Proof of Claim 3. It is sufficient to prove that |M(imr2k)| ≤ 2k(6 + L) − 6. For

all a ∈ {0, 1} we have:

|M(tqa
2k

)| = 1 + |M(imr2k−1 ∨ twa
2k

)|

≤ 2 + |M(imr2k−1)|

= 2 +
∑

b∈{0,1}

|M(tqb
2k−1

)|

58

= 4 +
∑

b∈{0,1}

|M(imr2k−2 ∨ twb
2k−1

)|

≤ 6 + 2|M(imr2k−2)|

|M(imr2k)| = max
a∈{0,1}

(|M(tq0
2k

)|, |M(tq1
2k

)|)

≤ 6 + 2|M(imr2k−2)|

From the last inequality and Claim 1, it is straightforward to show the claim by

induction on k.

Claim 4: For any r and a ∈ {0, 1}, |Mr(tqa
2k

)| = 2k(6 + L) − 6 iff ∀b ∈ {0, 1},

|Mr′(tqb
2k−1

)| = 2k−1(6 + L) − 4, where r′ = r ∨ twa
2k

.

Proof of Claim 4. Suppose that |Mr(tqa
2k

)| = 2k(6 + L) − 6. The path Mr(tqa
2k

)

must contain the edge with label wa
2k because otherwise

|Mr(tqa
2k

)| = 1 + |Mr(imr2k−1 ∨ twa
2k

)|

= 1 + |Mr(imr2k−1)|

≤ 1 + |M(imr2k−1)| ≤ 2k(6 + L) − 7.

By definition of fqa
2k

, for any node imr on the path Mr(imr2k−1 ∨ tqa
2k

), we have

fwa
2k

(imr) = 0. Thus, the edge labeled wa
2k can only be the last edge on Mr(tqa

2k
).

By definition of fdij
, the longest path from imr2k−1 ∨ twa

2k
containing edge labeled

wa
2k does not contain any edge labeled dij for all i, j such that φij = x2k if a = 1,

and φij = ¬x2k if a = 0. This path is the same path in Gr′(p), where r′ = r ∨ twa
2k

.

Therefore,

|Mr(tqa
2k

)| = 2k(6 + L) − 6 = |Mr′(tqa
2k

)|

= 1 + |Mr′(imr2k−1 ∨ twa
2k

)|

≤ 1 + |Mr′(imr2k−1)| + |Mr′(twa
2k

)|

= 2 +
∑

b∈{0,1}

|Mr′(tqb
2k−1

)|, and

∑

b∈{0,1}

|Mr′(tqb
2k−1

)| ≥ 2k(6 + L) − 8.

59

Since

|Mr′(tqb
2k−1

)| = 1 + |Mr′(imr2k−2 ∨ twb
2k−1

)|

≤ 2 + |Mr′(imr2k−2)|

≤ 2 + |M(imr2k−2)| = 2k−1(6 + L) − 4,

we have ∀b ∈ {0, 1}, |Mr′(tqb
2k−1

)| = 2k−1(6 + L) − 4.

Conversely, assume that for all b ∈ {0, 1}, |Mr′(tqb
2k−1

)| = 2k−1(6 + L) − 4 where

r′ = r∨ twa
2k

. From Claim 2, we know that |Mr′(imr2k−1)| =
∑

b∈{0,1} |Mr′(tqb
2k−1

)| =

2k(6 + L) − 8.

Let P be a path from imr2k−1 ∨ twa
2k

to twa
2k

constructed from Mr′(imr2k−1) by

replacing any node imr on Mr′(imr2k−1) with imr ∨ twa
2k

. It is straightforward to

show that if edge (imr, imr′, i) is on Mr′(imr2k−1), then (imr ∨ twa
2k
, imr′ ∨ twa

2k
, i)

is on P as well.

If we concatenate P with Mr′(twa
2k

), then we have a path from imr2k−1 ∨ twa
2k

in

graph Gr′(p) of length 2k(6 +L)− 7. Thus, |Mr(tqa
2k

)| = |Mr′(tqa
2k

)| = 2k(6 +L)− 6.

Claim 5: for any r′ and b ∈ {0, 1}, |Mr′(tqb
2k−1

)| = 2k−1(6 + L) − 4 iff

|Mr′′(imr2k−2)| = 2k−1(6 + L) − 6. where r′′ = r′ ∨ twb
2k−1

,

Proof of Claim 5. The proof is similar to the proof of Claim 4, we omit the details.

Claim 6: |M(imrn)| = 2n/2(6+L)−6 iff ∃an∀an−1 . . .∃a2∀a1 ∈ {0, 1}, such that

for r =
∨

k∈{1..n} twak
k

, |Mr(imr0)| = L.

Proof of Claim 6. From Claims 1+3, we know that |Mr(imr2k)| = 2k(6 + L) − 6

iff ∃a ∈ {0, 1} such that |Mr(tqa
2k

)| = 2k(6+L)−6. Together with Claim 4 and Claim

5, we have that for k ∈ {1..n/2},

|Mr(imr2k)| = 2k(6 + L) − 6, iff ∃a ∈ {0, 1}, ∀b ∈ {0, 1}, such that

|Mr′′(imr2k−2)| = 2k−1(6 + L) − 6, where r′′ = r ∨ twa
2k
∨ twb

2k−1
.

It is straightforward to prove by induction from k = n/2 to 1, that

|M(imrn)| = 2n/2(6 + L) − 6 iff ∃an∀an−1 . . .∃a2k∀a2k−1,

such that |Mr(imr2k−2)| = 2k−1(6 + L) − 6, where r =
∨n

i=2k−1 twai
i
.

60

This claim follows when k = 1.

Claim 7: S is satisfiable iff ∃an∀an−1 . . .∃a2∀a1 ∈ {0, 1}, we have |Mr(imr0)| =

L, where r =
∨n

k=1 twak
k

.

Proof of Claim 7. It is sufficient to prove that φ is satisfiable iff ∃an, . . . , a1 ∈

{0, 1}, such that for r =
∨n

k=1 twak
k

, we have |Mr(imr0)| = L.

Suppose we have an, . . . , a1 such that r =
∨n

k=1 twak
k

, |Mr(imr0)| = L. We can

construct a truth assignment T by defining T (xk) = true if ak = 0 and T (xk) = false

if ak = 1. By definition of fdij
, for each i ∈ {1..L}, there exists a j such that the

edge labeled dij is on Mr(imr0). By definition of Mr, if an edge labeled dij is on

Mr(imr0) and φij = xk, then ak = 0, and T (xk) = true; and if φij = ¬xk, then

ak = 1 and T (xk) = false. T (φij) = true in both cases. Therefore, T satisfies φ.

Conversely, suppose T satisfies φ. We can construct r =
∨n

k=1 twak
k

from T by

defining ak = 0 if T (xk) = true and ak = 1 if T (xk) = false. For each i ∈ {1..L},

there exists j such that T (φij) = true, which means that the edge labeled dij can be

on the path Mr(imr0). Therefore, |Mr(imr0)| = L.

We conclude that

S is not satisfiable

iff we do not have ∃an∀an−1 . . . ∃a2∀a1,

such that for r =
∨n

k=1 twak
k

, |Mr(imr0)| = L (Claim 7)

iff |M(imrS)| 6= 2n/2(6 + L) − 7, where imrS = imrn (Claims 3+6)

iff maxStackSize(Pp) 6= 2n/2(6 + L) − 7 (Lemma 2.3.4),

so the exact maximum stack size problem is co-PSPACE-hard, that is, PSPACE-hard.

2.3.8 Stack-size checking is PSPACE-hard

Theorem 2.3.6 For simple interrupt calculus programs, Maximum Stack-Size is

polynomial-time reducible to Stack-Size Checking.

61

Proof It is sufficient to prove that, given a simple interrupt calculus program p =

(m, h̄) and a natural number K, we have maxStackSize(Pp) ≤ K if and only if there

exists τ̄ such that τ̄ `K p is derivable.

Suppose first that maxStackSize(Pp) ≤ K. From Theorem 2.3.4 and

maxStackSize(Pp) ≤ K, we have |M(imr0)| ≤ K.

For each node îmr in G(p), if ti ∨ t0 ≤ îmr, then let τ̄ (i) = . . .∧ îmr
δ
→ îmr∧ . . .,

where δ = |M(fi(îmr))|.

We need to show that τ̄ `K (m, h̄) is derivable; that is, we need to show that

τ̄ ` h̄ : τ̄ and τ̄ , 0 `K m are derivable.

1. τ̄ ` h̄ : τ̄ .

We need to show that τ̄ ` hi : τ̄(i) for all i. Suppose that τ̄ (i) =
∧q

j=1(îmr
j δj

→

îmr
j
). It is sufficient to show that ∀j ∈ {1..q}, we have τ̄ , îmr

j
∧ ¬t0 `δj hi : îmr

j
.

Suppose that the body of hi is

imr = imr ∧ imr′;

imr = imr ∨ (t0 ∨ imr′′)

imr = imr ∧ ¬(t0 ∨ imr′′)

iret.

Since the master bit is disabled everywhere except between the second and third lines,

we only need to show that

τ̄ , îmr
j
∧ imr′ ∨ imr′′ `δj imr = imr ∧ ¬(t0 ∨ imr′′) : îmr

j
∧ ¬t0 ∧ imr′,

τ̄ , îmr
j
∧ imr′ ∧ ¬t0 `δj iret : îmr

j
, and (îmr

j
∧ ¬t0 ∧ imr′) ∨ t0 ≤ îmr

j
,

which is trivially true, and [safe(τ̄ , îmr, δj)], where îmr = îmr
j
∧ imr′ ∨ imr′′. By

definition [safe(τ̄ , îmr, δj)] is true iff ∀k ∈ {1..q}, if tk ∨ t0 ≤ îmr, then whenever

τ̄(k) = . . . ∧ (îmr
δ
→ îmr) ∧ . . ., we have δ + 1 ≤ δj.

From construction of τ̄ , we know that δ = |M(fk(îmr))|. Since îmr = îmr
j
∧

imr′∨imr′′ = fi(îmr
j
), we have that δj = |M(îmr)|. Also since (îmr, fk(îmr)) ∈ E,

we know that δj ≥ δ + 1.

62

2. τ̄ , 0 `K m.

The body of the main loop is

imr = imr ∨ imr0;

loop skip;.

Thus, it is sufficient to prove that τ̄ , imr0 `K skip : imr0 and [safe(τ̄ , imr0, K)].

By definition, imr0 is the start node of G(p); thus, K = |M(imr0)|. To prove

[safe(τ̄ , imr0, K)], notice that if τ̄ (k) = . . . ∧ (imr0
δ
→ imr0) ∧ . . ., then δ =

|M(fk(imr0))|. Since (imr0, fk(imr0)) ∈ E and |M(imr0)| = K we have that

K ≥ |M(f(imr0))| + 1 = δ + 1.

Conversely, suppose that there exists τ̄ such that τ̄ `K p is derivable. From

Theorem 2.2.3 and τ̄ `K p being derivable, we have that maxStackSize(Pp) ≤ K.

Theorem 2.3.7 Stack-Size Checking is PSPACE-hard.

Proof Combine Theorem 2.3.5 and Theorem 2.3.6.

2.4 Related work

There is a large body of research dedicated to the problems of event-driven real-

time systems in general. Virtually all of it assumes interrupt handling can be con-

sidered instantaneous and fails to directly address interrupt handling and its related

stack size boundedness problem (except [8] which is described below), even though

their implementations utilize the interrupt as a underlying mechanism. Among the

papers written on this topic, the following works are particularly relevant.

2.4.1 Stack checking for interrupt-driven programs

Brylow, Damgaard and Palsberg [8] abstract the interrupt program into a con-

trol flow graph; they then model check the size of bounded stack of interrupt driven

programs by running a context free reachability algorithm on the graph. Their work

63

is the most relevant one to ours because both works consider the stack boundedness

problem for interrupt-driven programs. In contrast to their work, we take another

approach. We abstract the interrupt systems and formally define a formal language

(interrupt calculus) that captures the interrupt mechanism. We use type systems (in-

tersection types) to study the stack boundedness problem in this formal environment.

We check the boundedness property by running type checking algorithm, rather than

model checking.

2.4.2 Sized types and dependent types

Hughes, Pareto, and Sabry [30, 47, 48] use sized types to reason about liveness,

termination, and space boundedness of reactive systems programmed in functional

languages. There are similarities between their work and ours: both use types an-

notated with explicit space information to reason the space boundedness, both use

constraint solving to infer the type annotations (space), and both enable modular,

type-based, compile-time type checking on the program to verify that the program

runs in bounded space. The sized type can be viewed as a specialized form of depen-

dent types [61–63]. (This extends the ML type systems with a parameterized size.) By

contrast, our type system of handlers is a hybrid of dependent types (stack growth δ)

and context-sensitive (intersection types), value-sensitive (imr values), flow-sensitive

analysis. In addition, as outlined below, there are four differences which separate

their work from ours:

1. Even though both their work and ours address space boundedness, their concept

of space boundedness is used in the sense that, for example, recursive data

structures should grow within a certain bound and functions should process

inputs within a constant amount of memory space, while our work is concerned

with stack boundedness caused by calling handlers when handling interrupts.

Thus, their work does not address interrupt handling, while ours is built upon

an interrupt computation model;

64

2. Their work does not study complexity bounds;

3. Their work shows how to do type checking which relies on a moderate number

of type annotations. Their type checking process involves solving a constraint

system in order to be able to infer the size of space used by programs. By

contrast, we not only show how to type check the annotated interrupt programs,

we also show how to automatically infer the types and type annotations.

4. We use constraint systems to infer the intersection types and type annotations

(stack growth δ), that is, type inference, rather than to type check programs.

2.4.3 Event-driven FRP

Functional reactive programming (FRP) [28] is a high-level declarative language

for programming reactive systems. It has been implemented as an embedded language

in Haskell at Yale. Wan, Taha, Hudak [58, 59] present two variations of FRP called

real-time FRP and event-driven FRP. Both real-time FRP and event-driven FRP

are designed such that the time and space behavior of a program are necessarily

bounded. Of the two languages, Event-driven FRP is especially germane to the

interrupt calculus.

The event-driven FRP is a simplified variant of FRP and is intended for program-

ming interrupt-driven micro-controllers. The event-driven FRP features events and

behaviors. The behaviors can change their states (values) only when an event occurs.

No events in Event-driven FRP can occur simultaneously, implying that no handling

of the events can overlap. Upon occurrences of events, Event-driven FRP programs

first compute the values that depend on the previous state of the computation, and

then, after that, update the state of the computation.

However, there is a fundamental difference between the semantics of Event-driven

FRP and our interrupt calculus. In Event-driven FRP, during the handling of an

event, there is no other event which can occur. This serialization of interrupt events

flattens the handling of events. By contrast, our interrupt calculus allows interrupts

65

to occur which are handled during the execution of a handler. Because of this as-

sumption regarding events, Event-driven FRP programs are not concerned with the

problem of stack boundedness caused by interrupting a running handler. However,

we believe that allowing handlers to be interrupted can result in more responsive and

more fine-tuned (in terms of time) real-time software. For example, in [59], a simple

RoboCup controller program is shown in which a timer counter interrupt occurs much

more frequently than any other sources of interrupts. If the running duration of other

handlers is so long that the processor has to delay, or even drop, the interrupts of

the timer counter, then the output of the controller may experience instability, thus

causing unpredictable system behavior. This problem is caused by the mismatch

between the slow lower-level of interrupt-handling responsiveness and fast interrupt

arrivals. Our interrupt calculus achieves more responsive interrupt-handling by al-

lowing long-handled, but infrequent, interrupts to be interrupted by short-handled,

but frequent, interrupts. Doing this also enables more fine-tuned real-time programs

because short-handled interrupts can interrupt long-handled handling, allowing for a

shorter wait time and avoiding interrupt drops of short-handled interrupts.

The programs of Event-driven FRP can be translated to our interrupt calculus.

However, interrupt calculus programs cannot be faithfully translated to Event-driven

FRP. One example of this would be the fancy handlers example (Example 1.6 in

Section 1.5).

2.4.4 The Giotto language and the embedded machine

The Giotto language is a time-triggered language for embedded programming in-

troduced by Henzinger, Horowitz and Kirsch [22,23]. Giotto programs are translated

into a language called E code. E code runs on Embedded machine (E machine) [24,25].

Embedded machine is a virtual machine, independent of platform and schedulers. In

E-machine terms, a task is a periodic process that carries out a computation. Tasks

can be invoked with arguments (typically drivers) and output its results to task ports.

66

The computation of tasks is not synchronous. Drivers are communication facilities

that may provide sensor readings to tasks, or load tasks results to actuators, or pro-

vide task results as arguments to other tasks. E code schedules tasks on E machine

such that the “time-safe” property holds. “Time-safe” means that the computation

of a task t always finishes before drivers access t’s output ports. There are two major

steps of ensuring the “time-safe” property. (1) during the compilation, the compiler

relies on the WCETs (worst case execution time) of tasks, triggers and drivers to

compute whether the tasks can finish in time, assuming the underlying scheduling

scheme. (2) the e code interpreter will guard the “time-safe” property at runtime.

If any assumptions about WCETs prove to be incorrect, then the E machine will

generate exceptions at runtime. Relying on information about shared ports between

drivers and tasks in the ready queue, the e machine is able to tell whether there has

been “time-safe” violation. Determinism of outcomes of tasks comes immediately

from “time-safe” property.

The Giotto language and E machine provide one especially desirable feature: they

enable real-time processes which produce predictable behavior, independent of plat-

forms. However, Giotto and E machine are not designed to handle interrupts. The

programming paradigm that Giotto uses is one in which all tasks are periodic within

a mode (which is a set of tasks for some time). The interrupt calculus, on the other

hand, does not require interrupts to occur periodically. It is clear that stack bound-

edness caused by interrupts is not an issue in E machine since the E machine does

not consider the interrupt scenario.

There would appear to be no satisfactory translation between the Giotto language

and interrupt calculus programs.

2.4.5 Esterel

The Esterel language [7] is a specification language for reactive systems. The

central idea of the language is that it follows the synchrony hypothesis. The synchrony

67

hypothesis specifies that each reaction is assumed to be an instantaneous, atomic

execution. The race between reactions (coming interrupts are handled before the

current handler returns in the context of our interrupt calculus) is avoided by adopting

such a hypothesis. Hence the stack boundedness problem does not appear in Esterel.

Esterel, on the other hand, is expressive and suitable for reactive system speci-

fications. It has clear behavioral semantics which are based on signals, events and

histories which our interrupt calculus does not have. It is for this reason that there

appears to be no comprehensive translation between the two languages, with the

exception of a few programs whose semantics fall within the intersection of both.

2.5 Future directions

The type system we give here type checks monotonic interrupt calculus programs.

Chatterjee et al. [12] enrich the interrupt calculus by allowing conditional imr oper-

ations (bit-wise and and or) that are dependent on the imr bits, and give an exact

stack size analysis for non-monotonic interrupt calculus programs which is based on

the context-free graph [55, 56]. However, it remains unclear, as well as interesting,

what a type system would look like if we would like to be able to accept non-monotonic

interrupt calculus programs.

In addition, even though the Stack-Size Checking problem is PSPACE-complete,

it remains an open issue whether there are better algorithms for the Type Inference

problem than our PSPACE algorithm.

68

3 PERIODIC INTERRUPT CALCULUS

3.1 Background

The interrupt calculus described in Chapter 2 does not take into account the

timing factor. Its semantics postulates that whenever the master bit of imr and one

of the bits of imr which corresponds to interrupts are both enabled, then a handler

must be called, thus implying that an interrupt occurs. However, this is not what

happens in reality. Most interrupt-driven software handles interrupts in a periodic

fashion. That is, the hardware receives an external device’s interrupts from time to

time with a fixed time interval; at the time of an interrupt arrival, the hardware

calls the corresponding interrupt handler. This periodic mechanism is widely used

in embedded systems. For example, a temperature sensor, as part of an embedded

system, periodically records the current temperature, and when finished collecting

data, it signals the microprocessor to receive the data. An interrupt occurs and a

handler is called to process the data received. This period is set by the external

sensor.

It is important to determine whether all interrupts generated by a device can be

processed without missing any of them. Failing to do so may incur data loss, which

in turn may result in the instability of the whole system.

In this chapter, we generalize our theoretical framework of the interrupt calcu-

lus introduced in Chapter 2 by incorporating periods of external interrupt devices.

In particular, we identify the following important parameters regarding a specific

interrupt device:

• Period r. The fixed minimum interval between arrivals of the interrupt defined

a priori.

69

• Latency t. The time interval between the arrival of an interrupt and the start

of handling the interrupt.

We say an interrupt is missed if t ≥ r.

In this chapter, we focus on the semantics that include the imr OR operation

and allows interrupts to be interleaved. We consider whether interrupts are missed

or not (latency), which implies that the latencies of handlers are shorter than their

periods t ≤ r. We analyze the stack size under the impact of the latency constraints,

a problem which is called the latency-space safety problem and which is formally

defined in Section 3.2.4.

We will formally extend our interrupt calculus to include latencies of external

interrupt devices, the result of which is called periodic interrupt calculus; then, based

on the the periodic interrupt calculus, we define an abstract semantics which safely

approximates the concrete semantics with respect to the latency-space safety. Our

abstraction shows that it is necessary to preserve the imr values rather than abstract

them because, otherwise, the approximation would not be safe. We will further define

our types and the type system for the periodic interrupt calculus. We will use values

in abstract semantics as the sources of types. Therefore, our type system is based on

the abstract model.

An interesting by-product of our analysis is that it shows an equivalence rela-

tion between model checking and type checking. This relation not only confirms the

speculation about whether model checking and type system can have the same ex-

pressive power to verify the stack boundedness and predictability of interrupt-driven

programs, but also offers insights into the differences between the two as well as what

kind of applications should choose which of the two tools.

The remainder of this chapter is organized in the following way. In Section 3.2,

we formally present the periodic interrupt calculus, its syntax and semantics; we then

describe an abstract semantics for the periodic interrupt calculus in Section 3.3, which,

in essence, is an abstract model; in Section 3.4, we build our type systems on top of

the abstract semantics. We then proceed to consider the type construction problem.

70

In Section 3.5, we illustrate our type construction process by giving a simple example;

we formally show how to build types and type derivations from the abstract model in

Section 3.6. We show that there is an interesting equivalence relation between type

checking and model checking in 3.7 and discuss the advantages and disadvantages of

type checking and model checking. Finally, we conclude the chapter by discussing

related work in Section 3.8.

3.2 Periodic interrupt calculus

In this section, we introduce the syntax and semantics of the periodic interrupt

calculus. We prove the nontermination property of the calculus programs. We also

formally state the latency-space problem in this section.

3.2.1 Syntax

(system) κ ::= (r, p)

(program) p ::= (m, h)

(main) m ::= loop s | s ; m

(handler) h ::= iret | s ; h

(statements) s ::= x = e | imr = imr ∧ imr | imr = imr ∨ imr |

if0 x then s1 else s2 | s1 ; s2 | skip

(expression) e ::= c | x | x + c | x1 + x2

Figure 3.1. Syntax of periodic interrupt calculus

Figure (3.1) shows the syntax of the periodic interrupt calculus. A periodic inter-

rupt calculus program consists of a number of devices and program p. We assume a

fixed number of devices N , whose periods are specified by r, We use u and v to range

71

over 1..N , unless we specify otherwise. The overbar notation r denotes a sequence

r1 . . . rN , where ∀u ∈ 1..N : ru ≥ 0; and we will use the notation r(u) = ru. r(u) is

the minimum time between the arrivals of consecutive interrupts from device u,

A program p consists of a main program and N handlers. We use p.m to refer to

the main program m in (m, h). The overbar notation h denotes a sequence h1 . . . hN ;

and we will use the notation h(u) = hu. We use x to range over a set of program

variables, imr to range over bit strings, and c to range over integer constants. We

call x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip primitive statements. We use

the notation L to denote the set of all primitive statements plus iret. We use a to

range over m and h.

We identify programs that are equivalent under the smallest congruence generated

by the rules:

(s1 ; s2) ; m = s1 ; (s2 ; m)

(s1 ; s2) ; h = s1 ; (s2 ; h)

(s1 ; s2) ; s = s1 ; (s2 ; s).

With these rules, we can rearrange any m or h into one of the seven forms:

loop s iret x = e; a imr = imr ∧ imr; a imr = imr ∨ imr; a

(if0 x then s1 else s2); a skip; a.

3.2.2 Semantics

We use R to denote a store, a partial function mapping program variables to

integers. We use σ to denote a stack generated by the grammar: σ ::= nil | a :: σ.

We define the size of a stack as follows: |nil| = 0 and |a :: σ| = 1 + |σ|.

If imr = b0b1 . . . bN , where bi ∈ {0, 1}, then we use the notation imr(i) = bi. We

use 0 to denote the imr value where all bits are 0. We use ti to denote the imr value

where all bits are 0’s except that the ith bit is set to 1. We use ∧ to denote bitwise

72

logical conjunction, ∨ to denote bitwise logical disjunction, ≤ to denote bitwise logical

implication, and ¬ to denote bitwise logical negation.

We use T to denote a latency vector. The T is a vector of N numbers such that:

• If T (u) ≥ 0, then an interrupt from device u has been pending for at least T (u)

units. In particular, if T (u) = 0, then an interrupt from device u has just

arrived.

• If T (u) < 0, then no interrupt from device u is pending, and the next one will

arrive in exactly −T (u) units.

We use the notation T 1 ≤ T 2 to denote ∀u ∈ 1..N : T 1(u) ≤ T 2(u).

A program state is a 6-tuple 〈h,R, imr, T , σ, a〉. We use P to denote program

states. If P = 〈h,R, imr, T , σ, a〉, then we use the notations P.h = h, P.R = R,

P.imr = imr, P.σ = σ, P.T = T , P.a = a, and P.stk = |P.σ|. For p = (m, h), the

initial program state to execute p is P0 = 〈h, λx.0, 0, T 0, nil, m〉, where T 0(u) ≤ 0.

A small-step operational semantics for the language is a reflexive, transitive closure

of the relation → on program states, which is defined in Figure (3.2). The semantics

uses the following auxiliary definitions:

evalR(c) = c

evalR(x) = R(x)

evalR(x + c) = R(x) + c

evalR(x1 + x2) = R(x1) +R(x2).

We define the set of pending devices P as follows:

P(imr, T) = {u | imr(0) = 1 and imr(u) = 1 and T (u) ≥ 0 where u ∈ 1..N}

The notation η denotes the current program counter and is defined as follows:

η(a) = s if a = s; a′ and s is if0 x then s1 else s2 or either

x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip

η(a) = a if a = loop s or a = iret

η(a) = η(s1; (s2; a
′)) if a = s; a′ and s is s1; s2;

73

〈h,R, imr, T , σ, a〉 → 〈h,R, imr ∧ ¬t0, θu(T), a :: σ, h(u)〉 (3.1)

if u ∈ P(imr, T) ∧ η(a) ∈ L

〈h,R, imr, T , σ, iret〉 → 〈h,R, imr ∨ t0, θ(T), σ′, a〉 (3.2)

if P(imr, T) = ∅ and σ = a :: σ′

〈h,R, imr, T , σ, loop s〉 → 〈h,R, imr, T , σ, s; loop s〉 (3.3)

〈h,R, imr, T , σ, x := e; a〉 → 〈h,R{x 7→ evalR(e)}, imr, θ(T), σ, a〉 (3.4)

if P(imr, T) = ∅

〈h,R, imr, T , σ, imr = imr ∧ imr′; a〉 → 〈h,R, imr ∧ imr′, θ(T), σ, a〉 (3.5)

if P(imr, T) = ∅

〈h,R, imr, T , σ, imr = imr ∨ imr′; a〉 → 〈h,R, imr ∨ imr′, θ(T), σ, a〉 (3.6)

if P(imr, T) = ∅

〈h,R, imr, T , σ, (if0 x then s1 else s2); a〉 → 〈h,R, imr, T , σ, s1; a〉 (3.7)

if R(x) = 0

〈h,R, imr, T , σ, (if0 x then s1 else s2); a〉 → 〈h,R, imr, T , σ, s2; a〉 (3.8)

if R(x) 6= 0

〈h,R, imr, T , σ, skip; a〉 → 〈h,R, imr, θ(T), σ, a〉 (3.9)

if P(imr, T) = ∅

Figure 3.2. Semantics of the periodic interrupt calculus

We define the transfer functions θ(T) and θv(T) over latency vectors T as follows:

∀u ∈ 1..N : θ(T)(u) = T (u) + 1

∀u ∈ 1..N : θv(T)(u) =

T (u) + 1 if u 6= v

T (u) + 1 − r(u) if u = v

For the sake of simplicity, we assume the primitive statements each individually

execute in one unit of time. Statement if0 x then s1 else s2 and main loop s are

74

instantaneous in the sense that they execute in 0 units of time and there is no handler

invocation. Our treatment of if0 x then s1 else s2 and loop s does not reduce the

complexity of the problem; it is merely used to simplify later part of type construction.

If device u is pending and the instruction at the current program counter is not

instantaneous, then Rule (3.1) is applied and handler h(u) is called. If multiple devices

are pending, one of them is applied nondeterministically. If no device is pending, then

one of Rules (3.2)-(3.9) is applied, depending upon the current program counter.

We use P →n P ′ to denote that there are n ≥ 0 steps involved in the transition

from state P to P ′; we use P →∗ P ′ if we do not care about the number n.

Imr Value Transfer Function

For the sake of convenience, we define the following transfer function over imr

values for each primitive statement as well as for the interrupt return statement.

χs(imr) = imr if s ::= skip | x := e

χs(imr) = imr ∧ imr′ if s ::= imr = imr ∧ imr′

χs(imr) = imr ∨ imr′ if s ::= imr = imr ∨ imr′

χs(imr) = imr ∨ t0 if s ::= iret

It is straightforward to prove the following proposition.

Proposition 3.2.1 (Monotonicity of Imr Transfer Functions) The imr trans-

fer functions χs are monotone. That is, if imr1 ≤ imr2, then χs(imr1) ≤ χs(imr2).

3.2.3 Nontermination

We say that a program p can terminate if P0 →∗ P and there is no P ′ such that

P → P ′.

We say that a program state 〈h,R, imr, T , σ, a〉 is consistent if and only if (1)

σ = nil and a = m; or (2) σ = hk :: . . . :: h1 :: m :: nil and a = h, for k ≥ 0,

where k = 0 means σ = m :: nil.

75

Lemma 3.2.1 (Consistency Preservation) If P is consistent and P → P ′, then

P ′ is consistent.

Proof A straightforward case analysis of P → P ′.

Lemma 3.2.2 (Progress) If P is consistent, then there exists P ′ such that P → P ′.

Proof From P is consistent, there are two cases of P .

1. P = 〈h,R, imr, T , nil, m〉. There are three cases depending upon the form of

η(m):

(a) η(m) is of the form loop s, then Rule (3.3) gives P ′ such that P → P ′.

(b) η(m) is of the form if0 x then s1 else s2, then Rules (3.7-3.8), depending

upon whether R(x) = 0, gives P ′ such that P → P ′.

(c) η(m) is either of the form x := e, imr = imr∧ imr, imr = imr∨ imr or skip.

Then we have η(m) ∈ L. There are two subcases:

i. u ∈ P(imr, T), then Rule (3.1) gives P ′ such that P → P ′.

ii. P(imr, T) = ∅, then Rules (3.4-3.6) and (3.9), depending upon what

η(m) is, ensure that there exists a state P ′ such that P → P ′.

2. P = 〈h,R, imr, T , hk :: . . . :: h1 :: m :: nil, h〉, k ≥ 0. There are two cases

depending upon the form of η(h):

(a) η(h) is of the form iret, then η(h) ∈ L. There are two subcases:

i. u ∈ P(imr, T), then Rule (3.1) gives P ′ such that P → P ′.

ii. P(imr, T) = ∅, then from Rule (3.2)

either k = 0 and s = m :: nil, and hence P ′ = 〈h,R, imr ∨ t0, nil, m〉,

or k > 0 and hence P ′ = 〈h,R, imr ∨ t0, T , h
k−1 :: . . . :: h1 :: m :: nil, hk〉.

(b) η(h) is either of the form x := e, imr = imr∧ imr, imr = imr∨ imr or skip,

then we have η(h) ∈ L. There are two subcases:

76

i. u ∈ P(imr, T), then Rule (3.1) gives P ′ such that P → P ′.

ii. P(imr, T) = ∅, then Rules (3.4-3.6) and (3.9), depending upon what

η(h) is, ensure that there exists a state P ′ such that P → P ′.

(c) η(h) is of the form if0 x then s1 else s2, then Rules (3.7-3.8), depending

upon whether R(x) = 0, gives P ′ such that P → P ′.

Theorem 3.2.1 (Nontermination) No program can terminate.

Proof Suppose a program p can terminate, that is, suppose P0 →∗ P and there is

no P ′ such that P → P ′. Notice first that P0 is consistent by consistency criterion

(1). From Lemma 3.2.1 and induction on the number of execution steps in P0 →∗ P ,

we have that P is consistent. From Lemma 3.2.2 we have that there exists P ′ such

that P → P ′, a contradiction.

3.2.4 Latency-space safety analysis

Given a natural number K, the latency-space safety analysis of a periodic interrupt

calculus program is that, for each state of the program that is reachable from the

initial state, the latencies of the state do not exceed the periods and the stack size of

the state is also no greater than K. If the above safety property is satisfied, then we

say that the program is safe. Formally, we define the latency-space safety analysis

as: given K ≥ 0,

P0 →
∗ P ⇒ (P.T ≤ r ∧ P.stk ≤ K)

3.3 Abstract semantics

In this section, we eliminate the store component of the concrete program state

in the abstract semantics, which makes latency-space safety analysis decidable. In

addition, we approximate the concrete latency vector (T) by using the abstract latency

77

vector (T̂). We call the result the abstract semantics. We further show that the

abstract semantics safely approximates the concrete semantics with respect to the

latency-space problem (soundness).

We will use the binary relation ≤ to specify the relationship between a T and its

approximation T̂ . The meaning is that T̂ is a conservative approximation of T : for

all u ∈ 1..N , we have T (u) ≤ T̂ (u).

An abstract program state is a 5-tuple 〈h, imr, T̂ , σ, a〉, where imr is the current

imr value and T̂ is the abstract latency vector. h is the group of handlers, σ is the

program stack, a is the current statement. We use Q to denote abstract program

states. If Q = 〈h, imr, T , σ, a〉, then we use the notations Q.h = h, Q.imr = imr,

Q.σ = σ, Q.T = T , Q.a = a, and Q.stk = |Q.σ|. For p = (m, h), the initial abstract

program state to execute p is Q0 = 〈h, 0, T̂ 0, nil, m〉, where T̂ 0 = 0.

We now formally define the approximation relation between the concrete states

and the abstract states.

Definition 3.3.1 (Approximation Relation A) A binary relation A over con-

crete and abstract states is an approximation relation (P,Q) ∈ A iff P.h = Q.h,

P.imr = Q.imr, P.σ = Q.σ, P.T ≤ Q.T̂ and P.a = Q.a.

An abstract version of the pending device set P̂ is defined as follows:

P̂(imr, T̂) = {u | imr(0) = 1 and imr(u) = 1 and T̂ (u) ≥ 0 where u ∈ 1..N}

For any u ∈ 0..N , since T̂ conservatively approximates T , if T (u) ≥ 0, then

T̂ (u) ≥ 0. We, thus, have the follow proposition regarding P and P̂:

Proposition 3.3.1 (P̂ approximation) If T ≤ T̂ , then P(imr, T) ⊆ P̂(imr, T̂).

The abstract transfer functions θ̂(imr, T̂) and θ̂v(T̂), where v ∈ 1..N , over an imr

value and abstract latency vectors T̂ , are defined as follows:

∀u ∈ 1..N : θ̂(imr, T̂)(u) =

0 if u ∈ P̂(imr, T̂)

T̂ (u) + 1 otherwise

78

∀u ∈ 1..N : θ̂v(T̂)(u) =

T̂ (u) + 1 − r(u) if u = v

T̂ (u) + 1 otherwise

Note that the abstract transfer functions take imr as an extra argument compared

with their concrete versions because it has to be known which handler is enabled at

the time when approximating the latency of the next step.

For those steps other than the interrupt (Rule 3.1), if handler u is pending to be

called, then the best approximation of the latency of the device u after executing the

step is 0 (θ̂(imr, T̂ (u)) = 0 if u ∈ P̂(imr, T̂)). This is because if a non-instantaneous

step of Rule (3.2-3.9) is applied in the concrete semantics, then no interrupt device

is pending; however, the reason that the device is pending in the abstract semantics

is only because we over-approximate its latency by a positive number. Therefore, the

the best approximation is 0.

A small step operational abstract semantics is a reflexive, transitive closure of the

relation ↪→ over program states, which is defined in Figure (3.3).

If device u is pending and the current program counter is not instantaneous, then

Rule (3.1) might be applied, in which case handler h(u) is called. If multiple devices

are pending, one of them may be applied nondeterministically. Otherwise, one of

Rules (3.2)-(3.9) is applied, depending upon the current program counter.

We use Q ↪→n Q′ to denote that there are n ≥ 0 steps involved in the transition

from state Q to Q′; we use Q ↪→∗ Q′ if we do not care about the number n.

Abstract State Consistency We say that an abstract program state 〈h, imr, T̂ , σ, a〉

is consistent if and only if (1) σ = nil and a = m; or (2) σ = hk :: . . . :: h1 :: m :: nil

and a = h, for k ≥ 0, where k = 0 means σ = m :: nil.

Lemma 3.3.1 (Consistency Preservation) If Q is consistent and Q ↪→ Q′, then

Q′ is consistent.

Proof The proof is a straightforward case analysis on Q ↪→ Q′. We omit the details.

79

〈h, imr, T̂ , σ, a〉 ↪→ 〈h, imr ∧ ¬t0, θ̂u(T̂), a :: σ, h(u)〉 (3.10)

if u ∈ P̂(imr, T̂) ∧ η(a) ∈ L

〈h, imr, T̂ , σ, iret〉 ↪→ 〈h, imr ∨ t0, θ̂(imr, T̂), σ′, a〉 (3.11)

if σ = a :: σ′

〈h, imr, T̂ , σ, loop s〉 ↪→ 〈h, imr, T̂ , σ, s; loop s〉 (3.12)

〈h, imr, T̂ , σ, x := e; a〉 ↪→ 〈h, imr, θ̂(imr, T̂), σ, a〉 (3.13)

〈h, imr, T̂ , σ, imr = imr ∧ imr′; a〉 ↪→ 〈h, imr ∧ imr′, θ̂(imr, T̂), σ, a〉 (3.14)

〈h, imr, T̂ , σ, imr = imr ∨ imr′; a〉 ↪→ 〈h, imr ∨ imr′, θ̂(imr, T̂), σ, a〉 (3.15)

〈h, imr, T̂ , σ, (if0 x then s1 else s2); a〉 ↪→ 〈h, imr, T̂ , σ, s1; a〉 (3.16)

〈h, imr, T̂ , σ, (if0 x then s1 else s2); a〉 ↪→ 〈h, imr, T̂ , σ, s2; a〉 (3.17)

〈h, imr, T̂ , σ, skip; a〉 ↪→ 〈h, imr, θ̂(imr, T̂), σ, a〉 (3.18)

Figure 3.3. Abstract semantics of the periodic interrupt calculus

Corollary 3.3.1 (Consistent Program State) If Q0 ↪→n Q, then Q is consistent.

Proof We prove by an induction on n. In the base case n = 0, we have Q0 is

consistent by definition. In the induction step, we have Q0 ↪→n+1 Q, from which it

follows Q0 ↪→n Q′ and Q′ ↪→ Q. From Q0 ↪→n Q′ and the induction hypothesis, we

have Q′ is consistent. From Q′ is consistent, Q′ ↪→ Q and Lemma 3.3.1, we have Q is

consistent.

Abstract state space We define the abstract state space as the set of all reachable

abstract states from the initial abstract state Q0.

Definition 3.3.2 Define R = {Q | Q0 ↪→∗ Q}.

80

We next prove that if each latency vector of the interrupt calculus program is bounded

by its respective periods and if the stack size is bound by K ≥ 0, then R is finite.

Theorem 3.3.1 Given K ≥ 0, if Q0 ↪→
∗ Q ⇒ (Q.T̂ ≤ r ∧ Q.stk ≤ K), then R is

finite.

Proof An abstract state Q consists of imr, T̂ , σ and a. We next show that there are

a finite number of abstract states by proving that every component of the abstract

state is finite. There are a finite number of imr values. If Q0 ↪→∗ Q ⇒ Q.T̂ ≤ r,

then there are a finite number of T̂ . There are a finite number of program points a.

If Q0 ↪→∗ Q⇒ Q.stk ≤ K, then there are a finite number of σ because the size of σ

is bound by K and the return points a are finite.

Soundness of Abstract Semantics

The soundness of abstract semantics over concrete semantics lies in the fact that

the abstract semantics conservatively approximates the concrete semantics with re-

spect to latency-space safety analysis in the sense that, if for any abstract Q that is

reachable from Q0, we have Q.T̂ ≤ r ∧ Q.stk ≤ K, then for any P that is reachable

from P0, we have P.T̂ ≤ r ∧ P.stk ≤ K. We next prove in Corollary (3.3.2) that

abstract semantics is sound with respect to the latency-space analysis.

Lemma 3.3.2 (Single Step Approximation) If (P,Q) ∈ A and P → P ′, then

there exists a state Q′ such that Q ↪→ Q′ and (P ′, Q′) ∈ A.

Proof There are nine cases depending on which one of Rules (3.1 - 3.9) is used in

P → P ′.

• Rule (3.1).

We have P = 〈h,R, imr, T , σ, a〉, P ′ = 〈h,R, imr ∧ ¬t0, θv(T), a :: σ, h(v)〉 where

v ∈ P(imr, T), η(a) ∈ L, and Q = 〈h, imr, T̂ , σ, a〉. From (P,Q) ∈ A, we have

T ≤ T̂ . From T ≤ T̂ and Proposition (3.3.1), we have P(imr, T) ⊆ P̂(imr, T̂).

