
CERIAS Tech Report 2004-70

TOWARDS SUPPORTING FINE-GRAINED ACCESS CONTROL FOR GRID RESOURCES

by E. Bertino, P.Mazzoleni. B.Crispo, S.Sivasubramanian, E.Ferrari

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Towards supporting fine-grained access control for Grid Resources

Elisa Bertino, Pietro Mazzoleni

Dipartimento di Informatica e Comunicazione

University of Milan, Italy

bertino,mazzolen@dico.unimi.it

Bruno Crispo, Swaminathan Sivasubramanian

Computer Science Department

Vrije Universiteit

crispo,swami@cs.vu.nl

Elena Ferrari

Dipartimento di SSCCFFMM

University of Insubria, Italy

elena.ferrari@uninsubria.it

Abstract

The heterogeneous nature and independent administra-

tion of geographically dispersed resources in Grid, demand

the need for access control using fine-grained policies. In

this paper, we investigate the problem of fine-grained ac-

cess control in the context of resource allocation in Grid, as

we believe it is the first and key step in developing access

control methods specifically tailored for Grid systems. To

perform this access control, we design a security compo-

nent (to be part of a meta-scheduler service) that finds the

list of nodes where a user is authorized to run his/her jobs.

The security component is designed in an effort to reduce

the number of rules that need to be evaluated for each user

request.

We believe such a fine-grained policy-based access control

would help the adoption of Grid to a higher extent into

new avenues such as Desktop Grids, as the resource own-

ers are given higher flexibility in controlling access to their

resources. Similarly, Grid users get a higher flexibility in

choosing the resources in which their jobs must execute.

1 Introduction

A Grid provides an abstraction for resource sharing and

collaboration across multiple administrative domains. Re-

sources in this environment span across multiple geograph-

ical locations, usually heterogeneous in nature and admin-

istered individually by different resource owners. Such an

environment requires the possibility of different access con-

trol policies for each resource, instead of one global policy

uniformly applied to all Grid resources.

In this paper, we are interested in the problem of

fine-grained access control (FGAC) in the context of job

scheduling, as we believe this is the first and key step in

resource access control. Grid in its current form, imple-

ments security as a separate subsystem [5] and job schedul-

ing/resource allocation is executed oblivious of security im-

plications. Such an allocation process can lead to alloca-

tion of resources which the user is not authorized to access.

This would introduce the problem of re-submitting the re-

quest until the meta-scheduler finds a set of resources that

will authorize the user’s request.

We propose a way to integrate fine-grained access con-

trol in the resource allocation process, so that the scheduler

allocates only those resources that the user is authorized to

access. To accomplish this, as a first step, we propose a

security component (part of meta-scheduler) that finds the

resources that authorize a user’s request by evaluating the

policies associated with each resource.

In our system, resource owners specify the access control

policy for the resources using a well defined access control

language (like XACML [10] and SAML [2]). Similarly, the

Grid users specify their identity and security constraints in

the same language. We view resource allocation as a two-

stage process consisting of: (i) matching the access control

policy of resources with a user’s request and (ii) the resource

scheduling - finding the best set of resources for a given

user’s request.

In this paper, we treat the resource scheduler as a black-

box and discuss in detail the process of finding the set of

authorized nodes that authorize a user’s request and the in-

teraction between our security component and the sched-

uler.

The contributions of this paper are follows: (i) We pro-

pose a Grid resource management architecture supporting

fine-grained access control, where the security component

is integrated with the resource broker and (ii) propose a

novel method of organizing nodes’ access control policies

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

and user identities in an effort to reduce the number of rules

evaluated for each user request.

The rest of the paper is organized as follows: Section 2

presents related work. Section 3 presents the architecture

of our system model. Section 4 introduces the basics of

access control policies, while Section 5 discusses the archi-

tecture of our security component. Section 6 and 7 discuss

the node/user subscription and user job submission phases

respectively. Section 8 concludes the paper.

2 Related Work

Usually, the process of resource access control in Grid is

simplified using the concept of Virtual Organization (VO)

[4]. VOs consists of users (possibly geographically dis-

persed) working towards a common set of problems. The

VO defines who its members are, assigns roles or credential

to members, and also regulates the access to the resources.

