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Abstract—In this paper, we present Trust-X, a comprehensive XML-based [12] framework for trust negotiations, specifically
conceived for a peer-to-peer environment. Trust negotiation is a promising approach for establishing trust in open systems like the
Internet, where sensitive interactions may often occur between entities at first contact, with no prior knowledge of each other. The
framework we propose takes into account all aspects related to negotiations, from the specification of the profiles and policies of the
involved parties to the selection of the best strategy to succeed in the negotiation. Trust-X presents a number of innovative features,
such as the support for protection of sensitive policies, the use of trust tickets to speed up the negotiation, and the support of different
strategies to carry on a negotiation. In this paper, besides presenting the language to encode security information, we present the
system architecture and algorithms according to which negotiations can take place.

Index Terms—Security and protection, access controls, and trust negotiation.

1 INTRODUCTION

THE extensive use of the Web for exchanging information
and requesting or offering services requires extensively
redesigning the way access control is usually performed. In
a conventional system, the identity of all possible request-
ing subjects is known in advance and can be used for access
control. This simple paradigm is, however, not suitable for
an environment like the Web, where most of the interac-
tions occur between strangers that do not know each other
before interaction takes place. A promising approach to
trust establishment is represented by trust negotiation [5],
according to which trust is established through an exchange
of digital credentials. Because, however, credentials may
contain sensitive and private information, disclosure of
credentials also must be protected through the use of
policies that specify which credentials must be received
before the requested credential can be disclosed.

Several approaches to trust negotiation have been
proposed so far [3], [4], [8], [9], [11]. We survey work closest
with ours in Section 7. However, all these proposals mainly
focus on one of the aspects of trust negotiation, such as, for
instance, policy and credential specification, or the selection
of the negotiation strategy, but none of them provide a
comprehensive solution to trust negotiation, taking into
account all phases of a negotiation process. To overcome
such drawback, in this paper, we propose Trust-X, an XML-
based system addressing all the phases of a negotiation and
providing novel features with respect to existing ap-
proaches. Trust-X has been specifically designed for a
peer-to-peer environment in that both the negotiating parties
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are equally responsible for negotiation management and can
both drive the negotiation process, by selecting the strategy
that better fits their needs. Additionally, each party is
equipped with the same functional modules and, thus, it can
alternatively act as a requester or resource controller during
different negotiations.

The first component of Trust-X is an XML-based
language, named X-TNL, for specifying certificates and
policies. We believe the availability of a standard and
expressive language for expressing security information is
essential for providing a comprehensive and widely-usable
environment for carrying on trust negotiations. Trust-X
certificates are either credentials or declarations, where a
credential states personal characteristics of its owner,
certified by a Credential Authority (CA), whereas declara-
tions collect personal information about its owner that do
not need to be certified (such as, for instance, specific
preferences) but may help in better customizing the offered
service. A novel aspect of X-TNL is the support for trust
tickets. Trust tickets are issued upon the successful comple-
tion of a negotiation and can be used to speed up
subsequent negotiations for the same resource. Addition-
ally, A-TNL allows the specification of a wide range of
policies and provides a mechanism for policy protection,
based on the notion of policy preconditions. A Trust-X
negotiation consists of a set of phases to be sequentially
executed. A relevant aspect of Trust-& is that it provides a
variety of strategies for trust negotiations, which allow one
to better trade off between efficiency and protection
requirements. The motivation behind this choice is that,
since trust negotiations can be executed for several types of
resources and by a variety of entities having various
security requirements and needs, a single approach to
perform negotiation processes may not be adequate in all
the circumstances. As a result, Trust-X is very flexible and
can support negotiations in a variety of scenarios, involving
entities like business, military and scientific partners, or
companies and their cooperating partners or customers. To
the best of our knowledge, Trust-X is the first attempt of
providing such comprehensive solution to trust negotiation.

Published by the IEEE Computer Society
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A preliminary version of the language provided by
Trust-X appeared in [1]. However, [1] presents only a
limited subset of the language proposed in this paper,
mainly focusing on certificate encoding, whereas trust
tickets and policy preconditions are novel aspects that have
not been presented in [1]. Additionally, the work reported
in [1] does not deal with negotiation management, but it
focuses only on the negotiation language.

The remainder of this paper is organized as follows:
Next, Section 2 presents the basic structure and components
of the Trust-X framework. Section 3 introduces the running
example we use throughout the paper. Section 4 sum-
marizes the XML language we have developed for encoding
certificates and disclosure policies. Section 5 outlines the
various phases of a Trust-X negotiation process. Section 6
focuses on the key phase of a Trust-X" negotiation, that is,
Policy evaluation phase. Section 7 surveys related work,
whereas Section 8 concludes the paper and outlines future
research directions. The paper also contains two Appen-
dices (which can be found on the Computer Society Digital
Library at http://computer.org/tkde/archives.htm): Ap-
pendix A reports XML encoding of disclosure policies,
whereas Appendix B reports formal proofs.

2 THE Trust-X¥ FRAMEWORK

The reference scenario for Trust-X negotiations is a network
composed of different entities that interact with each other
in order to obtain and/or offer resources controlled by the
entities themselves. The notion of resource comprises both
sensitive information and services, whereas the notion of
entity includes users, processes, and servers. Entities are
identified through credentials typically issued by CAs.
Moreover, in our system, “private” entities can also issue
credentials (signed by their private key) to third trusted
parties to delegate part of their authority. Each entity can be
the controller of one or more resources, a third-party
credential issuer, or a requester. Typically, a negotiation
involves two entities: the entity providing negotiated
resources, referred to as the controller, and the entity
wishing to access the resources, referred to as requester.
Note that the controller does not necessarily coincide with
the owner of the resource, it may be the manager of the
resource entitled by the real owner. Each entity, character-
ized by a Trust-X profile of certificates,' can act as a
requester in one negotiation and as a controller in another.
During a negotiation, mutual trust might be established
between the controller and the requester: The requester has
to show its certificates to obtain the resource, and the
controller, whose honesty is not always assured, submits
certificates to the counterpart in order to establish trust
before receiving sensitive information. Release of informa-
tion is regulated by disclosure policies, which are ex-
changed to inform the other party of the trust requirements
that need to be satisfied to advance the state of the
negotiation. Trust-X participants are both considered
equally important, therefore, each party has an associated
system managing negotiation and always has a complete
view of the state of the negotiation process.

1. We assume that both parties are Trust-X" compliant, but it is possible
to enforce negotiations even between parties that do not adopt the same
negotiation language, simply by adding a translation mechanism to
guarantee semantic conversion of possibly heterogeneous certificates.
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Fig. 1. Architecture for Trust-X negotiation.
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The main components of the Trust-X architecture are
shown in Fig. 1. The architecture is symmetric and peer to
peer. The main functions supported by the architecture are:
supporting policy exchange, testing whether a policy might
be satisfied, supporting certificate and trust ticket’ ex-
change, and caching of sequences. Each of these functions is
executed by a specific module of the Trust-X system. Facets
modules may also be added to make the negotiation easier
and faster. The system is composed of a Policy Base, storing
disclosure policies, the X-Profile associated with the party,
a Tree Manager, storing the state of the negotiation, and a
Compliance Checker, to test policy satisfaction and deter-
mine request replies. Note that the Compliance Checker
also includes a credential verification module, which
performs a validity check of the received credentials in
order to verify the document signature, check for credential
revocation, and discovery credential chain, if necessary.
Finally, Trust-X system has a complimentary module
named Sequence prediction module, for caching and mana-
ging previously used trust sequences.

3 RUNNING EXAMPLE

In this section, we briefly introduce a scenario we will use
throughout the paper to demonstrate Trust-A" application.
The scenario we refer to is that of an online rental car
agency, named Cars, providing rental cars of vehicles. Cars
adopts different policies for the renting of vehicles, based
on the characteristics of the requesting user. More precisely,
Cars allows free rental for the employees of Corrier
company, which belongs to the same holding of Cars. By
contrast, rental service is available on payment for
unknown requesters, who have to submit, before being
allowed to rent a vehicle, a digital copy of their driving
licence and then a valid credit card. Corrier company
employees do not have to submit any document since Cars
maintains a digital copy of their driving licences. We
assume that Cars company and all the entities interacting
with Cars are characterized by a profile of certificates.
Additionally, service requesters may optionally posses
some declarations (for instance, recording their car prefer-
ences). As the paper proceeds, we will use this scenario as a
running example to show Trust-A main functionalities.

2. We elaborate on the notion of trust ticket in Section 4.2.
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<Corrier_Employee credID='12ab’,
ENS= 'NORMAL' >
<Issuer HREF='http://www.Corrier.com’
Title=Corrier.Employees_Repository/>
<name>
<Fname> Olivia </Fname>
<lname > White </lname>
</name>
<address>
Grange Wood 69 Dublin
</address>
<employeenumber code=34ABN/>
<position> driver </position>
< /Corrier_Employee>

<car_preferences >
<name >
<Fname> Olivia </Fname>
<lname > White </lname>>
</name>
<car_category> compact
< vehicle>
<model> TOYOTA COROLLA 1.4 </model>

</car_category>

<model> FIAT PUNTO 1.2 </model>
</vehicle>

<description >
<option > Air Conditioning </option>
<option > ABS </option>
<option > car radio </option>

< /description>

</car_preferences>

(@)

Fig. 2. Examples of (a) an X-TNL credential and (b) a declaration.

