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Abstract—Large repositories of data contain sensitive information that must be protected against unauthorized access. The protection
of the confidentiality of this information has been a long-term goal for the database security research community and for the
government statistical agencies. Recent advances in data mining and machine learning algorithms have increased the disclosure risks
that one may encounter when releasing data to outside parties. A key problem, and still not sufficiently investigated, is the need to
balance the confidentiality of the disclosed data with the legitimate needs of the data users. Every disclosure limitation method affects,
in some way, and modifies true data values and relationships. In this paper, we investigate confidentiality issues of a broad category of
rules, the association rules. In particular, we present three strategies and five algorithms for hiding a group of association rules, which
is characterized as sensitive. One rule is characterized as sensitive if its disclosure risk is above a certain privacy threshold.
Sometimes, sensitive rules should not be disclosed to the public since, among other things, they may be used for inferring sensitive
data, or they may provide business competitors with an advantage. We also perform an evaluation study of the hiding algorithms in
order to analyze their time complexity and the impact that they have in the original database.

Index Terms—Privacy preserving data mining, association rule mining, sensitive rule hiding.

1 INTRODUCTION

MANY government agencies, businesses, and nonprofit
organizations in order to support their short and
long-term planning activities are searching for a way to
collect, store, analyze, and report data about individuals,
households, or businesses. Information systems, therefore,
contain confidential information, such as social security
numbers, income, credit ratings, type of disease, customer
purchases, etc., that must be properly protected.

Securing against unauthorized accesses has been a long-
term goal of the database security research community and
the government research statistical agencies. Solutions to
such a problem require combining several techniques and
mechanisms [1], [2], [3]. In an environment where data have
different sensitivity levels, this data may be classified at
different levels and made available only to those subjects
with an appropriate clearance. It is, however, well known
that simply restricting access to sensitive data does not
ensure complete sensitive data protection. For example,
sensitive or “high” data items may be inferred from
nonsensitive, or “low” data through some inference process
based on some knowledge of the semantics of the
application the user has. Such a problem, known as the
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“inference problem,” has been widely investigated and
possible solutions have been identified. The proposed
solutions address the problem of how to prevent disclosure
of sensitive data through the combination of known
inference rules with nonsensitive data. Examples of
inference rules are deductive rules, functional dependen-
cies, or material implications [3].

Recent advances in Data Mining (DM) techniques and
related applications have, however, increased the security
risks that one may incur when releasing data. The elicitation
of knowledge that can be attained by such techniques has
been the focus of the Knowledge Discovery in Databases
(KDD) researchers’ effort for years and by now, it is a well-
understood problem [4]. On the other hand, the impact on
the information confidentiality originating by these techni-
ques has not been considered until very recently.

The process of uncovering hidden patterns from large
databases was first indicated as a threat to database security
by O’ Leary [5]. Piatetsky-Shapiro, of GTE Laboratories, was
the chair of a minisymposium on knowledge discovery in
databases and privacy, organized around the issues raised
in O’ Leary’s paper in 1991. The focal point discussed by the
panel was the limitation of disclosure of personal informa-
tion, which is not different in principle from the focal point
of statisticians and database researchers since, in many
fields like medical and socioeconomic research, the goal is
not to discover patterns about specific individuals but
patterns about groups.

The compromise in the confidentiality of sensitive
information, that is not limited to patterns specific to
individuals, is another form of threat which is analyzed in a
recent paper by Clifton from Mitre Corporation and Marks
from Department of Defense [6]. The authors provide a
well-desined scenario of how different data mining techni-
ques can be used in a business setting to provide business
competitors with an advantage. For completeness purposes,
we report such a scenario below.

Published by the IEEE Computer Society
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Let us suppose that we are negotiating a deal with
Dedtrees Paper Company, as purchasing directors of
BigMart, a large supermarket chain. They offer their
products with a reduced price if we agree to give them
access to our database of customer purchases. We accept the
deal and Dedtrees starts mining our data. By using an
association rule mining tool, they find that people who
purchase skim milk also purchase Green paper. Dedtrees
now runs a coupon marketing campaign saying that “you
can get 50 cents off skim milk with every purchase of a
Dedtrees product.” This campaign cuts heavily into the
sales of Green paper, which increases the prices to us, based
on the lower sales. During our next negotiation with
Dedtrees, we find out that with reduced competition, they
are unwilling to offer us a low price. Finally, we start to lose
business to our competitors, who were able to negotiate a
better deal with Green paper.

The scenario that has just been presented indicates the
need to prevent disclosure not only of confidential personal
information from summarized or aggregated data, but also
to prevent data mining techniques from discovering
sensitive knowledge which is not even known to the
database owners.

In this paper, we propose new strategies and a suite of
algorithms for hiding sensitive knowledge from data by
minimally perturbing their values. The hiding strategies
that we propose are based on reducing the support and
confidence of rules that specify how significant they are
(confidence and support will be formally defined in
Section 3). In order to achieve this, transactions are
modified by removing some items, or inserting new items
depending on the hiding strategy. The constraint on the
algorithms is that the changes in the database introduced by
the hiding process should be limited, in such a way that the
information loss incurred by the process is minimal.
Selection of the items in a rule to be hidden and the
selection of the transactions that will be modified is a crucial
factor for achieving the minimal information loss constraint.
We also perform a detailed performance evaluation in order
to prove that the proposed algorithms are computationally
efficient and provide certain provisions on the changes that
they impose in the original database. According to this, we
try to apply minimal changes in the database at every step
of the hiding algorithms that we propose.

The rest of this paper is organized as follows: In Section 2,
we present an overview of the current approaches to the
problem of DM and security. Section 3 gives a formalization
of the problem, while some solutions are presented in
Section 4. Section 5 discusses performance results obtained
from the applications of the devised algorithms. In Section 6,
a discussion on the possible damage on the data in terms of
possible queries is provided. Concluding remarks and
future extensions are listed in Section 7.

2 BACKGROUND AND RELATED WORK

The security impact of DM is analyzed in [6] and some
possible approaches to the problem of inference and
discovery of sensitive knowledge in a data mining context
are suggested. The proposed strategies include fuzzyfying
and augmenting the source database and also limiting the
access to the source database by releasing only samples of
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the original data. Clifton [7] adopts the last approach as he
studies the correlation between the amount of released data
and the significance of the patterns which are discovered.
He also shows how to determine the sample size in such a
way that data mining tools cannot obtain reliable results.

Clifton and Marks in [6] also recognize the necessity of
analyzing the various data mining algorithms in order to
increase the efficiency of any adopted strategy that deals
with disclosure limitation of sensitive data and knowledge.
The solution proposed by Clifton in [7] is independent from
any specific data mining technique; other researchers [8], [9]
propose solutions that prevent disclosure of confidential
information for specific data mining algorithms such as
association rule mining and classification rule mining.

Classification mining algorithms may use sensitive data
to rank objects; each group of objects has a description
given by a combination of nonsensitive attributes. The sets
of descriptions, obtained for a certain value of the sensitive
attribute, are referred to as description space. For Decision-
Region-based algorithms, the description space generated
by each value of the sensitive attribute can be determined a
priori. The authors in [8] first identify two major criteria
which can be used to assess the output of a classification
inference system and then they use these criteria, in the
context of Decision-Region based algorithms, to inspect and
to modify, if necessary, the description of a sensitive object
so that they can be sure that it is not sensitive.