Users only have the choice to accept or reject the set of ac-

cess rules fixed by the VO.

We believe that a greater flexibility can be achieved, if

in addition to the global access policy set by the VO, in-

dividual resource providers were also allowed to refine the

access control policies for their resources, by means of their

own local policies (LP). This approach is motivated by our

assumption that there might be cases when resource owners

are not willing to share or lease the ownership of their re-

sources but they rather prefer to choose the policy according

to in which their resource can be shared.

For the past several years, a great amount of research

has been devoted to the problem of resource scheduling in

distributed environments and in Grid [6]. Systems such as

Condor [8], uses class-ads, to express resource attributes

and perform matches between job requests and available

resources. While the primary focus of these approaches

has been on developing resource management algorithms,

our focus is on building a security component that performs

match-making between grid user requests and FGAC poli-

cies of resources in the context of job scheduling.

The problem of policy-based resource matching is ad-

dressed in [7] where the authors present a framework for

matching the policies of resources with that of the user re-

quest to find a suitable set of resources which a user can run

his job. The system finds the set of resources that matches

the user’s request by matching the user’s classads with that

of resources. To expedite the process of evaluation, they

adopt an approach of grouping nodes with same policies

into clusters (or gangs). Thus, the matchmaker performs

matching at cluster-level instead of node-level. This im-

proves the performance of the matchmaker when it has to

find a set of resources for a user. However, the approach of

aggregating nodes with same policies is well suited only for

match-making of resource attributes. Using such a cluster-

ing scheme for FGAC policies can result in a large number

of clusters each having only one node, as it is unlikely to

find resources with same security policies in Grid support-

ing FGAC.

Recently, [1] proposed an algorithm for integrating the

generic concept of trust into schedulers. The algorithm as-

sumes that security competence (or node trustability) can

be abstracted into a numerical value. The scheduler uses

this value along with scheduling-related parameters such as

completion time, execution time, as parameters of a single

cost function, it aims to minimize. Then the scheduler picks

the set of nodes that yields the best cost. However, such a

scheme can pick a node with better resource characteristics

(e.g., faster machine) compared to nodes with better trusta-

bility. Modelling security constraints according to such ap-

proach allows the scheduler to trade resource quality for

poor security and vice versa, which is not acceptable for

the resource providers and grid users. In our system, we

take a different approach where security constraints of the

nodes and users are expressed as policy rules instead of nu-

merical values and the scheduler finds the set of nodes that

authorize and match a user’s job requests.

The concept of fine-grained authorization for resources

is also analyzed in [9], where the Akenti tool is used to per-

form the access control. Their work focusses on the policy

evaluation of nodes that have already been selected by the

scheduler. Unfortunately, performing policy authorization

using a separate system (different from the scheduler) to

determine whether the resources selected by the scheduler

is accessible or not, can lead to scheduling of resources the

user is not authorized to access.

3 System Model

In this paper, we assume that the Grid consists of a large

number of Grid nodes spread across the Internet. Each Grid

node (resource) is assumed to have an owner responsible

for its administration. Each Grid node can participate in

more than one Grid projects and each project has Grid users

with large number of job requests. Examples of such Grid

include Desktop Grids that serve a computing platform for

more than one projects.

For running a job, a Grid user (participating in a Grid

project) submits a job request describing its requirements,

along with his identity profile, to the scheduler. The secu-

rity component of the scheduler matches the policy of the

resources with the job request to see if the nodes authorize

user’s request or not. If so, the security component passes

the set of authorized nodes to the scheduler. Subsequently,

the scheduler selects the best set of nodes from this sub-

set based on the resource constraints set by the user and

resource availability.

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

4 Authorization Policies

Authorization Policies, or Policy Rules, are sets of logi-

cal expressions, expressing the constraints defined by a re-

source owner to restrict access to certain information (i.e.,

resources) for certain users (or requests).