81

From v ∈ P(imr, T) and P(imr, T) ⊆ P̂(imr, T̂), we have v ∈ P̂(imr, T̂).

Let Q′ = 〈h, imr ∧ ¬t0, θ̂v(T̂), a :: σ, h(v)〉. From v ∈ P̂(imr, T̂), η(a) ∈ L and

Rule (3.10), we have Q ↪→ Q′. We need to prove ∀u ∈ 1..N : θv(T)(u) ≤

θ̂v(T̂)(u). There are two subcases.

1. Subcase 1: u = v.

From u = v, we have θv(T)(u) = T (u) + 1 − r(u). From θv(T)(u) =

T (u) + 1 − r(u) and T (u) ≤ T̂ (u) we have θv(T)(u) ≤ T̂ (u) + 1 − r(u).

From θ̂v(T̂)(u) = T̂ (u) + 1 − r(u), we have θv(T)(u) ≤ θ̂v(T̂)(u).

2. Subcase 2: u 6= v.

From v ∈ P̂(imr, T̂), we have imr(0) = 1. From u 6= v, we have

θv(T)(u) = T (u) + 1 and θ̂v(T̂)(u) = T̂ (u) + 1. From T (u) ≤ T̂ (u), it fol-

lows T (u)+1 ≤ T̂ (u)+1. From θv(T)(u) = T (u)+1, θ̂v(T̂)(u) = T̂ (u)+1

and T (u) + 1 ≤ T̂ (u) + 1, we have θv(T)(u) ≤ θ̂v(T̂)(u).

Thus, we have θv(T) ≤ θ̂v(T̂), from which it follows (P ′, Q′) ∈ A.

• Rule (3.2).

We have P = 〈h,R, imr, T , σ, iret〉 where σ = a :: σ′,

P ′ = 〈h,R, imr ∨ t0, θ(T), σ′, a〉 and Q = 〈h, imr, T̂ , σ, iret〉.

Let Q′ = 〈h, imr ∨ t0, θ̂(imr, T̂), σ′, a〉. From σ = a :: σ′ and Rule (3.11),

we have Q ↪→ Q′. From P → P ′ and Rule (3.2), we have P(imr, T) = ∅.

From (P,Q) ∈ A, we have T ≤ T̂ . We need to prove ∀u ∈ 1..N : θ(T)(u) ≤

θ̂(imr, T̂)(u). There are two cases.

1. u ∈ P̂(imr, T̂ (u)), in which case θ̂(imr, T̂)(u) = 0.

From u ∈ P̂(imr, T̂ (u)), we have imr(0) = 1 and imr(u) = 1. From

P(imr, T) = ∅, we have u /∈ P(imr, T). From imr(0) = 1, imr(u) =

1 and u /∈ P(imr, T), it follows that T (u) < 0. From T (u) < 0, we

have T (u) + 1 ≤ 0. From θ(T)(u) = T (u) + 1 and T (u) + 1 ≤ 0, we

82

have θ(T)(u) ≤ 0. From θ̂(imr, T̂)(u) = 0 and θ(T)(u) ≤ 0, it follows

θ(T)(u) ≤ θ̂(imr, T̂)(u).

2. u /∈ P̂(imr, T̂ (u)), in which case θ̂(imr, T̂)(u) = T̂ (u) + 1.

From T (u) ≤ T̂ (u), it follows T (u) + 1 ≤ T̂ (u) + 1. From θ(T)(u) =

T (u) + 1, θ̂(imr, T̂)(u) = T̂ (u) + 1 and T (u) + 1 ≤ T̂ (u) + 1, we have

θ(T)(u) ≤ θ̂(imr, T̂)(u).

Thus, we have θ(T) ≤ θ̂(imr, T̂), from which it follows (P ′, Q′) ∈ A.

• Rule (3.4-3.6) and Rule (3.9).

The proofs are similar to that of Rule (3.2).

• Rule (3.3).

We have P = 〈h,R, imr, T , σ, loop s〉, P ′ = 〈h,R, imr, T , σ, s; loop s〉 and

Q = 〈h, imr, T̂ , σ, loop s〉. Let Q′ = 〈h, imr, T̂ , σ, s; loop s〉. From Rule (3.12),

we have Q ↪→ Q′. From (P,Q) ∈ A, we have T ≤ T̂ . From T ≤ T̂ , we have

(P ′, Q′) ∈ A.

• Rule (3.7 - 3.8).

The proofs are similar to that of Rule (3.3).

Lemma 3.3.3 (Multi-step Approximation) If (P,Q) ∈ A and P →n P ′, then

there exists a state Q′ such that Q ↪→n Q′ and (P ′, Q′) ∈ A.

Proof Proof by induction. We omit the base case where n = 0 because it is trivial.

In the induction step, we suppose (P,Q) ∈ A and P →n P ′ → P ′′. From (P,Q) ∈ A,

P →n P ′ and the induction hypothesis, there exists a Q′ such that Q ↪→n Q′ and

(P ′, Q′) ∈ A. From (P ′, Q′) ∈ A, P ′ → P ′′ and Lemma (3.3.2), there exists a state

Q′′ such that Q ↪→n+1 Q′′ and (P ′′, Q′′) ∈ A.

Corollary 3.3.2 (Soundness of Abstract Semantics) If Q0 ↪→n Q ⇒ (Q.T̂ ≤

r ∧Q.stk ≤ K), then P0 →n P ⇒ (P.T ≤ r ∧ P.stk ≤ K).

83

Proof From ∀u ∈ 1..N : T 0(u) ≤ 0 and ∀u ∈ 1..N : T̂ 0(u) = 0, we have T 0 ≤

T̂ 0. From P0 = 〈h,R, 0, T 0, nil, m〉, Q0 = 〈h,R, 0, T̂ 0, nil, m〉 and T 0 ≤ T̂ 0, we have

(P0, Q0) ∈ A. From P0 →n P , (P0, Q0) ∈ A and Lemma (3.3.3), there exists a state Q

such that Q0 ↪→
n Q and (P,Q) ∈ A. From (P,Q) ∈ A and Definition (3.3.1), we have

P.T ≤ Q.T̂ ∧ P.stk = Q.stk. From Q.T̂ ≤ r, Q.stk ≤ K and P.T ≤ Q.T̂ ∧ P.stk =

Q.stk. We have P.T ≤ r ∧ P.stk ≤ K.

3.4 Type system

The abstract semantics gives an abstraction of the concrete semantics. We will use

it as the source of types. In this section, we introduce a type system for the periodic

interrupt calculus. We show that if a periodic interrupt calculus program type checks,

then the program cannot go wrong with respect to the latency-space problem (type

soundness).

3.4.1 Types

We use K to range over the integers, and we use δ to range over the nonnegative

integers. We call the pairs (imr, T̂) in abstract states contexts. We use the sets of

contexts as types. A single context (imr, T̂) is a singleton type. Assuming that the

set of all the contexts (imr, T̂) is uniquely indexed, we use i and j to range over the

indexes; we use I and J to range over the index sets. In particular, for u ∈ 1..N, we

use the notation Iu to denote the index set such that if i ∈ Iu, then the pair (imri, T̂ i)

is a context in which handler h(u) can be invoked; we use notation Ju
i to denote the

index set such that if j ∈ Ju
i , then the pair (imrj, T̂ j) is a context in which handler

h(u) which is invoked in the context (imri, T̂ i) can return; we use the notation δu
i

to denote the maximum stack growth over the course of the call of h(u) invoked in

context (imri, T̂ i).

84

Specifically, we define types as follows:

(Type of s) S ::=
∧

i∈I(imri, T̂ i →
∨

j∈Ji
imrj, T̂ j)

(Type of m) M ::=
∨

i∈I imri, T̂ i.

(Type of h) H ::=
∧

i∈I(imri, T̂ i →
∨

j∈Ji
imrj, T̂ j)

(Type of handler h(u), u ∈ 1..N) τ ::=
∧

i∈Iu(imri, T̂ i

δu
i−→

∨
j∈Ju

i
imrj, T̂ j)

We define the type of statement s as an intersection type:
∧

i∈I(imri, T̂ i →
∨

j∈Ji
imrj, T̂ j), indicating that if statement s starts its execution

in the context (imri, T̂ i), where i ∈ I, then it will finish its execution in one of the

contexts {imrj, T̂ j | j ∈ Ji}, where Ji is the resultant index set of executing s in the

context (imri, T̂ i). We define the type of main m as a union type:
∨

i∈I imri, T̂ i,

indicating that m can be safely executed if it starts its execution in one of the contexts

{imri, T̂ i | i ∈ I}. We define the type of h as an intersection type:
∧

i∈I(imri, T̂ i →
∨

j∈Ji
imrj, T̂ j), which bears a similar meaning to that of statements. For u ∈ 1..N ,

we define handler type τ as an intersection type:
∧

i∈Iu(imri, T̂ i

δu
i−→

∨
j∈Ju

i
imrj, T̂ j),

indicating that if the handler is invoked in the context (imri, T̂ i), where i ∈ Iu, then

it will return in one of the contexts {imrj, T̂ j | j ∈ Ju
i }, in these calls stack growth

will not exceed the number δu
i . We use notation τ to denote handler types such that

τ(u) is the type of handler h(u).

For u ∈ 1..N , we define the well-formedness of τ (u) as follows.

Definition 3.4.1 (Well-formedness of τ (u))

τ(u) =
∧

i∈Iu(imri, T̂ i

δu
i−→

∨
j∈Ju

i
imrj, T̂ j) is well formed if Iu 6= ∅ and ∀i ∈ Iu :

δu
i ≥ 0 ∧ Ju

i 6= ∅.

85

We will use the following type judgments:

Type Judgment Meaning

τ `K (m, h) program p = (m, h) type checks

τ `K Q state P type checks

τ , i `K σ stack σ type checks

τ ` h(u) : τ(u) handler h has type τ(u)

τ `K m : M main part m has type M

τ `K h : H Handler h has type H

τ `K s : S Statement s has type S

The typing environment τ carries the types of all handlers and is present in all

judgments. The judgment τ `K (m, h) means that program p = (m, h) type checks

in the environment τ . The integer K bounds the stack size to be at most K. We

can view K as a “stack budget” in the sense that, any time an element is placed on

the stack, the budget decrements by one, and, when an element is removed from the

stack, the budget increments by one. The type system ensures that the budget does

not go below zero. The judgment τ `K Q means that the abstract program state

Q type checks in the environment τ . The judgment τ , i `K σ means that stack

σ type checks in the environment τ and in the context (imri, T̂ i). The judgment

τ ` h(u) : τ(u) means that handler h(u) has type τ (u) in the environment τ . We

abbreviate the family of judgments τ ` h(u) : τ (u) as τ ` h : τ . The judgment

τ `K m : M means that main part m has type M in the environment τ . The

judgments τ `K h : H and τ `K s : S have similar meanings to that of

τ `K m : M .

86

We define the well-formedness of type judgments for s, m and h as follows.

Definition 3.4.2 (Well-formedness of type judgments) Define

1. τ `K s :
∧

i∈I(imri, T̂ i →
∨

j∈Ji
imrj, T̂ j) is well formed if I 6= ∅, ∀i ∈ I :

Ji 6= ∅ and K ≥ 0

2. τ `K m :
∨

i∈I imri, T̂ i is well formed if I 6= ∅ and K ≥ 0

3. τ `K h :
∧

i∈I(imri, T̂ i →
∨

j∈Ji
imrj, T̂ j) is well formed if I 6= ∅, ∀i ∈ I :

Ji 6= ∅ and K ≥ 0

3.4.2 Type rules

For the sake of convenience, we will use the following auxiliary notations in our

later presentation of the chapter. ξs, ξiret and ζu are all defined on the context indexes.

• ξs(i) = j such that imrj = χs(imri) and T̂ j = θ̂(imri, T̂ i), where s is either

x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip.

• ξiret(i) = j such that imrj = imri ∨ t0 and T̂ j = θ̂(imri, T̂ i)

• ζu(i) = j such that imrj = imri ∧ ¬t0 and T̂ j = θ̂u(T̂ i).

We define the type rules as follows, where safe(τ , I,K) is defined in Definition

(3.4.3).

τ `K m : (0, 0) τ ` h : τ

τ `K (m, h)
(3.19)

τ ` h : τ τ `K m :
∨

i∈I imri, T̂ i

τ `K 〈h, imri′, T̂ i′, nil, m〉
[i′ ∈ I] (3.20)

τ ` h : τ τ `K h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

∀i′′ ∈ Ji′ : τ , i′′ `K σ

τ `K 〈h, imri′ , T̂ i′ , σ, h〉
[i′ ∈ I] (3.21)

87

τ `K+1 m :
∨

i∈I imri, T̂ i

τ , i′ `K m :: nil
[i′ ∈ I] (3.22)

τ `K+1 h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j ∀i′′ ∈ Ji′ : τ , i′′ `K+1 σ

τ , i′ `K h :: σ
[i′ ∈ I]

(3.23)

τ `δu
i
h(u) : imrζu(i), T̂ ζu(i) →

∨
j∈Ju

i
imrj, T̂ j ∀i ∈ Iu

τ ` h(u) :
∧

i∈Iu imri, T̂ i,
δu
i−→

∨
j∈Ju

i
imrj, T̂ j

(3.24)

τ `K s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

τ `K loop s :
∨

i∈I imri, T̂ i

[∀i ∈ I : Ji ⊆ I] (3.25)

τ `K s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

τ `K m :
∨

i∈I′ imri, T̂ i

τ `K s;m :
∨

i∈I imri, T̂ i

[∀i ∈ I : Ji ⊆ I ′] (3.26)

τ `K s :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j

τ `K h :
∧

i∈I′ imri, T̂ i →
∨

j∈J ′′

i
imrj, T̂ j

τ `K s; h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

[∀i ∈ I : J ′
i ⊆ I ′]

where ∀i ∈ I : Ji =
⋃
{J ′′

j | j ∈ J ′
i}

(3.27)

τ `K iret :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j [safe(τ , I,K)]

where ∀i ∈ I : Ji =
⋃
{Jj | j ∈

⋃
u∈ bP(imri, bT i)

Ju
i } ∪ {ξiret(i)}

(3.28)

τ `K s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j [safe(τ , I,K)]

where ∀i ∈ I : Ji =
⋃
{Jj | j ∈

⋃
u∈ bP(imri, bT i)

Ju
i } ∪ {ξs(i)}

and s is a primitive statement

(3.29)

τ `K s1 :
∧

i∈I imri, T̂ i →
∨

j∈Jt
i
imrj, T̂ j

τ `K s2 :
∧

i∈I imri, T̂ i →
∨

j∈Jf
i
imrj, T̂ j

τ `K if0 x then s1 else s2 :
∧

i∈I imri, T̂ i →
∨

j∈Jt
i
∪Jf

i
imrj, T̂ j

(3.30)

88

τ `K s1 :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j

τ `K s2 :
∧

i∈I′ imri, T̂ i →
∨

j∈J ′′

i
imrj, T̂ j

τ `K s1; s2 :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

[∀i ∈ I : J ′
i ⊆ I ′]

where ∀i ∈ I : Ji =
⋃
{J ′′

j | j ∈ J ′
i}

(3.31)

We define the condition safe(τ , I,K) as follows.

Definition 3.4.3 (Latency-Space Safety Condition) Define safe(τ , I,K) as

(1) (i ∈ I ∧ u ∈ P̂(imri, T̂ i)) ⇒

(i) i ∈ Iu and

(ii) Ju
i ⊆ I and

(iii) δu
i + 1 ≤ K and

(iv) θ̂u(T̂ i) ≤ r

(2) ∀i ∈ I : θ̂(imri, T̂ i) ≤ r

Rule (3.19) is for type checking the periodic interrupt calculus program p = (m, h).

If both m and h type check, then the program type checks. Rules (3.20)-(3.21) are

for type checking abstract states. The side condition i′ ∈ I of both rules ensures that

the context (imri′, T̂ i′) of the state is covered by the type. In Rule (3.21), the second

hypothesis ensures that it is safe for the handler to return to its calling contexts. This

hypothesis involves type checking stacks, which is specified in Rules (3.22)-(3.23).

Rule (3.24) is for type checking handlers. Notice that the handler type is an inter-

section type, we, therefore, need to check all the component types of the intersection

with their respective stack budget. The rule type checks the handler with imr(0)

turned off.

Rules (3.26)-(3.25) are for type checking the main part of the program.

Rules (3.27)-(3.28) are for type checking the handler part. The side condition

of Rule (3.27) states that the context in which statement s finishes should be the

context in which h starts executing. However, the context in which h starts executing

is not necessarily the context in which statement s finishes because, before the actual

execution of h, there my be invocations of other handlers which correspond to pending

89

devices, in which case, the context in which such an invocation of handler returns is

also the context in which h starts executing.

Rule (3.28) has a latency-space safety condition as a side condition. Condition

safe(τ , I,K) is used to make sure that within context (imri, T̂ i), i ∈ I, it is safe for

a handler which corresponds to a pending device to be invoked and for the handler to

return. In particular, the safety condition in the rule states the following conditions:

Item (1) Item (i) of the implication part states that if there is a pending device u in

the context (imri, T̂ i) then the context is one of the contexts in which handler

h(u) starts executing. This is because, according to the abstract semantics, if

a device u is pending in context (imri, T̂ i) then handler h(u) may be invoked

in the same context.

Item (ii) states that if device u is pending in the context (imri, T̂ i), then the

context (imrj, T̂ j), where j ∈ Ju
i , in which handler h(u) finishes is also the

context in which iret starts executing. This is because, before executing iret,

the handler which corresponds to a pending device may first start executing

and then return; therefore, the contexts in which the handler returns should be

included in the contexts in which iret starts.

Item (iii) guarantees that if there is a pending device u in the context (imri, T̂ i),

then the additional amount of stack space (stack budget) required by the exe-

cution of h(u) is limited within the upper bound K − 1. This item is crucial

in ensuring that the boundedness of the additional stack space (stack growth)

used by the call of h(u).

Item (iv) makes sure that if there is a pending device u in the context (imri, T̂ i)

in which case an interrupt that corresponds to device u can occur (Rule (3.10)),

then the latency vector after the interrupt is also safe.

Item (2) ensures that the latency vector in the contexts after executing iret meets

the latency requirement; that is, no latency on each device exceeds its period

after executing iret.

90

Rule (3.28) uses the notation: ∀i ∈ I : Ji =
⋃
{Jj | j ∈

⋃
u∈ bP(imri, bT i)

Ju
i } ∪ {ξiret(i)}

to define the contexts in which iret finishes. Note that Ji is recursively defined. (Jj

ranges over a finite lattice, therefore the Ji always has a solution by fixed point

construction.)

For any i ∈ I, the notation defines Ji as

1. ξiret(i) ∈ Ji. This is because in the context (imri, T̂ i), iret can always start

its execution and finish in the context (imrξiret(i), T̂ ξiret(i)), regardless of whether

there are pending devices or not.

2. Jj ⊆ Ji, if j ∈
⋃

u∈ bP(imri, bT i)
Ju

i . This is because if there is a pending device u,

then the context (imrj, T̂ j) in which h(u) finishes is also the context in which

iret starts executing, in which case we have j ∈ I. By definition, Jj, the index

set of the contexts in which iret finishes, should be included in Ji.

Rule (3.29) is for type checking primitive statements. Rule (3.30) is for type

checking branch statements. Rule (3.31) is for type checking sequential statements.

3.4.3 Type soundness

In this subsection, we prove that the type system is sound with respect to the

abstract semantics; that is, if a periodic interrupt calculus program type checks,

then the program cannot go wrong with respect to the latency-space problem. The

proofs are mainly concerned with the type preservation for each step of the abstract

semantics.

Type preservation

We first prove some lemmas that will be used in the proof of Lemma (3.4.9).

Lemma 3.4.1 (Safety Guarantee, statements s) If τ `K s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j, then we have safe(τ , I,K).

91

Proof The proof is by induction on the derivation of τ `K s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j. There are three cases depending on which one of the Rules (3.29)-

(3.31) is used to derive τ `K s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j.

1. Rule (3.29). The proof is trivial in this case because the side condition of

Rule (3.29) contains safe(τ , I,K).

2. Rule (3.30). We have

τ `K s1 :
∧

i∈I imri, T̂ i →
∨

j∈Jt
i
imrj, T̂ j

τ `K s2 :
∧

i∈I imri, T̂ i →
∨

j∈Jf
i
imrj, T̂ j

τ `K if0 x then s1 else s2 :
∧

i∈I imri, T̂ i →
∨

j∈Jt
i∪Jf

i
imrj, T̂ j

From τ `K s1 :
∧

i∈I imri, T̂ i →
∨

j∈Jt
i
imrj, T̂ j and the induction hypothesis,

we have safe(τ , I,K).

3. Rule (3.31). We have

τ `K s1 :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j

τ `K s2 :
∧

i∈I′ imri, T̂ i →
∨

j∈J ′′

i
imrj, T̂ j

τ `K s1; s2 :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

where Ji =
⋃
{J ′′

j | j ∈ J ′
i}. From τ `K s1 :

∧
i∈I imri, T̂ i →

∨
j∈J ′

i
imrj, T̂ j

and the induction hypothesis, we have safe(τ , I,K).

Lemma 3.4.2 (Safety Guarantee, handler h) If τ `K h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j, then we have safe(τ , I,K).

Proof There are two cases depending on which one of the Rules (3.28) and (3.27)

is used to derive τ `K h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j,

1. Rule (3.28). The proof is trivial in this case because the side condition of

Rule (3.28) contains safe(τ , I,K).

92

2. Rule (3.27). We have

τ `K s :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j

τ `K h :
∧

i∈I′ imri, T̂ i →
∨

j∈J ′′

i
imrj, T̂ j

τ `K s; h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

where Ji =
⋃
{J ′′

j | j ∈ J ′
i}. From τ `K s :

∧
i∈I imri, T̂ i →

∨
j∈J ′

i
imrj, T̂ j

and Lemma (3.4.1), we have safe(τ , I,K).

Lemma 3.4.3 (Safety Guarantee, main m) If τ `K m :
∨

i∈I imri, T̂ i then

we have safe(τ , I,K).

Proof There are two cases depending on which one of the Rules (3.25), (3.26) is

used to derive τ `K m :
∨

i∈I imri, T̂ i.

1. Rule (3.25). We have

τ ` s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

τ `K loop s :
∨

i∈I imri, T̂ i

From τ ` s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and Lemma (3.4.1), we have

safe(τ , I,K).

2. Rule (3.26). We have

τ `K s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

τ `K m :
∨

i∈I′ imri, T̂ i

τ `K s;m :
∨

i∈I imri, T̂ i

From τ `K s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and Lemma (3.4.1), we have

safe(τ , I,K).

93

Lemma 3.4.4 (K-weakening, Safety) If 0 ≤ K1 ≤ K2 and safe(τ , I,K1), then

we have safe(τ , I,K2).

Proof From Definition (3.4.3), we have safe(τ , I,K1) as

(1) (i ∈ I ∧ u ∈ P̂(imri, T̂ i)) ⇒

(i) i ∈ Iu and

(ii) Ju
i ⊆ I and

(iii) δu
i + 1 ≤ K1 and

(iv) θ̂u(T̂ i) ≤ r

(2) ∀i ∈ I : θ̂(imri, T̂ i) ≤ r

From K1 ≤ K2, we have δu
i + 1 ≤ K2. Replacing Item (1).(iii) with δu

i + 1 ≤ K2, we

have

(1) (i ∈ I ∧ u ∈ P̂(imri, T̂ i)) ⇒

(i) i ∈ Iu and

(ii) Ju
i ⊆ I and

(iii) δu
i + 1 ≤ K2 and

(iv) θ̂u(T̂ i) ≤ r

(2) ∀i ∈ I : θ̂(imri, T̂ i) ≤ r

which is safe(τ , I,K2).

Lemma 3.4.5 (K-weakening, Statement s) If

τ `K1 s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and 0 ≤ K1 ≤ K2, then τ `K2 s :

∧
i∈I imri, T̂ i →

∨
j∈Ji

imrj, T̂ j.

Proof We prove by induction on the structure of the derivation of τ `K1 s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j. There are three cases depending on which one of the

Rules (3.29) - (3.31) are used in the last step of the derivation.

1. Rule (3.29).

We have

τ `K1 s :
∧

i∈I

imri, T̂ i →
∨

j∈Ji

imrj, T̂ j

94

and

(i) ∀i ∈ I : Ji =
⋃
{Jj | j ∈

⋃
u∈ bP(imri, bT i)

Ju
i } ∪ {ξs(i)}

(ii) safe(τ , I,K1)

where s is x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip. From (ii),

0 ≤ K1 ≤ K2 and Lemma 3.4.4, we have safe(τ , I,K2). From (i), safe(τ , I,K2)

and Rule (3.29), we have τ `K2 s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j.

2. Rule (3.30).

We have

τ `K1 s1 :
∧

i∈I imri, T̂ i →
∨

j∈Jt
i
imrj, T̂ j

τ `K1 s2 :
∧

i∈I imri, T̂ i →
∨

j∈Jf
i
imrj, T̂ j

τ `K1 if0 x then s1 else s2 :
∧

i∈I imri, T̂ i →
∨

j∈Jt
i∪Jf

i
imrj, T̂ j

From τ `K1 s1 :
∧

i∈I imri, T̂ i →
∨

j∈Jt
i
imrj, T̂ j, 0 ≤ K1 ≤ K2 and the

induction hypothesis, we have

(i) τ `K2 s1 :
∧

i∈I imri, T̂ i →
∨

j∈Jt
i
imrj, T̂ j

Similarly, from τ `K1 s2 :
∧

i∈I imri, T̂ i →
∨

j∈Jf
i
imrj, T̂ j and 0 ≤ K1 ≤ K2

and the induction hypothesis, we have

(ii) τ `K2 s2 :
∧

i∈I imri, T̂ i →
∨

j∈Jf
i
imrj, T̂ j

From (i), (ii) and Rule (3.30), we have

τ `K2 if0 x then s1 else s2 :
∧

i∈I imri, T̂ i →
∨

j∈Jt
i∪Jf

i
imrj, T̂ j

3. Rule (3.31).

We have

τ `K1 s1 :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j

τ `K1 s2 :
∧

i∈I′ imri, T̂ i →
∨

j∈J ′′

i
imrj, T̂ j

τ `K1 s1; s2 :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

and
⋃

i∈I′ J
′′
i ⊆

⋃
i∈I Ji and ∀i ∈ I : J ′

i ⊆ I ′, where Ji =
⋃
{J ′′

j | j ∈ J ′
i}. From

τ `K1 s1 :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j, 0 ≤ K1 ≤ K2 and the induction

hypothesis, we have

95

(i) τ `K2 s1 :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j

Similarly, from τ `K1 s2 :
∧

i∈I′ imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and 0 ≤ K1 ≤ K2

and the induction hypothesis, we have

(ii) τ `K2 s2 :
∧

i∈I′ imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

From (i), (ii),
⋃

i∈I′ J
′′
i ⊆

⋃
i∈I Ji, ∀i ∈ I : J ′

i ⊆ I ′, and Rule (3.31), we have

τ `K2 s1; s2 :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

Lemma 3.4.6 (K-weakening, Handler h) If

τ `K1 h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and 0 ≤ K1 ≤ K2, then τ `K2 h :

∧
i∈I imri, T̂ i →

∨
j∈Ji

imrj, T̂ j.

Proof We prove by induction on the structure of the derivation of τ `K1 h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j. There are two cases depending on which one of the

Rules (3.28), (3.27) are used in the last step of the derivation.

• Rule (3.28).

We have

τ `K1 iret :
∧

i∈I

imri, T̂ i →
∨

j∈Ji

imrj, T̂ j

and

(i) ∀i ∈ I : Ji =
⋃
{Jj | j ∈

⋃
u∈ bP(imri, bT i)

Ju
i } ∪ {ξiret(i)}

(ii) safe(τ , I,K1)

From (ii), 0 ≤ K1 ≤ K2 and Lemma (3.4.4), we have safe(τ , I,K2). From

(i), safe(τ , I,K2) and Rule (3.28), we have τ `K2 iret :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j.

96

• Rule (3.27).

We have

τ `K1 s :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j

τ `K1 h :
∧

i∈I′ imri, T̂ i →
∨

j∈J ′′

i
imrj, T̂ j

τ `K1 s; h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

and
⋃

i∈I′ J
′′
i ⊆

⋃
i∈I Ji and ∀i ∈ I : J ′

i ⊆ I ′, where Ji =
⋃
{J ′′

j | j ∈ J ′
i}. From

τ `K1 s :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j, 0 ≤ K1 ≤ K2 and Lemma (3.4.5),

we have

(i) τ `K2 s :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j

From τ `K1 h :
∧

i∈I′ imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and 0 ≤ K1 ≤ K2 and the

induction hypothesis, we have

(ii) τ `K2 h :
∧

i∈I′ imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

From (i), (ii),
⋃

i∈I′ J
′′
i ⊆

⋃
i∈I Ji, ∀i ∈ I : J ′

i ⊆ I ′ and Rule (3.27), we have

τ `K2 s; h :
∧

i∈I imri, T̂ i →
∨

j∈
S
{Jj′ |j

′∈J ′

i}
imrj, T̂ j.

Lemma 3.4.7 (J-weakening, statement) If

τ `K s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j, i

′ ∈ I and u ∈ P̂(imri′ , T̂ i′), then

i′′ ∈ Ju
i′ ⇒ (i′′ ∈ I ∧ Ji′′ ⊆ Ji′).

Proof We prove by induction on the structure of the derivation of s. There are

three cases depending upon the form of s.

1. s is either of x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip.

From τ `K s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and Rule (3.29), we have

safe(τ , I,K) and

(i) ∀i ∈ I : Ji =
⋃
{Jj|j ∈

⋃
u∈ bP(imri, bT i)

Ju
i } ∪ {ξs(i)}

From safe(τ , I,K), i′ ∈ I, u ∈ P̂(imri′ , T̂ i′), and Item (1).(ii) of Defini-

tion (3.4.3), we have Ju
i′ ⊆ I, from which it follows i′′ ∈ Ju

i′ ⇒ i′′ ∈ I.

From (i), u ∈ P̂(imri′ , T̂ i′), it follows i′′ ∈ Ju
i′ ⇒ Ji′′ ⊆ Ji′ .

97

2. s is if0 x then s1 else s2.

From τ `K if0 x then s1 else s2 :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and

Rule (3.30), we have

(i) τ `K s1 :
∧

i∈I imri, T̂ i →
∨

j∈Jt
i
imrj, T̂ j

(ii) τ `K s2 :
∧

i∈I imri, T̂ i →
∨

j∈Jf
i
imrj, T̂ j

(iii) ∀i ∈ I : Ji = J t
i ∪ J

f
i

From (i), i′ ∈ I, u ∈ P̂(imri′, T̂ i′) and the induction hypothesis, we have

(iv) i′′ ∈ Ju
i′ ⇒ (i′′ ∈ I ∧ J t

i′′ ⊆ Ji′)

Similarly, from (ii), i′ ∈ I, u ∈ P̂(imri′ , T̂ i′) and the induction hypothesis, we

have

(v) i′′ ∈ Ju
i′ ⇒ (i′′ ∈ I ∧ Jf

i′′ ⊆ Ji′)

From (iv), (v) and (iii), we have i′′ ∈ Ju
i′ ⇒ (i′′ ∈ I ∧ Ji′′ ⊆ Ji′).

3. s is s1; s2.

From τ `K s1; s2 :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and Rule (3.31), we have

(i) τ `K s1 :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j

(ii) τ `K s2 :
∧

i∈I′ imri, T̂ i →
∨

j∈J ′′

i
imrj, T̂ j

(iii) ∀i ∈ I : J ′
i ⊆ I ′

(iv) ∀i ∈ I : Ji =
⋃
{J ′′

j | j ∈ J ′
i}

From (i), i′ ∈ I and u ∈ P̂(imri′ , T̂ i′) and the induction hypothesis, we have

(v) i′′ ∈ Ju
i′ ⇒ i′′ ∈ I

(vi) i′′ ∈ Ju
i′ ⇒ J ′

i′′ ⊆ J ′
i′

From i′ ∈ I and (iv), we have

(vii) Ji′ =
⋃
{J ′′

j | j ∈ J ′
i′}

From (v) and (iv), we have

(viii) ı′′ ∈ Ju
i′ ⇒ Ji′′ =

⋃
{J ′′

j | j ∈ J ′
i′′}

From (vi), (vii) and (viii), it follows i′′ ∈ Ju
i′ ⇒ Ji′′ ⊆ Ji′.

98

Lemma 3.4.8 (J-weakening, handler) If

τ `K h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j, i

′ ∈ I and u ∈ P̂(imri′, T̂ i′), then

i′′ ∈ Ju
i′ ⇒ (i′′ ∈ I ∧ Ji′′ ⊆ Ji′).

Proof We prove by induction on the structure of the derivation of h. There are two

cases depending upon the form of h.

1. h is iret.

From τ `K iret :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and Rule (3.28), we have

safe(τ , I,K) and

(i) ∀i ∈ I : Ji =
⋃
{Jj|j ∈

⋃
u∈ bP(imri, bT i)

Ju
i } ∪ {ξiret(i)}

From safe(τ , I,K), i′ ∈ I, u ∈ P̂(imri′ , T̂ i′), and Item (1).(ii) of Defini-

tion (3.4.3), we have Ju
i′ ⊆ I, from which it follows i′′ ∈ Ju

i′ ⇒ i′′ ∈ I.

From (i), u ∈ P̂(imri′ , T̂ i′), it follows i′′ ∈ Ju
i′ ⇒ Ji′′ ⊆ Ji′ .

2. h is s; h′. From τ `K s; h′ :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and Rule (3.27),

we have

(i) τ `K s :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j

(ii) τ `K h :
∧

i∈I′ imri, T̂ i →
∨

j∈J ′′

i
imrj, T̂ j

(iii) ∀i ∈ I : J ′
i ⊆ I ′

(iv) ∀i ∈ I : Ji =
⋃
{J ′′

j | j ∈ J ′
i}

From (i), i′ ∈ I and u ∈ P̂(imri′ , T̂ i′) and Lemma (3.4.7), we have

(v) i′′ ∈ Ju
i′ ⇒ i′′ ∈ I

(vi) i′′ ∈ Ju
i′ ⇒ J ′

i′′ ⊆ J ′
i′

From i′ ∈ I and (iv), we have

(vii) Ji′ =
⋃
{J ′′

j | j ∈ J ′
i′}

From (v) and (iv), we have

(viii) ı′′ ∈ Ju
i′ ⇒ Ji′′ =

⋃
{J ′′

j | j ∈ J ′
i′′}

From (vi), (vii) and (viii), it follows i′′ ∈ Ju
i′ ⇒ Ji′′ ⊆ Ji′.

99

Lemma 3.4.9 (Single Step Type Preservation) Given K ≥ 0 and Q is consis-

tent, if τ `K Q, Q.T̂ ≤ r, Q ↪→ Q′, then there exists a K ′ ≥ 0 such that τ `K′ Q′

and K ′ = K +Q.stk −Q′.stk and Q′.T̂ ≤ r.

Proof We have nine cases depending upon which one of the Rules (3.10) - (3.18) is

used.

1. Rule (3.10).

We have 〈h, imri′ , T̂ i′ , σ, a〉 ↪→ 〈h, imrζv(i′), T̂ ζv(i′), a :: σ, h(v)〉 and

v ∈ P̂(imri′, T̂ i′). Since Q is consistent, there are two subcases.

Subcase 1: Q = 〈h, imri′ , T̂ i′ , nil, m〉 and Q′ = 〈h, imrζv(i′), T̂ ζv(i′), m :: nil, h(v)〉.

From τ `K 〈h, imri′ , T̂ i′ , nil, m〉 and Rule (3.20), we have

τ ` h : τ τ `K m :
∨

i∈I imri, T̂ i

τ `K 〈h, imri′ , T̂ i′ , σ, h〉

and i′ ∈ I. From τ `K m :
∨

i∈I imri, T̂ i and Lemma (3.4.3), we have

safe(τ , I,K). From v ∈ P̂(imri′ , T̂ i′), safe(τ , I,K) and Item (1) of Defini-

tion (3.4.3), we have

(i) i′ ∈ Iv

(ii) Jv
i′ ⊆ I

(iii) δv
i′ + 1 ≤ K

(iv) θ̂v(T̂ i′) ≤ r

From (i), τ ` h : τ and Rule (3.24), we have

(v) τ `δv
i′
h(v) : imrζv(i′), T̂ ζv(i′) →

∨
j∈Jv

i′
imrj, T̂ j

From δv
i′ ≥ 0 and (iii) above, we have 0 ≤ δv

i′ ≤ K − 1. From (v) above,

0 ≤ δv
i′ ≤ K − 1 and Lemma (3.4.6), we have

(vi) τ `K−1 h(v) : imrζv(i′), T̂ ζv(i′) →
∨

j∈Jv
i′
imrj, T̂ j

From (ii), we have

(vii) ∀i′′ ∈ Jv
i′ : i′′ ∈ I

From (vii), τ `K m :
∨

i∈I imri, T̂ i and Rule (3.22), we have

(viii) ∀i′′ ∈ Jv
i′ : τ , i′′ `K m :: nil

100

From τ ` h : τ , (viii), (vi) and Rule (3.21), we have τ `K′ Q′ and K ′ =

K + Q.stk − Q′.stk = K − 1 ≥ 0. From (iv), we have T̂ ζv(i′) ≤ r, which is

Q′.T̂ ≤ r.

Subcase 2: Q = 〈h, imri′, T̂ i′, σ, h〉 and Q′ = 〈h, imrζv(i′), T̂ ζv(i′), h :: σ, h(v)〉.

From τ `K 〈h, imri′ , T̂ i′ , σ, h〉 and Rule (3.21), we have

τ ` h : τ ∀i′′ ∈ Ji′ : τ , i′′ `K σ τ `K h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

τ `K 〈h, imri′, T̂ i′, σ, h〉

and i′ ∈ I. From τ `K h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and Lemma (3.4.2),

we have safe(τ , I,K). From v ∈ P̂(imri′, T̂ i′), safe(τ , I,K) and Item (1) of

Definition (3.4.3), we have

(i) i′ ∈ Iv

(ii) Jv
i′ ⊆ I

(iii) δv
i′ + 1 ≤ K

(iv) θ̂v(T̂ i′) ≤ r

From (i), τ ` h : τ and Rule (3.24), we have

(v) τ `δv
i′
h(v) : imrζv(i′), T̂ ζv(i′) →

∨
j∈Jv

i′
imrj, T̂ j

From δv
i′ ≥ 0 and (iii), we have 0 ≤ δv

k ≤ K − 1. From (v), 0 ≤ δv
k ≤ K − 1 and

Lemma (3.4.6), we have

(vi) τ `K−1 h(v) : imrζv(i′), T̂ ζv(i′) →
∨

j∈Jv
i′
imrj, T̂ j

From τ `K h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j, i

′ ∈ I, v ∈ P̂(imri′, T̂ i′) and

Lemma (3.4.8), we have

(vii) i′′′ ∈ Jv
i′ ⇒ i′′′ ∈ I

(viii) i′′′ ∈ Jv
i′ ⇒ Ji′′′ ⊆ Ji′

From ∀i′′ ∈ Ji′ : τ , i′′ `K σ and (viii), we have

(ix) ∀i′′′ ∈ Jv
i′ : ∀i′′ ∈ Ji′′′ : τ , i′′ `K σ

From τ `K h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j, (ix), (vii) and Rule (3.23),

we have

(x) ∀i′′′ ∈ Jv
i′ : τ , i′′′ `K h :: σ

101

From τ ` h : τ , (x), (vi) and Rule (3.21), we have τ `K′ Q′ and K ′ = K +

Q.stk−Q′.stk = K − 1 ≥ 0. From (iv), we have T̂ ζv(i′) ≤ r, which is Q′.T̂ ≤ r.

2. Rule (3.11).

We have Q = 〈h, imri′, T̂ i′, σ, iret〉 ↪→ 〈h, imrξiret(i′), T̂ ξiret(i′), σ
′, a〉, where σ =

a :: σ′. Since Q is consistent, there are two subcases.

Subcase 1: Q = 〈h, imri′, T̂ i′, m :: nil, iret〉 andQ′ = 〈h, imrξiret(i′), T̂ ξiret(i′), nil, m〉.

From τ `K 〈h, imri′ , T̂ i′ , h :: σ, iret〉 and Rule (3.21), we have

τ ` h : τ ∀i′′ ∈ Ji′ : τ , i′′ `K m :: nil

τ `K iret :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

`K 〈h, imri′ , T̂ i′ , m :: nil, iret〉

and i′ ∈ I. From τ `K iret :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and Rule (3.28),

we have

(i) ∀i ∈ I : ξiret(i) ∈ Ji

(ii) ∀i ∈ I : θ̂(imri, T̂ i) ≤ r (from Item (2) of safe(τ , I,K))

From i′ ∈ I and (i), we have ξiret(i
′) ∈ Ji′ . From ∀i′′ ∈ Ji′ : τ , i′′ `K m :: nil

and Rule (3.22), we have

(iii) τ `K+1 m :
∨

i∈I′ imri, T̂ i

(iv) ∀i′′ ∈ Ji′ : i′′ ∈ I ′

From ξiret(i
′) ∈ Ji′ and (iv), we have ξiret(i

′) ∈ I ′. From τ ` h : τ , ξiret(i
′) ∈ I ′,

(iii) and Rule (3.20), we have τ `K′ Q′ and K ′ = K+Q.stk−Q′.stk = K+1 ≥ 0.

From i′ ∈ I and (ii), we have T̂ ξiret(i′) ≤ r, which is Q′.T̂ ≤ r.

