
CERIAS Tech Report 2004-74

A FRAMEWORK FOR ROLE-BASED ACCESS CONTROL IN GROUP COMMUNICATION
SYSTEMS

by C. Nita-Rotaru, N. Li

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086



A Framework for Role-Based Access Control in Group

Communication Systems

Cristina Nita-Rotaru and Ninghui Li

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907

Abstract

In this paper we analyze the requirements access
control mechanisms must fulfill in the context of group
communication and define a framework for supporting
fine-grained access control in client-server group com-
munication systems. Our framework combines role-
based access control mechanisms with environment pa-
rameters (time, IP address, etc.) to provide support
for a wide range of applications with very different
requirements. While the access control policy is de-
fined by the application, its efficient enforcement is
performed by the group communication system.

1 Introduction

Many collaborative applications such as phone and
video conferencing, white-boards, distance-learning
applications, games, shared instrument control, as well
as command-and-control systems, have in common the
need for a communication infrastructure that provides
efficient message dissemination to multiple parties (of-
ten organized in groups based on a common inter-
est), efficient synchronization mechanisms that allow
for coordination and last, but not least, security ser-
vices. Group communication systems (GCS) provide
such services. Examples of group communication sys-
tems include: ISIS [1], Horus [2], Transis [3], Totem
[4], RMP [5], Rampart [6], SecureRing [7], Ensemble[8]
and Spread [9, 10].

An important aspect for secure collaborative groups
is defining and enforcing a security policy. A set of def-
initions and requirements of security policies in groups
is presented in [11]. The minimal set of security ser-
vices that should be provided by any secure GCS and
should be specified in a group policy include: client au-
thentication, access control, group key management,
data integrity and confidentiality.

While considerable research has been conducted to

design scalable and fault-tolerant group key manage-
ment protocols [12, 13, 14], and to provide data confi-
dentiality and integrity [15, 16, 17, 18] for groups, less
work focused on the access control services. When
GCS are used as a common platform by several ap-
plications with different security requirements, there
is an obvious need to control who can join a group,
who can send/receive messages, etc. Major challenges
when providing access control services to GCS are rec-
onciling flexibility with scalability, and efficiently en-
forcing access control in the context of dynamic and
distributed groups while supporting process failures
and network partitions.

Most existing work in providing access control for
groups employs traditional access control schemes such
as Access Control Lists (ACL’s). Such schemes make
authorization decisions based on the identity of the
requester. However, in decentralized or multi-centric
environments, the resource owner and the requester
are often unknown to one another, making access con-
trol based on identity ineffective or very expensive to
maintain.

We adopt an approach in which the set of opera-
tions a client is allowed to perform depends on the
role the client is playing in the group. Authenticated
attributes of the client are used to determine which
roles the client can play in a group. We focus on a
GCS using a client-server architecture where the dis-
tributed protocols are run between a set of servers pro-
viding services to numerous clients. More specifically,
our contributions are:

• We investigate the requirements for access control
mechanisms in GCS and show why identity-based
schemes do not provide enough flexibility to sup-
port a large class of collaborative applications.

• We design a fine-grained access control framework
for GCS, based on ideas in Role-Based Access
Control [19, 20] and RT [21], a Role-Based Trust-
Management language. Our framework allows an



application to define its specific policies while the
enforcement is performed in an efficient manner
by the GCS. This is achieved by defining a set of
basic group operations and roles that can be con-
trolled and enforced by the GCS. Any application
specific policy can be decomposed into these ba-
sic operations and application specific roles can
be mapped to system roles.

• We analyze what are the implications of process
(servers and clients) failures and network connec-
tivity changes on the life cycle of a group pol-
icy in general, and of an access control policy in
particular, and suggest how these issues can be
addressed.

Roadmap We discuss the failure and trust models
we use in Section 2. In Section 3 we present in details
the components for a group policy, while in Section 4
we discuss the effects of process failures and network
partitions on the life cycle of the policy. We overview
related work in Section 5. Finally, we summarize our
work and suggest future work directions in Section 6.

2 Trust and Failure Models

In this section, we discuss the trust and failure mod-
els we are using in this paper.

2.1 Trust Model

In client-server GCS, a trust model has to define the
trust relationships within each layer (trust relationship
between clients and trust relationship between servers)
as well as between layers (i.e. do clients trust servers
or not). Given this environment, several trust models
are possible, ranging from a model where no entity
trusts any other entity for any operation, both within
a layer and between layers, to an optimistic model
where servers and clients trust each other completely.