By abstracting the syntactic details of the selected pol-

icy language, each policy rule can be seen as a composition

of logical expressions representing the three basic elements

of a rule: Target, Effect, and Condition. Target denotes the

set of access requests a policy is intended to evaluate. It

includes a set of services (resources) (e.g., computational

power), the entity (subject) who issues the request (e.g.,

users from university of Milan), and the type of requested

jobs (actions) (e.g., execute a script). Condition is a set of

expressions (built by combining a set of predicates) which

further specify when a policy applies (e.g., requests coming

between 8am and 6pm). Finally, Effect represents the ac-

tion (i.e., deny or permit) resulting from the request when

the policy rule applies.

With respect to the policy language that can be used to

define rules, several alternatives have been proposed so far

as standards. As an example, XML-based languages such

as XACML, SAML and Author-X [10, 2, 3], are rich in

semantics and very flexible, thus allowing user to spec-

ify very complex access control rules. However, the so-

lution proposed in this paper does not rely on a specific

formalism to express policies but it aims to be applicable

over policies specified in any available language. There-

fore, in the following, we do not refer to any of the above;

instead, we consider a policy rule being defined as a com-

bination of one or more logical expressions, called policy

expressions, built using one of more attributes (policy at-

tributes) among the ones available to define constraints.

In other words, we assume available a comprehensive set

of policy attributes (e.g., Subject.Name, Subject.Affiliation,

Resource.Type, Resource.Amount, Condition.Time) a re-

source owner can select to create authorization constraints

(e.g., User.Name=”IBM” AND Resource.Amount�300)

which apply to requests issued against to his/her shared re-

sources (or against all resources shared in a project in case

of Global policies).

To understand how global and local policies can be for-

malized, consider as an example a simple GRID where re-

source owners share only one type of resource X (e.g., com-

puting resources) with users belonging to a Grid project,

called MyGrid. Suppose moreover that the MyGrid admin-

istrator specifies a Global Policy stating that the resources

shared among the project can be accessed by users only be-

tween 5.00pm and 9.00am. According to the above formal-

ism, such policy can be modelled by the logical expression:

MyGrid policy=(Subject.Project=”MyGrid” AND Condi-

tion.Time=5.00pm...9.00am).

Within the MyGrid project, we assume three resource

owners: Al, Ben, and Carl, who are willing to join the

MyGrid project, but who are not completely satisfied with

the MyGrid Global Policy. According to our approach, re-

source owners are given the possibility of refining GP (us-

ing only AND operations) by specifying an additional set

of rules which apply only to the resources they share within

the network. Assume the following scenario:

1. Al does not specify further constraints.

2. Ben refines the global policy by specifying in his

local policy base that users from IBM are autho-

rized to access his shared resources only if the re-

quest (Request.Amount) is lower than 400 resource-

units. Formally, Ben policy=My Grid policy AND

(User.Affiliation=IBM AND Request.Amount�400);

3. Carl adds in his local policy base a policy

stating that HP users can access his shared

resources only between 8pm and 8am For-

mally, Carl policy=My Grid policy AND

(User.Affiliation=HP AND Request.Amount�400)

Since policies state constraints on user properties, the

user must submit the information necessary to evaluate poli-

cies when issuing an access request. We call user-profile the

set of attribute name/value pairs needed to perform policy

evaluation. If the information in a user-profile validates the

Global Policies as well as the Local Policies defined by a

resource owner, the request is authorized, otherwise it is re-

jected. Based on the nature of the information collected into

a user profile and the type of requests issued by the user, we

distinguish:

� Static profiles: They contain attributes whose val-

ues do not change for the requests issued by the

user. Examples of such attributes might be User.Name,

User.Affiliation, Request.Resource type and so forth.

� Dynamic profiles: They contain attributes whose

values may change for each request (e.g., Condi-

tion.Time, User.IP Connect, Resource.Amount, etc.)

5 Security System Architecture

In this section, we present the architecture of our secu-

rity component designed to reduce the number of rules that

need to be evaluated for each user requests to identify the

compliant set of resources which authorize the job execu-

tion.