Subcase 2: Q = 〈h, imri′, T̂ i′, h :: σ, iret〉 and Q′ = 〈h, imrξiret(i′), T̂ ξiret(i′), σ, h〉.

From τ `K 〈h, imri′ , T̂ i′ , h :: σ, iret〉 and Rule (3.21), we have

τ ` h : τ ∀i′′ ∈ Ji′ : τ , i′′ `K h :: σ

τ `K iret :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

τ `K 〈h, imri′, T̂ i′, h :: σ, iret〉

102

and i′ ∈ I. From τ `K iret :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and Rule (3.28),

we have

(i) ∀i ∈ I : ξiret(i) ∈ Ji

(ii) ∀i ∈ I : θ̂(imri, T̂ i) ≤ r (from Item (2) of safe(τ , I,K))

From i′ ∈ I and (i), we have ξiret(i
′) ∈ Ji′. From ∀i′′ ∈ Ji′ : τ , i′′ `K h :: σ and

Rule (3.23), we have

(iii) τ `K+1 h :
∧

i∈I′ imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j

(iv) ∀i′′ ∈ Ji′ : ∀i′′′ ∈ J ′
i′′ : τ , i′′′ `K+1 σ

(v) ∀i′′ ∈ Ji′ : i′′ ∈ I ′

From ξiret(i
′) ∈ Ji′ and (iv), we have

(vi) ∀i′′′ ∈ J ′
ξiret(i′)

: τ , i′′′ `K+1 σ

From ξiret(i
′) ∈ Ji′ and (v), we have ξiret(i

′) ∈ I ′. From τ ` h : τ , ξiret(i
′) ∈ I ′,

(vi), (iii) and Rule (3.21), we have τ `K′ Q′ and K ′ = K + Q.stk − Q′.stk =

K + 1 ≥ 0. From i′ ∈ I and (ii), we have T̂ ξiret(i′) ≤ r, which is Q′.T̂ ≤ r.

3. Rule (3.12).

We have Q = 〈h, imri′, T̂ i′, nil, loop s〉, Q′ = 〈h, imri′, T̂ i′, nil, s; loop s〉 and

Q ↪→ Q′. From Q.T̂ ≤ r and Q′.T̂ = Q.T̂ , we have Q′.T̂ ≤ r. From

τ `K 〈h, imri′ , T̂ i′ , nil, loop s〉 and Rule (3.20), we have

τ ` h : τ τ `K loop s :
∨

i∈I imri, T̂ i

τ `K 〈h, imri′ , T̂ i′ , nil, loop s〉

and i′ ∈ I. From τ `K loop s :
∨

i∈I imri, T̂ i and Rule (3.25), we have

(i) τ ` s :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

(ii) ∀i ∈ I : Ji ⊆ I

From (i), (ii), τ `K loop s :
∨

i∈I imri, T̂ i and Rule (3.26), we have

(iii) τ `K s; loop s :
∨

i∈I imri, T̂ i

From (iii), τ ` h : τ , i′ ∈ I and Rule (3.20), we have τ `K′ Q′ and K ′ =

K +Q.stk −Q′.stk = K ≥ 0.

103

4. Rule (3.13).

We have 〈h, imri′, T̂ i′, σ, (x := e); a〉 ↪→ 〈h, imrξx:=e(i′), T̂ ξx:=e(i′), σ, a〉. Since Q

is consistent, there are two subcases.

Subcase 1: Q = 〈h, imri′, T̂ i′, nil, (x := e);m〉 and

Q′ = 〈h, imrξx:=e(i′), T̂ ξx:=e(i′), nil, m〉. From τ `K 〈h, imri′, T̂ i′, nil, (x := e);m〉

and Rule (3.20), we have

τ ` h : τ τ `K (x := e);m :
∨

i∈I imri, T̂ i

τ `K 〈h, imri′, T̂ i′, nil, x := e;m〉

and i′ ∈ I. From τ `K (x := e);m :
∨

i∈I imri, T̂ i and Rule (3.26), we have

(i) τ `K x := e :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

(ii) τ `K m :
∨

i∈I′ imri, T̂ i

(iii) ∀i ∈ I : Ji ⊆ I ′

From (i) and Rule (3.29), we have

(iv) ∀i ∈ I : ξx:=e(i) ∈ J ′
i

(v) ∀i ∈ I : θ̂(imri, T̂ i) ≤ r (from Item (2) of safe(τ , I,K))

From i′ ∈ I and (iv), we have ξx:=e(i
′) ∈ Ji′. From i′ ∈ I and (iii), we have

Ji′ ⊆ I ′. From ξx:=e(i
′) ∈ Ji′ and Ji′ ⊆ I ′, we have ξx:=e(i

′) ∈ I ′. From

(ii), τ ` h : τ , ξx:=e(i
′) ∈ I ′ and Rule (3.20), we have τ `K′ Q′ and K ′ =

K +Q.stk−Q′.stk = K ≥ 0. From i′ ∈ I and (v), we have T̂ ξx:=e(i′) ≤ r, which

is Q′.T̂ ≤ r.

Subcase 2: Q = 〈h, imri′, T̂ i′, σ, (x := e); h〉 and

Q′ = 〈h, imrξx:=e(i′), T̂ ξx:=e(i′), σ, h〉. From τ `K 〈h, imri′ , T̂ i′ , σ, (x := e); h〉 and

Rule (3.21), we have

τ ` h : τ ∀i′′ ∈ Ji′ : τ , i′′ `K σ

τ `K (x := e); h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

τ `K 〈h, imri′, T̂ i′, σ, x := e; h〉

and i′ ∈ I. From τ `K (x := e); h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and

Rule (3.27), we have

104

(i) τ `K x := e :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j

(ii) τ `K h :
∧

i∈I′′ imri, T̂ i →
∨

j∈J ′′

i
imrj, T̂ j

(iii) ∀i ∈ I : J ′
i ⊆ I ′′

(iv) ∀i ∈ I : Ji =
⋃
{J ′′

j | j ∈ J ′
i}

From (i) and Rule (3.29), we have

(v) ∀i ∈ I : ξx:=e(i) ∈ J ′
i

(vi) ∀i ∈ I : θ̂(imri, T̂ i) ≤ r (from Item (2) of safe(τ , I,K))

From i′ ∈ I and (v), we have ξx:=e(i
′) ∈ J ′

i′. From i′ ∈ I and (iii), we have

J ′
i′ ∈ I ′′. From ξx:=e(i

′) ∈ J ′
i′ and J ′

i′ ∈ I ′′ we have ξx:=e(i
′) ∈ I ′′. From i′ ∈ I

and (iv), we have

(vii) Ji′ =
⋃
{j ′′j | j ∈ J ′

i′}

From ξx:=e(i
′) ∈ J ′

i′ and (vii), we have

(viii) J ′′
ξx:=e(i′)

⊆ Ji′

From ∀i′′ ∈ Ji′ : τ , i′′ `K σ and (viii) we have

(ix) ∀i′′ ∈ J ′′
ξx:=e(i′)

: τ , i′′ `K σ

From τ ` h : τ , ξx:=e(i) ∈ I ′′, (ix), (ii) and Rule (3.21), we have τ `K′ Q′ and

K ′ = K +Q.stk−Q′.stk = K ≥ 0. From i′ ∈ I and (vi), we have T̂ ξx:=e(i′) ≤ r,

which is Q′.T̂ ≤ r.

5. Rule (3.14),(3.15) and (3.18).

The proofs are similar to that of Rule (3.13).

6. Rule (3.16).

We have 〈h, imri′ , T̂ i′ , σ, (if0 x then s1 else s2); a〉 ↪→ 〈h, imri′ , T̂ i′ , σ, s1; a〉.

From Q.T̂ ≤ r and Q′.T̂ = Q.T̂ , we have Q′.T̂ ≤ r. We next prove that there

exists a K ′ ≥ 0 such that τ `K′ Q′ and K ′ = K + Q.stk − Q′.stk. Since Q is

consistent, there are two subcases.

105

Subcase 1: Q = 〈h, imri′, T̂ i′, nil, (if0 x then s1 else s2);m〉 and

Q′ = 〈h, imri′ , T̂ i′ , nil, s1;m〉.

From τ `K 〈h, imri′ , T̂ i′ , nil, (if0 x then s1 else s2);m〉 and Rule (3.20), we have

τ ` h : τ τ `K (if0 x then s1 else s2);m :
∨

i∈I imri, T̂ i

τ `K 〈h, imri′ , T̂ i′ , nil, (if0 x then s1 else s2);m〉

and i′ ∈ I. From τ `K (if0 x then s1 else s2);m :
∨

i∈I imri, T̂ i and

Rule (3.26), we have

(i) τ `K if0 x then s1 else s2 :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

(ii) τ `K m :
∨

i∈I′ imri, T̂ i

and ∀i ∈ I : Ji ⊆ I ′. From (i) and Rule (3.30), we have

(iii) τ `K s1 :
∧

i∈I imri, T̂ i →
∨

j∈Jt
i
imrj, T̂ j

(iv) τ `K s2 :
∧

i∈I imri, T̂ i →
∨

j∈Jf
i
imrj, T̂ j

and ∀i ∈ I : Ji = J t
i ∪ Jf

i , from which it follows ∀i ∈ I : J t
i ⊆ Ji. From

∀i ∈ I : Ji ⊆ I ′ and ∀i ∈ I : J t
i ⊆ Ji, we have ∀i ∈ I : J t

i ⊆ I ′. From (iii), (ii),

∀i ∈ I : J t
i ⊆ I ′ and Rule (3.26), we have

(v) τ `K s1;m :
∨

i∈I imri, T̂ i

From i′ ∈ I, τ ` h : τ , (v) and Rule (3.20), we have τ `K′ Q′ and K ′ =

K +Q.stk −Q′.stk = K ≥ 0.

Subcase 2: Q = 〈h, imri′, T̂ i′, σ, (if0 x then s1 else s2); h〉 and

Q′ = 〈h, imri′ , T̂ i′ , σ, s1; h〉. Rule (3.21), we have

τ ` h : τ ∀i′′ ∈ Ji′ : τ , i′′ `K σ

τ `K (if0 x then s1 else s2); h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j

τ `K 〈h, imri′ , T̂ i′ , σ, (if0 x then s1 else s2); h〉

and i′ ∈ I. From τ `K (if0 x then s1 else s2); h :
∧

i∈I imri, T̂ i →
∨

j∈Ji
imrj, T̂ j and Rule (3.27), we have

(i) τ `K if0 x then s1 else s2 :
∧

i∈I imri, T̂ i →
∨

j∈J ′

i
imrj, T̂ j

(ii) τ `K h :
∧

i∈I′′ imri, T̂ i →
∨

j∈J ′′

i
imrj, T̂ j

(iii) ∀i ∈ I : J ′
i ⊆ I ′′

(iv) ∀i ∈ I : Ji =
⋃
{J ′′

j | j ∈ J ′
i}

106

From (i) and Rule (3.30), we have

(v) τ `K s1 :
∧

i∈I imri, T̂ i →
∨

j∈Jt
i
imrj, T̂ j

(vi) τ `K s2 :
∧

i∈I imri, T̂ i →
∨

j∈Jf
i
imrj, T̂ j

(vii) ∀i ∈ I : J ′
i = J t

i ∪ J
f
i

From (vii), we have

(viii) ∀i ∈ I : J t
i ⊆ J ′

i

From (viii) and (iii), we have

(ix) ∀i ∈ I : J t
i ⊆ I ′′

Let

(x) ∀i ∈ I : J ′′′
i =

⋃
{J ′′

j | j ∈ J t
i }

From (v), (ii), (ix),(x) and Rule (3.27), we have

(xi) τ `K s1; h :
∧

i∈I imri, T̂ i →
∨

j∈J ′′′

i
imrj, T̂ j

From (iv), (x) and (viii), we have

(xii) ∀i ∈ I : J ′′′
i ⊆ Ji

From i′ ∈ I and (xii), we have J ′′′
i′ ⊆ Ji′. From ∀i′′ ∈ Ji′ : τ , i′′ `K σ and

J ′′′
i′ ⊆ Ji′ , we have

(xiii) ∀i′′ ∈ J ′′′
i′ : τ , i′′ `K σ

From τ ` h : τ , (xiii), (xi), i′ ∈ I and Rule (3.21), we have τ `K′ Q′ and

K ′ = K +Q.stk −Q′.stk = K ≥ 0.

7. Rule (3.17).

The proof is similar to that of Rule (3.16).

Lemma 3.4.10 (Multiple Step Type Preservation) GivenK ≥ 0 and Q is con-

sistent, if τ `K Q, Q.T̂ ≤ r, Q ↪→n Q′, then there exists K ′ ≥ 0 such that τ `K′ Q′,

K ′ = K +Q.stk −Q′.stk and Q′.T̂ ≤ r.

Proof We proceed by induction on n.

In the base case: n = 0, we have Q = Q′. The proof is trivial.

In the induction step, assume that the property holds true for n. Suppose τ `K Q,

107

K ≥ 0, Q.T̂ ≤ r and Q →n Q′ → Q′′. From the induction hypothesis, we have

τ `K′ Q′ and K ′ ≥ 0, where K ′ = K + |Q.stk| − |Q′.stk| and Q′.T̂ ≤ r. From

Lemma 3.3.1 we have that Q′ is consistent. From K ′ ≥ 0, Q′ is consistent, τ `K′ Q′,

Q′.T̂ ≤ r, Q′ ↪→ Q′′ and Lemma 3.4.9, we have τ `K′′ Q′′ and K ′′ ≥ 0, where

K ′′ = K ′ + |Q′.stk| − |Q′′.stk| and Q′′.T̂ ≤ r. From K ′ = K + |Q.stk| − |Q′.stk| and

K ′′ = K ′ + |Q′.stk| − |Q′′.stk|, we have

K ′′ = K ′ + |Q′.stk| − |Q′′.stk|

= K + |Q.stk| − |Q′.stk| + |Q′.stk| − |Q′′.stk|

= K + |Q.stk| − |Q′′.stk|

as desired.

Corollary 3.4.1 (Latency-Space Boundedness) Given K ≥ 0, if τ `K Q0 and

Q0 ↪→∗ Q, then (Q.T̂ ≤ r) ∧ (Q.stk ≤ K).

Proof Notice thatQ0 is consistent andQ0.T̂ ≤ r. FromK ≥ 0, Q0.T̂ ≤ r, τ `K Q0,

Q0 ↪→∗ Q and Lemma (3.4.10), there exists K ′ ≥ 0, τ `K Q and K ′ = K+Q0.stk−

Q.stk and Q.T̂ ≤ r. From Q0.stk = 0 and K ′ = K + Q0.stk − Q.stk, we have

K ′ = K −Q.stk. From K ′ ≥ 0 and K ′ = K −Q.stk, we have Q.stk ≤ K.

Theorem 3.4.1 Given K ≥ 0, if there exists τ such that τ `K p, then Q0 ↪→∗

Q⇒ (Q.T̂ ≤ r) ∧ (Q.stk ≤ K).

Proof From τ `K p and Rule (3.19), we have

(i) τ `K m : 0, 0

(ii) τ ` h : τ

From (i), (ii) and Rule (3.20), we have τ `K Q0. From K ≥ 0 and τ `K Q0 and

Q0 ↪→∗ Q and Corollary (3.4.1), we have (Q.T̂ ≤ r) ∧ (Q.stk ≤ K).

3.5 An example

In this section, we illustrate how we construct types from an abstract model by

running a simple example.

108

Consider the interrupt calculus program given in Figure (3.4). The main part

of the program first enables both interrupt sources; it then enters an infinite loop.

handler 1 enables the master bit of imr and then returns; handler 2 performs similar

operations. The period for handler 1 is 4 time units; and the period for handler

2 is 20 time units. For the sake of convenience, we label each program statement

by m0, m1, h0
1, h

1
1, h

0
2, h

1
2. We will use these labels to represent the statements in the

reachable states of the abstract model given in Figure (3.5).

Main:

m0 : imr = imr ∨ 111

m1 : loop skip

Handler 1: r(1) = 4

h0
1 : imr = imr ∨ 100

h1
1 : iret

Handler 2: r(2) = 20

h0
2 : imr = imr ∨ 100

h1
2 : iret

Figure 3.4. The example program

Figure (3.5) shows an excerpt of all reachable states from the abstract model of

the example program. The notation
n
↪→ denotes a transition which uses rule n. Note

that we only give the transition paths which entail the largest stack growth, with

one exception for the transitions (3.48-3.53) which include all the possible paths of

executing h0
1; h

1
1 starting from the state 〈011,−1,−17, h1

2 :: m1 :: nil, h0
1; h

1
1〉. We will

use transitions (3.48-3.53) to illustrate the construction of the types for handler 1.

Figure (3.6) illustrates the a segment of the growth of the stack size over the time

of the example program following a path given in Figure (3.5) (The path is: 3.45-3.48,

3.50-3.57). Note that the stack size can grow as high as 3, rather than 2, following

this path.

Since abstract states always carry h, we omit it for the sake of simplicity. In

addition, to make the presentation more clear, we assume h(0) = p.m in this section.

We now show how to construct the types for handlers τ . For each program point

a and stack σ, we compute the context set Iσ,a which contains the contexts that

are reachable from the initial program state; we compute the context set Iσ,a

imr, bT,u

which contains the contexts that are reachable from the state 〈imr, T̂ , σ, h(u)〉; we

109

〈000, 0, 0, nil,m0;m1〉 ↪→∗ 〈111, 0, 0, nil,m1〉 (3.32)

〈111, 0, 0, nil,m1〉
3.10
↪→ 〈011,−3, 1,m1 :: nil, h0

1;h
1
1〉 (3.33)

〈011,−3, 1,m1 :: nil, h0
1;h

1
1〉

3.15
↪→ 〈111,−2, 2,m1 :: nil, h1

1〉 (3.34)

〈111,−2, 2,m1 :: nil, h1
1〉

3.10
↪→ 〈011,−1,−17, h1

1 :: m1 :: nil, h0
2;h

1
2〉 (3.35)

〈011,−1,−17, h1
1 :: m1 :: nil, h0

2;h
1
2〉

3.15
↪→ 〈111, 0,−16, h1

1 :: m1 :: nil, h1
2〉 (3.36)

〈111, 0,−16, h1
1 :: m1 :: nil, h1

2〉
3.10
↪→ 〈011,−3,−15, h1

2 :: h1
1 :: m1 :: nil, h0

1;h
1
1〉 (3.37)

〈011,−3,−15, h1
2 :: h1

1 :: m1 :: nil, h0
1;h

1
1〉

3.15
↪→ 〈111,−2,−14, h1

2 :: h1
1 :: m1 :: nil, h1

1〉 (3.38)

〈111,−2,−14, h1
2 :: h1

1 :: m1 :: nil, h1
1〉

3.11
↪→ 〈111,−1,−13, h1

1 :: m1 :: nil, h1
2〉 (3.39)

〈111,−1,−13, h1
1 :: m1 :: nil, h1

2〉
3.11
↪→ 〈111, 0,−12,m1 :: nil, h1

1〉 (3.40)

〈111, 0,−12,m1 :: nil, h1
1〉

3.10
↪→ 〈011,−3,−11, h1

1 :: m1 :: nil, h0
1;h

1
1〉 (3.41)

〈011,−3,−11, h1
1 :: m1 :: nil, h0

1;h
1
1〉

3.15
↪→ 〈111,−2,−10, h1

1 :: m1 :: nil, h1
1〉 (3.42)

〈111,−2,−10, h1
1 :: m1 :: nil, h1

1〉
3.11
↪→ 〈111,−1,−9,m1 :: nil, h1

1〉 (3.43)

〈111,−1,−9,m1 :: nil, h1
1〉

3.11
↪→ 〈111, 0,−8, nil,m1〉 (3.44)

〈111, 0, 0, nil,m1〉
3.10
↪→ 〈011, 1,−19,m1 :: nil, h0

2;h
1
2〉 (3.45)

〈011, 1,−19,m1 :: nil, h0
2;h

1
2〉

3.15
↪→ 〈111, 2,−18,m1 :: nil, h1

2〉 (3.46)

〈111, 2,−18,m1 :: nil, h1
2〉

3.10
↪→ 〈011,−1,−17, h1

2 :: m1 :: nil, h0
1;h

1
1〉 (3.47)

〈011,−1,−17, h1
2 :: m1 :: nil, h0

1;h
1
1〉

3.15
↪→ 〈111, 0,−16, h1

2 :: m1 :: nil, h1
1〉 (3.48)

〈111, 0,−16, h1
2 :: m1 :: nil, h1

1〉
3.11
↪→ 〈111, 0,−15,m1 :: nil, h1

2〉 (3.49)

〈111, 0,−16, h1
2 :: m1 :: nil, h1

1〉
3.10
↪→ 〈011,−3,−15, h1

1 :: h1
2 :: m1 :: nil, h0

1;h
1
1〉 (3.50)

〈011,−3,−15, h1
1 :: h1

2 :: m1 :: nil, h0
1;h

1
1〉

3.15
↪→ 〈111,−2,−14, h1

1 :: h1
2 :: m1 :: nil, h1

1〉 (3.51)

〈111,−2,−14, h1
1 :: h1

2 :: m1 :: nil, h1
1〉

3.11
↪→ 〈111,−1,−13, h1

2 :: m1 :: nil, h1
1〉 (3.52)

〈111,−1,−13, h1
2 :: m1 :: nil, h1

1〉
3.11
↪→ 〈111, 0,−12,m1 :: nil, h1

2〉 (3.53)

〈111, 0,−12,m1 :: nil, h1
2〉

3.10
↪→ 〈011,−3,−11, h1

2 :: m1 :: nil, h0
1;h

1
1〉 (3.54)

〈011,−3,−11, h1
2 :: m1 :: nil, h0

1;h
1
1〉

3.15
↪→ 〈111,−2,−10, h1

2 :: m1 :: nil, h1
1〉 (3.55)

〈111,−2,−10, h1
2 :: m1 :: nil, h1

1〉
3.11
↪→ 〈111,−1,−9,m1 :: nil, h1

2〉 (3.56)

〈111,−1,−9,m1 :: nil, h1
2〉

3.11
↪→ 〈111, 0,−8, nil,m1〉 (3.57)

Figure 3.5. Excerpt of the reachable states of the example program

110

1

2

3

30 31 3223 24 25 26 27 28 2921 22

TIME

Stack Size

a primitive statementan interrupt

h2

h1 h1
1

h1h1
1 h1

1

h1
2

iret

h0
1

h0
1

h0
1

h0
2

h1

F
igu

re
3.6.

S
tack

size
grow

th
over

tim
e

111

compute the context set Jσ,a

imr, bT
which contains the contexts that are reachable from

〈imr, T̂ , σ, a〉 by executing s if a is s; a′ or by executing h is a is h; in addition, we

compute the stack growth Kσ,a

imr, bT
whose value is the largest stack growth from the

state 〈imr, T̂ , σ, a〉 during the execution of s if a is s; a′ or during the execution of h

if a is h.

We construct the types as follows:

for any s in program types(s) :
∧

(imr, bT)∈Iσ,s;a

imr, bT,u

imr, T̂ →
∨

(imr′, bT
′

)∈Jσ,s;a

imr, bT

imr′, T̂
′

for m types(m) :
∨

(imr, bT)∈Inil,m
0,0̄,0

imr, T̂

for h types(h) :
∧

(imr, bT)∈Iσ,h

imr, bT,u

imr, T̂ →
∨

(imr′, bT
′

)∈Jσ,h

imr, bT

imr′, T̂
′

.

We construct τ as follows: ∀u ∈ 1..N :

τ(u) =
∧

(imr, bT)∈Iσ,a∧(imr∧t0,bθu(bT))∈Ia::σ,h(u)

imr, T̂
K

σ,h(u)

imr∧t0,bθu(bT)
−→

∨

(imr′, bT
′

)∈J
σ,h(u)

imr∧t0,bθu(bT)

imr′, T̂
′

We define the type judgment for any s in the program as: τ `
K

σ,h(u)

imr, bT ,u

s : types(s);

we define the type judgment for m as: τ `Knil,m

0,0̄,0
m : types(m); we define the type

judgment for h as: τ `Kσ,h

imr, bT ,u

h : types(y).

We now illustrate how to construct τ for the program in Figure (3.4). We will

limit our focus to τ(1) for handler 1. τ (2) of handler 2 is similarly constructed.

It is straightforward from the transition excerpt given in Figure (3.5) to derive the

following:

112

a σ (imr, T̂) ∈ Iσ,a ∈ Ia::σ,h(1) ∈ J
σ,h(1)

imr∧t0,bθ1(bT)
K

σ,h(1)

imr, bT
From

m1
nil (111, 0, 0) (011,−3, 1) (111, 0,−8) 2 (3.33-3.44)

h1
2 h1

1 :: m1 :: nil (111, 0,−16) (011,−3,−15) (111,−1,−13) 0 (3.37-3.39)

h1
1 m1 :: nil (111, 0,−12) (011,−3,−11) (111,−1,−9) 0 (3.41-3.43)

h1
2 m1 :: nil (111, 2,−18) (011,−1,−17) (111, 0,−12) 1 (3.47-3.48,

3.50-3.53)

(011,−1,−17) (111, 0,−15) 1 (3.47-3.49)

(111, 0,−2) (011,−3,−11) (111,−1,−9) 0 (3.54-3.56)

h1
1 h1

2 :: m1 :: nil (111, 0,−16) (011,−3,−15) (111,−1,−13) 0 (3.50-3.52)

Therefore, we have the following intersection type for handler 1:

τ (1) = . . .
∧

(111, 0, 0)
2

−→ ... ∨ (111, 0,−8) ∨ ...
∧

(111, 0,−16)
0

−→ ... ∨ (111,−1,−13) ∨ ...
∧

(111, 0,−12)
0

−→ ... ∨ (111,−1,−9) ∨ ...
∧

(111, 2,−18)
1

−→ ... ∨ (111, 0,−12) ∨ (111, 0,−15) ∨ ...
∧

(111, 0,−2)
0

−→ ... ∨ (111,−1,−9) ∨ ...
∧

. . .

We next illustrate how to construct the type derivation for each program point. We

again take handler 1 as an example. Consider the type derivation for h(1) in the con-

text (011,−1,−17)
1

−→ ...∨(111, 0,−12)∨ The state transitions (3.48-3.53) which

are reachable from the state 〈011,−1,−17, h1
2 :: m1 :: nil, h0

1; h
1
1〉 during the execution

of h0
1; h

1
1 are given in Figure (3.5). Note that transitions (3.48-3.53) include all the pos-

sible paths of executing h0
1; h

1
1 starting from the state 〈011,−1,−17, h1

2 :: m1 :: nil, h0
1; h

1
1〉.

It is straightforward from transitions (3.48-3.53) in Figure (3.5) to derive the follow-

ing:

113

(imr, T̂) ∈ I
h1
2::m

1::nil,a
011,−1,−17,1 (imr′, T̂

′
) ∈ J

h1
2::m1::nil,a

imr, bT
K

h1
2::m

1::nil,a

imr, bT
From

a = h0
1; a

′ (011, −1, −17) (111, 0, −16) 0 (3.48)

a = h1
1 (111, 0, −16) (111, 0, −15) 0 (3.49)

(111, 0, −16) (111, 0, −12) 1 (3.50-3.53)

(111, −1, −13) (111, 0, −12) 0 (3.53)

We, thus, have the following derivations

τ `0 h0
1 : (111,−1,−17) → (111, 0,−16) (3.58)

τ `1 h1
1 : (111, 0,−16) → (111, 0,−12) ∨ (111, 0,−15) (3.59)

∧
(111,−1,−13) → (111, 0,−12)

From Rule (3.28), for derivation (3.59), we need to show that the following safety

condition is observed:

1. (a) for the context (111, 0,−16), we have the context that appears to the left

side of the arrow in τ(1): τ(1) = . . .
∧

(111, 0,−16)
0

−→ (111,−1,−13)
∧
. . .

(b) for the contexts that appear to the right side of the arrow in τ (1): τ (1) =

. . .
∧

(111, 0,−16)
0

−→ (111,−1,−13)
∧
. . ., we have

(111,−1,−13) ∈ I
h1
2::m

1::nil,h1
1

011,−1,−17,1

(c) from τ(1) = . . .
∧

(111, 0,−16)
0

−→ (111,−1,−13)
∧
. . ., we have that the

largest stack growth δ during the call of h(1) with the context (111, 0,−16)

is 0. From K
h1
2::m

1::nil,a
111,0,−16 = 1 and δ = 0, we have δ + 1 ≤ K

h1
2::m

1::nil,h1
1

111,0,−16 .

(d) it is trivial to show that θ̂1(111, 0,−16) = (−3,−15) ≤ (4, 20).

2. It is trivial to show that θ̂(111, 0,−16) = (0,−15) ≤ (4, 20) and

θ̂(111,−1,−13) = (0,−12) ≤ (4, 20).

The safety condition of the derivation (3.58) can be similarly shown. We omit the

details here.

114

Since {111, 0,−16} ⊆ {(111, 0,−16), (111,−1,−3)}, from (3.58), (3.59) and

Rule (3.31), we can derive

τ `1 h
0
1; h

1
1 : (111,−1,−17) → (111, 0,−12) ∨ (111, 0,−15)

3.6 Type construction

The abstract semantics defines a transition graph R of the dynamics of a periodic

interrupt calculus program. In this section, we show how to construct types from the

graph R.

In subsection 3.6.1, we define a function ψR and show that the function ψR has a

least fixed point µψR by using Tarski’s fixed point theorem. The intuition of the fixed

point µψR is that, for any abstract state in the graph R and a segment of program

code, µψR can compute (1) the set of states that are reachable by executing the code

segment; and (2) the largest stack growth during the execution of the code segment.

The property that, given an abstract state in R and a segment of program code,

µψR computes the set of states in R that are reachable by executing the code segment

is defined as the soundness of µψR on R. We also define the stack-irrelevancy of µψR

on R, which states the fact that it has nothing to do with the stack component of the

starting state when µψR computes (1) the set of states that are reachable by executing

a code segment from a given abstract state, and (2) the largest stack growth during

the execution of the code segment. We further define the completeness of µψR on R,

which states that if an abstract state Q1 is reachable from another abstract state Q2

by executing a segment of code, then the abstract state Q1 is included in the set of

the reachable states of Q2 which is computed with the help of the fixed-point function

µψR. The properties of soundness, stack-irrelevancy and completeness are formally

defined in subsection 3.6.2. In addition, we prove µψR has the three properties on R

in the same subsection.

In subsection 3.6.3, we show how to construct types and type judgments with

the help of the function µψR. In subsection 3.6.4, we prove that the constructed

115

types and type judgments are well-formed in the sense of Definition (3.4.1) and Def-

inition (3.4.2). We show how to build the type derivations of statements, the main

program and handlers out of R, in subsection 3.6.5.

Since abstract states always carry h, we omit it here for the sake of simplicity. In

this section, we let h(0) = p.m.

3.6.1 ψ function

Recall that R (Section 3.3) is the set of all reachable abstract states from the

initial abstract state Q0. We require that, given a number K ≥ 0, ∀Q ∈ R : (Q.T̂ ≤

r ∧Q.stk ≤ K). From Theorem (3.3.1), it follows that R is finite.

For u ∈ 0..N , we define effective code set Cu for each h(u).

Definition 3.6.1 (Effective code set Cu) Let h(u) ∈ Cu if h(u) is not of the form

loop s, and let s; loop s ∈ C0. If a ∈ Cu and

• a is of the form s; a′ and s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr

or skip and a′ 6= loop s, then let a′ ∈ Cu.

• a is of the form s; a′ and s is if0 x then s1 else s2, then let s1; a
′ ∈ Cu and

s2; a
′ ∈ Cu.

• a is of the form s; a′ and s is s1; s2, then let s1; a
′ ∈ Cu

• a is of the form h and h is s; h′, then let h′ ∈ Cu.

• a is of the form h and h is iret, then let iret ∈ Cu.

Let C =
⋃
{Cu | u ∈ 0..N}. We use variable a to range over C. Clearly, C 6= ∅ and

C is finite. Let S = {σ | 〈imr, T̂ , σ, a〉 ∈ R}. We use variable σ to range over S.

Clearly, S is finite and S 6= ∅ (because we have nil ∈ S.) Recall that in Section 3.4

we assume all the contexts {〈imr, T̂ 〉|〈imr, T̂ , σ, a〉 ∈ R} are uniquely indexed; we

now let I = {i | 〈imri, T̂ i, σ, a〉 ∈ R}; we use variables i and j to range over I.

Specifically we denote the index of (Q0.imr,Q0.T̂) by i0. We use variables I and J

116

to range over 2I; We let NK = {0..K}. We use variable k to range over NK and M

to range over 2NK .

Define function f : I ×S ×C → ((2I ×NK)); we use f(i, σ, a).I to denote the first

element of the pair f(i, σ, a) = (I, k); use f(i, σ, a).k to denote the second element

of the pair f(i, σ, a) = (I, k); define the set of all such functions as D = {2I×S×C →

22I×NK)}.

Define an auxiliary function max = λM.k : 2NK → NK as

M 6= ∅ ∧ (max(M) = k such that k ∈M ∧ ∀k′ ∈M : k ≥ k′)

Define function ψR : D → D as follows:

Definition 3.6.2 (ψR) Define f ′ = ψRf : for all i ∈ I, σ ∈ S and a ∈ C:

1. if a = s; a′ and s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip:

f ′(i, σ, a) = (
⋃
{f(j, σ, s; a′).I | j ∈ J} ∪ { α(ξs(i)) },

max({f(α(ζu(i)), s; a
′::Sσ, h(u)).k | u ∈ P̂(imri, T̂ i)} ∪

{f(j, σ, s; a′).k | j ∈ J} ∪ {|σ|}))

where

J =
⋃
{f(α(ζu(i)), s; a

′::Sσ, h(u)).I | u ∈ P̂(imri, T̂ i)}

2. if a = s; a′ and s is if0 x then s1 else s2:

f ′(i, σ, a) = (f(i, σ, s1; a
′).I ∪ f(i, σ, s2; a

′).I,

max({f(i, σ, s1; a
′).k, f(i, σ, s2; a

′).k})

3. if a = s; a′ and s is s1; s2:

f ′(i, σ, a) = (
⋃
{f(j, σ, s2; a

′).I | j ∈ J},

max({f(i, σ, s1; (s2; a
′)).k} ∪ {f(j, σ, s2; a

′).k | j ∈ J}))

where

J = f(i, σ, s1; (s2; a
′)).I

4. if a = h and h is iret:

f ′(i, σ, a) = (
⋃
{f(j, σ, iret).I | j ∈ J} ∪ { α(ξiret(i)) },

117

max({f(α(ζu(i)), iret::Sσ, h(u)).k | u ∈ P̂(imri, T̂ i)} ∪

{f(j, σ, iret).k | j ∈ J} ∪ {|σ|}))

where

J =
⋃
{f(α(ζu(i)), iret::Sσ, h(u)).I | u ∈ P̂(imri, T̂ i)}

5. if a = h and h is s; h′:

f ′(i, σ, a) = (
⋃
{f(j, σ, h′).I | j ∈ J}, max({f(j, σ, h′).k}∪{f(i, σ, s; h′).k | j ∈

J}))

where

J = f(i, σ, s; h′).I

where operation ::S on C and S is defined as:

∀a ∈ C : ∀σ ∈ S : a::Sσ =

a :: σ if a :: σ ∈ S

nil if a :: σ /∈ S

and operation α is defined as:

∀i ∈ I : α(z) =

z if z ∈ I

i0 if z /∈ I
where z is of the form either ζu(i) or ξs(i)

We define a reflexive, antisymmetric and transitive binary relation ≤ over D as

follows: f1 ≤ f2 iff

∀σ ∈ S : ∀a ∈ C : ∀i ∈ I : f1(i, σ, a).I ⊆ f2(i, σ, a).I ∧ f1(i, σ, a).k ≤ f2(i, σ, a).k

Let f> be ∀i ∈ I : ∀σ ∈ S : ∀a ∈ C : f>(i, σ, a) = (I, K) and let f⊥ be ∀i ∈ I : ∀σ ∈

S : ∀a ∈ C : f>(i, σ, a) = (∅, 0), and let D′ ⊆ D, then we have
∨

f∈D′ f ≤ f> and

f⊥ ≤
∧

f∈D′ f . It is straightforward to show that (D,≤) is a lattice.

We define f0 as ∀i ∈ I : ∀σ ∈ S : ∀a ∈ C : f0(i, σ, a) = (∅, |σ|).

Given the relation ≤ over D, it is straightforward to show that function ψR is

monotone. It follows from Tarski’s fixed-point theorem that ψR has a least fixed-

point µψR.

118

Proposition 3.6.1 (µψR Rewrite) For all i ∈ I, σ ∈ S and a ∈ C, we have

1. If a = s; a′ and s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip,

then we have

µψR(i, σ, a).I =
⋃

{µψR(j, σ, s; a′).I | j ∈ J} ∪ {α(ξs(i))}

µψR(i, σ, a).k = max({µψR(α(ζu(i)), s; a
′::Sσ, h(u)).k | u ∈ P̂(imri, T̂ i)} ∪

{µψR(j, σ, s; a′).k | j ∈ J} ∪ {|σ|})

where J =
⋃
{µψR(α(ζu(i)), s; a::Sσ, h(u)).I | u ∈ P̂(imri, T̂ i)}.

2. If a = s; a′ and s is if0 x then s1 else s2, then we have

µψR(i, σ, a).I = µψR(i, σ, s1; a
′).I ∪ µψR(i, σ, s2; a

′).I

µψR(i, σ, a).k = max({µψR(i, σ, s1; a
′).k, µψR(i, σ, s2; a

′).k})

3. if a = s; a′ and s is s1; s2, then we have

µψR(i, σ, a).I =
⋃

{µψR(j, σ, s2; a
′).I | j ∈ J}

µψR(i, σ, a).k = max({µψR(i, σ, s1; (s2; a
′)).k} ∪ {µψR(j, σ, s2; a

′).k | j ∈ J})

where J = µψR(i, σ, s1; (s2; a
′)).I

4. If a = h and h is iret:

µψR(i, σ, a).I =
⋃

{µψR(j, σ, iret).I | j ∈ J} ∪ { α(ξiret(i)) }

µψR(i, σ, a).k = max({µψR(α(ζu(i)), iret::Sσ, h(u)).k | u ∈ P̂(imri, T̂ i)} ∪

{µψR(j, σ, iret).k | j ∈ J} ∪ {|σ|})

where J =
⋃
{µψR(α(ζu(i)), iret::Sσ, h(u)).I | u ∈ P̂(imri, T̂ i)}

5. If a = h and h is s; h′:

µψR(i, σ, a).I =
⋃

{µψR(j, σ, h′).I | j ∈ J}

µψR(i, σ, a).k = max({µψR(i, σ, s; h′).k} ∪ {µψR(j, σ, h′).k | j ∈ J})

where J = µψR(i, σ, s; h′).I

119

Proposition 3.6.2 If Q ∈ R ⇒ Q.stk ≤ K, then ∀i ∈ I : ∀σ ∈ S : ∀a ∈ C :

µψR(i, σ, a).k ≤ K.

We now prove some lemmas regarding the fixed point µψR.

Lemma 3.6.1 For all i ∈ I, σ ∈ S and a ∈ C, we have

1. if a = s; a′, s is either x := e, imr = imr∧ imr, imr = imr∨ imr or skip and u ∈

P̂(imri, T̂ i), then we have µψR(α(ζu(i)), s; a
′::Sσ, h(u)).k ≤ µψR(i, σ, s; a′).k

2. if a = s; a′ and s is if0 x then s1 else s2, then we have µψR(i, σ, s1; a
′).k ≤

µψR(i, σ, s; a′).k and µψR(i, σ, s2; a
′).k ≤ µψR(i, σ, s; a′).k

3. if a = (s1; s2); a
′, then we have µψR(i, σ, s1; (s2; a

′)).k ≤ µψR(i, σ, (s1; s2); a
′).k

and j ∈ µψR(i, σ, s1; (s2; a
′)).I ⇒ µψR(j, σ, s2; a

′).k ≤ µψR(i, σ, (s1; s2); a
′).k

4. if a = iret and u ∈ P̂(imri, T̂ i), then we have µψR(α(ζu(i)), iret::Sσ, h(u)).k ≤

µψR(i, σ, iret).k

5. if h = s; h′, then we have µψR(i, σ, s; h′).k ≤ µψR(i, σ, h).k and

j ∈ µψR(i, σ, s; h′).I ⇒ µψR(j, σ, h′).k ≤ µψR(i, σ, h).k

Proof The proofs of each Item is immediately from corresponding Item of Proposi-

tion (3.6.1).

Lemma 3.6.2 For all i ∈ I, σ ∈ S and a ∈ C, we have

1. µψR(i, σ, a).I 6= ∅

2. µψR(i, σ, a).k ≥ |σ|

Proof We proceed by induction on the structure of a ∈ C. There are five cases

depending upon the form of a.

120

1. a is of the form: s; a′ and s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr

or skip.

From Item (1) of Proposition (3.6.1), we have

(i) µψR(i, σ, s; a).I =
⋃
{µψR(j, σ, s; a).I | j ∈ J} ∪ {α(ξs(i))}

where J =
⋃
{µψR(α(ζu(i)), s; a::Sσ, h(u)).I | u ∈ P̂(imri, T̂ i)}

(ii) µψR(i, σ, a).k = max({µψR(α(ζu(i)), s; a
′::Sσ, h(u)).k | u ∈ P̂(imri, T̂ i)}∪

{f(j, σ, s; a′).k | j ∈ J} ∪ {|σ|})

From (i), we have α(ξs(i)) ∈ µψR(i, σ, s; a).I, which is Item (1).

From (ii), we have µψR(i, σ, s; a).k ≥ |σ|, which is Item (2).

2. a is of the form: s; a′ and s is if0 x then s1 else s2.

