
CERIAS Tech Report 2004-77

PRIVACY PRESERVING ROUTE PLANNING

by K. Frikken, M. Atallah

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Privacy Preserving Route Planning ∗

Keith B. Frikken
CERIAS and Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

kbf@cs.purdue.edu

Mikhail J. Atallah
CERIAS and Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

mja@cs.purdue.edu

ABSTRACT
The number of location-aware mobile devices has been ris-
ing for several years. As this trend continues, these devices
may be able to use their location information to provide in-
teresting applications for their owners. Possible applications
for such devices include: i) planning a route that brings the
owner near a coffee shop or ii) a route that would allow
the owner to intersect one of their friends’ own route. The
difficulty with such computations is that the owners of the
devices will not want their devices to be sending their loca-
tion (or future locations) to some random server to compute
the functions. In this paper, we look at computing distance
functions of routes in a private manner; we propose using
Secure Multi-party Computation (SMC) techniques to solve
these computational geometry problems. In this paper we
propose protocols for three such problems: i) the distance
between a point and a line segment, ii) the distance between
two moving points each defined by a parametric equation
(with constant velocity), and iii) the distance between two
line segments.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce—
Security

General Terms
Security

Keywords
Privacy, Pervasive Computing, Security Protocols

∗Portions of this work were supported by Grants EIA-
9903545, IIS-0219560, IIS-0312357, and IIS-0242421 from
the National Science Foundation, Contract N00014-02-1-
0364 from the Office of Naval Research, by sponsors of
the Center for Education and Research in Information As-
surance and Security, and by Purdue Discovery Park’s e-
enterprise Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’04, October 28, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-968-3/04/0010 ...$5.00.

1. INTRODUCTION
Suppose Bob is visiting an unfamiliar area, and that Bob

has a mobile device that is a route helper that allows Bob
to determine if a certain type of store (coffee shop, rare
bookstore, etc.) is near a route that he will travel on, but
for privacy reasons Bob does not want to reveals his route.
Suppose Alice has gathered a large amount of information
and that she provides a subscription-based service to ac-
cess this information. However, Alice cannot simply reveal
all of her information to Bob since this reveal all of Alice’s
proprietary information about certain topics, which is un-
acceptable because this is how Alice generates revenue (not
to mention that Alice’s database may be too voluminous to
send to Bob). Thus the problem becomes how Bob can know
if there is a specific item of interest near his route, without
revealing his route and without requiring Alice to reveal all
of her information.

A similar application of this would be to help entities with
restraining orders placed against them to avoid the person
that they are ordered to avoid. Suppose Alice has a re-
straining order on Bob (perhaps she has caught him being
malicious in one too many protocols) that states that he
must stay at least 1000 yards from her. Furthermore, sup-
pose that Alice and Bob live in a smaller town, where the
chances of them randomly running into each other is not
negligible. Clearly, Alice wants to stay away from Bob and
Bob would also like to stay away from Alice (as he does not
want to cause a scene). Furthermore, Alice and Bob have
the right to privacy, and it would be potentially dangerous
for Alice to tell Bob where she will be at all times during
the day. The problem in this case is that Alice and Bob
would like to run a protocol that tells them if their route is
safe (i.e., does not get too close to the other party’s route)
without revealing their own route.

There are also several natural applications for cooperating
but mutually distrusting counties or military organizations
(so-called “uneasy allies”). Suppose Alice and Bob are two
governments who are temporarily cooperating to perform a
humanitarian relief (or perhaps a military) operation. Bob
has an object (vehicle, convoy, or airplane) that is moving
in a space where Alice has certain objects that she wants to
hide from Bob. Although Alice and Bob are cooperating,
they do not fully trust each other; furthermore the less in-
formation is disseminated, the less it is likely that this infor-
mation will be leaked by an untrustworthy partner (or by a
crooked insider employed by an otherwise trustworthy part-
ner). A more extreme example is when both Alice and Bob
have moving objects that they want to prevent from getting

too close to each other in order to reduce the likelihood of
an accidental collision or of a “friendly fire” accident.

The above problems are all instances of computational
geometry problems where the operation being computed is
proximity between objects. These objects can take various
forms: points, points moving in space (defined by paramet-
ric equations), and line segments. Furthermore, the distance
between these objects must be computed in a secure fash-
ion. This computation should be done in a way that does
not reveal anything other than the result (or what can be
computed from the result, as this is unavoidable in any such
protocol). A well-known result in the area of Secure Multi-
party Computation (SMC) is that any computation can be
performed in such a manner. However, these general solu-
tions are expensive. Also, computational geometry problems
are difficult in this framework because floating point arith-
metic is very expensive, and so operations such as square
root and division should be avoided. However, their in-
verses (multiplication and squaring) are much easier. We
assume that the inputs (i.e., point coordinates, coefficients
of equations, velocities, etc) are integers – so there is an im-
plied integer “grid”. We also assume that all coordinates
are non-negative. Furthermore, we initially give protocols
for two dimensions, however extending these protocols to
higher dimensions is also discussed briefly. In this paper
we introduce protocols to solve problems that include the
following three:

1. To determine if the distance between a segment and
point is smaller than some threshold.

2. To determine if the distance between two points mov-
ing with constant velocity, described by parametric
equations, stays smaller than some threshold.