5.1 Design rationale

In designing the architecture of our security component,

we took as starting point the following observations:

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

1. VOs organize resource owners by common goals, such

as for instance the type of resource shared or the Grid

project they participate, assuming similar policies for

each member of the VO. In a FGAC Grid, VOs orga-

nize nodes by common authorization policies. How-

ever, if the number of resources owners with differ-

ent local policies increases, the system has to deal

with a huge number of different VOs (each with only

one member) losing the advantages gained by such

organization. Therefore, we need to support a flex-

ible solution with two levels of VOs where the first

level represents Global policies, and the second level

represent the local policies specified by each single

node1. Moreover, to avoid explosion of VOs, the sys-

tem should group nodes using same policy attributes

into the next level VO. For example, local policies

��� � �� ��� � ��� � � � ���� and ��� � �� ��� �
���� � � ������ should be stored together into the

same second-level VO (i.e., the one grouping LPs de-

fined using the policy attribute � ���) instead of being

stored separately. The basic intuition behind grouping

nodes using attributes instead of grouping nodes with

same policies are the following: (i) it might be difficult

to find two nodes having the same LP and (ii) attribute-

based grouping helps pruning evaluations thereby de-

creasing number of evaluations performed (explained

in the ��� point).

2. The rule evaluation process for policies based on static

information should be executed only once. So far, a

user submitting requests with information only from

his/her static user profile, always requires an exhaus-

tive rule evaluation process. A more efficient solution

should cache some rule evaluation results the first time

they are obtained and reuse them for all the subsequent

requests issued by the same user. We propose the use

of tables storing the set of nodes that authorize a user’s

request just based on his static profile. This process

will reduce the turn-around time of scheduler.

3. The rule evaluation process of policies based on dy-

namic profile information must be executed for each

user request. Unlike the static case, it is not possi-

ble to cache some rule evaluation results as in this

case values of policy attributes may change with

each request. In this case, we structure policies into

chains of policy expressions and we propose a prun-

ing technique that evaluates a policy expression only

if all the policy expressions already evaluated for the

same rule, have authorized the request. For instance,

given the local policy ��� � ��	�
��������
��� ��

1This two-level policy hierarchy can be easily extended to any number

of levels, if required. However, for the sake of simplicity we consider only

a two-level policy hierarchy in the rest of the paper

��� � ��� � ��� � ��� � � � ����, the evaluation of

the policy expression � ��� � ��� � � � ��� will be

restricted to requests whose user Affiliation is ’IBM’.

5.2 Secure Virtual Organizations

The cornerstone of our solution is the concept of Secure

Virtual Organization, SVO, used to organize GRID nodes

regulated by the same access control policies. Specifically,

we assume that Grid nodes can be grouped into three types

of SVOs: Project Secure Virtual Organizations (PSVOs),

Static Secure Virtual Organizations (SSVOs), and Dynamic

Secure Virtual Organizations (DSVOs), defined as follows.

A Project Virtual Organization groups nodes sharing

the same global policies enforced by the VO administra-

tors. Each Grid node can participate to more than one Grid

project; therefore the same node will be grouped into more

than one PSVO. Nodes that refine global policies by adding

their own set of rules can be further grouped into SSVOs

and DSVOs.

A Static Secure Virtual Organization groups all the

nodes such that their local policy rules comprise a com-

mon attribute ��. Thus, each rule is decomposed into a

set of policy expressions, each one separately stored into

the corresponding SSVO. For the sake of simplicity, in

this work we do not consider any hierarchical organiza-

tion of policy attributes, instead we assume one SSVO

statically generated for each policy attribute to which a

rule refers. Finally, a Dynamic Secure Virtual Organi-

zation groups nodes of a SSVO whose associated poli-

cies contain the same policy expression ��. For in-

stance, given a SSVO grouping nodes whose policies con-

tain the attribute User.Affiliation, possible DSVOs for that

SSVO could group nodes having User.Affiliation=IBM,

User.Affiliation �� HP or User.Affiliation=All users as pol-

icy expressions. Unlike SSVOs, DSVOs are dynamically

built by the system according to the LPs stored in each

SSVO. We assume a new DSVO is dynamically created

when the number of nodes referring to the same policy

expression �� in a SSVO goes beyond a defined thresh-

old. Consider again the scenario introduced in Section

5.2. According to such taxonomy, the Grid consists of one

PSVO (i.e., MyGrid project) three SSVOs, each one re-

ferring to a different policy attribute (i.e., User.Affiliation,

Request.Amount, and Condition.Time), and by a set of

DSVOs whose number (and distinguishing expressions) re-

sults from the occurrence of the same policy expressions

into a SVO. Figure 1 shows a graphical representation of

the SVOs (static and dynamic) generated in our scenario.

