
CERIAS Tech Report 2004-67

MERKLE TREE AUTHENTICATION IN UDDI REGISTRIES

by E. Bertino, B.Carminati, E.Ferrari

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Merkle Tree Authentication in UDDI Registries

Elisa Bertino

Dipartimento di Informatica e Comunicazione

Università degli Studi di Milano, Italy

bertino@dico.unimi.it

Barbara Carminati

Dipartimento di Informatica e Comunicazione

Università degli Studi di Milano, Italy

carminati@dico.unimi.it

Elena Ferrari

Dipartimento di Scienza Chimiche, Fisiche e Matematiche

Università dell’Insubria at Como, Italy

elena.ferrari@uninsubria.it

Abstract

UDDI registries are today the standard way of publishing information on web services. They can be

thought of as a structured repository of information that can be queried by clients to find the web

services that better fit they needs. Even if, at the beginning, UDDI has been mainly conceived as a

public registry without specific facilities for security, today security issues are becoming more and

more crucial, due to the fact that data published in UDDI registries may be highly strategic and

sensitive. In this paper, we focus on authenticity issues, by proposing a method, based on Merkle

Hash Trees, which does not require the party managing the UDDI to be trusted wrt authenticity. In

the paper, besides giving all the details of the proposed solution, we show its benefit wrt standard

digital signature techniques.

Keywords: UDDI authenticity, digital signature, XML, Merkle hash tree.

INTRODUCTION

XML web services are today becoming the platform for ap plication integration and management on

the Internet. Basically, an XML web service is a software service with three main characteristics: 1)

the use of a standard web protocol (in most cases SOAP [Soap]) to expose the service

functionalities; 2) an XML-based description (through WSDL [Wsdl]) of the interface; and 3) the

use of UDDI [UDDIv3] to publish information regarding the web service and to make this

information available to potential clients. UDDI is an XML-based registry with the primary goal of

making widely available information on web services. It thus provides a structured and standard

description of the web service functionalities, as well as searching facilities to help in finding the

provider(s) that better fit the client requirements. Even if, at the beginning, UDDI has been mainly

conceived as a public registry without specific facilities for security, today security issues are

becoming more and more crucial, due to the fact that data published in UDDI registries may be

highly strategic and sensitive. In this respect, a key issue regards authenticity: it should be possible

for a client querying a UDDI registry to first verify that the received answer is actually originated

at the claimed source, and, then, that the party managing the UDDI registry does not maliciously

modify some of its portions before returning them to a client. To deal with this issue, UDDI

specifications allow one to optionally sign some of the elements in a registry, according to the W3C

XML Signature syntax [XMLSig].

Authenticity issues are particular crucial when UDDI registries are managed according to a third-

party architecture. The basic principle of a third-party architecture is the distinction between the

owner, who produces the information, and one or more publishers, which are responsible for

managing (a portion of) the owner information and for answering subject queries. Such

architectures are today becoming more and more popular, because of their scalability and the ability

of efficiently managing large number of subjects and great amount of data. UDDI can be

implemented according to either a third-party or a two-party architecture. A third-party architecture

consists of a service provider, that is, the owner of the services, the service requestors, that is, the

parties who request the services, and a discovery agency, that is, the UDDI registry. In a two-party

architecture, there is no distinction between the service provider and the discovery agency. In the

paper we focus on authenticity issues for third-party implementations of UDDI. The main problem

is how the owner of the services can ensure the authenticity of its data, even if the data are managed

by a third-party (i.e., the discovery agency). The most intuitive solution is that of requiring the

discovery agency to be trusted with respect to authenticity. However, the main drawback of this

solution is that large web-based systems cannot be easily verified to be trusted and can be easily

penetrated. For this reason, in this paper, we propose an alternative approach, that we have

previously developed for generic XML data [BCFTG] distributed according to a third-party

architecture. The main benefit of the proposed solution is that it does not require the discovery

agency to be trusted wrt authenticity. It is important to remark that, in the scenario we consider it is

not possible to directly apply standard digital signature techniques to ensure authenticity, since a

client may require only selected portions of a document, depending on its needs, and thus it is not

enough that the owner of the data signs each document it sends to the publisher of information. For

this reason, we apply an alternative solution, which requires that the owner sends the publisher, in

addition to the information it is entitled to manage, a summary signature, generated using a

technique based on Merkle hash trees [Mer89]. The idea is that, when a client submits a query to a

publisher, requiring any portion of the managed data, the publisher sends him/her, besides the query

result, also the signatures of the documents on which the query is performed. In this way, the

subject can locally recompute the same bottom-up hash value signed by the owner, and by

comparing the two values he/she can verify whether the publisher has altered the content of the

query answer and can thus verify its authenticity. The problem with this approach is that, since the

subject may be returned only selected portions of a document, he/she may not be able to recompute

the summary signature, which is based on the whole document. For this reason, the publisher sends

the subject a set of additional hash values, referring to the missing portions that make the subject

able to locally perform the computation of the summary signature.

In the current paper, we show how this approach can be applied to UDDI and we discuss its

benefits. Additionally, we describe the prototype implementation we have developed for supporting

the proposed approach.

The remainder of this paper is organized as follows. After a brief overview of the UDDI registries,

in Section 3 we present the authentication method based on Merkle hash tree, whereas in Section 4

we show how it can be exploited in the UDDI environment. In Section 5, we compare our approach

with the traditional digital signature techniques. Then, in Section 6 we give some details about the

prototype implementation. Finally, Section 7 concludes the paper, whereas in Appendix A we report

a brief explanation of the XML signature syntax.

UDDI REGISTRIES

The main goal of a UDDI registry [UDDIv3] is to supply potential clients with the description of

businesses and the services they publish, together with technical information about the services,

making thus the requestor able to directly require the service that better fits its needs. The UDDI

registry organizes all these descriptions into a single entry of the UDDI register. More precisely,

each entry is composed by five main data structures (see Figure 1), namely, the

businessEntity, the businessService, the bindingTemplate, the

publisherAssertion and the tModel, which are briefly described in what follows.