Agrawal and Srikant used data perturbation techniques
to modify the confidential data values in such a way that
the approximate data mining results could be obtained
from the modified version of the database [10]. They
considered applications where the individual data values
are confidential rather than the data mining results and
concentrated on a specific data mining model, namely, the
classification by decision trees. Agrawal and Aggarwal, in
their recent paper, enhance the data perturbation methods
by using expectation maximization for reconstructing the
original data distribution which is further used to construct
the classification model [11].

Disclosure limitation of sensitive knowledge by data
mining algorithms, based on the retrieval of association
rules, has also been recently investigated [9]. The authors in
[9] propose to prevent disclosure of sensitive knowledge by
decreasing the significance of the rules using some
heuristics which can be thought of as the precursors to
the heuristics we proposed in this paper.

3 PROBLEM FORMULATION

Let I = {i1,...,4,} be a set of literals, called items. Let D be
a set of transactions which is the database that is going to be
disclosed. Each transaction ¢ € D is an itemset such that
t C I. A unique identifier, which we call TID, is associated
with each transaction. We say that a transaction ¢ supports
X, asetof items in I, if X C ¢. We assume that the items in a
transaction or an itemset are sorted in lexicographic order.
A sample database of transactions is shown in Table 1a.
Each row in the table represents a transaction. There are
three items and six transactions. AB is an itemset and
transaction 77 supports that itemset. An itemset X has
support s if s percent of the transactions support X. Support
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TABLE 1
(a) Sample Database D and (b) Large ltemsets Obtained from D
TID | Items Itemset | Support
T1 ABC A 100%
T2 ABC B 66%
T3 ABC C 66%
T4 AB AB 66%
T5 A AC 66%
T6 AC BC 50%
ABC 50%
(@ (b)
TABLE 2
The Rules Derived from the Large ltemsets of Table 3
Rules Confidence | Support
B=A 100% 66%
B=C 75% 50%
C=A 100% 66%
C=1-B 75% 50%
B = AC 5% 50%
C = AB 5% 50%
AB=C 75% 50%
AC = B 5% 50%
BC= A 100% 50%

of X is denoted as Supp(X). All possible itemsets and their
supports obtained from the database in Table 1a are listed
in Table 1b. For example, Itemset BC is supported by three
transactions out of six and, therefore, has 50 percent
support.

An association rule is an implication of the form X =Y,
where X C I, Y C I, and XNY = (. We say that the rule
X =Y holds in the database D with confidence c if
w > ¢ (where |A| is the number of occurrences of
the set of items A in the set of transactions D, and A occurs
in a transaction ¢, if and only if A C t). We also say that the
rule X =Y has support s if w > s, where N is the
number of transactions in D. Note that, while the support is
a measure of the frequency of a rule, the confidence is a
measure of the strength of the relation between sets of
items. All possible rules obtained from the large itemsets in
Table 1b are shown in Table 2. For example, Rule BC = A
has 50 percent support since it appears in three out of six
transactions in D and it has 100 percent confidence since all
the transactions that contain BC also contain A.

A typical association rule-mining algorithm first finds all
the sets of items that appear frequently enough to be
considered significant and then it derives from them the
association rules that are strong enough to be considered
interesting. We aim at preventing some of these rules, that
we refer to as “sensitive rules,” from being disclosed. The
problem can be stated as follows:

Given a database D, a set R of relevant rules that are mined

from D and a subset Ry of R, how can we transform D into a

database I’ in such a way that the rules in R can still be
mined, except for the rules in Ry?

TABLE 3
The Sample Database that Uses the Proposed Notation
TID | Items | Size
T1 111 3
T2 111 3
T3 111 3
T4 110 2
T5 100 1
T6 101 2

In [9], the authors demonstrate that solving this problem
by reducing the support of the large itemsets via removing
items from transactions (also referred to as “sanitization”
problem) is an NP-hard problem. Thus, we are looking for a
transformation of D (the source database) in D’ (the
released database) that maximizes the number of rules in
R — Ry that can still be mined.

There are two main approaches that can be adopted
when we try to hide a set Ry of rules (i.e., prevent them
from being discovered by association rule mining algo-
rithms): 1) we can either prevent the rules in Ry from being
generated by hiding the frequent itemsets from which they
are derived, or 2) we can reduce the confidence of the
sensitive rules by bringing it below a user-specified thresh-
old (min_conf). In this paper, we propose five strategies to
hide rules using both the approaches; work related to the
first approach can also be found in [9].

4 PROPOSED STRATEGIES AND ALGORITHMS

This section is organized as follows: In Section 4.1, we
introduce the required notation and in Section 4.2, we
introduce three strategies that solve the problem of hiding
association rules by tuning their confidence and their
support. Few assumptions that we make are presented in
Section 4.3, while the building blocks of the algorithms that
implement those strategies are presented in Section 4.4.

4.1 Notation and Preliminary Definitions

Before presenting the strategies and the algorithms, we
introduce some notation. We used a bitmap notation with a
few extensions to represent a database of transactions.
Bitmap notation is commonly used in the association rule
mining context. In this representation, each transaction ¢ in
the database D is a triple:

t =< TID, values_of iitems, size >,

where TID is the identifier of the transaction ¢ and
values_of Zitems is a list of values with one value for each
item in the list of items I. An item is represented by one
of the initial capital letters of the English alphabet. The
items in an itemset are sorted in lexicographic order. An
item is supported by a transaction ¢ if its value in the
values_of_items is 1 and it is not supported by ¢ if its
value in wvalues_of_items is 0. Size is the number of
1 values which appear in the wvalues_of_items (e.g., the
number of items supported by transaction t). For
example, Table 3 shows a database of transactions where
the set of items is I = {4, B,C}. If ¢ is a transaction that
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contains the items {A,C}, it would be represented as
t =< T6,[101],2 > as shown in the last row of Table 3.

Given a set P, we adopt the conventional representation
|P| to indicate the number of elements of the set P (also
referred to as size or cardinality of P). According to this
notation, the number of transactions stored in a database D
is indicated as |D|, while |I| represents the number of the
different items appearing in D. The set of rules that can be
mined from the database will be indicated by R and the
subset of these rules that we're interested in hiding will be
referred to as Ry. For each rule r in Ry, we use the compact
notation lhs(r) or [, to indicate the itemset which appears in
the left side of a rule r (also referred to as rule antecedent)
and rhs(r) or r, to indicate the itemset which appears in the
right side of a rule (also referred to as rule consequent).

Before going into the details of the proposed strategies, it
is necessary to give some definitions. Given a transaction ¢
and an itemset .S, we say that ¢ fully supports S if the values of
the items of S'in t.values_of_items are all 1; ¢ is said to partially
support S if the values of the items of S in t.values_of_items
are not all 1s. For example, if S = {A, B,C} =[1110] and
p=<T1,[1010],2 >, ¢ = < T2,[1110],3 >, then we would
say that ¢ fully supports S, while p partially supports S.

A rule 7 corresponds to an itemset. This itemset is the
union of the items in the left-hand side and the right-hand
side of the rule. We denote the itemset that corresponds to
rule 7 as I,, and we refer to it as the generating itemset of r.
Notice that two different rules may have the same
generating itemset.