Notice that Figure 1 has been provided as a reference for

the rest of the paper; we do not expect all the components

in the figure be completely clear at this point.

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

Static SVO

Nodes
Policy

expr

Policy

Chain

BEN = IBM Head (2)

- - - - - - - - - - - - - -

dynamic

SVOs

Policy

Expr

(1A) = HP

CARL

Local Policy

Enforcement

 AL

Local Policy

Enforcement BEN

Local Policy

Enforcement

(1)

Security Engine
User

User.Affiliation (2)

DSVO

TIME = 5am ... 9am (3B)

SSVO

(3)Time

dynamic

SVOs

Policy

Expr

(3A) = 8pm ..8am

(3B) = 5pm ...9am

SSVO

Nodes
Policy

expr

Policy

Chain

BEN < 400 Tail

- - - - - - - - - - - - - - - - - - -

Resource.Amount

Project SVO

User.Project=MyGrid
(MyGrid)

Dynamic SVO

User.Affiliation=HP

Nodes
Policy

expr

Policy

Chain

CARL = HP Head (3A)

- - - - - - - - - - - - - -

(1A)

Security Engine

Static SVOs list

User.Affiliation (1)

Resource.ReqX (2)

Time (3)

{Grid Nodes - Resources}

{Global Policy organization}

{Local Policy organization}

{Grid Users - Requests}

Projects SVO list

MyGrid

Projects SVO list

MyGrid

DSVO

Time = 8pm .. 8am

Nodes
Policy

Expression

Policy

Chain

CARL ---------- Tail

---- ---------- -----

(3A)

Time = 5pm .. 9am

Nodes
Other

SVO

AL Tail

.....

Figure 1. SVO organization example

5.3 System Components

In this section, we describe the overall architecture of

the proposed security component, which support scheduling

of computations in a FGAC (Fine-Grained Access Control)

Grid computing network. The architecture of our security

system is given in Figure 2.

Static SVO

Policy

Evaluator

DSVO

Node

Security Engine

User

Dynamic SVO

SSVO

Policy Manager

Local Policy Attribute

Local Policy expression

Resource Scheduler

Local Policy expression

Local Policy Attribute

PSVO

Global Policy

Figure 2. System architecture

In addition to the hierarchical organization of nodes

among SVOs, the other important components of our sys-

tem architecture are the following:

� Node - It is the subject who makes his/her resources

available to the Grid Community.

� Policy Manager - It manages the association of new

nodes and local policy updates.

� Policy Evaluator - It is the evaluation engine for the

logical expressions stored into a SVO.

� Security Engine - It deals with new users joining the

Grid as well as resources requests issued by registered

users.

The methodology used to identify the nodes which are

willing to authorize a job request consists of two main

phases: the Subscription phase and the Job-submission

phase.

1. Subscription Phase: The goal of this phase is to set

up the system the first time a user or a node registers

to the Grid. Specifically, when a node joins the grid,

the Policy Manager collects policy rules and decom-

poses them into single policy expressions which are

then separately organized into the SVOs. Similarly,

when a user registers to the Grid, the Security Engine

collects information about his/her profile and uses it to

make a preliminary evaluation of the policy rules.

2. Job-submission phase: This phase is executed for each

job request issued to the Grid. It takes as input the user

profile and returns the list of nodes which are willing

to authorize the execution of the request.

6 Subscription Phase

The subscription phase is executed the first time a new

user or node registers to the Grid (i.e., by downloading the

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

software for resource sharing or by asking for a personal

login to run jobs within the Grid). This phase deals with or-

ganizing policies rules (global and local) within the SVO

structure presented in Section 5.2. Moreover, this phase

performs a pre-evaluation of the policy expressions in or-

der to reduce, as much as possible, the number of rules to

be evaluated at run-time by the system for each future re-

quests issued by a specific user. Subscription is organized

into two separate subphases: Node subscription phase and

User subscription phase.

