CERIAS Tech Report 2004-58
SECURE GROUP COMMUNICATION USING ROBUST CONTRIBUTORY KEY AGREEMENT
by C. Nita-Rotaru, Y. Amir, Y. Kim, J. Schultz, J. Stanton, and G.Tsudik
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086

Secure Group Communication Using Robust Contributory Key

Agreement*

Yair Amir Yongdae Kim Cristina Nita-Rotaru John Schultz

Jonathan Stanton Gene Tsudik

Abstract

Contributory group key agreement protocols generate grays based on contributions of all group
members. Particularly appropriate for relatively small cditarative peer groups, these protocols are
resilient to many types of attacks. Unlike most group key thstion protocols, contributory group key
agreement protocols offer strong security properties, saghkey independence and perfect forward se-
crecy. This paper presents the first robust contributorydgagement protocol resilient to any sequence
of group changes. The protocol, based on the Group Diffie-Helloasutributory key agreement, uses
the services of a group communication system supportinga¥iBunchrony semantics. We prove that
it provides both Virtual Synchrony and the security projgerbf Group Diffie-Hellman, in the presence
of any sequence of (potentially cascading) node failuesyveries, network partitions and heals.

We implemented a secure group communication service, Secwgadsfrased on our robust key
agreement protocol and Spread group communication systemustralte its practicality, we compare

the costs of establishing a secure group with the proposetbpol and a protocol based on centralized

*This work was supported in part by a grant from the National8gcAgency under the LUCITE program and by grant
F30602-00-2-0526 from the Defense Advanced Research Fsdjgency. Parts of this work have appeared as conference
publication in ICDCS 2000 [2] and ICDCS 2001 [4].

group key management, adapted to offer equivalent secuopepties.

Keywords: security, group communication, contributorgup key agreement, fault tolerance, cryp-

tographic protocols, robustness.

1 Introduction

Many collaborative settings such as audio- and video-genfgng, white-boards, clustering and
replication applications, require services which are noved by the current network infrastructure.
A typical collaborative application operates as a peer gmwhere members communicate via reliable
many-to-many multicast, sometimes requiring reliableeoed message delivery. In some settings,
group members must be aware of the exact (agreed upon) gremybenship. Since group communica-
tion systems provide these services, many collaboratigkcgions use group communication systems
(GCYS) as the underlying messaging infrastructure.

Security is crucial for distributed and collaborative apglions that operate in a dynamic network en-
vironment and communicate over insecure networks suctedsatifrnet. Basic security services needed
in such a group setting are largely the same as in point-tatgommunication: data secrecy and in-
tegrity, and entity authentication. These services cabhaaittained without secure, efficient and robust
group key management. Many critical applications (e.g.,tamyiand financial) applications, require
that all intra-group communication to remain confidenti@bnsequently, not only sufficiently strong
encryption must be used to protect intra-group messagéshéwnderlying group key management
must also provide strong security guarantees.

Group keys can be viewed as a sequence of values sorted by time,ofith each key corresponding
to a different “snapshot” of a group. A group key is changedméver the group changes or a periodic
re-key is needed. The strongest known security guaranteé®wnindependencand perfect forward
secrecy(PFS). Key independence states that a passive adversary,-+whe worst case, might know
all group keys except one — cannot use its knowledge to disdbeeone key that is missing. PFS

demands that the compromise of group members’ long-termm &leguld not lead to the compromise of

any previously used group keys (see [41] for formal defingijo

Contributory group key agreement protocols that compute@amkey as a (usually, one-way) func-
tion of individual contributions from all members, can pide both key independence and PFS prop-
erties. At the same time, contributory group key agreemesdeuts a tough practical challenge: its
multi-round nature must be reconciled with the possibilitgrashes, partitions and other events affect-
ing group membership, that can occluringthe execution of the group key agreement. Therefore, this

paper focuses orobust contributory group key agreement.

1.1 Group Key Management

Traditional centralized key management relies on a singéelfkey server to generate and distribute
keys to the group. This approach is not well-suited for groommunication systems that guarantee
continuous operation in any possible group subset and dityaaly number of partitions in the event of
network partitions or faults. Although a key server can be @m@hstantly available and attack-resistant
with the aid of various fault-tolerance and replication t@gles, it is very difficult (in a scalable and
efficient manner) to make a centralized server present iry@assible group subset. We note that cen-
tralized approaches work well in one-to-many multicast ades since a key server (or a set thereof),
can support continued operation within an arbitrary partias long as it includes the source.

The requirement to provide continued operation in an atyitpartition can be overcome by dynami-
cally selecting a group member to act as a group key server. Howaost centralized key distribution
protocols do not provide strong security properties sudtegsndependence and PFS. These properties
can only be provided if the key server maintains pairwise echannels with each group member in
order to distribute group keys. Although this approach seappealing, each time a new key server
comes into play, significant costs must be incurred to setaiipvjse secure channels. In addition, this
method has a disadvantage (common to all centralized fi@agesmethods) in that it relies on a single
entity to generate good (i.e., cryptographically strongyican keys.

Our approach is to use a fully distributed, contributory grdeey management algorithm where a

group key is not selected by one entity, but, instead, is atfon of each group member’s contribution.

3

This avoids the issues with centralized trust, single pdifaiture (and attack) and the requirement to
establish pairwise secret channels, and provides strongtygeroperties such as forward and backward

secrecy, key independence and PFS [41].

1.2 Goal and Contribution

Secure, robust and efficient key management is criticaldouie group communication. However,
designing key management protocols that are robust anceeffia the presence of network and process
faults is a big challenge. The goal of this work is to providelust and secure group communication
that offers Virtual Synchrony (VS) [14] semantics. Our cdmition is three-fold:

1. We present the first robust contributory key agreemenbpats that are resilient to arfinite

(even cascading) sequence of events. Our protocols (bagiomtimized) are based on Group

Diffie-Hellman (GDH) [49] key agreement.

2. We design a robust and secure group communication sdyyicembining our robust key agree-
ment with a reliable group communication service. We proe the resulting system preserves

the Virtual Synchrony properties as well as the security ertigs of GDH.

3. We provide an insight into the cost of adding security isex/to GCS, focusing on group key
management costs. We describe the implementation of aesgoomp communication service —
Secure Spread — based on our optimized robust key agreena¢otql and the Spread [7] group
communication system. We present experimental resultsunieg the delay incurred by a group
installing a secure membership following group membershgnges. The cost of establishing a
secure group when our protocol is used, is compared with theo€establishing a secure group
when a centralized key management protocol, modified sudhittpeovides thesame strong

security properties as our group key agreement, is used.

The rest of the paper is organized as follows. We present durdaand security models in Section
2. Section 3 presents both the group communication servidele key agreement protocol used in

designing the robust secure group communication servieethéh describe our protocols in Sections

4 and 5 and provide implementation details and performagselts in Sections 6 and 7, respectively.

Related work is overviewed in Section 8 and the paper consludté a brief summary in Section 9.

2 Failure Model and Security Assumptions

We consider alistributed systermomposed of a group of processes executing on one or more CPUs
and coordinating their actions by exchanging messages. sadesexchange is achieved via asyn-
chronous multicast and unicast. While messages can bewesassume that message corruption is
masked by a lower layer.

Any process can crashes and recover. A crash of any compohargrocess, (i.e. key agreement
layer or the group communication system), is consideresegss crash. We assume that the crash of
one of any component is detected by all the other componedtssdreated as a process crash.

Due to congestion or outright failures the network can be g disconnected fragments. At the
group communication layer, this is referred to gsastition. When a partition is repaired, disconnected
components merge into a larger connected component, tigfeised at the group communication layer
as amerge While processes are in separate disconnected compotieygannot exchange messages.
Since we are interested in a practical and reasonably effis@ation, we do not consider Byzantine
failures in this work.

We do not assume authenticity of membership events. Auttaitn of new members is obtained
as part of group key management. When members leave, naieguithentication of their departure
is obtained. Furthermore, we do not assume any access cargablanisms to enforce membership
policies, if any. We recognize that such mechanisms aressacg in real group applications; their
development is the subject of recent and on-going work [6338

Our adversary model takes into account only outside advess&oth passive and active. An outsider
is anyone who is not a current group member. Any former or futteenber is an outsider according
to this definition. We do not consider insider attacks as oau$ is on the secrecy of group keys and

the integrity of group membership. The latter means theiiitgbo spoof authenticated membership.

Consequently, insider attacks are not relevant in thisedrsince a malicious insider can always reveal
the group key or its own private key, thus allowing for fraudilemembership.

Passive outsider attacks involve eavesdropping with theochidiscovering the group key(s). Active
outsider attacks involve injecting, deleting, delayingl amodifying protocol messages. Some of these
attacks aim to cause denial of service and we do not address #gacks that aim to impersonate a
group member are prevented by the use of public key sigratkreery protocol message is signed by its
sender and verified by all receivers. Other, more subtleyeattacks aim to introduce a known (to the
attacker) or old key. These attacks are prevented by the io@ahlise of timestamps, unique protocol
message identifiers and sequence numbers which identifyattieydar protocol run. This modification

of GDH was formally proven secure against active adversanigky, 18].

3 Problem Definition

Our goal is to design a secure group communication serviceolmpming a robust key agreement
algorithm with a reliable group communication system (GCS).d&fine the semantics provided by the

GCS and overview the GDH key agreement protocol suite, both aftwdrie used later in the paper.

3.1 Group Communication Service

A GCS provides two important services: group membership @éskchination, reliability and order-
ing of messages. The membership service notifies the apphaaf the current list of group members
every time the group changes. The output of this notificasaalled aview.

Several different group communication models [42, 22] hbgen defined in the literature, each
providing a different set of semantics to the applicatioranyl communication models claim to offer
Virtual Synchrony or some variant thereof. Such claims diendbased on a loose definition \dirtual
Synchronystating that: processes moving together from one view tahenodeliver the same set of
messages in the former view. However, not all the models offersame set of properties and to

the best of our knowledge, a canonical “Virtual Synchrony (W&)del” has not been defined in the

literature. A good survey of many flavors of virtual synchy@@mantics can be found in [20].

The ordering and reliability guarantees are provided wighimew. In order to specify when the order-
ing and delivery properties are met, GCS deliver to the appbo an additional notification referred as
atransitional signal Additional information provided with the view by a GCS is whate$erred as the
transitional set This set represents the set of processes that continubéogéth the process to which
the membership notification was delivered and allows pra&sesslocally determine if a state transfer
is required. Different transitional sets may be deliveredhitie same view at different processes.

One property of the VS model that also has relevance for sgcisriheSending View Deliverf20]
property, which requires messages to be delivered in the seawahey were sent in. This enables the
use of a shared view-specific key to encrypt data, since tie@verds guaranteed to have the same view
as the sender and, therefore, the same key. To s&efiging View Deliverwithout discarding mes-
sages from group members, a GCS must block the sending of gesdsefore the new view is installed
[24]. This is achieved as follows. When a group membershipgbaccurs, the GCS sends a message,
flush requestto the application asking for permission to install a neewwi The application must re-
spond with alush acknowledgmemiessage which follows all the messages sent by the applidation
the old view. After sending the acknowledgment, the applicais not allowed to send any message

until the new view is delivered.