We use the notation 7, to denote the set of transactions
that fully support the generating itemset of a rule . We also
denote by T; the set of transactions that fully support the
left-hand side or the antecedent of the rule r, while by T,
we denote the set of transactions that fully support the
right-hand side of the rule r. We slightly change the
notations to represent a set of transactions that partially
supports an itemset. In the previous notations, we add the
prime symbol in all occurrences of T' to indicate partial
support. So, the set of transactions that fully support the
consequent of the rule but partially support the antecedent
is denoted by 7; .

Let L also be the set of large itemsets with a greater
support than the min_supp and Ly C L be the set of large
itemsets that we want to hide from D. Note that Ly is the
set of generating itemsets of the rules in Ry. We denote
with T’ the set of the transactions that support an itemset Z.
Finally, we denote by Ap = |D| « ATL the average number
of items in the database where ATL is the average
transaction length.

4.2 The Hiding Strategies

The hiding strategies that we propose heavily depend on
finding transactions that fully or partially support the
generating itemsets of a rule. The reason for this is that, if
we want to hide a rule, we need to change the support of
some part of the rule (i.e., decrease the support of the
generating itemset). Another issue is that the changes in the
database introduced by the hiding process should be
limited in such a way that the information loss incurred
by the process is minimal. According to this, we try to apply
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minimal changes in the database at every step of the hiding
algorithms that we propose.

The decrease in the support of an itemset S can be done
by selecting a transaction ¢ that supports S and by setting to
0 at least one of the nonzero values of t.values_of items that
represent items in S. The increase in the support of an
itemset S can be accomplished by selecting a transaction ¢
that partially supports it and setting to 1 the values of all the
items of S in t.values_of _items. As an example, consider the
database in Table 3 and the rules in Table 2 that are
obtained from this database. Given that min_supp = 33%
and min_conf = 70%, we are interested in hiding the rule
AC = B, with support = 50 percent and confidence =
75 percent. In order to decrease the support of the rule
AC = B, we can select the transaction ¢t = < T1,[111],3 >
and turn to 0 one of the elements in the list of items that
corresponds to A, B, or C. Say, we decide to set to 0 the
element corresponding to C, obtaining ¢t = < T'1, [110],2 > .
The rule AC = B has been hidden (support = 33 percent,
confidence = 66 percent).

In order to decrease the confidence of a rule X =Y, we
can decrease the support of its generating itemset, making
sure that we hide items from the consequent or the right-
hand side of the rule. This will decrease the support of the
rule, while leaving the support of the left-hand side
unchanged (i.e., the denominator in the confidence for-
mula). Again, let’s consider the rule AC = B in Table 2. In
order to decrease its confidence, we select the transaction
t =< T1,[111],3 > and turn to 0 the element of the list of
items that corresponds to B. The transaction becomes ¢ =
<T1,[101],2 > and we obtain: AC = B with support =
33 percent and confidence = 50 percent, which means that
the rule is hidden. We can also increase the denominator in
the confidence formula (which is the support of the itemset
in the antecedent) in order to decrease the confidence of the
rule, while the support of the generating itemset of the rule
remains fixed. We can achieve this by modifying the
transactions that partially support the itemset in the
antecedent of the rule but do not fully support the itemset
in the consequent. Let’s consider the rule AC' = B in Table 2
one more time. In order to decrease the confidence, we
select the transaction ¢ = < 7'5,[100],1 > and turn to 1 the
element of the list that corresponds to C. We obtain
t =< T5,[101],2 > . Now, the rule AC = B has support =
50 percent and confidence = 60 percent, which means that
the rule has been hidden since its confidence is below the
min_conf threshold.

Given a rule X = Y on a database D, the strategies that
we developed, based on the observations above, can be
summarized as follows:

I. We decrease the confidence of the rule: 1) by
increasing the support of the rule antecedent X
through transactions that partially support it and
2) by decreasing the support of the rule consequent
Y in transactions that support both X and Y.

2. We decrease the support of the rule by decreasing
the support of either the rule antecedent X, or the
rule consequent Y, through transactions that fully
support the rule.
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4.3 Assumptions

We make the following assumptions in the development of
the algorithms:

1. We hide only rules that are supported by disjoint
large itemsets.

2. We hide association rules by decreasing either their
support or their confidence.

3. We select to decrease either the support or the
confidence based on the side effects on the informa-
tion that is not sensitive.

4. We hide one rule at a time.

5. We decrease either the support or the confidence,
one unit at a time.

Without the first assumption, i.e., if we try to hide
overlapping rules, then hiding a rule may have side effects
on the other rules to be hidden. This may increase the time
complexity of the algorithms since hiding a rule may cause
an already hidden rule to haunt back. Therefore, the
algorithms should reconsider previously hidden rules and
hide them back if they are no longer hidden. We should also
modify the transaction selection mechanism for hiding
overlapping rules so that transactions do not choose the
transactions that support only the antecedent of the over-
lapping rules.

The widely used data mining algorithms first find the
large itemsets whose supports are greater than a threshold
value. Rules are then generated and their confidence is
calculated. When we are hiding a rule by decreasing its
support below the threshold, we do not need to further
reduce its confidence and vice versa. So, reducing the
support or the confidence is enough for hiding a rule which
is stated by the second assumption. Note that, while
decreasing the support of a rule, its confidence will also
decrease. Also, when using the first confidence reduction
method to decrease the confidence, the support of the rule
will also decrease.

The third assumption identifies the main constraint of
the algorithms that aim to maximize the data quality in
terms of nonsensitive information. If we relax this assump-
tion, we can just randomly choose a transaction and an item
to hide from the database without the need for any kind of
heuristic approach.

The fourth assumption is related to the first assumption.
Since the rules to be hidden are assumed to be disjoint, the
items chosen for hiding a rule will also be different for
different rules. Therefore, hiding a rule will not have a side
effect on the rest of the rules. So, considering the rules one
at a time or all together will not make any difference. If we
relax the first assumption, we should reconsider the fourth
assumption as well since items for the hiding process
should be selected carefully taking into account the over-
lapping rules as explained in the discussion of the first
assumption.

The proposed heuristics for rule hiding work step by
step, considering an item and a transaction at each step
which is stated by the fifth assumption. If we relax this
assumption, we can assume that we remove clusters of
transactions and remove items from the whole cluster
which is an entirely different approach.

INPUT: a set Ry of rules to hide, the source
database D, the number |D| of transactions in D,
the min_conf threshold, the min_supp threshold

OUTPUT: the database D transformed so
that the rules in Ry cannot be mined
Begin
Foreach rule 7 in Ry do
{
1. T} = {t € D/ t fully supports . and
partially supports I}
// count how many items of I, are
// in each trans. of T]
2. foreach transaction t in 7; do
{
3. t.num_items= |I|—
|I, N t.values_of_items|
1
// sort transactions of T} in descending
// order of number of items of I,
// contained

4. sort(T} )

5. N_terations = [|D| x (% — supp(l:))]
6. For 2 = 1 to N _zterations do

{

// pick the transaction of T] with the
// highest number of items
7.t =Ty 1
// set to one all the bits of t that
// represent items in L,
8. set_all_ones(t.values_of items, I,.)
9. supp(l,)=supp(l,)+1
10. conf(r)=supp(r)/supp(l,)
LT, =T} - ¢
}
12, RH = RH —=Tr

}
End

Fig. 1. Pseudocode of Algorithm 1.a.

4.4 Algorithms

We now present in detail five algorithms for the strategies
that we developed and that we have already described in
Section 4.2 and we analyze the time complexity of those
algorithms.