4 X-TNL

X-TNL is the XML-based language we have developed for
specifying Trust-X" certificates and disclosure policies.
Expressing credentials and security policies using XML
has several advantages. First, the protection of Web data
and their security related information is uniform, in that
credentials and policies are XML documents and, thus, can
be protected using the same mechanisms developed for the
protection of conventional XML documents. Furthermore,
the use of an XML formalism for specifying credentials
facilitates credential submission and distribution, as well as
their analysis and verification by use of a standard query
language such as XQuery [12].

4.1 Certificates and X-Profiles

X-TNL certificates are the means to convey information
about the profile of the parties involved in the negotiation.
A certificate can be either a credential or a declaration. A
credential is a set of properties of a party certified by a CA
and digitally signed by the issuer, according to the standard
defined by W3C for XML Signatures [12]. Note that,
incorporating digital signatures into credentials allows
verification of entity credentials against forgery. Fig. 2a
shows an example of a credential, containing the basic
information about an employee of Corrier company. By
contrast, declarations are a set of data without any
certification. These kind of certificates are stated by the
owner and provide auxiliary information that can help the
negotiation process. Intuitively, declarations will be used
only for unsensitive information exchange. For instance, a
declaration named car_preferences (see Fig. 2b) de-
scribes the car preferences of a given subject. This
declaration can be used to communicate Olivia’s personal
preferences during negotiation with Cars company.

Both credentials and declarations are encoded using XML.
More precisely, in X-TNL, a credential type is modeled as a
DTD and a credential as a valid document with respect to the
corresponding DTD. The same formalism is used for
declarations. Furthermore, X-TNL addresses the problem
of vocabulary agreement, by using XML Namespaces [12].
The use of namespaces combined with the certificate type
system helps trust negotiation software to correctly interpret
different credentials, even if they are issued by different
entities which do not share a common ontology.

All certificates associated with a party are collected into
a unique XML document, called X-Profile. To better
structure credentials and declarations into an X-Profile,

each X- — Profile is organized into Data sets. Each data set
collects a class of credentials and declarations referring to a
particular aspect of the life of their owner. For instance,
Demographic_Data, Working Experience are exam-
ples of possible data sets.® Data sets can then be used to
refer to a set of logically related certificates as a whole, and
this can facilitate their evaluation and exchange during
negotiation.

4.2 Trust Tickets

Although the scenario we refer to is an open environment, it
is really likely that in many cases similar negotiations will be
executed several times between the same parties. To enforce
both trust and efficient negotiations, X-TNL supports the
notion of trust ticket. Trust tickets are a powerful means to
reduce as much as possible the number of certificates and
policies that need to be exchanged during negotiations.
Trust tickets are generated by each of the involved parties at
the end of a successful negotiation and issued to the
corresponding counterpart. Like conventional certificates,
trust tickets are locally stored by their owners into their
X-Profile, in a specific data set. A trust ticket certifies that
parties have already successfully ended a negotiation for
that resource, that is, they possess the necessary certificates
to acquire the resource. The idea is that, when a party asks
for a resource, it can first be asked for a trust ticket for that
resource. In this way, parties can easily prove that they are
trusted entities and, thus, they have all the requirements for
successfully negotiating the requested resource.

According to our XML compliant formalism, a trust
ticket is a valid XML document conforming to the DTD
shown in Fig. 3. The resource identifier is stored into a
mandatory attribute of element ValidRes. The ticket can
also be used to facilitate negotiations of resources related to
the one it was issued for. The identifiers of such resources
are stored in the children elements of element ValidRes.
For instance, suppose that a flight customer contacts a
travel agency where he/she has recently booked a trip to
buy an additional service (the rental of a car, say) for the
same trip. The requester, instead of executing a complete
negotiation process for the rental, can just show his/her
valid trust ticket to the agency, proving that he is a known
customer and that he/she has the requirements to get the
service. The core of a trust ticket is the sequence of
certificates that lead to negotiation success, which is
specified in the Trust Sequence element. A trust sequence

3. As for credentials, we assume that data set names are unique, and they
are registered through some central organization.
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< !DOCTYPE TrustTicket[
< !ELEMENT TrustTicket (ValidRes,
RandNumber, RandSig) >
< !ELEMENT TrustSequence (Certificate+) >
< !ELEMENT Certificate (IDCert, owner, issuer) >
< !ELEMENT IDCert ID >
< |ELEMENT owner (REQUESTER|CONTROLLER) >
< !ELEMENT issuer ANY >
< |ELEMENT Validity (Fixed|Expiration)>
< |ELEMENT Fixed ANY>
< |ELEMENT Expiration (#PCDATA) >
< !ELEMENT RandNumber (#PCDATA) >
< |ELEMENT RandSig (#PCDATA) >
< !ELEMENT ValidRes (Linkres) >
< !ELEMENT Linkres ID >
<IATTLIST ValidRes Main ID #REQUIRED >
< !ATTLIST TrustTicket ID >
< IATTLIST issuer

XML:LINK CDATA #FIXED "SIMPLE"

HREF CDATA #REQUIRED TITLE CDATA #IMPLIED>
1>

TrustSequence, Validity,

Fig. 3. Trust ticket DTD.

determines a list of certificates where the disclosure of each
certificate in the list represents a condition for a trusted
release of one of the certificates following it in the list.* This
element has as many subelements, named Certificate,
as the number of certificates in the sequence. Each
certificate is represented by its unique ID, its owner (one
of the two parties involved in the negotiation) and the link
to the issuer repository, to allow the counterpart to check
the ticket validity (i.e., that it has not been revoked). Each
trust ticket has a validity time denoting the time-interval
within which the given ticket can be used. The duration
depends on the parties preferences and needs. To make the
specification of the validity period as flexible as possible,
we provide two different alternatives. The first is to
establish with the counterpart a validity period, typically
24/48 hours.” Alternatively, since the corresponding trust
sequence is valid until one of its certificates expires, it is
possible to fix the expiration date to the first expiration date
of all the certificates of the trust sequence.

Trust is established between parties employing a
challenge-response protocol [7]. Each trust ticket contains
a random number, stored in the element Randnumber.
Such number is digitally signed by the issuer of the trust
ticket, and the signature is stored in the RandSig element.
To authenticate each other, each party first sends the
Randnumber stored in its trust ticket and then verifies if the
number signature coincides with the signature in the
RandSig element. Note that a trust ticket can be used
several times before it expires. However, to better guarantee
trust, once the random number is exchanged, the certificate
is updated generating (and signing) a new number for each
party, eventually, also updating the expiration date.

Note that the aim of trust tickets is completely different
from that of tickets used by authentication services (e.g.,
Kerberos [7]). Trust tickets are used to certify that two
parties have already successfully negotiated a resource and,
thus, subsequent negotiations for the same resource can be
simplified. By contrast, the ticket mechanism exploited by
authentication services is not used to grant accesses to a
resource. Rather, it is only used to denote that a client has
been authenticated by the authentication server.

4. With the term trust, we refer to the fact that the sequence is composed
by certificates that can be disclosed according to the specified policies. Trust
is not related, in this context, with certificate validity or their effective
content.

5. Note that to assure the consistency of the ticket, its expiration must
happen before the first certificate of the list expires.

4.3 Disclosure Policies

Trust-X disclosure policies state the conditions under
which a resource can be released during a negotiation.
Conditions are expressed as constraints on the certificates/
trust tickets possessed by the parties involved in the
negotiation and on their attributes. Additionally, protection
of policies is obtained by introducing the notion of
prerequisites associated with a policy, i.e., a set of alternative
disclosure policies that must be disclosed before the
disclosure of the policy they refer to. Prerequisite policies
are also useful to obtain a fine-grained protection of the
involved certificates. Each party adopts its own Trust-X
disclosure policies to regulate release of local information
(that is, credentials or policies) and access to services.
Similar to certificates, disclosure policies are encoded using
XML. Additionally, Trust-X policies can also be formalized
as logical rules. In the following, we present this logical
representation, since it makes explaining the compliance
checker mechanisms and runtime system algorithms easier.
XML encoding is reported in Appendix A (which can be
found on the Computer Society Digital Library at http://
computer.org/tkde/archives.htm).

4.3.1 Preliminary Definitions

Disclosure policies regulate accesses to resources. A
Trust-X resource can be either a certificate or a service. By
service, we mean either an application that the requesting
party can execute, for instance, for purchasing goods, or an
access to protected data, such as, for instance, medical data.
Additionally, a resource can be characterized by a set of
attributes, specifying relevant characteristics of the resource
that can be used when specifying disclosure policies.
Trust-X resources are formalized by the notion of R-Term,
introduced in what follows.

Definition 4.1: (R-Term). An R-Term is an expression of the
form Resource_name(attribute_list) where: Resource_Name
is the resource name and can denote either a service or a
certificate type, whereas attribute_list is a possible empty set
of attribute names characterizing the resource.

A resource can thus be considered as a structured object
identified by a name and by some attributes. If the resource
is a certificate type, the list of attributes consists of the
attribute and tag names contained in its XML encoding.
Resource attributes are used to express constraints on the
resource release when specifying disclosure policies. We use
the dot notation to refer to a specific attribute of a resource,
that is, we use R.a to denote attribute a of a resource R.
Expressions of the form R.a are called resource expressions.