3. To determine if the distance between two line segments
is smaller than some threshold.

The rest of the paper is organized as follows. In Section
2, we outline related work in this area, and how this paper
relates to it. In Section 3, we introduce building blocks and
definitions required by our protocols. In Section 4, protocols
for the above mentioned problems are given. Finally, in
Section 5, a summary of this work is given along with future
directions.

2. RELATED WORK
Secure Multi-party Computation (SMC) was introduced

in [16], which contained a scheme for secure comparison;
suppose Alice (with input a) and Bob (with input b) desire
to determine whether or not a < b and without revealing
any information other than this result (this is referred to as
“Yao’s Millionaire Problem”). More generally, SMC allows
Alice and Bob with respective private inputs a and b to
compute a function f(a, b) by engaging in a secure protocol
for public function f . Furthermore, the protocol is private
in that it reveals no additional information. By this what is
meant is Alice (Bob) learns nothing other than what can be
deduced from a (b) and f(a, b). Elegant general schemes are
given in [10, 9, 2, 5] for computing any function f privately.
However, these general solutions are considered impractical
for many problems, and it was suggested in [12] that more
efficient domain-specific solutions can be developed.

When developing such protocols, one needs to make sure
that the protocols have an advantage over protocols based
on the general results. General results in SMC simulate a
circuit and require either (depending on the implementa-
tion): i) a 1-out-of-2 oblivious transfer (OT) per input wire,
constant number of rounds, O(1) invocations of a pseudo-
random function per gate, and communication proportional
to the number of gates, or ii) an OT per gate and rounds
equal to the depth of the circuit. The protocols in this pa-
per have an advantage over such general solutions for several
reasons:

1. The circuits require multiplication, and the easiest cir-
cuits for k-bit multiplication require O(k2) gates. There
are asymptotic improvements to these circuits, but
they come at the cost of large constant factors; the
asymptotically best of them (and the worst in terms of
having impractically large constant factors) is a circuit
of size O(k log k log log k) derived from the textbook
Schoenhage-Strassen integer multiplication algorithm
(which is itself of mainly theoretical interest, and not
used in practice). Our protocols use homomorphic en-
cryption multiplication, which requires O(k) commu-
nication. Thus the communication of our protocols is
lower.

2. Another savings occurs when the routes are several
segments. If Alice has m segments and Bob has n

segments, then a general solution will need to have
O(mn) versions of the circuit. A nice property of the
homomorphic scalar product is that it can be used to
do n scalar products with communication proportional
to O(n+m). There still will be O(nm) communication
to return the results, but it will have a much smaller
constant than the general solution.

3. Our protocols are simpler than the general solutions.

In addition to the generic work in the area of SMC, there
has been some work in Privacy Preserving Computational
Geometry [7, 1]. This work focused on solving three prob-
lems: i) the inclusion of a point in a polygon, ii) the intersec-
tion of polygons, and iii) the distance between points; solu-
tions were given for all of these problems. The key difference
between this and previous work is that this paper focuses on
distance protocols rather than on intersection protocols, but
some of the protocols overlap. There are two cases where
this paper’s protocols overlap the work of [7, 1], namely, i)
the computation of the distance between points was given in
[7, 1], and ii) the determination if two line segments inter-
sect. Instead of placing these protocols in the building block
section we place them with the protocols that used them to
increase readability, however they are clearly marked as pre-
vious work.

3. BUILDING BLOCKS, NOTATIONS, AND
DEFINITIONS

3.1 Notations and Definitions
The following are a list of notations that are used within

this paper.
1. We use <> to represent vectors.
2. To represent a point in two dimensional space we use

the following notation: P (x, y).

3. To represent a line in two dimensions we use L(A, B, C),
where the line is described by the equation: Ax+By+
C = 0.

4. To represent a line segment we use the notation
S(P1(x1, y1), P2(x2, y2)) to be the segment between
the two points P1 and P2.

5. To represent a motion of a point along a line with
constant velocity we use parametric equations: x(t) =
(vx)t+x0 and y(t) = (vy)t+ y0 to represent the x and
(respectively) y coordinates of the moving point. Also,
the variable t is in an interval [s, e].

6. We assume that the players in these protocols follow
the honest-but-curious (also called semi-honest in the
literature) form of behavior, which means that they
will follow the protocol steps, but will try to deduce
things besides the result. To formalize the notion of
security (in the standard way [10]), suppose there is a
trusted third party. A protocol that is secure with such
a party, would be for Alice and Bob to send their data
to this party, who responds with the result. A protocol
is secure in the honest-but-curious model if the partic-
ipants cannot learn anything other than what can be
learned in the model with the trusted third party.

7. Sometimes it is desirable to store items in a split man-
ner (i.e., where neither party knows the values, but
each party has a share of the value). In this paper,
we use three primary types of split data: additive,
modular additive, and exclusive-or (XOR). Whenever
a value x is split, we denote the respective shares by
x′ and x′′, where x = (x′ + x′′, x′ + x′′ mod M, x′⊕ x′′

for additive, modular additive, and XOR split respec-
tively). A problem with additively split data is that it
is probabilistically leaky, but it allows for comparison
using standard techniques. In this paper, we use only
modularly additively split data; we discuss how this is
done in more detail in Section 3.4. A note on XOR-
split data: in this paper, we use the standard notation
and treat 0 as false and 1 as true where a ⊕ b is true
iff either a or b are true but not both.