The BusinessEntity provides general information about the business or the organization

providing the web services (e.g., the name of the organization, the contact person). Additionally, a

UDDI entry contains one BusinessService data structure for each service provided by the

business or organization and described by the BusinessEntity. This data structure contains a

technical description (i.e., the BindingTemplate data structure) of the service, and

information about the type of the service (i.e., the tModels data structure). By contrast, the

PublisherAssertion data structure models the relationships existing among different

Figure 1 UDDI main data structures

businessEntity elements. For example, by this data structure it is possible to represent the

relationships among the UDDI entries corresponding to subsidiaries of the same corporations.

Figure 2 reports an example of the XML representation of a UDDI entry. In particular, this entry

represents the DICO organization (i.e., the name element contained into the businessEntity

element), which has specified only one contact person, that is, Barbara Carminati (i.e., the

personName element contained into the businessEntity element). According to Figure 2,

the DICO organization provides only one service, called Service1 (i.e., the name element contained

into the businessService element), whose binding template is accessible at URL

www.example.it/service.asmx (i.e., the accessPoint element contained into the

bindingTemplate element).

<?xml version="1.0" encoding="UTF-8"?>
<businessEntity businessKey="9ECDC890-23EC-11D8-B78C-89A8511765B5" operator="jUDDI.org"
authorizedName="Carminati">
<discoveryURLs>
<discoveryURL useType="BusinessEntity">http://dico.unimi.it</discoveryURL>
<discoveryURL

useType="businessEntity">http://localhost:8080/juddi/discovery?businessKey=9ECDC890-23EC-11D8-
B78C-89A8511765B5</discoveryURL>
</discoveryURLs>
<name xml:lang="it">DICO</name>
<description xml:lang="it">Dipartimento Informatica e Comunicazione</description>
<contacts>
<contact>
<personName>Barbara Carminati</personName>
<email>carminati@dico.unimi.it</email>
<address>
<addressLine>Via Comelico, 39</addressLine>
<addressLine>20135 Milano</addressLine>
</address>
</contact>
</contacts>
<businessServices>
<businessService serviceKey="9F063DB0-23EC-11D8-B78C-ECBB5F8B0CFC" businessKey="9ECDC890-23EC-

11D8-B78C-89A8511765B5">
<name>Service 1</name>
<description>Example service</description>
<bindingTemplates>
<bindingTemplate bindingKey="9F063DB0-23EC-11D8-B78C-F7A09CE94F7B" serviceKey="9F063DB0-23EC-

11D8-B78C-ECBB5F8B0CFC">
<description>Binding Example 1</description>
<accessPoint URLType="www.example.it/service.asmx"></accessPoint>
<tModelInstanceDetails />
</bindingTemplate>
</bindingTemplates>
</businessService>
</businessServices>
<identifierBag />
<categoryBag />
</businessEntity>

Figure 2 The businessEntity element

UDDI registries give clients searching facilities for finding the provider(s) that better fit the client

requirements. More precisely, according to the UDDI specification, UDDI registries support two

different types of inquiry: the drill-down pattern inquiries (i.e., get_xxx API functions), which

return a whole core data structure (e.g., businessTemplate, businessEntity,

operationalInfo, businessService, and tModel), and the browse pattern inquiries (i.e.,

find_xxx API functions), which return overview information about the registered data.

XML MERKLE TREE AUTHENTICATION

The tree authentication mechanism proposed by Merkle in [Mer89] is a well-known mechanism for

certifying query processing. One of the most important uses of this mechanism has been proposed

by Naor and Nissim in [NN98], which exploits the Merkle trees for solving the problem of creating

and maintaining efficient authenticated data structures holding information about the validity of

certificates. The Merkle trees are also used in the contest of micropayments [CY96] to minimize the

number of public key signatures needed in issuing or authenticating a sequence of certificates for

payments. Moreover, an approach exploiting the Merkle tree authentication mechanism for proving

the completeness and authenticity of queries on relational data has been proposed by Devanbu et al.

[DGMS00]. In [BCFTG] we have proposed the use of such trees for XML documents. In this

section, we summarize the basic principles of our approach.

Merkle Signature

The approach we propose for applying the Merkle tree authentication mechanism to XML

documents is based on the use of the so-called Merkle signatures. This signature allows one to

apply a unique digital signature on an XML document by ensuring at the same time the authenticity

and integrity of both the whole document, as well as of any portion of it (i.e., one or more of its

elements/attributes). The peculiarity of the Merkle signature is the algorithm used to compute the

digest value of the XML document to being signed. This algorithm, which exploits the Merkle tree

authentication mechanism, associates a different hash value, called Merkle hash value, with each

node (i.e., elements/attributes) in the graph representation of an XML document. Before presenting

the function computing these Merkle hash values, we need to introduce the notation we adopt

throughout the paper. Given an element e, we use the dot notation e.content and e.tagname to

denote the data content and the tagname of e, respectively. Moreover, given an attribute a, the

notation a.val and a.name is used to denote the value and the name of attribute a, respectively.

Definition 1. Merkle hash function(). Let d be an XML document, and v a node of d (i.e., an

element, or a node). The Merkle hash value associated with a node v of d, denoted as MhXd(v), is

computed by the following function:

 h(h(v.val)||h(v.name)) if v is an attribute

MhXd(v)=

 h(h(v.content)||h(v.tagname)||MhXd(child(1,v))||…||MhXd(child(Ncv,v))) if v is an element

where ‘||’ denotes the concatenation operator, and function child(i,v) returns the i-th child of node

v, with Ncv denoting the number of children of node v.

According to Definition 1, the Merkle hash value associated with an attribute is the result of an hash

function applied to the concatenation of the hashed attribute value and the hashed attribute name.

By contrast, the Merkle hash value of an element is obtained by applying the same hash function

over the concatenation of the hashed element content, the hashed element tagname, and the Merkle

hash values associated with its children nodes, both attributes and elements.

As an example, consider the XML document d in Figure 2, containing the businessEntity

element defined according to the UDDI specification. The Merkle hash value of the contacts

element (MhXd(contacts)) is the result of the hash function computed over the concatenation of

the element content, if any, the element tagname, and the Merkle hash values associated with its

children nodes (i.e., contact elements).