In this paper, we adopt the following trust model:

• Servers trust each other: In order for the system
to be bootstrapped correctly, a list of legitimate
servers should be provided to all servers, in the
form of an ACL. Setting up this list is a system
administrator’s task and not an application task.
We assume that there is a way to authenticate a
server when it comes up and verify whether it is on
the authorized configuration list. Once authenti-
cated and authorized all servers trust each other.
We note that in general the number of servers is
small and that the way these systems are used is

first define a servers’ configuration that provides
best performance for a specific network environ-
ment and application deployment. Therefore, in
this case, an ACL is an acceptable solution.

• Clients trust servers to enforce the access control
policy. This assumption is acceptable because,
in the client-server GCS architecture, clients al-
ready trust the servers to maintain group mem-
bership and to transport, order and deliver group
messages, so it seems natural to trust them also
for enforcing the access control policy. Further-
more, this will allow for a more efficient enforce-
ment since in numerous cases the decision can be
made by each server locally, diminishing the com-
munication overhead.

• Clients are not trusted (either by the other clients
or by servers). Therefore, compromising one
client does not compromise the security of the
whole system.

2.2 Failure Model

Our model considers a distributed system that is
composed of a group of servers executing on several
computers and coordinating their actions by exchang-
ing messages. The message exchange is conducted via
asynchronous multicast and unicast. Messages can be
lost or corrupted. We assume that message corrup-
tion is masked by a lower layer. A client obtains the
group communication services by connecting to one of
the servers. A client can connect locally or remotely.
Both clients and servers may fail. When a server fails,
all the clients that are connected to that server will
stop receiving group communication services; they are
not redirected to other servers.

Due to network events (e.g., congestion or outright
failures) the network can be split into disconnected
subnetwork fragments. At the group communication
layer, this is referred to as a partition. A network par-
tition splits the servers and can potentially split sev-
eral client groups in different components. While pro-
cesses (servers or clients) are in separate disconnected
components they cannot exchange messages. When a
network partition is repaired, the disconnected compo-
nents merge into a larger connected component, this is
referred at the group communication layer as a merge.
First servers are merged, which in turn can trigger
several client groups to be merged.

Byzantine (arbitrary) process failures are not con-
sidered in this work.



3 A Policy Model for Access Control

in Group Communication Systems

In this section, we study the requirements for spec-
ifying access control policies in GCS and propose a
policy model for doing so. Our goal is to design a pol-
icy model that is flexible enough such that it supports
a diversified set of application policies. In addition,
the policy model can be efficiently implemented by the
GCS. The basic approach we use is as follows. For any
group there is a set of basic operations that can be per-
formed by principals (entities) based on their role, in a
given context. The mapping between group operations
and roles, in a given context, defines the access con-
trol policy for that group. This way, instead of having
every individual application to implement and enforce
its own access control mechanisms, we have applica-
tions defining specific policies that are translated to
the set of basic operations that the GCS is aware of
and can enforce access control on.

The rest of this section is organized as follows. We
first present an example scenario and discussing the
various possible access control policies in Section 3.1.
In Section 3.2, we describe the group operations that
are subjected to access control. We analyze the use of
roles in group policies in Section 3.3. We present the
policy model in Section 3.4. In Section 3.5 we describe
how a policy specified in the proposed model can be
enforced. We discuss the challenges in maintaining
the policy, while dealing with dynamic membership,
failures and network partitions in Section 4.

3.1 An Example Scenario

Consider a virtual-classroom application imple-
mented using a GCS. Multiple courses exist in the
application. Each course has multiple sessions, each
of which is represented by a virtual classroom, im-
plemented as a group. For each course, there are in-
structors (some courses may have more than one in-
structors), TA’s, and students. A classroom should be
created only by an authorized user; thus a policy con-
trolling the creation of groups must exist before the
creation of a group. We call such a policy, a template
policy. Each course has a template policy. Since tem-
plate policies exist outside the context of any group
and can be viewed as resources not specific to GCS,
standard access control techniques are used to control
the creation and modification of template policies. In
the simplest case, only the GCS administrator is al-
lowed to create or modify template policies.

A template policy determines, among other things,
who can create a group based on the policy. One pos-

sible group creation rule is that only the instructors
of a course are allowed to create a classroom for the
course. An alternative rule is that a TA may also
create a classroom. One may also allow the course
instructor to delegate to another user, e.g., a guest
lecturer, the authority to create a classroom.