From Item (2) of Proposition (3.6.1), we have

(i) µψR(i, σ, a).I = µψR(i, σ, s1; a
′).I ∪ µψR(i, σ, s2; a

′).I

(ii) µψR(i, σ, a).k = max({µψR(i, σ, s1; a
′).k, µψR(i, σ, s2; a

′).k})

From the induction hypothesis, we have

(iii) ∀i ∈ I : ∀σ ∈ S : µψR(i, σ, s1; a
′).I 6= ∅ and

∀i ∈ I : ∀σ ∈ S : µψR(i, σ, s2; a
′).I 6= ∅

(iv) ∀i ∈ I : ∀σ ∈ S : µψR(i, σ, s1; a
′).k ≥ |σ| and

∀i ∈ I : ∀σ ∈ S : µψR(i, σ, s2; a
′).k ≥ |σ|

From (i) and (iii), we have µψR(i, σ, a).I 6= ∅, which is Item (1).

From (ii) and (iv), we have µψR(i, σ, a).k ≥ |σ|, which is Item (2).

3. a is of the form: s; a′ and s is s1; s2.

From Item (3) of Proposition (3.6.1), we have

(i) µψR(i, σ, a).I =
⋃
{µψR(j, σ, s2; a

′).I | j ∈ J}

(ii) µψR(i, σ, a).k = max({µψR(i, σ, s1; (s2; a
′)).k, µψR(j, σ, s2; a

′).k | j ∈ J})

where J = µψR(i, σ, s1; (s2; a
′)).I

From the induction hypothesis, we have

(iii) ∀j ∈ I : ∀σ ∈ S : µψR(j, σ, s1; (s2; a
′)).I 6= ∅

(iv) ∀j ∈ I : ∀σ ∈ S : µψR(j, σ, s1; (s2; a
′)).k ≥ |σ|

(v) ∀j ∈ I : ∀σ ∈ S : µψR(j, σ, s2; a
′).I 6= ∅

From (iii) and J = µψR(i, σ, s1; (s2; a
′)).I, we have J 6= ∅.

121

From J 6= ∅, (v) and (i), we have µψR(i, σ, a).I 6= ∅, which is Item (1).

From (iv) and (ii), we have µψR(i, σ, a).k ≥ |σ|, which is Item (2).

4. a is of the form: h and h is iret.

From Item (4) of Proposition (3.6.1), we have

(i) µψR(i, σ, a).I =
⋃
{µψR(j, σ, iret).I | j ∈ J} ∪ { α(ξiret(i)) }

where J =
⋃
{µψR(α(ζu(i)), iret::Sσ, h(u)).I | u ∈ P̂(imri, T̂ i)}

(ii) µψR(i, σ, a).k = max({µψR(α(ζu(i)), iret::Sσ, h(u)).k | u ∈ P̂(imri, T̂ i)}∪

{f(j, σ, iret).k | j ∈ J} ∪ {|σ|})

From (i), we have α(ξiret(i)) ∈ µψR(i, σ, a).I, which is Item (1).

From (ii), we have µψR(i, σ, a).k ≥ |σ|, which is Item (2).

5. a is of the form: h and h = s; h′.

From Item (5) of Proposition (3.6.1), we have

(i) µψR(i, σ, a).I =
⋃
{µψR(j, σ, h′).I | j ∈ J}

(ii) µψR(i, σ, a).k = max({µψR(i, σ, s; h′).k, µψR(j, σ, h′).k | j ∈ J})

where J = µψR(i, σ, s; h′).I

From the induction hypothesis, we have

(iii) ∀j ∈ I : ∀σ ∈ S : µψR(j, σ, s; h′)).I 6= ∅

(iv) ∀j ∈ I : ∀σ ∈ S : µψR(j, σ, s; h′)).k ≥ |σ|

(v) ∀j ∈ I : ∀σ ∈ S : µψR(j, σ, h′)).I 6= ∅

From (iii) and J = µψR(i, σ, s; h′).I, we have J 6= ∅.

From J 6= ∅, (v) and (i), we have µψR(i, σ, a).I 6= ∅, which is Item (1).

From (iv) and (ii), we have µψR(i, σ, a).k ≥ |σ|, which is Item (2).

3.6.2 Soundness, stack-irrelevancy and completeness of ψ

We define an anti-reflexive, transitive relation ⊂ over stack variable S as follows:

σ ⊂ σ′ iff σ′ = ak :: .. :: a1 :: σ, where k ≥ 1. We define a reflexive, antisymmetric,

transitive relation ⊆ over stack variable S as follows: σ ⊆ σ ′ iff σ = σ′ or σ ⊂ σ′.

122

We label the transition Q ↪→ Q′ with (Q′.σ if it is the Rule (3.10); label Q ↪→ Q′ with

)Q.σ if it is the Rule (3.11). We use variable π to denote state transition path. Given

a path π, we use function Π(π) to denote the set of labels along π. We abbreviate

lσ1 /∈ Π(π), .., lσk /∈ Π(π) as lσ1 , .., lσk /∈ Π(π), where l can be either (or).

Proposition 3.6.3 We have

1. If π : Q ↪→∗ Q′ and Q.σ ⊂ Q′.σ, then for any σ such that Q.σ ⊂ σ ⊆ Q′.σ, we

have (σ∈ Π(π).

2. If π : Q ↪→∗ Q′ and Q′.σ ⊂ Q.σ, then for any σ such that Q′.σ ⊂ σ ⊆ Q.σ, we

have)σ ∈ Π(π).

3. If π : Q ↪→∗ Q′, Q.σ = Q′.σ and)Q.σ /∈ Π(π), then (Q.σ /∈ Π(π).

4. If π′ is a sub-path of π and then Π(π′) ⊆ Π(π).

5. If π is a concatenation of π1 and π2, then Π(π) = Π(π1) ∪ Π(π2).

Proposition 3.6.4 We have

1. if path π: 〈imri, T̂ i, σ, s1; (s2; a)〉 ↪→∗ 〈imrj, T̂ j, σ, a〉, then ∃i′ along π such that

〈imri, T̂ i, σ, s1; (s2; a)〉 ↪→∗ 〈imri′ , T̂ i′ , σ, s2; a〉 and

〈imri′ , T̂ i′ , σ, s2; a〉 ↪→∗ 〈imrj, T̂ j, σ, a〉.

2. if path π : 〈imri, T̂ i, a :: σ, s; h〉 ↪→∗ 〈imrj, T̂ j, σ, a〉, then ∃i′ along π such that

〈imri, T̂ i, a :: σ, s; h〉 ↪→∗ 〈imri′, T̂ i′, a :: σ, h〉 and

〈imri′ , T̂ i′ , a :: σ, h〉 ↪→∗ 〈imrj, T̂ j, σ, a〉.

3. For u ∈ 0..N , if s; a ∈ Cu and path π: 〈imri, T̂ i, σ, h(u)〉 ↪→∗ 〈imrj, T̂ j, σ, a〉,

then there exists i′ along π such that 〈imri, T̂ i, σ, h(u)〉 ↪→∗ 〈imri′, T̂ i′, σ, s; a〉

and 〈imri′, T̂ i′, σ, s; a〉 ↪→∗ 〈imrj, T̂ j, σ, a〉.

123

Definition 3.6.3 We denote Q
σ

↪→∗ Q′ if there exists a path π from Q to Q′ such

that

1. Q.σ = Q′.σ = σ and (σ,)σ, ((Q′.a)::σ,)(Q′.a)::σ /∈ Π(π), or

2. Q.σ = (Q′.a) :: σ and Q′.σ = σ and (σ,)σ, ((Q′.a)::σ /∈ Π(π).

Definition 3.6.4 We denote Q
σ+

↪→∗ Q′ if there exists a path π from Q to Q′ such

that

1. Q.σ = Q′.σ = σ and (σ,)σ /∈ Π(π), or

2. Q.σ = (Q′.a) :: σ and Q′.σ = σ and (σ,)σ /∈ Π(π).

Proposition 3.6.5 We have

1. if Q
σ
↪→ Q′, then Q

σ+
↪→ Q′.

2. if 〈imri, T̂ i, σ, a1〉
σ+

↪→∗ 〈imrj, T̂ j, σ, a2〉, then ∃i′ such that

〈imri, T̂ i, σ, a1〉
σ

↪→∗ 〈imri′ , T̂ i′ , σ, a2〉 and 〈imri′, T̂ i′, σ, a2〉
σ+

↪→∗ 〈imrj, T̂ j, σ, a2〉.

3. if 〈imri, T̂ i, σ, a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, a〉, then either i = j or i 6= j ∧ η(a) ∈ L.

Lemma 3.6.3 If π: 〈imr1, T̂ 1, σ, a1〉
σ+

↪→∗ 〈imr2, T̂ 2, σ, a2〉 and σ′ ⊂ σ, then we have

(σ′

,)σ′

/∈ Π(π).

Proof Suppose for the sake of contradiction that (σ′

∈ Π(π). Then there must

be a state transition 〈imr′, T̂
′

, σ′′, a〉 ↪→ 〈imr′ ∧ ¬t0, θ̂u(T̂
′

), σ′, h(u)〉 along π, for

some u ∈ 1..N . Consider the sub-path π′ of π: 〈imr′ ∧ ¬t0, θ̂u(T̂
′

), σ′, h(u)〉 ↪→∗

〈imr2, T̂ 2, σ, a2〉. From σ′ ⊂ σ, σ ⊆ σ, and Item (1) of Proposition (3.6.3), we have

that (σ∈ Π(π′). From π′ is sub-path of π, (σ∈ Π(π′) and Item (4) of Proposition

(3.6.3), we have (σ∈ Π(π), which is a contradiction.

Suppose for the sake of contradiction that)σ′

∈ Π(π). Then there must be a state

transition 〈imr′, T̂
′

, σ′, iret〉 ↪→ 〈imr′ ∨ t0, θ̂(imr
′, T̂

′

), σ′′, a〉 along π, where σ′ = a ::

σ′′. Consider the sub-path of π′: 〈imr1, T̂ 1, σ, a1〉 ↪→∗ 〈imr′, T̂
′

, σ′, iret〉. From σ′ ⊂ σ,

124

σ ⊆ σ, and Item (2) of Proposition (3.6.3), we have that there is a)σ ∈ Π(π′). From

π′ is sub-path of π,)σ ∈ Π(π′) and Item (4) of Proposition (3.6.3), we have)σ ∈ Π(π),

which is a contradiction.

Lemma 3.6.4 We have

1. if 〈imr1, T̂ 1, σ, a1〉
σ+

↪→∗ 〈imr2, T̂ 2, σ, a2〉 and 〈imr2, T̂ 2, σ, a2〉
σ

↪→∗ 〈imr3, T̂ 3, σ, a3〉

then 〈imr1, T̂ 1, σ, a1〉
σ

↪→∗ 〈imr3, T̂ 3, σ, a3〉.

2. for u ∈ 1..N , if 〈imr1, T̂ 1, σ, a〉 ↪→ 〈imr1 ∧ ¬t0, θ̂u(T̂ 1), a :: σ, h(u)〉 and

〈imr1 ∧ ¬t0, θ̂u(T̂ 1), a :: σ, h(u)〉
σ

↪→∗ 〈imr2, T̂ 2, σ, a〉, then 〈imr1, T̂ 1, σ, a〉
σ+

↪→∗

〈imr2, T̂ 2, σ, a〉.

3. if σ = a :: σ′, 〈imr1, T̂ 1, σ, h1〉
σ+

↪→∗ 〈imr2, T̂ 2, σ, h2〉 and 〈imr2, T̂ 2, σ, h2〉
σ′

↪→∗

〈imr3, T̂ 3, σ
′, a〉, then 〈imr1, T̂ 1, σ, h1〉

σ′

↪→∗ 〈imr3, T̂ 3, σ
′, a〉.

4. if 〈imr1, T̂ 1, σ, a1〉
σ+

↪→∗ 〈imr2, T̂ 2, σ, a2〉 and 〈imr2, T̂ 2, σ, a2〉
σ+

↪→∗ 〈imr3, T̂ 3, σ, a3〉,

then 〈imr1, T̂ 1, σ, a1〉
σ+

↪→∗ 〈imr3, T̂ 3, σ, a3〉.

Proof 1. From 〈imr1, T̂ 1, σ, a1〉
σ+

↪→∗ 〈imr2, T̂ 2, σ, a2〉, we have path π1 :

〈imr1, T̂ 1, σ, a1〉 ↪→∗ 〈imr2, T̂ 2, σ, a2〉 and (σ,)σ /∈ Π(π1). From

〈imr2, T̂ 2, σ, a2〉
σ

↪→∗ 〈imr3, T̂ 3, σ, a3〉, we have path π2 : 〈imr2, T̂ 2, σ, a2〉 ↪→∗

〈imr3, T̂ 3, σ, a3〉 and (σ,)σ, (a3::σ,)a3::σ /∈ Π(π2). Concatenating π1 and π2, we

have path π3: 〈imr1, T̂ 1, σ, a1〉 ↪→∗ 〈imr3, T̂ 3, σ, a3〉. From (σ,)σ /∈ Π(π1),

(σ,)σ, (a3::σ,)a3::σ /∈ Π(π2), π3 is a concatenation of π1 and π2 and Item (5) of

Proposition (3.6.3), we have (σ,)σ, (a3::σ,)a3::σ /∈ Π(π3), from which it follows

〈imr1, T̂ 1, σ, a1〉
σ

↪→∗ 〈imr3, T̂ 3, σ, a3〉.

2. From 〈imr1 ∧ ¬t0, θ̂u(T̂ 1), a :: σ, h(u)〉
σ

↪→∗ 〈imr2, T̂ 2, σ, a〉, we have path π:

〈imr1 ∧ ¬t0, θ̂u(T̂ 1), a :: σ, h(u)〉 ↪→∗ 〈imr2, T̂ 2, σ, a〉 and (σ,)σ /∈ Π(π). Con-

catenating 〈imr1, T̂ 1, σ, a〉 ↪→ 〈imr1 ∧ ¬t0, θ̂u(T̂ 1), a :: σ, h(u)〉 and π, we have

path π′ : 〈imr1, T̂ 1, σ, a〉 ↪→∗ 〈imr2, T̂ 2, σ, a〉. From (σ,)σ /∈ Π(π), there is nei-

ther (σ nor)σ along the transition

125

〈imr1, T̂ 1, σ, a〉 ↪→ 〈imr1 ∧ ¬t0, θ̂u(T̂ 1), a :: σ, h(u)〉, π′ is a concatenation of π

and the transition and Item (5) of Proposition (3.6.3), we have (σ,)σ /∈ Π(π′),

from which it follows 〈imr1, T̂ 1, σ, a〉
σ+

↪→∗ 〈imr2, T̂ 2, σ, a〉.

3. From 〈imr1, T̂ 1, σ, h1〉
σ+

↪→∗ 〈imr2, T̂ 2, σ, h2〉, we have path π1 :

〈imr1, T̂ 1, σ, h1〉 ↪→∗ 〈imr2, T̂ 2, σ, h2〉 and (σ,)σ /∈ Π(π1). From σ = a :: σ′, we

have σ′ ⊂ σ. From σ′ ⊂ σ, 〈imr1, T̂ 1, σ, h1〉
σ+

↪→∗ 〈imr2, T̂ 2, σ, h2〉 and Lemma

(3.6.3), (σ′

,)σ′

/∈ Π(π1). From 〈imr2, T̂ 2, σ, h2〉
σ′

↪→∗ 〈imr3, T̂ 3, σ
′, a〉, we have

path π2 : 〈imr2, T̂ 2, σ, h2〉 ↪→∗ 〈imr3, T̂ 3, σ
′, a〉 and (σ′

,)σ′

, (σ /∈ Π(π2). Concate-

nating π1 and π2, we have path π3 : 〈imr1, T̂ 1, σ, h1〉 ↪→
∗ 〈imr3, T̂ 3, σ

′, a〉. From

(σ′

,)σ′

, (σ,)σ /∈ Π(π1), π3 is a concatenation π1 and π2 and Item (5) of Proposi-

tion (3.6.3), we have (σ′

,)σ′

, (σ /∈ Π(π3), from which it follows 〈imr1, T̂ 1, σ, h1〉
σ′

↪→∗

〈imr3, T̂ 3, σ
′, a〉.

4. From 〈imr1, T̂ 1, σ, a1〉
σ+

↪→∗ 〈imr2, T̂ 2, σ, a2〉, we have π1 : 〈imr1, T̂ 1, σ, a1〉 ↪→∗

〈imr2, T̂ 2, σ, a2〉 and (σ,)σ /∈ Π(π1). From 〈imr2, T̂ 2, σ, a2〉
σ+

↪→∗ 〈imr3, T̂ 3, σ, a3〉,

we have π2: 〈imr2, T̂ 2, σ, a2〉 ↪→∗ 〈imr3, T̂ 3, σ, a3〉 and (σ,)σ /∈ Π(π2). Concate-

nating π1 and π2, we have π3: 〈imr2, T̂ 2, σ, a2〉 ↪→∗ 〈imr3, T̂ 3, σ, a3〉. From

(σ,)σ /∈ Π(π1), (σ,)σ /∈ Π(π2), π3 is concatenation of π1 and π2 and Item (5) of

Proposition (3.6.3), we have (σ,)σ /∈ Π(π3), from which it follows

〈imr2, T̂ 2, σ, a2〉
σ+

↪→∗ 〈imr3, T̂ 3, σ, a3〉.

Corollary 3.6.1 We have

1. if 〈imr1, T̂ 1, σ, a1〉
σ

↪→∗ 〈imr2, T̂ 2, σ, a2〉 and 〈imr2, T̂ 2, σ, a2〉
σ

↪→∗ 〈imr3, T̂ 3, σ, a3〉

then 〈imr1, T̂ 1, σ, a1〉
σ

↪→∗ 〈imr3, T̂ 3, σ, a3〉.

2. if σ = a :: σ′, 〈imr1, T̂ 1, σ, h1〉
σ

↪→∗ 〈imr2, T̂ 2, σ, h2〉 and 〈imr2, T̂ 2, σ, h2〉
σ′

↪→∗

〈imr3, T̂ 3, σ
′, a〉, then 〈imr1, T̂ 1, σ, h1〉

σ′

↪→∗ 〈imr3, T̂ 3, σ
′, a〉.

Proof 1. From 〈imr1, T̂ 1, σ, a1〉
σ

↪→∗ 〈imr2, T̂ 2, σ, a2〉 and Item (1) of Proposition

(3.6.5), we have

126

〈imr1, T̂ 1, σ, a1〉
σ+

↪→∗ 〈imr2, T̂ 2, σ, a2〉. From 〈imr1, T̂ 1, σ, a1〉
σ+

↪→∗ 〈imr2, T̂ 2, σ, a2〉,

〈imr2, T̂ 2, σ, a2〉
σ

↪→∗ 〈imr3, T̂ 3, σ, a3〉 and Item (1) of Lemma (3.6.4), we have

〈imr1, T̂ 1, σ, a1〉
σ

↪→∗ 〈imr3, T̂ 3, σ, a3〉.

2. From 〈imr1, T̂ 1, σ, h1〉
σ

↪→∗ 〈imr2, T̂ 2, σ, h2〉 and Item (1) of Proposition (3.6.5),

we have

〈imr1, T̂ 1, σ, h1〉
σ+

↪→∗ 〈imr2, T̂ 2, σ, h2〉. From 〈imr1, T̂ 1, σ, h1〉
σ+

↪→∗ 〈imr2, T̂ 2, σ, h2〉,

〈imr2, T̂ 2, σ, h2〉
σ′

↪→∗ 〈imr3, T̂ 3, σ
′, a〉, σ = a :: σ′ and Item (3) of Lemma (3.6.4),

we have 〈imr1, T̂ 1, σ, h1〉
σ′

↪→∗ 〈imr3, T̂ 3, σ
′, a〉.

Let f ∈ D. We define the soundness of f on R as follows.

Definition 3.6.5 (Soundness of f on R) f is sound on R iff for all σ ∈ S, a ∈ C

and i ∈ I, if 〈imri, T̂ i, σ, a〉 ∈ R, then

1. j ∈ f(i, σ, s; a′).I ⇒ 〈imri, T̂ i, σ, s; a
′〉

σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉 if a = s; a′

2. j ∈ f(i, σ, h).I ⇒ 〈imri, T̂ i, σ, h〉
σ′

↪→∗ 〈imrj, T̂ j, σ
′, a′〉 if a = h and σ = a′ :: σ′

We simply say that f is sound if it is clear from the context which R we refer to.

Lemma 3.6.5 Suppose 〈imri, T̂ i, σ, a〉 ∈ R,

1. if a = s; a′ and s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip,

then we have α(ξs(i)) = ξs(i) and 〈imri, T̂ i, σ, a〉
σ
↪→ 〈imrξs(i), T̂ ξs(i), σ, a

′〉.

2. if a = s; a′ and s is if0 x then s1 else s2, then we have 〈imri, T̂ i, σ, s; a
′〉

σ
↪→

〈imri, T̂ i, σ, s1; a
′〉 and 〈imri, T̂ i, σ, s; a

′〉
σ
↪→ 〈imri, T̂ i, σ, s2; a

′〉.

3. if a = iret and σ = a′ :: σ′, then we have α(ξiret(i)) = ξiret(i) and 〈imri, T̂ i, σ, a〉
σ′

↪→

〈imrξiret(i), T̂ ξiret(i), σ
′, a′〉.

4. if u ∈ P̂(imri, T̂ i) and η(a) ∈ L, then we have a::Sσ = a :: σ, α(ζu(i)) = ζu(i)

and 〈imri, T̂ i, σ, a〉 ↪→ 〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉.

127

Proof 1. From 〈imri, T̂ i, σ, s; a
′〉 and applying either Rule (3.13) - (3.15), or

(3.18), depending on what s is, we have

(i) 〈imri, T̂ i, σ, s; a
′〉 ↪→ 〈imrξs(i), T̂ ξs(i), σ, a

′〉.

From (i) and either Rule (3.13) - (3.15), or (3.18) does not introduce (σ,)σ, (a′::σ

or)a′::σ, we have

(ii) 〈imri, T̂ i, σ, s; a
′〉

σ
↪→ 〈imrξs(i), T̂ ξs(i), σ, a

′〉.

From 〈imri, T̂ i, σ, s; a
′〉 ∈ R, and (i), we have 〈imrξs(i), T̂ ξs(i), σ, a

′〉 ∈ R, from

which it follows ξs(i) ∈ I. From ξs(i) ∈ I, we have α(ξs(i)) = ξs(i).

2. From 〈imri, T̂ i, σ, s; a
′〉 and Rule (3.16), we have

(i) 〈imri, T̂ i, σ, s; a
′〉 ↪→ 〈imri, T̂ i, σ, s1; a

′〉.

From (i) and Rule (3.16) does not introduce (σ,)σ, ((s1;a′)::σ,)(s1;a′)::σ, we have

〈imri, T̂ i, σ, s; a
′〉

σ
↪→ 〈imri, T̂ i, σ, s1; a

′〉.

From 〈imri, T̂ i, σ, s; a
′〉 and Rule (3.17), we have

(ii) 〈imri, T̂ i, σ, s; a
′〉 ↪→ 〈imri, T̂ i, σ, s2; a

′〉.

From (ii) and Rule (3.17) does not introduce (σ,)σ, ((s2;a′)::σ,)(s2;a′)::σ, we have

〈imri, T̂ i, σ, s; a
′〉

σ
↪→ 〈imri, T̂ i, σ, s2; a

′〉.

3. From 〈imri, T̂ i, σ, iret〉, σ = a′ :: σ′ and Rule (3.11), we have

(i) 〈imri, T̂ i, σ, iret〉 ↪→ 〈imrξiret(i), T̂ ξiret(i), σ
′, a′〉.

From Rule (3.11) does not introduce (σ,)σ or (a::σ and (i), we have

〈imri, T̂ i, σ, iret〉
σ′

↪→ 〈imrξiret(i), T̂ ξiret(i), σ
′, a′〉. From 〈imri, T̂ i, σ, iret〉 ∈ R and

(i), we have

〈imrξiret(i), T̂ ξiret(i), σ
′, a′〉 ∈ R, from which it follows ξiret(i) ∈ I. From ξiret(i) ∈ I,

we have α(ξiret(i)) = ξiret(i).

4. From u ∈ P̂(imri, T̂ i), η(a) ∈ L, 〈imri, T̂ i, σ, iret〉 and Rule (3.10), we have

(i) 〈imri, T̂ i, σ, iret〉 ↪→ 〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉.

From 〈imri, T̂ i, σ, iret〉 ∈ R and (i), we have 〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉 ∈ R,

from which it follows a :: σ ∈ S and ζu(i) ∈ I. From a :: σ ∈ S, we have

a::Sσ = a :: σ. From ζu(i) ∈ I, we have α(ζu(i)) = ζu(i).

128

Lemma 3.6.6 If f is sound on R then ψRf is also sound on R.

Proof From Definition (3.6.5), we need to prove the following: for all i ∈ I, σ ∈ S

and a ∈ C, if 〈imri, T̂ i, σ, a〉 ∈ R, then

1. j ∈ ψRf(i, σ, s; a′).I ⇒ 〈imri, T̂ i, σ, s; a
′〉

σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉 if a = s; a′

2. j ∈ ψRf(i, σ, h).I ⇒ 〈imri, T̂ i, σ, h〉
σ′

↪→∗ 〈imrj, T̂ j, σ
′, a′〉 if a = h and σ = a′ ::

σ′

If a = s; a′, then we need to prove Item (1). There are three cases depending on

the form of s.

1. s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip.

From 〈imri, T̂ i, σ, s; a
′〉 ∈ R, a = s; a′ and s is either x := e, imr = imr ∧ imr,

imr = imr∨ imr or skip and Item (1) of Lemma (3.6.5), we have α(ξs(i)) = ξs(i)

and 〈imri, T̂ i, σ, a〉
σ
↪→ 〈imrξs(i), T̂ ξs(i), σ, a

′〉. From α(ξs(i)) = ξs(i) and Item

(1) of Proposition (3.6.1), we have

(i) ψRf(i, σ, s; a′).I =
⋃
{f(j, σ, s; a′).I | j ∈ J} ∪ {ξs(i)}

where J =
⋃
{f(α(ζu(i)), s; a

′::Sσ, h(u)).I | u ∈ P̂(imri, T̂ i)}. There are two

subcases depending on whether P̂(imri, T̂ i) is empty or not.

Subcase 1: P̂(imri, T̂ i) = ∅.

From P̂(imri, T̂ i) = ∅, α(ξs(i)) = ξs(i) and (i), we have ψRf(i, σ, s; a′).I =

{ξs(i)}. From ψRf(i, σ, s; a′).I = {ξs(i)} and

〈imri, T̂ i, σ, a〉
σ
↪→ 〈imrξs(i), T̂ ξs(i), σ, a

′〉, we have

j ∈ ψRf(i, σ, s; a′).I ⇒ 〈imri, T̂ i, σ, a〉
σ
↪→ 〈imrj, T̂ j, σ, a

′〉.

Subcase 2: P̂(imri, T̂ i) 6= ∅.

Let u ∈ P̂(imri, T̂ i). From 〈imri, T̂ i, σ, s; a
′〉 ∈ R, u ∈ P̂(imri, T̂ i), η(s; a

′) ∈ L

and Item (4) of Lemma (3.6.5), we have s; a′::Sσ = s; a′ :: σ, α(ζu(i)) = ζu(i)

and 〈imri, T̂ i, σ, a〉 ↪→ 〈imrζu(i), T̂ ζu(i), s; a
′ :: σ, h(u)〉. From s; a′::Sσ = s; a′ :: σ

129

and α(ζu(i)) = ζu(i), we rewrite J as J =
⋃
{f(ζu(i), s; a

′ :: σ, h(u)).I | u ∈

P̂(imri, T̂ i)}. From 〈imri, T̂ i, σ, a〉 ↪→ 〈imrζu(i), T̂ ζu(i), s; a
′ :: σ, h(u)〉 and

〈imri, T̂ i, σ, a〉 ∈ R, we have 〈imrζu(i), T̂ ζu(i), s; a
′ :: σ, h(u)〉 ∈ R. From

〈imrζu(i), T̂ ζu(i), s; a
′ :: σ, h(u)〉 ∈ R and f is sound, we have

(ii) j ∈ f(ζu(i), s; a
′ :: σ, h(u)).I ⇒

〈imrζu(i), T̂ ζu(i), s; a
′ :: σ, h(u)〉

σ

↪→∗ 〈imrj, T̂ j, σ, s; a
′〉

From 〈imri, T̂ i, σ, a〉 ↪→ 〈imrζu(i), T̂ ζu(i), s; a
′ :: σ, h(u)〉, (ii) and Item (2) of

Lemma (3.6.4), we have

(iii) j ∈ f(ζu(i), s; a
′ :: σ, h(u)).I ⇒ 〈imri, T̂ i, σ, s; a

′〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s; a
′〉

From u ∈ P̂(imri, T̂ i), (iii) and J =
⋃
{f(ζu(i), s; a

′ :: σ, h(u)).I | u ∈ P̂(imri, T̂ i)},

we have

(iv) j ∈ J ⇒ 〈imri, T̂ i, σ, s; a
′〉

σ+

↪→∗ 〈imrj, T̂ j, σ, s; a
′〉

From 〈imri, T̂ i, σ, a〉 ∈ R and (iv), we have

(v) j ∈ J ⇒ 〈imrj, T̂ j, σ, s; a
′〉 ∈ R

From (v) and f is sound, we have

(vi) j ∈ J ⇒ (j ′ ∈ f(j, σ, s; a′).I ⇒ 〈imrj, T̂ j, σ, s; a
′〉

σ
↪→ 〈imrj′, T̂ j′, σ, a

′〉)

From (iv), (vi) and Item (1) of Lemma (3.6.4), we have

(vii) j ∈ J ⇒ (j ′ ∈ f(j, σ, s; a′).I ⇒ 〈imri, T̂ i, σ, a〉
σ

↪→∗ 〈imrj′, T̂ j′, σ, a
′〉)

which is

(viii) j ′ ∈
⋃
{f(j, σ, s; a′).I | j ∈ J} ⇒ 〈imri, T̂ i, σ, a〉

σ

↪→∗ 〈imrj′, T̂ j′, σ, a
′〉).

From 〈imri, T̂ i, σ, a〉
σ
↪→ 〈imrξs(i), T̂ ξs(i), σ, a

′〉, (viii) and (i), we have

j ∈ ψRf(i, σ, s; a′).I ⇒ 〈imri, T̂ i, σ, s; a
′〉

σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉.

2. s is if0 x then s1 else s2.

From Item (2) of Definition (3.6.2), we have

(i) ψRf(i, σ, s; a′).I = f(i, σ, s1; a
′).I ∪ f(i, σ, s2; a

′).I

From 〈imri, T̂ i, σ, s; a
′〉 ∈ R and Item (2) of Lemma (3.6.5), we have

(ii) 〈imri, T̂ i, σ, s; a
′〉

σ
↪→ 〈imri, T̂ i, σ, s1; a

′〉

(iii) 〈imri, T̂ i, σ, s; a
′〉

σ
↪→ 〈imri, T̂ i, σ, s2; a

′〉

130

from which it follows: 〈imri, T̂ i, σ, s1; a
′〉 ∈ R and 〈imri, T̂ i, σ, s2; a

′〉 ∈ R.

From 〈imri, T̂ i, σ, s1; a
′〉 ∈ R and f is sound, we have

(iv) j ∈ f(i, σ, s1; a
′).I ⇒ 〈imri, T̂ i, σ, s1; a

′〉
σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉

From 〈imri, T̂ i, σ, s2; a
′〉 ∈ R and f is sound, we have

(v) j ∈ f(i, σ, s2; a
′).I ⇒ 〈imri, T̂ i, σ, s2; a

′〉
σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉

From (ii), (iv) and Item (1) of Corollary (3.6.1), we have

(vi) j ∈ f(i, σ, s1; a
′).I ⇒ 〈imri, T̂ i, σ, s; a

′〉
σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉

From (iii), (v) and Item (1) of Corollary (3.6.1), we have

(vii) j ∈ f(i, σ, s2; a
′).I ⇒ 〈imri, T̂ i, σ, s; a

′〉
σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉

From (vi), (vii) and (i), we have j ∈ ψRf(i, σ, s; a′).I ⇒ 〈imri, T̂ i, σ, s; a
′〉

σ

↪→∗

〈imrj, T̂ j, σ, a
′〉.

3. s is s1; s2.

From Item (3) of Definition (3.6.2), we have

(i) ψRf(i, σ, a).I =
⋃
{f(j, σ, s2; a

′).I | j ∈ J}

where J = f(i, σ, s1; (s2; a
′)).I. From

〈imri, T̂ i, σ, (s1; s2); a
′〉 = 〈imri, T̂ i, σ, s1; (s2; a

′)〉 and 〈imri, T̂ i, σ, (s1; s2); a
′〉 ∈

R, we have 〈imri, T̂ i, σ, s1; (s2; a
′)〉 ∈ R. From

〈imri, T̂ i, σ, s1; (s2; a
′)〉 ∈ R and f is sound, we have

(ii) j ∈ f(i, σ, s1; (s2; a
′).I ⇒ 〈imri, T̂ i, σ, s1; (s2; a

′)〉
σ

↪→∗ 〈imrj, T̂ j, σ, s2; a
′〉

From J = f(i, σ, s1; (s2; a
′)).I and (ii), we have

(iii) j ∈ J ⇒ 〈imri, T̂ i, σ, s1; (s2; a
′)〉

σ

↪→∗ 〈imrj, T̂ j, σ, s2; a
′〉

From 〈imri, T̂ i, σ, s1; (s2; a
′)〉 ∈ R and (iii), we have

(iv) j ∈ J ⇒ 〈imrj, T̂ j, σ, s2; a
′〉 ∈ R

From (iv) and f is sound, we have

(v) j ∈ J ⇒

(j ′ ∈ f(j, σ, s2; a
′).I ⇒ 〈imrj, T̂ j, σ, s2; a

′〉
σ

↪→∗ 〈imrj′, T̂ j′, σ, a
′〉)

From (iii), (v) and Item (1) of Corollary (3.6.1), we have

131

(vi) j ∈ J ⇒

(j ′ ∈ f(j, σ, s2; a
′).I ⇒ 〈imri, T̂ i, σ, s1; (s2; a

′)〉
σ

↪→∗ 〈imrj′, T̂ j′, σ, a
′〉)

which is

(vii) j ′ ∈
⋃
{f(j, σ, s2; a

′).I | j ∈ J} ⇒

〈imri, T̂ i, σ, s1; (s2; a
′)〉

σ

↪→∗ 〈imrj′, T̂ j′, σ, a
′〉

From (vii) and (i), we have

j ∈ ψRf(i, σ, (s1; s2); a
′).I ⇒ 〈imri, T̂ i, σ, (s1; s2); a

′〉
σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉).

If a = h, then we need to prove Item (2). From 〈imri, T̂ i, σ, h〉 ∈ R and Corol-

lary (3.3.1), we have 〈imri, T̂ i, σ, h〉 is consistent, from which it follows σ = a′ :: σ′.

There are two cases depending on the form of h.

1. h is iret.

From 〈imri, T̂ i, σ, iret〉 ∈ R, σ = a′ :: σ′ and Item (3) of Lemma (3.6.5), we

have α(ξiret(i)) = ξiret(i) and 〈imri, T̂ i, σ, iret〉
σ′

↪→ 〈imrξiret(i), T̂ ξiret(i), σ
′, a′〉. From

α(ξiret(i)) = ξiret(i) and Item (4) of Definition (3.6.2), we have

(i) ψRf(i, σ, iret).I =
⋃
{f(j, σ, iret).I | j ∈ J} ∪ { ξiret(i) }

where J =
⋃
{f(α(ζu(i)), iret::Sσ, h(u)).I | u ∈ P̂(imri, T̂ i)}. There are two

subcases depending on whether P̂(imri, T̂ i) is empty.

Subcase 1 : P̂(imri, T̂ i) = ∅.

From P̂(imri, T̂ i) = ∅ and (i), we have µψR(i, σ, iret).I = { ξiret(i) }. From

µψR(i, σ, iret).I = { ξiret(i) } and 〈imri, T̂ i, σ, iret〉
σ′

↪→ 〈imrξiret(i), T̂ ξiret(i), σ
′, a′〉,

we have j ∈ ψRf(i, σ, iret).I ⇒ 〈imri, T̂ i, σ, iret〉
σ′

↪→ 〈imrj, T̂ j, σ
′, a′〉.

Subcase 2 : P̂(imri, T̂ i) 6= ∅.

Let u ∈ P̂(imri, T̂ i). From 〈imri, T̂ i, σ, iret〉 ∈ R, u ∈ P̂(imri, T̂ i), η(iret) ∈ L

and Item (4) of Lemma (3.6.5), we have iret::Sσ = iret :: σ, α(ζu(i)) = ζu(i)

and 〈imri, T̂ i, σ, iret〉 ↪→ 〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉. From iret::Sσ = iret :: σ

and α(ζu(i)) = ζu(i), we rewrite J as J =
⋃
{f(ζu(i), iret :: σ, h(u)).I | u ∈

P̂(imri, T̂ i)}. From 〈imri, T̂ i, σ, iret〉 ↪→ 〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉 and

132

〈imri, T̂ i, σ, iret〉 ∈ R, we have 〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉 ∈ R. From

〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉 ∈ R and f is sound, we have

(ii) j ∈ f(ζu(i), iret :: σ, h(u)).I ⇒

〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉
σ

↪→∗ 〈imrj, T̂ j, σ, iret〉

From 〈imri, T̂ i, σ, iret〉 ↪→ 〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉, (ii) and Item (2) of

Lemma (3.6.4), we have

(iii) j ∈ f(ζu(i), iret :: σ, h(u)).I ⇒ 〈imri, T̂ i, σ, iret〉
σ+

↪→∗ 〈imrj, T̂ j, σ, iret〉

From u ∈ P̂(imri, T̂ i), (iii) and J =
⋃
{f(ζu(i), iret :: σ, h(u)).I | u ∈ P̂(imri, T̂ i)},

we have

(iv) j ∈ J ⇒ 〈imri, T̂ i, σ, iret〉
σ+

↪→∗ 〈imrj, T̂ j, σ, iret〉

From 〈imri, T̂ i, σ, iret〉 ∈ R and (iv), we have

(v) j ∈ J ⇒ 〈imrj, T̂ j, σ, iret〉 ∈ R

From (v), σ = a′ :: σ′ and f is sound, we have

(vi) j ∈ J ⇒ (j ′ ∈ f(j, σ, iret).I ⇒ 〈imrj, T̂ j, σ, iret〉
σ′

↪→∗ 〈imrj′, T̂ j′, σ
′, a′〉)

From σ = a′ :: σ′, (iv), (vi) and Item (3) of Lemma (3.6.4), we have

(vii) j ∈ J ⇒ (j ′ ∈ f(j, σ, iret).I ⇒ 〈imri, T̂ i, σ, iret〉
σ′

↪→∗ 〈imrj′, T̂ j′, σ
′, a′〉)

which is

(viii) j ′ ∈
⋃
{f(j, σ, iret).I | j ∈ J} ⇒ 〈imri, T̂ i, σ, iret〉

σ′

↪→∗ 〈imrj′, T̂ j′, σ
′, a′〉)

From 〈imri, T̂ i, σ, iret〉
σ′

↪→ 〈imrξiret(i), T̂ ξiret(i), σ
′, a′〉, (viii) and (i), we have

j ∈ ψRf(i, σ, iret).I ⇒ 〈imri, T̂ i, σ, iret〉
σ′

↪→∗ 〈imrj, T̂ j, σ
′, a′〉.

2. h is s; h′.

From Item (5) of Definition (3.6.2), we have

(i) ψRf(i, σ, h).I =
⋃
{f(j, σ, h′).I | j ∈ J}

where J = f(i, σ, s; h′).I. From 〈imri, T̂ i, σ, s; h
′〉 ∈ R and f is sound, we have

(ii) j ∈ f(i, σ, s; h′).I ⇒ 〈imri, T̂ i, σ, s; h
′〉

σ

↪→∗ 〈imrj, T̂ j, σ, h
′〉

From J = f(i, σ, s; h′).I and (ii), we have

(iii) j ∈ J ⇒ 〈imri, T̂ i, σ, s; h
′〉

σ

↪→∗ 〈imrj, T̂ j, σ, h
′〉

From 〈imri, T̂ i, σ, s; h
′〉 ∈ R and (iii), we have

133

(iv) j ∈ J ⇒ 〈imrj, T̂ j, σ, h
′〉 ∈ R

From (iv), σ = a′ :: σ′ and f is sound, we have

(v) j ∈ J ⇒ (j ′ ∈ f(j, σ, h′).I ⇒ 〈imrj, T̂ j, σ, h
′〉

σ′

↪→∗ 〈imrj′, T̂ j′, σ
′, a′〉)

From σ = a′ :: σ′, (iii), (v) and Item (2) of Corollary (3.6.1), we have

(vi) j ∈ J ⇒ (j ′ ∈ f(j, σ, h′).I ⇒ 〈imri, T̂ i, σ, s; h
′〉

σ′

↪→∗ 〈imrj′, T̂ j′, σ
′, a′〉)

which is

(vii) j ′ ∈
⋃
{f(j, σ, h′).I | j ∈ J} ⇒ 〈imri, T̂ i, σ, h

′〉
σ′

↪→∗ 〈imrj′, T̂ j′, σ
′, a′〉

From (vii) and (i), we have

j ∈ ψRf(i, σ, h).I ⇒ 〈imri, T̂ i, σ, h〉
σ′

↪→∗ 〈imrj, T̂ j, σ
′, a′〉.

We define stack-irrelevancy of f on R.

Definition 3.6.6 (Stack-irrelevancy on R) f is stack-irrelevant on R iff for all

i ∈ I, a ∈ C and for any σ, σ′ ∈ S, if 〈imri, T̂ i, σ, a〉 ∈ R and 〈imri, T̂ i, σ
′, a〉 ∈ R,

then we have

1. f(i, σ, a).I = f(i, σ′, a).I

2. f(i, σ, a).k − |σ| = f(i, σ′, a).k − |σ′|.

