
CERIAS Tech Report 2004-54

SECURING JAVA RMI-BASED DISTRIBUTED APPLICATIONS

by Ninghui Li, John C. Mitchell, and Derrick Tong

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Securing Java RMI-based Distributed Applications

Ninghui Li
CERIAS and Department of Computer Sciences

Purdue University
250 N. University Street, West Lafayette, IN 47907

ninghui@cs.purdue.edu

John C. Mitchell
Department of Computer Science

Stanford University
Gates 4B, Stanford, CA 94305-9045

mitchell@cs.stanford.edu

Derrick Tong
Google Inc.

1600 Amphitheatre Parkway, Mountain View CA 94043

Abstract

Both Java RMI and Jini use a proxy-based architecture.
In this architecture, a client interacts with a service through
a proxy, which is code downloaded from a directory and in-
stalled on the client’s machine. An attacker who controls the
communication channels or the directory may compromise
the confidentiality and integrity of the client and of the ser-
vice. We present a security architecture that protects both
clients and services in distributed proxy-based computing.
In this architecture, the service registers a signed authenti-
cation proxy with the directory. The client, after download-
ing a signed authentication proxy from the directory, ver-
ifies the signature on the proxy, authenticates itself to the
service through the proxy, and receives a dedicated session
proxy for the service over a secure channel. We also de-
scribe a Java-based toolkit that implements the security ar-
chitecture. This toolkit enables developers to add security
to Java RMI-based applications with minimal implementa-
tion effort.

1. Introduction

Java RMI (Remote Method Invocation) [11, 8] is a key
enabling technology for creating distributed Java-based ap-
plications. RMI is widely used to implement critical dis-
tributed enterprise information systems. It is a key tech-
nology under the popular Enterprise JavaBeans technol-
ogy [12]; it is also used to create Jini-based applications [1].
RMI’s purpose is to make objects in separate Java Virtual
Machines (JVMs) look and act like local objects. We call
the architecture used by Java RMI theproxy-based archi-
tecture. In traditional client-server systems, where a client
transmits requests to and receives responses from a server,

the client needs to know the location of the server and
the correct protocol to communicate with the server. In the
proxy-based architecture, the provider of a service gener-
ates a proxy for the service and registers the proxy with
a directory, which may be running on a different Virtual
Machine (VM). The proxy contains service-specific code
that will run on the client VM and handles all interactions
with the service. In Java RMI, the proxy is called a stub,
which impersonates a remote Java object (the service ob-
ject) in the client’s JVM and forward calls to the remote
JVM where the service object is located. More generally,
the proxy may perform more functionalities than simply
forwarding method calls. It is also possible that the proxy
provides the service entirely by itself, without any remote
communication. A client that wants to use the service looks
up the proxy in the directory, downloads the proxy into the
client’s VM, and then communicates locally with the proxy
as if it is the remote service. Proxies hide communication
details, allowing the client to use a uniform high-level inter-
face to services without regard to the service location, net-
work communication protocol, or other service interaction
details.

In addition to being used in RMI, the proxy-based ar-
chitecture is also used by Jini [1]. Jini is a service-based
distributed computing architecture. It abstracts both thede-
vices and software under a service notion and supports dy-
namic community formulation and dissolution. As more
and more critical systems are built using the proxy-based
architecture, the security of these systems is a natural con-
cern. The use of proxies introduces security vulnerabilities
that need to be dealt with before people can rely on systems
built using technologies such as Java RMI. As we discuss
in Section 2, an attacker who controls the network commu-
nications between the client VM and the directory VM or
between the service VM and the proxy VM can compro-

mise the confidentiality and integrity of the client as well as
those of the service, as can an attacker who controls the di-
rectory.

The use of proxies causes several challenges in provid-
ing security mechanisms for proxy-based systems. For ex-
ample, the goal to provide mutual authentication between
a client and a service is complicated by the presence of a
proxy. The client and the service communicate through the
proxy, which neither the client nor the service fully con-
trols and trusts. The proxy is generated by the service; thus
the client cannot trust the proxy more than it trusts the ser-
vice, even after the proxy has been authenticated. On the
other hand, the proxy is executed under the control of the
client; thus, the service cannot fully trusts the proxy either.
One approach that might seem plausible is to treat the proxy
as part of an insecure communication channel connecting
the client and the server, and to use standard authentication
techniques to provide mutual authentication between them.
The difficulty of this approach is that the client communi-
cates only with the proxy, and is aware of only the proxy. In
fact, in the extreme case, the proxy provides all services to
the client and there may not even exist a remote service ob-
ject. Some of these difficulties have been noted in the lit-
erature [2, 3]. The authors of [2] admitted the difficulty in
supporting service authentication by saying “a more satis-
fying solution (to the problem of service authentication) is
yet to be found.” While the authors of [3] admitted the diffi-
culty in supporting client authentication by saying “the de-
sign (in [3]) supports cleanly only server authentication”.