Example 1. Examples of R-Terms are:

1. Rental_Car(requesterCode, name, car_category, pick-
upDate, ReturnDate): it denotes an online vehicle-
rental service. The service is characterized by a set
of attributes to customize the service release, such
as the requester identity code, the name, the
category of the requested car, and the duration of
the rental (pick-up date and return date).

2. Corrier_Employee(): it denotes the certificate type
Corrier_Employee.®

6. The list of attributes is not specified since it is implied by the certificate
type it refers to.
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4.3.2 Disclosure Policies

Disclosure policies are expressed in terms of logical
expressions, called policy conditions, which can specify
either simple or composite conditions against certificates/
trust tickets.

Definition 4.2: (Policy condition). Let P be either a Trust-X
certificate type or a trust ticket. A policy condition C on P is
an expression of the form a op expr, where:

e a denotes an element tag or an attribute name of P.

e  op is a comparison operator, such as #,<,>,=,<.

e expr can be either a constant or a resource expression,
compatible with the type of a.

Example 2. The following are examples of policy conditions:

1. position = driver;
2. Release_year > 1998;
3. code = Rental_Car.requesterCode.

Definition 4.3: (Term). A term T is an expression of one of the
following forms:

e  P(C): where P is either a Trust-X certificate type or a
trust ticket, and C is a possibly empty list of policy
conditions Cy ...C,, on P.

e X(C): where X is a variable and C is a nonempty list of
policy conditions.

The form X(C) denotes a list of conditions that may be
contained in a generic certificate/trust ticket, without
imposing any condition on the entity that contains them.
Terms of the form X(C) can be used to express constraints
on the counterpart properties without specifying where
such properties should be collected. This option makes
policy writers able to specify policies without having to be
aware of all the certificate types/trust tickets that contain
the required property. It also gives the receiver of the policy
the flexibility of choosing which certificate to send as a
reply. By contrast, the form P(), where the list of policy
conditions is empty, denotes a term where the only
constraint is given by the name of the certificate type/trust
ticket and no conditions are specified. Finally, the form P(C)
specifies both the certificate type/trust ticket and conditions
against it. In the remainder of the paper, we say that a
certificate/trust ticket CT satisfies a term P(C), if CT is of
type P and satisfies all the conditions specified in C. By
contrast, we say that CT satisfies X(C), if all the conditions
specified in C are satisfied by CT. Additionally, given a
term 7, we use the notation P(7) to denote the certificate
type/trust ticket (if any) in 7, and C(7) to denote the policy
conditions, if any, in 7.

Example 3. Consider the following terms:

T, = IDCard(City = Milan, Country = Italy),
7o = X(City = Milan, Country = Italy).

7 denotes an ID card issued in Italy in the city of Milan.
T 5 denotes an unspecified certificate type, collecting the
same information of 7. Note that 7, represents a
possible binding for 7.

We are now ready to formally define disclosure policies.
In the definition and throughout the paper, we use the dot
notation to denote the component elements of a tuple. Thus,
given a tuple ¢, we use t.c to denote the value of the
component c of tuple ¢.

Definition 4.4: (Disclosure policy). Let R be a resource, a
disclosure policy p for R is a pair (pol_prec_set, rule), where:

1. rule is an expression of one of the following forms:

e R~—T,,7y,,T,, n>1 whereT,Ts,,T,,are
terms and R is the Resource_name component of
an R-Term;

e R « DELIV, where R is the Resource_name
component of an R-Term. When a policy contains
this kind of rule, it is called delivery policy.

2. pol_prec_setis aset of policy identifiers,” named policy
precondition set, whereNp € pol_prec_set, p.rule is of
the form R «— T1,7T5,.,T,.

A disclosure policy is thus specified by a possibly empty
set of policy preconditions and a rule. The rule specifies
which properties a party should possess either for obtaining
access to a resource managed by the other party or for
letting the other party disclose the subsequent policy for the
same resource. A delivery policy is a policy stating that no
further information is requested for disclosing the re-
quested resource. Additionally, since a policy may contain
sensitive information, we introduce the concept of policy
preconditions, that is, a set of policies such that at least one of
the policy needs to be satisfied before the disclosure of the
policy with which the precondition set is associated.
Policies belonging to a precondition set are related to the
same resource R of the policy with which they are
associated. A further relevant use of precondition policies
is that protection needs for a resource R can be organized in
several policies logically linked (one policy is a precondition
for the following and so on) and gradually disclosed during
the policy evaluation phase of a negotiation. This can be
useful in those contexts where the negotiation requires
disclosing sensitive certificates. For instance, during an
electronic transaction, credit card data are usually re-
quested at the end of the negotiation when all the other
information have been submitted and successfully verified.
Moreover, since the precondition set of a policy may
contain more than one policy, a party can specify a set of
alternative possibilities for the disclosure of the corre-
sponding policy/certificate. For instance, suppose that an
entity requires three different certificates for a resource R,
namely, Cert;, Certy, and Cert; and suppose that Cert;
must be disclosed only after Cert; and Cert, have been
disclosed. Suppose moreover that information conveyed by
Cert; and Cert, can be equivalently obtained by disclosing
certificate Certy. The entity can organize these require-
ments through three different policies pol;, pols, pols, where
poly asks for Cert, and Certs, pols asks for Certy, and pols
asks for the most sensitive certificate, that is, Certs. Certs
can be disclosed whether the counterpart has already
granted either Cert; and Certy or Certy. According with
Definition 4.4, this requirement can be expressed by

7. We assume that each policy is identified by a unique identifier.
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including both pol; and pols in the policy precondition set of
pols. If no preconditions are needed for a rule, (e.g., pol; and
poly), the related prerequisite set is empty and the rule can
be disclosed without any preliminary check.

Example 4. Consider the Rental Car service scenario
introduced in Section 3. As mentioned, the service is
free for the employees of Corrier company, which
belongs to the same holding of the Rental Car Company.
Moreover, the Company already knows Corrier
employees and has a digital copy of their driving
licences. Thus, it only asks the employees the company
badge and a valid copy of the ID card, to double check
the ownership of the badge. By contrast, rental service is
available on payment for unknown requesters, who have
to submit first a digital copy of their driving licence and
then a valid credit card. These requirements can be
formalized as follows:

poly = ({}, Rental_Car — Corrier_Employee
(code = Rental_Car.requesterCode,

position = driver), Id_Card

(
(

name = Corrier_Employee.name));

poly = ({}, Rental_Car «— Driving_Licence

(name = Rental_Car.name,issuer = EU));

pols = ({poly}, Rental Car — Credit_Card
(name = Rental_Car.nameRental_Car.ReturnDate
< ExpirationDate));

poly = ({pols, pols }, Rental_Car — DELIV).

Policy pol; requires the driving licence of the requester
and is a precondition to proceed on the rental process.
Intuitively, there is no reason to ask for a credit card if
the requester cannot drive a car. Thus, pol; can be
disclosed whether policy poly specified in its precondi-
tion set is satisfied. The resource is thus deliverable (pol,)
when either policy pols or pol; are satisfied.

To avoid loop among policies possibly introduced by
policy prerequisites, the set of policies for a resource R must
be well-formed. Well-formed chain of policies are formally
defined as follows:

Definition 4.5: (Well-formed chain). Let R be a resource,
{p1,--.,pi} be a set of disclosure policies for R. [p1, ..., py] is
a well-formed chain of disclosure policies for R if the following
conditions hold:

e pi.pol_prec_set = (J;
o Vie[l,k—1],p; € piy1.pol_prec_set;
e pprule =R« DELIV.

Example 5. Suppose that NBG Bank offers special Student
loan for promising students. To check the eligibility of the
requester, the Bank asks the student to present the
student card, ID card, Social Security card, and current
bank statements. Current bank statements can be pre-
sented by disclosing either the Federal Income Tax
Returns or the requester statement account. Since some
of the listed certificates contain high sensitive information
about the student and his/her credit standing, the

certificate requests can be organized in different policies
to be gradually disclosed.®

pl = ({}, Student_Loan «— Student_Card());

p2 = ({pl}, Student_Loan — Social_Security_Card());

p3 = ({p2}, Studentoan
Federal _Income_Tax_Returns());

pd = ({p2}, Student_Loan «— Bank_Statement_Account());

5 = ({p3, p4}, Student_Loan «— DELIV);

p6 = ({pl, p4}, Student_Loan —
Bank_Statement_Account());

Policies {pl,p2,p3,p4,p5} result in two distinct well-
formed chains of policies, namely, [pl,p2,p3,p5] and
(p1,p2,p4,p5]. By contrast, ps creates a loop and makes
the specification incorrect.

Each time a policy for a resource R is specified, the
system checks whether it generates a chain of policies for R
that is not well-formed and, in this case, it asks the revision
of the policy. In the following, given a resource R and its set
of policies, we use the term policy chain to denote a well-
formed chain of policy disclosures for R. In the remainder
of the paper, we say that the preconditions of a policy are
satisfied if at least one of the policies in the precondition set
has been previously disclosed and satisfied by the counter-
part. Additionally, we say that the rule component of a
policy is satisfied if the right side elements of the rule are all
satisfied by the counterpart X-Profile.