We next prove in Lemma (3.6.9) that fixed point µψRf0 is sound and stack-

irrelevant.

Proposition 3.6.6 If f is sound on R and 〈imri, T̂ i, σ, a〉 ∈ R, then

1. j ∈ f(i, σ, s; a′).I ⇒ 〈imrj, T̂ j, σ, a
′〉 ∈ R if a = s; a′

2. j ∈ f(i, σ, h).I ⇒ 〈imrj, T̂ j, σ
′, a′〉 ∈ R if a = h and σ = a′ :: σ′

Lemma 3.6.7 Suppose 〈imri, T̂ i, σ, a〉 ∈ R,

1. if a = s; a′, s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip, and f

is sound, then we have

134

(a) u ∈ P̂(imri, T̂ i) ⇒ ((a::Sσ = a :: σ) ∧ (α(ζu(i)) = ζu(i)))

(b) u ∈ P̂(imri, T̂ i) ⇒ 〈imrζu(i), T̂ ζu(i), s; a
′ :: σ, h(u)〉 ∈ R

(c) u ∈ P̂(imri, T̂ i) ⇒ (j ∈ f(ζu(i), s; a
′ :: σ, h(u)).I ⇒ 〈imrj, T̂ j, σ, s; a

′〉 ∈

R)

2. if a = s; a′ and s is if0 x then s1 else s2, then we have 〈imri, T̂ i, σ, s1; a
′〉 ∈ R

and 〈imri, T̂ i, σ, s2; a
′〉 ∈ R.

3. if a = h, h is iret and f is sound, then we have

(a) u ∈ P̂(imri, T̂ i) ⇒ ((iret::Sσ = iret :: σ) ∧ (α(ζu(i)) = ζu(i)))

(b) u ∈ P̂(imri, T̂ i) ⇒ 〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉 ∈ R

(c) u ∈ P̂(imri, T̂ i) ⇒ (j ∈ f(ζu(i), iret :: σ, h(u)).I ⇒ 〈imrj, T̂ j, σ, iret〉 ∈ R)

Proof 1. Suppose u ∈ P̂(imri, T̂ i). From 〈imri, T̂ i, σ, s; a
′〉 ∈ R, u ∈ P̂(imri, T̂ i),

η(s; a′) ∈ L and Item (4) of Lemma (3.6.5), we have a::Sσ = s; a′ :: σ,

α(ζu(i)) = ζu(i) and 〈imri, T̂ i, σ, s; a
′〉 ↪→ 〈imrζu(i), T̂ ζu(i), s; a

′ :: σ, h(u)〉. From

〈imri, T̂ i, σ, s; a
′〉 ∈ R and 〈imri, T̂ i, σ, s; a

′〉 ↪→ 〈imrζu(i), T̂ ζu(i), s; a
′ :: σ, h(u)〉,

we have 〈imrζu(i), T̂ ζu(i), s; a
′ :: σ, h(u)〉 ∈ R. From 〈imrζu(i), T̂ ζu(i), s; a

′ :: σ, h(u)〉 ∈

R, f is sound and Item (2) of Proposition (3.6.6), we have j ∈ f(ζu(i), s; a
′ ::

σ, h(u)).I ⇒ 〈imrj, T̂ j, σ, s; a
′〉 ∈ R.

2. From 〈imri, T̂ i, σ, s; a
′〉 ∈ R, s is if0 x then s1 else s2 and Item (2) of Lemma

(3.6.5), we have 〈imri, T̂ i, σ, s; a
′〉

σ
↪→ 〈imri, T̂ i, σ, s1; a

′〉 and 〈imri, T̂ i, σ, s; a
′〉

σ
↪→

〈imri, T̂ i, σ, s2; a
′〉. From 〈imri, T̂ i, σ, s; a

′〉 ∈ R and 〈imri, T̂ i, σ, s; a
′〉

σ
↪→

〈imri, T̂ i, σ, s1; a
′〉, we have 〈imri, T̂ i, σ, s1; a

′〉 ∈ R. From 〈imri, T̂ i, σ, s; a
′〉 ∈

R and 〈imri, T̂ i, σ, s; a
′〉

σ
↪→ 〈imri, T̂ i, σ, s2; a

′〉, we have 〈imri, T̂ i, σ, s2; a
′〉 ∈ R.

3. Suppose u ∈ P̂(imri, T̂ i). From 〈imri, T̂ i, σ, iret〉 ∈ R, u ∈ P̂(imri, T̂ i),

η(iret) ∈ L and Item (4) of Lemma (3.6.5), we have iret::Sσ = iret :: σ,

α(ζu(i)) = ζu(i) and 〈imri, T̂ i, σ, iret〉 ↪→ 〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉. From

〈imri, T̂ i, σ, iret〉 ∈ R and 〈imri, T̂ i, σ, iret〉 ↪→ 〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉,

135

we have 〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉 ∈ R. From 〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉 ∈

R, f is sound and Item (2) of Proposition (3.6.6), we have j ∈ f(ζu(i), iret ::

σ, h(u)).I ⇒ 〈imrj, T̂ j, σ, iret〉 ∈ R.

Lemma 3.6.8 If f is sound and stack-irrelevant on R, then ψRf is also sound and

stack-irrelevant.

Proof From f is sound on R and Lemma (3.6.6), we have ψRf is also sound. From

Definition (3.6.6), we need to further prove that for all i ∈ I and a ∈ C and for any

σ, σ′ ∈ S, if 〈imri, T̂ i, σ, a〉 ∈ R and 〈imri, T̂ i, σ
′, a〉 ∈ R, then we have

1. ψRf(i, σ, a).I = ψRf(i, σ′, a).I

2. ψRf(i, σ, a).k − |σ| = ψRf(i, σ′, a).k − |σ′|

We prove by case analysis on the form of a. If the form of a is s; a′, there are five

cases depending on the form of s.

1. If a = s; a′ and s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip.

From 〈imri, T̂ i, σ, s; a
′〉 ∈ R, s is either x := e, imr = imr∧ imr, imr = imr∨ imr

or skip, and Item (1) of Lemma (3.6.5), we have α(ξs(i)) = ξs(i).

From 〈imri, T̂ i, σ, s; a
′〉 ∈ R, s is either x := e, imr = imr∧ imr, imr = imr∨ imr

or skip, f is sound and Item (1) of Lemma (3.6.7), we have

(i) u ∈ P̂(imri, T̂ i) ⇒ ((a::Sσ = a :: σ) ∧ (α(ζu(i)) = ζu(i)))

(ii) u ∈ P̂(imri, T̂ i) ⇒ 〈imrζu(i), T̂ ζu(i), s; a
′ :: σ, h(u)〉 ∈ R

(iii) u ∈ P̂(imri, T̂ i) ⇒

(j ∈ f(ζu(i), s; a
′ :: σ, h(u)).I ⇒ 〈imrj, T̂ j, σ, s; a

′〉 ∈ R).

From 〈imri, T̂ i, σ
′, s; a′〉 ∈ R, s is either x := e, imr = imr∧imr, imr = imr∨imr

or skip, f is sound and Item (1) of Lemma (3.6.7), we have

(iv) u ∈ P̂(imri, T̂ i) ⇒ ((a::Sσ
′ = a :: σ′) ∧ (α(ζu(i)) = ζu(i)))

(v) u ∈ P̂(imri, T̂ i) ⇒ 〈imrζu(i), T̂ ζu(i), s; a
′ :: σ′, h(u)〉 ∈ R

(vi) u ∈ P̂(imri, T̂ i) ⇒

(j ∈ f(ζu(i), s; a
′ :: σ′, h(u)).I ⇒ 〈imrj, T̂ j, σ

′, s; a′〉 ∈ R).

136

From α(ξs(i)) = ξs(i), (i) and Item (1) of Definition (3.6.2), we have

(vii) ψRf(i, σ, a).I =
⋃
{f(j, σ, s; a′).I | j ∈ J} ∪ { ξs(i) }

(viii) ψRf(i, σ, a).k = max({f(ζu(i), s; a
′ :: σ, h(u)).k | u ∈ P̂(imri, T̂ i)}∪

{f(j, σ, s; a′).k | j ∈ J} ∪ {|σ|})

where J =
⋃
{f(ζu(i), s; a

′ :: σ, h(u)).I | u ∈ P̂(imri, T̂ i)}. From α(ξs(i)) =

ξs(i), (iv) and Item (1) of Definition (3.6.2), we have

(ix) ψRf(i, σ′, a).I =
⋃
{f(j, σ′, s; a′).I | j ∈ J ′} ∪ { ξs(i) }

(x) ψRf(i, σ′, a).k = max({f(ζu(i), s; a
′ :: σ′, h(u)).k | u ∈ P̂(imri, T̂ i)}∪

{f(j, σ′, s; a′).k | j ∈ J ′} ∪ {|σ′|})

where J ′ =
⋃
{f(ζu(i), s; a

′ :: σ′, h(u)).I | u ∈ P̂(imri, T̂ i)}. From (ii),(v) and

f is stack-irrelevant, we have

(xi) u ∈ P̂(imri, T̂ i) ⇒ f(ζu(i), s; a
′ :: σ, h(u)).I = f(ζu(i), s; a

′ :: σ′, h(u)).I

(xii) u ∈ P̂(imri, T̂ i) ⇒

(f(ζu(i), s; a
′ :: σ, h(u)).k − |s; a′ :: σ| =

f(ζu(i), s; a
′ :: σ′, h(u)).k − |s; a′ :: σ′|)

From (xi), J =
⋃
{f(ζu(i), s; a

′ :: σ, h(u)).I | u ∈ P̂(imri, T̂ i)} and J ′ =
⋃
{f(ζu(i), s; a

′ :: σ′, h(u)).I | u ∈ P̂(imri, T̂ i)}, we have J = J ′.

From (iii), (vi), (xi) and f is stack-irrelevant, we have

(xiii) u ∈ P̂(imri, T̂ i) ⇒

(j ∈ f(ζu(i), s; a
′ :: σ, h(u)).I ⇒ f(j, σ, s; a′).I = f(j, σ′, s; a′).I)

(xiv) u ∈ P̂(imri, T̂ i) ⇒ (j ∈ f(ζu(i), s; a
′ :: σ, h(u)).I ⇒

f(j, σ, s; a′).k − |σ| = f(j, σ′, s; a′).k − |σ′|)

From (xiii), (vii), (ix) and J = J ′, we have ψRf(i, σ, a).I = ψRf(i, σ′, a).I,

which is Item (1).

From (viii), by subtracting |σ| on both sides of the equation, we have

(xv) ψRf(i, σ, a).k − |σ| =

max({(f(ζu(i), s; a
′ :: σ, h(u)).k − |σ|) | u ∈ P̂(imri, T̂ i)}∪

{(f(j, σ, s; a′).k − |σ|) | j ∈ J} ∪ {0})

From (x), by subtracting |σ′| on both sides of the equation, we have

137

(xvi) ψRf(i, σ′, a).k − |σ′| =

max({(f(ζu(i), s; a
′ :: σ′, h(u)).k − |σ′|) | u ∈ P̂(imri, T̂ i)}∪

{(f(j, σ′, s; a′).k − |σ′|) | j ∈ J ′} ∪ {0})

From (xii), by subtracting 1 on both sides of the equation, we have

(xvii) u ∈ P̂(imri, T̂ i) ⇒

f(ζu(i), s; a
′ :: σ, h(u)).k − |σ| = f(ζu(i), s; a

′ :: σ′, h(u)).k − |σ′|

From (xiv),(xv), (xvi), (xvii) and J = J ′, we have ψRf(i, σ, a).k − |σ| =

ψRf(i, σ′, a).k − |σ′|, which is Item (2).

2. If a = s; a′ and s is if0 x then s1 else s2.

From 〈imri, T̂ i, σ, s; a
′〉 ∈ R, s is if0 x then s1 else s2 and Item (2) of Lemma

(3.6.7), we have 〈imri, T̂ i, σ, s1; a
′〉 ∈ R and 〈imri, T̂ i, σ, s2; a

′〉 ∈ R. From

〈imri, T̂ i, σ
′, s; a′〉 ∈ R, s is if0 x then s1 else s2 and Item (2) of Lemma (3.6.7),

we have 〈imri, T̂ i, σ
′, s1; a

′〉 ∈ R and 〈imri, T̂ i, σ
′, s2; a

′〉 ∈ R.

From 〈imri, T̂ i, σ, s1; a
′〉 ∈ R, 〈imri, T̂ i, σ

′, s1; a
′〉 ∈ R and f is stack-irrelevant,

we have

(i) f(i, σ, s1; a
′).I = f(i, σ′, s1; a

′).I

(ii) f(i, σ, s1; a
′).k − |σ| = f(i, σ′, s1; a

′).k − |σ′|

From 〈imri, T̂ i, σ, s2; a
′〉 ∈ R, 〈imri, T̂ i, σ

′, s2; a
′〉 ∈ R and f is stack-irrelevant,

we have

(iii) f(i, σ, s2; a
′).I = f(i, σ′, s2; a

′).I

(iv) f(i, σ, s2; a
′).k − |σ| = f(i, σ′, s2; a

′).k − |σ′|

From Item (2) of Definition (3.6.2), we have

(v) ψRf(i, σ, a).I = f(i, σ, s1; a
′).I ∪ f(i, σ, s2; a

′).I

(vi) ψRf(i, σ, a).k = max({f(i, σ, s1; a
′).k, f(i, σ, s2; a

′).k})

(vii) ψRf(i, σ′, a).I = f(i, σ′, s1; a
′).I ∪ f(i, σ′, s2; a

′).I

(viii) ψRf(i, σ′, a).k = max({f(i, σ′, s1; a
′).k, f(i, σ′, s2; a

′).k})

From (i) and (iii), we have

(ix) f(i, σ, s1; a
′).I ∪ f(i, σ, s2; a

′).I = f(i, σ′, s1; a
′).I ∪ f(i, σ′, s2; a

′).I

From (ix),(v),(vii), we have ψRf(i, σ, a).I = ψRf(i, σ′, a).I, which is Item (1).

138

From (ii) and (iv), we have

(x) max({f(i, σ, s1; a
′).k − |σ|, f(i, σ, s2; a

′).k − |σ|}) =

max({f(i, σ′, s1; a
′).k − |σ′|, f(i, σ′, s2; a

′).k − |σ′|})

From (vi), by subtracting |σ| on both sides of the equation, we have

(xi) ψRf(i, σ, a).k − |σ| =

max({f(i, σ, s1; a
′).k − |σ|, f(i, σ, s2; a

′).k − |σ|})

From (viii), by subtracting |σ′| on both sides of the equation, we have

(xii) ψRf(i, σ′, a).k − |σ′| =

max({f(i, σ′, s1; a
′).k − |σ′|, f(i, σ′, s2; a

′).k − |σ′|})

From (x), (xi) and (xii), we have ψRf(i, σ, a).k − |σ| = ψRf(i, σ′, a).k − |σ′|,

which is Item (2).

3. If a = s; a′ and s is s1; s2.

From 〈imri, T̂ i, σ, (s1; s2); a
′〉 = 〈imri, T̂ i, σ, s1; (s2; a

′)〉 and

〈imri, T̂ i, σ, (s1; s2); a
′〉 ∈ R, we have 〈imri, T̂ i, σ, s1; (s2; a

′)〉 ∈ R. From

〈imri, T̂ i, σ, s1; (s2; a
′)〉 ∈ R, f is sound and Item (1) of Proposition (3.6.6), we

have

(i) j ∈ J ⇒ 〈imrj, T̂ j, σ, s2; a
′〉 ∈ R

where J = f(i, σ, s1; (s2; a
′)).I. From 〈imri, T̂ i, σ

′, (s1; s2); a
′〉 =

〈imri, T̂ i, σ
′, s1; (s2; a

′)〉 and 〈imri, T̂ i, σ
′, (s1; s2); a

′〉 ∈ R, we have

〈imri, T̂ i, σ
′, s1; (s2; a

′)〉 ∈ R. From

〈imri, T̂ i, σ
′, s1; (s2; a

′)〉 ∈ R, f is sound and Item (1) of Proposition (3.6.6), we

have

(ii) j ∈ J ′ ⇒ 〈imrj, T̂ j, σ
′, s2; a

′〉 ∈ R.

where J ′ = f(i, σ′, s1; (s2; a
′)).I. From 〈imri, T̂ i, σ, s1; (s2; a

′)〉 ∈ R,

〈imri, T̂ i, σ
′, s1; (s2; a

′)〉 ∈ R and f is stack-irrelevant, we have

(iii) f(i, σ, s1; (s2; a
′)).I = f(i, σ′, s1; (s2; a

′)).I

(iv) f(i, σ, s1; (s2; a
′)).k − |σ| = f(i, σ′, s1; (s2; a

′)).k − |σ′|

From J = f(i, σ, s1; (s2; a
′)).I, J ′ = f(i, σ′, s1; (s2; a

′)).I and (iii), we have

J = J ′.

From J = J ′, (i), (ii) and f is stack-irrelevant, we have

139

(v) j ∈ J ⇒ f(j, σ, s2; a
′).I = f(j, σ′, s2; a

′).I

(vi) j ∈ J ⇒ f(j, σ, s2; a
′).k − |σ| = f(j, σ′, s2; a

′).k − |σ′|

From Item (3) of Definition (3.6.2), we have

(vii) ψRf(i, σ, a).I =
⋃
{f(j, σ, s2; a

′).I | j ∈ J}

(viii) ψRf(i, σ, a).k = max({f(i, σ, s1; (s2; a
′)).k} ∪ {f(j, σ, s2; a

′).k | j ∈ J})

(ix) ψRf(i, σ′, a).I =
⋃
{f(j, σ′, s2; a

′).I | j ∈ J ′}

(x) ψRf(i, σ′, a).k = max({f(i, σ′, s1; (s2; a
′)).k} ∪ {f(j, σ′, s2; a

′).k | j ∈ J ′})

From J = J ′, (vii),(ix) and (v), we have ψRf(i, σ, a).I = ψRf(i, σ′, a).I, which

is Item (1).

From (viii), by subtracting |σ| on both sides of the equation, we have

(xi) ψRf(i, σ, a).k − |σ| =

max({f(i, σ, s1; (s2; a
′)).k − |σ|} ∪ {f(j, σ, s2; a

′).k − |σ| | j ∈ J})

From (x), by subtracting |σ′| on both sides of the equation, we have

(xii) ψRf(i, σ′, a).k − |σ′| =

max({f(i, σ′, s1; (s2; a
′)).k − |σ′|} ∪ {f(j, σ′, s2; a

′).k − |σ′| | j ∈ J ′})

From J = J ′, (iv), (vi), (xi) and (xii), we have ψRf(i, σ, a).k−|σ| = ψRf(i, σ′, a).k−

|σ′|, which is Item (2).

4. If a = h and h is iret.

From 〈imri, T̂ i, σ, iret〉 ∈ R and Corollary (3.3.1), we have 〈imri, T̂ i, σ, iret〉 is

consistent, from which it follows σ = a′ :: σ′′. From 〈imri, T̂ i, σ, iret〉 ∈ R,

σ = a′ :: σ′′, and Item (3) of Lemma (3.6.5), we have α(ξiret(i)) = ξiret(i). (We

have exactly the same α(ξiret(i)) = ξiret(i) from 〈imri, T̂ i, σ
′, iret〉 ∈ R.)

From 〈imri, T̂ i, σ, iret〉 ∈ R, f is sound and Item (3) of Lemma (3.6.7), we have

(i) u ∈ P̂(imri, T̂ i) ⇒ ((iret::Sσ = iret :: σ) ∧ (α(ζu(i)) = ζu(i)))

(ii) u ∈ P̂(imri, T̂ i) ⇒ 〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉 ∈ R

(iii) u ∈ P̂(imri, T̂ i) ⇒

(j ∈ f(ζu(i), iret :: σ, h(u)).I ⇒ 〈imrj, T̂ j, σ, iret〉 ∈ R).

From 〈imri, T̂ i, σ
′, iret〉 ∈ R, f is sound and Item (3) of Lemma (3.6.7), we have

140

(iv) u ∈ P̂(imri, T̂ i) ⇒ ((iret::Sσ
′ = iret :: σ′) ∧ (α(ζu(i)) = ζu(i)))

(v) u ∈ P̂(imri, T̂ i) ⇒ 〈imrζu(i), T̂ ζu(i), iret :: σ′, h(u)〉 ∈ R

(vi) u ∈ P̂(imri, T̂ i) ⇒

(j ∈ f(ζu(i), iret :: σ′, h(u)).I ⇒ 〈imrj, T̂ j, σ
′, iret〉 ∈ R).

From α(ξiret(i)) = ξiret(i), (i) and Item (4) of Definition (3.6.2), we have

(vii) ψRf(i, σ, iret).I =
⋃
{f(j, σ, iret).I | j ∈ J} ∪ { ξiret(i) }

(viii) ψRf(i, σ, iret).k = max({f(ζu(i), iret :: σ, h(u)).k | u ∈ P̂(imri, T̂ i)}∪

{f(j, σ, iret).k | j ∈ J} ∪ {|σ|})

where J =
⋃
{f(ζu(i), iret :: σ, h(u)).I | u ∈ P̂(imri, T̂ i)}. From α(ξiret(i)) =

ξiret(i), (iv) and Item (4) of Definition (3.6.2), we have

(ix) ψRf(i, σ′, iret).I =
⋃
{f(j, σ′, iret).I | j ∈ J ′} ∪ { ξiret(i) }

(x) ψRf(i, σ′, iret).k = max({f(ζu(i), iret :: σ′, h(u)).k | u ∈ P̂(imri, T̂ i)}∪

{f(j, σ′, iret).k | j ∈ J ′} ∪ {|σ′|})

where J ′ =
⋃
{f(ζu(i), iret :: σ′, h(u)).I | u ∈ P̂(imri, T̂ i)}. From (ii),(v) and f

is stack-irrelevant, we have

(xi) u ∈ P̂(imri, T̂ i) ⇒ f(ζu(i), iret :: σ, h(u)).I = f(ζu(i), iret :: σ′, h(u)).I

(xii) u ∈ P̂(imri, T̂ i) ⇒

(f(ζu(i), iret :: σ, h(u)).k − |iret :: σ| =

f(ζu(i), iret :: σ′, h(u)).k − |iret :: σ′|)

From J =
⋃
{f(ζu(i), iret :: σ, h(u)).I | u ∈ P̂(imri, T̂ i)}, J ′ =

⋃
{f(ζu(i), iret ::

σ′, h(u)).I | u ∈ P̂(imri, T̂ i)} and (xi), we have J = J ′.

From (iii), (vi), (xi) and f is stack-irrelevant, we have

(xiii) u ∈ P̂(imri, T̂ i) ⇒

(j ∈ f(ζu(i), iret :: σ, h(u)).I ⇒ f(j, σ, iret).I = f(j, σ′, iret).I

(xiv) u ∈ P̂(imri, T̂ i) ⇒ (j ∈ f(ζu(i), iret :: σ, h(u)).I ⇒

f(j, σ, iret).k − |σ| = f(j, σ′, iret).k − |σ′|)

From (xiii), (vii), (ix) and J = J ′, we have ψRf(i, σ, iret).I = ψRf(i, σ′, iret).I,

which is Item (1).

141

From (viii), by subtracting |σ| on both sides of the equation, we have

(xv) ψRf(i, σ, iret).k − |σ| =

max({(f(ζu(i), iret :: σ, h(u)).k − |σ|) | u ∈ P̂(imri, T̂ i)}∪

{f(j, σ, iret).k − |σ| | j ∈ J} ∪ {0})

From (x), by subtracting |σ′| on both sides of the equation, we have

(xvi) ψRf(i, σ′, iret).k − |σ′| =

max({(f(ζu(i), iret :: σ′, h(u)).k − |σ′|) | u ∈ P̂(imri, T̂ i)}∪

{f(j, σ′, iret).k − |σ′| | j ∈ J ′} ∪ {0})

From (xii), by subtracting 1 on both sides of the equation, we have

(xvii) u ∈ P̂(imri, T̂ i) ⇒

f(ζu(i), iret :: σ, h(u)).k − |σ| = f(ζu(i), iret :: σ′, h(u)).k − |σ′|

From (xiv),(xv), (xvi), (xvii) and J = J ′, we have ψRf(i, σ, iret).k − |σ| =

ψRf(i, σ′, iret).k − |σ′|, which is Item (2).

5. If a = h and h is s; h′.

From 〈imri, T̂ i, σ, s; h
′〉 ∈ R and f is sound, we have

(i) j ∈ J ⇒ 〈imrj, T̂ j, σ, h
′〉 ∈ R

where J = f(i, σ, s; h′)).I. From 〈imri, T̂ i, σ
′, s; h′)〉 ∈ R and f is sound, we

have

(ii) j ∈ J ′ ⇒ 〈imrj, T̂ j, σ
′, h′〉 ∈ R

where J ′ = f(i, σ′, s; h′)).I. From 〈imri, T̂ i, σ, s; h
′〉 ∈ R, 〈imri, T̂ i, σ

′, s; h′)〉 ∈

R and f is stack-irrelevant, we have

(iii) f(i, σ, s; h′).I = f(i, σ′, s; h′).I

(iv) f(i, σ, s; h′).k − |σ| = f(i, σ′, s; h′).k − |σ′|

From (i), (ii) and (iii), we have J = J ′.

From J = J ′, (i), (ii) and f is stack-irrelevant, we have

(v) j ∈ J ⇒ f(j, σ, h′).I = f(j, σ′, h′).I

(vi) j ∈ J ′ ⇒ f(j, σ, h′).k − |σ| = f(j, σ′, h′).k − |σ′|

From Item (5) of Definition (3.6.2), we have

142

(vii) ψRf(i, σ, h).I =
⋃
{f(j, σ, h′).I | j ∈ J}

(viii) ψRf(i, σ, h).k = max({f(i, σ, s; h′)).k} ∪ {f(j, σ, h′).k | j ∈ J})

(ix) ψRf(i, σ′, h).I =
⋃
{f(j, σ′, h′).I | j ∈ J ′}

(x) ψRf(i, σ′, h).k = max({f(i, σ′, s; h′)).k} ∪ {f(j, σ′, h′).k | j ∈ J ′})

From J = J ′, (vii),(ix) and (v), we have ψRf(i, σ, h).I = ψRf(i, σ′, h).I, which

is Item (1).

From (viii), by subtracting |σ| on both sides of the equation, we have

(xi) ψRf(i, σ, h).k − |σ| =

max({f(i, σ, s; h′)).k − |σ|} ∪ {f(j, σ, h′).k − |σ| | j ∈ J})

From (x), by subtracting |σ′| on both sides of the equation, we have

(xii) ψRf(i, σ′, h).k − |σ′| =

max({f(i, σ′, s; h′)).k − |σ′|} ∪ {f(j, σ′, h′).k − |σ′| | j ∈ J ′})

From J = J ′, (iv), (vi), (xi) and (xii), we have

ψRf(i, σ, h).k − |σ| = ψRf(i, σ′, h).k − |σ′|, which is Item (2).

Lemma 3.6.9 µψR is sound and stack-irrelevant.

Proof From µψR is the fixed point µψRf0, we have that µψRf0 = ψm
Rf0, for some

m ≥ 0, for which ψm
Rf0 = ψm+1

R f0. It is sufficient to prove by induction on n that, for

all n ≥ 0, ψn
Rf0 is sound and stack-irrelevant.

• Base case: n = 0. We have ψ0
Rf0 = f0. f0 is trivially sound and stack-irrelevant.

• Induction Step. From the induction hypothesis, we have that ψn
Rf0 is sound and

stack-irrelevant. From ψn
Rf0 is sound and stack-irrelevant and Lemma (3.6.8),

we have that ψn+1
R f0 is also sound and stack-irrelevant.

143

Let f ∈ D. We define the completeness of f on R as follows.

Definition 3.6.7 (Completeness of f on R) f is complete on R iff for all σ ∈ S,

a ∈ C and i ∈ I, if 〈imri, T̂ i, σ, a〉 ∈ R, then

1. 〈imri, T̂ i, σ, s; a
′〉

σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉 ⇒ j ∈ f(i, σ, s; a′).I if a = s; a′

2. 〈imri, T̂ i, σ, h〉
σ′

↪→∗ 〈imrj, T̂ j, σ
′, a′〉 ⇒ j ∈ f(i, σ, h).I if a = h and σ = a′ :: σ′

We simply say that f is complete if it is clear from the context which R we refer to.

We now prove in Lemma (3.6.11) that the fixed point µψR is complete.

Lemma 3.6.10 We have

1. if 〈imri, T̂ i, σ, s; a〉
σ

↪→∗ 〈imrj, T̂ j, σ, a〉 and s is if0 x then s1 else s2, then

we have either 〈imri, T̂ i, σ, s1; a〉
σ

↪→∗ 〈imrj, T̂ j, σ, a〉 or 〈imri, T̂ i, σ, s2; a〉
σ

↪→∗

〈imrj, T̂ j, σ, a〉.

2. if 〈imri, T̂ i, σ, (s1; s2); a〉
σ

↪→∗ 〈imrj, T̂ j, σ, a〉, then ∃i′ such that

〈imri, T̂ i, σ, (s1; s2); a〉
σ

↪→∗ 〈imri′, T̂ i′, σ, s2; a〉 and 〈imri′ , T̂ i′ , σ, s2; a〉
σ

↪→∗

〈imrj, T̂ j, σ, a〉.

3. if σ = a :: σ′ and 〈imri, T̂ i, σ, s; h〉
σ′

↪→∗ 〈imrj, T̂ j, σ
′, a〉, then ∃i′ such that

〈imri, T̂ i, σ, s; h〉
σ

↪→∗ 〈imri′ , T̂ i′ , σ, h〉 and 〈imri′ , T̂ i′ , σ, h〉
σ′

↪→∗ 〈imrj, T̂ j, σ
′, a〉.

Proof 1. From if0 x then s1 else s2 is instantaneous and Rules (3.16) and (3.17),

we have the only two out-going edges from 〈imri, T̂ i, σ, s; a〉 are

(i) 〈imri, T̂ i, σ, s; a〉
σ
↪→ 〈imri, T̂ i, σ, s1; a〉

(ii) 〈imri, T̂ i, σ, s; a〉
σ
↪→ 〈imri, T̂ i, σ, s2; a〉

From 〈imri, T̂ i, σ, s; a〉
σ

↪→∗ 〈imrj, T̂ j, σ, a〉, and (i) and (ii), it follows either

〈imri, T̂ i, σ, s1; a〉
σ

↪→∗ 〈imri, T̂ i, σ, a〉 or 〈imri, T̂ i, σ, s2; a〉
σ

↪→∗ 〈imri, T̂ i, σ, a〉.

2. From 〈imri, T̂ i, σ, (s1; s2); a〉 = 〈imri, T̂ i, σ, s1; (s2; a)〉, and

〈imri, T̂ i, σ, (s1; s2); a〉
σ

↪→∗ 〈imrj, T̂ j, σ, a〉, we have

(i) 〈imri, T̂ i, σ, s1; (s2; a)〉
σ

↪→∗ 〈imrj, T̂ j, σ, a〉

144

From (i), we have path π : 〈imri, T̂ i, σ, s1; (s2; a)〉 ↪→∗ 〈imrj, T̂ j, σ, a〉 and

(σ,)σ, (a::σ,)a::σ /∈ Π(π). From 〈imri, T̂ i, σ, s1; (s2; a)〉 ↪→∗ 〈imrj, T̂ j, σ, a〉 and

Item (1) of Proposition (3.6.4), there exists i1 along π such that we have

sub-path π1: 〈imri, T̂ i, σ, s1; (s2; a)〉 ↪→
∗ 〈imri1 , T̂ i1 , σ, s2; a〉 and sub-path π2:

〈imri1 , T̂ i1, σ, s2; a〉 ↪→∗ 〈imrj, T̂ j, σ, a〉. From (σ,)σ /∈ Π(π) and π is the con-

catenation of π1 and π2, we have (σ,)σ /∈ Π(π1) and (σ,)σ, (a::σ,)a::σ /∈ Π(π2).

From (σ,)σ /∈ Π(π1), we have 〈imri, T̂ i, σ, s1; (s2; a)〉
σ+

↪→∗ 〈imri1 , T̂ i1 , σ, s2; a〉.

From 〈imri, T̂ i, σ, s1; (s2; a)〉
σ+

↪→∗ 〈imri1 , T̂ i1 , σ, s2; a〉 and Item (2) of Proposi-

tion (3.6.5), there exists i′ such that 〈imri, T̂ i, σ, s1; (s2; a)〉
σ

↪→∗ 〈imri′, T̂ i′, σ, s2; a〉

and 〈imri′ , T̂ i′ , σ, s2; a〉
σ+

↪→∗ 〈imri1, T̂ i1, σ, s2; a〉. From (σ,)σ, (a::σ,)a::σ /∈ Π(π2)

and π2, we have 〈imri1 , T̂ i1 , σ, s2; a〉
σ

↪→∗ 〈imrj, T̂ j, σ, a〉. From 〈imri′ , T̂ i′ , σ, s2; a〉
σ+

↪→∗ 〈imri1 , T̂ i1, σ, s2; a〉, 〈imri1 , T̂ i1, σ, s2; a〉
σ

↪→∗ 〈imrj, T̂ j, σ, a〉, and Item (1)

of Lemma (3.6.4), we have 〈imri′ , T̂ i′ , σ, s2; a〉
σ

↪→∗ 〈imrj, T̂ j, σ, a〉.

3. From 〈imri, T̂ i, σ, s; h〉
σ′

↪→∗ 〈imrj, T̂ j, σ
′, a〉, we have path π: 〈imri, T̂ i, σ, s; h〉 ↪→∗

〈imrj, T̂ j, σ
′, a〉 and (σ,)σ, (σ′

/∈ Π(π). From σ = a :: σ′, π and Item (2) of

Proposition (3.6.4), there exists i1 along π such that we have sub-path π1 :

〈imri, T̂ i, σ, s; h〉 ↪→∗ 〈imri1, T̂ i1, σ, h〉 and sub-path π2 : 〈imri1, T̂ i1, σ, h〉 ↪→
∗

〈imrj, T̂ j, σ
′, a〉. From (σ,)σ, (σ′

/∈ Π(π) and π is the concatenation of π1 and

π2, we have (σ,)σ /∈ Π(π1) and (σ,)σ, (σ′

/∈ Π(π2). From (σ,)σ /∈ Π(π1) and

π, we have 〈imri, T̂ i, σ, s; h〉
σ+

↪→∗ 〈imri1, T̂ i1 , σ, h〉. From 〈imri, T̂ i, σ, s; h〉
σ+

↪→∗

〈imri1 , T̂ i1, σ, h〉 and Item (2) of Proposition (3.6.5), there exists i′ such that

〈imri, T̂ i, σ, s; h〉
σ

↪→∗ 〈imri′ , T̂ i′ , σ, h〉 and 〈imri′ , T̂ i′ , σ, h〉
σ+

↪→∗ 〈imri1 , T̂ i1 , σ, h〉.

From (σ,)σ, (σ′

/∈ Π(π2) and π2, we have 〈imri1 , T̂ i1, σ, h〉
σ′

↪→∗ 〈imrj, T̂ j, σ
′, a〉.

From σ = a :: σ′, 〈imri′ , T̂ i′ , σ, h〉
σ+

↪→∗ 〈imri1 , T̂ i1 , σ, h〉, 〈imri1 , T̂ i1, σ, h〉
σ′

↪→∗

〈imrj, T̂ j, σ
′, a〉 and Item (3) of Lemma (3.6.4), we have 〈imri′ , T̂ i′ , σ, h〉

σ′

↪→∗

〈imrj, T̂ j, σ
′, a〉.

145

Lemma 3.6.11 µψR is complete on R.

Proof From Definition (3.6.7), we need to prove for all σ ∈ S, a ∈ C and i ∈ I, if

〈imri, T̂ i, σ, a〉 ∈ R, then

1. 〈imri, T̂ i, σ, a〉
σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉 ⇒ j ∈ µψR(i, σ, s; a′).I if a = s; a′

2. 〈imri, T̂ i, σ, h〉
σ′

↪→∗ 〈imrj, T̂ j, σ
′, a′〉 ⇒ j ∈ µψR(i, σ, h).I if a = h and σ = a′ ::

σ′

We prove by induction on the structure of a ∈ C. If the form of a is s; a′, we need

to prove Item (1). If the form of a is h, we need to prove Item (2). There are five

cases depending upon the form of s.

1. If a = s; a′ and s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip.

We have

(i) 〈imri, T̂ i, σ, s; a
′〉

σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉

It is clear that there are 0 or more (s;a′::σ,)s;a′::σ pairs along the path. Let n be

the number of the pairs. We prove by induction on n.

Base case (n = 0). There is no (s;a′::σ,)s;a′::σ pair, which means no inter-

rupts along the path. From Rule (3.13)-(3.15) and (3.18), depending on what

s is, we have 〈imri, T̂ i, σ, s; a
′〉

σ
↪→ 〈imrj, T̂ j, σ, a

′〉, where j = ξs(i). From

〈imrj, T̂ j, σ, a
′〉 ∈ R, we have j = α(ξs(i)) = ξs(i). From j = α(ξs(i)) = ξs(i)

and Item (1) of Proposition (3.6.1), we have j ∈ µψR(i, σ, s; a′).I.

Induction Step. Suppose there are n + 1 of (s;a′::σ,)s;a′::σ pairs along the path.

Considering the first one, we have

(ii) 〈imri, T̂ i, σ, s; a
′〉 ↪→ 〈imrζu(i), T̂ ζu(i), s; a

′ :: σ, h(u)〉,

where u ∈ P̂(imri, T̂ i)

(iii) 〈imrζu(i), T̂ ζu(i), s; a
′ :: σ, h(u)〉

σ

↪→∗ Q
σ
↪→ 〈imri′, T̂ i′, σ, s; a

′〉

(iv) 〈imri′ , T̂ i′ , σ, s; a
′〉

σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉,

along which there are n of (s;a′::σ,)s;a′::σ pairs

From (iii) and the induction hypothesis on a, we have

146

(v) i′ ∈ µψR(ζu(i), s; a
′ :: σ, h(u))

From (iv) and the induction hypothesis on n, we have

(vi) j ∈ µψR(i′, σ, s; a′).I

From 〈imrζu(i), T̂ ζu(i), s; a
′ :: σ, h(u)〉 ∈ R, we have

(vii) α(ζu(i)) = ζu(i) and s; a′::Sσ = s; a′ :: σ

From (v), (vi), (vii), u ∈ P̂(imri, T̂ i) and Item (1) of Proposition (3.6.1), we

have j ∈ µψR(i, σ, s; a′).I.

2. If a = s; a′ and s is if0 x then s1 else s2.

We have

(i) 〈imri, T̂ i, σ, s; a
′〉

σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉

From (i), s is if0 x then s1 else s2and Item (1) of Lemma (3.6.10), we have either

(ii) 〈imri, T̂ i, σ, s1; a
′〉

σ
↪→ 〈imrj, T̂ j, σ, a

′〉

or

(iii) 〈imri, T̂ i, σ, s2; a
′〉

σ
↪→ 〈imrj, T̂ j, σ, a

′〉

If we have (ii), then from the induction hypothesis, we have

(iv) j ∈ µψR(i, σ, s1; a
′).I

From (iv) and Item (2) of Proposition (3.6.1), we have j ∈ µψR(i, σ, s; a′).I.

If we have (iii), then from the induction hypothesis, we have

(v) j ∈ µψR(i, σ, s2; a
′).I

From (v) and Item (2) of Proposition (3.6.1), we also have j ∈ µψR(i, σ, s; a′).I.

3. If a = s; a′ and s is s1; s2.

We have

(i) 〈imri, T̂ i, σ, (s1; s2); a
′〉

σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉

From (i) and Item (2) of Lemma (3.6.10), we have ∃i′ such that

(ii) 〈imri, T̂ i, σ, (s1; s2); a
′〉

σ

↪→∗ 〈imri′, T̂ i′, σ, s2; a
′〉

(iii) 〈imri′ , T̂ i′ , σ, s2; a
′〉

σ

↪→∗ 〈imrj, T̂ j, σ, a
′〉

From (ii) and the induction hypothesis, we have

(iv) i′ ∈ µψR(i, σ, (s1; s2); a
′)).I

147

From (iii) and the induction hypothesis, we have

(v) j ∈ µψR(i′, σ, s2; a
′).I

From (iv), (v) and Item (3) of Proposition (3.6.1), we have j ∈ µψR(i, σ, s; a′).I.

4. If h is iret.

From 〈imri, T̂ i, σ, h〉 ∈ R and Corollary (3.3.1), we have that 〈imri, T̂ i, σ, h〉 is

consistent, from which it follows σ = a′ :: σ′. We thus have

(i) 〈imri, T̂ i, σ, iret〉
σ

↪→∗ 〈imrj, T̂ j, σ
′, a′〉

It is clear that there are 0 or more (iret::σ,)iret::σ pairs along the path. Let n be

the number of the pairs. We prove by induction on n.

Base case (n = 0). There is no (iret::σ,)iret::σ pair, which means no interrupts

along the path. From Rule (3.11), we have 〈imri, T̂ i, σ, iret〉
σ
↪→ 〈imrj, T̂ j, σ

′, a′〉,

where j = ξiret(i). From 〈imrj, T̂ j, σ
′, a′〉 ∈ R, we have j = α(ξiret(i)) = ξiret(i).

From j = α(ξiret(i)) = ξiret(i) and Item (4) of Proposition (3.6.1), we have

j ∈ µψR(i, σ, iret).I.

Induction Step. Suppose there are n + 1 of (iret::σ,)iret::σ pairs along the path.