After the classroom/group is created, a group policy
needs to be created. A group policy can be created by
copying the template policy. This group policy may
then be tailored to suit the need of the current class-
room session. Only authorized users should be allowed
to change the group policy.

Various users may join the classroom in different
roles, e.g., instructor, TA, student. Only authorized
users should be allowed to join these roles. For joining
as a student, different rules are desirable for different
cases. Examples include: only students who are en-
rolled in the class may join, the instructor or the TA’s
can admit additional students in special cases, or only
students who are connecting from certain IP addresses
may join (e.g., when taking an exam).

Several kinds of communication may be going on
simultaneously in the classroom, and they should be
subjected to different access control rules. For exam-
ple, communication can be public: lectures delivered
by the instructor, public questions asked by a student
and the answers to those questions by the instructor
or another member of the classroom. Some classrooms
may allow any student to freely ask questions, other
classrooms may require approval of the instructor be-
fore a student asks a question publicly. Communi-
cation can also be private, for example students may
be allowed to ask questions privately to the TA’s, or
submit their answers to a quiz given in class. The in-
structor may be also allowed to eject a student from
the classroom.

We note that most of the above services are pro-
vided by a GCS, without any access control enforce-
ment. For example, the Spread [9] group communi-
cation system allows for multicast (public) and uni-
cast (private) communication within a group, it also
allows for any member to be both a sender and a re-
ceiver and can distinguish between different type of
messages, while providing different reliability and or-
dering communication services. In addition, confiden-
tiality and integrity of the data is provided.

3.2 Operations in Groups

From the above scenario description, we can extract
the sensitive operations that need access control. The
following operations are not performed within the con-
text of a group, they precede the group creation and



are not subjected to a group policy or a template pol-
icy: 1) create a group template policy and 2) modify a
group template policy.

A comprehensive list of basic operation that apply
to a group and are the object of access control is pre-
sented below:

1. create a group.

2. modify a group policy.

3. join a group.

4. send a message of a given type.

5. receive a message of a given type.

6. eject a user from a group.

7. destroy a group.

The above list does not include the operation of
leaving a group because this is an operation that can
not be controlled. It is impossible to prevent a client
from leaving a group 1.

We allow separate control for joining a group, send-
ing a message, and receiving a message to provide
support for a wide range of applications. For some
applications several group members may be allowed
to send, but not to receive messages. An example of
such an application is an information reporting mili-
tary application where clients use wireless communica-
tion; it is desirable to limit the information clients re-
ceive and store to minimize the damage caused in case
of compromise. For other applications, some group
members may be allowed to receive but not to send
messages. For example, in a conference with a large
number of participants only representatives may an-
swer questions, while the rest of the participants are
just listening.

3.3 Roles in Groups

One approach to specify and enforce access control
is to use Access Control Lists (ACL’s). Under this ap-
proach, a group has an ACL, which includes a set of
users and the operations they are allowed to carry out.
Such an approach is appropriate when the number of
principals and operations is small and static. In gen-
eral, ACL’s have the following disadvantages. First,
ACL’s can get very large. For example, if every regis-
tered student in a university is allowed to join a class-
room, then the ACL would be simply too long. Sec-
ond, the ACL often duplicates information maintained
in other places and its use in a dynamic distributed
system will require maintaining its consistency across

1Any client can effectively leave a group by closing the con-
nection with the server.

several sites which can be very difficult and prone to
introduce inconsistency in the system.

From the scenario described in Section 3.1, it is
clear that the set of operations a user is allowed to
carry out depends upon the role that the user is play-
ing in a group. For example, although a user may be
the instructor of a course, in a guest lecture session
she may be playing a TA or a student role.

We distinguish between two kinds of roles: system
roles and application roles. System roles are prede-
fined by the GCS; they exist in every group and have
predefined meanings in terms of operations they are
allowed to carry out. The following are system roles
our framework supports:

• (group) creator: this role has at most one mem-
ber, identifying the user that is the original cre-
ator of the group, i.e., the first member of the
group. Because of failures, a group’s creator role
may be empty.