4.4.1 Algorithm 1.a

The first algorithm hides the sensitive rules according to the
first strategy: For each selected rule, it increases the support
of the rule’s antecedent until the rule confidence decreases
below the min_conf threshold. An overview of this
algorithm is depicted in Fig. 1.

Given a rule r, Algorithm 1.a starts by generating the set
T, of transactions fully supporting the consequent but
partially supporting the antecedent of r (i.e., [,) and
counting, for each transaction, the number of items of [,
that it contains. From 7}, the transaction that supports the
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highest number of items of [, is then selected as the one
through which the increase of the support of the rule’s
antecedent is accomplished. This step is performed by
sorting the transactions in 7] in decreasing order of number
of items of the I, contained and then selecting the first
transaction. Note that the transaction length is bound,
therefore, we can utilize a sorting algorithm that is of order
O(|T;.]). In order to increase the support of the rule’s
antecedent through ¢, Algorithm 1.a has to set to 1 the
elements in ¢ corresponding to items of /., by choosing the
transaction containing the largest subset of items in /,, the
number of changes made to the database is tried to be
minimized. Once the support of the rule’s antecedent has
been updated, the confidence of the rule is recomputed. A
check is then applied in order to find out if the rule is still
significant. If no further steps are required for the current
rule, another rule is selected from the set Ry. If, on the other
hand, the confidence of r is still greater than (or equal to)
min_conf, Algorithm 1l.a keeps executing the operations
inside the inner loop before selecting a new rule from Rpy.

Lemma 4.1. Given a rule r, Algorithm 1.a performs [|D|x

(= (;jlf — supp(l,))] executions of the inner loop.

Proof. During each execution of the inner loop, the number
of transactions supporting the antecedent of the rule (I,)
is increased by one After k iterations, the confidence of r
will be Conf(r ) Vkl}k'
transactions supporting r and N; is the number of

where N, is the number of

transactions supporting L.
untll Conf(r )
< min_conf. This inequality can be rewritten as

The inner loop is executed

< min_conf or, more specifically,

+k
W N,, < k. From the last inequality, we can derive
that k= [mm P — N, ]. The formula about k£ can be

easily derived by observing that the iterations in the
inner loop terminate as soon as the first integer value
Ny
incorporating the size of database in the formula for £,

we can prove that k= [|D|* (m—%)] or that

k= [1D] % (i — supp(l,)].- 0

4.4.2 Algorithm 1.b

This algorithm hides sensitive rules by decreasing the
frequency of the consequent until either the confidence or
the support of the rule is below the threshold. The
algorithm is depicted in Fig. 2. It starts by generating the
set T, of transactions supporting the rule r and counting the
number of items supported by each one of them. Algorithm
1.b sorts T, in ascending order of transaction size. Then, it
chooses the smallest transaction to minimize the impact on
the database. The item that has the minimum impact on the
database is selected as in the case of Algorithm 1.a. Once the
selected item has been deleted form ¢ and ¢ has been
removed from T,, Algorithm 1.b updates the support and
the confidence of the rule and checks if it’s still significant. If
no further steps are required, another rule is selected from
the set Ry. A new rule is selected from Ry when either the
support or the confidence of the current rule decreases
below the minimum threshold. Therefore, the number of

greater than (or equal to) m . is reached. By
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INPUT: a set Ry of rules to hide, the source
database D, the size of the database |D|, the
min_conf threshold, the min_supp threshold

OUTPUT: the database D transformed so
that the rules in Ry cannot be mined

Begin
Foreach rule r in Ry do
{
1. T, = {t € D/ t fully supports r}
// count how many items are in each
// transaction of T,
2. foreach transaction t in 7, do

{
}

// sort T, in ascending order of
// size of the transactions

3. t.num_items=count(t)

4. sort(T,)

5. N_iter_conf = [|D| * (%Lf supp(l))]

6. N_iter_supp = [|D| * %]

7. N_iterations = min(N gter_conf, N idter_supp)
8. For i=1 to N_terations do

{

// choose the transaction in T,
// with the lowest size
9.t = T,[1]
// choose the item of v,
// with the minimum impact on the
// (Irs| — 1)-itemsets
10. j = choose_item(r,)
// set to zero the bit of t.values_of_items
// that represents item. j

11. set_to_zero(j, t.values_of_items)

12. supp(r)=supp(r) - 1

13. Conf(r)=supp(r)/supp(i,)

4.7, =T, -t

}
15. RH = RH -T

}

End

Fig. 2. Pseudocode of Algorithm 1.b.

executions of the inner loop that are performed by
Algorithm 1.b in order to hide a rule r, is given by the
minimum of the number of iterations required to bring
conf(r) < min_conf and the number of iterations required
to bring supp(r) < min_supp. The number of iterations
required to reduce conf(r) below the threshold is given by
Lemma 4.1. Observe that we can use the same results
obtained for Algorithm 1.a since they are independent from
the specific algorithm. The number of iterations required to
reduce the supp(r) below the minimum threshold is given
by the following lemma.

Lemma 4.2. Given a rule v, Algorithm 1.b takes [|D| 22210

steps to reduce supp(r) below the min_supp threshold.
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INPUT: a set Ry of rules to hide, the source
database D, the size of the database |D|, the
min_conf threshold, the min_supp threshold

OUTPUT: the database D transformed so
that the rules in Ry cannot be mined
Begin
Foreach rule r in Ry do
{
1. T, = {t € D/ t fully supports r}
// count how many items are supported
// by each trans. of T,
2. foreach transaction t in 7, do

{

3. t.num_items=count(t)

}

// sort T, in ascending order of
// size of the transactions

4. sort(T,)
5. Niter_conf = [|D] * (% supp(l,))]
. _ Supplr
6. Nter_supp = [|D| * 5]
7. N_iterations = min{N _iter_conf, N iter_supp)
8. For i=1 to N_terations do
{

// choose the transaction in T,
// with the lowest size
9. t = T,[1]
// choose the item of r
// with the minimum impact on the
// (Ir] = 1)-itemsets
10. j = choose_item(r)
// set to zero the bit of t.list_of_items
// that represents item j

11. set_tozero(j, t.values_of_items)

12. supp(r)=supp(r) - 1

13. Conf(r)=supp(r)/supp(l,)

4.7, =T, -t

}
15. RH = RH - Tr

}
End

Fig. 3. Pseudocode of Algorithm 2.a.

Proof. During each execution of the inner loop, the number of
transactions supporting the rule r is decreased by one.

Therefore, after the k iteration, the support will be

Supp(r)* = N5,

supporting r. The number of steps required to reduce the

where N, is the number of transactions

support below the min_supp threshold is given by the

(njzljff)((or)zf - Supp(l ))—‘ or,

equivalently, byN"Tik < min,supp The previous 1nequa1ity

sor D] x

following relation k= [|D|*

can be rewritten as \D|7 < 1Dy <k

*MAN_SUPP | D)*min_supp

We can then derive the Value for k as follows k =

[|D] * et
Min_supp

1 since k is an integer. a

4.4.3 Algorithm 2.a

This algorithm decreases the support of the sensitive rules
until either their confidence is below the min_conf thresh-
old or their support is below the min_supp threshold. Fig. 3
shows the pseudocode.