3.2 Protocol Building Blocks
In this section we outline various SMC protocols:
1. Secure Circuit Evaluation: A well known result in SMC

is that circuits can be evaluated with communication
equal to the size of the circuit and in constant rounds.
Initially, this result was presented in [17], for more de-
tails about this work and extensions of this work see
the following survey [11]). This can be extended to
more than two parties (as in [15]).

2. Comparison: Alice and Bob can compare two k-bit
integers for the ≤, <, =, 6=, >,≥ predicates where the
result is split in one of the previously mentioned ways.
This is because the size of such circuits is O(k). More
efficient mechanisms (in terms of computation) have
been proposed in [3, 8]. Note that [3] requires a non-
colluding third party, and [8] gives up accuracy through
an accuracy-communication tradeoff. We discuss a
method for comparing modular additive split values
in Section 3.4.

3. Dot Product: This protocol allows Alice and Bob to
compute the scalar (i.e., “dot”) product of two vec-
tors. It is denoted by DOTPRODUCT (~v1, ~v2) where
Alice has one vector and Bob has the other (alterna-

tively both vectors are additively split between Alice
and Bob). More on the dot product protocol next, in
Section 3.3.

3.3 Scalar Product Protocols
Scalar Product protocols were introduced in [7], but this

scheme requires several rounds and requires many Oblivious
Transfers. Using standard cryptographic techniques it is
possible to compute the scalar product in two rounds. Note
that for reasons discussed in Section 3.4 we compute the
scalar product in a modularly additively split fashion.

This scheme is based on homomorphic encryption. Homo-
morphic encryption schemes are defined in [14, 6, 13] and
have several remarkable properties, including (but not lim-
ited to):

1. Semantic Security: Informally, this means that there
are many valid encryptions for the value x, and that
it is not possible to distinguish two encryptions of the
same value.

2. E(x)E(y) = E(x + y). This means that it is possible
to add encrypted values; note that the sum is modulo
the base of the homomorphic system.

3. E(x)c = E(xc). This means that it is possible to multi-
ply encrypted values by constants, note that the prod-
uct is modulo the base of the homomorphic system.

With a semantically-secure homomorphic encryption sys-
tem, it is obvious that the scalar product can be computed
in two rounds.

3.4 On Split Data
In our protocols the intermediate results are stored in a

split fashion between the two parties. The reason for this
is that we can compose secure protocols for each step to
make a secure protocol [4]. More formally, if the intermedi-
ate computations are replaced by function calls to trusted
oracles, then this would be a secure protocol, and thus the
calls to trusted oracles can be replaced by secure protocols.
There are two difficulties with such an approach: i) compar-
ing modularly split values and ii) many times the modulus
is very large (much larger than the split value) and leads
to inefficient protocols. We discuss protocols for comparing
split values (Section 3.4.1) and for reducing the modulus of
the split value (Section 3.4.2).

3.4.1 Comparing split values
A difficulty with using modular additively split values is

comparing the values. While this is very difficult to do effi-
ciently in all cases, when the modulus is more than double
the largest possible value being compared (and while one
must ensure that this occurs, it is not difficult to choose a
large enough modulus to ensure this property) it is roughly
twice as difficult (in terms of communication and computa-
tion) as standard comparison. The authors are not aware of
such a protocol elsewhere.

Input: Alice has two values x′ and y′ and Bob has two
values x′′ and y′′; all of these values are in the range [0, M).
Furthermore the sums (x′ + x′′) mod M (i.e., x) and (y′ +
y′′) mod M (i.e., y) are in the range [0, m). It is also known
that M ≥ 2m.

Output: Alice and Bob would like to compute in XOR-
split fashion whether or not (x′+x′′) mod M ≤ (y′+y′′) mod
M . Note that the protocol below can easily be modified to
support other types of comparison.

Notes All arithmetic in the protocols is done modulo M .

1. Alice computes a← y′−x′−m+1, b← y′−x′, and c←
false. If a ≥ b (i.e., there is wrap-around), then Alice
sets her values to a← y′−x′ + 1, b← y′−x′ + m− 1,
and c← true. Bob computes d← (x′′ − y′′).

2. Alice and Bob engage in a protocol using Scrambled
Circuit Evaluation to evaluate (d ≥ a) ∧ (d ≤ b) in an
XOR-split fashion, thereby obtaining rA and rB . Alice
and Bob’s respective output is rA ⊕ c and rB .

Before we prove the correctness of the above protocol,
we give two examples which will clarify it. For both of the
examples, we suppose that m = 4 and the M = 8 (satisfying
that M ≥ 2m). In what follows when we define ranges [a, b],
we are referring to a range modulo M with the possibility
of wrap-around and all arithmetic is done modulo M . For
example, if M = 8, then the range [6, 1] ≡ {6, 7, 0, 1}.

Example 1: Suppose x′ = 3 and y′ = 2. Alice knows that
Bob’s values satisfy: x′′ ∈ {5, 6, 7, 0} and y′′ ∈ {6, 7, 0, 1}.
The reader can easily verify that, after step 1 of the protocol,
(a, b, c) is (4, 7, false) and (x ≤ y) ≡ (x′′ − y′′ ∈ [4, 7]).