• (group) controller: this role has exactly one mem-
ber, who has full control over a group, including
changing the policy for the group and destroy-
ing a group. When a user creates a group, it
is automatically made the creator and the con-
troller of the group. We differentiate the group
creator from the group controller for several rea-
sons. First, the creator of a group may want to
transfer the controller responsibilities to another
member of the group; for example, a TA may cre-
ate a classroom before the instructor comes and
then, after the instructor joins, transfer the role
to the instructor. Second, even when the group
creator is the original controller, it may crash or
leave the group, in which case another member
needs to assume the group controller role.

• (group) member: any user who joins a group is
automatically a member of this role.

Each system role comes with a set of allowed oper-
ations and has a set of operations that can be more
fine-grained defined. For example, for a client with the
role group member restrictions on send and receive can
be defined based on the message type.

Each group may also have a set of application-
specific roles, for example, in the virtual classroom sce-
nario, the following application roles may be needed:
instructor, TA, student, auditor.

Once a user joins a group, the user may also perform
the following operations related to roles:

1. assume a role.

2. drop a role.



3. appoint another user to a role.

4. remove another user from a role.

We allow a client to drop a role at its will; however,
the other three operations are subjected to access con-
trol.

The access control policy of the group defines the
operations each role is allowed to carry out. In other
words, a group access control policy maps each role to
a set of operations. At any time, a user in a group
plays a set of roles. When a user is about to perform
an action, the roles that the user is playing are used
to determine whether the action should be authorized
or not. The roles and permissions that the application
defines are mapped to system roles and operations a
GCS is aware of and can enforce.

3.4 A Model for Access Control Policies
in GCS

Clients must be authenticated before an access con-
trol policy is enforced. Several authentication mech-
anisms are commonly used. A GCS may provide a
username/password based authentication mechanism
or may use an external authentication system such as
Kerberos [22, 23]. The client may connect with the
server through TLS/SSL [24] with client authentica-
tion, in which case the client’s public key and X.509
[25] Distinguished Name are available. Another solu-
tion is having the client to use certificates that docu-
ment attributes of the clients, e.g., certificates in trust
management systems such as RT.

The set of operations a client is allowed to carry out
may depend on more than just the roles of the client;
environmental factors may also have an effect. For
example, a student may be allowed to attend a lecture
if he/she is registered for the class and if the student
joins the “class group” in a particular time frame, after
the lecture started, he/she cannot join the group.

To accommodate the diversified authentication
methods and the effect of environmental factors in ac-
cess control, we introduce the notion of contexts. The
GCS maintains a client context for each connected
client and a group context for each group. A group
context consists of a set of name/value pairs, in ways
similar to Unix environmental variables. A group con-
text provides environmental information such as cur-
rent time and group state information (e.g., lecture
has began in a classroom). The client context is simi-
lar to a group context; it stores information specific to
a client, such as the IP address from which the client
is connecting and the result of authentication (e.g.,
authenticated attributes of the client).

The combination of roles and context can accom-
modate a wide range of applications with very diverse
policy requirements. A description of our model of
group access control policies, as well as an example
policy are presented in [26].

3.5 Enforcing Access Control in Group
Communication Systems

When enforcing access control in GCS it is very
important who is making the access control decision
and who is enforcing it. Remember that we consider
a client-server architecture, where service to clients
(organized in groups) is provided by a set of servers.
Many groups can exist in the system.

One solution is to have access control enforced by
group members (clients). Although this approach
seems appealing because in fact access control poli-
cies are group specific, it decreases the scalability of
the system since each group must perform its own en-
forcement mechanism. Additionally, when access con-
trol is performed by clients, access restrictions such
as dropping messages and requests at the receiver are
more difficult to provide.

As clients are already trusting the servers for main-
taining group membership and delivering and ordering
correct information, the security model is not weak-
ened by requiring the servers to also perform the ac-
cess control enforcement, the potential benefit being
increased scalability and more flexibility of the oper-
ations that can be enforced. Based on group’s policy,
servers must first reach a decision, if access is granted
or not, and then enforce that decision. We distinguish
between two general approaches:

• local decision: only one server is required to make
a decision. For example, when a client requests
access to a group during a join operation, the
server the client is connected to can make the ac-
cess control decision locally based on the client’s
role, group name and group policy, and enforce it
immediately.

• distributed (collaborative) decision: the policy re-
quires several servers to collaborate in order to
reach a decision, by using for example a voting
mechanism, such as a given percentage of group
members of a certain role have to approve. This
approach requires a complete view of all the mem-
bers of all roles of a group, information available
to the servers.