In this paper we present a security architecture for se-
curing distributed applications built using the proxy-based
architecture. The security architecture overcomes the chal-
lenges described above and achieves several goals: mu-
tual authentication between the client and the service (with
choice of the authentication method), protected communi-
cation between the proxy and the service, and service ac-
cess control. In order to reach these ends, the architecture
uses a signed authentication proxy. When a client looks for
the proxy of a service, it finds the signed authentication
proxy. The client verifies that this proxy is signed by the
intended service provider. The proxy and the service com-
municate through TLS/SSL [10] with server authentication,
enabling the proxy to authenticate the service and ensur-
ing that the communication between the proxy and the ser-
vice is secure. The client authenticates itself to the service
through a method call to the authentication proxy. After a
client is authenticated, a client-specific session of the ser-
vice that caches the client authentication data is created on
the service VM and a proxy of the session is returned to the
client. When the client uses the service through this session
proxy, the authentication data can be reused. This avoids re-
peating the authentication effort on every method call to the
service.

We also describe a toolkit that we have implemented
to help application developers adopt the security architec-
ture in Java RMI-based applications. The public available
toolkit1 uses several facets of Java 2 Security, including
the Java Cryptography Extension (JCE), Java Secure Sock-
ets Extension (JSSE), and Java Authentication and Autho-
rization System (JAAS) [5]. The toolkit uses standard Java
runtime and Java RMI features, without changing anything
“under the hood”. This makes it easy to deploy applica-
tions built using the toolkit. Applying the toolkit to secure
a Java RMI-based applications requires few changes to the
application code. On the service side, only the method call
that exports a service needs to be changed to a call into the
toolkit; the service interface and implementation remain un-
changed. On the client side, only the code to look up the ser-
vice proxy needs to be changed. It is straightforward to add
security into an existing application by making the above
modest changes to the application code.

The remainder of the paper is organized as follows. In
Section 2, we analyze the threats posed to proxy-based dis-
tributed systems and state the goals of a security architec-
ture. Section 3 presents an architecture which accomplishes
these goals, and Section 4 describes a toolkit that imple-
ments this architecture. We discuss related work in Sec-
tion 5 and conclude in Section 6.

2. Vulnerability Analysis and Security Goals

We now analyze the vulnerabilities of the proxy-based
architecture and present the desirable security goals. For
concreteness, we use Java RMI in the presentation; how-
ever, the same vulnerabilities also exist in other proxy-
based distributed systems such as Jini-based systems. The
sequence of interactions among the service, the client, and
the proxy is shown in Figure 1 and described below. In these
interactions, three virtual machines (VMs) are involved: the
client VM, the service VM, and the directory VM.

1. The service makes a call to the RMI runtime to export
the service. In this process a proxy for the service is
created in the service VM.

2. The service makes a remote call to a directory (e.g.,
rmiregistry) to register its proxy. After this call, the di-
rectory VM has the proxy object.

3. The client looks up the service and downloads the
proxy from the directory. After this step, the client VM
has the proxy.

4. Each time the client needs to use the service, it calls
the proxy locally as if it is the remote service.

5. The proxy communicates with the service to serve the
client’s request.

1 http://theory.stanford.edu/people/jcm/software/secureRMI.html

Service VM

Directory VM

Service
Proxy

Service
Proxy

2

3

5

1

Service

Client VM

Client
Program

Service
Proxy

Directory

4

Figure 1. A normal client/service interaction

After a client has located and installed a proxy, the client
may reuse the proxy to make further requests by repeating
steps 4 and 5 for as long as the proxy is considered valid by
the service.

2.1. Vulnerabilities

In our vulnerability analysis for proxy-based systems,
we consider three parties: the user, the service provider, and
the attacker. We assume that the user has full control over
the client VM and that the service provider has full con-
trol over the service VM. An attacker, however, may con-
trol the network and the directory VM. In other words, we
consider the directory as untrusted; a compromised direc-
tory should not compromise the security of the client or the
service.

The risks to the client are:

Client confidentiality The client may transmit sensitive
information to the proxy when trying to use the ser-
vice. For example, if the service provides access to
the user’s investment accounts, the user wants to make
sure that his instruction is sent only to the service
provider, but not to anyone else.

Client integrity The user’s VM and local environ-
ment may be damaged by the proxy.

Client confidentiality may be compromised by the attacker
through the following two ways. One, the attacker can
eavesdrop on the communications between the service and
the proxy. Two, the attacker may get the client to install and
run a bogus proxy, either by compromising the directory or
by actively attacking the communication channel between
the directory VM and the client VM or the channel between

the directory VM and the service VM. In this attack, client
integrity may also be compromised.

The risks to the service are:

Service confidentiality The service may send sensitive in-
formation to the client through the proxy.