The important point of the proposed approach is that, if the correct Merkle hash value of a node v is

known by a client, an untrusted third party or an intruder cannot forge the value of the children of

node v, as well as its content and tagname. Thus, for instance by knowing only the Merkle hash

value of the root element of an XML document, the client is able to verify the authenticity and

integrity of the whole XML document. To ensure the integrity of the Merkle hash value of the

document root element, we impose that the owner of the data signs this value, and we refer to this

signature as the Merkle signature of the document.

The main benefit of the proposed technique wrt traditional digital technique is when a third-party

architecture is adopted like the UDDI, that is, when there exists a third-party that may prune some

nodes from a document, as a result of the query evaluation. In this case, the traditional approach of

digital signatures is no longer applicable, since its correctness is based on the assumption that the

signing and verification processes are performed on exactly the same bits. By contrast, if the Merkle

signature is applied, the client is still able to validate the signature provided that he/she receives

from the third party a set of additional hash values, referring to the missing document portions. This

makes the client able to locally perform the computation of the summary signature and comparing it

with the received one. We refer to this additional information as the Merkle hash path, defined in

the next section.

Merkle Hash Paths

Intuitively, the Merkle hash paths can be defined as the hash values of those nodes pruned during

query evaluation, and needed by the client for computing the Merkle signature. In general, given

two nodes v,w in an XML document d, such that v∈ Path(w)
1
, the Merkle hash path between w and

v, denoted as MhPath(w,v), is the set of hash values necessary to compute the Merkle hash value of

v having the Merkle hash value of w. The formal definition is given in what follows.

Definition 2. Merkle Hash Path – MhPath(). Let d be an XML document, and let v, w be two

nodes in d such that v∈ Path(w). MhPath(w,v) is a list consisting of the following hash values:

- {h(f.content), h(f.tagname)| ∀ f ∈ Path(w,v) \ {w}}

- {MhXd(e)| ∀ e ∈ sib(f), where f ∈ Path(w,v)\ {v}}

where sib() is a function that, given a node f, returns f's siblings.

Thus, the Merkle hash path between w and v consists of the hash values of the tagname and content

of all the nodes belonging to the path connecting w to v (apart from w), plus the Merkle hash values

of all the siblings of the nodes belonging to the path connecting w to v (apart from v).

To better clarify how the proposed approach works, consider Figure 3, which depicts three different

examples of Merkle hash paths.
2
 In the Figure, the triangle denotes the view returned to the client,

whereas black circles represent the nodes whose Merkle hash values is returned together with the

view, that is, the Merkle hash paths. Consider the first example reported in Figure 3. The Merkle

hash path between nodes 4 and 1 consists of the Merkle hash values of nodes 5 and 3, plus the hash

values of the tagname and content of nodes 2 and 1. Indeed, by using node w, the Merkle hash value

of node 5, and the hash value of the tagname and content of node 2, it is possible to compute the

Merkle hash value of node 2. Then, by using the Merkle hash values of nodes 2 and 3, and the hash

5

8

11

9

13

4

2

10 12

6

14 1615 17

7

3

1

8

11

9

13

4

2

10 12

6

14 1615 17

7

1

3

5

8

11

9

13

4

2

10 12

6

14 1615 17

7

1

5

3

w w w

v v v

MhPath(4,1) MhPath(7,1) MhPath(5,1)

5

8

11

9

13

4

2

10 12

6

14 1615 17

7

3

1

8

11

9

13

4

2

10 12

6

14 1615 17

7

1

3

5

8

11

9

13

4

2

10 12

6

14 1615 17

7

1

5

3

w w w

v v v

MhPath(4,1) MhPath(7,1) MhPath(5,1)

Figure 3 Examples of Merkle hash paths

values of the tagname and content of node 1, it is possible to compute the Merkle hash value of

node 1. In the second example in Figure 3, the view consists of a non-leaf node. In such a case

MhPath(7,1) contains also the Merkle hash values of the child of node 7, that is, node 9. Thus, by

using the Merkle hash value of nodes 9 and 7, it is possible to compute the Merkle hash value of

node 7. Then, by using this value, the Merkle hash value of node 6 and the hash values of the

tagname and content of node 3, it is possible to generate the Merkle hash value of node 3. Finally,

by using the Merkle hash values of nodes 3 and 2, and the hash values of the tagname and content

of node 1, it is possible to generate the Merkle hash value of node 1. By contrast, in the third

example the view consists of the whole subtree rooted at node 5. In such a case, MhPath(5,1) does

not contain the hash values of the children of node 5. Indeed, since the whole subtree rooted at 5 is

available, it is possible to compute the Merkle hash value of node 5 without the need of further

information. Then, similarly to the previous examples, by using the Merkle hash values of nodes 5

and 4, and the hash values of the tagname and content of node 2 (these last values supplied by

MhPath(5,1)), it is possible to compute the Merkle hash value of node 2. Finally, by having the

Merkle hash values of nodes 2 and 3, and the hash values of the tagname and content of node 1, it is

possible to compute the Merkle hash value of node 1. We can note that if the query result consists

of an entire subtree, the only necessary Merkle hash values necessary are those associated with the

siblings of the node belonging to the path connecting the subtree root to the document root.

APPLYING THE MERKLE SIGNATURE TO UDDI REGISTRIES

In this section, we show how we can apply the authentication mechanism, illustrated in the previous

section, to UDDI registries. As depicted in Figure 4, the proposed solution implies that the service

provider first generates the Merkle signature of the businessEntity element, and then

publishes it, together with the related data structures, in the UDDI registry. Then, when a client

inquiries the UDDI, the Merkle signature as well as the set of necessary hash values (i.e., the

Merkle hash paths, computed by the UDDI) are returned by the UDDI to the requesting client

together with the inquiry result.