Algorithm 2.a first generates the set 7, of transactions
supporting the rule r and counts the number of items
supported by each of them. Then, it sorts 7, in increasing
order of transaction size and chooses the first transaction in
the so ordered 7, trying to minimize the impact on the
database. The item to be removed is selected according to
the “minimum impact” criterion as in the previous cases.
Once the chosen item has been deleted form ¢ and ¢ has
been removed from 7., support and confidence of the rule is
updated to check if it is still significant. Another rule is
selected from the set Ry when support or confidence of the
current rule is below the threshold. The number of
executions of the inner loop performed by Algorithm 2.a
is therefore given by the smallest between the number of
iterations required to bring conf(r) < min_conf and the
number of iterations required to bring supp(r) < min_supp.
According to the results from Lemma 4.1 and Lemma 4.2,
we can state that this number is the minimum between
(1D Gty — supp(i))] and [|D]+ ;2500 denoted by
N_iterations in Fig. 3.

4.4.4 Algorithm 2.b

This algorithm hides sensitive rules by decreasing the
support of their generating itemsets until their support is
below the minimum support threshold. An overview of this
algorithm is depicted in Fig. 4. The item with maximum
support is hidden from the minimum length transaction.
The generating itemsets of the rules in Ry are considered
for hiding. The generating itemsets of the rules in Ry are
stored in Ly and they are hidden one by one by decreasing
their support. The itemsets in Ly are first sorted in
descending order of their size and support. Then, they are
hidden starting from the largest itemset. If there are more
than one itemset with maximum size, then the one with the
highest support is selected for hiding. The algorithm works
like follows: Let Z be the next itemset to be hidden. The
algorithm hides Z by decreasing its support. The algorithm
first sorts the items in Z in descending order of their
support and sorts the transactions in 7 in ascending order
of their size. The size of a transaction is determined by the
number of items it contains. At each step, the item ¢ € Z,
with maximum support is selected and removed from the
transaction with minimum size to minimize the impact on
the database. The execution stops after the support of the
current rule to be hidden goes below the minimum support
threshold. Given a large itemset, Z is to be hidden.

4.4.5 Algorithm 2.c

This algorithm hides sensitive rules by decreasing the
support of their generating itemsets until the support is
below the minimum support threshold. If there are more
than one large itemsets to hide, the algorithm first sorts the
large itemsets with respect to their size and support as
Algorithm 2.b does. Formally, let the next itemset to be
hidden be Z. Algorithm 2.c hides Z from D by removing the
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INPUT: a set L of large itemsets, the set Ly
of large itemsets to hide, the database D and
the min_supp threshold
OUTPUT: the database D modified by the
deletion of the large itemsets in Ly
Begin
//sort Ly in descending order of size and support
1. sort(Ly)
//Ty is the data structure that keeps the
//transactions that support Ly
2. Ty = {Tzlz € Ly and
Vte D :teTy = tsupports Z}
foreach Z in Ly
{
//sort Tz in ascending order
//of transaction size
3. sort(Ty)
4. Niterations = |Tz| — min_supp * | D|
For k =1 to N_iterations do
{
//get the top transaction of Ty
//and delete it from Ty
5. t = popfrom(Ty)
6. a = maximal support item in Z
//as is the collection of itemsets
// that contain item a
. a5={XELH|aEX}
// Propagate the effects of deleting a from t
//to other itemsets in Ly
// that are supported by t
foreach X in ag
{
8. if (tin Tx)
9. delete(?,Tx)
}
// Delete item a from transaction t
//in database D
10. delete(a,t, D)

}

}
End

Fig. 4. Pseudocode of Algorithm 2.b.

items in Z from the transactions in T, in round-robin
fashion. The algorithm starts with a random order of items
in Z and a random order of transactions in 7. Assume that
the order of items in Z be 4y, 41, . . ., i(,—1) and let the order of
transactions in Tz be ty,t1,....,t4—1). In step 0 of the
algorithm, the item 4, is removed from ¢,. At step 1, i; is
removed from ¢, and, in general, at step k, item i(; 04 n) iS
removed from transaction t;. The execution stops after the
support of the current itemset, to be hidden, goes below the
minimum support threshold. The algorithm is fairly simple
and due to the space limitations, we do not provide the
pseudocode for it. Algorithm 2.c is the base algorithm
which is going to be used for comparison with more
sophisticated algorithms for reducing the support and
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TABLE 4
The Data Sets Used in the Evaluation Trials
[D] ][] ATL
10k | 50 5
50k | 50 5
100k | 50 5

confidence of the rules. The intuition behind the idea of
hiding in round-robin fashion is fairness. This way, no item
is overkilled and the chance of having a smaller number of
side effects is higher than choosing an item at random and
always trying to hide it.

5 PERFORMANCE EVALUATION

We performed our experiments on a SPARC workstation
with 400 MHz processor and with 1 GB of main memory,
under SunOS 5.6 operating system. In order to generate the
source databases, we made use of the IBM synthetic data
generator. The performance of the developed algorithms has
been measured according to two criteria: time requirements
and side effects produced. As time requirements, we
considered the time needed by each algorithm to hide a
specified set of rules; as side effects, we considered the
number of “lost” rules and the number of “new” rules
introduced by the hiding process. Hiding rules produces
some changes in the original database, changes that affect
the set of rules mined. In particular, not all the rules that can
be mined from the source DB can still be retrieved in the
released DB and some rules that couldn’t be mined in the
source DB can be retrieved after the hiding process. We call
the former rules “lost rules” and the latter rules “new rules.”

To assess the performance of the proposed algorithms,
we used them to hide sets of 5 and 10 rules mined from the
data sets of Table 4, each time measuring the time required
by the hiding process. For each data set, we generated all
the rules that have minimum support and minimum
confidence and we stored them in an appropriate data
structure. After the completion of the hiding process, we
mined the released database and then we compared the
rules generated by the two databases in the following way:
We checked if the nonsensitive rules mined from the source
database could still be mined in the released database. To
do so, we compared each rule mined from the original
database with each rule mined form the released DB. If the
rule wasn’t found, we considered it “lost.” Note that this
process of rule checking tends to consider the rules selected
for hiding as “lost” since they cannot be retrieved from the
released database. However, since they have been hidden
on purpose, we excluded them from the set of “lost rules.”

Once all the “lost rules” had been determined, we
checked if any new rule had been introduced by the hiding
process. To do so, we computed the difference between the
number of rules mined from the released DB and the
number of rules mined from the source database and
subtracting from this difference the number of rules lost. If
the result is greater than zero, it gives the number of the
“new rules” introduced.
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Time Requirements for Algorithm 1.a

Side Effects Evaluation for Algorithm 1.a
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Side Effects for Algorithm 1.a

for ATL =5, [I| =50
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Fig. 5. Evaluation of Algorithm 1.a.

Time Requirements for Algorithm 1.b
for ATL =5, || =50
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Fig. 6. Evaluation of Algorithm 1.b.

5.1 Performance Evaluation of Algorithm 1.a

The time requirements and side effects evaluation for
Algorithm 1.a are shown in Figs. 5a, 5b, and 5c, respec-
tively. As depicted from Fig. 5a, the time needed by
Algorithm 1l.a is linear in |D| and |Ry/|, according to the
theoretical analysis and to the validation results. The
increase of the support of the antecedent of a set of rules
increases the number and the size of the frequent itemsets;
the effect is two-fold: The existing nonsensitive rules cannot
reach the minimum requirements in the released database
(rules lost) and the rules, whose support or confidence—in
the source database—did not reach the minimum threshold,
now they do in the released database (new rules). As Fig. 5b
shows, the number of nonsensitive rules lost does not
depend neither on the number of transactions in the
database nor on the number of rules selected for hiding.
In the opposite, the number of new rules generated depends
on |Ry|: As Fig. 5c shows, the number of new rules
introduced by Algorithm 1.a increases when |Ry/| increases.
We experienced that, if we hide larger sets of rules, a larger
number of new frequent itemsets is introduced and,
therefore, an increasing number of new rules is generated.