Service integrity The service needs to perform cer-
tain functionalities on behalf of its client, and an at-
tacker who successfully impersonates a client may
result in damages.

Service confidentiality and integrity may be compromised
by an attacker who controls the communication between the
proxy and the service, by an attacker who can get the client
to accept a bogus proxy, and by an attacker who can imper-
sonate a client.

In this paper we do not consider risks related to avail-
ability, as a denial-of-service attack can always be carried
out by an attacker who controls the communication chan-
nels and/or the directory.

2.2. Security Goals

The security architecture is designed to prevent the at-
tacker from compromising client or service confidential-
ity and integrity as described above. Security is achieved
through meeting the following goals:

1. Service authentication When the client communi-
cates with the proxy of a service, it should have suffi-
cient confidence that it is communicating with the ser-
vice it intends to.

2. Secure communication channelBoth the client and
the service should have confidence that the communi-
cation between them is protected from other entities.

3. Client authentication and authorization Ser-
vices should be able to authenticate the requesting
clients and authorize them accordingly.

Goals 1 and 2 ensure that any data sent to the proxy are
received only by the service; thereby achieving client confi-
dentiality. Goals 2 and 3 achieve service confidentiality and
integrity. While Goal 1 helps in achieving client integrity,it
is not sufficient by itself. The proxy’s access to the client’s
VM must be limited. Even after the client authenticates a
service proxy, the user should not trust the proxy completely
and should still restrict the proxy’s access to local environ-
ment. In this paper we do not address this because it is best
achieved with a virtual machine permission architecture as
in Java 2 Security [4].

3. An Architecture for Securing Proxy-Based
Applications

In this section, we present an architecture that achieves
the three goals set in Section 2.2. We first discuss tech-

niques that achieve each goal individually, and then present
the complete architecture that combines these techniques.
We discuss also alternative techniques and why we found
them to be less than satisfactory. Although some elements
in our design are specific to Java RMI-based systems, we
believe that the main concepts apply to other proxy-based
systems as well.

3.1. Using signed proxies to authenticate services

We now discuss how to achieve service authentication.
Balfanz et al. [2] proposed to use TLS/SSL with server au-
thentication. In order to ensure that the TLS/SSL code is
implemented correctly, they disallow dynamic download-
ing of stub code. They observed that “this, however, dis-
ables a whole set of features for distributed Java programs,
so that a more satisfying solution is yet to be found.”

We observe that, in the proxy-based architecture, the
client is in direct contact only with the proxy and may be
oblivious to the location or even the existence of the re-
mote service (as the service may be provided by the proxy).
Therefore, the client cannot authenticate the service di-
rectly. From the client’s point of view, the proxy is the only
thing that represents the service; thus, the client should au-
thenticate the proxy to be convinced that the proxy indeed
represents the intended service. If the proxy needs to com-
municate remotely with the service, it should authenticate
the service to be convinced that it is indeed communicat-
ing with the original service.

In summary, the service is authenticated in two steps: the
service is authenticated by the proxy and the proxy is au-
thenticated by the client. In our architecture, the proxy is
digitally signed so that it can be authenticated by the client,
and the proxy authenticates the service by using TLS/SSL
with server authentication.

In this approach, it is ultimately up to the service
provider to ensure that its proxy authenticates its ser-
vice correctly. This is a consequence of the fact that
the proxy is provided by the service. The implica-
tion is that the client has to trust the service provider to
have correctly implemented the proxy. This trust is jus-
tifiable for the following two reasons. First, it is part of
the service’s responsibility to implement its service cor-
rectly and free of security holes. As the proxy is part of
the service, it is also part of the service’s responsibil-
ity to implement the proxy correctly. Second, the user
is already trusting the service provider with any sensi-
tive data she wishes to provide to the service. If the user
trusts a service to handle the sensitive information prop-
erly, the user might as well trust that the proxy implemented
by the same provider also handles this information prop-
erly.

We now discuss the details of implementing signed prox-
ies in Java. The standard Java security mechanism provides

support for signed JAR files. The Java Archive (JAR) file
format enables one to bundle multiple files into a single
archive file. Typically a JAR file will contain the class files
and auxiliary resources. In our architecture, the code of the
proxy is stored in a signed JAR file. When the signed JAR
file is downloaded to the client VM, the client can verify
that the signature on the jar file is valid and that the sign-
ing key represents the intended service. However, just ver-
ifying the signature on the code is not sufficient — both
the proxy code and the proxy data must be authenticated.
The proxy data may contain, for example, the service’s pub-
lic key so that the proxy can use TLS/SSL to communicate
with and authenticate the service.