Adopting this solution requires to determine how the Merkle signature and the Merkle hash paths

have to be enclosed in the businessEntity element, and inquiry result, respectively. To dealt

with this issue, we make use of the dsig:Signature element introduced in the latest UDDI

specification [UDDIv3]. Indeed, to make the service provider able to sign the UDDI entry the latest

UDDI specification supports an optional dsig:Signature element that can be inserted into the

following elements: businessEntity, businessService, bindingTemplate,

publisherAssertion, and tModel. Thus, according to the XML Signature syntax

[XMLSig], a service provider can sign the whole element to which the signature element refers to,

as well as it can exclude selected portions from the signature, by applying a transformation (see

Appendix A for an overview on the XML signature syntax).

Figure 4 The Merkle signature in UDDI environment

Therefore, in order to apply the Merkle signature to the UDDI environment, and at the same time to

be compliant with the UDDI specification, we represent both the Merkle signature and the Merkle

hash paths according to the XML Signature syntax, i.e., by using the dsig:Signature element.

In the following sections, we give more details on the proposed representation.

Merkle signature representation

In Figure 5, we show how the dsig:Signature element can be used to wrap the Merkle

signature. Note that the URI attribute of the Reference element is empty and thus it identifies the

XML document where the Signature element is contained, that is, the businessEntity

element. In addition to the required enveloped signature and scheme centric canonicalization

transformations, the dsig:Signature element specifies also a Merkle transformation, through a

Transform element whose Algorithm attribute is equal to “Merkle”. This last transformation

indicates to the client and UDDI registries that the service provider has computed the Merkle

signature on the businessEntity element.

It is important to note that the syntax of the Transforms element implies an order according to

which the various transformations should be applied. In particular, this order is given by the order in

Figure 5 An example of Signature element storing the Merkle signature

<dsig:Signature>
 <SignedInfo>

 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xnl-c14n-20010315"/>

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <Reference URI="">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 <Transform Algorithm="urn:uddi-org:schemaCentricC14N:2002-07-10"/>

 <Transform Algorithm="Merkle"/>

 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>1fR07/Z/XFW375JG22bNGmFblMY=</DigestValue>

 </Reference>
 </SignedInfo>

 <SignatureValue> W0uO9b47TqmlpunAwmF4ubn1mdsb4HYR17c+3ULmLL2BxslwSsl6kQ

 </SignatureValue>

</ dsig:Signature>

which the corresponding Transform elements appear in their parent element. Thus, to generate

the digital signature contained into the dsig:Signature element presented in Figure 5, it is first

necessary to apply the enveloped signature transformation and the scheme centric canonicalization.

Then, the Merkle hash function is computed on the obtained result. Finally, the obtained digest

value is digitally signed according to the XML Signature Recommendation.

Merkle hash path representation

According to the strategies depicted in Figure 4, once a client inquiries a UDDI registry, the UDDI

registry computes the corresponding Merkle hash path and returns it to the client together with the

inquiry result. As we will see in the next section, the latest UDDI specification states that for some

kind of inquiries (i.e., the get_xxx inquiries), the UDDI registry has to include in the inquiry

answer also the dsig:Signature element corresponding to the data structure returned as

inquiry results. For this reason, we represent also the Merkle hash paths into the

dsig:Signature element, supplying thus the client with the additional information needed for

verifying the authenticity and integrity of the inquiry results.

To enclose this information into the dsig:Signature element, we exploit the

dsig:SignatureProperties element, in which additional information useful for the

validation process can be stored.

In Figure 6 we present an example of dsig:Signature element containing the

dsig:SignatureProperties element, which is inserted as direct child of an Object

element. It is important to note that, according to the XML Signature generation process, the only

portion of the dsig:Signature element which is digitally signed is the SignedInfo element.

Thus, by inserting the Object element outside the SignedInfo element the UDDI registry does

not invalidate the signature. This allows the UDDI to complement the dsig:Signature element

representing the Merkle signature of the businessEntity element with the

dsig:SignatureProperties element containing the appropriate Merkle hash paths, and then

to insert it into the inquiry answer. More precisely, during the Merkle signature validation, the client

must be able to recompute the Merkle hash value of the businessEntity element, to compare it

with the Merkle signature. In order to do that, the client must know the Merkle hash value of each

subelement of the businessEntity element not included into the inquiry answer (i.e., the

Merkle hash path). To make the validation simpler, the Merkle hash paths are organized into an

empty businessEntity element (see Figure 6), whose children contain a particular attribute,

<dsig:Signature>
 <SignedInfo>

 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xnl-c14n-20010315"/>

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <Reference URI="">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 <Transform Algorithm="urn:uddi-org:schemaCentricC14N:2002-07-10"/>

 <Transform Algorithm="Merkle"/>

 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>1fR07/Z/XFW375JG22bNGmFblMY=</DigestValue>

 </Reference>
 </SignedInfo>

 <SignatureValue>

 W0uO9b47TqmlpunAwmF4ubn1mdsb4HYR17c+3ULmLL2BxslwSsl6kQ
 </SignatureValue>

 <Object>

 <SignatureProperties>
 <SignatureProperty Target="MerkleHashPath">

 <businessEntity autorizhedName="valore" operator="juddi.org" hash="sldghoghor....">

 <discoveryURLs hash="fdsgbdsl...." />
 <identifierBag hash="57438tgfkv...." />

 <categoryBag hash="57438tgfkv...." />

 <businessServices>
 <businessService>

 <description hash="gherogh..." />

 <bindingTemplates hash="hgkvdlsfv...." />
 <categoryBag hash="hdsbghfdlb..." />

 </businessService>

 <businessService>
 <description hash="gherogh..." />

 <bindingTemplates hash="hgkvdlsfv...." />

 <categoryBag hash="hdsbghfdlb..." />
 </businessService>

 </businessServices>

 </businessEntity>
 </SignatureProperty>

</SignatureProperties>
 </Object>

</dsig:Signature>

Figure 6 An XML Signature element complemented with Merkle hash paths

called hash, storing the Merkle hash value of the corresponding element. This

businessEntity element is inserted into the dsig:SignatureProperties element.