5.2 Performance Evaluation of Algorithm 1.b

The time needed by Algorithm 1.b increases proportionally
to |D| and | Ry|, as Fig. 6a shows. This is in accordance to the
theoretical analysis and to the validation results.
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Fig. 6b gives the number of rules mined from the source
database that cannot be mined after the hiding process; as
can be seen, the number of nonsensitive rules lost by
Algorithm 1.b increases when |Ry| increases. The peak in
correspondence to the 50k data set can be explained by
looking at the characteristics of the rules hidden. As Table 5
shows, the fourth rule selected in the 50k data set has a very
high support and there are no such rules in the other two
data sets. Moreover, the support of the antecedent of this
rule was also very high. To hide this rule required the
deletion of its consequent from numerous transactions
supporting it. This results to the increase of the number of
nonsensitive rules whose support or confidence decreased
below the threshold. For the Algorithm 1.b, new rules can
be generated starting from those that have support greater
than (or equal to) the min_supp but confidence lower than
min_conf: If the deletion of some literals decreases the
support of the antecedent of these rules, so that their
confidence overcomes the minimum threshold, these rules
become nonsensitive. As depicted in Fig. 6¢, the number of
new rules is quite low and tends to decrease when the
number of transactions in the database increases. We can
therefore say that the changes, introduced by Algorithm 1.b
to hide the rules of Tables 5 and 6, reduce the number of
nonsensitive rules mined from the original database
proportionally to |Ry|, but slightly affect the number of
rules that become nonsensitive.
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TABLE 5
Fives Rules Selected for Hiding
from Databases of Size 10k, 50k, and 100k

|DB| | Rules Support | Confidence
8§25 =45 2.25% 40.34%
12 27 =21 2.15% 37.95%
10k | 6=43 2.44% 30.56%
37=138 2.04% 27.09%
28 = 31 2.57% 23.87%
8§25 =45 2.18% 39.71%
1227 =21 2.40% 36.83%
50k | 6 =43 2.30% 29.14%
1= 38 4.65% 25.86%
10 = 27 2.24% 21.60%
8§25 =45 2.19% 39.91%
1227 =21 2.36% 36.35%
100k | 6 = 13 2.33% 29.87%
37 =38 2.02% 26.47%
1=10 2.27% 21.59%

5.3 Performance Evaluation of Algorithm 2.a

The time needed by Algorithm 2.a increases proportionally
to |D| and |Ry|, as Fig. 7a shows. This is consistent with the
theoretical analysis and the validation results. Fig. 7b gives
the number of rules mined from the source database that
cannot be mined after the hiding process. As it can be seen,
the number of nonsensitive rules lost by Algorithm 2.a
increases when |Ry| increases. Regarding the peak perfor-
mance of Algorithm 2.a for the 50k data set, the same
considerations made for Algorithm 1.b, apply. Like Algo-
rithm 1.b, new rules are generated by Algorithm 2.a when
the deletion of some literals decreases the support of the
antecedent of some (minimum support, but not minimum
confidence) rules so that their confidence overcomes the
minimum threshold. Fig. 7c gives the number of new rules
mined from the database after hiding the rules of Tables 5
and 6. As shown, the number of new rules introduced tends
to decrease when the number of transactions in the database
increases. Furthermore, similar with the Algorithm 1.b, the
changes introduced by Algorithm 2.a reduce the number of
nonsensitive rules mined from the original database

Time Requirements for Algorithm 2.a
for ATL =5, [I| = 50

Side Effects for Algorithm 2.a
for ATL =5, || = 50
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TABLE 6
Five Additional Rules for Hiding
from Databases of Size 10k, 50k, and 100k

|DB| | Rules Support | Confidence
3325 =46 2.02% 22.82%
10 =48 2.16% 21.21%
10k |[0=1 2.77% 20.65%
4= 35 2.55% 18.76%
3=32 2.22% 18.02%
46 = 48 3.50% 20.58%
4=35 2.63% 19.11%
50k | 32=39 2.02% 18.19%
0=2 2.19% 16.05%
3=5 2.20% 15.89%
3=27 2.59% 20.74%
46 = 48 3.46% 20.24%
100k | 4= 35 2.64% 18.96%
2= 32 2.58% 16.27%
0=5 2.11% 15.41%

proportionally to |Ry|, but slightly affect the number of
rules that become nonsensitive.

5.4 Performance Evaluation of Algorithm 2.b

The time requirements of Algorithm 2.b are shown in Fig. 8a
for large-scale data. Fig. 8a shows the results when five and
10 rules are hidden for data sets of size 10k, 50k, and 100k.
As can be seen from the figure, the time requirements for
hiding a set of rules increase linearly with the database size
for large data sets as well. In fact, the linear behavior is
more obvious for larger scale data. Another observation is
that the time requirements for hiding 10 rules are higher
than hiding five rules which is also another expected result.

Evaluation of side effects in terms of the lost rules and
the new rules as a result of the hiding process are shown in
Fig. 8b and 8c. We can see from Fig. 8b that the number of
rules lost after hiding 10 rules is higher than the number of
rules lost after hiding five rules. This is an intuitive result
since hiding more rules means deleting more items,
therefore, more side effects in terms of the number of rules
lost. One would expect that the size of the database would
not change the characteristics of the rules in the database;
therefore, the side effects would be more or less similar for

Side Effects for Algorithm 2.a
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Fig. 7. Evaluation of Algorithm 2.a.
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Time Requirements for Algorithm 2.b

for ATL =5, [1| =50
50,0 .

Side Effects Evaluation for Algorithm 2.b
for ATL =5, |I| =50
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Fig. 8. Evaluation of Algorithm 2.b.
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Fig. 9. Evaluation of Algorithm 2.c.

different database sizes. However, we observed an un-
expected behavior in the number of rules lost which is
shown in Fig. 8b. When we look closely at the rules selected
to be hidden, we can see why this happens. Since we choose
the rules to be hidden randomly, the selected rule set affects
the performance of the algorithms in terms of the side
effects. The sets of rules hidden for different database sizes
are shown in Table 5 and Table 6. Table 5 shows the five
rules selected to be hidden for different databases together
with their support and confidence values. Table 6 shows the
additional five rules selected to bring the number of rules to
be hidden to 10. In the set of five rules selected for hiding
for the database of 50k transactions, we can see that there is
arule, 1 = 38 with support 4.65%, and in the additional five
rules, there is a rule, 46 = 48, with support 3.50%. When we
look at the rule sets for 10k and 100k transactions, we can
see that all the rules have their support less than 4%. To
hide a rule with high support, more items need to be
removed from transactions which will increase the number
of rules lost. And, the rule with a high support selected for
hiding in the 50k transactions case explains the abnormal
behavior in the rules lost which is more obvious for the case
of hiding five rules.