In our architecture, we use what we call encapsulated ob-
jects to authenticate the data part of a proxy. This is used in
addition to signed JAR files. Aencapsulated objectcontains
the object to be encapsulated together with a description ob-
ject and a digital signature over the object and the descrip-
tion object. A description object is needed when a public
key is used to sign multiple proxies, in which case a client
needs to know not just who signed a proxy, but also what
the proxy is supposed to do. A description object may be an
URI string or any other object identifying the service asso-
ciated with the proxy, known to both the client and the ser-
vice. The client authenticates the proxy by verifying that the
code is signed by a key adequately trusted, the proxy data is
encapsulated by a key adequately trusted, and the descrip-
tion object is appropriate.

3.2. Using TLS/SSL to secure communication

We now discuss how to achieve Goal 2: securing the
communication channel between the client and the service.
This channel consists of two parts: the one between the
client and the proxy, and the one between the proxy and the
service. The former is local to the client’s VM, and is as-
sumed to be protected from the attacker. The latter needs
protection. In our architecture, this is achieved by having
the service provider make sure that the proxy communi-
cates with the service through TLS/SSL with server authen-
tication. This ensures that the proxy only talks with the ser-
vice and that the communication is protected against attack-
ers. Observe that again it is up to the service provider to
ensure that its proxy communicates over a secure channel.
Since JDK 1.2, it is possible to use custom sockets in Java
RMI; thus it is straightforward to use TLS/SSL with server
authentication in RMI proxies using versions of JDK later
than JDK 1.2.

3.3. Using authentication proxy to authenti-
cate clients

Another security goal we would like to achieve is client
authentication, i.e., to enable the service to authenticate the

identity of the client. We first discuss three approaches that
we considered and rejected.

The first such approach is to require each service to pro-
vide its own authentication interface. For example, this can
be done by requiring the service object to implement an ad-
ditional authentication interface. The downside of this ap-
proach is that the implementation of the service object needs
to be changed. This increases the amount of work applica-
tion developers need to do in order to use the security ar-
chitecture. Also, as security code tends to be error-prone,
rather than having each application implementing its own
authentication mechanism, it is more desirable to have the
authentication mechanism implemented and verified once
and reused by multiple applications.

Another approach is to use TLS/SSL with client au-
thentication. Indeed, this has been proposed in previous
work on securing RMI-based systems [2]. One obvious dif-
ficulty of this approach is that it is the proxy who actu-
ally communicates with the service, yet the proxy does not
have the client’s private key, which is needed for TLS/SSL
with client authentication. We reject two possible solutions
to address this difficulty. The first one has the client take
over the proxy’s communications with the service, as done
in [2]. This typically requires changing the Java RMI run-
time, because the proxy might open a socket even before the
client makes the first call to it. Changing the Java RMI run-
time makes deployment much more difficult and increases
the risk of non-interoperability. Furthermore, as proxiesare
meant to hide communication details from the client, requir-
ing the client to take over the communications between the
proxy and the service is against the spirit of the proxy-based
architecture. The second inappropriate solution is to give
the client’s private key to the proxy. This is a serious viola-
tion of security principles. Even though the client has veri-
fied that the proxy is a valid representation of the service, it
can only trust the proxy as much as it trusts the service it-
self. As the client would never authenticate to a service by
giving its private key to the service, giving the private key
to the proxy is unacceptable. Even though the proxy is exe-
cuted on the client machine, it is typically very difficult (if
not impossible) to be sure that the proxy will not leak the
private key through open or covert channels [6].

The third approach that we rejected is to have the ser-
vice authenticate the proxy (through TLS/SSL with client
authentication) and the proxy authenticate the client for the
service. This is problematic because the proxy is executed
under the client’s control and may be altered by the client
or an intermediate attacker; thus the service cannot trust the
proxy to authenticate the client.

In our security architecture, we use an authenticator that
provides a generic interface for client authentication. Rather
than registering a proxy for a service with the directory, the
service first registers a proxy for the authenticator, called an

authentication proxy.When the client retrieves the authenti-
cation proxy, it authenticates to this proxy through a method
call that is forwarded to the service VM. If the client is au-
thenticated and is allowed to use the service, then an actual
service proxy is returned to the client. This way, client au-
thentication is independent of the communication protocol
and does not require the client to expose its private key.

3.4. Using dedicated session proxy to efficiently
control client access

Finally, we would like to enable the service to perform
access control based on the results of client authentication.
Many clients may be allowed to use a service; however, dif-
ferent clients could have different permissions. For exam-
ple, some clients may not be allowed to call certain meth-
ods of a service. In order to authorize different clients dif-
ferently, the service needs to know which client called it.
One way to do such finer-grained access control is to have
authentication information passed as an argument in ev-
ery method call. This design requires changing the signa-
tures of all the remote methods to accommodate security,
which is cumbersome. Another drawback is that authenti-
cation would then be repeated for each method call. This
could be a serious performance problem, as the authentica-
tion process could involve such time-consuming computa-
tions such as verifying multiple public key signatures.