MERKLE SIGNATURES VS. XML SIGNATURES IN UDDI
REGISTRIES

In this section, we explain the differences and the benefits that could be attained by adopting in

UDDI registries the Merkle signature approach instead of the traditional digital signature

techniques. Before do that it is interesting to note that similarly to Merkle signature also the XML

Signature syntax allows one to generate a different hash values for each different nodes of the XML

document, and then to generate a unique signature of all these values. This feature is obtained by

means of the Manifest element, which creates a list of Reference element, one for each

hashed nodes. However, this solution does not care about the structure of the XML document,

ensuring thus only the authenticity of the data content and not of the relationships among nodes.

In the following, we separately consider the possible inquiries that a client can submit to a UDDI

registry, that is, the find_xxx and get_xxx inquiries.

get_xxx inquiries

According to the UDDI latest specification, the service provider can complement all the data

structures that could be returned by a get_xxx API call with a dsig:Signature element.

However, to ensure the authenticity and integrity of all the data structures the service provider must

compute five different XML signatures (one for each different element). Whereas, by using the

Merkle signature approach the service provider generates only one signature, that is, the Merkle

signature of the businessEntity element. Thus, a first benefit of our approach is that by

generating only a unique signature it is possible to ensure the integrity of all the data structures.

When a client submits a get_xxx inquiry, the UDDI returns him/her the whole requested data

structure, where the inserted dsig:Signature element contains the Merkle signature generated

by the service provider, together with the Merkle hash path between the root of the returned data

structure and the businessEntity element.

As an example, consider the get_bindingDetail inquiry. The UDDI specification states that

the answer to the get_bindingDetail inquiry must be the bindingTemplates element,

containing a list of bindingTemplate elements together with the corresponding

dsig:Signature elements. In such a case, a UDDI registry exploiting the Merkle signature

approach should substitute each dsig:Signature element contained into the

bindingTemplate elements with the signature generated by the service provider, that is, the

dsig:Signature element published together with the businessEntity. Moreover,

according to the representation proposed in the previous sections, the UDDI registry should insert

into the dsig:Signature element the dsig:SignatureProperties subelement, which

stores the Merkle hash path between the bindingTemplate element and the

businessEntity element.

find_xxx inquiries

We now analyze the other types of inquiry, that is, the find_xxx inquiries. We recall that these

inquiries return overview information about the registered data. Consider, for instance, the inquiry

API find_business that returns a structure containing information about each matching

business, including summaries of its business services. This information is a subset of those

contained in the businessEntity element and the businessService elements. For this

kind of inquiries, the UDDI specification states that if a client wants to verify the authenticity and

integrity of the information contained in the data structures returned by a find_xxx API call,

he/she must retrieve the corresponding dsig:Signature elements by using the get_xxx API

calls. This means that if a client wishes to verify the answer of a find_business inquiry, he/she

must retrieve the whole businessEntity element, together with the corresponding

dsig:Signature element, as well as each businessService element, together with its

dsig:Signature element.

By contrast, if we consider the same API call performed by using the Merkle signature approach, to

make the client able to verify the authenticity of the inquiry result it is not necessary to return the

client the whole businessEntity element and the businessService elements, together

with their signatures. By contrast, only the Merkle hash values of the missing portions are required,

that is, those not returned by the inquiry. These Merkle hash values can be easily stored by the

UDDI into the dsig:Signature element (i.e., dsig:SignatureProperties

subelement) of the businessEntity.

As discussed above, the main problem in applying the Merkle signature to the find_xxx inquiries

is that the expected answers, defined by the UDDI specification, do not include the

dsig:Signature element. For this reason, we need to modify the data structure returned by the

UDDI by inserting one ore more dsig:Signature elements. In particular, to state where the

dsig:Signature element should be inserted, we need to recall that the find_xxx API calls

return overview information taken from different nodes of the businessEntity element, and

wrapped into a fixed element. For instance, the find_business API returns a businessList

structure, which supplies information about each matching businesses, together with summary

information about their services. All this information is wrapped into the businessInfo

element, which contains the name and the description of the service provider, and a different

serviceInfo element for each published service.

We can say thus that the find_xxx API returns a list of results, each of them wrapped by a

precise element (i.e., businessInfo for find_business API), which will be called,

hereafter, container element. The proposed solution is thus to insert the dsig:Signature

element, complemented with the appropriate Merkle hash paths, into each container element.

 Figure 7 reports an algorithm for generating the answer for a find_xxx inquiry. The algorithm

receives as input the answer returned according to the UDDI specification, i.e., the xxxList.

Then, in step 1, the algorithm iteractively considers each container element contained into the

xxxList, and for each of them it creates the appropriate dsig:Signature element. This

implies, as a first step, the generation of the Merkle hash values associated with the

businessEntity element to which the information contained into the container element belongs

to. Note, that according to Definition 2, it is not necessary to create all the Merkle hash values; by

contrast, the only hash values needed are those corresponding to the nodes pruned during the

inquiry evaluation. Then, the obtained hash values are inserted into the

dsig:SignatureProperty element, according to the strategies illustrated previously. Then,

in step 1.d, the resulting dsig:SignatureProperty element is inserted into the

dsig:Signature element generated by the service provider and published together with the

businessEntity element. Finally, the resulting dsig:Signature element is inserted into

the xxxList as direct child of the corresponding container element.

Figure 7 Computation of find_xxx inquiry answers exploiting the Merkle signatures

Algorithm 1

Input

xxxList the answer of a find_xxx API call

Output

 The xxxList complemented by the disg:Signature element

1. For each container n into the xxxList:

a. Let MhX be the set of Merkle Hash values associated with the businessEntity to

which n belongs to

b. Create the dsig:SignatureProperties element using the Merkle hash values in

MhX

c. Let Sign be the dsig:Signature element of the businessEntity to which n

belongs to

d. Insert the dsig:SignatureProperties element into Sign

e. Insert the obtained Sign element as direct child of the n

 EndFor

2. Return xxxList

As an example, let us suppose that a client submits a find_business inquiry on the

businessEntity presented in Figure 2. The answer generated by UDDI according to Algortihm

1 is shown in Figure 8. Given this answer the client is able to verify the Merkle signature generated

by the service provider. In order to do that the client exploits the Merkle hash values stored into the

dsig:SignatureProperty element, which correspond to those nodes of the

businessEntity not included in the find_business answer. In order to compute the

Merkle hash value of the businessEntity element, and thus to verify the Merkle signature, the

client needs to have all the Merkle hash values of all children of the businessEntity element.