Considering the first one, we have

(ii) 〈imri, T̂ i, σ, iret〉 ↪→ 〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉, where u ∈ P̂(imri, T̂ i)

(iii) 〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉
σ

↪→∗ Q
σ
↪→ 〈imri′ , T̂ i′ , σ, iret〉

(iv) 〈imri′ , T̂ i′ , σ, iret〉
σ

↪→∗ 〈imrj, T̂ j, σ
′, a′〉,

along which there are n of (iret::σ,)iret::σ pairs

From (iii) and the induction hypothesis on a, we have

(v) i′ ∈ µψR(ζu(i), iret :: σ, h(u))

From (iv) and the induction hypothesis on n, we have

(vi) j ∈ µψR(i′, σ, iret).I

From 〈imrζu(i), T̂ ζu(i), iret :: σ, h(u)〉 ∈ R, we have

(vii) α(ζu(i)) = ζu(i) and iret::Sσ = iret :: σ

From (v), (vi), (vii), u ∈ P̂(imri, T̂ i) and Item (4) of Proposition (3.6.1), we

have j ∈ µψR(i, σ, iret).I.

148

5. If h = s; h′.

From 〈imri, T̂ i, σ, h〉 ∈ R and Corollary (3.3.1), we have that 〈imri, T̂ i, σ, h〉 is

consistent, from which it follows σ = a′ :: σ′. We thus have

(i) 〈imri, T̂ i, σ, s; h
′〉

σ

↪→∗ 〈imrj, T̂ j, σ
′, a′〉

From (i) and Item (3) of Lemma (3.6.10), we have ∃i′ such that

(ii) 〈imri, T̂ i, σ, s; h
′〉

σ

↪→∗ 〈imri′ , T̂ i′ , σ, h
′〉

(iii) 〈imri′ , T̂ i′ , σ, h
′〉

σ′

↪→∗ 〈imrj, T̂ j, σ
′, a′〉

From (ii) and the induction hypothesis, we have

(iv) i′ ∈ µψR(i, σ, s; h′)).I

From (iii) and the induction hypothesis, we have

(v) j ∈ µψR(i′, σ, h′).I

From (iv), (v) and Item (5) of Proposition (3.6.1), we have j ∈ µψR(i, σ, h).I.

Proposition 3.6.7 We have

1. if s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip, and path

π: 〈imri, T̂ i, σ, s; a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s; a〉, then there are n ≥ 0 of (s;a::σ,)s;a::σ

pairs along path π.

2. if path π: 〈imri, T̂ i, σ, iret〉
σ+

↪→∗ 〈imrj, T̂ j, σ, iret〉, then there are n ≥ 0 of

(iret::σ,)iret::σ pairs along path π.

Lemma 3.6.12 We have

1. if s is either x := e, imr = imr∧imr, imr = imr∨imr or skip, 〈imri, T̂ i, σ, s; a〉
σ+

↪→∗

〈imrj, T̂ j, σ, s; a〉, then µψR(j, σ, s; a).I ⊆ µψR(i, σ, s; a).I and

µψR(j, σ, s; a).k ≤ µψR(i, σ, s; a).k.

2. if 〈imri, T̂ i, σ, iret〉
σ+

↪→∗ 〈imrj, T̂ j, σ, iret〉, then µψR(j, σ, iret).I ⊆ µψR(i, σ, iret).I

and µψR(j, σ, iret).k ≤ µψR(i, σ, iret).k.

149

Proof We prove the two items individually.

1. From 〈imri, T̂ i, σ, s; a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s; a〉, we have path π : 〈imri, T̂ i, σ, s; a〉

↪→∗ 〈imrj, T̂ j, σ, s; a〉 and (σ,)σ /∈ Π(π). From s is either x := e, imr =

imr ∧ imr, imr = imr ∨ imr or skip, 〈imri, T̂ i, σ, s; a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s; a〉

and Item (1) of Proposition (3.6.7), we have there are n ≥ 0 of (s;a::σ,)s;a::σ pairs

along path π. We prove by induction on n.

Base case n = 0. There are no interrupts along π, in which situation the

path π is of 0 length: i = j. It follows µψR(j, σ, s; a).I ⊆ µψR(i, σ, s; a).I and

µψR(j, σ, s; a).k ≤ µψR(i, σ, s; a).k.

Induction step. Suppose there are n+1 of (s;a::σ,)s;a::σ pairs along path π. Con-

sider the first pair along the path π, we have

(i) 〈imri, T̂ i, σ, s; a〉 ↪→ 〈imrζu(i), T̂ ζu(i), s; a :: σ, h(u)〉

for some u ∈ 1..N such that u ∈ P̂(imri, T̂ i)

(ii) Sub-path π1: 〈imrζu(i), T̂ ζu(i), s; a :: σ, h(u)〉 ↪→∗ 〈imri1 , T̂ i1 , σ, s; a〉

along which there is no (s;a::σ

(iii) Sub-path π2: 〈imri1 , T̂ i1 , σ, s; a〉 ↪→
∗ 〈imrj, T̂ j, σ, s; a〉

along which there are n (s;a::σ,)s;a::σ pairs

From (i), we have α(ζu(i)) = ζu(i) and s; a::Sσ = s; a :: σ. From (σ,)σ /∈ Π(π)

and π1 is a sub-path of π, we have (σ,)σ /∈ Π(π1). From (ii) and (σ,)σ /∈ Π(π1),

we have 〈imrζu(i), T̂ ζu(i), s; a :: σ, h(u)〉
σ

↪→∗ 〈imri1, T̂ i1, σ, s; a〉. From

〈imrζu(i), T̂ ζu(i), s; a :: σ, h(u)〉
σ

↪→∗ 〈imri1 , T̂ i1 , σ, s; a〉 and µψR is complete

(Lemma 3.6.11), we have i1 ∈ µψR(ζu(i), s; a :: σ, h(u)).I. From α(ζu(i)) =

ζu(i), s; a::Sσ = s; a :: σ and Item (1) of Proposition (3.6.1), we have

(iv) µψR(i, σ, s; a).I =
⋃
{µψR(j ′, σ, s; a).I | j ′ ∈ J} ∪ {α(ξs(i))}

(v) µψR(i, σ, s; a).k = max({µψR(ζu(i), s; a :: σ, h(u)).k | u ∈ P̂(imri, T̂ i)}∪

{µψR(j ′, σ, s; a).k | j ′ ∈ J} ∪ {|σ|})

where J =
⋃
{µψR(ζu(i), s; a :: σ, h(u)).I | u ∈ P̂(imri, T̂ i)}. From (iv) and

(v), we have

150

(vi) µψR(j ′, σ, s; a).I ⊆ µψR(i, σ, s; a).I

(vii) µψR(j ′, σ, s; a).k ≤ µψR(i, σ, s; a).k

where j ′ ∈
⋃
{µψR(ζu(i), s; a :: σ, h(u)).I | u ∈ P̂(imri, T̂ i)}.

From i1 ∈ µψR(ζu(i), s; a :: σ, h(u)).I and (vi) and (vii), we have

(viii) µψR(i′, σ, s; a).I ⊆ µψR(i, σ, s; a).I

(ix) µψR(i′, σ, s; a).k ≤ µψR(i, σ, s; a).k

From π2 is sub-path of π and (σ,)σ /∈ Π(π), we have (σ,)σ /∈ Π(π2), from which it

follows 〈imri1 , T̂ i1, σ, s; a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s; a〉. From 〈imri1 , T̂ i1 , σ, s; a〉
σ+

↪→∗

〈imrj, T̂ j, σ, s; a〉, there are n of (s;a::σ,)s;a::σ pairs along π2 and the induction

hypothesis on n, we have

(x) µψR(j, σ, s; a).I ⊆ µψR(i′, σ, s; a).I

(xi) µψR(j, σ, s; a).k ≤ µψR(i′, σ, s; a).k

From (viii) and (x), we have µψR(j, σ, s; a).I ⊆ µψR(i, σ, s; a).I. From (ix) and

(xi), we have µψR(j, σ, s; a).k ≤ µψR(i, σ, s; a).k.

2. From 〈imri, T̂ i, σ, iret〉
σ+

↪→∗ 〈imrj, T̂ j, σ, iret〉, we have path π : 〈imri, T̂ i, σ, iret〉

↪→∗ 〈imrj, T̂ j, σ, iret〉 and (σ,)σ /∈ Π(π). From s is either x := e, imr = imr∧imr,

imr = imr ∨ imr or skip, 〈imri, T̂ i, σ, iret〉
σ+

↪→∗ 〈imrj, T̂ j, σ, iret〉 and Item (2) of

Proposition (3.6.7), we have there are n ≥ 0 of (iret::σ,)iret::σ pairs along path π.

We prove by induction on n.

The rest of proof is similar to that of Item (1). We omit details.

Lemma 3.6.13 We have

1. if η(s; a) ∈ L and 〈imri, T̂ i, σ, s; a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s; a〉, then

µψR(j, σ, s; a).I ⊆ µψR(i, σ, s; a).I and µψR(j, σ, s; a).k ≤ µψR(i, σ, s; a).k.

2. if η(h) ∈ L and 〈imri, T̂ i, σ, h〉
σ+

↪→∗ 〈imrj, T̂ j, σ
′, h〉, then

µψR(j, σ, h).I ⊆ µψR(i, σ, h).I and µψR(j, σ, h).k ≤ µψR(i, σ, h).k.

Proof If i = j, then the two Items of this Lemma are trivially true. We now suppose

i 6= j in the following proof.

151

1. From 〈imri, T̂ i, σ, s; a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s; a〉, we have path π : 〈imri, T̂ i, σ, s; a〉

↪→∗ 〈imrj, T̂ j, σ, s; a〉 and (σ,)σ /∈ Π(π). From η(s; a) ∈ L, it follows η(s; a) is

a primitive statement. We prove by induction on the form of s. There are two

cases.

(a) s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip.

From s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip,

〈imri, T̂ i, σ, s; a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s; a〉 and Item (1) of Lemma (3.6.12),

we have µψR(j, σ, s; a).I ⊆ µψR(i, σ, s; a).I and

µψR(j, σ, s; a).k ≤ µψR(i, σ, s; a).k.

(b) s = s1; s2 and η(s1; (s2; a)) is a primitive statement.

From s; a = s1; (s2; a), we have 〈imri, T̂ i, σ, s1; (s2; a)〉
σ+

↪→∗

〈imrj, T̂ j, σ, s1; (s2; a)〉. From η(s1; (s2; a)) is a primitive statement,

〈imri, T̂ i, σ, s1; (s2; a)〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s1; (s2; a)〉 and the induction hy-

pothesis, we have

(i) µψR(j, σ, s1; (s2; a)).I ⊆ µψR(i, σ, s1; (s2; a)).I

(ii) µψR(j, σ, s1; (s2; a)).k ≤ µψR(i, σ, s1; (s2; a)).k

From Item (3) of Proposition (3.6.1), we have

(iii) µψR(i, σ, (s1; s2); a).I =
⋃
{µψR(j ′, σ, s2; a).I | j ′ ∈ J}

(iv) µψR(i, σ, (s1; s2); a).k = max({µψR(i, σ, s1; (s2; a)).k}∪

{µψR(j ′′, σ, s2; a).k | j ′′ ∈ J})

where J = µψR(i, σ, s1; (s2; a)).I. From Item (3) of Proposition (3.6.1), we

have

(v) µψR(j, σ, (s1; s2); a).I =
⋃
{µψR(j ′, σ, s2; a).I | j ′ ∈ J ′}

(vi) µψR(j, σ, (s1; s2); a).k = max({µψR(j, σ, s1; (s2; a)).k}∪

{µψR(j ′′, σ, s2; a).k | j ′′ ∈ J ′})

where J ′ = µψR(j, σ, s1; (s2; a)).I. From (i), we have J ′ ⊆ J . From J ′ ⊆

J , (iii) and (v), we have µψR(j, σ, (s1; s2); a)).I ⊆ µψR(i, σ, (s1; s2); a).I.

From J ′ ⊆ J , (ii), (iv) and (vi), we have

µψR(j, σ, (s1; s2); a)).k ≤ µψR(i, σ, (s1; s2); a).k.

152

2. From 〈imri, T̂ i, σ, h〉
σ+

↪→∗ 〈imrj, T̂ j, σ, h〉, we have path π : 〈imri, T̂ i, σ, h〉 ↪→∗

〈imrj, T̂ j, σ, h〉 and (σ,)σ /∈ Π(π). From η(h) ∈ L, it follows the form of h is

either iret or s; h′ where η(s; h′) ∈ L. We prove by case analysis on the form of

h.

(a) h = iret.

From s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip,

〈imri, T̂ i, σ, iret〉
σ+

↪→∗ 〈imrj, T̂ j, σ, iret〉 and Item (2) of Lemma (3.6.12),

we have

µψR(j, σ, iret).I ⊆ µψR(i, σ, iret).I and µψR(j, σ, iret).k ≤ µψR(i, σ, iret).k.

(b) h = s; h′ and η(s; h′) ∈ L.

From η(s; h′) ∈ L and 〈imri, T̂ i, σ, s; h
′〉

σ+

↪→∗ 〈imrj, T̂ j, σ, s; h
′〉 and Item

(1) of Lemma (3.6.13), we have

(i) µψR(j, σ, s; h′).I ⊆ µψR(i, σ, s; h′).I

(ii) µψR(j, σ, s; h′).k ≤ µψR(i, σ, s; h′).k

From Item (5) of Proposition (3.6.1), we have

(iii) µψR(i, σ, h).I =
⋃
{µψR(j ′, σ, h′).I | j ′ ∈ J}

(iv) µψR(i, σ, h).k =

max({µψR(i, σ, s; h′).k} ∪ {µψR(j ′, σ, h′).k | j ′ ∈ J})

where J = µψR(i, σ, s; h′).I. From Item (5) of Proposition (3.6.1), we have

(v) µψR(j, σ, h).I =
⋃
{µψR(j ′, σ, h′).I | j ′ ∈ J ′}

(vi) µψR(j, σ, h).k =

max({µψR(j, σ, s; h′).k} ∪ {µψR(j ′, σ, h′).k | j ′ ∈ J ′})

where J ′ = µψR(j, σ, s; h′).I. From (i), we have J ′ ⊆ J . From J ′ ⊆ J , (iii)

and (v), we have µψR(j, σ, a).I ⊆ µψR(i, σ, a).I. From (ii), J ′ ⊆ J , (iv)

and (vi), we have µψR(j, σ, h).k ≤ µψR(i, σ, h).k.

153

3.6.3 Constructing types and type judgments

In this subsection, we define the sets that are critical to our type and type judg-

ment constructions with the help of function µψR; and prove a number of useful

lemmas regarding the sets; formally define the types and type judgments for state-

ments, handlers and the main program.

We define the following sets

Definition 3.6.8 For u ∈ 0..N , define

1. Iσ,a = {i | 〈imri, T̂ i, σ, a〉 ∈ R}

2. Iσ,a
i′,u =

{i | 〈imri′ , T̂ i′ , σ, h(u)〉
σ+

↪→∗ 〈imri, T̂ i, σ, a〉} if i′ ∈ Iσ,h(u)

∅ otherwise

3. Jσ,a
i = µψR(i, σ, a).I

4. Kσ,a
i = µψR(i, σ, a).k − |σ|

5. Kσ,a
i′,u =

max({Kσ,a
i | i ∈ Iσ,a

i′,u}) if Iσ,a
i′,u 6= ∅

0 otherwise

Proposition 3.6.8 We have

1. if j ∈ Iσ,a
i,u , then 〈imrj, T̂ j, σ, a〉 ∈ R.

2. if Iσ,a
i,u 6= ∅, then a ∈ Cu.

Proposition 3.6.9 For u ∈ 0..N , if i ∈ Iσ,h(u), then Iσ,h(u)
i,u = {i}.

Lemma 3.6.14 For u ∈ 0..N , if i ∈ Iσ,a
i′,u, then Kσ,a

i ≤ Kσ,a
i′,u.

Proof From Iσ,a
i′,u 6= ∅ and Item (4) of Definition (3.6.8), we have

Kσ,a
i′,u = max({Kσ,a

i | i ∈ Iσ,a
i′,u}), from which it follows for i ∈ Iσ,a

i′,u, Kσ,a
i ≤ Kσ,a

i′,u.

154

Lemma 3.6.15 If i ∈ Iσ,a ∩ Iσ′,a, then we have Jσ,a
i = Jσ′,a

i and Kσ,a
i = Kσ′ ,a

i

Proof From i ∈ Iσ,a ∩ Iσ′,a we have i ∈ Iσ,a and i ∈ Iσ′′,a. From i ∈ Iσ,a and Item (1)

of Definition (3.6.8), we have 〈imri, T̂ i, σ, a〉 ∈ R. Similarly, from i ∈ Iσ,a and Item

(1) of Definition (3.6.8), we have 〈imri, T̂ i, σ
′, a〉 ∈ R. From Item (3) of Definition

(3.6.8), we have Jσ,a
i = µψR(i, σ, a).I and Jσ′,a

i = µψR(i, σ′, a).I. From Item (4) of Def-

inition (3.6.8), we have Kσ,a
i = µψR(i, σ, a).k − |σ| and Kσ′ ,a

i = µψR(i, σ′, a).k − |σ′|.

From Lemma (3.6.9), we have µψR is stack-irrelevant. From 〈imri, T̂ i, σ, a〉 ∈ R,

〈imri, T̂ i, σ
′, a〉 ∈ R, that µψR is stack-irrelevant, and Definition (3.6.6), we have

µψR(i, σ, a).I = µψR(i, σ′, a).I and µψR(i, σ, a).k − |σ| = µψR(i, σ′, a).k − |σ′|. From

µψR(i, σ, a).I = µψR(i, σ′, a).I, Jσ,a
i = µψR(i, σ, a).I and Jσ′,a

i = µψR(i, σ′, a).I,

we have Jσ,a
i = Jσ′,a

i . From µψR(i, σ, a).k − |σ| = µψR(i, σ′, a).k − |σ′|, Kσ,a
i =

µψR(i, σ, a).k − |σ| and Kσ′ ,a
i = µψR(i, σ′, a).k − |σ′|, we have Kσ,a

i = Kσ′ ,a
i .

We define the following auxiliary sets.

Definition 3.6.9 For u ∈ 1..N , define

1. Iu = {i | i ∈ Iσ,a ∧ ζu(i) ∈ Ia::σ,h(u)}

2. Wu
i = {a :: σ | i ∈ Iσ,a ∧ ζu(i) ∈ Ia::σ,h(u)}

3. Ju
i =

Jσ,h(u)
ζu(i) for any σ ∈ Wu

i if i ∈ Iu

∅ otherwise

4. Ku
i =

Kσ,h(u)
ζu(i) for any σ ∈ Wu

i if i ∈ Iu

0 otherwise

Note that if i ∈ Iu, then Ju
i and Ku

i are well defined sets because of Lemma (3.6.15),

Clearly, for all u ∈ 1..N , we have Iu ⊆ I and for all i ∈ Iu, Wu
i ⊆ S.

Proposition 3.6.10 If i ∈ Iu, then there exists σ ∈ Wu
i such that Ju

i = Jσ,h(u)
ζu(i) and

Ku
i = Kσ,h(u)

ζu(i) .

155

We now construct handler types from R:

Definition 3.6.10 Define τR: ∀u ∈ 1..N : τR(u) =
∧

i∈Iu(imri, T̂ i

Ku
i−→

∨
j∈Ju

i
imrj, T̂ j)

We construct type judgments from R:

Definition 3.6.11 For u ∈ 0..N , σ ∈ S and i′ ∈ I, define

1. Type judgment for statement s

τR `K
σ,s;a

i′,u
s :

∧
i∈I

σ,s;a

i′,u

(imri, T̂ i →
∨

j∈J
σ,s;a
i

imrj, T̂ j) where s; a ∈ C

2. Type judgment for main

τR `
K
nil,m
i0,0

m :
∨

i∈I
nil,m
i0,0

imri, T̂ i

3. Type judgment for handlers

τR `
K

σ,h

i′,u

h :
∧

i∈I
σ,h

i′,u

(imri, T̂ i →
∨

j∈J
σ,h
i

imrj, T̂ j) where h ∈ C

3.6.4 Well-formedness of types and type judgments

In this subsection, we first prove some lemmas that will be used in the later part

of the section. We then proceed to prove the well-formedness of the types and type

judgments constructed as we did in subsection 3.6.3.

Lemma 3.6.16 If Q ∈ R ⇒ Q.stk ≤ K, then Kσ,a
i ≤ K

Proof From Q ∈ R ⇒ Q.stk ≤ K and Proposition (3.6.2), we have ∀i ∈ I :

∀σ ∈ S : ∀a ∈ C : µψR(i, σ, a).k ≤ K. From Item (4) Definition (3.6.8), we have

Kσ,a
i = µψR(i, σ, a).k − |σ|. From Kσ,a

i = µψR(i, σ, a).k − |σ| and ∀i ∈ I : ∀σ ∈ S :

∀a ∈ C : µψR(i, σ, a).k ≤ K, we have Kσ,a
i ≤ K − |σ|. From Kσ,a

i ≤ K − |σ| and

|σ| ≥ 0, we have Kσ,a
i ≤ K.

Lemma 3.6.17 Kσ,a
i ≥ 0

Proof From Item (4) Definition (3.6.8), we have Kσ,a
i = µψR(i, σ, a).k − |σ|. From

Item (2) of Lemma (3.6.2), we have µψR(i, σ, a).k ≥ |σ|. From Kσ,a
i = µψR(i, σ, a).k−

|σ| and µψR(i, σ, a).k ≥ |σ|, we have Kσ,a
i ≥ 0.

156

Corollary 3.6.2 Kσ,a
i′,u ≥ 0

Proof There are two cases depending on whether Iσ,a
i′,u = ∅. If Iσ,a

i′,u = ∅, then

from Item (5) of Definition (3.6.8), we have Kσ,a
i′,u = 0. Suppose i ∈ Iσ,a

i′,u. From

Lemma (3.6.17), we have Kσ,a
i ≥ 0. From i ∈ Iσ,a and Item (5) of Definition (3.6.8), we

have Kσ,a = max({Kσ,a
i | i ∈ Iσ,a}). From Kσ,a

i ≥ 0 and Kσ,a = max({Kσ,a
i | i ∈ Iσ,a}),

we have Kσ,a ≥ 0.

Lemma 3.6.18 Jσ,a
i 6= ∅.

Proof From Item (3) of Definition (3.6.8), we have Jσ,a
i = µψR(i, σ, a).I. From

Item (1) of Lemma (3.6.2), we have µψR(i, σ, a).I 6= ∅. From µψR(i, σ, a).I 6= ∅ and

Jσ,a
i = µψR(i, σ, a).I, we have Jσ,a

i 6= ∅.

Lemma 3.6.19 For u ∈ 0..N , if i ∈ Iσ,s;a
i′,u , then we have Jσ,s;a

i ⊆ Iσ,a
i′,u.

Proof From Lemma (3.6.18), we have Jσ,s;a
i 6= ∅. Consider j ∈ Jσ,s;a

i . From

j ∈ Jσ,s;a
i and Item (3) of Definition (3.6.8), we have j ∈ µψR(i, σ, s; a).I. From

Lemma (3.6.9), we have µψR is sound. From i ∈ Iσ,s;a
i′,u and Item (1) of Proposition

(3.6.8), we have 〈imri, T̂ i, σ, s; a〉 ∈ R. From µψR is sound, 〈imri, T̂ i, σ, s; a〉 ∈ R,

j ∈ µψR(i, σ, s; a).I and Item (1) of Definition (3.6.5), we have 〈imri, T̂ i, σ, s; a〉
σ

↪→∗

〈imrj, T̂ j, σ, a〉. From i ∈ Iσ,s;a
i′,u and Item (2) of Definition (3.6.8), we have we have

i′ ∈ Iσ,h(u) and 〈imri′ , T̂ i′ , σ, h(u)〉
σ+

↪→∗ 〈imri, T̂ i, σ, s; a〉. From 〈imri′ , T̂ i′, σ, h(u)〉
σ+

↪→∗

〈imri, T̂ i, σ, s; a〉, 〈imri, T̂ i, σ, s; a〉
σ

↪→∗ 〈imrj, T̂ j, σ, a〉 and Item (1) of Lemma (3.6.4),

we have 〈imri′ , T̂ i′ , σ, h(u)〉
σ

↪→∗ 〈imrj, T̂ j, σ, a〉. From 〈imri′ , T̂ i′, σ, h(u)〉
σ

↪→∗

〈imrj, T̂ j, σ, a〉 and Item (1) of Proposition (3.6.5), we have 〈imri′ , T̂ i′ , σ, h(u)〉
σ+

↪→∗

〈imrj, T̂ j, σ, a〉. From i′ ∈ Iσ,h(u), 〈imri′, T̂ i′, σ, h(u)〉
σ+

↪→∗ 〈imrj, T̂ j, σ, a〉 and Item

(2) of Definition (3.6.8), we have j ∈ Iσ,a
i′,u.

Corollary 3.6.3 For u ∈ 0..N , if Iσ,s;a
i′,u 6= ∅, then we have Iσ,a

i′,u 6= ∅.

157

Lemma 3.6.20 Inil,m
i0,0 6= ∅.

Proof We prove by induction on the nesting level of m. Define the nesting level of

m inductively as follows:

• the nesting level of p.m is 0.

• if m is of the form s;m′ and the nesting level of m is n, then the nesting level

of m′ is n + 1.

In base case (n = 0), we have the initial state Q0, where Q0.a = p.m, it follows

Inil,p.m
i0,0 = {i0}. In induction step, suppose m = s;m′ and the nesting level of m is n.

From the nesting level of m is n and the induction hypothesis, we have Inil,m
i0,0 6= ∅.

From Inil,m
i0,0 6= ∅ and Corollary (3.6.3), we have Inil,m′

i0,0 6= ∅.

Lemma 3.6.21 For u ∈ 1..N , if Ia::σ,h(u) 6= ∅, then ∃i : i ∈ Iσ,a ∧ ζu(i) ∈ Ia::σ,h(u).

Proof Let j ∈ Ia::σ,h(u). From j ∈ Ia::σ,h(u) and Item (1) of Definition (3.6.8), we have

〈imrj, T̂ j, a :: σ, h(u)〉 ∈ R. Consider a state immediately before 〈imrj, T̂ j, a :: σ, h(u)〉

in R. By inspecting Rules (3.10)-(3.18), we have that Rule (3.10) is the only one that

can have 〈imrj, T̂ j, a :: σ, h(u)〉 on the right hand side of the binary relation ↪→, from

which it follows that we can choose i such that 〈imri, T̂ i, σ, a〉 ↪→ 〈imrj, T̂ j, a :: σ, h(u)〉

and 〈imri, T̂ i, σ, a〉 ∈ R, where ζu(i) = j. From 〈imri, T̂ i, σ, a〉 ∈ R and Item (1) of

Definition (3.6.8), we have i ∈ Iσ,a.

Lemma 3.6.22 Suppose u ∈ 1..N . If Q ∈ R and Q.a = s; a and ∀Q′ ∈ R : u /∈

P̂(Q′.imr,Q′.T̂), then ∃Q′′ ∈ R such that Q′′.a = a ∧Q′′.T̂ (u) > Q.T̂ (u).

Proof Let Q = 〈imr, T̂ , σ, s; a〉. We prove by induction on the form of s. There are

three cases.

1. s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip.

From 〈imr, T̂ , σ, s; a〉 ∈ R and Rules (3.13)-(3.15), (3.18), we have

〈χs(imr), T̂
′

, σ, a〉 ∈ R, where T̂
′

= θ̂(imr, T̂). From ∀Q′ ∈ R :

158

u /∈ P̂(Q′.imr,Q′.T̂), we have T̂
′

(u) = θ̂(imr, T̂)(u) = T̂ (u) + 1, from which it

follows T̂
′

(u) > T̂ (u).

2. s is if0 x then s1 else s2.

From 〈imr, T̂ , σ, s; a〉 ∈ R and Rule (3.16), we have 〈imr, T̂ , σ, s1; a〉 ∈ R. From

〈imr, T̂ , σ, s1; a〉 ∈ R and ∀Q′ ∈ R : u /∈ P̂(Q′.imr,Q′.T̂) and the induction

hypothesis, we have ∃Q′′ ∈ R such that Q′′.a = a ∧Q′′.T̂ (u) > T̂ (u).

3. s is s1; s2.

From (s1; s2); a and 〈imr, T̂ , σ, s; a〉 ∈ R, we have 〈imr, T̂ , σ, s1; (s2; a)〉 ∈ R.

From 〈imr, T̂ , σ, s1; (s2; a)〉 ∈ R and ∀Q′ ∈ R : u /∈ P̂(Q′.imr,Q′.T̂) and the

induction hypothesis, we have ∃Q′′ ∈ R such that Q′′.a = s2; a ∧ Q′′.T̂ (u) >

T̂ (u). From Q′′ ∈ R and Q′′.a = s2; a and ∀Q′ ∈ R : u /∈ P̂(Q′.imr,Q′.T̂) and

the induction hypothesis, we have ∃Q′′′ ∈ R such that Q′′′.a = a ∧Q′′′.T̂ (u) >

Q′′.T̂ (u). From Q′′′.T̂ (u) > Q′′.T̂ (u) and Q′′.T̂ (u) > T̂ (u), we have Q′′′.T̂ (u) >

T̂ (u).

Lemma 3.6.23 For u ∈ 1..N , if R is finite, then ∃σ ∈ S such that Iσ,h(u) 6= ∅.

Proof Let u ∈ 1..N . Suppose for the sake of contradiction that ∀σ ∈ S, we have

Iσ,h(u) = ∅. From Item (1) of Definition (3.6.8), we have @Q ∈ R such thatQ.a = h(u).

From @Q ∈ R such that Q.a = h(u), and by inspecting conditions of Rules (3.10)-

(3.18), we have ∀Q′ ∈ R : u /∈ P̂(Q′.imr,Q′.T̂). Let N be the set of natural numbers.

We will construct an infinite state sequence Q0, . . . , Qn, . . . such that ∀n ∈ N : Qn ∈

R∧Qn.a = loop s and i > j ⇒ Qi.T̂ (u) > Qj.T̂ (u), which contradicts the assumption

that R is finite. We construct the sequence inductively as follows:

Base case (Q0). From Lemma (3.6.20), we have Inil,loop s
i0,0 6= ∅. Let i ∈ Inil,loop s

i0,0 . From

i ∈ Inil,loop s
i0,0 and Item (1) of Proposition (3.6.8), we have 〈imri, T̂ i, nil, loop s〉 ∈ R.

Let Q0 = 〈imri, T̂ i, nil, loop s〉.

Induction step (Qn+1). Suppose Qn ∈ R ∧ Qn.a = loop s. From Qn ∈ R and

159

Rule (3.12), we have 〈Qn.imr,Qn.T̂ , nil, s; loop s〉 ∈ R. From

〈Qn.imr,Qn.T̂ , nil, s; loop s〉 ∈ R and ∀Q′ ∈ R : u /∈ P̂(Q′.imr,Q′.T̂) and

Lemma (3.6.22), ∃Q′′ ∈ R such thatQ′′.a = loop s∧Q′′.T̂ (u) > Qn.T̂ . LetQn+1 = Q′′.

Corollary 3.6.4 Suppose R is finite. For u ∈ 1..N , Iu 6= ∅.

Proof From R is finite and Lemma (3.6.23), we have there exist σ ∈ S such that

Iσ,h(u) 6= ∅. Let i ∈ Iσ,h(u). From i ∈ Iσ,h(u) and Item (1) of Definition (3.6.8), we

have 〈imri, T̂ i, σ, h(u)〉 ∈ R. From 〈imri, T̂ i, σ, h(u)〉 ∈ R and Corollary (3.3.1), we

have state 〈imri, T̂ i, σ, h(u)〉 is consistent, from which it follows σ = a :: σ′. From

σ = a :: σ′ and Iσ,h(u) 6= ∅, we have Ia::σ′,h(u) 6= ∅. From Ia::σ′,h(u) 6= ∅ and Lemma

(3.6.21), we have ∃i : i ∈ Iσ′,a ∧ ζu(i) ∈ Ia::σ′,h(u). From ∃i : i ∈ Iσ′,a ∧ ζu(i) ∈ Ia::σ′,h(u)

and Item (1) of Definition (3.6.9), we have ∃i : i ∈ Iu,

We now prove that the handler types are well formed in the sense of Defini-

tion (3.4.1).

Lemma 3.6.24 (Well-formedness of handler types) Suppose Q ∈ R ⇒ (Q.T̂ ≤

r ∧ Q.stk ≤ K). For u ∈ 1..N , τR(u) =
∧

i∈Iu(imri, T̂ i

Ku
i−→

∨
j∈Ju

i
imrj, T̂ j) is well

formed.

Proof From Q ∈ R ⇒ (Q.T̂ ≤ r ∧ Q.stk ≤ K) and Theorem 3.3.1, we have R is

finite. From Definition (3.4.1), we need to prove, for u ∈ 1..N

(i) Iu 6= ∅

(ii) ∀i ∈ Iu : Ku
i ≥ 0

(iii) ∀i ∈ Iu : Ju
i 6= ∅

The proof of Item (i) comes immediately from Corollary (3.6.4). Let i ∈ Iu, then

from Proposition (3.6.10), there exists σ ∈ Wu
i such that we have Ju

i = Jσ,h(u)
ζu(i) and

Ku
i = Kσ,h(u)

ζu(i) . From Lemma (3.6.17), we have Kσ,h(u)
ζu(i) ≥ 0. From Ku

i = Kσ,h(u)
ζu(i) and

Kσ,h(u)
ζu(i) ≥ 0, we have Ku

i ≥ 0, which is Item (ii). From i ∈ Iu and Item (3) of Definition

160

(3.6.9), we have Ju
i = Jσ,h(u)

ζu(i) . From i ∈ Iu and Lemma (3.6.18), we have Jσ,h(u)
ζu(i) 6= ∅.

From Ju
i = Jσ,h(u)

ζu(i) and Jσ,h(u)
ζu(i) 6= ∅, we have Ju

i 6= ∅, which is Item (iii).

We now prove the well-formedness of type judgments for statements, handlers and

the main program in the sense of Definition (3.4.2).

Lemma 3.6.25 (Well-formedness of type judgment, statements) Suppose

Q ∈ R ⇒ (Q.T̂ ≤ r∧Q.stk ≤ K). If Iσ,s;a
i′,u 6= ∅, then τR `K

σ,s;a

i′,u
s :

∧
i∈I

σ,s;a

i′,u

(imri, T̂ i →
∨

j∈J
σ,s;a
i

imrj, T̂ j) is well formed.

Proof From Q ∈ R ⇒ (Q.T̂ ≤ r ∧ Q.stk ≤ K) and Theorem 3.3.1, we have R is

finite. From Item (1) of Definition (3.4.2), it suffices to prove:

(i) ∀i ∈ Iσ,s;a
i′,u : Jσ,s;a

i 6= ∅

(ii) Kσ,s;a
i′,u ≥ 0.

Proof of Item (i) comes immediately from Lemma (3.6.18). Proof of Item (ii) comes

immediately from Corollary (3.6.2).

Lemma 3.6.26 (Well-formedness of type judgment, handler) Suppose

Q ∈ R ⇒ (Q.T̂ ≤ r ∧Q.stk ≤ K). If Iσ,h
i′,u 6= ∅, then τR `

K
σ,h

i′,u

h :
∧

i∈I
σ,h

i′,u

(imri, T̂ i →
∨

j∈J
σ,h
i

imrj, T̂ j) is well formed.

Proof From Q ∈ R ⇒ (Q.T̂ ≤ r ∧ Q.stk ≤ K) and Theorem 3.3.1, we have R is

finite. From Item (3) of Definition (3.4.2), it suffices to prove:

(i) ∀i ∈ Iσ,h
i′,u : Jσ,h

i 6= ∅

(ii) Kσ,h
i′,u ≥ 0.

Proof of Item (i) comes immediately from Lemma (3.6.18). Proof of Item (ii) comes

immediately from Corollary (3.6.2).

Lemma 3.6.27 (Well-formedness of type judgment, main) Suppose

Q ∈ R ⇒ (Q.T̂ ≤ r ∧Q.stk ≤ K). τR `K m :
∨

i∈I
nil,m
i0,0

imri, T̂ i is well formed.

Proof It is clear that K ≥ 0. From Item (2) of Definition (3.4.2), we need to prove:

Inil,m
i0,0 6= ∅, which comes immediately from Lemma (3.6.20).

161

3.6.5 Constructing type derivations

In this subsection, we first prove lemmas that will be used in the proofs of type

derivation constructions. We then proceed to show how to build the type derivations

for statements, the main program and handlers.

Proposition 3.6.11 We have

1. Iσ,(if0 x then s1 else s2);a
i′,u = Iσ,s1;a

i′,u = Iσ,s2;a
i′,u

2. Iσ,(s1;s2);a
i′,u = Iσ,s1;(s2;a)

i′,u

3. Iσ,s;loop s
i0,0 = Iσ,loop s

i0,0

Lemma 3.6.28 For u ∈ 0..N , if η(a) ∈ L, i ∈ Iσ,a
i′,u and u ∈ P̂(imri, T̂ i), then we

have Ju
i 6= ∅ and Ju

i ⊆ Iσ,a
i′,u.

Proof From i ∈ Iσ,a
i′,u and Item (1) of Proposition (3.6.8), we have 〈imri, T̂ i, σ, a〉 ∈

R, from which it follows i ∈ Iσ,a. From 〈imri, T̂ i, σ, a〉 ∈ R, u ∈ P̂(imri, T̂ i) and

Item (4) of Lemma (3.6.5), we have 〈imri, T̂ i, σ, a〉 ↪→ 〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉.

From 〈imri, T̂ i, σ, a〉 ∈ R and 〈imri, T̂ i, σ, a〉 ↪→ 〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉, we have

〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉 ∈ R, from which it follows ζu(i) ∈ Ia::σ,h(u). From i ∈ Iσ,a,

ζu(i) ∈ Ia::σ,h(u) and Item (1) of Definition (3.6.9), we have i ∈ Iu. From i ∈ Iσ,a,

ζu(i) ∈ Ia::σ,h(u) and Item (2) of Definition (3.6.9), we have a :: σ ∈ Wu
i . From

i ∈ Iu, a :: σ ∈ Wu
i and Item (3) of Definition (3.6.9), we have Ju

i = Ja::σ,h(u)
ζu(i) . From

Lemma (3.6.18), we have Ja::σ,h(u)
ζu(i) 6= ∅. From Ju

i = Ja::σ,h(u)
ζu(i) and Ja::σ,h(u)

ζu(i) 6= ∅, we have

Ju
i 6= ∅.

Consider j ∈ Ju
i . From Ju

i = Ja::σ,h(u)
ζu(i) , we have j ∈ Ja::σ,h(u)

ζu(i) . From j ∈ Ja::σ,h(u)
ζu(i)

and Item (3) of Definition (3.6.8), we have j ∈ µψR(ζu(i), a :: σ, h(u)).I. From

Lemma (3.6.9), we have µψR is sound. From µψR is sound, 〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉 ∈

R, j ∈ µψR(ζu(i), a :: σ, h(u)).I and Item (2) of Definition (3.6.5), we have

〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉
σ

↪→∗ 〈imrj, T̂ j, σ, a〉. From 〈imri, T̂ i, σ, a〉 ↪→

〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉, 〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉
σ

↪→∗ 〈imrj, T̂ j, σ, a〉, Item (2)

162

of Lemma (3.6.4), we have 〈imri, T̂ i, σ, a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, a〉. From i ∈ Iσ,a
i′,u and Item

(2) of Definition (3.6.8), we have i′ ∈ Iσ,h(u) and 〈imri′, T̂ i′, σ, h(u)〉
σ+

↪→∗ 〈imri, T̂ i, σ, a〉.

From 〈imri′, T̂ i′, σ, h(u)〉
σ+

↪→∗ 〈imri, T̂ i, σ, a〉, 〈imri, T̂ i, σ, a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, a〉, Item

(4) of Lemma (3.6.4), we have 〈imri′, T̂ i′, σ, h(u)〉
σ+

↪→∗ 〈imrj, T̂ j, σ, a〉. From i′ ∈

Iσ,h(u) and 〈imri′, T̂ i′, σ, h(u)〉
σ+

↪→∗ 〈imrj, T̂ j, σ, a〉 and Item (2) of Definition (3.6.8),

we have j ∈ Iσ,a
i′,u.

Lemma 3.6.29 For u ∈ 0..N , if Iσ,s;a
i′,u 6= ∅ and j ∈ Iσ,a

i′,u then ∃i ∈ Iσ,s;a
i′,u such that

〈imri, T̂ i, σ, s; a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, a〉.

Proof From j ∈ Iσ,a
i′,u and Item (2) of Definition (3.6.8), we have i′ ∈ Iσ,h(u) and

〈imri′, T̂ i′, σ, h(u)〉
σ+

↪→∗ 〈imrj, T̂ j, σ, a〉. From 〈imri′ , T̂ i′ , σ, h(u)〉
σ+

↪→∗ 〈imrj, T̂ j, σ, a〉

and Item (1) of Definition (3.6.4), we have a path π: 〈imri′ , T̂ i′ , σ, h(u)〉 ↪→∗

〈imrj, T̂ j, σ, a〉 and (σ,)σ /∈ Π(π). From Iσ,s;a
i′,u 6= ∅ and Item (2) of Proposition (3.6.8),

we have s; a ∈ Cu. From s; a ∈ Cu, 〈imri′ , T̂ i′ , σ, h(u)〉 ↪→∗ 〈imrj, T̂ j, σ, a〉 and

Item (3) of Proposition (3.6.4), there exists i along π such that we have sub-path

π1: 〈imri′ , T̂ i′ , σ, h(u)〉 ↪→∗ 〈imri, T̂ i, σ, s; a〉 and sub-path π2: 〈imri, T̂ i, σ, s; a〉 ↪→∗

〈imrj, T̂ j, σ, a〉. From π1 is sub-path of π and (σ,)σ /∈ Π(π), we have (σ,)σ /∈ Π(π1),

from which it follows 〈imri′, T̂ i′, σ, h(u)〉
σ+

↪→∗ 〈imri, T̂ i, σ, s; a〉. From i′ ∈ Iσ,h(u),

〈imri′, T̂ i′, σ, h(u)〉
σ+

↪→∗ 〈imri, T̂ i, σ, s; a〉 and Item (2) of Definition (3.6.8), we have

i ∈ Iσ,s;a
i′,u . From π2 is sub-path of π and (σ,)σ /∈ Π(π), we have (σ,)σ /∈ Π(π2), from

which it follows 〈imri, T̂ i, σ, s; a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, a〉.