Example 2: Suppose x′ = 3 and y′ = 4. Alice knows that
Bob’s values satisfy: x′′ ∈ {5, 6, 7, 0} and y′′ ∈ {4, 5, 6, 7}.
The reader can easily verify that, after step 1 of the protocol,
(a, b, c) is (2, 4, true) and (x ≤ y) ≡ (x′′− y′′ ∈ [6, 1]), which
is easily transformed into (x ≤ y) ≡ (x′′ − y′′ 6∈ [2, 4]).

Proof of Correctness: Alice knows that:
i) x′′ ∈ [−x′,−x′ +m) and ii) y′′ ∈ [−y′,−y′ +m). Suppose
the values of x and y are respectively i and j, then x′′ =
−x′ + i and y′′ = −y′ +j. Clearly, x′′−y′′ = y′−x′ +(i−j).
From this one can deduce that (x ≤ y) ≡ x′′ − y′′ ∈ [y′ −
x′ − m + 1, y′ − x′] and similarly (x ≤ y) ≡ x′′ − y′′ 6∈
[y′ − x′ + 1, y′ − x′ + m − 1]. Since M ≥ 2m these ranges
must be disjoint and thus at most one of the ranges has
wraparound. For a range [a, b] that does not wraparound
it is easy to determine if a value z falls in the range by
checking if z ≥ a and z ≤ b. The above clearly mimics what
the protocol does. QED

Proof of Security: We omit a detailed proof as it is
obvious based on the composition theorem [4] and a secure
protocol for comparison.

3.4.2 Reducing the Base
Another problem with using modularly additively-split

values is that many times such values are modulo the base of
a homomorphic encryption scheme (i.e., as in scalar product
protocol with homomorphic encryption). And if the values
are compared with the technique in the previous section,
then the cost will be proportional to the number of bits in
the homomorphic base, which is typically much larger than
the number of bits in the item. We now present a protocol
for reducing the base of a split value (this protocol is not
used explicitly in our protocols as it is not required, but it
will decrease the communication for many of our protocols).
We are not aware of this protocol elsewhere.

Input: Alice has a value x′ and Bob has a value x′′; both
of these values are in the range [0, M), but (x′ +x′′) mod M

(i.e., x) are in the range [0, m). It is also known that M ≥
2m.

Output: Alice and Bob have respective values y′ and
y′′ in the range [0, m), such that (x′ + x′′) mod M = (y′ +
y′′) mod m.

Steps:

1. Alice generates a random value r chosen uniformly
from the range [0, m). Alice computes a ← (M mod
m). Alice sets y′ ← ((x′ mod m) − r) mod m. Alice
creates a list of two values v0, v1: If x′ ≥ m, then both
values are (r − a) mod m, else the values are respec-
tively r and (r − a) mod m.

2. Bob computes the boolean value i← (x′′ ≥ m), where
the value is either 0 or 1. Alice and Bob engage in a
chosen 1-out-of-2 OT where Bob learns vi. Bob sets
his output to be y′′ ← (x′′ + d) mod m.

Proof of Correctness: There are two cases: i) (x′ +
x′′) ∈ [0, m) (no wraparound) and (x′ + x′′) ∈ [M, M + m)
(wraparound). In case i, both x′ and x′′ are smaller than m,
and so y′ = (x′− r) mod t and y′′ = (x′′ + r) mod m. Thus,
(y′ +y′′) mod m = (x′ +x′′) mod m, which is correct in this
case. In case ii, suppose (x′ + x′′) = M + α, note that the
(y′ + y′′) mod m should equal α. Note that the respective
outputs will be (since at least one of x′ and x′′ must be larger
than m), y′ = (x′−r) mod m and y′′ = (x′′ +r−a) mod m.
Note that (x′ +x′′) mod m = (M +α+ r− r− a), but since
a = M mod m, this is equal to α. In either case, the claim
holds. QED

Proof of Security: The main concern is that Alice or
Bob could learn something about the value of (x′ +x′′) mod
m by engaging in the protocol. Clearly, as long as the OT is
a secure protocol, Alice learns nothing as her values are gen-
erated from her input. While Bob’s view is more complex, it
is not difficult to see that every d value could be generated
for any value of x′, as the value r is chosen uniformly from
[0, m). QED

4. ROUTE PLANNING PROTOCOLS
In this section we introduce three types of protocols for

route planning including: i) the distance between a route
(line segments) and a set of fixed objects (points), ii) the
distance between two moving objects with constant velocity
(parameterized lines), and iii) the distance between a route
(line segments) and another route (line segments).

4.1 Points and Line Segments
Suppose Alice has a set of points each associated with a

distance and Bob has a route which consists of a set of lines.
Furthermore, Alice and Bob want to know if Bob’s route gets
too close to a point in Alice’s set. Note that the protocols
can easily be extended to have the threshold associated with
the segments instead of the points. In Section 4.1.1, we
discuss the general idea of the solution, in Section 4.1.2 the
details of the protocols are given, and in Section 4.1.3 the
protocols are extended to three dimensions.