The find_business inquiry returns to client only the name and description element (see

Figure 8). For this reason the dsig:SignatureProperty element contains the Merkle hash

values of all the remaining children nodes, that is the discoveryURLs, the contacts,

identifierBag and categoryBag element. Another Merkle hash value needed for the

validation of the Merkle signature is the one corresponding to the businessService element.

The find_business inquiry returns only the name of the services (i.e., the name element

contained into the businessService element), whereas the description, the

bindingTemplate and the categoryBag element are omitted. According to Definition 1, to

compute the Merkle hash value of the businessService element, the client must have the

Merkle hash values of all its children. These values are contained into the

dsig:SignatureProperty element.

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

 <businessList generic="2.0" operator="jUDDI.org" xmlns="urn:uddiorg:api_v2">
 <businessInfos>

 <businessInfo businessKey="9ECDC890-23EC-11D8-B78C-89A8511765B5">

 <name xml:lang="it">DICO</name>
<description xml:lang="it">Dipartimento Informatica e Comunicazione</description>

<serviceInfos>

<serviceInfo serviceKey="E27F6560-2579-11D8-A560-A95B48063A06">
<name>Service 1</name>

</serviceInfo>

 </serviceInfos>
<Signature>

<SignedInfo>

<Reference URI="">
<Transforms>

 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

 <Transform Algorithm="urn:uddi-org:schemaCentricC14N:2002-07-10"/>
 <Transform Algorithm="Merkle"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/01/xmldsig/sha1"/>
<DigestValue>CysG5cZQelvxENwHwxBXLMBYGgo=</DigestValue>

 </Reference>

<CanonicalizationMethod Algorithm="http://www.w3.org/1999/07/WD-xml-c14n-19990729"/>
<SignatureMethod Algorithm="http://www.w3.org/2000/01/xmldsig/rsa"/>

</SignedInfo>
<SignatureValue>n2XH0Jk6g7jVgGnZxp+7PyBEJhCrVXNx2bdjgzN4zOu1Q52jOfFh3VHMMi6nZsRHHZb5TgqFl

QFgG/Z3JGZJ9P1AWLUVn+kuX1ClZPxKdZ12oe4w/pa/qqXex/K8szgmrBUDIzXNfGEgQIUF+Nbh2WpHK/tVumLNfF+hIg+

jD+StWLTalqlV4jfJbdaeEO7EQyiS3AJ+FByvd7qtArlJvzAwAQ8WLIO6uprG+
/soHewJLNNgHywPjpSh9FMKraFSyhyjVcrXXgX4Aauv5M3YM6k7ZOEDfD0WVQTMk8ukbU31rQ9dlPOgJvp/aRQPtBb4D

CqD4tM0701s1a6Pxmf+8p7IvvfKWWHy3nWNXTLZtGIYssN/BN3clLuiXijW3sIaBU=

</SignatureValue>
<KeyInfo>

<KeyValue>

<RSAKeyValue>
<Modulus>ALkV0Yv6NSWMQ/GxX7VElnUCmBiBB2kA92iRuXzjr+TesJ6mJWsu

NrQTdaLXNUeLaCfTyibXCHEo8GKhGr3+6UlxkNfPbApqRMG2Z6f

</Modulus>
<Exponent>AQAB</Exponent>

</RSAKeyValue>

</KeyValue>
</KeyInfo>

<Object>

<SignatureProperty Target="MerkleHashPath">
<businessEntity authorizedName="Barbara" operator="jUDDI.org">

<discoveryURLs hash="sB/kzmjVacE9iBuLdyxC5S2Ha9E="/>

<contacts hash="bMwPAQ5nAZZhhKcAMswsxDAfPeY="/>
<identifierBag hash="PFIc19Gspd46sXkdP4f2+i8yajk="/>

<categoryBag hash="ako/7rv5NZdxp5qjDGQ/W0++acY="/>

<BusinessServices>
<BusinessService>

 <description hash="az8oQfVMxw1C7Dtf5logCtlZNtQ="/>

 <bindingTemplates hash="cQw/q+Z4iL50QOA/7hj0jnXhkmg="/>
 <categoryBag hash="ako/7rv5NZdxp5qjDGQ/W0++acY="/>

</BusinessService>

</BusinessServices>
</businessEntity>

</SignatureProperty>

</Object>
</Signature>

 </businessInfo>

 </businessInfos>
 </businessList>

 </soapenv:Body>

</soapenv:Envelope>

Figure 8 An example of find_xxx answer generated according the Algorithm in Figure 7

PROTOTYPE OF AN ENHANCED UDDI REGISTRY

In this section, we describe the prototype we have developed for implementing a UDDI registry

exploiting the Merkle signature technique. The prototype consists of two different components: the

UDDI registry, called enhanced-UDDI registry and a UDDI client, playing the role of both service

provider publishing data to a UDDI, and service requestor inquiring the enhanced UDDI registry.

 As reported in Figure 9, the enhanced-UDDI registry is built on top of jUDDI [jUDDI], which is a

Java open source implementation of a UDDI registry. In particular, in the prototype jUDDI exploits

a MySQL database [MySQL] as UDDI entries repository. Moreover, since the latest jUDDI

implementation has been developed according to UDDI version 2 that, unlike the latest

specification, does not provide support for the dsig:Signature element, we have integrated the

prototype also with the IAIK JCE (Java Cryptography Extension) toolkit. This last component

makes the prototype able to exploit hash functions, symmetric and asymmetric encryption, and thus

to validate the Merkle signature. Thus, in the current version of our enhanced-UDDI registry the

standard API functions are implemented by means of jUDDI, whereas the functionalities devoted to

TOMCATTOMCAT

jUDDIjUDDI

MySQL

UDDIUDDI

JCEJCE

Merkle Merkle hash pathhash path

generationgeneration

Java ClassJava Class

inquiry

XcercesXcerces JCEJCE UDDI4JUDDI4J

Merkle Merkle HashHash

generationgenerationMerkle Merkle HashHash

validationvalidation

Java ClassJava Class

Enhanced-UDDI register UDDI client

save

TOMCATTOMCAT

jUDDIjUDDI

MySQL

UDDIUDDI

JCEJCE

Merkle Merkle hash pathhash path

generationgeneration

Java ClassJava Class

inquiry

XcercesXcerces JCEJCE UDDI4JUDDI4J

Merkle Merkle HashHash

generationgenerationMerkle Merkle HashHash

validationvalidation

Java ClassJava Class

Enhanced-UDDI register UDDI client

save

Figure 9 The enhanced UDDI registry

the Merkle signature management are implemented by two distinct java classes, directly invoked by

jUDDI. These functionalities are the generation of the Merkle hash paths, and the generation of

inquiry answers. More precisely, the last task implies the insertion of the computed Merkle hash

path into the dsig:Signature element and the insertion of the obtained element into the

inquiry answer.