Lemma 3.6.30 We have

1. Jσ,(if0 x then s1 else s2);a
i = Jσ,s1;a ∪ Jσ,s2;a

2. Jσ,(s1;s2);a
i =

⋃
{Jσ,s2;a

j | j ∈ Jσ,s1;(s2;a)
i }

3. if h = s; h′, then Jσ,h
i =

⋃
{Jσ,h′

j | j ∈ Jσ,s;h′

i }

Proof 1. From Item (2) of Proposition (3.6.1), we have

(i) µψR(i, σ, (if0 x then s1 else s2); a).I = µψR(i, σ, s1; a).I ∪ µψR(i, σ, s2; a).I

163

From Item (3) of Definition (3.6.8), we have

(ii) Jσ,(if0 x then s1 else s2);a
i = µψR(i, σ, (if0 x then s1 else s2); a).I

(iii) Jσ,s1;a = µψR(i, σ, s1; a).I

(iv) Jσ,s2;a = µψR(i, σ, s2; a).I

Replacing (i) with (ii), (iii) and (iv), we have Jσ,(if0 x then s1 else s2);a
i = Jσ,s1;a ∪

Jσ,s2;a.

2. From Item (3) of Proposition (3.6.1), we have

(i) µψR(i, σ, a).I =
⋃
{µψR(j, σ, s2; a

′).I | j ∈ µψR(i, σ, s1; (s2; a
′)).I}

From Item (3) of Definition (3.6.8), we have

(ii) Jσ,(s1;s2);a
i = µψR(i, σ, a).I

(iii) Jσ,s1;(s2;a)
i = µψR(i, σ, s1; (s2; a

′)).I

(iv) Jσ,s2;a
j = µψR(j, σ, s2; a

′).I

Replacing (i) with (ii), (iii) and (iv), we have Jσ,(s1;s2);a
i =

⋃
{Jσ,s2;a

j | j ∈

Jσ,s1;(s2;a)
i }.

3. From Item (5) of Proposition (3.6.1), we have

(i) µψR(i, σ, a).I =
⋃
{µψR(j, σ, h′).I | j ∈ µψR(i, σ, s; h′).I}

From Item (3) of Definition (3.6.8), we have

(ii) Jσ,h
i = µψR(i, σ, a).I

(iii) Jσ,s;h′

i = µψR(i, σ, s; h′).I

(iv) Jσ,h′

j = µψR(j, σ, h′).I

Replacing (i) with (ii), (iii) and (iv), we have Jσ,h
i =

⋃
{Jσ,h′

j | j ∈ Jσ,s;h′

i }.

Lemma 3.6.31 We have

1. For u ∈ 0..N , if Iσ,(if0 x then s1 else s2);a
i′,u 6= ∅, then we have

Kσ,s1;a
i′,u ≤ Kσ,(if0 x then s1 else s2);a

i′,u and Kσ,s2;a
i′,u ≤ Kσ,(if0 x then s1 else s2);a

i′,u

2. For u ∈ 0..N , if Iσ,(s1;s2);a
i′,u 6= ∅, then we have Kσ,s1;(s2;a)

i′,u ≤ Kσ,(s1;s2);a
i′,u and

Kσ,s2;a
i′,u ≤ Kσ,(s1 ;s2);a

i′,u

164

3. For u ∈ 1..N , if Iσ,h
i′,u 6= ∅, where h = s; h′, then we have Kσ,s;h′

i′,u ≤ Kσ,h
i′,u and

Kσ,h′

i′,u ≤ Kσ,h
i′,u

Proof 1. From Item (1) of Proposition (3.6.11), we have Iσ,if0 x then s1 else s2;a
i′,u =

Iσ,s1;a
i′,u = Iσ,s2;a

i′,u . Let I = Iσ,if0 x then s1 else s2;a
i′,u . From Iσ,(if0 x then s1 else s2);a

i′,u 6= ∅, we

have I 6= ∅. From I 6= ∅ and Item (5) of Definition (3.6.8), we have

Kσ,(if0 x then s1 else s2);a
i′,u = max({Kσ,(if0 x then s1 else s2);a

i | i ∈ I})

Kσ,s1;a
i′,u = max({Kσ,s1;a

i | i ∈ I})

Kσ,s2;a = max({Kσ,s2;a
i | i ∈ I})

It suffices to prove that for any i ∈ I, we have Kσ,s1;a
i ≤ Kσ,(if0 x then s1 else s2);a

i

and Kσ,s2;a
i ≤ Kσ,(if0 x then s1 else s2);a

i . From Item (4) of Definition (3.6.8), we

have

(i) Kσ,(if0 x then s1 else s2);a
i = µψR(i, σ, (if0 x then s1 else s2); a

′).k − |σ|

(ii) Kσ,s1 ;a
i = µψR(i, σ, s1; a

′).k − |σ|

(iii) Kσ,s2 ;a
i = µψR(i, σ, s2; a

′).k − |σ|

From Item (2) of Lemma (3.6.1), we have

(iv) µψR(i, σ, s1; a).k ≤ µψR(i, σ, (if0 x then s1 else s2); a).k

(v) µψR(i, σ, s2; a).k ≤ µψR(i, σ, (if0 x then s1 else s2); a).k

Subtracting |σ| on both sides of inequalities (iv) and (v), and replacing with

(i), (ii) and (iii), we have Kσ,s1;a
i ≤ Kσ,(if0 x then s1 else s2);a

i and

Kσ,s2;a
i ≤ Kσ,(if0 x then s1 else s2);a

i .

2. From Item (2) of Proposition (3.6.11), we have Iσ,(s1;s2);a
i′,u = Iσ,s1;(s2;a)

i′,u . Let I =

Iσ,(s1;s2);a
i′,u . From Iσ,(s1;s2);a

i′,u 6= ∅, we have I 6= ∅.

We first prove Kσ,s1;(s2;a)
i′,u ≤ Kσ,(s1;s2);a

i′,u . From I 6= ∅ and Item (5) of Defini-

tion (3.6.8), we have

Kσ,(s1;s2);a
i′,u = max({Kσ,(s1;s2);a

i | i ∈ I})

Kσ,s1;(s2;a)
i′,u = max({Kσ,s1;(s2;a)

i | i ∈ I})

It suffices to prove that for any i ∈ I, we have Kσ,s1;(s2;a)
i ≤ Kσ,(s1 ;s2);a

i . From

Item (4) of Definition (3.6.8), we have

(i) Kσ,(s1 ;s2);a
i = µψR(i, σ, (s1; s2); a).k − |σ|

(ii) Kσ,s1;(s2;a)
i = µψR(i, σ, s1; (s1; a)).k − |σ|

165

From Item (3) of Lemma (3.6.1), we have

(iii) µψR(i, σ, s1; (s2; a)).k ≤ µψR(i, σ, (s1; s2); a).k

Subtracting |σ| on both sides of the inequality (iii) and replacing with (i) and

(ii), we have Kσ,s1;(s2;a)
i ≤ Kσ,(s1 ;s2);a

i .

We next prove Kσ,s2;a
i′,u ≤ Kσ,(s1 ;s2);a

i′,u . From Iσ,s1;(s2;a)
i′,u 6= ∅ and Corollary (3.6.3),

we have Iσ,s2;a
i′,u 6= ∅. From Iσ,s2;a

i′,u 6= ∅ and Item (5) of Definition (3.6.8), we have

Kσ,s2;a
i′,u = max({Kσ,s2;a

j | j ∈ Iσ,s2;a
i′,u })

It suffices to prove that for any j ∈ Iσ,s2;a
i′,u , there exists i ∈ Iσ,(s1;s2);a

i′,u such that

Kσ,s2;a
j ≤ Kσ,(s1 ;s2);a

i . From j ∈ Iσ,s2;a
i′,u and Item (4) of Definition (3.6.8), we have

(iv) Kσ,s2;a
j = µψR(j, σ, s2; a).k − |σ|

From Iσ,s1;(s2;a)
i′,u 6= ∅, j ∈ Iσ,s2;a

i′,u and Lemma (3.6.29), there exists i ∈ Iσ,s1;(s2;a)
i′,u

such that 〈imri, T̂ i, σ, s1; (s2; a)〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s2; a〉.

From 〈imri, T̂ i, σ, s1; (s2; a)〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s2; a〉 and Item (2) of Proposition

(3.6.5), there exists i′ such that 〈imri, T̂ i, σ, s1; (s2; a)〉
σ

↪→∗ 〈imri′ , T̂ i′ , σ, s2; a〉

and 〈imri′ , T̂ i′ , σ, s2; a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s2; a〉. From Item (4) of Definition (3.6.8),

we have

(v) Kσ,s2;a
i′ = µψR(i′, σ, s2; a).k − |σ|

From 〈imri, T̂ i, σ, s1; (s2; a)〉
σ

↪→∗ 〈imri′, T̂ i′, σ, s2; a〉 and µψR is complete on R

(Lemma 3.6.11), we have i′ ∈ µψR(i, σ, s1; (s2; a)).I.

From i′ ∈ µψR(i, σ, s1; (s2; a)).I and Item (3) of Lemma (3.6.1), we have

(vi) µψR(i′, σ, s2; a).k ≤ µψR(i, σ, (s1; s2); a).k

Subtracting |σ| on both sides of the inequality (vii) and replacing with (i) and

(vi), we have Kσ,s2;a
i′ ≤ Kσ,(s1 ;s2);a

i . From 〈imri′ , T̂ i′ , σ, s2; a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s2; a〉

and Item (3) of Proposition (3.6.5), we have either i′ = j, in which case it fol-

lows Kσ,s2;a
j ≤ Kσ,(s1 ;s2);a

i ; or i′ 6= j ∧ η(s2; a) ∈ L, which we prove below. From

η(s2; a) ∈ L, 〈imri′, T̂ i′, σ, s2; a〉
σ+

↪→∗ 〈imrj, T̂ j, σ, s2; a〉 and Item (1) of Lemma

(3.6.13), we have

(vii) µψR(j, σ, s2; a).k ≤ µψR(i′, σ, s2; a).k

166

Subtracting |σ| on both sides of the inequality (vii) and replacing with (iv) and

(v), we have Kσ,s2;a
j ≤ Kσ,s2;a

i′ . From Kσ,s2;a
j ≤ Kσ,s2;a

i′ and Kσ,s2 ;a
i′ ≤ Kσ,(s1;s2);a

i ,

we have Kσ,s2 ;a
j ≤ Kσ,(s1;s2);a

i .

3. Let I = Iσ,h
i′,u = Iσ,s;h′

i′,u . From Iσ,h
i′,u 6= ∅ and we have I 6= ∅.

We first prove Kσ,s;h′

i′,u ≤ Kσ,h
i′,u. From I 6= ∅ and Item (5) of Definition (3.6.8), we

have

Kσ,h = max({Kσ,h
i | i ∈ I})

Kσ,s;h′

= max({Kσ,s;h′

i | i ∈ I})

It suffices to prove that for any i ∈ I, we have Kσ,s;h′

i ≤ Kσ,h
i . From Item (4) of

Definition (3.6.8), we have

(i) Kσ,h
i = µψR(i, σ, h).k − |σ|

(ii) Kσ,s;h′

i = µψR(i, σ, s; h′).k − |σ|

From Item (5) of Lemma (3.6.1), we have

(iii) µψR(i, σ, s; h′).k ≤ µψR(i, σ, h).k

Subtracting |σ| on both sides of inequalities (iii) and replacing with (i) and (ii),

we have Kσ,s;h′

i ≤ Kσ,h
i .

We next prove Kσ,h′

i′,u ≤ Kσ,h
i′,u. From Iσ,s;h′

i′,u 6= ∅ and Corollary (3.6.3), we have

Iσ,h′

i′,u 6= ∅. From Iσ,h′

i′,u 6= ∅ and Item (5) of Definition (3.6.8), we have

Kσ,h′

i′,u = max({Kσ,h′

j | j ∈ Iσ,h′

i′,u })

It suffices to prove that for any j ∈ Iσ,h′

i′,u , there exists i ∈ Iσ,h
i′,u such that

Kσ,h′

j ≤ Kσ,h
i . From j ∈ Iσ,h′

i′,u and Item (4) of Definition (3.6.8), we have

(iv) Kσ,h′

j = µψR(j, σ, h′).k − |σ|

From Iσ,s;h′

i′,u 6= ∅, j ∈ Iσ,h′

i′,u and Lemma (3.6.29), there exists i ∈ Iσ,s;h′

i′,u such that

〈imri, T̂ i, σ, s; h
′〉

σ+

↪→∗ 〈imrj, T̂ j, σ, h
′〉. From 〈imri, T̂ i, σ, s; h

′〉
σ+

↪→∗ 〈imrj, T̂ j, σ, h
′〉

and Item (2) of Proposition (3.6.5), there exists i′ such that 〈imri, T̂ i, σ, s; h
′)〉

σ

↪→∗

〈imri′ , T̂ i′ , σ, h
′〉 and 〈imri′ , T̂ i′ , σ, h

′〉
σ+

↪→∗ 〈imrj, T̂ j, σ, h
′〉. From Item (4) of

Definition (3.6.8), we have

(v) Kσ,h′

i′ = µψR(i′, σ, h′).k − |σ|

From 〈imri, T̂ i, σ, s; h
′〉

σ

↪→∗ 〈imri′, T̂ i′, σ, h
′〉 and µψR is complete on R

167

(Lemma 3.6.11), we have i′ ∈ µψR(i, σ, s; h′).I. From i′ ∈ µψR(i, σ, s; h′).I and

Item (5) of Lemma (3.6.1), we have

(vi) µψR(i′, σ, h′).k ≤ µψR(i, σ, h).k

Subtracting |σ| on both sides of the inequality (vi) and replacing with (i) and

(vi), we have Kσ,h′

i′ ≤ Kσ,h
i . From 〈imri′, T̂ i′, σ, h

′〉
σ+

↪→∗ 〈imrj, T̂ j, σ, h
′〉 and

Item (3) of Proposition (3.6.5), we have either i′ = j, in which case it follows

Kσ,h′

j ≤ Kσ,h
i ; or i′ 6= j ∧ η(h′) ∈ L, which we prove below. From η(h′) ∈ L,

〈imri′ , T̂ i′ , σ, h
′〉

σ+

↪→∗ 〈imrj, T̂ j, σ, h
′〉 and Item (2) of Lemma (3.6.13), we have

(vii) µψR(j, σ, h′).k ≤ µψR(i′, σ, h′).k

Subtracting |σ| on both sides of the inequality (vii) and replacing with (iv) and

(v), we have Kσ,h′

j ≤ Kσ,h′

i′ . From Kσ,h′

j ≤ Kσ,h′

i′ and Kσ,h′

i′ ≤ Kσ,h
i , we have

Kσ,h′

j ≤ Kσ,h
i .

Lemma 3.6.32 Suppose i ∈ Iσ,a
i′,u,

1. If a = s; a′ and s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip,

then we have α(ξs(i)) = ξs(i).

2. If a = iret, then we have α(ξiret(i)) = ξiret(i).

3. If u ∈ P̂(imri, T̂ i) and η(a) ∈ L, then we have a::Sσ = a :: σ, α(ζu(i)) = ζu(i)

and ζu(i) ∈ Ia::σ,h(u).

Proof From i ∈ Iσ,a
i′,u and Item (1) of Proposition (3.6.8), we have 〈imri, T̂ i, σ, a〉 ∈

R.

1. From 〈imri, T̂ i, σ, s; a
′〉 ∈ R, s is either x := e, imr = imr∧ imr, imr = imr∨ imr

or skip and Item (1) of Lemma (3.6.5), we have α(ξs(i)) = ξs(i).

2. From 〈imri, T̂ i, σ, iret〉 ∈ R and Corollary (3.3.1), we have state 〈imri, T̂ i, σ, iret〉

is consistent from which it follows σ = a :: σ′. From 〈imri, T̂ i, σ, iret〉 ∈ R, a is

iret, σ = a :: σ′ and Item (3) of Lemma (3.6.5), we have α(ξiret(i)) = ξiret(i).

168

3. From 〈imri, T̂ i, σ, a〉 ∈ R, u ∈ P̂(imri, T̂ i), η(a) ∈ L and Item (4) of Lemma (3.6.5),

we have a::Sσ = a :: σ, α(ζu(i)) = ζu(i) and 〈imri, T̂ i, σ, a〉 ↪→

〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉. From 〈imri, T̂ i, σ, a〉 ∈ R and 〈imri, T̂ i, σ, a〉 ↪→

〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉, we have 〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉 ∈ R. From

〈imrζu(i), T̂ ζu(i), a :: σ, h(u)〉 ∈ R and Item (1) of Definition (3.6.8), we have

ζu(i) ∈ Ia::σ,h(u).

Lemma 3.6.33 If i ∈ Iσ,s;a
i′,v , where s is x := e, imr = imr ∧ imr, imr = imr ∨ imr or

skip, then we have

1. Jσ,s;a
i =

⋃
{Jσ,s;a

j | j ∈
⋃

u∈ bP(imri, bT i)
Ju

i } ∪ {ξs(i)}.

2. u ∈ P̂(imri, T̂ i) ⇒ Ku
i + 1 ≤ Kσ,s;a

i .

Proof From i ∈ Iσ,s;a
i′,v and Item (1) of Proposition (3.6.8), we have 〈imri, T̂ i, σ, s; a〉 ∈

R. From 〈imri, T̂ i, σ, s; a〉 ∈ R and Item (1) of Definition (3.6.8), we have i ∈ Iσ,s;a.

1. From i ∈ Iσ,s;a
i′,v , s is x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip and Item

(1) of Lemma (3.6.32), we have α(ξs(i)) = ξs(i). From α(ξs(i)) = ξs(i) and Item

(1) of Proposition (3.6.1), we have

(i) µψR(i, σ, s; a).I =
⋃
{µψR(j, σ, s; a).I | j ∈ J} ∪ {(ξs(i)}

where J =
⋃
{µψR(α(ζu(i)), s; a::Sσ, h(u)).I | u ∈ P̂(imri, T̂ i)}. There are two

subcases depending on whether P̂(imri, T̂ i) = ∅.

Subcase 1. P̂(imri, T̂ i) = ∅.

From (i), we have µψR(i, σ, s; a).I = {(ξs(i)}. From µψR(i, σ, s; a).I = {(ξs(i)}

and Jσ,s;a
i = µψR(i, σ, s; a).I, we have Jσ,s;a

i = {(ξs(i)}.

Subcase 2. Suppose u ∈ P̂(imri, T̂ i).

From i ∈ Iσ,s;a
i′,v , Item (3) of Lemma (3.6.32), we have s; a::Sσ = s; a :: σ,

α(ζu(i)) = ζu(i) and ζu(i) ∈ Is;a::σ,h(u).

From J =
⋃
{µψR(α(ζu(i)), s; a::Sσ, h(u)).I | u ∈ P̂(imri, T̂ i)}, s; a::Sσ = s; a ::

169

σ and α(ζu(i)) = ζu(i), we have J =
⋃
{µψR(ζu(i), s; a :: σ, h(u)).I | u ∈

P̂(imri, T̂ i)}. From Item (3) of Definition (3.6.8), we have

(ii) Jσ,s;a
i = µψR(i, σ, s; a).I

(iii) Jσ,s;a
j = µψR(j, σ, s; a).I where j ∈ J

(iv) Js;a::σ,h(u)
ζu(i) = µψR(ζu(i), s; a :: σ, h(u)).I

Replacing (i) and J with (ii), (iii) and (iv), we have

(v) Jσ,s;a
i =

⋃
{Jσ,s;a

j | j ∈ J} ∪ {ξs(i)}

where J =
⋃
{Js;a::σ,h(u)

ζu(i) | u ∈ P̂(imri, T̂ i)}. From i ∈ Iσ,s;a, ζu(i) ∈ Is;a::σ,h(u) and

Item (1) of Definition (3.6.9), we have i ∈ Iu. From i ∈ Iσ,s;a, ζu(i) ∈ Is;a::σ,h(u)

and Item (2) of Definition (3.6.9), we have s; a :: σ ∈ Wu. From i ∈ Iu,

s; a :: σ ∈ Wu and Item (3) of Definition (3.6.9), we have Ju
i = Js;a::σ,h(u)

ζu(i) . From

Ju
i = Js;a::σ,h(u)

ζu(i) and (v), we have Jσ,s;a
i =

⋃
{Jσ,s;a

j | j ∈ J} ∪ {ξs(i)}, where

J =
⋃
{Ju

i | u ∈ P̂(imri, T̂ i)}, which is Jσ,s;a
i =

⋃
{Jσ,s;a

j | j ∈
⋃

u∈ bP(imri, bT i)
Ju

i }∪

{ξs(i)}.

2. Suppose u ∈ P̂(imri, T̂ i). From s is either x := e, imr = imr ∧ imr, imr =

imr ∨ imr or skip, u ∈ P̂(imri, T̂ i) and Item (1) of Lemma (3.6.1), we have

(i) µψR(α(ζu(i)), s; a::Sσ, h(u)).k ≤ µψR(i, σ, s; a).k

From s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip, we have

η(s; a) ∈ L. From u ∈ P̂(imri, T̂ i), η(s; a) ∈ L and Item (3) of Lemma (3.6.32),

we have s; a::Sσ = s; a :: σ and α(ζu(i)) = ζu(i) ∈ Is;a::σ,h(u). Replacing (i) with

s; a::Sσ = s; a :: σ and α(ζu(i)) = ζu(i), we have

(ii) µψR(ζu(i), s; a :: σ, h(u)).k ≤ µψR(i, σ, s; a).k

From Item (4) of Definition (3.6.8), we have

(iii) Kσ,s;a
i = µψR(i, σ, s; a).k − |σ|

(iv) Ks;a::σ,h(u)
ζu(i) = µψR(ζu(i), s; a :: σ, h(u)).k − |s; a :: σ|

= µψR(ζu(i), s; a :: σ, h(u)).k − |σ| − 1

Subtracting |σ| from both sides of (ii), we have

(v) µψR(ζu(i), s; a :: σ, h(u)).k − |σ| ≤ µψR(i, σ, s; a).k − |σ|

Replacing (v) with (iii) and (iv), we have

170

(vi) Ks;a::σ,h(u)
ζu(i) + 1 ≤ Kσ,s;a

i

From i ∈ Iσ,s;a, ζu(i) ∈ Is;a::σ,h(u) and Item (1) of Definition (3.6.9), we have i ∈

Iu. From i ∈ Iσ,s;a, ζu(i) ∈ Is;a::σ,h(u) and Item (2) of Definition (3.6.9), we have

s; a :: σ ∈ Wu
i . From i ∈ Iu, s; a :: σ ∈ Wu

i and Item (4) of Definition (3.6.9), we

have Ks;a::σ,h(u)
ζu(i) = Ku

i . From Ks;a::σ,h(u)
ζu(i) = Ku

i and (vi), we have Ku
i + 1 ≤ Kσ,s;a

i .

Lemma 3.6.34 If i ∈ Iσ,iret
i′,v , then we have

1. Jσ,iret
i =

⋃
{Jσ,iret

j | j ∈
⋃

u∈ bP(imri, bT i)
Ju

i } ∪ {ξiret(i)}.

2. u ∈ P̂(imri, T̂ i) ⇒ Ku
i + 1 ≤ Kσ,iret

i .

Proof From i ∈ Iσ,iret
i′,v and Item (1) of Proposition (3.6.8), we have 〈imri, T̂ i, σ, iret〉 ∈

R. From 〈imri, T̂ i, σ, iret〉 ∈ R and Item (1) of Definition (3.6.8), we have i ∈ Iσ,iret.

1. From i ∈ Iσ,iret
i′,v and Item (2) of Lemma (3.6.32), we have α(ξiret(i)) = ξiret(i).

From α(ξiret(i)) = ξiret(i) and Item (4) of Proposition (3.6.1), we have

(i) µψR(i, σ, iret).I =
⋃
{µψR(j, σ, iret).I | j ∈ J} ∪ {(ξiret(i))}

where J =
⋃
{µψR(α(ζu(i)), iret::Sσ, h(u)).I | u ∈ P̂(imri, T̂ i)}. There are two

subcases depending on whether P̂(imri, T̂ i) = ∅.

Subcase 1. P̂(imri, T̂ i) = ∅.

From (i), we have µψR(i, σ, iret).I = {(ξiret(i)}. From µψR(i, σ, iret).I = {(ξiret(i)}

and Jσ,iret
i = µψR(i, σ, iret).I, we have Jσ,iret

i = {(ξiret(i)}.

Subcase 2. Suppose u ∈ P̂(imri, T̂ i).

From i ∈ Iσ,iret
i′,v , Item (3) of Lemma (3.6.32), we have iret::Sσ = iret :: σ,

α(ζu(i)) = ζu(i) and ζu(i) ∈ Iiret::σ,h(u).

From J =
⋃
{µψR(α(ζu(i)), iret::Sσ, h(u)).I | u ∈ P̂(imri, T̂ i)}, iret::Sσ = iret ::

σ and α(ζu(i)) = ζu(i), we have J =
⋃
{µψR(ζu(i), iret :: σ, h(u)).I | u ∈

P̂(imri, T̂ i)}. From Item (3) of Definition (3.6.8), we have

171

(ii) Jσ,iret
i = µψR(i, σ, iret).I

(iii) Jσ,iret
j = µψR(j, σ, iret).I where j ∈ J

(iv) Jiret::σ,h(u)
ζu(i) = µψR(ζu(i), iret :: σ, h(u)).I

Replacing (i) and J with (ii), (iii) and (iv), we have

(v) Jσ,iret
i =

⋃
{Jσ,iret

j | j ∈ J} ∪ {ξiret(i)}

where J =
⋃
{Jiret::σ,h(u)

ζu(i) | u ∈ P̂(imri, T̂ i)}. From i ∈ Iσ,iret, ζu(i) ∈ Iiret::σ,h(u)

and Item (1) of Definition (3.6.9), we have i ∈ Iu. From i ∈ Iσ,iret, ζu(i) ∈

Iiret::σ,h(u) and Item (2) of Definition (3.6.9), we have iret :: σ ∈ Wu. From

i ∈ Iu, iret :: σ ∈ Wu and Item (3) of Definition (3.6.9), we have Ju
i = Jiret::σ,h(u)

ζu(i) .

From Ju
i = Jiret::σ,h(u)

ζu(i) and (v), we have Jσ,iret
i =

⋃
{Jσ,iret

j | j ∈ J}∪{ξiret(i)}, where

J =
⋃
{Ju

i | u ∈ P̂(imri, T̂ i)}, which is Jσ,iret
i =

⋃
{Jσ,iret

j | j ∈
⋃

u∈ bP(imri, bT i)
Ju

i }∪

{ξiret(i)}.

2. Suppose u ∈ P̂(imri, T̂ i). From a is iret, u ∈ P̂(imri, T̂ i) and Item (4) of

Lemma (3.6.1), we have

(i) µψR(α(ζu(i)), iret::Sσ, h(u)).k ≤ µψR(i, σ, iret).k

From u ∈ P̂(imri, T̂ i), η(iret) ∈ L and Item (3) of Lemma (3.6.32), we have

iret::Sσ = iret :: σ and α(ζu(i)) = ζu(i) ∈ Iiret::σ,h(u). Replacing (i) with iret::Sσ =

iret :: σ and α(ζu(i)) = ζu(i), we have

(ii) µψR(ζu(i), iret :: σ, h(u)).k ≤ µψR(i, σ, iret).k

From Item (4) of Definition (3.6.8), we have

(iii) Kσ,iret
i = µψR(i, σ, iret).k − |σ|

(iv) Kiret::σ,h(u)
ζu(i) = µψR(ζu(i), iret :: σ, h(u)).k − |iret :: σ|

= µψR(ζu(i), iret :: σ, h(u)).k − |σ| − 1

Subtracting |σ| from both sides of (ii), we have

(v) µψR(ζu(i), iret :: σ, h(u)).k − |σ| ≤ µψR(i, σ, iret).k − |σ|

Replacing (v) with (iii) and (iv), we have

(vi) Kiret::σ,h(u)
ζu(i) + 1 ≤ Kσ,iret

i

From i ∈ Iσ,iret, ζu(i) ∈ Iiret::σ,h(u) and Item (1) of Definition (3.6.9), we have i ∈

Iu. From i ∈ Iσ,iret, ζu(i) ∈ Iiret::σ,h(u) and Item (2) of Definition (3.6.9), we have

172

iret :: σ ∈ Wu
i . From i ∈ Iu, iret :: σ ∈ Wu

i and Item (4) of Definition (3.6.9), we

have Kiret::σ,h(u)
ζu(i) = Ku

i . From Kiret::σ,h(u)
ζu(i) = Ku

i and (vi), we have Ku
i + 1 ≤ Kσ,iret

i .

Lemma 3.6.35 For u ∈ 0..N , if i ∈ Iσ,s;a
i′,u and s is either x := e, imr = imr ∧ imr,

imr = imr ∨ imr or skip and Q ∈ R ⇒ Q.T̂ ≤ r, then

1. θ̂(imri, T̂ i) ≤ r

2. v ∈ P̂(imri, T̂ i) ⇒ θ̂v(T̂ i) ≤ r

Proof From i ∈ Iσ,s;a
i′,u and Item (1) of Proposition (3.6.8), we have 〈imri, T̂ i, σ, s; a〉 ∈

R.

1. From s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip and

〈imri, T̂ i, σ, s; a〉 ∈ R, by applying Rule (3.13)-(3.15),(3.18), depending on

what s is, we have 〈imrξs(i), T̂ ξs(i), σ, a〉 ∈ R. From Q ∈ R ⇒ Q.T̂ ≤ r and

〈imrξs(i), T̂ ξs(i), σ, a〉 ∈ R, we have T̂ ξs(i) ≤ r, which is θ̂(imri, T̂ i) ≤ r.

2. From s is x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip, we have η(s; a) ∈

L. From v ∈ P̂(imri, T̂ i), η(s; a) ∈ L, 〈imri, T̂ i, σ, s; a〉 ∈ R, by applying

Rule (3.10), we have 〈imrζv(i), T̂ ζv(i), (s; a) :: σ, h(v)〉 ∈ R. From Q ∈ R ⇒

Q.T̂ ≤ r and

〈imrζv(i), T̂ ζv(i), (s; a) :: σ, h(v)〉 ∈ R, we have T̂ ζv(i) ≤ r, which is θ̂v(T̂ i) ≤ r.

Lemma 3.6.36 For u ∈ 1..N , if i ∈ Iσ,iret
i′,u and Q ∈ R ⇒ Q.T̂ ≤ r, then

1. θ̂(imri, T̂ i) ≤ r

2. v ∈ P̂(imri, T̂ i) ⇒ θ̂v(T̂ i) ≤ r

Proof From i ∈ Iσ,iret
i′,u and Item (1) of Proposition (3.6.8), we have 〈imri, T̂ i, σ, iret〉 ∈

R. From 〈imri, T̂ i, σ, iret〉 ∈ R and Corollary (3.3.1), we have 〈imri, T̂ i, σ, iret〉 is con-

sistent, from which it follows σ = a :: σ′.

173

1. From 〈imri, T̂ i, σ, iret〉 ∈ R, by applying Rule (3.11), we have

〈imrξiret(i), T̂ ξiret(i), σ
′, a〉 ∈ R. From Q ∈ R ⇒ Q.T̂ ≤ r and

〈imrξiret(i), T̂ ξiret(i), σ
′, a〉 ∈ R. we have T̂ ξiret(i) ≤ r, which is θ̂(imri, T̂ i) ≤ r.

2. Notice that η(iret) ∈ L. From v ∈ P̂(imri, T̂ i), η(iret) ∈ L, 〈imri, T̂ i, σ, iret〉 ∈

R, by applying Rule (3.10), we have 〈imrζv(i), T̂ ζv(i), iret :: σ, h(v)〉 ∈ R. From

Q ∈ R ⇒ Q.T̂ ≤ r and 〈imrζv(i), T̂ ζv(i), iret :: σ, h(v)〉 ∈ R, we have T̂ ζv(i) ≤ r,

which is θ̂v(T̂ i) ≤ r.

We are now ready to build and prove the type derivation for statements, main

program and handlers. We first prove the type derivation for statements can be

derived.

Lemma 3.6.37 (Type derivation for statement) If Q ∈ R ⇒ Q.T̂ ≤ r and the

type judgment for statement s (3.60) is well formed, then we can derive

τR `K
σ,s;a

i′,v
s :

∧

i∈I
σ,s;a

i′,v

(imri, T̂ i →
∨

j∈J
σ,s;a
i

imrj, T̂ j) (3.60)

Proof From the type judgment for statement s (3.60) is well formed and Item (1)

of Definition (3.4.2), we have Iσ,s;a
i′,v 6= ∅. We prove by induction on s. There are three

cases.

1. s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr or skip.

To derive τR `K
σ,s;a

i′,v
s :

∧
i∈I

σ,s;a

i′,v

(imri, T̂ i →
∨

j∈J
σ,s;a
i

imrj, T̂ j), we need to

prove the safety condition safe(τR, I
σ,s;a
i′,v ,Kσ,s;a

i′,v) which consists of the following

two items:

(a) (i ∈ Iσ,s;a
i′,v ∧ u ∈ P̂(imri, T̂ i)) ⇒

(i) i ∈ Iu

(ii) Ju
i ⊆ Iσ,s;a

i′,v

(iii) Ku
i + 1 ≤ Kσ,s;a

i′,v

(iv) θ̂u(T̂ i) ≤ r

(b) ∀i ∈ Iσ,s;a
i′,v : θ̂(imri, T̂ i) ≤ r

(c) ∀i ∈ Iσ,s;a
i′,v : Jσ,s;a

i =
⋃
{Jσ,s;a

j | j ∈
⋃

u∈ bP(imri, bT i)
Ju

i } ∪ {ξs(i)}

174

• Proof of Item (a).

– Proof of Item (i). From i ∈ Iσ,s;a
i′,v and Item (1) of Proposition (3.6.8),

we have 〈imri, T̂ i, σ, s; a〉 ∈ R. From 〈imri, T̂ i, σ, s; a〉 ∈ R and

Item (1) of Definition (3.6.8), we have i ∈ Iσ,s;a. From i ∈ Iσ,s;a
i′,v ,

η(s; a) ∈ L, u ∈ P̂(imri, T̂ i) and Item (3) of Lemma (3.6.32), we have

ζu(i) ∈ Is;a::σ,h(u). From i ∈ Iσ,s;a, ζu(i) ∈ Is;a::σ,h(u) and Item (1) of

Definition (3.6.9), we have i ∈ Iu.

– Proof of Item (ii). From η(s; a) ∈ L, i ∈ Iσ,s;a
i′,v , u ∈ P̂(imri, T̂ i) and

Lemma (3.6.28), we have Ju
i ⊆ Iσ,s;a

i′,v .

– Proof of Item (iii). From i ∈ Iσ,s;a
i′,v , s is either x := e, imr = imr ∧

imr, imr = imr ∨ imr or skip, u ∈ P̂(imri, T̂ i) and Item (2) of

Lemma (3.6.33), we have Ku
i + 1 ≤ Kσ,s;a

i . From i ∈ Iσ,s;a
i′,v and

Lemma (3.6.14), we have Kσ,s;a
i ≤ Kσ,s;a

i′,v . From Ku
i + 1 ≤ Kσ,s;a

i and

Kσ,s;a
i ≤ Kσ,s;a

i′,v , we have Ku
i + 1 ≤ Kσ,s;a

i′,v .

– Proof of Item (iv). From i ∈ Iσ,s;a
i′,v and s is either x := e, imr =

imr∧ imr, imr = imr∨ imr or skip and u ∈ P̂(imri, T̂ i) and Q ∈ R ⇒

Q.T̂ ≤ r and Item (2) of Lemma (3.6.35), we have θ̂u(T̂ i) ≤ r.

• Proof of Item (b).

From i ∈ Iσ,s;a
i′,v and s is either x := e, imr = imr ∧ imr, imr = imr ∨ imr

or skip and Q ∈ R ⇒ Q.T̂ ≤ r and Item (1) of Lemma (3.6.35), we have

θ̂(imri, T̂ i) ≤ r.

• Proof of Item (c).

From Iσ,s;a
i′,v 6= ∅, s is either x := e, imr = imr∧ imr, imr = imr∨ imr or skip,

Item (1) of Lemma (3.6.33), we have ∀i ∈ Iσ,s;a
i′,v : Jσ,s;a

i =
⋃
{Jσ,s;a

j | j ∈
⋃

u∈ bP(imri, bT i)
Ju

i } ∪ {ξs(i)}.

2. s is if0 x then s1 else s2.

From s is if0 x then s1 else s2 and Item (1) of Proposition (3.6.11), we have

Iσ,s;a
i′,v = Iσ,s1;a

i′,v = Iσ,s2;a
i′,v . From Iσ,s;a

i′,v 6= ∅, and Iσ,s;a
i′,v = Iσ,s1;a

i′,v = Iσ,s2;a
i′,v , we have

175

Iσ,s1;a
i′,v 6= ∅ and Iσ,s2;a

i′,v 6= ∅. From Iσ,s1;a
i′,v 6= ∅, Q ∈ R ⇒ (Q.T̂ ≤ r ∧ Q.stk ≤ K)

and Lemma (3.6.25), we have that the type judgment (i) below for s1 is well

formed. From Iσ,s2;a
i′,v 6= ∅, Q ∈ R ⇒ (Q.T̂ ≤ r∧Q.stk ≤ K) and Lemma (3.6.25),

we have that the type judgment (ii) below for s2 is well formed. From the type

judgment (i) below for s1 is well formed and the induction hypothesis, we have

(i) τR `K
σ,s1;a

i′,v
s1 :

∧
i∈I

σ,s1;a

i′,v

(imri, T̂ i →
∨

j∈J
σ,s1;a
i

imrj, T̂ j)

From the type judgment (ii) below for s2 is well formed and the induction hy-

pothesis, we have

(ii) τR `
K

σ,s2;a

i′,v

s2 :
∧

i∈I
σ,s2;a

i′,v

(imri, T̂ i →
∨

j∈J
σ,s2;a
i

imrj, T̂ j)

From Iσ,s;a
i′,v 6= ∅ and Item (1) of Lemma (3.6.31), we have Kσ,s1;a

i′,v ≤ Kσ,s;a
i′,v and

Kσ,s2;a
i′,v ≤ Kσ,s;a

i′,v . From Kσ,s1;a
i′,v ≤ Kσ,s;a

i′,v , (i) and Lemma (3.4.5), we have

(iii) τR `K
σ,s;a

i′,v
s1 :

∧
i∈I

σ,s1;a

i′,v

(imri, T̂ i →
∨

j∈J
σ,s1;a
i

imrj, T̂ j)

From Kσ,s2;a
i′,v ≤ Kσ,s;a

i′,v , (ii) and Lemma (3.4.5), we have

(iv) τR `K
σ,s;a

i′,v
s2 :

∧
i∈I

σ,s2;a

i′,v

(imri, T̂ i →
∨

j∈J
σ,s2;a
i

imrj, T̂ j)

From (iii), (iv), Iσ,s;a
i′,v = Iσ,s1;a

i′,v = Iσ,s2;a
i′,v , and Rule (3.30), we have

(v) τR `K
σ,s;a

i′,v
s :

∧
i∈I

σ,s;a

i′,v

(imri, T̂ i →
∨

j∈J
σ,s1;a
i ∪J

σ,s2;a
i

imrj, T̂ j).

From s is if0 x then s1 else s2 and Item (1) of Lemma (3.6.30), we have

(vi) Jσ,s;a
i = Jσ,s1;a

i ∪ Jσ,s2;a
i

From (v) and (vi), we have τR `K
σ,s;a

i′,v
s :

∧
i∈I

σ,s;a

i′,v

(imri, T̂ i →
∨

j∈J
σ,s;a
i

imrj, T̂ j).

3. s is s1; s2.

From Item (2) of Proposition (3.6.11), we have Iσ,(s1;s2);a
i′,v = Iσ,s1;(s2;a)

i′,v . From

Iσ,(s1;s2);a
i′,v 6= ∅ and Iσ,(s1;s2);a

i′,v = Iσ,s1;(s2;a)
i′,v , we have Iσ,s1;(s2;a)

i′,v 6= ∅. From Iσ,s1;(s2;a)
i′,v 6=

∅ and Lemma (3.6.19), we have ∀i ∈ Iσ,s1;(s2;a)
i′,v : Jσ,s1;(s2;a)

i ⊆ Iσ,s2;a
i′,v . From

Lemma (3.6.18), we have ∀i ∈ Iσ,s1;(s2;a)
i′,v : Jσ,s1;(s2;a)

i 6= ∅. From ∀i ∈ Iσ,s1;(s2;a)
i′,v :

Jσ,s1;(s2;a)
i 6= ∅ and ∀i ∈ Iσ,s1;(s2;a)

i′,v : Jσ,s1;(s2;a)
i ⊆ Iσ,s2;a

i′,v , we have Iσ,s2;a
i′,v 6= ∅. From

Iσ,s1;(s2;a)
i′,v 6= ∅, Q ∈ R ⇒ (Q.T̂ ≤ r ∧ Q.stk ≤ K) and Lemma (3.6.25), we

have that the type judgment (i) below for s1 is well formed. From Iσ,s2;a
i′,v 6= ∅,

Q ∈ R ⇒ (Q.T̂ ≤ r ∧Q.stk ≤ K) and Lemma (3.6.25), we have that the type

judgment (ii) below for s2 is well formed. From the type judgment (i) below for

176

s1 is well formed, and the induction hypothesis, we have

(i) τR `
K

σ,s1;(s2;a)

i′,v

s1 :
∧

i∈I
σ,s1;(s2;a)

i′,v

(imri, T̂ i →
∨

j∈J
σ,s1;(s2;a)
i

imrj, T̂ j)

From the type judgment (ii) below for s2 is well formed, and the induction hy-

pothesis, we have (ii) τR `K
σ,s2;a

i′,v
s2 :

∧
i∈I

σ,s2;a

i′,v

(imri, T̂ i →
∨

j∈J
σ,s2;a
i

imrj, T̂ j).