4.1.1 General Idea
It is enough to develop a protocol that determines if a

specific point and segment are within the threshold of each
other in a split manner, because this can be run on all pairs
of points and segments and the results can be combined
using a straightforward circuit. However, this does reveal
the number of points and segments, but this will not be a
concern in many cases. If it is a concern, then the actual
number can be hidden by inserting several instances of each
point or segment (which will not change the end result, but
would hide the actual number of points). Thus we consider

only a single point with a threshold and a single segment.
A point is within a distance threshold T of a line segment
AB if and only if at least one of the following holds: i) the
point is within T units of point A, ii) the point is within T

units of point B, or iii) the point is contained in a rectangle
of size 2T by ‖ AB ‖ and that has AB as axis of symmetry
(see Figure 1).

�
�

�
�

��
S

S
S�

�
�

�
��

S
S
S

�
�

�
�

��

"!
"!

s
s

A

B

Figure 1. Area of all points within distance T from seg-

ment AB; note that the circles have radius T .

4.1.2 Protocols
In this section we outline the details of the protocols for

determining if a point or line segment are within a certain
distance of each other. Protocol 4 is the actual protocol for
this, and Protocols 1-3 are utilized by Protocol 4.

Protocol 1. Distance between Two Points

Input: Alice has point P1(x1, y1) and threshold T . Bob
has a point P2(x2, y2).

Output: Computes (in XOR split manner) if the distance
between P1 and P2 is ≤ T .

Description: The distance between P1 and P2 is
p

(x1 − x2)2 + (y1 − y2)2. This distance being smaller than
the threshold T is equivalent to (x1 − x2)

2+(y1 − y2)
2 ≤ T 2.

This protocol is also presented in [7, 1]. The left hand side
can be computed with a single dot product, and then the
comparison can be done.

Steps:

1. Alice computes ~a =< x1
2,−2x1, 1, y1

2,−2y1, 1 >. Like-
wise, Bob computes

~b =< 1, x2, x2
2, 1, y2, y2

2 >.

2. Alice and Bob engage in protocols to compute d =

DOTPRODUCT (~a,~b) in a modular additively split
manner.

3. Alice and Bob compute the predicate (d ≤ T 2) in an
XOR split manner.

Protocol 2. Distance between a Point and a Line

Input: Alice has point P (x, y) and threshold T . Bob has
line L(A, B, C).

Output: Computes if the distance between P and L is
≤ T .

Description: The distance between P and L is |Ax+By+C√
A2+B2

|.
This distance being smaller than the threshold T is equiv-
alent to (Ax + By + C)2 ≤ T 2(A2 + B2). The left hand
side and right hand side can be computed with a single dot
product, and then the comparison can be performed.

Steps:

1. Alice computes ~a1 =< x2, 2xy, 2x, y2, 2y, 1 > and ~a2 =<

T 2 >. Likewise, Bob computes

~b1 =< A2, AB, AC, B2, BC, C2 > and ~b2 =< A2 +
B2 >.

2. Alice and Bob engage in protocols to compute the
predicate:

DOTPRODUCT (~a1, ~b1) ≤ DOTPRODUCT (~a2, ~b2).

Protocol 3. Point between Two Lines

Input: Alice has point P (x, y). Bob has two parallel lines
L1(A, B, C1) and L2(A, B, C2) (we assume that L2 is above
L1 (i.e., C2 > C1).

Output: Computes if P lies between L1 and L2.
Description: In order for P to be between L1 and L2 it

must be such that C1 ≤ Ax + By ≤ C2. If this is the case,
then P will be above L1 and below L2.

Steps:

1. Alice computes ~a =< x, y >. Likewise, Bob computes
~b =< A, B >

2. Alice and Bob engage in protocols to compute d =

DOTPRODUCT (~a,~b) in a modular additively split
fashion.

3. Alice and Bob compute the predicate (d ≥ C1) ∧ (d ≤
C2).

Protocol 4. Distance between a Point and a segment

Input: Alice has point P (xp, yp) and a threshold T . Bob
has a line segment S((x1, y1), (x2, y2)).

Output: Computes if the distance between P and S is
≤ T .

Description: As discussed in Section 4.1.1 all that needs
to be checked is if the endpoints are within T from P (for
which Protocol 1 can be used) or are within a rectangle
with dimensions of size 2T by ‖ S ‖ that has S as axis of
symmetry (see Figure 1). P is within this rectangle if it is
no more than T units away from the line through S (for
which Protocol 2 can be used) and if P is within the lines
perpendicular to S at its endpoints (for which Protocol 3
can be used).

Steps:

1. Alice and Bob engage in Protocol 1 on (xp, yp) and
(x1, y1) and threshold T , with result γ1 obtained in an
XOR-split fashion.

2. Alice and Bob engage in Protocol 1 on (xp, yp) and
(x2, y2) and threshold T , with result γ2 known in an
XOR-split fashion.

3. Bob computes the line through his segment, which is
L(A, B, C) where A = y2 − y1, B = x1 − x2, and
C = x1(y1 − y2) + y1(x2 − x1). Alice and Bob engage
in Protocol 2 on P and L and threshold T , with result
γ3 known in an XOR-split fashion.

4. Bob computes perpendicular lines through the seg-
ment endpoints, denoted by L1 = (x2 − x1)x + (y2 −
y1)y +(x1−x2)x1 +(y1−y2)y1 and L2 = (x2−x1)x+
(y2 − y1)y + (x1 − x2)x2 + (y1 − y2)y2. Alice and Bob
engage in Protocol 3 with inputs P , L1, and L2 with
result γ4 known in an XOR-split fashion.