One fundamental question is how does the applica-
tion specific access control policy translates into a pol-
icy that the GCS understands. This translation can be



operated by a Policy Translation Engine that parses
the group policy and outputs another file that the GCS
will use in making/enforcing access control, file that
defines permission based on the roles and operations
that the GCS implements. Two additional operations
are required once a policy is in place. The first one
involves a check on making sure that the policy does
not include any contradictory rules. The second one
relates with the one the policy is distributed to the
other servers and make sure that all servers have the
same policy. In case the policy is static all is needed is
that the policy is certified (digitally signed) and dis-
tributed by a server. In case the policy is dynamic, the
policy file should be treated as replicated data among
the set of servers.

Besides decision reaching, another important aspect
is who is enforcing an operation. For most of the
operations, the enforcement can be done locally by
the server that makes the authorization decision. For
other group operations, such as group destroying, the
server enforcing the decision can be different from the
one making the decision. For lack of space we could
not include a detailed description on how enforcement
is performed on each group operation. This informa-
tion is available in [26].

4 Life Cycle of an Access Control Pol-

icy

In the previous section we described how a fine-
grained access control policy for GCS can be defined
and enforced in a model where faults do not happen.
Unfortunately, this is not the case in the real world
where processes can crash, computers can fail, net-
work mis-configurations can happen, or the network
overload can create unusual latencies that can be per-
ceived as network partitions. In this section we exam-
ine how failures and network connectivity affect the
life cycle of the policy.

The life cycle of a policy is defined by the policy
creation and subsequent updates. As described in the
previous section we assume that based on an applica-
tion policy’s specifications a group template is gener-
ated. The creation and revision of a group template
is handled by the administrator of a GCS. Based on
the template, a group policy is created when a client
allowed to create groups, creates a group based on the
template.

An access control policy can be static, in other
words it can never change during the life of the group,
or it can be dynamic, in which case it can suffer

changes. In case of dynamic policies, a policy recon-
ciliation must be performed in many cases. As shown
in [27], policy reconciliation cannot always be solv-
able, in which case the question is what happens to
the group. For example, current group members that
do not satisfy the policy anymore can be excluded from
the group. This task can be taken by the group con-
troller. Note that even in the case of static policies,
policy reconciliation cannot be avoided when several
groups need to be merged.

We now discuss what happens when two or more
groups need to be merged. If the groups to be merged
have the origins in the same group – e. g. they are the
result of a network partition that separated a group
– and if the group policy is static, the groups should
in fact have the same policy so no reconciliation will
be necessary. What needs to be addressed is who will
become the new group controller, since each policy
specifies the same group creator of the original group,
but different controllers.

Another case is when groups with the same name
were created independently in partitioned compo-
nents. Some systems uniquely identify groups based
only on the group name, so they will try to merge
the groups, which, can possibly have different policies.
Again, there is no guarantee that a reconciliation is
possible. In case a reconciliation is not possible, the
servers can decide to destroy the group and inform all
clients that the group was destroyed because a policy
reconciliation was not possible. If the GCS identi-
fies groups not only by name 2, then groups created
independently in partitioned components will be in-
terpreted as different groups and no merge and policy
reconciliation will be required.

From the previous scenarios it is apparent that the
policy framework should specify and provide support
for the selection of a new group controller. There are
several events that can drive such a need:

• a client or server crashed: The client that crashed
was the group controller, or the server that
crashed was serving the group controller 3.

• a network partition occurred: The group con-
troller will end up only in one network component,
while the other components will need to select a
new group controller.

• a network merge occurred and policy reconcilia-
tion was possible: In this case the new group will

2One possibility is to add also the identifier of the server
that represents the entire configuration of servers in a network
component.

3Our failure model assumes that clients are not redirected
when the server they are connected to crashes, so all the clients
connected to that server will fail too.



have to select one of the group controllers as the
new group controller.

While we want the GCS to make the decisions, we
would like to provide the application with the ability
to specify the policy. Defining how failures should be
handled can be done by the application. Of course
some default policies can be used, in case an applica-
tion does not want to deal with it. Faults can affect
clients as well as servers, so a failure handling policy
should be defined for both clients and servers.

Below we argue why a failure handling policy is re-
quired for both clients and servers. Consider the case
of selecting a new group controller. If a group con-
troller already exists, changing the group controller
can be achieved by a simple role delegation. In case a
group is merged, several legitimate group controllers
will exist (one for each subgroup), the “oldest” con-
troller will be selected as the new group controller.