4.3.3 Introductory Policies

Introductory policies are used in the introductory phase of a
negotiation and express general conditions that need to be
satisfied in order to enter the negotiation process. Such
policies are modeled as the rule component of disclosure
policies, where the left side part of the policy represents a
resource and right side elements model certificates/trust
tickets. To distinguish introductory policies from ordinary
ones, we simply add a subscription on the left side part of
the policy, valueing p. The aim of introductory policies is
twofold. On the one hand, they are used for establishing a
first level of trust between negotiation participants and for
speeding up the subsequent phases of the negotiation. One
of the most interesting use of introductory policies is thus to
check whether parties already know each other, and this
can be done by asking for trust tickets. On the other hand,
introductory policies are used to better customize the
requested service (by asking for declarations). The follow-
ing example clarifies the concept.

Example 6. Consider again the Rental Car Service scenario.
Possible prerequisites that the agency may require before
starting negotiations are modeled by the following
introductory policies:

1. Car_Rental, — Trust_ticket(ValidRes = Rental);
2. Car_Rental, «— Car_Preferences().

8. In describing the policies, we omit for simplicity the condition
specification.
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Fig. 4. Phases of a Trust-X negotiation.

The first policy checks whether parties have a trust
ticket that can speed up the negotiation process, whereas,
with the second policy, the Agency asks the requester to
submit the car_preferences declaration, if any, in
order to satisfy requester preferences.

5 THE NEGOTIATION PROCESS

We believe that, since trust negotiations can be executed for
several types of resources and by a huge variety of entities
having various security requirements and needs, an
effective negotiation system must provide several negotia-
tion strategies. In order to address this issue, Trust-X
includes different approaches to carry on trust negotiations,
which differ with respect to efficiency and protection. By
protected negotiation, we mean a negotiation executed by
maximizing protection for all the resources involved.
However, there can be cases where efficiency is the most
crucial need or where the requested resource does not have
very strict security requirements. In such cases, it is
preferable to adopt strategies that speed up the negotiation,
even if they do not maximize the protection of the involved
resources. To better trade off among all the possible
requirements of a negotiation, Trust-A thus supports a
variety of strategies to carry on a negotiation that can be
useful for different contexts and domains.

A Trust-X negotiation is organized according to the
following phases: introductory phase, the sequence genera-
tion phase, certificate exchange phase, and caching of trust
sequences. As illustrated in Fig. 4, the introductory phase is
always executed, whereas the execution of the other phases
depend on parties needs and on the evolution of the process.
The sequence generation phase is the core of the negotiation
process and can be carried out according to three different
strategies: by performing the policy evaluation phase, by
exchanging trust tickets, and by using the sequence
prediction module. The first method is the most complete
one and is the one that assures the maximum degree of
protection to the involved resources. The use of trust tickets
supports fast interaction for those entities who have
previously completed a similar trust establishment process.
These first two ways are strictly related since the use of trust
tickets depends on previously executed negotiations be-
tween the same parties for the same (or a related) resource.
Finally, the sequence prediction module is used when the
negotiation that is being carried on shows similarities with
previously executed negotiations. Similarity is estimated on

the basis of information collected during previous negotia-
tions and /or during the introductory phase. Practically, this
way of carrying on the sequence generator phase consists of
suggesting to the counterpart potentially valid trust
sequences, in order to find the one that better matches the
counterpart profile and security needs. The concluding step
of a Trust-X successful negotiation is an analysis of the
certificates and information exchanged and results either in
caching the generated sequence, or in issuing trust tickets, or
none of them. Indeed, each entity can cache the sequence of
certificates that lead to negotiation success, to eventually
reuse them in the following negotiations through the
mentioned sequence prediction module. In what follows,
we illustrate each of the above-mentioned phases in more
detail. Note that articulating the negotiation into different
distinct phases results in a multilevel protection that avoids
release of unnecessary or unwanted information. Each
phase is executed only if the previous ones succeed and
sensitivity of the exchanged information increases during
negotiation. Indeed, the disclosure of certificates, that are
more sensitive with respect to policies, is postponed at the
end of the whole negotiation; only if there is any possibility
to succeed in the negotiation, certificates are effectively
disclosed.

5.1 Introductory Phase

The introductory phase begins as a requester contacts a
controller asking for a resource R. This initial phase is
carried out to exchange preliminary information that must
be satisfied in order to start processing resource requests.
Such exchange of information is regulated by the intro-
ductory policies of both the parties. Introductory policies
are used to verify properties of the counterpart that are
mandatory to continue in the negotiation. For instance, a
server providing services only to registered clients, before
evaluating the requirements for the requested service, can
first ask the counterpart for the login name. If the requester
is not registered, there is no reason to further proceed.
Introductory policies are therefore essentially used to
establish whether to enter into the core of the negotiation
process or not, but they also can help in driving the
subsequent phases of the process. Indeed, another impor-
tant goal of the introductory phase is to check whether
negotiation participants are not total strangers. Parties can
prove that they have already had a previous successful
negotiation establishing mutual trust through trust tickets.
The key point is that each party should be able to determine
who the counterpart is and what type of interactions they
had in the past simply by trust ticket exchanges. Once the
tickets have been exchanged and checked, it is easy to enter
into the core of the negotiation process adopting a reduced
version of the policy evaluation phase. Finally, introductory
policies may also be used to collect information about the
requester preferences and/or needs. For instance, in the
Rental Car Service example, the agency may ask the
requester to submit the car_preferences declaration, if
any, in order to satisfy customer preferences.

5.2 Sequence Generation Phase

The ultimate goal of a negotiation is to establish mutual
trust between the involved parties. Trust can be approached
in different ways, on the basis of parties security needs and
application domains. Trust-X supports three different ways
to carry on the process, which are illustrated in what
follows:
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5.2.1 Policy Evaluation

During this phase, both the requester and the controller
communicate disclosure policies adopted for the involved
resources. The goal is to determine a sequence of requester
and controller certificates that, when disclosed, allows the
release of the requested resource, in accordance with the
disclosure policies of both parties. This phase is carried
out as an interplay between the requester and the
controller. During each interaction, one of the two parties
sends a set of disclosure policies to the other. The receiver
party verifies whether its X-Profile satisfies the conditions
stated by the policies, and whether its local Policy Base
contains policies regulating the disclosure of the certifi-
cates requested by the policies sent by the other party. If
the X-Policy of the receiver party satisfies the conditions
stated by at least one of the received policies, the receiver
can adopt one of two alternative strategies. It can choose to
maximize the protection of its local resources replying
only for one policy at a time, hiding the real availability of
the other requested resources or, alternatively, it can reply
for all the policies to maximize the number of potential
solutions for negotiation. Additionally, when selecting a
policy each party determines whether its preconditions are
verified by the policies disclosed until that point and, only
in this case, is the policy selected. By contrast, if the
X-Profile of the receiver party does not satisfy the
conditions stated by the received policies, the receiver
informs the other party that it does not possess the
requested certificates. The counterpart then sends an
alternative policy, if any, or it halts the process, if no
other policies can be found. The interplay goes on until
one or more potential solutions are determined, that is,
whenever both parties determine one or more set of
policies that can be satisfied for all the involved resources.
The policy evaluation phase is mostly executed by the
Compliance Checker whose goal is the evaluation of
remote policies with respect to local policies and certifi-
cates (certificates can be locally available in the X-Profile
or can be retrieved through certificate chains), and the
selection of the strategy for carrying out the remainder of
the negotiation. To simplify the process, a tree structure is
used (details are explained in Section 6.1) which is
managed and updated by the Tree Manager. Note that
no certificates are disclosed during the policy evaluation
phase. The satisfaction of the policies is only checked to
communicate to the other party the possibility of going on
with the process and how this can be done.

5.2.2 Use of Trust Tickets

If during the introductory phase parties have determined
that a trust ticket can be used for negotiation, the policy
evaluation phase might be skipped. Each participant only
has to analyze the validity and content of the received
ticket, eventually retrieving the remote certificates specified
into the TrustSequence element of the ticket again. This
further check can be executed to ensure that the certificates
that previously granted negotiation success are actually still
valid. If all these checks end successfully, the negotiated
resource is immediately granted to the requester and the
process successfully ends.

5.2.3 Sequence Prediction Module

It is really likely that the same trust sequence will be used
several times to perform similar negotiations. With the
notion of similarity, we mean negotiations for the same
resource that are executed by an entity with different
counterparts having a similar profile. In such cases, it might

be useful to keep track of the sequences of certificates more
often exchanged, instead of recalculating them for each
negotiation. For instance, some books of a digital library
might be often asked during exam sessions. The procedure
to establish trust will be very similar for different students.
Or, better, the required information will be exactly the same
and the only differences will concern the type of certificates
disclosed. A student attending University X might have a
card issued by the main secretary office of the university,
whereas students of a branch department might have only a
badge issued by the departmental secretary office. Suppose
that the properties required to obtain access can be proved
by presenting either the card issued by the main secretary
office or by presenting both the badge issued by the
departmental secretary office and the student library badge.
Moreover, suppose that students usually require privacy
guarantees before disclosing certificates and that the library
proves its honesty by a set of proper certificates. Different
sequences can therefore be generated to disclose the same
resource, but all of them are quite intuitive and easy to
determine. The controller can cache and suggest them upon
receiving a request from a student. The student can cache
the most widely used sequences for negotiating access to
digital libraries as well as the library and suggest them
upon sending a request to a library.