5. Alice and Bob output γ1 ∨ γ2 ∨ (γ3 ∧ γ4) using secure
circuit evaluation.

Complexity Analysis:

Note that steps 1-4 in Protocol 4 can be done in parallel.
Furthermore, step 5 can be done in O(1) rounds with O(1)
communication. Thus Protocol 4 can be done with O(1)
communication and O(1) rounds.

4.1.3 Extending to higher dimensions
Extending these protocols to three dimensions can be achieved

by extending each of the base protocols (1-3) to three dimen-
sions.

1. Protocol 1 can be extended to three dimensions eas-
ily by changing the value (x1 − x2)

2 + (y1 − y2)
2 to

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 which can easily

be computed with dot product.

2. Protocol 2 is not as direct to translate to 3 dimensions,
but there is a formula for determining the distance be-
tween a point and a line segment in 3 dimensions. The
idea behind the formula is to take a vector on the line
segment and a vector with the same origin to the point,
and then take the magnitude of the cross product, i.e.,
the area of the parallelogram created by these vectors
(which can be computed with dot product) and then
divide by the length of the vector on the line, which
reveals the height of the parallelogram and is thus the
distance between the point and the line.

3. Protocol 3 can easily be extended to three dimensions,
where it becomes whether or not a point is located
between two planes. The equation for a plane is of the
form Ax + By + Cz + D = 0, and thus the previous
technique will work.

4.2 Parameterized Lines
Suppose Alice has a route which consists of several line

segments and Bob has a route which consists of a set of
line segments. Furthermore, suppose that there is an object
that is traveling on each of Alice and Bob’s routes whose
position can be described by a point with constant velocity
(with parametric equations) and that Alice has a threshold
distance for which she does not want her object to get close
to Bob’s object.

4.2.1 General Idea
For this protocol we assume that Alice and Bob’s time

intervals are not secret (i.e., only the location, direction,
and velocity during the intervals are private, but it is okay
to reveal the time when the direction or velocity changes),
and thus Alice and Bob can easily compute all time inter-
vals where there is a change (in direction or velocity) by
one of the objects. In this section, we give a protocol to
determine if the distance between Alice and Bob’s objects
(during the time interval) is under some threshold. Sup-
pose Alice’s point can be described by x1(t) = vx,1t + x0,1

and y1(t) = vy,1t + y0,1, and likewise Bob’s position can be
described as x2(t) = vx,2t + x0,2 and y2(t) = vy,2t + y0,2.
The distance between the points at any time t can be de-
scribed by

p

(x1(t)− x2(t))2 + (y1(t)− y1(t))2. This being
less than T is equivalent to f(t) < T 2 where f(t) is a
quadratic polynomial of t (denote it by At2 +Bt+C). Now,

if A ≤ 0 then the minimum value during the interval will
be at one of the endpoints of the time interval. However, if
A > 0, then it is possible for a minimum to be inside the
interval, in this case Protocol 5 computes whether or not the
minimum is inside the interval and if so outputs whether or
not the minimum is smaller than T . Protocol 6 combines the
results from the endpoints and from Protocol 5 to determine
the final answer.

4.2.2 Protocols

Protocol 5. Quadratic polynomial minimization

Input: Alice and Bob have a polynomial f(t) = At2 +
Bt+C where t ∈ [s, e] and where the values A, B, C, s, and
e are additively split between them. Furthermore, Alice has
a threshold T 2.

Output: The predicate “the minimum of f(t) is smaller
than T 2 and this minimum occurs in the interval [s, e]”.

Description: The polynomial f(t) will have a minimum
iff A > 0. If A < 0 it will be a downward parabola (i.e.,
it will have a maximum) and if A = 0 it will be a line
(i.e., it will not have a maximum or minimum). The point
the minimizes f(t) can be easily found to be tmin = −B

2A
.

Assuming A > 0, then the minimum is in the interval [s, e]
iff 2As ≤ −B ≤ 2Ae. Finally, the minimum value of f(t)

(assuming that there is such a minimum) is f(tmin) = B2

4A
−

B2

2A
+ C. Thus (f(tmin) < T 2) ≡ (−B2 + 4AC < 4AT 2).

Steps:

1. Determine if a minimum exists to f(t). Alice and Bob
engage in a protocol γ1 = (A > 0) in an XOR-split
fashion.

2. Assuming that there is a minimum determine if the

minimum exists in [s, e]. Alice and Bob engage in a
protocol to determine: γ2 = (2As ≤ −B) ∧ (−B ≤
2Ae) in an XOR-split fashion. Note that the values
inside these comparisons can be computed with secure
dot product.

3. Assuming that a minimum exists, is it smaller than

T 2. Alice and Bob engage in a protocol to determine
γ3 = (−B2 + 4AC ≤ 4AT 2) in an XOR-split fashion.
Note that these values can be computed with secure
dot product.

4. Alice and Bob compute γ1 ∧ γ2 ∧ γ3.

Protocol 6. Two Parameterized Line Segments

Input: Alice has segment x1(t) = vx,1t + x0,1, y1(t) =
vy,1t + y0,1, and a threshold T . Bob has a line segment
x2(t) = v2,Bt + x0,2 and y2(t) = vy,2t + y0,2. The time in-
terval is known to Alice and Bob and is represented by s to
e. Furthermore, the parameterized segments are additively
split between Alice and Bob.