6.1 Node subscription phase

When a node expresses its intention to share resources

among the Grid, it must subscribe to the Policy Manager

for specifying its LPs other than the project(s) it aims to

participate. In brief, the Policy Manager collects node

LPs, evaluates their consistency with global policies en-

forced by the VO to which the resource belongs, decom-

poses each policy rule into policy expressions and dis-

tributes them into the SVOs they belong according to the

criteria illustrated in the previous section. For instance, the

Ben policy introduced in Section 4, will be decomposed

into two policy expressions ��=User.Affiliation=’IBM’

and ��=Resource.Amount�400 which are stored into the

SSVOs identified by User.Affiliation and Resource.Amount

attribute respectively.

Furthermore, we assume policy expressions composing

a rule and stored into different SVOs, to be chained accord-

ing to an order � defined upon SSVOs distinguishing at-

tributes. We call this structure as Node policy chain and

consider � to be a simple lexographical order. As example,

Ben policy chain links the policy expression ��, stored into

User.Affiliation SSV, to the policy expression �� given that

’Resource.Amount’ follows ’User.Affiliation’ in �. Fig-

ure 1 shows examples of policy chains where ”Head” and

”Tail” are used to indicate the first and the last term of a

policy chain respectively. Policy chains, will be used in the

following to establish an order on evaluation among expres-

sions to support the pruning technique as introduced in Sec-

tion 5.1.

6.2 User subscription phase

The User subscription phase, executed when a new user

joins the Grid, aims at collecting the user profile and per-

forming a preliminary evaluation of policy expressions to

reduce, as much as possible, the number of constraints to be

evaluated for each future request issued by the same user. In

this phase a user specifies a pair �variable,value � for each

attribute into the static profile whereas the attributes into the

dynamic profile are simply listed with no values (which can

change for each requests). Based on these information, two

lists of nodes can be associated with a single user:

1. Statically Evaluated Nodes. It contains nodes whose

LPs consist only of policy expressions that can be com-

pletely evaluated using information available into the

static user profile.

2. Dynamically Evaluated Nodes. It contains nodes

whose LPs have at least one policy expression defined

using an attribute which belongs to the dynamic user

profile.

Nodes into the Statically Evaluated Nodes list will au-

thorize (or reject) all requests from the user without fur-

ther rule evaluation at job submission phase. Therefore,

such lists can be cached into a table (referred as Stati-

cally Evaluated Table in the following) The table maintains

an entry for each user registered to the Grid and for each

possible resource owner. The cell ������� ��	��� con-

tains 1 if ��	�� belongs to requirements evaluated as Stat-

ically Evaluated Nodes for �����’s profile; 0 otherwise.

The table, storing only a restricted set of information for

each user, scales well with large number of users and nodes

and it can be stored centrally or replicated over different

hosts.

On the other hand, nodes into Dynami-

cally Evaluated Nodes list require additional evaluations in

order to decide whether a user request can be authorized or

denied access to a shared resource. As an example consider

a node
� whose policy rule is composed of four policy

expressions ����
� and �. Moreover, assume �� to be

a user such that his/her static profile suffice for evaluating

� and
, whereas � and � are dynamic. In this case,

� belongs to set Dynamically Evaluated Nodes for ��

because the authorization may vary upon each single user

request.

However, instead of postponing the evaluation of all the

policy expressions at job-submission phase, we adopt a two-

phases evaluation process in which expressions related to

static attributes (� and
 in our example) are evaluated at

subscription phase, whereas the evaluation of expressions

related to dynamic attributes (i.e., � and �) is left to the

job-submission phase. Given a policy rule, the list of policy

expressions requiring evaluation at job-submission phase

will be chained into Node policy chain similar to the one

proposed in the User submission phase. Unlike previous

phase, where policy chains are built to organize all logical

expressions defining a LP, here the chains are subsets of the

original LPs and apply only to requests from a specific user

(i.e. specified with a particular user-profile). In our exam-

ple,
������
�
���
 derived from �� user profile will keep

a link from the expression � to the SVO containing policy

expression �.

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

7 Job-Submission Phase

The job submission phase is executed each time a job is

issued by a user to the Grid and it is in charge of extracting

the list of compliant resources using which the task will run.