Intuitively, suggesting a sequence of certificates to solve
the negotiation before knowing whether the counterpart is
really trusted does not ensure a complete protection of
policies. However, in many contexts, protection of policies
or information is not really necessary. Indeed, we expect
that in many scenarios, there will be standard, off-the-shelf
policies available for common, widely used resources (e.g.,
VISA cards, passports). In case of negotiations involving
these common resources, the sequences of certificates to be
disclosed will be only regulated by such standard and
predictable policies. In this case, certificates represent only a
means to easily establish trust, and it is not unsafe to
suggest the sequences at the beginning of the process. If the
counterpart cannot satisfy the proposed sequence, the
negotiation can continue by executing the policy evaluation
phase or by suggesting another sequence.

The module of Trust-X in charge of caching and
suggesting the sequences is the sequence prediction module.
It consists of two main components: the cache memory and
the prediction algorithm, which verifies whether this
strategy can be applied to a specific negotiation. The cache
memory collects all trust sequences recently executed that
can be directly reused. To better manage sequence reuse
and storage, each cached sequence is complemented by a
set of additional information to be used to determine the
sequence usage.

Definition 5.1: (Cached sequence). A cached sequence cts is a
tuple (ts, R, rel_cond, count, date), where ts is a trust
sequence, i.e., a sequence of certificate identifiers that make it
possible the successful end of a negotiation; R is the resource
for which ts was originally generated; rel_cond is a set of
information for ts usage, i.e., conditions and/or certificates
that characterize ts; count counts the number of times ts has
been successfully used; date stores the last date ts was
successfully used.

A cached sequence is thus a structured object containing
the list of certificate types that grant a successfully disclosure
of R, the resource originally requested. Set rel_cond is a set
of certificate names and conditions characterizing sequence
ts. Its content usually strongly depends on the policies
associated with the certificates in ts. The idea is that, when a
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cached sequence is selected by a party, information in
rel_cond are used to verify whether the counterpart proper-
ties match the remote certificates associated with sequence.
For instance, a trust sequence can be usable only if the other
party has an age greater than a given threshold. In such a
case, rel_cond will contain such constraint which has to be
verified before the sequence can be successfully selected.
Parameter count is a counter keeping track of the number of
times the sequence is used to solve the negotiation. Finally,
date memorizes the last date ts was successfully used. Such
parameters can be used to extract the better sequence that
may lead to negotiation success.

Example 7. With respect to the scenario introduced in
Example 5, consider a negotiation between Bank NBG
and a student applying for a student loan. Suppose that
the negotiation successfully ends. The corresponding
trust sequence will contain certificates that prove the
honesty and the credit standing of the requester as well
as the reliability of the bank. A possible sequence cached
by the Bank will thus contain the corresponding
certificate names, such as student identity card, student
residence certificate, student work certificates, Federal
income tax returns, debt obligation information (if
applicable), and also Bank obligations certificates, and
Bank Guarantees. rel_cond will store relevant conditions
that need to be verified before suggesting the sequence,
such as, for instance, if the age of the student is less than
21, if the yearly income is less than a fixed amount, and if
there are any guarantees.

Intuitively, controllers of resources will often incur in
similar negotiations and, therefore, they will likely have
available a large number of cached sequences to handle
resource requests. However, since Trust-X entities are
considered as peers, requesters may use all of the same
sequence prediction module to reuse previously used
sequences as much as possible.

In what follows, we consider the controller behavior.
During anegotiation, upon the end of introductory phase, the
party verifies whether it has cached any sequence for the
requested resource R. If one or more sequences for R are in
the cache, the controller first extracts the most commonly
used sequences, which can be easily determined using the
parameter count. Then, if the information collected during
the introductory phase are not inconsistent with respect to the
information contained into set rel_cond, the controller asks to
the counterpart for the remaining information. Note that the
aim of this phase is not to immediately obtain the certificates,
butsimply to query the counterpart to verify the applicability
of a sequence. Upon counterpart reply, the party extracts the
sequences that better match the requester profile and the
negotiation can proceed with the subsequent phase.

5.3 Certificate Exchange

This phase begins when the sequence generator phase
determines one or more trust sequences either by success-
fully executing the policy evaluation process or by using the
sequence prediction module. Several trust sequences can be
determined to succeed in the same negotiation and several
criteria can then be used by the parties to select one of the
possible trust sequences. Examples of these criteria include
the number of involved certificates, the sensitivity of their
content, or the expected length of negotiation. Once the
parties have agreed on a sequence, the certificate exchange
begins. Each party discloses its certificates, following the

order defined in the trust sequence, eventually retrieving
those certificates that are not immediately available through
certificate chains. To avoid man in the middle [7] attacks,
each certificate is wrapped into a specific package, named
X-Package. The package consists of a Trust-X’ certificate, the
random number received from the counterpart, and the
signature computed on both the certificate and the number,
using the party private key. When an X-Package is
transmitted, the recipient verifies the signature using the
sender’s public key. If the signature is valid, the A-Package
is accepted. The idea is to embed the Trust-A’ certificate in a
signed package so that, if an intruder intercepts the packet,
it will not be able to reuse the certificates pretending to be
the real owner. Furthermore, this structure allows parties to
encrypt the whole package to achieve confidentiality of
Trust-X certificates. Upon receiving a certificate, the
counterpart verifies the satisfaction of the associated
policies, checks for revocation, checks validity dates, and
authenticates the ownership (for credentials). Eventually, if
further information is needed for establishing trust, it is the
receiver responsibility to check for new certificates using
credential chains. The receiver then replies with an
acknowledgment, and asks for the subsequent certificate
in the sequence, if any. Otherwise, a certificate belonging to
the subsequent set of certificates in the trust sequence is
sent. The process ends with the disclosure of the requested
resource or, if any unforeseen event happens, an interrup-
tion. If the failure is related to trust, for instance, a party is
using a revoked certificate, the negotiation fails. Otherwise,
if it is due to events that are independent from trust, for
instance, interruption of connection, the negotiation is
restarted, executing the same sequence or, if it is not
possible, one of the alternative trust sequences determined
at the beginning of this phase.

In the following section, we focus on the key and most
complex phase of a Trust-X negotiation, that is, the policy
evaluation phase.

6 PoLicy EVALUATION PHASE

The policy evaluation phase consists of a bilateral and
ordered policy exchange. As previously introduced, this
method is the most complete one and is the one that assures
the maximum degree of protection of all the involved
resources. Certificates and services are disclosed only after a
complete counterpart policies evaluation, that is, only when
the parties have found a trust sequence of certificate
disclosures that makes it possible the release of the
requested resource, according to the disclosure policies of
both parties. Even disclosure of sensitive policies is
protected since policies are disclosed gradually according
to the degree of trust established. The policy evaluation
phase is executed either when the parties are total strangers
and it is not possible to reuse the result of previous
negotiations, or when the negotiated resources require high
protection. The Compliance Checker module of each party,
upon receiving a disclosure policy, determines if it can be
satisfied by any certificate of the local A-Profile. Then, it
checks in its Policy Base the protection needs associated with
the certificates satisfying the policy, if any. The progress of a
negotiation is recorded into a specific data structure, called
Negotiation tree, managed by the T'ree Manager, illustrated
in the following section.
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6.1 Negotiation Tree

A negotiation tree is a data structure used to maintain the
progress of a negotiation. The goal of the tree is to identify
at least one view, where a view denotes a possible trust
sequence that can lead to the negotiation success. The view
keeps track of which certificates may contribute to the
success of the negotiation, and of the correct order of
certificate exchange.

More formally, a negotiation tree is a labeled tree where
each node corresponds to a term, whereas edges correspond
to policy rules. More precisely, a negotiation tree is
characterized by two different kinds of edges: simple edges
and multiedges. A simple edge denotes a policy having only
one term on the left side component of the rule. By contrast,
a multiedge links several simple edges to represent policy
rules having more than one term on their left side
component. Nodes belonging to a multiedge are thus
considered as a whole during the negotiation.

The tree is dynamically built during the policy evalua-
tion phase and grows up as the phase proceeds. Upon the
end of the introductory phase, each party triggers an
instance of a negotiation tree, rooted at the requested
resource R. The tree is then consequently updated each time
a set of policies are exchanged and evaluated. The
operations executed on the tree consist of adding new
edges (to keep track of both the policies and the resources
involved) and updating the state of a node when a
corresponding set of policies is satisfied. Each level of the
resulting tree is always composed by nodes belonging
alternatively to the requester or the controller.

Before formally defining a negotiation tree, we need to
introduce a function called Eval which is used by the
Compliance Checker. It receives as input a term and an
X-Profile and determines whether the X-Profile satisfies the
conditions stated by the term.

Definition 6.1: (Eval). Function
Eval(T, Prof) — {true, false}.
Let T be a term and Prof an X-Profile:

TRUE if (T=P()A P belongs to Prof) vV (T=P(C)
A P belongs to Prof A satisfies the
Eval(T, P’I‘Of) = conditions in C'V (T=X(C) A 3 P in Prof
such that P satisfies the conditions in C)
FALSE  otherwise.