5.5 Performance Evaluation of Algorithm 2.c

The time requirements of Algorithm 2.c are shown in Fig. 9a
for large-scale data. Fig. 9a shows the results when five and

50000 . 90000
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Side Effects Evaluation for Algorithm 2.c
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10 rules are hidden for data sets of size 10k, 50k, and 100k.
As it can be seen from the figure, the time requirement for
hiding a set of rules increases linearly with the database
size. Also, the time requirement for hiding 10 rules is higher
than hiding five rules which is also an expected result.
Evaluation of side effects in terms of the rules lost as a
result of the hiding process are shown in Fig. 9b. The
number of rules that are lost when hiding 10 rules is higher
that the number in the case of hiding five rules. This is an
intuitive result since hiding more rules will affect more
rules. We did not include the graphs depicting the number
of new rules introduced by Algorithm 2.c since there are no
new rules introduced. This may first seem counterintuitive
since Algorithm 2.c is a naive algorithm that emphasizes
fairness by removing items from transactions in a round-
robin fashion. Algorithm 2.c chooses the transactions
randomly as opposed to choosing the smallest transaction
in size, therefore it will probably choose mostly average size
transactions which will have small side effects to the
confidence of the other rules. This will be clearer with an
example. Suppose that we would like to decrease the
support of a rule A = B. The smallest possible transaction
that supports this rule is {4, B} and suppose that such a
transaction exists. Removing A from that transaction will
cause the confidence of the rules (other than A = B) that
contain A in their antecedent to increase which will cause
the introduction of new rules observing the minimum
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Time Requirements for Large Scale Data
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Fig. 10. Time requirements for hiding (a) 5 rules and (b) 10 rules.

Side Effects for Large Scale Data
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Fig. 11. New rules introduced after hiding (a) 5 rules and (b) 10 rules.

confidence requirement. However, for average size transac-
tions, this will probably not be the case since they will
contain both the antecedent and the consequent of the rules
and the confidence of these rules will decrease upon the
removal of A.

5.6 Comparative Evaluation of the Algorithms

The time requirements of the proposed algorithms are shown
in Fig. 10a and Fig. 10b for hiding five and 10 rules,
respectively. In both cases, Algorithm 1.b and Algorithm 2.c
perform very similar to each other and they have the lowest
time requirement. Algorithm 1.a has the highest time
requirement.

The evaluation of side effects, in terms of the new rules
introduced, is shown in Fig. 11a and 11b for hiding five and
10 rules, respectively. We did not include the number of rules
introduced for Algorithm 1.a since it introduces new rules in
the order of thousands. On the contrary, Algorithm 2.c does
not introduce any new rule; therefore, it is not included in
Figs. 11a and 11b either. In terms of the number of rules
introduced, all the algorithms behave similarly, introducing
only a few rules, except Algorithm 2.c, which does not
introduce new rules at all and Algorithm 1.a, which
introduces an unacceptable number of new rules.

Performance results in terms of the number of rules lost
are shown in Figs. 12a and 12b for five and 10 rules to be
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Time Requirements for Large Scale Data
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hidden. In terms of the number of rules lost, Algorithm 1.a
is the best performing algorithm in both Figs. 12a and 12b.
Algorithm 2.b also hides fewer rules if compared to the
other algorithms in both figures. Algorithm 2.c is the worst
with respect to the number of rules lost (see Fig. 12b), but it
is still close, in performance, to the other algorithms.

6 DiscussiON ON THE PosSSIBLE DAMAGE IN
TERMS OF QUERY RESULTS

Possible queries on a database of transactions could be
selection and projection which may also involve statistical
operations, and maybe a temporal extension to those. In
terms of data mining, users would like to know what are the
maximal set of items purchased having a count greater than
a threshold value. These types of queries cannot be
answered by standard querying tools. But, queries such as
what is the count of transactions where milk and bread are
purchased together can be answered by the standard
querying tools. Users may also ask queries that return a
set of transactions in the database. Given the time-stamp of
each transaction, users may want to write queries with a
temporal dimension such as how many customer transac-
tions for April, 2002 contain both milk and bread.

Among statistical operations, min, max, and average
does not make sense in a database of binary values where
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Side Effects for Large Scale Data
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Fig. 12. Rules lost after hiding (a) 5 rules and (b) 10 rules.

quantities of items sold, or price information is not
involved. Therefore, we will not consider these types of
queries in our discussion.

Queries that return a set of transactions may be
considered as microqueries and the queries that return
only statistical information can be considered as macrolevel
queries. Given a set of rules R) that are hidden from the
database D, we can construct a view of the database D,
where D, is a subset of D which consists of the transactions
not modified by the hiding process. IDs of modified
transactions could be released so that D, could be easily
constructed. Macrolevel queries whose results are a subset
of D, return correct results. The rest of the queries may
return incorrect results. This is also true for queries that
involve a temporal dimension. In order to improve the
correctness of temporal queries, the hiding process may be
biased over older transactions, this way ensuring the
correctness of queries over more recent transactions.

Queries that contain count operation return correct
results if they are issued over items that are not used by
the hiding process. We can also give a maximum error
range for the count queries which can be used by the user to
have a rough idea of the error in the returned count values.
This maximum error could be the highest support reduction
percentage among the items used by the hiding strategies.

In terms of data mining, the user would like to obtain
association rules from the database. In the previous section,
we have already discussed the side effects of the hiding
process in terms of the hidden or newly appearing
association rules.

7 CONCLUSIONS

In this paper, we presented two fundamental approaches in
order to protect sensitive rules from disclosure. The first
approach prevents rules from being generated by hiding the
frequent sets from which they are derived. The second
approach reduces the importance of the rules by setting
their confidence below a user-specified threshold. We
developed five algorithms that hide sensitive association
rules based on these two approaches. The first three
algorithms are rule-oriented. In other words, they decrease
either the confidence or the support of a set of sensitive
rules, until the rules are hidden. This can happen either
because the large itemsets that are associated with the rules
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are becoming small or because the rule confidence goes
below the threshold. The last two algorithms are itemset
oriented. They decrease the support of a set of large
itemesets until it is below a user-specified threshold, so that
no rules can be derived from the selected itemsets.

We also measured the performance of the proposed
algorithms according to two criteria: 1) the time that is
required by the hiding process and 2) the side effects that
are produced. As side effects, we considered both the loss
and the introduction of information in the database. We
loose information whenever some rules, originally mined
from the database, cannot be retrieved after the hiding
process. We add information whenever some rules, that
could not be retrieved before the hiding process, can be
mined from the released database.

We compared the proposed algorithms on the base of the
results of these experiments and we concluded that there is
not a best solution for all the metrics. The choice of the
algorithm to adopt depends on which criteria one considers
as the most relevant: the time required, the information loss,
or the information that is added.

Some assumptions have been made for the development
of the proposed algorithms. We are currently considering
extensions on these algorithms by dropping these assump-
tions. Another interesting issue, which we plan to investi-
gate, is the application of the ideas introduced in this paper to
other data mining contexts, such as classification mining,
clustering, etc.

ACKNOWLEDGMENTS

This work was partially funded by the Information Society
Technologies programme of the European Commission,
Future, and Emerging Technologies under the IST-2001-
39151 CODMINE project.

REFERENCES

[1] N.R. Adam and ]J.C. Wortmann, “Security-Control Methods for
Statistical Databases: A Comparison Study,” ACM Computing
Surveys, vol. 21, no. 4, pp. 515-556, 1989.

[2] B.Thuraisingham and W. Ford, “Security Constraint Processing in
a Multilevel Secure Distributed Database Management System,”
IEEE Trans. Knowledge and Data Eng., vol. 7, no. 2, pp. 274-293, Apr.
1995.