The UDDI client plays the role of both service provider and requestor. To support both these tasks,

the UDDI client exploits UDDI4j [UDDI4j], a Java class library providing APIs for interacting with

a UDDI registry. UDDI4j supports the UDDI version 2. For this reason, the UDDI client makes also

use of additional Java classes, implementing the functionalities devoted to Merkle signatures

management, that is, the Merkle signature generation and the Merkle signature validation. Such

classes are directly invoked by the UDDI4j implementation (see Figure 9), and exploit IAIK JCE

for signature generation and validation. An example of businessEntity generated by the

UDDI client, and published to the enhanced-UDDI registry is reported in Figure 10.

<?xml version="1.0" encoding="UTF-8"?>
<save_business xmlns="urn:uddi-org:api_v2" generic="2.0">
<authInfo xmlns="">authToken:9EF0E0F0-23EC-11D8-B78C-8DDAF5C9614A</authInfo>
<businessEntity xmlns="" businessKey="9ECDC890-23EC-11D8-B78C-89A8511765B5"
operator="jUDDI.org" authorizedName="Barbara">
<discoveryURLs>
<discoveryURL useType="BusinessENtity">http://dico.unimi.it</discoveryURL>
<discoveryURL

useType="businessEntity">http://localhost:8080/juddi/discovery?businessKey=9ECDC890-23EC-11D8-
B78C-89A8511765B5</discoveryURL>
</discoveryURLs>
<name xml:lang="it">DICO</name>
<description xml:lang="it">Dipartimento Informatica e Comunicazione</description>
<contacts>
<contact>
<personName>Barbara Carminati</personName>
<email>carminati@dico.it</email>
<address>
<addressLine>Via Comelico, 39</addressLine>
<addressLine>20135 Milano</addressLine>
</address>
</contact>
</contacts>
<businessServices>
<businessService serviceKey="9ECF4F30-23EC-11D8-B78C-D4B4D63A03DD" businessKey="9ECDC890-

23EC-11D8-B78C-89A8511765B5">
<name>Service 1</name>
<description>Example service</description>
<bindingTemplates>
<bindingTemplate bindingKey="9ED25C70-23EC-11D8-B78C-E6B2648DFC70" serviceKey="9ECF4F30-

23EC-11D8-B78C-D4B4D63A03DD">
<description>Binding Example 1</description>

<accessPoint URLType="www.example.it/service.asmx"></accessPoint>
<tModelInstanceDetails />
</bindingTemplate>
</bindingTemplates>
</businessService>
</businessServices>
<identifierBag />
<categoryBag />
<Signature>
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.org/1999/07/WD-xml-c14n-19990729"/>
<SignatureMethod Algorithm="http://www.w3.org/2000/01/xmldsig/rsa"/>
<Reference URI="">
<Transforms>

<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" />
<Transform Algorithm="urn:uddi-org:schemaCentricC14N:2002-07-10" />
<Transform Algorithm="Merkle" />

</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/01/xmldsig/sha1" />
<DigestValue>PyAeAtNeYcRQq2gI6Fq7NXOgEnI=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>pJQn61Vo7ZjzBQNh944I1aMMJPO/ofR16CdHmTNpEYEoI8f3U0dI2OIjR9u+JiBA2MaN7TlwxnKR

ks/mdnWCL85SABOADHwqD1+zoF/VLnaFeGfCJfbWfOTiTN0xjxZFkYISPbfrM6hLFG/qhMb1RRmMp9v+jJKNh00ktpx9Vn
g=</SignatureValue>

<KeyInfo>
<KeyValue>
<RSAKeyValue>
<Modulus>ALkV0Yv6NSWMQ/GxX7VElnUCmBiBB2kA92iRuXzjr+TesJ6mJWsuEjWgU2CkezriMRsu1MbRGeXb

E0RSXluH4VPcE4IYECEb5pheQCeA1eFHdS+BHAXmFIx0sNrQTdaLXNUeLaCfTyibXCHEo8GKhGr3
+6UlxkNfPbApqRMG2Z6f </Modulus>

<Exponent>AQAB</Exponent>
</RSAKeyValue>
</KeyValue>
</KeyInfo>
</Signature>
</businessEntity>
</save_business>

Figure 10 The businessEntity element generated by UDDI client

CONCLUDING REMARKS

In this paper we have presented an approach based on Merkle hash trees, which provides a flexible

authentication mechanism for UDDI registries.

The proposed approach has two relevant benefits. The first is the possibility for the service provider

to ensure the authenticity and integrity of the whole data structures by signing a unique small

amount of data, with the obvious improvement of the performance. The second benefit regards

browse pattern inquiries (i.e., find_xxx API), which return overview information taken from one

or more data structures. According to the UDDI specification, in such a case if a client whishes to

verify the authenticity and integrity of the answer, it must request the whole data structures from

which the information are taken. Besides being not efficient, this solution is not always applicable.

Indeed, the information contained in the data structures may be highly strategic and sensitive, and

thus may not be made available to all the clients. In such a case, if the client does not have the

proper authorization it is not able to verify the authenticity and integrity of the received answer. By

contrast, the proposed solution supports the browse pattern inquiries by ensuring at the same time

the confidentiality of the data, in that, by using Merkle hash paths it is not necessary to send clients

the whole data structures.