Additionally, since a negotiation tree is a labeled tree
where the labels give information on the order in which the
nodes should be considered, we need to introduce some
notations that we use in the edge labeling function. Let
Terms,, and Terms., be the set of terms appearing in the
policies of PB,, and PB,,, respectively; and let > (Terms: q)
and ) (Terms;,) be the set of strings build on Terms,, and
Terms,,. Let “4” be a special symbol denoting the
concatenation operator of strings. We define set label as
follows:

Label ={t1 + ...+ tp—1 + ik > 1[t; € Z(Terms:”)
Vi € Z(Termsf,q)}}

and Label* as the set of possible edge labels obtained by

concatenating strings in Label with the ending symbol “1.”
We are now ready to formally define a negotiation tree.

The most widely used symbols are reported in Fig. 5a.

Definition 6.2: (Negotiation tree). Let CN be a controller and
RQ be a requester. Let PB., and PB,, be the policy bases
associated with CN and RQ, respectively. Let X-Prof., and
X-Prof,, be the X-Profiles associated with CN and RQ,
respectively. Let R be the resource requested by RQ to CN. A
Negotiation Tree NT = (N, R,E,¢) for R, CN, and RQ is a
finite tree satisfying the following properties:

o N (the set of nodes) is a set of triples
n =< T, state, party >,
where:

- T isaterm;
- state denotes the current state of the node;
- party € {RQ, CN'} denotes if the node belongs
to RQ or CN;
o R =< R, state,CN > is the root of the tree;
o & (the set of edges), where each e € £ has one of the
following forms:

- simple edge (SE): e = (n1,n2),n1,n2 € N be-
longs to SE if both the following conditions hold:

*
[3p € PB,yjenlp-rule = T (n1) « T (ng)
A Bval(T (n1), X-Prof,qen) = TRUE]
or
[7(n1) = RA3pePBuylprule=R
— T(n9)]:
*

(7 (n1)eX-Prof qjen)\
(T(n2) € X‘Profcn/r'q)}'

- multiedge (ME): e={(n,n),...,(n,n;)},
n,ny...n e N, belongs to ME if both the
following conditions hold:

*

[Eval(T (n), X-Profygjc) =
TRUEAdpe Pqu/cn|p'rule = T(n) -
T(n) ... T ()]

or

[T(n) =RA3pePBe|prule=R
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VARIABLE DESCRIPTION

T term
n node
T(n) termin a node

state(n) state of the termin n
party(n)

e=(n, n;)

owner of the termin n
simple edge

e={(n,ny), ...(n.n)}
P policy
p.pol _prec_set precondition set of p

multi edge

p.rule rule of a policy p

ReThToTe rule

GRAPH NOTATION MEANING
O open node
‘ simple edge
/O\ multi edge

deliv node

linked nodes

(@)

Fig. 5. (a) Negotiation tree symbols and (b) negotiation tree graph notation.

*

(T (n) € X-Profrgjen) AT (n1) ... T (ng)
€ X-Proferg)l;

o ¢ :&— Label U Label” is the edge labeling function.
Edge labels are generated by the algorithm presented in
Fig. 8.

o The state of a node n can assume one of the
following two values:’

- DELIV, if Eval(T(n),X-Prof,ye) = TRUE
and one of the following conditions hold:

1. n is nonleaf and IE = {ey,...,ex} C
E, k> 1 such that all the following condi-
tions hold:

a. Vee& e={(n,m),...,(n,ng)},
Vi € [1,k|, state(n;) = DELIV;

b. Je={(nm),...,(n,n.)} € &|d(e)
=" and 3 p € PB,y/en such that

p.pol_prec_set = O A p.rule
=T(n)—T(m),...,T(ng).

c. Veel&e={(nm),...,(n,n)} o(e)
#"3p €PBeyjrg, 30 € PBeyjrg Suich that

porule =T (n) — T(ny),..., 7 (ng),
A[3p' € p.pol_prec_set|p’.rule = T (n)
- T(nll)a AR T(n;c)] A [(b(e) =..
+T(m)]...|1T(n}) +.].

d. Je={(n,m),...,(n,m)} €&,
pe) =" +I'"° Adp,p’ € PB,yjen such
that

9. We give the definition by referring to mutliedges. In this context,
simple edges can be considered as a particular case of multiedges.
10. * is a metacharacter to denote a string of variable length.

prule =T (n) — T(n1),..., 7 (ng)
A[p € p".pol_prec_set A p".rule = T (n)
« DELIV].

2. nis a leaf node and

[3p € PB.y,/rg|p-pol_prec_set
=0 Ap.rule =T (n) «— DELIV];

- OPEN, if neither condition 1 nor condition 2
hold.

6.2 Negotiation Tree Building

A negotiation tree is thus a particular tree, which evolves
during the policy evaluation phase by adding disclosure
policies of one of the parties. Graphically, a negotiation tree
is built according to the notation introduced in Fig. 5b.

Fig. 6 shows the initial steps of the generation of a
negotiation tree. The example shows a negotiation between
a requester and a controller and is based on the case study
proposed in Section 3."! Multiedges are the result of policies
having the left side elements of the rule component with
more than one term. In Fig. 6, at step 2, the evaluation of
policy R « Corrier_Employee(...), Id_Card(...) results in a
multiedge connecting node n; with node n3 and n4. By
contrast, a simple edge is generated by a rule having only
one term on its left side. Examples of simple edges are the
edge connecting n; and ny, and the one, appended at the
step 3, connecting n4 to ns.

A negotiation tree is built by repeatedly invoking
function Build shown in Fig. 7. The function receives as
input the negotiation tree constructed so far and a node n
and verifies whether a new edge should be added
originating at n. More precisely, function Build starts by
querying the local A-Profile in order to find whether there is
a certificate that satisfies the term associated with the input
node. Note that by X-Profile we now refer to all the
certificates related with the local party, that is, the
certificates that are physically locally stored and those that
are stored in remote sites but that can be retrieved by the
party through certificates chains, if necessary. Upon the
retrieving of the certificate, the local policy base is then
queried, to extract the corresponding policies. The tree is
then consequently updated, either by adding one or more
edges, or by updating the state of the nodes, if the policy is a

11. For simplicity, we focus on the most relevant policies and related
terms.
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R= Rental_Car(....)
ny=<Rental_Car(....), open, CN>

@ 1

ns=<Corrier_Affiliation(), open, CN>
n,=<Driving licence(....), deliv, RQ>

ny=<Driving licence(....), deliv, RQ>
ng=<Id_Card(), deliv, RQ>

REQUESTER POLICIES:
p=({}Driving Licence<-DELIV);
p'1=({}, Corrier_Employee()<-Corrier_Affiliation());
p'2=({p'1}, Corrier_Employee()<-DELIV);

p'3=({}, ID_Card()<-DELIV);

ns=<Corrier_Employee(....), open, RQ> n 2 ng=<CreditCard(....) , open, RQ>
n,=<Driving licence....), open, RQ>
ng=<Id_Card(), open, RQ> ‘
1
CONTROLLER POLICIES :
p1={}, R<-Corrier_employee(...), Id_Card()) CONTROLLER_POLICIES:
P2=({}, R<-Driving_Licence(....)) Pa- ({p2}, R<-Credit_Card(...))
Ps=<{p1, Pa} R<-DELIV)
ns=<Corrier_Affiliation(), open, CN> 3 n,=<Driving licence(....), deliv, RQ>

ng=<Credit_Card(....) , open, RQ>
n;=<Certified_service(....) , open, CN>

REQUESTER POLICIES:
p1=({}, Credit_Card<-Certified_service(...))
p2=({p1}, Credit_Card<-DELIV)

Fig. 6. An example of negotiation tree building.

delivery policy. Each of the added edges is the result of a
policy for the resource associated with n, and is appended
only if its precondition set is verified. The verification of this
last condition can be simply done by checking the state of
the children of n. In particular, the precondition set is
verified if there exists at least an edge corresponding to one
of the policies in the precondition set whose entering nodes

Function Build(NT, n)
Input :
n: the node to be processed:
NT = (N, R,E, ¢) a negotiation tree for R;
Qutput :
NT' = (N',R,E",$) such that N C N and € C &’ or a failure message;
Precondition:
State(n) £ DELIV

=&
Let X-Profy, and PB be the local X-Profile and policy base, respectively
If Eval(7 (n), X-Profr) = TRUE then
Let P = {p1,..,px} be the subset of PB; such that Vi € [1,k] the
head of p;.rule = T(n);
Let 2 be the edges in & rooted at n;
For each p; € P |[pj.rule=T(n) < T(ng).. A AecE
| e={(n,ng)..}]V [pj.rule =T(n) + DELIV]
If (3 p; € pj.polprecset | pirule = T(n) < T(n}),..,T(n}) A
Je={(n,n})...(n,n})} € E A state(n}) = ... = state(n},) = DELIV]
or [E =0 Apj.pol_prec_set = (]
Switch(p; .rule)
case: p;.rule is of the form 7(n) <~ DELIV
state(n) = DELIV;
UpdateState(NT,n); % Update the tree state
Return(@);
case: p;.rule is of the form 7(n) « T1,.. T
For each T71... T}, create a node ni,...nk;
Add {nq,..,nx} to N,
Add e; = {(n,n1), (n,n2),..(n,n)} to &5
Labeling(e;, p;. E, P);
case: pj.rule is of the form 7(n) < 13
Create node na;
Add ¢; = {(n,n2)} to £
Labeling(e;, pj. E. P):
Add {na} to N';
endfor
Return((N", R, &', ¢));
else
Return(n, FAILURE) % Failure message
end

Fig. 7. Function Build().

state is set to DELIV. With respect to step 4 of Fig. 6, the
edge connecting n; with n4 related to policy p3 is appended
as the node ny, whose edge corresponds to a policy of the
precondition set, is set to DELIV. Preconditions associated
with a policy imply an order in the disclosure of the
corresponding certificates. Such order is kept into account
in building the tree by using an ad hoc labeling system.
Intuitively, the label associated with each edge in the tree
gives information on the order in which the certificates
associated with the corresponding nodes must be disclosed
to successfully end the negotiation process.