Virtual Synchrony Semantics

The GCS is assumed to support VS semantics as defined belovg€elloisproperties is largely based
on the survey in [20] and the definition of related semanthdg?2] and [47].
We define that some event occurred in vieat proces® if the most recent view installed by process

p before the event was

1. Self Inclusionlf processp installs a viewv thenp is a member ob.

2. Local Monotonicity If processp installs a viewv after installing a view’ thenv's identifierid, is

greater than"”s identifierid,, .
3. Sending View DelivenA message is delivered in the view that it was sent in.

7

4. Delivery Integrity If processp delivers a message in a vieww, then there exists a procegshat

sentm in v causally before deliveredm.

5. No Duplication A message is sent only once. A message is delivered onlytortice same process.

6. Self DeliveryIf processp sends a message, thenp deliversm unless it crashes.

7. Transitional Set
1) Every process is part of its transitional set for a view
2) If two processeg andq install the same view anglis included inp’s transitional set for this
view, thenp’s previous view was identical tgs previous view.
3) If two processep andq install the same view andgq is included inp’s transitional set fow,

thenp andgq have the same transitional set for

8. Virtual SynchronyTwo processes andg that move togethérthrough two consecutive viewsand

v' deliver the same set of messages.in

9. FIFO Delivery If messagen is sent before messagé by the same process in the same view, then

any process that delivers’ deliversm beforem'.

10. Causal Deliverylf messagen causally precedes messagéand both are sent in the same view,

then any process that deliverg deliversm beforem’.

11. Agreed Delivery
1) Agreed delivery maintains all causal delivery guarantees
2) If agreed messages, and latern’ are delivered by procegs andm andm' are also delivered
by procesg, theng deliveredm beforem'.
3) If agreed messages, and lateryn’ are delivered by procegsin view v, andm' is delivered
by procesg in v before a transitional signal, therdeliversm. If messages:, and later,n’ are
delivered by processin view v, andm' is delivered by procesgin v after a transitional signal,

theng deliversm if r, the sender ofn, belongs tag;’s transitional set.

Lif processp installs a viewv with process; in its transitional set and procegsnstallsv as well, therp andq are said
to move together.

12. Safe Delivery
1) Safe delivery maintains all agreed delivery guarantees.
2) If processp delivers a safe message in view v before the transitional signal, then every
process; of view v deliversm unless it crashes. If proceggelivers a safe messagein view
v after the transitional signal, then every procesbkat belongs t@’s transitional set delivers:

after the transitional signal unless it crashes.

13. Transitional SignaEach process delivers exactly one transitional signal/ssv.
3.2 GDH Contributory Key Agreement Protocol

GDH IKA.2 [49] is an extension of the 2-party Diffie-Hellman key exoba protocol [21] to groups.
The shared key is never transmitted over the network evendrypted form. Instead, a set of partial
keys (that are used by individual members to compute thepggearet) is sent. One particular member,
group controller, is charged with the task of building andrihsiting the set. This is done by passing
a token between the members of the group to collect contobsitof the new members. The group
controller is not fixed and has no special security privikege

The protocol works as follows. When a merge event occurs themucontroller refreshes its own
contribution to the group key (to prevent any incoming merslfiem discovering the old group key),
generates a new token and passes it to one of the new membwees.tié chosen new member receives
the token, it adds its own contribution and then passes thenttikthe next new memberEventually,
the token reaches the last new member. This new member, wiated $0 become the new controller,
broadcasts the token to the group without adding its corttdbuUpon receiving the broadcast token,
each group member (old and new) factors out its contributr@humnicasts the result (called a factor-
out token) to the new controller. The new controller cokeall the factor-out tokens, adds its own
contribution to each of them, builds the set of partial keys broadcasts it to the group. Every member

can then obtain the group key by factoring in its contribaitio

°The set of new members and its ordering is decided by the lyfiaggroup communication system. The actual order
is irrelevant to GDH.

When some of the members leave the group, the controller (athed| times, is the most recent re-
maining group member) removes their corresponding pdigd from the set of partial keys, refreshes
each partial key in the set and broadcasts the set to the .gEwgpy remaining member can then com-
pute the shared key. Note that if the current controller lsakie group, the newest remaining member

becomes the group controller.

4 Basic Robust Algorithm

This section discusses the details of a basic robust groyadpeement algorithm (GKA). We de-
scribe the algorithm and prove its correctness, i.e. we shatitthreserves virtual synchrony semantics
presented in Section 3.1. Throughout the remainder of therpaje use the term GCS to mean a group

communication system providing virtual synchrony sencanti
4.1 Algorithm Description

The GDH IKA.2 protocol, briefly presented in Section 3.2, is secune @rrect. Security is pre-
served independently of any sequence of membership ewenits, correctness holds only as long as
no additional group view change takes place before the pobterminates. To elaborate further, con-
sider what happens if a leave or partition event occurs whéeotitocol is in progress, e.g., while the
group controller is waiting for individual unicasts fronl gfoup members. Since the GDH protocol
does not incorporate a membership protocol (including l-tsetection mechanism), it is not aware of
the membership change and the group controller does naegdamtil all factor-out tokens (including
those from departed members) are collected. Thereforesystem simply blocks. Similar scenarios
are also possible if one of the new members crashes while@ddioontribution to a group key. In this
case, the token never reaches the new group controller ar@id protocol, once again, blocks.

If the nested event is additive (join or merge), the proteparates correctly. In other words, it runs to
completion and the nested event is handled serially. Howthistis not optimal since, ideally, multiple

additive events ought to be “chained” effectively redudimmgadcasts and factor-out token implosions.

10

Application

A [y .
x B] 2
o OI ﬁ' é 5
3 2 = h ; = s
9 £ E] I] 5] 7]
B ° i 5 = 0] o)
= 5] ol S > @ @
S @ o} [T > =
1] o 3 T ko)
Y &J) o o

Robust Key Agreement
, Y 2 Y
o : &

g Z g, 5 g 2
o] S = x = > >
= B E] % s s B
3 @ = 3 3 T T
y y v T a) [a) [a

Group Communication
(Virtual Synchrony)

Network ¢

Figure 1. Secure GCS protocol stack
As the above examples illustrate, the GDH protocol does notat@eorrectly in the face of certain
cascaded membership events (specifically, when the intergupvents are subtractive events). This
behavior basically violates the high degree of robustneddault-tolerance of the GCS.

We propose a basic solution as follows: each time a memberbkhipge occurs, the group determin-
istically selects a member (say, the oldest) to initiateGidH merge protocol. The algorithm uses the
membership service to consistently choose that memberhan@lFO and Agreed ordering services to
ensure that, if one member installs a secure view, all ottembers eventually install the same view.
The approach we propose is twice more expensive in computatibnequire$) (n) more messages for
the common case with no cascading membership eveitsing the group size. We discuss it because
it is simpler and it allows us to show algorithm correctnes$iwitspect to the group communication
semantics and stated security goals. In Section 5, we praseamtimized algorithm that offers better
performance and uses the basic algorithm as a “subroutireXdeptional cases.

Since the output of the algorithm is a secure GCS, VS semarttidefitned in Section 3.1 must be
preserved. To achieve this, our algorithm takes extra capedvide delivery of the correct views, tran-
sitional signal and transitional sets to the applicati@ssyell as the list of connected group members.

We model the algorithm as a state machine (see Figure 2) wiarsitions from one state to an-
other take place based on the event that occurred. An eveatined as receiving a particular type of

message. In Figure 2, all transitions numbered with the sam#ar, denote the same set of events

11

and actions for that particular state. The following typesnaissages are used: GDH messages (see
[9]) (partialLtokenmsg, finaltokenmsg, keylist_.msg, factout msg); membership notification mes-
sages (memlmsg); transitional signal messages (traignalmsg); data messages (daeg); flush
mechanism messages (flusklquesimsg, flushok_msg).

Figure 1 presents the secure GCS protocol stack. Our groupgtegrment (GKA) protocol inter-
acts with both the application and GCS and implements the bigakechanism as follows. When a
flush.requestmsg message is received from GCS, it is delivered to the aigic When the applica-
tion acknowledgment message is received, it is sent down GGt

A process starts executing the algorithm by invokingjtie primitive of the key agreement module
which translates into a GCS join call. In any state of the atgorj a process can voluntarily leave by

invoking theleaveprimitive of the key agreement module which translates inBGS leave call.

| Event | Message | Source |
Partial Token partialtokenmsg| GCS
Final. Token final_tokenmsg | GCS
FactOut factoroutmsg) | GCS
Key_List key_list_msg GCS
UserMessage datamsg App.
DataMessage datamsg GCS
TransitionalSignal | transsignalmsg | GCS
Membership memhbmsg GCS
FlushRequest flush.requesimsg| GCS
SecureFlush Ok flush.ok_msg App.

Table 1. Events received by GKA

The set of events that can trigger transitions from one steémother are presented in Table 1. The
events are associated with a specific group and are receivibe IG3KA. Note that both Usevlessage
and DataMessage events are associated with a_datg message received by the GKA, but in the first
case the source of the message is an application, while, settend case, the source is the GCS. Also,
note that all messages specific to the GDH protocol, are phaticases of datansg. We define specific
messages and associate events with them to simplify theijigsierof the protocol.