We plane to extend this work along several directions. One extension regards the support for

additional security properties, such as for instance confidentiality and completeness, using strategies

similar to those presented in [BCFTG] and an extensive testing and performance evaluation of our

prototype.

1
 Given a node w, Path(w) denotes the set of nodes connecting w to the root of the corresponding

document.

2
 In the graph representation adopted in this paper we do not distinguish elements from attributes,

by treating them as generic nodes.

Bibliography

[BCFTG]

E. Bertino, B.Carminati, E.Ferrari, B. Thuraisingham, and A. Gupta. Selective and Authentic Third-

party Distribution of XML Documents. IEEE Transactions on Knowledge and Data Engineering

(TKDE), to appear.

[CY96]

S. Charanjit and M. Yung. Paytree: Amortized Signature for Flexible Micropayments. In

Proceedings of the 2nd USENIX Workshop on Electronic Commerce, 1996.

[DGMS00]

P. Devanbu, M. Gertz, C. Martel, and S.G. Stubblebine. Authentic Third-party Data Publication. In

Proceedings of the 14th Annual IFIP WG 11.3 Working Conference on Database Security, Schoorl,

the Netherlands, August 2000.

[IETF]

The Internet Engineering Task Force. http://www.ietf.org/

[Mer89]

R.C. Merkle. A Certified Digital Signature. In Advances in Cryptology-Crypto '89, 1989.

[MySQL]

MySQL. http://www.mysql.com/

[NN98]

M. Naor, and K. Nissim. Certificate Revocation and Certificate Update. In Proceedings of the 7th

USENIX Security Symposium, 1998.

[UDDIv3]

Universal Description, Discovery and Integration (UDDI). “UDDI Version 3.0,” UDDI Spec

Technical Committee Specification, 19 July 2002. http://uddi.org/pubs/uddi-v3.00-published-

20020719.htm

[Soap]

World Wide Web Consortium. Simple Object Access Protocol (SOAP) 1.1.

http://www.w3.org/TR/SOAP/

[Wsdl]

World Wide Web Consortium. Web Services Description Language (WSDL) Version 1.2

http://www.w3.org/TR/wsdl12/

[W3C-Sig]

World Wide Web Consortium. XML Signature Working Group. http://www.w3.org/Signature/

[XMLsig]

World Wide Web Consortium. XML Signature Syntax and Processing 2001. W3C Candidate

Recommendation. http://www.w3.org/TR/2001/CR-xmldsig-core-20010419/.

Appendix A

The XML Signature

An XML Signature is an articulated XML object that encodes into an XML format both a digital

signature and all the information necessary for its correct verification. The idea is to take advantage

of the semantically rich and structured nature of XML to provide a flexible framework for the

representation of digital signatures of arbitrarily digital contents. In this context, the W3C XML

Signature Working Group [W3C-Sig], in conjunction with IETF [IETF], is working on a standard,

called XML Signature [XMLSig], with the twofold goal of defining an XML representation for the

digitally signature of arbitrarily data contents (called data objects in what follows), not necessarily

XML-encoded data, being at the same time particularly well suited for digitally signing XML

documents. In particular, the standard proposal supports three different kinds of signature, which

differ for the localization of the data objects being signed.

Enveloping Signature. The data object is embedded into the XML Signature, in the Object

element, thus the Signature is the parent of the signed data.

Enveloped Signature. The data object embeds its signature, thus it is the parent of its Signature.

Detached Signature. The data object is either an external data, or a local data object included as a

sibling element of its Signature.

<Signature>
<SignedInfo>
(CanonicalizationMethod)

(SignatureMethod)
(<Reference (URI=)? >

(Transforms)?
(DigestMethod)
(DigestValue)

</Reference>)+
</SignedInfo>
(SignatureValue)
(KeyInfo)?

(<Object>
(SignatureProperties) ?
(Manifest)?

</Object>)*
</Signature>

Figure 11 Basic structure of an XML Signature

In what follows we give a first brief overview of the essential steps necessary to create an XML

Signature. In describing these steps we refer to the basic structure of an XML Signature, reported in

Figure 11 (where symbol “?” denotes zero or one occurrences; “+” denotes one or more

occurrences; and “*” denotes zero or more occurrences). The first step specifies which are the data

objects to be signed. To this purpose, an XML Signature contains a Reference element for each

signed data object. The address of the signed data object is stored into attribute URI of the

Reference element, through a Uniform Resource Identifier (URI). In the case of enveloping

signature, attribute URI is omitted since the data object is contained in the signature element itself,

whereas for enveloped signature the URI attribute denotes the element being signed via a fragment

identifier. Then, the digest of the data object referenced by attribute URI is calculated and placed

into the DigestValue subelement. Information on the algorithm used to generate the digest are

stored into the DigestMethod element. The Reference element may contain an optional

Transforms subelement, which specifies an ordered list of transformations (such as for instance

canonicalization, compression, XSLT, XPath expressions) that have been applied to the data object

before it was digested. For instance, if the URI attribute contains the address of a whole XML

document, then the Transforms element can contain an XPath expression identifying selected

portions within the document. Such portions are the only one that are signed.

The next step is to collect all the Reference elements into the SignedInfo element, which

contains the information that is actually signed. Before applying the digital signature, the

SignedInfo element is transformed into a standard form, called canonical form. The aim of such

transformation is of eliminating from the element additional symbols eventually introduced during

the processing of the element (for instance, spaces introduced by an XML parser an so on), that may

cause mistakes during the signature validation process. The algorithms used for the canonicalization

is specified in the CanonicalizationMethod subelement. After the canonical form has been

generated, the digest of the whole SignedInfo element is computed and signed. The resulting

value is stored into the SignatureValue element. Information about the algorithm used for

generating the digital signature is contained in the SignatureMethod element. The

Signature element can also give the recipient additional information for obtaining the keys to

validate the signature. Such information is stored into the optional KeyInfo subelement. The last

step is to wrap the SignedInfo, SignatureValue, and KeyInfo elements into a

Signature element. In the case of enveloping signature the Signature element also contains

the data being signed, wrapped in the Object subelement.