Output: Computes if the distance between the two seg-
ments is < T at any point during the time interval.

Description: The distance between the two points dur-
ing an interval is

p

(xA − xB)2 + (yA − yB)2. Since all terms
are linear in t, this means that there is a polynomial f(t) =

At2+Bt+C such that the distance is
p

f(t). This is smaller
than threshold T iff f(t) ≤ T 2. Either f(t) will have a global

minimum in the interval [s, e] or the minimum value in that
interval is min{f(s), f(e)}. Protocol 5 can be used to de-
termine if a global minimum is smaller than T 2 and a dot
product protocol can be used to determine if f(s) ≤ T 2 or
f(e) ≤ T 2.

Steps:

1. Alice and Bob engage in dot product protocols to de-
termine the distance function f(t) = At2 + Bt + C.
The values A, B, and C are additively split between
Alice and Bob. To avoid cluttering the paper, we omit
the inclusion of the exact details of these dot product
computations.

2. Alice and Bob determine if at either endpoint of the
interval, the distance between their points is smaller
than T :

(a) Alice and Bob compute ds = As2 + Bs + C and
de = Ae2 + Be + C in an additively split fashion.
Note that these values can easily be computed
without communication.

(b) Alice and Bob engage in protocols to determine:

γ1 = (ds ≤ T 2) ∨ (de ≤ T 2) in an XOR-split
fashion.

3. Alice and Bob use protocol 5 with parameters A, B,
C, s, e, and T 2 to determine if there is a point in the
interval that is a minimum less than T 2. The result is
obtained in γ2 in an XOR-split fashion.

4. Alice and Bob output γ1 ∨ γ2.

Complexity Analysis:

Much of protocol 6 can be done in parallel. The protocol
requires O(1) communication and O(1) rounds.

4.2.3 Extending to Higher Dimensions
This protocol is easily extended to arbitrary dimensions.

All that needs to be changed is the computation of the
the polynomial f(t). Note that the distance between the

two points at any given time t will still be
p

f(t) for some
quadratic polynomial f(t).

4.3 Lines and Lines
Suppose Alice has a route which consists of several line

segments each associated with a distance and Bob has a
route which consists of a series of segments. Furthermore,
Alice and Bob want to know if Bob’s route gets within Al-
ice’s specified distance for a specific segment of Alice’s route.
Note that the protocols can easily be extended to have the
threshold associated with either set of segments. In Section
4.3.1, we discuss the general idea of the solution. In Section
4.3.2, the details of the protocols are given.

4.3.1 General Idea
It is enough to develop a protocol that determines if two

segments are within the threshold of each other in a split
manner, because this can be run on all pairs of points and
segments and the results can be combined using a straight
forward circuit. Although this reveals the number of seg-
ments, this will not be a concern in many cases. If it is a
concern, then the actual number can be hidden by insert-
ing several instances of each segment (which will not change

the end result, but would hide the actual number of points).
Thus we consider only two segments and a threshold.

In two dimensions, either the segments will intersect or
the closest point to the segment will involve one of the end-
points. Thus Protocol 4 can be used 4 times (once with each
endpoint and the other segment) to handle the second case,
and all that is needed is a protocol for determining if two
segments intersect, for which a protocol is given in [7, 1].

4.3.2 Protocols

Protocol 7. Line and Line Segment Intersection

Input: Alice has line L(A, B, C) and Bob has a line seg-
ment S((x1, y1), (x2, y2)).

Output: Computes if L and S intersect.
Description: L and S will intersect iff there is the end-

points of S lie on different sides of L or one or more of the
endpoints is on L. The side of a point P (x, y) on L is the
sign of Ax+By +C. Essentially if the value of this is nega-
tive for one endpoint and is positive for the other, then the
segment intersects the line. This protocol is also given in [7,
1].

Steps:

1. Alice computes ~a =< A, B, C >. Likewise, Bob com-

putes ~b1 =< x1, y1, 1 > and ~b2 =< x2, y2, 1 >.

2. Alice and Bob engage in protocols to compute d1 =

DOTPRODUCT (~a, ~b1) in a modular additively split
fashion.

3. Alice and Bob engage in a protocol to compute d2 =

DOTPRODUCT (~a, ~b2) in a modular additively split
fashion.

4. In parallel Alice and Bob engage in secure protocols
to compute in an XOR-split fashion γ1, γ2, γ3, γ4 with
respective values (d1 ≤ 0), (d2 ≤ 0), (d1 ≥ 0), (d2 ≥ 0)

5. Alice and Bob output (γ1 ∧ γ4) ∨ (γ2 ∧ γ3).

Protocol 8. Two Line Segments

Input: Alice has segment S1(P1(x1, y1), P2(x2, y2)) and a
threshold T . Bob has a line segment S2(P3(x3, y3), P4(x4, y4)).

Output: Computes if the distance between S1 and S2 is
< T .

Description: As mentioned in Section 4.3.1 all that needs
to be done is verify if any endpoint is within T of the other
segment (Step 1) or to see if the segments intersect. The
segments will intersect iff both segments intersect the line
through the other segment (for which Protocol 7 can be
used, Steps 2-3).