Each state of the algorithm (in Figure 2) is described byetiypes of events: events that trigger

12

Join group

Fact_Out &
llast factor_out_ms§:

update key lis|
P! Y

Flush_Request: Flush_Request:
Wait for send flush_ok_msg send flush_ok_msg Collect

Partial_Token & | m last:
broadcast final_token_msg

Partial_Token Fact_Outs
(PV " o)
3 %, Membership & I m alone:
//,70)/)0 s, destroy old Cliques context
ONEN) !
%;?’9,0’%&%@‘3 Fact_Out & last factor_out_msg: create new Cliques context
o, Y N, update key list_msg ypdate VS set
IE‘ 5, c?/:?? broadcast key_list_msg install memb. Trans_Sig:
N deliver

Partial_Token trans_sig_msg
&1 mnot last:

update partial_token,

User_Messager
send data_ms

Data_Message

Y v deliver data_msg Sec_Flush_Ok:
S send
Wait for flush_ok_msg
Cascading \&
Membership
R (™) h

16
Flush_Request:
deliver flush_request_msjg

Data_Message:

Trans_Sig & t
first trans_sig;| deliver data_msg

deliver
trans_sig_ms

4 Key_List:
Flush_Request: Trans_Sig & FIustheque . 14 extract key;
send flush_ok_msg send flush_ok_msg . Wait for . install memb.
(FT)

Key_List
(KL)
\} Final_Token: fact out final_token; unicast factor_out_msg to collector

Notes: VS_set is delivered as part of the membership
: All Cliques messages but key_list_msg are sent FIFO; key_list_mssgtiss an AGREED message

: A process can leave the group in any state

Wait for
Final_Token

Figure 2. Basic GKA
transitions, events that are considered illegal (in whicdeam error is returned to the application) and

events that should not occur when the algorithm operatesdaityr The following states are used:

e SECURE (S): group is functional, all members have the groymke can communicate securely;
possible events are: DaMessage, UseMessage, SecurElush Ok, FlushRequest, and Tran-
sitional. Signal; receiving a Securielush Ok without receiving a corresponding FluBtequest is
illegal;

e WAIT _FOR PARTIAL _TOKEN (PT): process is waiting for the token accumulating donot
tions; possible events are: Partiedken, FlushRequest and Transition&lignal; UserMessage
and Securd-lush. Ok are illegal;

e WAIT _FORFINAL _TOKEN (FT): process is waiting for the token containing all tdnutions;

13

possible events are: Findbken, FlushRequest and Transitiondlignal; UserMessage and Se-

cure Flush Ok are illegal;

e COLLECT_FACT_OUTS (FO): process is waiting for — 1 factor out messages; possible events
are: FactOut, FlushRequest, and Transition&lignal; UserMessage and Secufdush Ok are
illegal;

e WAIT _FORKEY _LIST (KL): process is waiting for the set of partial keys; p$s events are:

Key_List, FlushRequest, Transitiongbignal; UserMessage and Secufdush Ok are illegal;

e WAIT _FOR.CASCADING_.MEMBERSHIP (CM): process is waiting for membership and tran-
sitional signal messages; possible events are: MemberBtapsitionalSignal, DataMessage
(possible, only the first time the process gets in this st@ajtial Token, FinalToken, FactOut
and KeyList (they correspond to GDH messages from a previous instahtiee GKA when

cascaded events happen); Usdgssage and Secufdush Ok are illegal;

The state machine is built around the CM state, which is usesktart the protocol. Four other states
are just a map of the GDH merge protocol and are used to pask#reaocumulating contributions and
used to build the set of partial keys. The S state is the dpesdtstate. The pseudo-code corresponding

to the state machine from Figure 2 and the correctness paoefsresented in Appendix A.

4.2 Security Considerations

The GDH protocol was proven secure against passive adversa49]. As evident from the state
machine in Figure 2, the protocol remains intact, i.e., altgrol messages are sent and delivered in
the same order as specified in [49]. More precisely, with noa@dead events, our protocol is exactly the
same as the original GDH join protocol [49]. In the case of aadsd event, the protocol is the same
as the IKA.2 [49] group key agreement protocol. Since both adel@otocols are proven secure, our
robust protocol is, therefore, also provably secure. Istbintext, security means that it is computation-
ally infeasible to compute a group key by passively obserany number of protocol messages. As

discussed in Section 2, stronger, active attacks are aMeytthe combined use of timestamps, protocol

14

message type and protocol run identifiers, explicit indossf message source and destination, and,
most importantly, digital signatures by the source of thessage. These measures make it impossible
for the active adversary to impersonate a group member oteédere with the key agreement protocol

and thereby influence or compute the eventual group key B]7, 1

5 An Optimized Robust Algorithm

In this section we show how the algorithm presented in theipusvsection can be optimized, re-
sulting in lower-cost handling of common, non-cascaded ®yevhile preserving the same set of group

communication and security guarantees.
5.1 Algorithm Description

The basic algorithm presented in Section 4 is robust even whasraded group events occur. Every
time a membership notification is delivered by the GCS, therdlgn “forgets” all previous key agree-
ment information (i.e., the set of partial keys) and restémsmerge protocol selecting a member from
the new group to initialize it. Thus, this algorithm costsrethan necessary since it does not attempt
to use the existing accumulated information (partial keys) avoid unnecessary computation.

We propose to improve the basic protocol by using optimizethgols for each type of group change
(join, leave, partition, merge or a combination of partitiand merge) and by taking advantage of
the already existing set of partial keys. We also utilize lthsic algorithm to handle more complex
cascaded membership events. For example, in case of a lbavksave protocol is invoked which
requires the group controller to remove the leaving menshér¢m the set, refresh the set of partial
keys and broadcast it. Thus, leave events can be handleddiatelg, with lower communication and
computation costs than those of in the basic algorithm. ti@e5.2, we discuss how a combined event
—including both joins and leaves — can be handled by a modigesion of the GDH merge protocol.

The optimized algorithm is modeled by a state machine tiaaddition to the states in the basic

algorithm, uses two more states, as shown in Figure 3. Eatshistdescribed by three types of events:

15

Join group NET & | m not alone & MEMB & | m alone:

is_Merge & | am a new guy: update key,
update VS set update VS set
install memb.
User_Message:
send data_msg
Trans_Sis: (Join & | mnot alone) |
deliver trans_sig_msg (Network & A 4
q Secure | mnot aone & | m not chosen): X
o O update VS st ﬁut for Collect

»(Partial_Token
(PT)

Fact_Outs
(FO)

L Data_Message:
- N . 3
deliver data_msg Network & Wait for
Flush_Request: I mnot done & | m chosen: Cascading
deliver Membership & | m alone: generate partial token, Membership
flush_request_ms generate key, unicast (Cw™m)
-fequest.msg update V'S set)2 partial_token_msg to next)
install memb. Wait for update V'S set ‘Wait for Wait for
Self_Join »{ Final_Token Key_List
S FT
Sec_Flush_OHK: Membership & | m alone: (89) &) (KL) <
send update key, A
flush_ok_msg update VS set Join:
install memb. '

if (I m chosen) {
update partial token,
unicast partial_token_msg to next

A

Wait for
Membership

/‘
N
[
N
~

update VS set

(M) Network & | m not alone & | am an old guy & is_merg
if (I m chosen) {
Data_Message: If(is_Partition) { (Leave ||
- deliver data_msg remove leave_list from cliques_list (Network & lis_Merge))

Trans_Sig & & | am chosen: {

first trans_sig: update partial token generate new share;

deliver unicast partial_token_msg to next update key list;

trans_sig_msg } broadcast key_list_ms .
update VS set } Key_List .

update VS set extract key;
install memy.

Notes: VS_set is delivered as part of the membership
. All Cligues messages but key_list_msg are sent FIFO; key_Bst isrsent as an AGREED message.
. A process can leave the group in any state

Figure 3. Optimized GKA
events that trigger transitions, events that should nes&irovhen the algorithm operates correctly, and

events that are considered illegal:

e WAIT _FORSELF.JOIN (SJ): initial state wherein a process that joins a grouprsrthe state
machine; the process is waiting for the membership messagenttifies the group about its
joining. In case a network event happens between the joirest@md the membership notification
delivery, the GCS will report a network event and the transdlset will contain only the joining

member; possible event is Membership; Ustgssage and Secufdush Ok are illegal.

e WAIT _FORMEMBERSHIP (M): process is waiting for a membership notificaf possible
events are: Transition&ignal, DataMessage and Membership; Uddessage and Secufdush Ok

events are illegal.

16

While a process starts the basic algorithm in the CM statibdoptimized algorithm, a process starts
the algorithm in state SJ, by invoking thein primitive. At any time, a process can voluntarily leave the
algorithm by invoking thd_eaveprimitive. The main difference between the robust and theroped
algorithm is that, in case of a membership change, the psaveses to the M state and tries to handle
the event depending on its nature (subtractive, additivieatin). In case of cascading membership,
everything is abandoned and the basic algorithm is invakgdyoving to the CM state.

The pseudo-code corresponding to the state machine froord=) and the corectness proofs are

presented in Appendix B.
5.2 Handling Bundled Events

Most group events are homogeneous in nature: leave (paititir join (merge) of one or more
members. However, a GCS can decide to bundle several such éwhets occur within a very short
time interval. The main incentive for doing so is to reduceithpact and overhead on the application.

Recall that GDH defines two separate protocols for leave angen&ach of them can trivially handle
bundled events of the same type: the GDH merge protocol camewodate any combination of bun-
dled merges, while the GDH leave protocol can do the same for@mypination of partitions. A more
interesting scenario is when a single membership event banderges/joins with leaves/partitions.
One way to handle such an event is to first invoke GDH leave to psoak leaves/partitions and then
invoke GDH merge to process joins/merges. However, this is anexfii since the group would per-
form two separate key agreement protocols where only onalisrieeded. Since both GDH protocols
are initiated by the group controller we propose the follonapgimized solution. After processing all
leaves/patrtitions, the group controller can suppressdhalibroadcast of new partial keys and, instead,
forward the resulting set to the first merging/joining memthereby initiating a merge protocol. This

saves an extra round of broadcast and at least one cryptogi@geration for each member.

Security Considerations. Recall that, in the merge protocol, the current controlegibs by refresh-

ing its contribution (to the group key) and forwarding theuk to the first merging member. This

17

message actually contains a set of partial keys, one for'@ddhmember and an extra partial key for
the first new member. This message is also signed by the dentiad includes the list of all members
believed by the controller to be in the group at that instdntthe optimized protocol, the controller
effectively suppresses all partial keys correspondingémimers who are leaving the group. This modi-
fication changes nothing as far as any outside attacks @tthaee concerned. The only issue of interest
is whether any members leaving the group can obtain the new\leyclaim that this is impossible
since the set of partial keys forwarded by the controllersiseatially the same as the partial key set
broadcast in the normal leave protocol. Therefore, formemivers are no better off in the optimized
than in the leave protocol. Also, the new (merging) memberstilt unable to compute any prior group
keys just as in the plain merge protocol. This is becausenfleemnation available to the new members

in the optimized protocol is identical to that in the plainnge

6 Implementation

We implemented the optimized algorithm described abovegutsie Spread [7] GCS, and the Cliques
key agreement library. In this section we overview the Spiaadi Cliques toolkits, and present the

concrete outcome of this work, the Secure Spread library.
6.1 The Spread Toolkit

Spread [7] is a general-purpose GCS for wide- and local-areeonks, where any group member
can be both a sender and a receiver. Although designed to gppall- to medium-size groups, it can
accommodate a large number of collaboration sessions spariming the Internet.

The main services provided by the system are reliable andredddelivery of messages (FIFO,
causal, total/Agreed order, safe) and a membership senviaemodel that considers benign network
and computer faults (crashes, recoveries, partitions asdje@s). Spread supports two well-known
semantics, Virtual Synchrony (VS) [22, 47] and ExtendedudlSynchrony (EVS) [42, 1]. In this

work we use only the latter.

18

The system consists of a server and a client library. Theftclierary provides an API that allows
a client to connect/disconnect to a server, to join and leageup, and to send and receive messages.
The client and server memberships follow the model of ligktght and heavy-weight groups [23]. This
architecture amortizes the cost of expensive distributetbpols, since these protocols are executed by
a relatively small number of servers, as opposed to havirgiets participating.