The labeling function is presented in Fig. 8. Given an
edge e, its label ¢(e) is a possibly empty string of terms
¢(e) ="ty + ... +t},, where each substring ¢; is obtained by
concatenating the terms of a satisfied policy in the
corresponding precondition set. Symbol “+” is used to
group the set of terms associated with the same policy. As
an example, consider the case of a multiedge e =
{(n,n1)(n,ns)} corresponding to a satisfied policy p, and a
policy p; having p in its precondition set. If p; is not a
delivery policy, p; will be modeled as an edge e; labeled
with “7 (n1)|7 (ny).” Otherwise, e label will be updated with

Function Labeling(e, p, E,P)
Input :
e: the edge to be labeled:
E: the set of sibling edges of e = {(n,n1)..(n,nk)} ;
p: the corresponding policy used for building e:
P: the set of policies for 7(n):
Output :
The label for edge e, namely ¢(e)
begin
Let p.rule = T(n) < T(n1),..., T (ng)
If p.polprec.set = () then: ¢(e) ="
else
For each p; € p.pol_prec_set such that p;.rule = T(n) + T (ni1), ..., T (nik) A
ei = {(n,n;s1),...,(n,ni1)} € E A state(n;1) = ..state(n;,) = DELIV do
o(e) =" g(e) + T(nin)|-|T(nir)":
endfor
Let p be the delivery policy for 7(n) in P;
If p.pol_prec_set C p then: o(e) = P(e) +U;
RETURN(¢(e)):
end.

% The label is the empty string

Fig. 8. Function Labeling().
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Function UpdateState(NT", n)

While T(n) # R

state(ng) = DELIV
n = ng
else
RETURN (Deliv(NT,n));
endwhile
RETURN(FoundView(NT));
end.

% continue the update

A special message signaling either that a view has been found in NT' or the executed updating

Input :
NT = (N, R,E,$) is a negotiation tree for R:
Output :
Precondition:
state(n)=DELLV;
begin

% Backtracking the update of the state along the tree
Let ng be the parent node of n and e the edge connecting ng and 7;
If [e = (no,n) € S&]or [€é={(no,n),(no,n1),..,(no,ng)} € ME and
state(n) = state(ny) = .. = state(ny) = DELIV] and ¢(€) =' =’ then

Y the state cannot be propagated

Fig. 9. Function UpdateState().
the ending symbol “I” and no other edges will be added. As
a further example, consider two edges e¢; = (n,n}) and e; =
(n,nh) corresponding to two satisfied policies p; and p, for
the resource in n. Suppose that p; and p, are in the
precondition set of a third policy for the resource in n, say
ps. p3 will be modeled as an edge labeled by the string
“T(n}) + T (n})". With reference to Fig. 6, at step 4, upon the
disclosure of the delivery policy for the Driving Licence, a
new edge is appended, labeled with the corresponding
satisfied term. Note that, since policy preconditions for a
resource R are not disjoint, a single satisfied policy may
allow the simultaneous disclosure of several subsequent
policies (all the policies that have the satisfied policy in their
precondition set). Furthermore, since an edge representing
a policy for R is appended when at least one of its
precondition policies is satisfied, the satisfaction of the
remaining policies of the set may happen several steps after
having added the edge. However, to avoid redundancy, a
policy is mapped onto an edge only once and the label is no
more updated, even if new policies of the preconditions
become satisfied. The edge label then keeps track of the
order followed in appending the policies, with respect to
the constraints implied by the policy preconditions of the
policy chain traversed. When the last policy for a resource is
processed and the corresponding edge is then created, its
label also contains an ending symbol, that is, [. In addition,
if some policies give rise to a cycle the tree is pruned to
remove the cycle, using the strategy illustrated in
Section 6.4. The state associated with a node denotes the
possibility of finding a trust sequence of certificates
containing the term associated with the node. When a
new node n is appended to the tree its state is set to OPEN,
meaning that the tree may evolve through addition of
children to the given node. The state of a nonleaf node n is
set to DELIV when exist a set of edges £ exiting from n,
each corresponding to a satisfied policy of a well-formed
chain of policies (cfr. Definition 4.5) as stated by subcondi-
tion 1.(a) of Definition 6.2. To denote a well-formed chain of
policies the set & must contain one edge having an empty
label, denoting the first policy of the chain (condition 1.(b)
of Definition 6.2) and one edge whose label contains the
ending symbol denoting the last policy (condition 1.(d) of
Definition 6.2) of the chain. The remaining edges in £ must
be properly labeled to keep track of the order of the policies
in the chain, as stated by subcondition 1.(c) of Definition 6.2.

By contrast, a leaf node is immediately set to DELIV
if there is only one policy associated with the resource
in the node that is a delivery policy. As an example,
with reference to Fig. 6, nodes ny and n3 are labeled as

OPEN until the evaluation of the delivery policies:
Driving_Licence < DELIV (whose corresponding term
is in node mny) and Id_-Card «— DELIV (whose corre-
sponding term is in node n3) is completed. Note that in
the example, the edge connecting n; and n3, n4 is
labeled by the ending symbol since the resources for
which the corresponding policies are specified are not
protected by any further condition. Each time function
Build updates the state of the input node into DELIV, a
further function is invoked to determine if the evaluation
phase can successfully end. More precisely, the function
UpdateState (presented in Fig. 9) verifies whether the
DELIV state can be propagated up to the tree root and,
if this is not the case, it propagates as much as possible
the DELIV state.

If the state of the root becomes DELIV, the function
outputs a special message, otherwise, the policy evaluation
phase goes on by sending the Deliv(NT,n) message. The
Deliv(NT, n) message just means that the input negotiation
tree has been updated, but the resource R originally
requested is not yet disclosable. Consider again the example
of Fig. 6. Suppose that the server certification, named
Certified_Service is not protected by any policies and, thus,
the corresponding node is tagged DELIV, as shown in
Fig. 10a. The DELIV state is then propagated until the root
(cfr. Fig. 10b).

6.3 Valid Views and Trust Sequences

The successful end of the policy evaluation phase occurs
when the DELIV state is propagated up to the root of a
negotiation tree. When such a condition holds, it is possible
to determine a trust sequence for the considered negotia-
tion. The trust sequence can be built by traversing a portion
of the negotiation tree according to a specified order. Such
portion consists only of nodes with a DELIV state and is
denoted in the following as valid view. The notion of a valid
view is formally introduced by next definition. In defining a
view, we use the terms multipath to denote a path in the
negotiation tree, containing multiedges.'?

Definition 6.3: (Valid view). Let N7 = (N, R,E,¢) be a
negotiation tree. A wvalid view WT on N'T is a subtree of
NT, W= (N R,E,¢), where N' CN and £ C & such
that:

o  The state of each node in WT is DELIV;

12. Recall that in graph theory, a path in a tree is a sequence of nodes
where there is a directed edge connecting any node to the following one.
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ng=<CreditCard(....) , open, RQ>
n;=<Certified_service(....) , open,CN> n

ng=<Corrier_Affiliation(), open, CN> Nwm
I

n,=<Driving licence(....), deliv, RQ>

n,=<Rental_Car(), deliv, CN>
ng=<CreditCard(....) , deliv, RQ>
n;=<Certified_service(....) , deliv, CN>

n,=<Driving licence(....), deliv, RQ> /wcw >
1

nz=<Id_Card(), deliv, RQ>

By

ng=<Id_Card(), deliv, R D ¢ ‘ p : p :
a=<ld () RG> () J n3 ) [ ny N Koy ((ng n, ) nsr Y
% . \ ; ,]’
ns A Y ng n,
CONTROLLER POLICY:
p4= ({} Certified_service<-DELIV)
(@) (b)

Fig. 10. Example DELIV state propagation.

e V€ N',3amultipath connecting n to the leaf nodes
in N' and a multipath connecting the root to n;

e V nonleaf node neN', 3 a set of edges E =
{e1,...,ex} € € rooted at n such that:

- e € E such that ¢(e) =";
- Ve € E such that ¢(e) #,

"Je={(n,n1),...,(n,n1)} € E

and each T (n;) € {T (n1),...,T(ng)} appear in
o(e);

- V67 e € E7 ¢(€) 7é (ﬁ(@’);

- e e E such that ¢(e) = 1.