From Iσ,s1;(s2;a)
i′,v 6= ∅ and Item (2) of Lemma (3.6.31), we have Kσ,s1;(s2;a)

i′,v ≤

Kσ,(s1;s2);a
i′,v and Kσ,s2;a

i′,v ≤ Kσ,(s1 ;s2);a
i′,v . From Kσ,s1;(s2;a)

i′,v ≤ Kσ,(s1;s2);a
i′,v , (i), and

Lemma (3.4.5), we have

(iii) τR `
K

σ,(s1;s2);a

i′,v

s1 :
∧

i∈I
σ,s1;(s2;a)

i′,v

(imri, T̂ i →
∨

j∈J
σ,s1;(s2;a)
i

imrj, T̂ j)

From Kσ,s2;a
i′,v ≤ Kσ,(s1 ;s2);a

i′,v , (i), and Lemma (3.4.5), we have

(iv) τR `
K

σ,(s1;s2);a

i′,v

s2 :
∧

i∈I
σ,s2;a

i′,v

(imri, T̂ i →
∨

j∈J
σ,s2;a
i

imrj, T̂ j).

From Item (2) of Lemma (3.6.30), we have

(v) Jσ,(s1;s2);a
i =

⋃
{Jσ,s2;a

j | j ∈ Jσ,s1;(s2;a)
i }

From (iii), (iv), ∀i ∈ Iσ,s;a
i′,v : Jσ,s1;(s2;a)

i ⊆ Iσ,s2;a
i′,v (from Lemma (3.6.19)) , (v) and

Rule (3.31), we have

τR `
K

σ,(s1;s2);a

i′,v

(s1; s2) :
∧

i∈I
σ,(s1;s2);a

i′,v

(imri, T̂ i →
∨

j∈J
σ,(s1;s2);a
i

imrj, T̂ j).

We next prove the type derivation for main program can be derived.

Lemma 3.6.38 If Q ∈ R ⇒ Q.stk ≤ K and Inil,s;a
i0,0 6= ∅, then we have Knil,s;a

i0,0 ≤ K.

Proof From Inil,s;a
i0,0 6= ∅ and Item (5) of Definition (3.6.8), we have

Knil,s;a
i0,0 = max({Knil,s;a

i | i ∈ Inil,s;a
i0,0 }). From Q ∈ R ⇒ Q.stk ≤ K and Lemma

(3.6.16), we have ∀i ∈ Inil,s;a
i0,0 : Knil,s;a

i ≤ K. From ∀i ∈ Inil,s;a
i0,0 : Knil,s;a

i ≤ K and

Knil,s;a
i0,0 = max({Knil,s;a

i | i ∈ Inil,s;a}), we have Knil,s;a
i0,0 ≤ K. main program

Lemma 3.6.39 (Type derivation for main) If Q ∈ R ⇒ (Q.T̂ ≤ r ∧ Q.stk ≤

K), then we can derive τR `K m :
∨

i∈I
nil,m
i0,0

imri, T̂ i.

177

Proof We prove by induction on m. There are two cases.

1. m = loop s.

From Item (3) of Proposition (3.6.11), we have Inil,loop s
i0,0 = Inil,s;loop s

i0,0 . From

Lemma (3.6.20), we have Inil,loop s
i0,0 6= ∅. From Item Inil,loop s

i0,0 = Inil,s;loop s
i0,0 and

Inil,loop s
i0,0 6= ∅, we have Inil,s;loop s

i0,0 6= ∅. From Inil,s;loop s
i0,0 6= ∅, Q ∈ R ⇒ (Q.T̂ ≤

r ∧ Q.stk ≤ K) and Lemma (3.6.25), we have type judgment (i) below for s

is well formed. From the type judgment (i) below for s is well formed and

Lemma (3.6.37), we have the type derivation for s:

(i) τR `
K

σ,s;loop s
i0,0

s :
∧

i∈I
σ,s;loop s
i0,0

(imri, T̂ i →
∨

j∈J
σ,s;loop s
i

imrj, T̂ j)

From Inil,s;loop s
i0,0 6= ∅ and Q ∈ R ⇒ Q.stk ≤ K and Lemma (3.6.38), we have

Kσ,s;loop s
i0,0 ≤ K. From Kσ,s;loop s

i0,0 ≤ K, (i) and Lemma (3.4.5), we have

(ii) τR `K s :
∧

i∈I
σ,s;loop s
i0,0

(imri, T̂ i →
∨

j∈J
σ,s;loop s
i

imrj, T̂ j)

From Inil,s;loop s
i0,0 6= ∅ and Lemma (3.6.19), we have ∀i ∈ Inil,s;loop s

i0,0 : Jnil,s;loop s
i ⊆

Inil,s;loop s
i0,0 . From Inil,loop s

i0,0 = Inil,s;loop s
i0,0 and ∀i ∈ Inil,s;loop s

i0,0 : Jnil,s;loop s
i ⊆ Inil,s;loop s

i0,0 ,

we have ∀i ∈ Inil,s;loop s
i0,0 : Jnil,s;loop s

i ⊆ Inil,loop s
i0,0 . From (ii) and ∀i ∈ Inil,s;loop s

i0,0 :

Jnil,s;loop s
i ⊆ Inil,loop s

i0,0 and Rule (3.25), we have

τR `K loop s :
∨

i∈I
nil,loop s
i0,0

imri, T̂ i.

2. m = s;m′.

From Lemma (3.6.20), we have Inil,s;m′

i0,0 6= ∅. From Inil,s;m′

i0,0 6= ∅, Q ∈ R ⇒ (Q.T̂ ≤

r ∧ Q.stk ≤ K) and Lemma (3.6.25), we have type judgment (i) below for s

is well formed. From the type judgment (i) below for s is well formed and

Lemma (3.6.37), we have the type derivation for s:

(i) τR `
K
nil,s;m′

i0,0
s :

∧
i∈I

nil,s;m′

i0,0
(imri, T̂ i →

∨
j∈J

nil,s;m′

i

imrj, T̂ j)

From Inil,s;m′

i0,0 6= ∅ and Q ∈ R ⇒ Q.stk ≤ K and Lemma (3.6.38), we have

Knil,s;m′

i0,0 ≤ K. From Knil,s;m′

i0,0 ≤ K, (i) and Lemma (3.4.5), we have

(ii) τR `K s :
∧

i∈I
nil,s;m′

i0,0
(imri, T̂ i →

∨
j∈J

nil,s;m′

i

imrj, T̂ j)

From Inil,s;m′

i0,0 6= ∅ and Lemma (3.6.19), we have ∀i ∈ Inil,s;m′

i0,0 : Jnil,s;m′

i ⊆ Inil,m′

.

From the induction hypothesis, we have

178

(iii) τR `K m′ :
∨

i∈I
nil,m′

i0,0
imri, T̂ i

From (ii), (iii), ∀i ∈ Inil,s;m′

i0,0 : Jnil,s;m′

i ⊆ Inil,m′

i0,0 and Rule (3.26), we have

τR `K s;m′ :
∨

i∈I
nil,s;m′

i0,0
imri, T̂ i.

We finally prove the type derivation for handlers can be derived.

Lemma 3.6.40 (Type derivation for handler) If Q ∈ R ⇒ Q.T̂ ≤ r and the

type judgment for h (3.61) is well formed, then we can derive

τR `
K

σ,h

i′,v

h :
∧

i∈I
σ,h

i′,v

(imri, T̂ i →
∨

j∈J
σ,h
i

imrj, T̂ j) (3.61)

Proof From the type judgment for h (3.61) is well formed and Item (3) of Defini-

tion (3.4.2), we have Iσ,h
i′,v 6= ∅.

We prove by induction on h. There are two cases.

1. h = iret.

To prove τR `
K

σ,iret

i′,v

iret :
∧

i∈I
σ,iret

i′,v

(imri, T̂ i →
∨

j∈J
σ,iret
i

imrj, T̂ j), we need to

prove the safety condition safe(τR, I
σ,iret
i′,v ,Kσ,iret

i′,v) which consists of the following

two items:

(a) (i ∈ Iσ,iret
i′,v ∧ u ∈ P̂(imri, T̂ i)) ⇒

(i) i ∈ Iu

(ii) Ju
i ⊆ Iσ,iret

i′,v

(iii) Ku
i + 1 ≤ Kσ,iret

i′,v

(iv) θ̂u(T̂ i) ≤ r

(b) ∀i ∈ Iσ,iret
i′,v : θ̂(imri, T̂ i) ≤ r

(c) ∀i ∈ Iσ,iret
i′,v : Jσ,iret

i =
⋃
{Jσ,iret

j | j ∈
⋃

u∈ bP(imri, bT i)
Ju

i } ∪ {ξiret(i)}

• Proof of Item (a).

– Proof of (i). From i ∈ Iσ,iret
i′,v and Item (1) of Proposition (3.6.8), we

have 〈imri, T̂ i, σ, iret〉 ∈ R. From 〈imri, T̂ i, σ, iret〉 ∈ R and Item (1)

of Definition (3.6.8), we have i ∈ Iσ,iret. From i ∈ Iσ,iret
i′,v , η(iret) ∈ L, u ∈

179

P̂(imri, T̂ i) and Item (3) of Lemma (3.6.32), we have ζu(i) ∈ Iiret::σ,h(u).

From i ∈ Iσ,iret, ζu(i) ∈ Iiret::σ,h(u) and Item (1) of Definition (3.6.9), we

have i ∈ Iu.

– Proof of Item (ii). From η(iret) ∈ L, i ∈ Iσ,iret
i′,v , u ∈ P̂(imri, T̂ i) and

Lemma (3.6.28), we have Ju
i ⊆ Iσ,iret

i′,v .

– Proof of Item (iii). From i ∈ Iσ,iret
i′,v and Item (2) of Lemma (3.6.34),

we have Ku
i +1 ≤ Kσ,iret

i . From i ∈ Iσ,iret
i′,v and Lemma (3.6.14), we have

Kσ,iret
i ≤ Kσ,iret

i′,v . From Ku
i + 1 ≤ Kσ,iret

i and Kσ,iret
i ≤ Kσ,iret

i′,v , we have

Ku
i + 1 ≤ Kσ,iret

i′,v .

– Proof of Item (iv). From i ∈ Iσ,iret
i′,v and u ∈ P̂(imri, T̂ i) and Q ∈ R ⇒

Q.T̂ ≤ r and Item (2) of Lemma (3.6.36), we have θ̂u(T̂ i) ≤ r.

• Proof of Item (b).

From i ∈ Iσ,iret
i′,v and Q ∈ R ⇒ Q.T̂ ≤ r and Item (1) of Lemma (3.6.36),

we have θ̂(imri, T̂ i) ≤ r.

• Proof of Item (c).

From Iσ,iret
i′,v 6= ∅ and Item (1) of Lemma (3.6.34), we have ∀i ∈ Iσ,iret

i′,v :

Jσ,iret
i =

⋃
{Jσ,iret

j | j ∈
⋃

u∈ bP(imri, bT i)
Ju

i } ∪ {ξs(i)}.

2. h = s; h′.

From h = s; h′, we have Iσ,h
i′,v = Iσ,s;h′

i′,v . From Iσ,h
i′,v 6= ∅ and Iσ,h

i′,v = Iσ,s;h′

i′,v , we

have Iσ,s;h′

i′,v 6= ∅. From Iσ,s;h′

i′,v 6= ∅, Q ∈ R ⇒ (Q.T̂ ≤ r ∧ Q.stk ≤ K) and

Lemma (3.6.25), we have type judgment (i) below for s is well formed. From

the type judgment (i) below for s is well formed and Lemma (3.6.37), we have

the type derivation for s:

(i) τR `
K

σ,s;h′

i′,v

s :
∧

i∈I
σ,s;h′

i′,v

(imri, T̂ i →
∨

j∈J
σ,s;h′

i

imrj, T̂ j)

From Iσ,h
i′,v 6= ∅, h = s; h′ and Item (3) of Lemma (3.6.31), we have Kσ,s;h′

i′,v ≤ Kσ,h
i′,v

and Kσ,h′

i′,v ≤ Kσ,h
i′,v. From Kσ,s;h′

i′,v ≤ Kσ,h
i′,v, (i) and Lemma (3.4.5), we have

(ii) τR `
K

σ,h

i′,v

s :
∧

i∈I
σ,s;h′

i′,v

(imri, T̂ i →
∨

j∈J
σ,s;h′

i

imrj, T̂ j)

From Iσ,s;h′

i′,v 6= ∅ and Corollary (3.6.3), we have Iσ,h′

i′,v 6= ∅. From Iσ,h′

i′,v 6= ∅,

180

Q ∈ R ⇒ (Q.T̂ ≤ r ∧ Q.stk ≤ K) and Lemma (3.6.26), we have the judgment

for h′ is well formed. From the judgment for h′ is well formed and the induction

hypothesis, we have

(iii) τR `
K

σ,h′

i′,v

h′ :
∧

i∈I
σ,h′

i′,v

(imri, T̂ i →
∨

j∈J
σ,h′

i

imrj, T̂ j)

From Kσ,h′

i′,v ≤ Kσ,h
i′,v, (iii) and Lemma (3.4.5), we have

(iv) τR `
K

σ,h

i′,v

h′ :
∧

i∈I
σ,h′

i′,v

(imri, T̂ i →
∨

j∈J
σ,h′

i

imrj, T̂ j)

From h = s; h′ and Item (3) of Lemma (3.6.30), we have

(v) Jσ,h
i =

⋃
{Jσ,h′

j | j ∈ Jσ,s;h′

i }

From (ii), (iv), ∀i ∈ Iσ,s;h′

i′,v : Jσ,s;h′

i ⊆ Iσ,h′

i′,v (from Lemma (3.6.19)) , (v) and

Rule (3.27), we have

τR `
K

σ,h

i′,v

h :
∧

i∈I
σ,h

i′,v

(imri, T̂ i →
∨

j∈J
σ,h
i

imrj, T̂ j)

We are ready to prove the Theorem that states if the abstract model checks, then

there exist types for the periodic interrupt calculus such that the program type checks.

Lemma 3.6.41 If Q ∈ R ⇒ Q.T̂ ≤ r, then τR ` h : τR.

Proof Let u ∈ 1..N . From Corollary (3.6.4), we have Iu 6= ∅. Consider i ∈ Iu. From

Item (1) and (2) of Definition (3.6.9) and Iu 6= ∅, we have ζu(i) ∈ Ia::σ,h(u), where

a :: σ ∈ Wu
i . From ζu(i) ∈ Ia::σ,h(u) and Proposition (3.6.9), we have Ia::σ,h(u)

ζu(i),u = {ζu(i)}.

From Ia::σ,h(u)
ζu(i),u = {ζu(i)}, Q ∈ R ⇒ (Q.T̂ ≤ r ∧ Q.stk ≤ K) and Lemma (3.6.26),

we have τR `
K

a::σ,h(u)
ζu(i),u

h(u) :
∧

i∈I
a::σ,h(u)
ζu(i),u

(imri, T̂ i →
∨

j∈J
a::σ,h(u)
i

imrj, T̂ j) is well

formed. From Q ∈ R ⇒ Q.T̂ ≤ r, τR `
K

a::σ,h(u)
ζu(i),u

h(u) :
∧

i′∈I
a::σ,h(u)
ζu(i),u

(imri′ , T̂ i′ →

∨
j∈J

a::σ,h(u)

i′

imrj, T̂ j) is well formed and Lemma (3.6.40), we have the derivation

(i) τR `
K

a::σ,h(u)
ζu(i),u

h(u) :
∧

i′∈I
a::σ,h(u)
ζu(i),u

(imri′, T̂ i′ →
∨

j∈J
a::σ,h(u)

i′

imrj, T̂ j)

From Ia:σ,h(u)
ζu(i),u = {ζu(i)} is a singleton set, and Item (5) of Definition (3.6.8), we have

Ka::σ,h(u)
ζu(i) = Ka::σ,h(u)

ζu(i),u . From i ∈ Iu, a :: σ ∈ Wu
i and Item (4) of Definition (3.6.9),

we have Ku
i = Ka::σ,h(u)

ζu(i),u . From Ka::σ,h(u)
ζu(i) = Ka::σ,h(u)

ζu(i),u and Ku
i = Ka::σ,h(u)

ζu(i),u , we have

Ka::σ,h(u)
ζu(i),u = Ku

i . Replacing Ka::σ,h(u)
ζu(i),u in (i) with Ku

i and Ia::σ,h(u)
ζu(i),u in (i) with {ζu(i)}, we

181

have

(ii) τR `Ku
i
h(u) : imrζu(i), T̂ ζu(i) →

∨
j∈J

a::σ,h(u)
ζu(i)

imrj, T̂ j

From i ∈ Iu, a :: σ ∈ Wu
i and Item (3) of Definition (3.6.9), we have Ju

i = Ja::σ,h(u)
ζu(i) .

Replacing Ja::σ,h(u)
ζu(i) in (ii) with Ju

i , we have

(ii) τR `Ku
i
h(u) : imrζu(i), T̂ ζu(i) →

∨
j∈Ju

i
imrj, T̂ j

From (ii) and Rule (3.24), we have τR ` h(u) : τR(u).

Theorem 3.6.1 If Q ∈ R ⇒ (Q.T̂ ≤ r ∧Q.stk ≤ K), then there exists τR such that

τR `K p.

Proof From Q ∈ R ⇒ (Q.T̂ ≤ r ∧ Q.stk ≤ K) and Lemma (3.6.39), we have

derivation

(i) τR `K p.m :
∨

i∈I
nil,p.m
i0,0

imri, T̂ i

From Inil,p.m
i0,0 = {i0} and (imri0 , T̂ i0) = (0, 0) and (i), we have

(ii) τR `K p.m : 0, 0

From Q ∈ R ⇒ Q.T̂ ≤ r and Lemma (3.6.41), we have derivation

(iii) τR ` h : τR

From (ii), (iii) and Rule (3.19), we have τR `K p.

3.7 Equivalence relation

In the light of model checking, our abstract semantics is a model (an abstract in-

terpretation) of the concrete periodic interrupt program. Furthermore, Theorem 3.4.1

states that the execution of the model is a type-preserving process; while Theorem

3.6.1 states that the types of the program can be based on the information derived

from the process of model checking/abstract interpretation.

Therefore, Theorem 3.4.1 and Theorem 3.6.1 combined together reveal an impor-

tant equivalence relation between the model checking and the type checking presented

in this chapter, which we formally state as follows:

182

Theorem 3.7.1 (Equivalence) Given a number K > 0 and program p. We have

(Qp ↪→∗ Q⇒ Q.stk ≤ K) if and only if there exists τ and that τ `K p.

Proof Combine Theorem 3.4.1 and Theorem 3.6.1.

3.7.1 Model checking vs. type checking

Software model checking and program type checking are the two major tools which

are both used to ensure that the software (1) observes desired properties, and (2) is

free of bugs. Each has its advantages and disadvantages.

Model checking has a number advantages. It does not usually require the user to

input annotations along with models, while type systems need type information from

the program. This property makes model checking more appealing than the type

system approach. Model checking is generally less strict than type checking, while a

type system approach has to encode the property into the types and make sure that

the type preservation works correctly for the program code. This lends model checking

more flexibility and power in its real-world applications, such as being capable of

dealing with more programs, leading to encompassing larger problem/program space.

In contrast, type systems tend to end up with fewer programs being type checked.

However, model checking suffers from some disadvantages. Model checking is

generally done on the entire model rather than in a modular fashion. If some part

of a program is modified, then one has to model check the whole program again

to make sure that some property does not break or that bugs are not introduced

with the modification [8, 9]. This repeatedly running model checker for the sake of a

small change of the program is often unacceptable in the real world. However, type

checking is modular and can be done on just a slice of code. Therefore, type checking

can achieve much more efficiency.

In addition, such model checking would offer little help with the maintenance

and further development of those systems because model checking, in general, does

not offer more insight into bugs than giving a counter-example on the model (an

183

error trace). Moreover, the bugs found by the model checker are sometimes spurious

ones caused by the model abstraction [49]. While model checking is able to produce

counter-examples of a bug, it is well-known that pinpointing where the program

point is that causes the bug is very difficult to do [4, 49]. Type systems, on the

other hand, can capture the bugs “on the spot” and provide sufficient information to

programmers or designers about the nature of bugs. This should be a tremendous

benefit to programmers and testers in helping them understand the program code

during debugging.

An equivalence relation between the model checking and the type checking, such as

the one shown in Theorem 3.7.1, allows us to further and better understand programs.

Furthermore, it would allow us to choose a better approach whenever we face a

problem and have both tools, the type system and the model checking, available

together.

3.8 Related work

Our work is based on the research done by Naik and Palsberg [40]. Both of works

are concerned with the timing property of periodical interrupt-driven programs which

are based on Palsberg and Ma’s interrupt calculus [44]. We further develop a version

of interrupt calculus by Naik and Palsberg which leads to differences.

1. Their work is solely concerned with interrupt deadline safety within each inter-

rupt device’s period. In contrast, we consider the bounded stack size problem as

well as interrupt latency. More precisely, we consider the problem of bounding

stack size that is impacted by the constraint of meeting interrupt latencies.

2. There are differences in the semantics. (a) We allow imr OR ∨ operations while

theirs does not. This difference is critical because allowing OR operations on

imr allows for more interrupt handlers to be called. The analysis is consequently

more complex. (b) We consider latencies rather than deadlines (see Item 3).

(c) As a consequence of (b), we have a special latency transfer function for the

184

interrupt rule, rather than for the iret rule as shown in their work. (d) We have

a completely different abstract transfer function than their work to ensure that

the abstract semantics is an approximation of the concrete semantics.

3. We consider handler latencies rather than deadlines. The deadline of a handler

is the time interval between an interrupt arrival and the end of handling it. The

latency of a handler is the time interval between an interrupt arrival and the

start of handling it. Naik and Palsberg make the restriction that the deadlines

of a handler should be shorter than its periods. This restriction leads to the fact

that a handler will always finish its handling before the next interrupt arrival.

In contrast, our latency analysis does not impose such a restriction, yet it still

ensures that all interrupts are handled in a timely manner and that there can

be no interrupt which is missed. It is in this sense that our latency analysis is

more relaxed than their deadline analysis.

4. Their type system gives types, and those types contain all the contexts of that

term may enter. In contrast, our types for each term makes sense only for the

process of type checking a handler within a particular context in which the

handler is called. This is because for each calling context of a handler, the type

judgment for the handler contains the stack size budget. For this reason, our

type construction mainly involves a delimited version of reachability analysis.

There is a large body of work related to ours, among which model checking and

type systems are of particular interest.

3.8.1 Model checking

Brylow and Palsberg [9] study the deadline problem of interrupt-driven software.

They build a control flow graph out of an interrupt-driven program, with each node

containing an address, an imr value and a stack. Their method identifies program

loops in the graph. In particular, they differentiate (1) an unbounded loop; (2) the

185

loop that depends on external input; (3) fake loops caused by graph abstraction; (4)

a race condition between interrupt handlers. They then run a reachability algorithm

to ensure that all computation paths meet their deadline. In essence, their method

is a variant of model checking, in which the model is the graph abstracted away from

the program by using address, imr, and stack information. Our work is similar to

theirs because both consider the deadline analysis problem and both works involve

an abstract model. However, our work is a type based approach. The type system

we give not only ensures whether or not the deadlines of handling can be met, but

also ensures bounded stack size. Furthermore, the type checking process is modular,

which makes it more appealing in real-world applications than model checking. More

importantly, our work unveils an equivalence relation between model checking and

type checking. It shows us what kind of type system there might be that is equivalent

to model checking. The equivalence relation allows us to choose an appropriate tool,

between model checking and type checking, when facing an application. Therefore,

the revelation of the relation itself may shed more light in the fields of software

engineering and analysis than the type system itself.

Basu, Kumar, Pokorny and Ramakrishan [6] develop a resource-constrained model

checking technique that differentiates stack-bounded runs of programs from stack-

diverging runs of programs for abstractions of recursive programs (push-down sys-

tems). Both their work and ours can predict whether program execution requires

unbounded stack size or not. Despite the surface similarity, their work and ours are

different in a number of significant ways. First, we consider the problem of possible

unbounded stack size that arises in a very different situation, namely, interrupt han-

dling from their work, Second, we consider timing issues (latencies) for each handler.

If the latency can not be met, then the interrupt program is considered to be incor-

rect. This constraint enables us to have more quality control over the software than

theirs. Third, resource constrained model checking is implemented on the push-down

system and Büchi automaton; in contrast, we employ a simple abstraction to build

the model. Finally, their model checking does not bound the stack size a priori,

186

rather, it takes into account all the runs as long as they have finite stack size usage;

while we give a priori stack size K and check against the K.

There is also a large body of work dedicated to the problem of how to automat-

ically abstract models from program code and how to solve the state explosion and

expressivity problem for software model checking [3,11,14,20,27]. Although our main

focus is on what model checking process can be encoded in/equivalent to a type sys-

tem and what such a type system should look like, it is worth pointing out that our

abstract model of the periodic calculus is aligned with all the other work which has

been done on this issue because the calculus is a straightforward abstraction of Zilog

80 assembly code. This fact makes it relatively effortless to construct the model and

types directly from the assembly source code.

3.8.2 Type systems

We use intersection type [51, 52] to show the equivalence relation between type

systems and model checking. Intersection types have been studied extensively in

many contexts. Some recent developments on intersection types show that it has

increasingly been of interest in the programming languages community. Mossin [38]

uses intersection types to achieve precise redex prediction of type-based flow analysis.

Palsberg and Pavlopoulou [45] establish a equivalence correspondence between poly-

variant flow information and intersection and union types. Davies and Pfenning [16]

study the intersection types in the presence of computational effects (mutable refer-

ences, exceptions, etc.) and give a sound type system for a language with mutable

references.

Our treatment of intersection types is a form of finite polymorphism with a flavor

of value-sensitivity (imr values in our case). It differs from the bounded polymorphism

[51,52] in that our use of intersection types is value-sensitive, (values of imrs) rather

than bounded quantification (not bounded imrs).

187

There is some work that uses type systems to bound the run-time space usage of

programs in different contexts. Xi and Pfenning [61–63] show that dependent types

over constraint domains (integer domain, etc.) can be used to eliminate the runtime

array bound checking in practical programming. The application of dependent types

shows a resemblance to ours in terms of commanding the bounded memory space of

program execution. However, the differences are substantial. The dependent types

are mainly concerned with the size of data types indexed over a certain domain while

we focus on the stack size growth that arises from the handler calls in the strict

context of interrupt-driven systems. Neither can dependent types meet our needs nor

our type system cover array bound elimination.

Hughes, Pareto and Sabry [29, 31, 47] propose sized types to ensure bounded size

of recursion and data structure that is potentially unbounded at runtime. Their

approach can be viewed as a restricted application of dependent types that aims only

at the recursive datatypes with recursion in mind. Their work was done as part of

moving functional programming (ML) into the field of embedded/reactive systems.

However, their work cannot be applied to the context of interrupt handling.

Our treatment of parametric polymorphism is similar, in spirit, to Agesen’s Carte-

sian product algorithm [2]. The similarity comes from the fact that we combine an

imr value (imr) and a stack growth value (δ) into a context and intersect together

all such contexts as the type for each handler and that, for each context, we treat it

as a mono-morphic combination of imr and δ. Doing it in this way allows us to have

better and more accurate control of the contexts in which the handlers are called.

The value-sensitivity of our type systems is mainly a result of this choice.

188

4 CONCLUSION

The goal of this thesis has been to bound the stack size of interrupt-driven real-time

embedded systems. The bounded stack problem is especially crucial to mission-critical

real-time applications because a stack overflow will cause a system crash, which may

result in a disaster or even the loss of human life. On the other hand, predicting a safe

and tight upper of memory usage should be of great interest to system manufacturers

because they can put as little hardware as would be possible into the chips without

the fear of causing any software problems, thus reducing manufacturing costs and

increasing profit margins.

Looking at things from a broader perspective, the techniques used in this the-

sis demonstrate a useful strategy for resource-constrained compilation. Our type

judgments contain a natural number K which is capable of formulating the space

requirement for a handler. We believe this technique is useful in its own right, and

can be naturally extended to other applications.

Our designs of the interrupt calculus and periodic interrupt calculus are the first

theoretical attempt to employ formal language techniques to analyze resource (space)

boundedness problems in real-time, embedded, interrupt-driven systems.

Recent developments in type related research [36, 37, 43] have vastly and rapidly

pushed its frontier beyond its original use in programming language design. As one

of many in this trend, the interrupt calculus and its periodic cousin can be viewed as

testing ground for future experiments.

While model checking, in general, can be used to solve the problem, we believe that

type systems provide more desirable flexibility because of their capability for doing

modular type checking. For example, modern integrated programming development

environments (IDE) usually incorporate a sub-system which collects type information

189

on demand from the source code; even when the source code is not completely written.

The system attempts to type check the partially complete code. If it finds a definite

error, it will then alert the programmer of the error “on the spot”. In an ideal world,

interrupt-driven programs should also be developed in such an environment. The

compiler should be able to collect the type information in order to predict whether

periods constraints are satisfied or not. This kind of facility will greatly increase the

quality of the real-time embedded systems by locating the bugs and by predicting

whether software specification could be met at compile time.

Our type systems for interrupt-driven programs can be characterized as context-

sensitive (interrupt calculus and periodic interrupt calculus) and value-sensitive (pe-

riodic interrupt calculus). The value-sensitive nature of the type system lends us a

helping hand in gaining some insight into how type systems can facilitate resource-

aware compilation, that is, whether and how quantified resources – either space, time,

energy/battery requirements or any other constraint – can be readily and soundly

typed.

Types, in general, also serve as convenient program documentations and specifi-

cations. This is especially useful when maintaining programs and updating programs

because any modification to the program should observe the constraints enforced by

types. For example, the type system of the periodic interrupt calculus guarantees the

stack size boundedness and also maintains the period constraints at the same time.

If one would like to further modify the code, then the modification part should pass

the type checking. Doing so will also greatly reduce testing time, therefore shortening

the software development cycle.

LIST OF REFERENCES

190

LIST OF REFERENCES

[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] Ole Agesen. The Cartesian product algorithm. In Proceedings of ECOOP’95,
Seventh European Conference on Object-Oriented Programming, pages 2–26.
Springer-Verlag (LNCS 952), 1995.

[3] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram Rajamani. Auto-
matic predicate abstraction of C programs. In Proceedings of PLDI’01, ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 203–213, 2001.

[4] Thomas Ball, Mayur Naik, and Sriram Rajamani. From symptom to cause:
Localizing errors in counterexample traces. In Conference Record of the 30th
Annual ACM Symposium on Principles of Programming Languages, 2003.

[5] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, Amsterdam, 1981.

[6] Samik Basu, K. Narayan Kumar, L. Robert Pokorny, and C. R. Ramakrish-
nan. Resource-constrained model checking of recursive programs. In Tools and
Algorithms for Construction and Analysis of Systems, pages 236–250, 2002.

[7] Gerard Berry and Georges Gonthier. The esterel synchronous programming lan-
guage: Design, semantics, implementation. Science of Computer Programming,
19(2):87–152, 1992.

[8] Dennis Brylow, Niels Damgaard, and Jens Palsberg. Static checking of interrupt-
driven software. In Proceedings of ICSE’01, 23rd International Conference on
Software Engineering, pages 47–56, Toronto, May 2001.

[9] Dennis Brylow and Jens Palsberg. Deadline analysis of interrupt-driven soft-
ware. In Proceedings of FSE’03, ACM SIGSOFT International Symposium on
the Foundations of Software Engineering joint with ESEC’03, European Software
Engineering Conference, pages 198–207, Helsinki, Finland, September 2003.

[10] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In M. Nivat, editor,
Proceedings of Foundations of Software Science and Computation Structures,
pages 140–155. Springer-Verlag (LNCS 1378), Berlin, Germany, 1998.

[11] Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as models: Model
checking message-passing programs. In Proceedings of POPL’02, SIGPLAN–
SIGACT Symposium on Principles of Programming Languages, pages 45–57,
2002.

191

[12] Krishnendu Chatterjee, Di Ma, Rupak Majumdar, Tian Zhao, Thomas A. Hen-
zinger, and Jens Palsberg. Stack size analysis of interrupt driven software. In
Proceedings of SAS’03, International Static Analysis Symposium, pages 109–126.
Springer-Verlag (LNCS 2694), San Diego, June 2003.

[13] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and
lambda-calculus semantics. In J. Seldin and J. Hindley, editors, To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 535–560.
Academic Press, 1980.

[14] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Pasareanu, Robby, and Hongjun Zheng. Bandera : Extracting finite-state models
from Java source code. In Proceedings of ICSE’00, 22nd International Conference
on Software Engineering, pages 439–448, 2000.

[15] Matteo Corti, Roberto Brega, and Thomas Gross. Approximation of worst-
case execution time for preemptive multitasking systems. In Proceedings of
LCTES’00, Languages, Compilers, and Tools for Embedded Systems, 2000.

[16] Rowan Davies and Frank Pfenning. Intersection types and computational effects.
ACM SIGPLAN Notices, 35(9):198–208, 2000.

[17] Giorgio Delzanno and Andreas Podelski. Constraint-based deductive model
checking. International Journal on Software Tools for Technology Transfer,
3(3):250–270, 2001.

[18] Matthew B. Dwyer, John Hatcliff, Roby Joehanes, Shawn Laubach, Corina S.
Pasareanu, Robby, Hongjun Zheng, and W Visser. Tool-supported program
abstraction for finite-state verification. In International Conference on Software
Engineering, pages 177–187, 2001.

[19] Jakob Engblom and Andreas Ermedahl. Modeling complex flows for worst-case
execution time analysis. In Proceedings of RTSS’00, 21st IEEE Real-Time Sys-
tems Symposium, 2000.

[20] Cormac Flanagan. Automatic software model checking via clp. In ESOP, 2003.

[21] Alexandre Frey. Satisfying systems of subtype inequalities in polynomial space.
In Proceedings of SAS’97, International Static Analysis Symposium. Springer-
Verlag (LNCS), 1997.

[22] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Em-
bedded control systems development with giotto. In LCTES/OM, pages 64–72,
2001.

[23] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Giotto:
A time-triggered language for embedded programming. In Proceedings of EM-
SOFT 2001. Springer-Verlag (LNCS 2211), 2001.

[24] Thomas A. Henzinger and Christoph M. Kirsch. The embedded machine: Pre-
dictable, portable real-time code. In Proceedings of PLDI’02, ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 315–
326, 2002.

192

[25] Thomas A. Henzinger, Christoph M. Kirsch, Rupak Majumdar, and Slobodan
Matic. Time-safety checking for embedded programs. In Proceedings of EM-
SOFT’02, Second International Workshop on Embedded Software, pages 76–92.
Springer-Verlag (LNCS 2491), 2002.

[26] J. Roger Hindley. Types with intersection: An introduction. Formal Aspects of
Computing, 4:470–486, 1991.

[27] G. J. Holzmann and M. H. Smith. Software model checking: extracting verifica-
tion models from source code. In Proceedings of FORTE/PSTV’99, November
1999.

[28] Paul Hudak. The Haskell School of Expression—Learning Functional Program-
ming through Multimedia. Cambridge University Press, 2000.

[29] John Hughes and Lars Pareto. Recursion and dynamic data-structures in
bounded space: Towards embedded ML programming. In International Con-
ference on Functional Programming, pages 70–81, 1999.

[30] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive
systems using sized types. In Proceedings of POPL’96, 23nd Annual SIGPLAN–
SIGACT Symposium on Principles of Programming Languages, pages 410–423,
1996.

[31] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reac-
tive systems using sized types. In Symposium on Principles of Programming
Languages, pages 410–423, 1996.

[32] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML typability. Journal
of the ACM, 41(2):368–398, 1994.

[33] Harry G. Mairson. Decidability of ML typing is complete for deterministic ex-
ponential time. In Seventeenth Symposium on Principles of Programming Lan-
guages, pages 382–401, 1990.

[34] R. Milner. A Calculus of Communicating Systems. Springer-Verlag (LNCS 92),
1980.

[35] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, Part I/II. Information and Compuation, 100(1):1–77, September 1992.

[36] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed
assembly language. In ACM Workshop on Types in Compilation, pages 95–118,
Kyoto, Japan, March 1998.

[37] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to
typed assembly language. In Proceedings of POPL’98, 25th Annual SIGPLAN–
SIGACT Symposium on Principles of Programming Languages, pages 85–97,
1998.

[38] Christian Mossin. Exact flow analysis. In Fourth International Static Analysis
Symposium (SAS), pages 250–264, Paris, France, 1997. Springer-Verlag.

193

[39] Mayur Naik and Jens Palsberg. Compiling with code-size constraints. ACM
Transactions on Embedded Computing Systems. To appear. Preliminary version
in Proceedings of LCTES’02, Languages, Compilers, and Tools for Embedded
Systems joint with SCOPES’02, Software and Compilers for Embedded Systems,
pages 120–129, Berlin, Germany, June 2002.

[40] Mayur Naik and Jens Palsberg. A type system equivalent to a model checker.
Manuscript, 2003.

[41] Peter G. Neumann. Risks to the public in computers and related systems. SIG-
SOFT Softw. Eng. Notes, 20(3):7–12, 1995.

[42] Greger Ottosson and Mikael Sjödin. Worst-case execution time analysis for mod-
ern hardware architectures. In ACM SIGPLAN 1997 Workshop on Languages,
Compilers, and Tools for Real-Time Systems (LCT-RTS’97), 1997.

[43] Jens Palsberg. Type-based analysis and applications. In Proceedings of
PASTE’01, ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for Soft-
ware Tools, pages 20–27, Snowbird, Utah, June 2001. Invited paper.

[44] Jens Palsberg and Di Ma. A typed interrupt calculus. In FTRTFT’02, 7th
International Symposium on Formal Techniques in Real-Time and Fault Tolerant
Systems, pages 291–310. Springer-Verlag (LNCS 2469), Oldenburg, Germany,
September 2002.

[45] Jens Palsberg and Christina Pavlopoulou. From polyvariant flow information
to intersection and union types. In Conference Record of POPL 98: The 25TH
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Diego, California, pages 197–208, 1998.

[46] C.H. Papadimitriou. Computational Complexity. Addision-Wesley, 1994.

[47] Lars Pareto. Sized types. M.S. Thesis, Chalmers University of Technology, 1996.

[48] Lars Pareto. Types for Crash Prevention. PhD thesis, Chalmers University of
Technology, 2000.

[49] Corina S. Pasareanu, Matthew B. Dwyer, and Willem Visser. Finding feasible
counter-examples when model checking abstracted Java programs. Lecture Notes
in Computer Science, 2031, 2001.

[50] Stefan Petters and Georg Färber. Making worst case execution time analysis for
hard real-time tasks on state of the art processors feasible. In Proceedings of 6th
International Conference on Real-Time Computing Systems and Applications,
1999.

[51] Benjamin C. Pierce. Programming with Intersection Types and Bounded Poly-
morphism. PhD thesis, 1991.

[52] Benjamin C. Pierce. Intersection types and bounded polymorphism. In M. Bezem
and J. F. Groote, editors, Proc. of 1st Int. Conf. on Typed Lambda Calculi and
Applications, TLCA’93, Utrecht, The Netherlands, 16–18 March 1993, volume
664, pages 346–360. Springer-Verlag, Berlin, 1993.

194

[53] Andreas Podelski. Model checking as constraint solving. In Static Analysis
Symposium, pages 22–37, 2000.

[54] Andreas Podelski. Model checking as constraint solving. In Proceedings of
SAS’00, International Static Analysis Symposium, pages 22–37. Springer-Verlag
(LNCS 1824), 2000.

[55] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In POPL 95: Principles of Programming Languages, pages
49–61. ACM, 1995.

[56] Thomas Reps. Program analysis via graph reachability. Infor-
mation and Software Technology, 40(11–12):701–726, November 1998.
http://www.cs.wisc.edu/wpis/papers/tr1386.ps.

[57] Jerzy Tiuryn. Subtype inequalities. In LICS’92, Seventh Annual IEEE Sympo-
sium on Logic in Computer Science, pages 308–315, 1992.

[58] Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. In Proceedings
of ICFP’01, ACM SIGPLAN International Conference on Functional Program-
ming, pages 146–156, 2001.

[59] Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven FRP. In Proceedings
of PADL’02, Practical Aspects of Declarative Languages, pages 155–172, 2002.

[60] Wayne Wolf. Computers as Components, Principles of Embedded Computing
System Design. Morgan Kaufman Publishers, 2000.

[61] Hongwei Xi. Dead code elimination through dependent types. Lecture Notes in
Computer Science, 1551:228–242, 1999.

[62] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through
dependent types. In SIGPLAN Conference on Programming Language Design
and Implementation, pages 249–257, 1998.

[63] Howgwei Xi and Frank Pfenning. Dependent types in practical programming. In
Conference Record of POPL 99: The 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San Antonio, Texas, pages 214–227,
New York, NY, 1999.

[64] Tian Zhao, Di Ma, and Jens Palsberg. Stack-size analysis of interrupt-driven
software. Manuscript, 2002.

VITA

195

VITA

Di Ma was born in Beijing, P.R. China, in 1972. He received his bachelor’s

degree in Computer Science and Engineering from National University of Defense

and Technology (formerly known as Changsha Institute of Technology) in June 1995.

After working for three years in a couple of software companies, he came to Purdue

University to study computer science in Fall 1998. In May 2000, he received his

master’s degree in computer science, after which he continued to pursue a Ph.D.

degree, which he received in August 2004.