The Spread toolkit is publicly available and is being usedé&yeral organizations in both research,
educational and production settings. It supports croaggrm applications and has been ported to

several Unix platforms as well as to Windows and Java envirotsnen

6.2 The Cliques Toolkit

Cliques is a cryptographic toolkit providing key managetssvices for dynamic peer groups. The
toolkit assumes the existence of a communication platfemtransporting protocol messages and main-
taining group membership. It includes several protocdesuli

e GDH: based on group extensions of the 2-party Diffie-Hellman kehamrge [49]; it provides

fully contributory group key agreement.

CKD: centralized key distribution where the key server is dyitalty chosen among the group

members; the key server uses pairwise Diffie-Hellman key exgghtndistribute keys.

TGDH: combines tree structure with Diffie-Hellman [36] to minimthe computation cost.

STR: extended version [37] of the protocol presented byr&teal. [48]; it optimizes communi-

cation at the expense of computation.

BD: a protocol based on the Burmester-Desmedt [19] variatigmaup Diffie-Hellman.

All Cliques protocol suites offer key independence, perfecivard secrecy and resistance to known
key attacks. (See [41] for precise definitions of these pita®e) In this paper, we focus only on the

GDH protocol suite within the Cliques toolkit.

19

‘ Applicaion ‘

Seaure Spread Library (VS) Key Agreement Colledion
Client 4_4 Key Agreement Selector }4 ‘ Cliques GDH ‘
Agreement li KD
Engine N Encryption Selecor F ‘ Claues © ‘
$ Encryption Colledion
| Spread (Flush) Library (V) | | Blowfish |

‘ Sprea Server (EVS) ‘

Network \/i

Figure 4. Secure Spread Architecture

6.3 The Secure Spread Library

The Secure Spread library provides client data confidetytiahd integrity. It is built on top of the
VS Spread client library; it uses Spread as its communicatiastructure and Cliques [9] library for
key management.

A major consideration in designing a secure communicatiookit is the security and trust that go
along with the algorithms used in the toolkit. As time goes hysttin these algorithms may change:
ciphers are broken, algorithms are proven insecure, batierithms are designed, etc. Therefore, any
system hoping to secure communication and be viable in tig lon, needs to be flexible and easily
modified. Another desirable feature is the ability of the aulstrators and/or users to easily change the
security policy. One way to achieve these goals is to desigextemely modular system.

Figure 4 shows the architecture of our secure GCS. The Flusryiks the component of the Spread
Toolkit providing the Virtual Synchrony model as descritie®ection 3.2

The core of the library is the Client Agreement Module whichhis tonnection between the library
and the GCS. When it receives a notification from GCS about gpgnoembership change, the mod-

ule starts the key agreement protocol. When the key agregmetocol completes and a new key is

SActually, the Flush library provides all the properties weatised in Section 3.1 but one. It does not deliver exactly one
transitional signal per view. However, in the Flush librarg flushRequest and Transition&lignal events are delivered
in AGREED order. Using this property, with a minor modificationy GKA can avoid generating unnecessary transitional
signals for the application.

20

available, the module delivers a secure group membershipgehnotification to the application.

The library has two components: Key Agreement Selector arahyiption Selector that allow, re-
spectively, the selection of a specific key agreement maahuliea specific encryption module.

Secure Spread currently has two different modules for kegeagent, both using primitives provided
by the Cliques library: the robust optimized GDH protocol aeted in this paper) and a centralized
key management protocol (described below), both havingahesecurity properties. The architecture

allows each group to run its own key agreement protocol. Tharjtuses Blowfish for encryption.

6.4 Centralized Key Distribution Protocol

In general, centralized key distribution protocols do naiviide key independence, since, for effi-
ciency reasons, they rely on previous group or subgrouptkeyistribute new keys. When using such a
method the compromise of some group keys can lead to the conmge of other group keys. To com-
pare protocols having the same security properties, we wedig Centralized Key Distribution (CKD)

scheme that provides the same level of security as GDH, as fayaadependence and PFS [41].

Algorithm 1 CKD protocol

Let (z1, @) and @,41, a®+') be the secret and public keys &f;, the group controller, and/,, ;, respectively.
Let Kip41 = o™ *»+1 mod p. Assume that the group hasnembers, and that/,,,; wants to join the group.
Round 1:

M, selects random, mod q (this selection is performed only once),

My — Mp41:a™ modp
Round 2:

M4, selects random,,; mod ¢,

My +— Myiq @™+ mod p
Round 3:

M, selects a random group secfef and computes

My — M; : K, modp Vi€ [2,n+1]

The group secret is always generated by one member, thentgraip controllef. Following each
membership change, the controller generates a new sedrelistnbutes it securely to the group. Of
course, an efficient symmetric cipher can be used to secdigiybute the group key. However, the

resulting security properties would differ from those of &ay agreement protocol which relies solely

4We use the terncurrentto mean that a controller can fail or be partitioned out thaissing the controller role to be
reassigned to the oldest surviving member.

21

on the Decision Diffie-Hellman assumption [16] and the Discredgdrithm Problem [41]. Therefore,
to provide an equivalent level of security, we encrypt theugrkey via modular exponentiation.
The controller in CKD is always the oldest member. Regardiéske group operation, the CKD
protocol consists of two phases (see also Algorithm 1):
1. Each group member and the controller agree on a uniqueipaikey using authenticated two-
party Diffie-Hellman. This key does not need to change as lotg#susers remain in the group.
If the controller leaves the group, the new controller hapédorm this operation with every

member. If a regular member leaves, the controller simpgatids this pairwise key.

2. The group controller unilaterally generates and digtab the group secret.

7 Performance Evaluation

In this section we compare the GDH key agreement protocol wit@ i@ protocol presented in Sec-
tion 6.4, in a LAN environment. We evaluate the time it takessystem to establish secure membership

for most common group events: join and leave.

Communication Computation

Rounds| Messages| Unicast | Multicast Exp. | Sign. | \Verif.
Join 4 n+3 n+1 2 n+3 4 n+3

GDH Leave 1 1 0 1 n—1 1 1

Merge m+3 |n+2m+1|n+2m-—1 2 n+2m+1 | m+3 | n+2m+1

Partition 1 1 0 1 n—op 1 1

Join 3 3 2 1 n+2 3 3

CKD Leave 1 1 0 1 n—2 1 1
Merge 3 m+ 2 m 2 n+2m 3 m + 2

Partition 1 1 0 1 n—p—1 1 1

Controller Leave 3 3n—6 2n —4 2 2n — 3 2n — 2 n

Table 2. Communication and Computation Costs

Cryptography relies on expensive exponentiations, sodinsethat measuring CPU time will be
a good approach demonstrating the cryptographic overh@ablle 2 presents the number of serial
exponentiations for a join or leave event, wheres the group size before the operation, whiteand
p represent the number of new and partitioned members, rgggc A more relevant measure for a

GCS is the latency that a user experiences from the momentdlg ghange was detected, until the

22

Join - DH 512 bits Join - DH 1024 bits
500 T T T T T T T T 500

GDH
450 Membership service ---x-- < 450 |
400 g 400 |
350 |- B 350 |
300 | 3 300

250 250 |-

Time (msec)
Time (msec)

200 200 |

150 | 150 |

100 100

50 50

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Group size (#members) Group size (#members)

Figure 5. Join - average time

new secure group is established. This time is greater teathe analytical cryptographic cost, since it
includes network latency. It can also exhibit increased matation cost if several processes compete
for the same CPU.

Our experimental testbed is a cluster of thirtééim MHz Pentium Il dual-processor PCs running
Linux. Each machine runs a Spread server, while group menasersiniformly distributed on the
machines. Therefore, more than one process can be runniagiogle machine (which is frequent in
many collaborative applications).

Each member measures the time it took to complete the kegiaget and establish a secure view.
We compute the average cost of the membership service, antesaembership with GDH and CKD,
respectively. This time was averaged over 20 distinct rditlseoexperiment.

Since CKD is patrticularly expensive if the current controlieaves the group, we take this into
account by considering that, with'n probability, the member leaving the group is the group culer.

Experiments performed on our testbed for the insecure GOS8 tad the average cost of sending and
delivering one agreed multicast message is almost constéaugiing betwee.75 and0.92 milliseconds
for a group size ranging betwe@rto 50 members. The cost of the membership service (see Figures
5 and 6) is negligible with respect to key agreement overheayjng betweer?2 and8 milliseconds
for a group size betweehand50 members. We use 1024-bit RSA signatures for message ongin a

data authentication, with the public exponen8db reduce the verification overhead. On our hardware

23

500

450

400

350

300 |

Time (msec)

150 |

100

50

Leave - DH 512 bits

250

200

v ”
5 10 15 20 25 30
Group size (#members)

35 40 45 50

Time (msec)

500

450

400

350 |

300

250 |-

200 |

150 |

100

50

Leave - DH 1024 bits

% % P

10 15 20 25 30 35 40 45 50
Group size (#members)

Figure 6. Leave - average time

platform, the RSA sign and verify operations t&ké and0.2 milliseconds, respectively. For the short-

term group key, we use bofi2- and1024-bit Diffie-Hellman parametep and160-bit q. The cost of a

single exponentiation is.7 and5.3 milliseconds for &12- and al024-bit modulus, respectively.

Figures 5 and 6 present the respective costs of: 1) our r@kiDst key agreement protocol, 2) the

centralized protocol (CKD), and 3) the insecure group comeation membership service. Note that,

the cost of the membership service is insignificant when coetp® key agreement overhead.

For join (Figure 5,) the contributory protocol is more expeashan CKD. For example, for a group

of 20 members, the time to install a secure membership istdBumilliseconds for the contributory

protocol, while for the centralized protocol it is about 91llimeconds, when thé12-bit modulus is
used. The difference between CKD and GDH comes from exponemtiatid signature verifications:
extra operations in GDH include verifications, one RSA signature and one modular exportettia

For leave events (see Figure 6), the centralized protocobig expensive. For the 512-bit modulus,
for a group of 20 members, it takes about 49 milliseconds tabéish secure membership with the
contributory protocol, while the centralized protocol takdout 58 milliseconds. The overhead of the
centralized protocol over the contributory protocol confresn one exponentiation, plus the cost of
establishing: — 1 secure channels if the leaving member is the group controlle

Both protocols scale linearly with group size, in the numbdeonentiations. Performance deteri-

orates when 1024-bit modulus is used for shared key generascshown in Figures 5 and 6.

24

8 Related Work
In this section we consider related work in group key manageared reliable group communication.
8.1 Group Key Management

Cryptographic techniques for securing all types of mufticar group based protocols require all
parties to share a common key. This requires a group key reama protocol to generate new group
keys and update existing keys. Group key management prstgeakrally fall into two classes:

e Protocols designed for large-scale (e.g., IP Multicast) gspwith a one-to-many communication
paradigm and relatively weak security requirements [12,28}, Most of such protocols are

centralized key distribution schemes.

e Protocols designed to support medium size tightly-cougigthmic peer groups, with a many-to-
many communication paradigm and strong security requinesr{@9, 49]. Both distributed group

key distribution and group key agreement methods are aipédo such settings.