In order to do client-specific access control with-
out changing Java runtime, we usededicated session prox-
ies. When a client is authenticated, a dedicated session is
created and a proxy for it is returned to the client. The ded-
icated session maintains the information about the specific
client that has been authenticated. This dedicated ses-
sion proxy can be compared to a “ticket” in single sign-on
architectures such as Kerberos [9]. Possession of a dedi-
cated session proxy provides the client access to the service
for as long as the proxy is considered valid by the ser-
vice (i.e. the lifetime of a ticket).

3.5. A complete interaction sequence

Our architecture for securing proxy-based distributed
systems combines the four techniques discussed above:
signed proxy, secure communication, authentication proxy,
and dedicated session proxy. We now describe a sequence of
interactions when using the architecture with public key au-
thentication for clients. These sequences are shown in Fig-
ure 2.

1. The service creates a proxy to an authenticator; we
call this proxy the authentication proxy. The service
then creates a signed authentication proxy, which is
a encapsulated object that contains this authentication
proxy and a description and is digitally signed.

Service VM

Directory VM

Auth
Proxy

Auth
Proxy

2

3

5

8

7

9

1

Client VM

Client
Program

Auth
Proxy

Proxy
Verifier

Session
Proxy

Authenticator

Service
Session

Directory
4

6

Service

Figure 2. A secure client/service interaction

2. The service registers the signed authentication proxy
with a directory.

3. The client looks up the service and downloads the
signed authentication proxy from the directory.

4. The client verifies that the signature on the signed au-
thentication proxy is correct and that the description is
as expected.

5. The client authenticates itself by presenting its public
credentials (i.e., public key certificates) to the authen-
tication proxy, which communicates the request to the
service over a secure channel.

6. The authenticator analyzes the request and decides
whether to grant access to the client.

7. If access is granted, the service creates a service ses-
sion that is dedicated to this client. It then returns a
proxy to the service session, called the dedicated ses-
sion proxy. This proxy is encrypted with the client’s
public key. The client, after receiving the encrypted
proxy, decrypts it and gets the dedicated session proxy.

8. The client then makes its service requests through the
session proxy, which communicates the requests to the
service VM via a dedicated secure channel.

9. By receiving the request through this dedicated chan-
nel, the service can associate it with the appropriate
client. The service processes the request accordingly
and returns the result.

The client may then reuse the proxy to make further re-
quests by repeating steps 8 and 9 for as long as the proxy is
considered valid by the service.

When the functionality of a service is implemented by
a proxy without interaction to the service, then there is no

need to do client authentication and access control, as ev-
ery client can download the proxy and use the service. In
this case, a signed proxy can be used to enable the client to
authenticate the proxy.

4. A Secure RMI Toolkit

We have implemented a toolkit that enables developers
of RMI-based applications to easily adopt the security ar-
chitecture described in Section 3. Our goals in designing
and implementing this toolkit are to make security as easy to
add and as flexible to use as possible. As a base line require-
ment, the toolkit should not require modifications to the
standard Java runtime or the standard JDK. We also want
to support flexible authentication and authorization. Appli-
cation developers should be able to implement new authen-
tication and authorization methods and use them with this
toolkit. In addition to meeting the above goals, the toolkit
also provides support for the Java Authentication and Au-
thorization System (JAAS) to allow existing JAAS-enabled
code to leverage Java’s authorization framework in a dis-
tributed environment.

The toolkit consists of a set of classes implementing the
security architecture. To use this toolkit, it should be stati-
cally loaded both at the service side and at the client side.
This toolkit is assumed to be trusted, just like other stati-
cally loaded libraries.

4.1. Usage of the Toolkit

On the service side, the toolkit handles the creation of au-
thenticators, authentication proxies, signed authentication

proxies, dedicated service sessions, and dedicated session
proxies. To use the toolkit on the service side, the service
program first creates an instance of the server toolkit, pro-
viding it with its trust store (trusted root CA’s), its public
key (for SSL server authentication), and its private key (to
sign the proxies). After that the service program, instead of
calling the standard Java RMI runtime to export the service,
calls the toolkit to do so. The toolkit calls standard Java RMI
runtime to export an authenticator for the service, and re-
turns a proxy for the authenticator to the service program.
The service program receives an authentication proxy from
the toolkit and then registers it with a directory as usual. The
toolkit handles all remaining authentication details. From
within the service code itself, authorization decisions may
be made automatically by the service’s JAAS policies, as
the toolkit marks each incoming service request with the
client’s identity (javax.security.auth.Subject).
Alternatively, the service code may query the toolkit to de-
termine the identity of the calling client and base its autho-
rization decisions appropriately.

On the client side, the toolkit handles the verification of
the authentication proxy, the authentication to the service,
and the retrieval of the dedicated session proxy. The client
program creates an instance of the client toolkit, providing
it with its public key (for client authentication) and its pri-
vate key (to decrypt service proxies). Next, the client uses
the toolkit to look up the desired service. Along with the lo-
cation of the directory and the name of the service, the client
provides the expected description of the service, as well as
the policies specifying the acceptable credentials of the ser-
vice provider. The toolkit then handles the retrieval and ver-
ification of the signed authentication proxy, as well as the
client authentication process to obtain the desired service
proxy (i.e., the dedicated session proxy).