[3] D.G. Marks, “Inference in MLS Database,” IEEE Trans. Knowledge
and Data Eng., vol. 8, no. 1, pp. 46-55 Feb. 1996.



VERYKIOS ET AL.: ASSOCIATION RULE HIDING

[4] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,
Advances in Knowledge Discovery and Data Mining. AAAI Press/The
MIT Press, 1996.

[5] D.E. OLeary, “Knowledge Discovery as a Threat to Database
Security,” Proc. First Int'l Conf. Knowledge Discovery and Databases,
pp. 107-516, 1991.

[6] C. Clifton and D. Marks, “Security and Privacy Implications of
Data Mining,” Proc. 1996 ACM Workshop Data Mining and
Knowledge Discovery, 1996.

[71 C. Clifton, “Protecting against Data Mining through Samples,”
Proc. 13th IFIP WG11.3 Conf. Database Security, 1999.

[8] T.Johnsten and V.V. Raghavan, “Impact of Decision-Region Based
Classification Mining Algorithms on Database Security,” Proc.
13th IFIP WG11.3 Conf. Database Security, 1999.

[9] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V.
Verykios, “Disclosure Limitation Of Sensitive Rules,” Proc.
Knowledge and Data Exchange Workshop, 1999.

[10] R. Agrawal and R. Srikant, “Privacy Preserving Data Mining,”
Proc. ACM SIGMOD Conf., 2000.

[11] D. Agrawal and C.C. Aggarwal, “On the Design and Quantifica-
tion of Privacy Preserving Data Mining Algorithms,” Proc. ACM
PODS Conf., 2001.

Vassilios S. Verykios received the Diploma
degree in computer engineering from the Uni-
versity of Patras, Greece, in 1992. From 1992 to
1994, he worked as a software engineer at
FIRST Informatics S.A. In 1995, he started
' graduate studies in the Computer Sciences
Department at Purdue University, Indiana, where
V he received the master's and PhD degrees in
1997 and 1999, respectively. In 1999, he joined
‘ the Division of Information Systems in the
College of Informat|on Science and Technology at Drexel University,
Pennsylvania, as a tenure track assistant professor. He has published
more than 30 research papers in various areas such as databases, data
mining, database security, and data cleaning, and he has been on the
program committees of several international conferences and work-
shops. He has consulted for Bellcore/Telcordia Technologies, Choice-
Maker Technologies, the US Naval Research Laboratory, and
INTRACOM S.A. Since April 2002, he has worked in the Data and
Knowledge Engineering Group at the Research and Academic Computer
Technology Institute in Patras, Greece. He is a member of the IEEE.

Ahmed K. Elmagarmid received the BSc
degree from the University of Dayton, the MS
and PhD degrees from the Ohio State Uni-
versity in 1977, 1980, and 1985, respectively.
He is responsible for software strategy coming
out of the corporate CTO office. As chief
scientist in the Office of Strategy and Technol-
ogy, he contributes to cross company roadmap
initiatives and serves on the technology council
for Hewlett Packard (HP). He works closely
with the business units to identify areas of leverage in the software
directions for HP. Dr. EImagarmid was director of the Indiana Center
for Database Systems and the Indiana Telemedicine Incubator. He is
on leave from Purdue University where he serves as a professor of
computer science. He also served on the faculty at Pennsylvania State
University and the University of Padua. He has worked on long-term
consulting engagements with Harris Commercial systems, IBM,
Bellcore, Telcordia, MDL, UniSql, MCC, CSC, DoD, the Padua
Chamber of Commerce, and the Italian Government. He received a
US National Science Foundation Presidential Young Investigator
award from President Ronald Reagan, and distinguished alumni
awards from Ohio State University and the University of Dayton in
1988, 1993, and 1995, respectively. Dr. Elmagarmid is the editor-in-
chief of Distributed and Parallel Databases: an International Journal,
editor of the IEEE Transactions on Knowledge and Data Engineering,
Information Sciences Journal, Journal of Communication Systems, and
editor of the book series on advances in database systems. He has
written six books and more than 150 papers in database systems. He
is a senior member of the IEEE.

447

Elisa Bertino is professor of database systems
in the Department of Computer Science at the
University of Milan where she is currently the
chair of the department. She has also been on
the faculty of the Department of Computer and
Information Science at the University of Genova,
Italy. Until 1990, she was a researcher for the
Italian National Research Council in Pisa, ltaly,
where she headed the Object-Oriented Systems
Group. She has been a visiting researcher at the
IBM Research Laboratory (now Almaden) in San Jose, at the
Microelectronics and Computer Technology Corporation in Austin,
Texas, at George Mason University, at Rutgers University, at Purdue
University, and at Telcordia Technologies. Her main research interests
include database security, object-oriented databases, distributed data-
bases, deductive databases, multimedia databases, interoperability of
heterogeneous systems, integration of artificial intelligence, and
database techniques. In those areas, Dr. Bertino has published more
than 200 papers in all major refereed journals and in proceedings of
international conferences and symposia. She is a coauthor of the books
Object-Oriented Database Systems—Concepts and Architectures (Ad-
dison-Wesley International Publishers, 1993), Indexing Techniques for
Advanced Database Systems (Kluwer Academic Publishers, 1997), and
Intelligent Database Systems (Addison-Wesley International Publishers,
2001). She is member of the advisory board of the IEEE Transactions on
Knowledge and Data Engineering and a member of the editorial boards
of several scientific journals, incuding the ACM Transactions on
Information and System Security, IEEE Internet Computing, the Very
Large Database Systems (VLDB) Journal, the Parallel and Distributed
Database Journal, the Journal of Computer Security, Data and Knowl-
edge Engineering, the International Journal of Information Technology,
the International Journal of Cooperative Information Systems, and
Science of Computer Programming. She has been a consultant to
several Italian companies on data management systems and applica-
tions and has given several courses to industries. She is involved in
several projects sponsored by the EEC. She is a fellow of the IEEE and
a member of ACM, and has been been named a Golden Core Member
for her service to the IEEE Computer Society. She has served as a
program committee member of several international conferences, such
as ACM SIGMOD, VLDB, ACM OOPSLA, as program cochair of the
1998 IEEE International Conference on Data Engineering (ICDE), as
program chair of the 2000 European Conference on Object-Oriented
Programming (ECOOP 2000), and as program chair of the Seventh
ACM Symposium of Access Control Models and Technologies
(SACMAT 2002).

Yucel Saygin received the PhD degree in
computer engineering from Bilkent University,
Turkey, in 2001. He is currently an assistant
professor in the Faculty of Engineering and
Natural Sciences, Sabanci University, Turkey.
His main research interests include mobile data
management, data mining, and data confidenti-
ality against data mining methods. He is a
member of the IEEE.

Elena Dasseni graduated from the Computer
Science Department at the University of
Milan, Italy. She is currently a software
engineer for a software house in Milan, ltaly,
. where she’s been developing distributed java
applications for privacy protection. During the
past year, she has been involved in the
@ i 4 design and development of the W3C P3P
' } a standard for the European Joint Research
Centre. She has been a research assistant at
the Purdue University ICDS in Lafayette, Indiana, where she
contributed in searching and developing strategies to protect
sensitive information stored in databases. Her main research
interests include security and privacy protection over the networks,
criptography and PKI infrastructures, database security, object-
oriented databases, distributed databases, and wireless networks.