Many protocols of the first type are being developed in theedrof IETF/IRTF: Group Key Man-
agement Protocol (GKMP) [28], Multicast Key Management RtotdMKMP) [27], Scalable Mul-
ticast Key Distribution [11], the Intra-domain Group Key Mgeanent work of [26], One-way Func-
tion Trees [10], Group Secure Association Key ManagemenbPob{GSAKMP)[30], GSAKMP-light
[29], Group Domain of Interpretation (GDOI) [13], while [39] defsan architecture for large scale
group key management. Since the focus of our work is on dynaeer groups key management, we
discuss only distributed group key distribution and cdmittory key agreement protocols.

Most group key agreement schemes [49, 48, 19, 36, 50, 37exbe well-known Diffie-Hellman
key exchange [21] method to groupsroparties. Steer et al. proposed a group key agreement ptotoco
[48] for static conferencing. While the protocol is well-&d for adding new group members as it takes
only two rounds and two modular exponentiations, is reddyivexpensive when excluding members.
In 1994, Burmester and Desmedt [19] proposed an efficienbpobthat takes only three rounds and

three modular exponentiations per member to generate @ dggu This protocol allows all members

25

to re-compute the group key for any membership change witmatant small CPU cost. However, it
require2n broadcast messages which can be expensive on a wide areakiefa@mng and Tzeng also
proposed an elegant authenticated key agreement scheatkdrasecure multi-party computation [50].
Their protocol is optimized in terms of communication rosnout also use®n simultaneous broadcast
messages. The resulting group key does not provide PFS wépcbsents a major drawback.

Steiner et al. address dynamic membership issues [49] updtey agreement and propose a family
of protocols based on straight-forward extensions of theparty Diffie-Hellman protocol. Their pro-
tocol suite is fairly efficient in leave and partition opeoat but the merge protocol requires as many
rounds as the number of new members to complete key agreeitenentire protocol suite has been
proven secure with respect to both passive and active att&akkw-on work yielded more efficient
protocols in either communication or computation [36, 37].

Dynamic group key distribution methods are also amenableyt@miic peer groups. Centralized
Key Distribution (CKD) is a simple example of distributed ketdibution (see Section 6.4), where
the oldest group member acts as a key distribution centeiiratite event of a partition or a leave
of the center, the role shifts to the oldest remaining memB&deh et al. proposed more advanced
key distribution protocols, combining a key tree structwi¢h dynamic key server election [46] or
taking advantage of efficient data structures such as AVIstj48]. Although they have some of the
disadvantages of key distribution schemes, the commuaicand computation costs are appreciably

lower than those in CKD.

8.2 Reliable Group Communication

Reliable group communication in LAN environments has a lasgpny beginning with ISIS [15], and
more recent systems such as Transis [3], Horus [44], Toteraifis] RMP [51]. These systems explored
several different models of Group Communication such as@i$ynchrony [14] and Extended Virtual
Synchrony [42]. More recent work in this area focuses onisgajroup membership to wide-area
networks [8, 33]. Research on securing group communicaiéairly new. The only implementations

of GCS-s that focus on security (in addition to ours) are theu8dRing [34] project at UCSB, the

26

Horus/Ensemble work at Cornell [46] and the Rampart systeNT &t [43].

Some GCS-s (Rampart and SecureRing) address Byzantine&illthey suffer from limited perfor-
mance since they use costly protocols and rely intensivelyublic key cryptography. Rampart builds
the group multicast protocols over a secure group memhepbtocol, while SecureRing system pro-
tects a low-level ring by authenticating each transmissfahetoken and data message received.

The Ensemble work is state-of-the-art in secure relialdegicommunication. It allows application-
dependent trust models and optimizes certain aspects gt key generation and distribution pro-
tocols. Ensemble achieves data confidentiality by usingeeshgroup key obtained by means of group
key distribution protocols. In comparison with our apprgaglthough efficient, the scheme does not
provide forward secrecy, key independence and PFS.

Some other approaches focus on building highly configurdfateamic distributed protocols. Cactus
[31] is a framework that allows the implementation of confagale protocols as composition of micro-
protocols. Survivability of the security services is entethby using redundancy [32].

Another toolkit that can be used to build secure group orcerigplications is Enclaves [25]. It
provides group control and communication (both unicastrantticast) and data confidentiality. The
system uses a centralized key distribution scheme where dararhthe group (group leader) selects
a new key every time the group changes and securely digtgbuto all group members. The main
drawback of the system is that it does not address failureveggavhen the leader of the group fails.

Antigone [40] is a framework that provides mechanisms whi¢bmaflexible application security
policies. The system implements group rekeying mechanianiwo flavors: session rekeying - all
group members receive a new key, and session key distnbutie session leader transmits an existing
session key. Both schemes present problems, distribdtengame key when the group changes breaks

PFS, while the session rekeying mechanism does not recarertfre leader’s failure.

9 Conclusions

In this paper, we showed that although difficult, it is posstbléarden security protocols to make

them robust to asynchronous network events. In particalargdemonstrated how robust contributory

27

key agreement protocols can be designed, by taking advaofagyoup communication services. We
presented two such robust protocols based on the GDH key pit&oite and the Virtual Synchrony
group communication semantics. We also showed how suchqaistcan be used to design secure
group communication services, and argued that by integydtiem with a GCS supporting Virtual
Synchrony, group communication membership and orderirgagiees are preserved. We exemplified
by presenting Secure Spread, a client library that usesaB8pse its GCS and relies on a group key
management protocol that is robust to process crashes amdrkeartitions and merges, and protects

confidentiality of the data even when long-term keys of théigaants are compromised.

References

[1] AMIR, Y. Replication using group communication over a partitionedvwek. PhD thesis, Institute of Computer

Science, The Hebrew University of Jerusalem, Jerusalengl]4:@95.

[2] AMIR, Y., ATENIESE, G., HASSE, D., KiM, Y., NITA-ROTARU, C., SCHLOSSNAGLE, T., SCHULTZ, J., STANTON,
J.,AND TsuDIK, G. Secure group communication in asynchronous networksfailures: integration and experi-
ments. InProceedings of the 20th IEEE International Conference ortribisted Computing Systengapril 2000),
pp. 330-343.

[3] AMIR, Y., DOLEYV, D., KRAMER, S.,AND MALKI, D. Transis: A communication sub-system for high availapil

Digest of Papers, The 22nd International Symposium on Faléirdnt Computing Systent992), 76—84.

[4] AMIR, Y., KiM, Y., NITA-ROTARU, C., SCHULTZ, J., STANTON, J., AND TSUDIK, G. Exploring robustness in
group key agreement. Iroceedings of the 21th IEEE International Conference orrbisted Computing Systems,

(April 2001), pp. 399-408.

[5] AMIR, Y., MOSER L. E., MELLIAR-SMITH, P. M., AGARWAL, D., AND CIARFELLA, P. The Totem single-ring

ordering and membership protoc®lCM Transactions on Computer Systems4.@November 1995), 311-342.

[6] AMIR, Y., NITA-ROTARU, C., AND STANTON, J. Framework for authentication and access control ohtkerver

group communication systems.3rd International Workshop on Networked Group Communicgfdovember 2001).

[71 AMIR, Y., AND STANTON, J. The Spread wide area group communication system. Tegh98e4, Johns Hopkins

University, Center of Networking and Distributed Systems,8.99

28

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

ANKER, T., CHOCKLER, G. V., DOLEV, D., AND KEIDAR, |. Scalable group membership services for novel appli-

cations. InProceedings of the Workshop on Networks in Distributed Coimg(1998).

ATENIESE, G., CHEVASSUT, O., HASSE, D., KiMm, Y., AND TSuDIK, G. Design of a group key agreement API. In

DARPA Information Security Conference and Exposition (DI%QB00)(January 2000).

BALENSON, D., MCGREW, D., AND SHERMAN, A. Key management for large dynamic groups: One-way functio

trees and amortized initialization. Work in Progress, 2ad@ft-irtf-smug-groupkeymgmt-oft-00.txt.
BALLARDIE, T. Scalable multicast key distribution. RFC 1949, 1996.

BALLARDIE, T., FRANCIS, P., AND CROWCROFT, J. Core based trees: An architecture for scalable interdoma

multicast routing. IfProceedings of ACM SIGCOMM’'93993), pp. 85-95.

BAUGHER, M., HARDJONQ, T., HARNEY, H., AND WEIS, B. The group domain of interpretation. Work in Progress,

December 2002.

BIRMAN, K. P.,AND JOSEPH T. Exploiting virtual synchrony in distributed systema.1l1th Annual Symposium on

Operating Systems Principl¢Slovember 1987), pp. 123-138.

BIRMAN, K. P.,AND RENESSE R. V. Reliable Distributed Computing with the Isis TooldEEEE Computer Society
Press, March 1994.

BoNEH, D. The decision Diffie-Hellman problentecture Notes in Computer Science 142898), 48-63.

BRESSON E., CHEVASSUT, O.,AND POINTCHEVAL, D. Provably authenticated group Diffie-Hellman key exchange

— the dynamic case. IAsiacrypt 20042001), LNCS.

BRESSON E., CHEVASSUT, O., POINTCHEVAL, D., AND QUISQUATER, J.-J. Provably authenticated group diffie-

hellman key exchange. Bth ACM Conference on Computer and Communications Se¢Maty. 2001), ACM Press.

BURMESTER M., AND DESMEDT, Y. A secure and efficient conference key distribution aystAdvances in Cryp-

tology — EUROCRYPT'9%May 1994).

CHOCKLER, G. V., KEIDAR, |., AND VITENBERG, R. Group communication specifications: A comprehensivaystu

ACM Computing Surveyd (December 2001), 427—-469.

DIFFIE, W., AND HELLMAN, M. E. New directions in cryptographiEEE Trans. Inform. Theory IT-2@Nov. 1976),
644-654.

FEKETE, A., LYNCH, N., AND SHVARTSMAN, A. Specifying and using a partitionable group communaaservice.

ACM Transactions on Computer Systems2.@May 2001), 171-216.

29

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

FLoYD, S., ACOBSON, V., Liu, C., MCCANNE, S.,AND ZHANG, L. A reliable multicast framework for light-
weight sessions and application level framinBEE/ACM Transactions on Networking 6 (December 1997), 784—
803.

FRIEDMAN, R., AND VAN RENESSE R. Strong and weak virtual synchrony in Horus. Tech. Rep.®Cornell

University, Computer Science, August 1995.

GONG, L. Enclaves: Enabling secure collaboration over the reetEEE Journal on Selected Areas in Communica-

tions 15 3 (April 1997), 567-575.