4.2. Implementation of the Toolkit

In this section, we describe the implementation of some
of the major components of the toolkit. In particular, we de-
scribe some interesting techniques that we use to achieve
the toolkit’s flexibility and functionality.

Signed authentication proxyOn the service side, the toolkit
is called to export a given service. To do this, the toolkit cre-
ates anAuthenticator, which handles the process of
client authentication. TheAuthenticator object re-
sides on the service VM and keeps a reference to the service
it protects. The toolkit exports theAuthenticator, dur-
ing which process a proxy to theAuthenticator, which
we’ll call the AuthenticatorProxy, is created. Next,
thisAuthenticatorProxy must be signed. To do so, it
is first wrapped in ajava.rmi.MarshalledObject,
which serializes the proxy in such a way that the appropri-
ate code can be located and downloaded by the RMI run-

time. TheMarshalledObject is then wrapped by a
DescribedObject, which simply attaches a description
to the object it wraps. Finally, thisDescribedObject
is wrapped in ajava.security.SignedObject,
which computes a signature over the object it wraps.

We now have a signed authentication proxy object that
functions as the first object received by the client in our se-
curity architecture. However, the toolkit would do poorly to
return this object to the service program as it is, for two rea-
sons. First, when exporting a service through the toolkit, the
programmer will expect an object that implements the re-
mote interfaces that the service itself implements, as is the
case in using standard Java runtime. If, however, the toolkit
returns aSignedObject instead, this interface contract
would be violated, and much of both the client and service
implementations would need to be modified. Second, one
would have trouble using this object in Jini. Registering a
SignedObjectwith the Jini directory would not be in ac-
cordance with Jini’s directory lookup process, which relies
upon the interface of the proxy. The Jini lookup algorithm
would no longer be able to locate the service because the
proxy representing the service (e.g. theSignedObject)
does not correctly implement the service interface.

We now explain how we resolve this problem. The se-
curity architecture requires theSignedObject that
contains the authentication proxy, while Jini requires an ob-
ject implementing the original service interface. Thus,
the solution lies in returning an object that meets both
of these requirements—aSignedObject that imple-
ments the original service interface. The difficulty lies in
the fact that the toolkit does not know the service interface
a priori—how, then, can the toolkit provide a general so-
lution that works with arbitrary service interfaces? Our so-
lution lies in a technique called dynamic class generation.
JDK 1.3 introduced thejava.lang.reflect.Proxy
class, which dynamically generates classes implement-
ing an arbitrary list of interfaces. We use theProxy class to
create what we call a typed wrapper, which is essentially an
object that wraps another object while implementing an ar-
bitrary set of interfaces. The typed wrapper returned by the
toolkit’s export method implements all of the remote in-
terfaces of the given service, along with the special Type-
dWrapper interface, which contains a single method
$getWrappedObject(). The behavior of the result-
ing object is to return the signed authentication proxy in re-
sponse to a call to$getWrappedObject(), and throw
an UnsupportedMethodException when any other
method is called. (Figure 3) We thus have an object that im-
plements the interfaces expected by existing service code,
conforms to the Jini lookup process, and fulfills the require-
ments of our security architecture.

Authentication ModulesDifferent applications may need
to use different authentication methods. In the toolkit,

Figure 3. A typed wrapper for a service imple-
menting two interfaces

we clearly could not implement all possible authenti-
cation methods. Instead, we implement the toolkit so
that the client authentication process is performed us-
ing a set of pluggable, stackableauthentication mod-
ules. These modules are loaded from a configuration file
that the client can modify by specifying its own verifica-
tion modules. Application developers can write their own
authentication modules and load them through the configu-
ration file.

Each authentication module implements the
AuthenticationModule interface, which con-
sists of three methods:prepareForAuthentication,
unpack, and authenticate. The first two methods
are called on the client side, and the last method is called
on the service side. The authentication task begins on the
client side, where theprepareForAuthentication
method of each module is called to prepare any data that
will be needed by the same module on the service side;
such data may include, e.g., the client’s public credentials.
Once all such data has been collected, it is sent as an ar-
gument to a method call to theAuthenticatorProxy.
When the data is received by the Authenticator, it is
processed by theauthenticate method of the au-
thentication modules. Each module analyzes the data
sent by theprepareForAuthentication method
of the same model and decides whether to grant ac-
cess. If the module decides to grant access, it packages the
service proxy in some way and passes it to the next mod-
ule. Finally, the resulting object is returned to the client,
where theunpack method of the authentication mod-
ules are then called one by one to recover the service
proxy.