Each valid view denotes a partially ordered list of
certificates which ordered disclosure leads to a successful
negotiation. The order in which the certificates must be
disclosed is implied by the label edges and also keeps into
account the constraints imposed by policy preconditions.
Fig. 11 presents the tree traversal function that receives as
input a valid view and returns the corresponding trust
sequence. Function SequenceGenerator, besides extracting
in the correct order the terms in the view, binds the
unknown terms (terms of the form X(C) formalized in
Definition 4.3) to a certificate whenever possible. It is a task
of the receiver party to complete the binding for its

SequenceGeneratorOVT )

Input : 3
WT = (N,R,E, ) is a valid view for R on negotiation tree N7
Output :
A trust sequence of certificates T'S initialized at the empty set

begin
Let no be the root node
If party(no) = local then
Extract the certificate C' corresponding to np;
TS=iC;
if no is a leaf node then Return(TS);
E=Edge(no) YoFunction that returns the edges rooted at no
if |F] > 1 then: Sort.E=Order(E) % Function that returns the edges
sorted by the labels starting from the one labeled with' x I’
For each e € Sort_ I’
If e = {(n,n1)...(n,ny)} then
For each node n’ entering in e
Let WT be the subtree rooted at n’
TS = TS USequenceGeneratorOVT")
endfor
else if e = {(n,n1)}
Let WT' be the subtree rooted at my
TS = T'SU SequenceGenerator(WT")
endfor
end.

Fig. 11. Function SequenceGenerator().

unknown terms in order to determine a complete sequence.
The actual satisfaction of the conditions specified in the
terms is verified in the subsequent step of the negotiation
process, as the certificates are actually disclosed.

The sequence is built from the terms in the nodes
composing the view, starting from the tree root. The
ordering for sibling edges is given by the edge labels. The
shadowed portion of the tree in Fig. 10b is an example of
valid view. The correctness of the function is stated by the
following theorem.

Theorem 6.1. Let N'T' be a negotiation tree for a resource R, and
let WT be a valid view on NT. Let TS' = [R,C4,...,C,] be
the output of Function SequenceGenerator when its input is
WT. TS is a trust sequence for R.

The formal proof is reported in Appendix B (which can
be found on the Computer Society Digital Library at http://
computer.org/tkde/archives.htm).

6.4 Detection of Repeated Nodes

Since parties are not aware of counterpart policies, during
policy exchange, the evaluation of some policies can be
recursive and create cycles. Repeated terms can be easily
detected in the negotiation tree as a term appears twice in the
same path. In this case, the Tree M anager prunes the portion
of the tree creating the redundancy. The pruning is executed
from the last repeated node (a leaf node) to the first instance
of the term found going up towards the root. Obviously,
each term is pruned only if it does not have any other edge in
addition to the edge that creates the redundancy.

The following example makes this concept more precise.
Consider two nodes n; and n, connected to the root by
different paths. Suppose 7 (n,) = 7 (ny). If the state of n, is
DELIV, it means that n; is the root of a valid view for ny. A
pointer can then be used to link n, with n;, appending thus
automatically the subtree of n; (assuming n; is not a leaf
node) after ny. As a result, ny can be immediately managed
as a DELIV node, without the need of negotiating again the
terms in the subtree rooted at n;. By contrast, if the state of
n; was OPEN, the link is anyway added, in order to avoid
redundant policies exchanges, but the state of both nodes is
not modified. Finally, the efficiency of the process is further
improved if the same conditions hold for two nodes n; and
ny where ny is an unknown term. The party can link the
nodes, thus immediately binding the unknown term with
the certificate type specified in 7 (n,).

In the Rental Car scenario, suppose that Cars requires
Corrier employees driving licenses in order to disclose its
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n,
ns=<Corrier_Affiliation(), open, CN> | }

ny=<Driving licence(....), deliv, RQ>
ng=<Id_Card(), deliv, RQ>
ns=<Corrier Employee(....), open,RQ>
ng=<Driving_Licence(....) , open, RQ g

ny
<Driving_Licence+/ >
1
AR AR
Ny ey n, | \_ D
ST A i, l"

CONTROLLER POLICY:

p=({}, Corrier_Affiliation()<-DrivingLicence)
pi1=({p} Corrier_Affiliation()<-CorrierAuthorization)
p2 =({p1} Corrier_Affiliation()<-DELIV)

ny
<Driving_Licence+ >
I
A D B
[N NN ny (5% )
S

ng %

/\Q'iving,Licence +>

3

Fig. 12. Example of link usage.

(b)

TABLE 1
Comparison of Trust-X with Trust Negotiation Systems (Key: Y-Yes, N-No, P-Partial Support)

[ Requirements [ PSPL [ TPL | Trust- X | KeyNote | Trust Builder |
Well-defined semantics Y Y Y Y
Monotonicity Y Y (DTPL) | Y Y Y
Credential combinations X Y ¥ Y Y
Constraints on attribute values | Y Y Y N ¥
Inter-credential constraints Y Y Y N Y
Credential chains X Y P N N
Authentication Y N N N N
‘Who submits? N N N N N
Sensitive Policies Y N Y N Y
Compliance Checker Modes Y P Y N P
Credential Validity Y Y Y Y Y
Credential ownership N N P N Y
Unified formalism N Y Y Y N
Interoperable language N Y Y Y N
Fast policy evaluation N N Y N N

affiliation with Corrier society and then a declaration
released by Corrier authorizing the employee to rent the
car, named Corrier_Authorization. A new node, i.e.,
ng, is then added to the tree and linked to node ns, since it
refers to the same term (Fig. 12a). As a result, the state of ng
is immediately set to DELIV, thus satisfying the precondi-
tion to disclose the following policy, modeled by a new
edge connecting ns with ng (Fig. 12b).

7 RELATED WORK

In this section, we compare Trust-X with other framework
for trust negotiation. The comparison is based on a set of
dimensions that deal with expressiveness and semantics.
Some of the considered dimensions are taken from [5].
However, we have identified several additional require-
ments to evaluate trust negotiation systems. The introduced
requirements deal with the use of a unified formalism for
modeling protected resources and security related informa-
tion, the adoption of a metalanguage to define the syntax of
the negotiation language, and the use of trust tickets to
speed up trust establishment processes. Table 1 summarizes
the result of our analysis. The analyzed languages are PSPL
[3], TPL [4], KeyNote [2], and Trust Builder [9]. PSPL [3] is
part of a uniform framework to formulate and reason about
information release on the Web. It is a protection language
for expressing access control policies for services and
release policies for client and service portfolios. The

language also includes a policy filtering mechanism, to
provide compact policy disclosures and to protect privacy
during policy disclosures. The main difference of PSPL with
respect to our language is that it only provides a logical
definition of the language constructs. Therefore, no actual
language is provided. The Trust Policy Language (TPL) [4]
is an XML-based framework for specifying and managing
role-based access control in a distributed context where the
involved parties are characterized by credentials and digital
certificates are used for authentication. One of the most
important features of TPL is its support for transitive
closure and credential chain discovery. Like Trust-X, TPL
exploits the flexibility of XML to encode security informa-
tion and includes a tool called TrustEstablishment (TE for
short), for enabling trust relationships between strangers
based on public key certificates. However, it does not
provide support for sensitive credentials. One of the TE’s
basic assumptions is that credentials can be disclosed
whenever they are requested. Further, TE does not have
the notion of sensitive policies, neither in TPL nor in the
system architecture. KeyNote [2] is the most well-known
trust management language. It was designed to work for a
variety of large and small scale Internet-based applications.
It provides a unified language for both local policies and
credentials. KeyNote policies and credentials, called
“assertions,” contain predicates describing delegations in
terms of actions that are relevant to a given application. As
a result KeyNote policies, because of the language intended
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use for delegation authority, do not handle credentials as a
means to establish trust. Therefore, it has several short-
comings with respect to trust negotiations.

TrustBuilder [9] currently represents one of the most
significant proposals in the negotiation research area. It is a
system supporting trust negotiations between security
agents that mediate access to protected resources. Trust-
Builder provides a set of negotiation protocols that define
the ordering of messages and the type of information
messages will contain, and a variety of strategies, to allow
strangers to establish trust through the exchange of digital
credentials and the use of access control policies. Trust-
Builder is the approach that more greatly influenced our
work. For instance, we borrow from [9] the use of a tree
structure to maintain the progress of a negotiation and keep
track of possible alternative strategies. In comparison with
Trust-X, Trust Builder does not have any facility to speed
up negotiation whenever possible, neither it has the notion
of sequence caching. However, Seamons et al., in [6], have
explored the issue of supporting sensitive policies, obtained
by the introduction of hierarchies in policy definitions.

8 CONCLUDING REMARKS

In this paper, we have presented Trust-X, a comprehensive
XML-based framework for trust negotiations specifically
conceived for a peer-to-peer environment. The framework
we have proposed is particularly well-suited for open
systems, like Internet, where the involved entities belong to
different security domains and need to establish trust before
interactions can take place. Trust-X presents a number of
innovative features such as, for instance, the use of trust
tickets and the support for different negotiation strategies.
Future work includes the extension of X-TNL along several
directions such as the possibility of disclosing only portions
of a credential during the negotiation process. This will
allows us to support a fine-grained protection of the
elements of a credential. Another research direction we
are currently working on is the compliance with P3P
policies [10]. Additionally, we are developing techniques
for credential chains discovery, for recovery upon negotia-
tion failures, and for implementing more articulated
similarity measures between trust sequences. Finally, an
implementation of Trust- X is in progress on a platform
based on Java and the Oracle DBMS. Such protoype systems
will allow us to develop a systematic benchmark to assess
the system performance under a variety of conditions.
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