HARDJONO, T., CAIN, B., AND MONGA, |. Intradomain group key management protocol. Work in IReeg,

September 2000.

HARKINS, D., AND DORASWAMY, N. A secure scalable multicast key management protocol (MKMWork in

Progress, November 1997.

HARNEY, H., AND MUCKENHIRN, C. Group key management protocol (GKMP) specification. RFG208y 1997.
HARNEY, H., SCHUETT, A., AND COLEGROVE, A. GSAKMP light. Work in Progress, July 2002.

HARNEY, H., SCHUETT, A., METH, U., AND COLEGROVE, A. GSAKMP. Work in Progress, February 2003.

HILTUNEN, M. A., AND SCHLICHTING, R. D. Adaptive distributed and fault-tolerant systeimsernational Journal

of Computer Systems Science and Engineerin® {$eptember 1996), 125-133.

HILTUNEN, M. A., SCHLICHTING, R. D., AND UGARTE, C. Enhancing survivability of security services using

redundancy. IfProceedings of The International Conference on Dependalsteshs and Networkdune 2001).

KEIDAR, I., MARZULLO, K., SUSSMAN, J.,AND DOLEV, D. A client-server oriented algorithm for virtually syn-
chronous group membership in WANs. 20th International Conference on Distributed Computing &ysi{April
2000), pp. 356—365.

KIHLSTROM, K. P., MOSER L. E., AND MELLIAR-SMITH, P. M. The SecureRing protocols for securing group
communication. IiProceedings of the IEEE 31st Hawaii International Confegaon System Sciencganuary 1998),

pp. 317-326.

Kim, Y., MAzzoccHI, D., AND TsuDIK, G. Admission control in collaborative groups. 2nd IEEE International

Symposium on Network Computing and Applicati@xil 2003).

Kim, Y., PERRIG, A., AND TSUDIK, G. Simple and fault-tolerant key agreement for dynamitabalrative groups.

In 7th ACM Conference on Computer and Communications Se¢bityember 2000), pp. 235-244.

30

[37] Kim, Y., PERRIG, A., AND TsuDIK, G. Communication-efficient group key agreementlHHP SEC(June 2001).

[38] Kim, Y., AND TSuDIK, G. Membership control in peer groups. \Workshop on New Directions on Scalable Cyber-

Security(March 2003).

[39] M.BAUGHER, CANETTI, R., DONDETI, L., AND LINDHOLM, F. Group key management architecture. Work in

Progress, 2002. draft-irtf-smug-gkmarch-02.txt.

[40] McCDANIEL, P., lRAKASH, A., AND HONEYMAN, P. Antigone: A flexible framework for secure group communica

tion. In Proceedings of the 8th USENIX Security Sympogimagust 1999), pp. 99-114.
[41] MENEZES A., VAN OORSCHOT P.,AND VANSTONE, S. Handbook of Applied CryptographRC Press, 1996.

[42] MOSER L. E., AMIR, Y., MELLIAR-SMITH, P. M., AND AGARWAL, D. A. Extended virtual synchrony. IRro-

ceedings of the IEEE 14th International Conference on Dhsteéd Computing Systertine 1994), pp. 56-65.

[43] REITER, M. K. Secure agreement protocols: reliable and atomic groulticast in Rampart. IProceedings of the

2nd ACM Conference on Computer and Communications Se¢Niatyember 1994), ACM, pp. 68—80.

[44] RENESSE R. V., K.BIRMAN, AND MAFFEIS, S. Horus: A flexible group communication syste@ommunications

of the ACM 39April 1996), 76-83.

[45] RoDEH, O., BIRMAN, K., AND DOLEV, D. Using AVL trees for fault tolerant group key managementchldRep.

2000-1823, Cornell University, Computer Science; Tech..R8p0-45, Hebrew University, Computer Science, 2000.

[46] RoDEH, O., BIRMAN, K., AND DOLEV, D. The architecture and performance of security protoicolse Ensemble

Group Communication SysterACM Transactions on Information and System Securi @®ugust 2001), 289-319.

[47] ScHuLTz, J. Partitionable virtual synchrony using extended virsyachrony. Master’s thesis, Department of Com-

puter Science, Johns Hopkins University, January 2001.

[48] STEER, D., STRAWCZYNSKI, L., DIFFIE, W., AND WIENER, M. A secure audio teleconference systefstlvances

in Cryptology — CRYPTO’8BAugust 1990).

[49] STEINER, M., TsuDIK, G., AND WAIDNER, M. Key agreement in dynamic peer group&EE Transactions on

Parallel and Distributed Systengéugust 2000).

[50] TzENG, W.-G.,AND TZENG, Z.-J. Round-efficient conference-key agreement protoaith provable security. In

Advances in Cryptology — ASIACRYPT '2q@&cember 2000), LNCS.

[51] WHETTEN, B., MONTGOMERY, T., AND KAPLAN, S. A high performance totally ordered multicast protociol.

Theory and Practice in Distributed Systems, Internationatik&loop(September 1994), LNCS, p. 938.

31

A Basic Algorithm: Pseudo-Code and Correctness Proof

The pseudo-code describing our basic algorithm is predem&gorithms 2, 3, 4, 5, 6, 7, and 8. Each
Algorithm describes the actions specific to a state. Theraréypes of actions: group communication
operation (message delivery, message unicast, messagkhsd, or send a flush acknowledgment) and
GDH key agreement specific operation (computation on the tokencess to GDH state information).

We use several simple procedures:

e alone given a list of all members of a group, it returns TRUE if thegass invoking it is the only

member of the group, FALSE otherwise;

e ready given a keylist message, it returns TRUE when the list is ready to be betdit contains

all the partial keys), FALSE otherwise;

e last given a list and a name of a process, it returns TRUE if thegs®ds the last one on the

GDH list, FALSE otherwise;
e is_in: given an item and a list, returns TRUE if the list containsitbe, FALSE otherwise;
e empty given a list, returns TRUE if the list is empty, FALSE otherwise
e choose given a list, deterministically chooses a member on thelhisl returns that member;

e -: the subtraction operator for list;

We also use some important data structures.Mémbershiglata structure keeps information regarding

a membership notification:

e mh.id, the unique identifier of the view;

mh set the list of all the members of this view;

vs set the transitional set associated with this notification;

mergeset the members from the new view that are not in the transitiseteof the new view;

leave set the members from the previous view that are not in the ttiamsil set of the new view.

32

GCS-s usually provide only the first three pieces of infororain a membership notification. The
mergeset and leaveset can be computed by either the GKA or the GCS by using the mehipeyet
of the previous membership notification, and the current beship notification. To simplify the pre-
sentation of the pseudo-code of the algorithm we assumehbatdrgesetandleavesetare provided

by the GCS as part of the membership notification

Algorithm 2 Initialization of global variables

New_memhmsg.vsset .= EMPTY
New.memhmsg.mergeset := EMPTY
New_memhmsg.leaveset := EMPTY
New_memhmsg.mhset := Me
New.memhmsg.mhid :=0

VS_set := EMPTY

First transitional := TRUE

VS _transitional := FALSE
Firstcascadednembership := TRUE
Wait_for_secflush.ok := FALSE

KL _gotflushreq := FALSE

Event := NULL

Clg-ctx := NULL

Groupkey := NULL

State := WAITFOR CASCADING_MEMBERSHIP
[* for opt. Alg., replace the above line with:
State := WAITFORSELF.JOIN */

Every process executes the algorithm for a specific groupraidtains a list of global variables (see
Algorithm 2): Group.nameis the name of the group for which the algorithm is execu@aup keyis
the shared secret of the grole is the process executing the algoritHaventis the current event being
handledClg_ctxkeeps all the cryptographic context required by the GDH pat@nd includes the list
of partial keys, the group key and the list of group membBIEsy membmsgis the new membership
that will be deliveredVSsetis used to compute the transitional set delivered to theiedmn with a
new membership. Five global boolean variables are usediar ¢o facilitate the updating of the V&et
variable, the transitional signal delivery, the correstef the Secur&lush Ok events and the delivery
of secure membership notificatioriarst_transitional First_cascadednembershipWait for_secfl_ok,

VStransitionalandKL _got flushreg. The names of all global variables are capitalized wheréasedr

SNote that the way we define theaveset it includes not only the members that left the group, bub e members
that are not yet completely synchronized with the rest of tloeig.

33

variables (lowercase) are assumed to be local.
For communication, we use the FIFO service to send all of theopol messages, with the exception
of the list of the partial keys for which we used the AGREED sexvié/e choose to use a more expensive

service for the last broadcast to reduce the complexityeatgorithm and the proofs.

Algorithm 3 Code executed in SECURE (S) state

caseEventis
DataMessage:
deliver(datamsg)
UserMessage:
broadcast(datansg)
FlushRequest:
Wait_for_secflush.ok := TRUE
deliver(flushrequesimsg)
SecureFlush Ok:
if (Wait_for_secflushok)
Wait_for_secflush.ok := FALSE
sendflush.ok()
State := WAITFOR.CASCADING_.MEMBERSHIP
[* for opt. Alg., replace above line with:
State := WAITFORMEMBERSHIP */
else
illegal, return an error to the user
endif
TransitionalSignal:
deliver(transsignalmsg)
Firsttransitional := FALSE
VS_transitional := TRUE
All other events:
not possible

A.1 Correctness Proof

We now prove that the above algorithm preserves the VirtyacBrony Model described in Sec-
tion 3.1.

In the following, the ternsecure membership notificatidenotes a notification delivered by the GKA
to the application. The terdS membership notificatiatenotes a notification delivered by the GCS to
the GKA. A secure views a view installed by the GKA and\&S viewis a view installed by the GCS.

Some useful observations can be made about membershigatitifis and application messages.

The GKA discards VS membership events, not every VS view deligeent has a corresponding se-

34

Algorithm 4 Code executed in WAITFOR PARTIAL _TOKEN (PT) state

caseEventis
Partial Token:
if (Nlast(Clg-ctx, Me))
partialtokenmsg := clqupdatekey(Clg_ctx)
nextmember := clgnextmembe(Clg_ctx)
unicastFIFO, partialtokenmsg, nextmembej
State := WAITFORFINAL _TOKEN
else
final_tokenmsg := partialtokenmsg
broadcagFIFO, finaltokenmsg
State := COLLECTFACT_OUTS
endif
FlushRequest:
sendflush.ok()
State := WAITFOR CASCADING_.MEMBERSHIP
TransitionalSignal:
if (Firsttransitiona)
deliver(transsignalmsg
First transitional := FALSE
endif
VS _transitional := TRUE
UserMessage, SecurElushOk:
illegal, return an error to the user
All other events:
not possible

cure view delivery event. The secure membership notifinasdouilt and saved in the CM state (see
Algorithm 8). For every VS membership received in the CM stidie Jist of members, the view identi-
fier and the transitional set of the new secure membershipgtated in thd&New memhbmsgvariable.
User messages are delivered immediately as they are rectiegdare not delayed or reordered.