An interesting case is when the group controller
failed and there is no authority that can perform the
role delegation. In this case, we can define an exten-
sion of the role of the client as a group controller to
the server that he is connected to, so the server can
temporarily take over the role of the group controller
and just deterministically select (acting as a delega-
tor) a new group controller from a list provided by the
application. If the application did not provide such a
list, this will be perceived as a fatal failure and the
server can just decide destroying the group.

Now, consider that the server itself crashed. In this
case, the set of servers must decide which one of them
will take over the task of selecting the new group con-
troller. This can be done in several ways, the easiest
is for example to deterministically select any of the
servers (let’s say the first). If the application wants to
restrict this to a particular set of servers, it can pro-
vide an ordered set of potential take-over servers or a
percentage if a voting policy is desired.

5 Related Work

There are several group communication systems
that considered access control. The Ensemble se-
cure group communication system [8, 17] assumes
the ‘fortress’ model where an attack can come only
from outside. The system uses a symmetric-key based
key distribution scheme and uses Access Control List
(ACL) as access control mechanism. The ACL is
treated as replicated data within the group.

In [16] access control in groups is provided by us-
ing an authorization service, Akenti [28], which relies

on X509 [25]. The method used is to have all group
members registering with the authorization service off-
line to obtain a membership certificate signed by the
Akenti server, and then when the group membership
changes, every member verifies the membership cer-
tificate and the personal certificate of every member.
The approach relies on identity for access control and
provides a coarse granularity for access control.

Relevant to our work, but somehow orthogonal is
the Antigone [15] framework. Antigone provides a
policy framework that allows flexible application-level
group security policies in a more relaxed model than
the one usually provided by group communication sys-
tems. Also relevant to our work is [29] that defines gen-
eral requirements and components for a secure group
policy.

Most of the systems described above provide ac-
cess control based on identity of participants and do
not discuss how failures can affect the enforcement of
policies. As oppose to above described schemes our
approach is not identity-based. Instead, we take ad-
vantage of role-based access control [19, 20] and RT
[21], a family of Role-based Trust-management lan-
guages, to define a fine-grained access control frame-
work for group communication systems. Such systems
have both scalability and fault-tolerance requirements.
We reasoned about how these requirements can be met
while providing flexibility to the application in defin-
ing specific policies.

6 Conclusions

In this paper we have analyzed the requirements
access control mechanisms must fulfill in the context
of group communication and defined a framework for
supporting fine-grained access control for groups. Our
framework combines role-based access control mecha-
nisms with environment parameters (time, IP address,
etc.) to provide policy support for a wide range of ap-
plications with very different requirements. In order to
provide both flexible policy and efficient enforcement,
we use the group communication servers to decide and
enforce access control. We identify the set of all possi-
ble group operations that can be controlled and define
the group policy as a mapping between roles and op-
erations using context as constraints. In addition, we
suggest a way in which failure policy can also be spec-
ified by the application.

Several things remain to be addressed in future
work. They include: providing a “user-friendly” inter-
face for our framework so that policies can be gener-
ated in an automatic way based on user specifications



and designing and implementing a parser engine that
can translate application specific policies in system-
understandable policies.

References

[1] K. P. Birman and R. V. Renesse, Reliable Distributed Com-
puting with the Isis Toolkit. IEEE Computer Society Press,
March 1994.

[2] R. V. Renesse, K.Birman, and S. Maffeis, “Horus: A flexi-
ble group communication system,” Communications of the
ACM, vol. 39, pp. 76–83, April 1996.

[3] Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis:
A communication sub-system for high availability,” Digest
of Papers, The 22nd International Symposium on Fault-
Tolerant Computing Systems, pp. 76–84, 1992.

[4] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. Agar-
wal, and P. Ciarfella, “The Totem single-ring ordering and
membership protocol,” ACM Transactions on Computer
Systems, vol. 13, pp. 311–342, November 1995.

[5] B. Whetten, T. Montgomery, and S. Kaplan, “A high per-
formance totally ordered multicast protocol,” in Theory
and Practice in Distributed Systems, International Work-
shop, LNCS, p. 938, September 1994.

[6] M. K. Reiter, “Secure agreement protocols: reliable and
atomic group multicast in Rampart,” in Proceedings of the
2nd ACM Conference on Computer and Communications
Security, pp. 68–80, ACM, November 1994.