Steps:

1. In parallel Alice and Bob engage in secure protocols to
compute in an XOR-split fashion γ1, γ2, γ3, γ4 where
the values are the result of execution of Protocol 4
(distance between a point and a line segment) with
respective inputs (P1 and S2), (P2 and S2), (P3 and
S1), and (P4 and S1).

2. Bob computes the line through his segment, which is
L2(A, B, C) where A = y4 − y3, B = x3 − x4, and
C = x3(y3 − y4) + y3(x4 − x3). Alice and Bob engage
in Protocol 7 on S1 and L2 obtaining the results in γ5

in an XOR-split fashion.

3. Alice computes the line through her segment, which
is L1(A, B, C) where A = y2 − y1, B = x1 − x2, and
C = x1(y1 − y2) + y1(x2 − x1). Alice and Bob engage
in Protocol 7 on S2 and L1 storing the results in γ6 in
an XOR-split fashion.

4. Alice and Bob engage in secure protocols to determine:
γ1 ∨ γ2 ∨ γ3 ∨ γ4 ∨ (γ5 ∧ γ6).

Complexity Analysis:

Much of Protocol 8 can be done in parallel. The protocol
requires O(1) communication and O(1) rounds.

4.3.3 Extending to Higher Dimensions
This protocol can be extended to three dimensions. This

is because the minimum distance between two 3-d line seg-
ments is either the distance from one of the endpoints to
the other segment or is the minimum distance between the
lines defined by the segments (if this minimal point is on the
segments). This can be computed with similar techniques
as the two dimensional protocol.

5. SUMMARY
In this paper we have introduced privacy-preserving com-

putational geometry protocols with applications to route
planning. These applications include: planning of routes
that do (or do not) get close to certain objects, planning for
routes with constant velocities that do not get within a cer-
tain distance of each other, and planning routes of objects
that do not get within certain distances of each other with-
out knowing the exact velocity of the objects beforehand.
Future directions of this work include:

1. Distance between parametric lines with acceleration.
2. An implementation of the protocols.
3. A system that computes routes that do not get within

a certain range of each other. For example, given a set
of points with threshold distances and a start and end
point, compute a route from the start to the end point
without violating the distance thresholds.

4. One difficulty with route planning protocols is the re-
quirement that the device know where it is at, which
would seem to require a some form of query to a GPS
system, but this would reveal the location of the de-
vice. Is there a way to privately determine your po-
sition without revealing information about your loca-
tion?

Acknowledgment.
The authors are grateful to the reviewers for their useful
suggestions, including the “future research” suggestion 4.

6. REFERENCES
[1] Mikhail J. Atallah and Wenliang Du. Secure

multi-party computational geometry. Lecture Notes in

Computer Science, 2125:165–179, 2000.

[2] Michael Ben-Or and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant
distributed computation. In Proceedings of the

twentieth annual ACM symposium on Theory of

computing, pages 1–10. ACM Press, 1988.

[3] Christian Cachin. Efficient private bidding and
auctions with an oblivious third party. In Proceedings

of the 6th ACM conference on Computer and

communications security, pages 120–127. ACM Press,
1999.

[4] R. Canetti. Security and composition of multiparty
cryptographic protocols. Journal of Cryptology,
13(1):143–202, 2000.

[5] David Chaum, Claude Crépeau, and Ivan Damgard.
Multiparty unconditionally secure protocols. In
Proceedings of the twentieth annual ACM symposium

on Theory of computing, pages 11–19. ACM Press,
1988.

[6] Ivan Damg̊ard and Mads Jurik. A generalisation, a
simplification and some applications of paillier’s
probabilistic public-key system. In 4th International

Workshop on Practice and Theory in Public Key

Cryptosystems, PKC 2001, LNCS 1992, pages
119–136, 2001.

[7] W. Du. A Study of Several Specific Secure Two-party

Computation Problems. PhD thesis, Purdue
University, West Lafayette, Indiana, 2001.

[8] M. Fischlin. A cost-effective pay-per-multiplication
comparison method for millionaires. In RSA Security

2001 Cryptographer’s Track, LNCS 2020, pages
457–471, 2001.

[9] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In Proceedings of the

nineteenth annual ACM conference on Theory of

computing, pages 218–229. ACM Press, 1987.

[10] Oded Goldreich. Secure multi-party computation.
Working Draft, 2000.

[11] Oded Goldreich. Cryptography and cryptographic
protocols. Distrib. Comput., 16(2-3):177–199, 2003.

[12] Shafi Goldwasser. Multi party computations: past and
present. In Proceedings of the sixteenth annual ACM

symposium on Principles of distributed computing,
pages 1–6. ACM Press, 1997.

[13] T. Okamoto, S. Uchiyama, and E. Fujisaki. Epoc:
Efficient probabilistic public-key encryption, 1998.

[14] Pascal Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In International

Conference on the Theory and Application of

Cryptographic Techniques, EUROCRYPT 99, LNCS
1592, pages 223–238, 1999.

[15] P. Rogaway. The Round Complexity of Secure

Protocols. Ph.d. thesis, MIT, 1991.

[16] A.C Yao. Protocols for secure computation. In
Proceedings of the 23rd Annual IEEE Symposium on

Foundations of Computer Science, pages 160–164,
1982.

[17] A.C Yao. How to generate and exchange secrets. In
Proceedings of the 27th Annual IEEE Symposium on

Foundations of Computer Science, pages 162–167,
1986.