The following two lemmas are obvious from the algorithm dgsimn and they represent the flush

mechanisms properties.

Lemma A.1 The GKA blocks an application from sending messages betweémtha securdlush.ok_msg

message was sent and the delivery of the new secure membership.

Lemma A.2 When a group membership change occurs, the GKA delivers artgsiestmsg message
to processes already part of the group. The new secure menppésstielivered only after they an-
swer with a securdlushok message. For a joining process no flush is delivered and the secure

membership is the first message delivered to it.

35

Algorithm 5 Code executed in WAITFORKEY _LIST (KL) state

caseEventis
Key_List:
if (IVS_transitiona)
Clg_ctx := clg.updatectx(Clg_ctx, key/list_-msg)
GroupKey := clg.extractkey(Clg_ctx)
New_memhmsg.vsset := Vsset
delivefNew_.memhmsg)
First transitional := TRUE
Firstcascadednembership := TRUE
State := SECURE
if (KL _gotflushreq)
Wait for_secflush ok := TRUE
deliver(flush.requesimsg
endif
endif
FlushRequest:
if (VS_transitiona)
sendflush.ok()
State := WAITFOR CASCADING_.MEMBERSHIP
else
KL _gotflushreq := TRUE
endif
TransitionalSignal:
if (Firsttransitiona)
deliver(transsignalmsg
First transitional := FALSE
endif
if (KL _gotflushreq)
sendflush.ok()
State := WAITFOR CASCADING_.MEMBERSHIP
endif
VS _transitional := TRUE
UserMessage, SecurElush Ok:
illegal, return an error to the user
All other events:
not possible

We now prove the following lemmas.

Lemma A.3 The only state where VS membership notifications are receiwiellGKA is CM.

Proof: By the Flush Acknowledgment property of the GCS, a mesttemotification delivery is pre-

ceded by the process sending a flisdhhmsg message, unless the process is joining. By the algqrithm

immediately after sending a fluskk_msg message, the process transitions to the CM state andaloes

leave the CM state until it receives a Membership event. Ang process starts executing the algorithm

36

Algorithm 6 Code executed in WAITFOR_FINAL _TOKEN (FT) state

caseEventis
Final Token:
factoutmsg := clgfactorout(Clg-ctx, finaLtokenmsg
new.gc := clggetnew.gc(Clg_cxt)
unicastFIFO, factoutmsg, newgc)
KL _gotflushreq := FALSE
State := WAITFORKEY _LIST
FlushRequest:
sendflush.ok()
State := WAITFOR CASCADING_.MEMBERSHIP
TransitionalSignal:
if (Firsttransitiona)
deliver(transsignalmsg
First transitional := FALSE
endif
VS_transitional := TRUE
UserMessage, SecurElush Ok:
illegal, return an error to the user
All other events:
not possible

in the CM state and does not leave it until it receives a mestijeevent.

Lemma A.4 The only states where user messages are received by the GKAhroBCS are S and

CM. User messages are delivered by the GKA to the applicationiotihe S and CM states.

Proof: After receiving a VS membership notification in the CMtst(by Lemma A.3 this is the only
state where membership notifications are received) the gsaveves to one of the states FT, PT, FO,
KL, or S. The transition to state S installs a new secure vievinghat state the process can send and
receive user messages. In any of the FT, PT, FO, KL or CM stageprtitess is not allowed to send
application messages.

If an application message is received in any of the FT, PT, HCLcstates, this can be a message sent
in the previous secure view in state S, or a message sent logeagsrthat completed the key agreement
before this process did, have already installed the newrsedew and sent messages. The first case
is not possible because it contradicts Sending View Deliviryhe second case, note that the key list
message is broadcast as an agreed message, so a user massajbe received in the KL state before

the key list message because it was sent after its sendezgsext the key list message (it contradicts

37

Algorithm 7 Code executed in COLLECFACT_OUTS (FO) state

caseEventis
Factout:
key_list msg := clgmerge(Clqctx, factout msg,keylist msg)
if (readykey_list.msg))
broadcagtAGREED, keylist_msg
KL _gotflushreq := FALSE
State := WAITFORKEY _LIST
endif
FlushRequest:
sendflush.ok()
State := WAITFOR CASCADING_.MEMBERSHIP
TransitionalSignal:
if (Firsttransitiona)
deliver(transsignalmsg
Firsttransitional := FALSE
endif
VS _transitional := TRUE
UserMessage, Securelush Ok:
illegal, return an error to the user
All other events:
not possible

the Causal Delivery property). Therefore, the only statesg/hgrocess can receive user messages are
S and CM. Since user messages are delivered as soon as theyaaved, they are delivered only in the

S and CM states.

Lemma A.5 When processg installs a secure view, the view includeg and thev’s identifier is the

identifier of the most recently installed VS view.

Proof: By the algorithm, the view-to-be-installed is updatsly when a membership notification is
received from GCS (see Algorithm 8, Marks 1 and 2), which, by Len#8, occurs only in the CM
state.

There are two transitions that install secure views. Thetfigstsition corresponds to a Membership
event occurrence in the CM state, indicating that propesslone. In this case, the secure membership
notification is immediately delivered with (the only one) in it and it contains the most recent VS
identifier.

The second transition corresponds to a Kést event occurrence in the KL state. In this case, at the

time the new secure view is delivered, it indicates the VS grmembers list, and as GCS provides Self

38

Algorithm 8 Code executed in WAITFOR.CASCADING_MEMBERSHIP (CM) state

caseEventis
DataMessage:
deliver(datamsg)
TransitionalSignal:
if (Firsttransitiona)
deliver(transsignalmsg
First transitional := FALSE
endif
VS_transitional := TRUE
Membership:
if (Firstcascadednembershijp
VS_set := Newmemhmsg.mhset
First cascadednembership := FALSE
endif
VS_set ;= VSset - membmsg.leaveset
if (lemptymemhmsg.leavesel && Firsttransitiona)
deliver(transsignalmsg
First transitional := FALSE
endif
New_.memhmsg.mhid := memhmsg.mhid
New_memhmsg.mhset ;= membmsg.mhset
if (lalondmemhmsg.mhsed)
if (choosémemhmsg.mhse) == Me)
clg_destroyctx(Clg-ctx)
Clg_ctx := clg firstmembe(Me)
mergeset ;= membmsg.mhset - Me
partialtokenmsg := clqupdatekey(Clg_ctx, mergese}
nextmember := clgnextmembe(Clg-ctx)
unicastFIFO, partialtokenmsg, nextmembej
State := WAITFOR FINAL _TOKEN
else/* not chosen */
clg_destroyctx(Clg_ctx)
Clg_ctx := clg-new.membe(Me)
State := WAITFOR PARTIAL_TOKEN
endif
else/* alone */
clg_destroyctx(Clg_ctx)
Clg_ctx := clg firstmembe(Me)
Groupkey := clgextractkey(Clg-ctx)
New_.memhmsg.vsset := Me
deliveNew_.memhmsg)
Firsttransitional := TRUE
Firstcascadednembership := TRUE
State := SECURE
endif
VS _transitional := FALSE
Partial Token, FinalToken, Factout, Key.List:
ignore
UserMessage, SecurElushOk:
illegal, return an error to the user
All other events:
not possible

39

Inclusion,p is guaranteed to be on that list. In this case, when the seceiv delivered, it indicates

the most recent VS identifier.

A.1.1 Self Inclusion

Theorem A.1 When procesg installs a secure view, the view includes

Proof: This holds due to Lemma A.5.

A.1.2 Local Monotonicity

Theorem A.2 If processp installs a secure view_sec after installing a secure view_sec’ then the

identifier ofv_sec is greater than the identifier af_sec’.

Proof: The algorithm does not create view identifiers, betsubke identifiers provided by the VS mem-
bership notifications without reordering them. By Lemma A.&lways delivers a secure view with
the same identifier as the most recent VS identifier. Thergbmeause it delivers a subsequence of VS

identifiers and because GCS provides Local Monotonicity@Ké provides Local Monotonicity too.

A.1.3 Sending View Delivery

Theorem A.3 A message is delivered by the GKA in the secure view that it wasse

Proof: By Lemma A.4, messages are delivered by the GKA only in thedSCM states. In the S state,
the secure view is the most recent VS view (by Lemma A.5), so bdiBgrview Delivery of GCS, the
theorem holds.

As specified by the algorithm, a process moves to the CM stidethk application agreed to close
the membership by sending a flusk message (see Algorithm 3). Since the GKA delivers a message
immediately after it was received and GCS provides Sendirgv\Delivery, all the messages sent in
a VS view will be delivered before the next VS view was receivexd, therefore, before a new secure

view is installed.

40

A.1.4 Delivery Integrity

Theorem A.4 If processp delivers a message in a secure view, then there exists a procegghat

sentm causally before deliveredm.

Proof: If a proces® delivers a message: in v, then there exists a procegghat sentm in v, by
Theorem A.3. Also, by transitivity, the GKA delivers a messageausally after it was sent because:
¢ GKA sendsm immediately after it was sent by the application.
e GCS delivers message causally after it was sent (Delivery Integrity).

e GKA deliversm immediately after it was received from the GCS.

A.1.5 No Duplication

Theorem A.5 A message is sent only once using the GKA. A message is delimgrexhoe to the same

process by the GKA.

Proof: By the algorithm, an application can send messaggsrothe S state, S0 a message is sent only
once. Also, messages are delivered only in the S and CM statewdiately upon receipt from the
GCS. Since GCS guarantees no duplication, the theorem holds GKA generates GDH messages,

but these are never delivered to the application so they tlaffext the No Duplication property.
A.1.6 Self Delivery
Theorem A.6 If processp sends a message, thenp deliversm unless it crashes.

Proof: By the algorithm, a message is sent by the applicatiarthe GCS, the GKA never discards
application messages and it delivers them immediately edtiving them. Since GCS provides Self

Delivery, the theorem is true.

41

A.1.7 Transitional Set

Theorem A.7 Every process is part of its transitional set for a securewiesec.

Proof: This is true by the protocol (the way the transitioset is computed for a secure view), and by

the Self Inclusion property of the GCS.

Lemma A.6 If processp installed a secure view_sec with process; in the members set, they both

install the same next VS view, apd VS transitional set includeg theng must have installed_sec.

Proof: By the protocol, a process installs a secure view withethan one member only in the KL state.
A process in the KL state installs a secure view if and onlyiiédeives a keyist_msg message before
a transitional signal for the current VS view. Becapsandg move together to the new VS view and
the keylist_ msg is an agreed message, by the Agreed Delivery properties 8f {3Gust also receive

the keylist_msg message before the transitional signal. Therefarayst also have installed sec.

Theorem A.8 If two processe® and ¢ install the same secure viewsec, andq is included inp’s

transitional set for this view, thepis previous secure view was identical¢s previous secure view.