[7] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith,
“The SecureRing protocols for securing group communi-
cation,” in Proceedings of the IEEE 31st Hawaii Interna-
tional Conference on System Sciences, pp. 317–326, Jan-
uary 1998.

[8] O. Rodeh, K. Birman, and D. Dolev, “Using AVL trees for
fault tolerant group key management,” Tech. Rep. 2000-
1823, Cornell University, Computer Science; Tech. Rep.
2000-45, Hebrew University, Computer Science, 2000.

[9] Y. Amir and J. Stanton, “The Spread wide area group
communication system,” Tech. Rep. 98-4, Johns Hopkins
University, Center of Networking and Distributed Systems,
1998.

[10] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and
J. Stanton, “The Spread toolkit: Architecture and per-
formance,” tech. rep., 2004. CNDS-2004-1, Johns Hopkins
University.

[11] H. Harney, A. Colegrove, and P. McDaniel, “Principles of
policy in secure groups,” in Network and Distributed Sys-
tems Security Symposium, 2001.

[12] C. K. Wong, M. G. Gouda, and S. S. Lam, “Secure group
communications using key graphs,” in Proceedings of the
ACM SIGCOMM ’98, pp. 68–79, 1998.

[13] O. Rodeh, K. Birman, and D. Dolev, “Optimized group
rekey for group communication systems,” in Proceedings
of ISOC Network and Distributed Systems Security Sym-
posium, February 2000.

[14] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton,
and G. Tsudik, “Secure group communication using robust
contributory key agreement,” in To appear in Transactions
on Parallel and Distributed Systems, September 2003.

[15] P. McDaniel, A. Prakash, and P. Honeyman, “Antigone:
A flexible framework for secure group communication,”
in Proceedings of the 8th USENIX Security Symposium,
pp. 99–114, August 1999.

[16] D. A. Agarwal, O. Chevassut, M. R. Thompson, and
G. Tsudik, “An integrated solution for secure group com-
munication in wide-area networks,” in Proceedings of the
6th IEEE Symposium on Computers and Communica-
tions, (Hammamet, Tunisia), July 2001.

[17] O. Rodeh, K. Birman, and D. Dolev, “The architecture and
performance of security protocols in the Ensemble Group
Communication System,” ACM Transactions on Informa-
tion and System Security, vol. 4, pp. 289–319, August 2001.

[18] Y. Amir, C. Nita-Rotaru, J. Stanton, and G. Tsudik, “Scal-
ing secure group communication systems: Beyond peer-
to-peer,” in the 3rd DARPA Information Survivability
Conference and Exposition (DISCEX III), (Washington,
D.C.), April 2003.

[19] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman, “Role-based access control models,” IEEE Com-
puter, vol. 29, pp. 38–47, February 1996.

[20] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-
Based Access Control. Artech House, Apr. 2003.

[21] N. Li, J. C. Mitchell, and W. H. Winsborough, “Design of
a role-based trust management framework,” in Proceedings
of the 2002 IEEE Symposium on Security and Privacy,
pp. 114–130, IEEE Computer Society Press, May 2002.

[22] J. Kohl and B. C. Neuman, “The Kerberos Network Au-
thentication Service (Version 5).” RFC-1510, September
1993.

[23] B. C. Neuman and T. Ts’o, “Kerberos: An authentica-
tion service for computer networks,” IEEE Communica-
tions Magazine, pp. 33–38, Sept. 1994.

[24] The TLS Protocol
Version 1.0. No. 2246 in RFC, T. Dierks and C. Allen,
1999. http://www.faqs.org/rfcs/rfc2246.html.

[25] I.-T. R. X. (revised), The Directory - Authentication
Framework. International Telecommunication Union, 1993.

[26] C. Nita-Rotaru and N. Li, “A framework for role-based
access control in group communication systems,” tech. rep.,
2003. CERIAS TR-2003-31, Purdue University.

[27] P. McDaniel and A. Prakash, “Methods and limitations of
security policy reconciliation,” in IEEE Symposium on Se-
curity and Privacy, (Oakland, CA), pp. 73–87, May 2002.

[28] M. R. Thompson, A. Essiari, and S. Mudumbai,
“Certificate-based authorization policy in a PKI environ-
ment,” ACM Trans. Inf. Syst. Secur., vol. 6, no. 4, pp. 566–
588, 2003.

[29] H. Harney, A. Colegrove, and P. McDaniel, “Principles of
policy in secure groups,” in Network and Distributed Sys-
tems Security, (San Diego, CA), February 2001.