The architecture is “stackable”, and the order of the mod-
ules on the service side is the reverse order of the modules
on the client side. This is best shown by an example. The
toolkit currently implements three modules: a trust manage-
ment module, a dedicated session module, and a cryptogra-
phy module.

Dedicated session proxyThe toolkit needs to create a ded-
icated session proxy after the client is authenticated. The
purpose of this proxy is two-fold: (1) single sign-on (de-
scribed in Section 3.4) and (2) service-level authorization.
We now detail how the dedicated session enables both
JAAS-based and non-JAAS-based authorization. We need
to give the methods in the service object access to the
client identity, without changing the signatures of these
methods. Without using a service session dedicated to a
client, this is very difficult to achieve without changing RMI
runtime. As RMI is designed to abstract proxy communi-
cation details from both the client and the service, there
is no simple way to tell where a remote call originates.
In the java.rmi.server.RemoteServer class, the
getClientHost()method comes close to providing the
necessary functionality. However, this is inadequate, since
we cannot assume that each remote host corresponds to a
single client. Furthermore, we cannot rely on any low-level
assumptions about RMI proxy connections and threads,
since no such association is specified in the RMI stan-
dard and thus such implementation specifics are subject to
change.

The creation of a service session dedicated to a sin-
gle client makes it possible to maintain the client iden-
tity. This identity then enable the use of access control
based on JAAS policies. It can also be retrieved by the ser-
vice code for access control based on other policies imple-
mented in the service code. To add the client identity infor-
mation, we introduce a level of indirection, once again us-
ing thejava.lang.reflect.Proxy class. Instead of
exporting the service itself to create the dedicated session
proxy, we create a wrapper to the service and export that
wrapper object instead. This wrapper object implements
all of the service’sRemote interfaces, and also stores
ajavax.security.auth.Subject object represent-
ing the client associated with this dedicated session. The be-
havior of the dedicated session is described in Figure 4 and
explained below.

1. The dedicated service session receives a remote call
from the client, forwarded by the dedicated session
proxy.

2. The session stores theSubject of the client in a
ThreadLocal variable, making it accessible to any
code called thereafter.

3. The session then callsSubject.doAs(...) to for-
ward the method call to the service.

4. The service processes the method call, making autho-
rization decisions using theSubject stored in the
ThreadLocal variable, or using built-in JAAS poli-
cies made possible from theSubject.doAs(...)
call.

5. After the service returns (or throws an exception),
the session removes the client’sSubject from the
ThreadLocal variable.

Figure 4. The Dedicated Session

Wrapping each incoming service method call with a call
to Subject.doAs(...) allows the service application
to use JAAS-based authorization. Using the toolkit, services
that use JAAS stack inspection for authorization can now do
this for remote method calls without modifying any existing
code. Storing the client’sSubject in a ThreadLocal
variable allows the toolkit user to perform non-JAAS au-
thorization. The toolkit exports a static method that returns
theSubject stored by the service session making the cur-
rent call (ornull if the current call is not a remote call).
Thus, authorization decisions in the service code can be
made by calling this method and examining the credentials
of the calling client.

4.3. An Example of Using the Toolkit

To verify the practical usability of the architecture and
the toolkit, we applied the toolkit to a user-to-user in-
stant messaging system we wrote before starting the current
project. We found that only a small amount of code change
is required to apply the toolkit to the application, thereby
validating our design of the architecture and toolkit. Apply-
ing the toolkit involved the following two steps. The first
step is to add method calls to the toolkit to instantiate toolkit
objects. These objects are initialized with keystores contain-
ing the credentials of trusted authorities and other entities.
The second step is to replace the usual export and lookup
of the services by the secure versions of them provided by
the toolkit. Figure 5 shows the code changes before and af-
ter using the toolkit.

5. Related Work

Balfanz et al. [2] described the design and implemen-
tation of a security infrastructure for a distributed Java
application. Their focus was on exploring a variation of
SPKI/SDSI as an access control language in the application.
Issues such as verifying the authenticity of the service proxy
were not considered. They used SSL/TLS for client and ser-
vice authentication and discovered some difficulties of this
approach such as those discussed in Section 3. Eronen and
Nikander’s [3] work on Jini security is closer in spirit to

the present paper. They considered verification of proxies.
However, instead of verifying a signature on the serialized
value of a proxy, they verify a signature on a message digest
of the proxy object computed by the proxy object itself. We
are able to directly verify a serialized object because of the
java.lang.reflect.Proxy class in JDK 1.3, which
might not have existed at that time of the previous work.
Eronen and Nikander also had difficulty using TLS/SSL for
client authentication and concluded that “the design sup-
ports cleanly only server authentication”. The two papers
above addressed the issue of trust-management policy lan-
guages for authorization. We view trust management, and
the decision to trust a key or not, as an orthogonal issue
to the security architecture for proxy-based distributed sys-
tems and beyond the scope of this paper.