Proof: By the algorithm, the transitional set for a new seauembership notification is initialized to be
the same as the previous secure view member set. Furthemrmengbers reported by VS membership
notifications as not being in the VS transitional set (i.e. ldavese), are removed from this set and
no members are added. Due to thig; i§ included inp’s secure transitional set themmust have been
included in all ofp’s VS transitional sets since the last secure view deliveted Additionally, p and
g must have installed the same sequence of VS views priorsta: because they both installed the VS
view corresponding to_sec and because of the GCS Transitional Set property number therefore,
by Lemma A.64 must have installed the same previous secure view as

To show thay; installed no intermediary secure views, the same proof isategl reversing andg’s
roles with the additional information thatis in ¢’s secure transitional set because of the way the set is

computed and GCS Transitional Set property number two.

42

Theorem A.9 If two processeg andgq install the same secure view, agnds included inp’s transitional

set for this view, thep is included ing’s transitional set for this view.

Proof: Assume andgq install the same secure view,s included inp’s transitional set for this view,
but p is not included ing’s transitional set for this view. Two cases are possiblestR’s previous
secure view was not the samezgs secure view. In this case, by theorem A¢8s not included irp’s
transitional set, contradicting our assumption.

Secondg’s previous secure view was the same, but an intermediary \fication delivered tq;
did not includep in its transitional set. Sinceandq install the same secure view, it must be thaind
g install the same VS view at some point. The first such view llestat g preserves that is not in
¢’s transitional set by GCS Transitional Set property number. BBy GCS Transitional Set property
number two,p must not have in its transitional set for that view. By the protocol, thgrs removed
from p’s secure transitional set, and becap'saransitional set never growswill not be inp’s secure

transitional set whep andgq install the new secure view, which contradicts our assumptio

A.1.8 Virtual Synchrony

Theorem A.10 Two processesandgqg that move together through two consecutive secure viewsedel

the same set of messages in the former view.

Proof: User messages are delivered by the GKA only in the S or Gi¢stLemma A.4) and VS
membership notifications are received by the GKA only in the GMes(Lemma A.3). By the way
we compute the transitional set), if procgsandg move together fromv1_sec to v2_sec, thenp andgq
moved together through the sequence of VS view® v14, ...,v1,,_; tovl,, v1, tov2 6. Therefore, by
the GCS Virtual Synchrony, procesgeandq deliver the same set of messages betwdesndv1, v1,
andvl,, ... v1, andv2. No other messages are delivered betweandv2 _sec installations because

any such message has to be sentidmccording to the GCS Sending View Delivery property.

SNote thatn can be zero with the in-between set potentially empiyt¢ v2).

43

By the protocol, upon sending the flusk_msg message that concludelseach process moves to
the CM state and will not send data messages before instattingc. In particular, it will not send

messages betwee andv2_sec. Thereforep andq deliver the same set of messagesinsec.

A.1.9 FIFO, Causal, Agreed and Safe Delivery

Lemma A.7 All the user messages delivered by the GCS are immediatelyraelibg the GKA, main-

taining the ordering properties indicated by the GCS delper each message.

Proof: By the protocol, the messages delivered by a pronessure view _sec, are messages delivered
by the GCS in a VS view. Since messages are delivered to the application in the thdg were
received from the GCS, without being delayed, no applicati@ssages are dropped or duplicated,
and no phantom messages are generated, the messagesdetiversec, support the same ordering

requirements as they were deliveredin

Theorem A.11 If messagen is sent before message by the same process in the same secure view,

then any process that delivers deliversm beforem’.

Proof: This holds by Lemma A.7.

Theorem A.12 If messagen causally precedes messagé and both are sent in the same secure view,

then any process that delivers deliversm beforem’.

Proof: This is true by Lemma A.7.

Theorem A.13 If messagesn and m' are delivered at procesg in this order, andm and m’ are
delivered by procesgtheng deliversm/ after it deliveredm.

If messages» andm’ are delivered by procegsin secure view 1 _sec in this order, andn’ is delivered
by procesg in secure view2_sec and message: was sent by a procegswhich is a member of secure

viewv2_sec, theng deliveredm.

44

Proof: This is true by Lemma A.7 and because the secure tramzitset is the intersection of all the

VS transitional sets.

Theorem A.14 If processp delivers a safe message in secure view _sec before the transitional
signal, then every procegf v_sec deliversm unless it crashes.
If processp delivers a safe message in secure view _sec after the transitional signal, then every

process; that belongs tg’s transitional set deliversn after the transitional signal unless it crashes.

Proof: The claims are true because the GKA delivers messageshgisame ordering guarantees with
which they were delivered by the GCS (by Lemma A.7), the first tteomsl signal received from GCS
is delivered to the application and because the secureiticarad set is the intersection of all the VS

transitional sets.

A.1.10 Transitional Signal

Theorem A.15 Each process delivers exactly one transitional signal pewy

Proof: GCS Transitional Signal property number one guaeaigat exactly one transitional signal per
view will be delivered by the GCS. In case of cascaded memlpshiore than one transitional signal
is received by the GKA from the GCS, but only the first one will be\eskd to the application (see
Mark 3 in Algorithms 3, 5, 4, 6, 7, 8).

B Optimized Algorithm: Pseudo-Code and Correctness Proof

The pseudo-code corresponding to the state machine frommeFg)is presented in Algorithms 2, 3,
4,5,6,7,8,9and 10.

The description of the protocol we use two additional fielteigesetandleavese) of the mem-
bership notification to determine the cause of the group veange. In addition, we use a modified

version of the procedurdqg_updatekeythat can handle combined network events.

45

Algorithm 9 Code executed in WAITFOR_.SELF_JOIN (SJ) state

caseEvent is
Membership:
VS_set := Newmemhmsg.mhset
New_memhmsg.mhid := memhmsg.mhid
New_memhmsg.mhset := membmsg.mhset
First. cascadednembership := FALSE
if (lalondmemhmsg.mhse)
if (choosémemhmsg.mhse) == Me)
Clg_ctx := clg first nembe(Me)
mergeset := membmsg.mergeset
partialtokenmsg := clqupdatekey(Clq_ctx, mergese}
nextmember := clgnextmembe(Clg_ctx)
unicastFIFO, partialtokenmsg, nextmembey
State := WAITFORFINAL _TOKEN
else
Clg_ctx := clg.new.membe(Me)
State := WAITFOR PARTIAL _TOKEN
endif
else
Clg.ctx := clg first membe(Me)
Groupkey := clgextractkey(Clg_ctx)
New_memhmsg.vsset .= Me
delivefNew_memhmsg)
First. cascadednembership := TRUE
State := SECURE
endif
VS _transitional := FALSE
UserMessage, Securglush Ok:
illegal, return an error to the user
All other events:
not possible

B.1 Correctness Proof

The proof that the optimized algorithm described above ipies/the virtual synchrony semantics
presented in Section 3.1 is very similar to the proof we pravifte the basic algorithm. There are
some differences in the optimized algorithm: 1) secure nesibps can be installed in three states,
CM, SJ and M; 2) application messages are delivered in thel #astates; 3) membership notifications
are received from the GCS inthe CM, SJ, and M states; 4) a ppaxast allowed to send user messages

while performing the GKA , therefore a process can not send usssages in any of the SJ, M, CM,

46

Algorithm 10 Code executed in WAIFORMEMBERSHIP (M) state

caseEventis
DataMessage:
deliver{datamsg)
TransitionalSignal:
if (Firsttransitiona)
deliver(transsignalmsg)
First transitional := FALSE
endif
VS_transitional := TRUE
Membership:
VS_set := Newmemhmsg.mhset
VS_set := VSset - membmsg.leaveset
New_.memhmsg.mhid := memhmsg.mhid
New_.memhmsg.mhset := membmsg.mhset
New_memhmsg.vsset := Vsset
First. cascadednembership := FALSE
if (lalonémemhmsg.mhsed)
mergeset := membmsg.mergeset
leaveset := membmsg.leaveset
if (!emptyleavesel && emptymergesed)
if (choosémemhmsg.mhse) == Me)
key_list_msg := clgleave Clg_ctx, leavese)
broadcagiAGREED, keylist_ msg
endif
State := WAITFORKEY _LIST
else
if (is_.in(choosémemhmsg.mhse), memhmsg.vssed) /* old member */
if (choosémemhmsg.mhse) == Me)
partialLtokenmsg := clqupdatekey(Clg-ctx,leaveset,mergesel
nextmember := clgnextmembe(Clg-ctx)
unicastFIFO, partialtokenmsg, nextmembej
endif
State := WAIT.FORFINAL _TOKEN
else/* new member */
clg_destroyctx(Clg-_ctx)
Clg_ctx := clg.new.membe(Me)
State := WAIT.FOR PARTIAL_TOKEN
endif
endif
else/* alone */
Clg_ctx := clg first membe(Me)
Groupkey := clgextractkey(Clg_ctx)
New_.memhmsg.vsset := Me
deliveNew_.memhmsg
First transitional := TRUE
First cascadednembership := TRUE
State := SECURE
endif
VS_transitional := FALSE
UserMessage, SecurElush Ok:
illegal, return an error to the user
All other events:
not possible

47

PT, FT, FO, or KL states.
Using a reasoning similar to the one we used in the proof for #ecbalgorithm, the following

lemmas can be proved.

Lemma B.1 The only states where VS membership notifications are recareethe SJ, CM and M

states.

Lemma B.2 The only states where user messages can be received are S an®eiMnélssages are

delivered to the application only in the S and M states.

All the Virtual Synchrony Model properties described in $&tB.1 can be proven by using the above
lemmas and the properties provided by the underlying GCS.X&plify this, by proving the Virtual
Synchrony property. Due to the similarity with the proofs weserged for the basic algorithm, we do

not include a proof for each property.

B.1.1 Virtual Synchrony

Theorem B.1 Two processeg andq that move together through two consecutive secure viewsedel

the same set of messages in the former view.

Proof: User messages are delivered to the application oriheils and M states (Lemma B.2) and VS
membership notifications are received only in the SJ, CM arstdies (Lemma B.1). By the way we
compute the transitional set, if procasandq move together fromv1 _sec to v2_sec, then they moved
together through the sequence of VS viewso v14, ...,v1,_; tovl,, vl, tov2. If nis zero,v2 will

be received in the M state, otherwisd,; is received in the M state and all other possible VS views
(including v2) will be received in the CM state. Therefore, by the GCS Virteghchrony property,
processep andq deliver the same set of messages betwdesndv1,, v1; andvl,, ... v1, andv2. No
other messages are delivered betweandv2_sec installations because any such message has to be

sent inv2 by the GCS Sending View Delivery property.

48

By the protocol, upon sending the flusk_msg message that concluddseach process moves to the
M state and will not send data messages before installingec. In particular, it will not send messages

betweeny2 andv2_sec. Thereforep andq deliver the same set of messagesinsec.

49