For each request issued to the Grid, the user submits his/her

profile (i.e., including a value for each attribute into the dy-

namic profile) to the Security Engine which executes two

main activities: (i) it extracts the list of nodes which autho-

rize all requests from the Statically Evaluated Table created

during the user-subscription phase and (ii) it completes the

evaluation of the nodes whose policies require values be-

longing to the dynamic part of the profile.

The first task is straightforward. It does not re-

quire any rule evaluation but it simply queries the Stati-

cally Evaluated Table to extract the compliant nodes which

authorize all the requests submitted by the user indepen-

dently from the values of the attributes in the dynamic user

profile.

The second task comprises the evaluation of nodes

whose LPs authorize or deny a request based on informa-

tion stored into the dynamic user profile. During the User-

submission phase, LPs have been evaluated for the policy

expressions using static attributes. In this phase, the evalu-

ation is completed for the part involving attributes into the

dynamic user profile. To accomplish this task, the policy

chains will be evaluated according to the pruning technique

introduced in Section 5.1. In our example, � � LP has been

partially evaluated for user �� at User subscription phase

(i.e., for the policy expressions� and �) and the remaining

expressions (� and�) combined as a policy chain which is

evaluated for each request issued by �� based on the values

specified for the dynamic attributes.

8 Conclusions and Future Work

In this paper, we explored the need of a security com-

ponent supporting fine-grained authorization policies of re-

sources in a Grid environment. Specifically, we designed

this component as a part of the resource allocation, as we

believe this is a key component in resource access control.

In our model, we propose a novel way of organizing LPs

which reduces the cost of policy evaluation, using dynamic

grouping of attributes and maintaining user profiles.

As a next step, we plan to integrate our security com-

ponent with a well known existing schedulers or resource

brokers. We are also working on performance analysis

of our approach and comparing it with that of Condor’s

matchmaker for evaluating security-related attributes.

Further, we plan to extend the system such that user can

specify security constraints for their requests to filter which

nodes he/she is willing his/her jobs to be running.

Acknoledgment

We thanks prof. Thilo Kielmann and prof. Andy Tanen-

baum for reading the draft of the paper and providing useful

feedbacks.

References

[1] Farag Azzedin and Muthucumaru Maheswaran, Inte-

grating trust into grid resource management systems,

In International Conference on Parallel Processing

(ICPP’02), Vancouver, B.C., Canada , August 2002.

[2] OASIS Security Services Technical Committee, As-

sertions and protocol for the oasis security assertion

markup language (saml), Sept 2003.

[3] Elena Ferrari Elisa Bertino, Silvana Castano, On spec-

ifying security policies for web documents with an

xml-based language, SACMAT01 ACM Symposium

on Access Control Models and Technologies (2001).

[4] Ian Foster, Carl Kesselman, and Steven Tuecke, The

anatomy of the Grid: Enabling scalable virtual orga-

nizations, Lecture Notes in Computer Science 2150

(2001).

[5] Ian T. Foster, Carl Kesselman, Gene Tsudik, and

Steven Tuecke, A security architecture for compu-

tational grids, ACM Conference on Computer and

Communications Security, 1998, pp. 83–92.

[6] Klaus Krauter, Rajkumar Buyya, and Muthucumaru

Maheswaran, A taxonomy and survey of grid resource

management systems for distributed computing, Soft-

ware, Practice and Experience 32 (2002), no. 2, 135–

164.

[7] Rajesh Raman, Miron Livny, and Marvin Solomon,

Policy driven heterogeneous resource co-allocation

with gangmatching, 12th IEEE International Sympo-

sium on High Performance Distributed Computing

(HPDC’03) (2003).

[8] Todd Tannenbaum, Derek Wright, Karen Miller, and

Miron Livny, Condor – a distributed job sched-

uler, Beowulf Cluster Computing with Linux (Thomas

Sterling, ed.), MIT Press, October 2001.

[9] M.R. Thompson, A. Essiari, K.KIeahey, V. Welch,

S. Lang, and B. Liu, Fine-grained authorization fo job

and resource management using akenti and the globus

toolkit, (2003).

[10] OASIS Security Services Technical Committee

XAMCL, extendible access control markup language

(xacml) committee specification 1.0, Feb 2003.

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