The approach of using an authenticator for client authen-
tication and a dedicated proxy for client authorization was
discovered independently by Marques in [7]. (Our archi-
tecture was first presented in January 2002 at DARPA Dy-
namic Coalitions PI meeting.) The work by Marques is lim-
ited in its scope as it does not deal with proxy authentica-
tion and supports only password for client authentication.

The Davis project [13] was an effort by the Jini technol-
ogy project team at Sun Microsystems to provide the new
programming models and infrastructure needed for a Jini
security architecture. The Davis project specification have
been incorporated into the v2.0 release of the Jini Technol-
ogy Starter Kit. The approach taken in the Davis project is
to revamp RMI to provide security. The revised RMI pro-
gramming model has not been incorporated into standard
Java yet. The approach to revamp RMI to provide secu-
rity as well as other functionalities was also taken in two
rejected Java Specification Requests (JSR’s), namely JSR
76 and 78. We believe that an architecture that adds secu-
rity without changing the underlying RMI mechanism has
its virtue. As there already exist many business applications
that use RMI, it is desirable to provide security to these ap-
plications without rewriting them using the new RMI pro-
gramming model. Furthermore, we believe that our security
architecture can be applied to other, similar, proxy-based
systems, such as those based on Jini.

[SERVICE SIDE]
Before:
Directory exported = (Directory) UnicastRemoteObject.exportObject(directory);
Naming.bind("//host/directory", exported);

After:
.... // create the server toolkit
Directory exported = (Directory)
serverToolkit.exportSignedAuthenticatingObject(directory,"Description of directory");

Naming.bind("//host/directory", exported);

[CLIENT SIDE]
Before:
Directory dir = (Directory) Naming.lookup("//host/directory");

After:
... // create the client toolkit
Directory encapsulated = (Directory) Naming.lookup("//host/directory");
// Verifies the signature and description of the encapsulated proxy is correct
directoryCertificate = ... // the certificate of the desired signer of the directory
Directory dir = (Directory)
clientToolkit.unwrap(encapsulated, directoryCertificate, "Description of directory");

Figure 5. Example of code changes before and after using the toolkit

6. Conclusions

More and more critical systems are built using the proxy-
based architecture, which is used in Java RMI and Jini.
In proxy-based distributed applications, client and server
confidentiality and integrity may be compromised by ad-
versaries controlling the communication channels. We pre-
sented a security architecture to counter these threats by
addressing the unique challenges presented in proxy-based
distributed systems. The architecture provides mutual au-
thentication between the client and the service, secure com-
munication channels, and efficient client access control. We
also described the design and techniques that we have used
to implement the security architecture in the form of a Java-
based toolkit, which allows security to be added to Java
RMI-based applications with minimal implementation ef-
fort.

Acknowledgement This work is supported by DARPA
through SPAWAR contracts N66001-00-C-8015. It is also
supported by DOD MURI “Semantics Consistency in Infor-
mation Exchange” as ONR Grant N00014-97-1-0505 and
by DOD University Research Initiative (URI) program ad-
ministered by the Office of Naval Research under Grant
N00014-01-1-0795. We thank the anonymous reviewers for
their helpful comments.

References

[1] Ken Arnold, editor. The Jini(TM) Specifications. Addison-
Wesley, 2000.

[2] Dirk Balfanz, Drew Dean, and Mike Spreitzer. A security in-
frastructure for distributed Java applications. InProceedings

of 2000 IEEE Symposium on Security and Privacy, pages 15–
26, May 2000.

[3] Pasi Eronen and Pekka Nikander. Decentralized Jini secu-
rity. In Proceedings of the Network and Distributed System
Security Symposium, February 2001.

[4] Li Gong. Inside Java 2 Platform Security: Architecture, API
Design, and Implementation. Addison-Wesley, June 1999.

[5] Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, and
Roland Schemers. User authentication and authorization in
the Java platform. InProceedings of the 15th Annual Com-
puter Security Applications Conference (ACSAC’99), pages
285–290, December 1999.

[6] Butler W. Lampson. A note on the confinement problem.
Communication of the ACM, 16(10):613–615, October 1973.

[7] Paulo Marques. Building secure java rmi servers.Dr. Dobb’s
Journal, November 2002.

[8] Rickard Öberg. Mastering RMI. John Wiley & Sons, Inc.,
2001.

[9] B. Clifford Neuman and Theodore Ts’o. Kerberos: An au-
thentication service for computer networks.IEEE Commu-
nications Magazine, pages 33–38, September 1994.

[10] Eric Rescorla. SSL, TLS: Designing, and Building Secure
Systems. Addison-Wesley, 2001.

[11] Sun. Core Java: Java Remote Method Invocation (Java RMI).
http://java.sun.com/products/jdk/rmi/.

[12] Sun. J2EE: Enterprise JavaBeans Technology.
http://java.sun.com/products/ejb/.

[13] The Davis Project Team. The Davis project home page.
http://davis.jini.org/.

