
CERIAS Tech Report 2004-52

PURPOSE BASED ACCESS CONTROL FOR PRIVACY PROTECTION IN RELATIONAL
DATABASE SYSTEMS

by Ji-Won Byun and Elisa Bertino and Ninghui Li

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Purpose Based Access Control for Privacy Protection in
Relational Database Systems

JiWon Byun Elisa Bertino Ninghui Li
byunj@cs.purdue.edu bertino@cerias.purdue.edu ninghui@cs.purdue.edu

Center for Education and Research in Information Assurance and Security
and Department of Computer Sciences

Purdue University
656 Oval Drive, West Lafayette, IN 47907

ABSTRACT

In this paper, we present a comprehensive approach for pri-
vacy preserving access control based on the notion of pur-
pose. Purpose information associated with a given data ele-
ment specifies the intended use of the data element, and our
model allows multiple purposes to be associated with each
data element. A key feature of our model is that it also
supports explicit prohibitions, thus allowing privacy officers
to specify that some data should not be used for certain
purposes. Another important issue addressed in this pa-
per is the granularity of data labeling, that is, the units of
data with which purposes can be associated. We address
this issue in the context of relational databases and propose
four different labeling schemes, each providing a different
granularity. In the paper we also propose an approach to
representing purpose information, which results in very low
storage overhead, and we exploit query modification tech-
niques to support data access control based on purpose in-
formation.

1. INTRODUCTION
Current information technology enables people to carry

out their business virtually at any time in any place. At the
same time, it also offers the capability to watch online users’
every move and to store many types of information the users
reveal during their activities. Indeed, a study conducted by
the Federal Trade Commission in May 2000 [7] shows that 97
percent of web sites were collecting at least one type of iden-
tifying information such as name, e-mail address, or postal
address of consumers. The fact that their personal infor-
mation can be collected, stored and used without their con-
sent or awareness creates fear of privacy violation for many
people. The advance of database technology has also signif-
icantly increased privacy concerns as the current database
technology makes it possible to store a massive amount of
data and extract various kinds of information.

Even though the direct victims of privacy violations are
consumers, many enterprises and organizations are deeply
concerned about privacy issues as well. Some companies,
such as IBM and the Royal Bank Financial Group, use pri-
vacy as a brand differentiator [2]. By demonstrating good
privacy practices, these businesses try to build solid trust
and provide more confidence to customers, thereby attract-
ing more customers. Potential lawsuits brought up by con-
sumers and recently enacted privacy legislations also require
organizations to pay attention to the management of private

data.
As privacy becomes a major concern for both consumers

and enterprises, many privacy protecting access control mod-
els have been proposed [2, 9, 1, 12]. We emphasize that
privacy protection cannot be easily achieved by traditional
access control models. Privacy policies are concerned with
which data object is used for which purpose(s), rather than
which user is performing which action on which data ob-
ject. For example, a typical privacy policy such as “we will
collect and use customer identifiable information for billing
purposes and to enable us to anticipate and resolve prob-
lems with your service” does not state who can access the
customer information, but states that the information can
be accessed for the purposes of billing, customer service, and
possibly some analysis. Another difficulty of privacy protec-
tion is that the comfort level of data usage varies from in-
dividual to individual. For example, some online consumers
may feel that it is acceptable to disclose their purchase his-
tory or browsing habits in return for better service, such
as site personalization [11]. Other customers, however, may
believe strongly that such techniques violate their privacy.

Observing these challenges, we believe that in order to
protect data privacy, the notion of purpose must play a ma-
jor role in access control models and that an appropriate
metadata model must be developed to support such privacy-
centric access control models. In this paper, we address this
goal by presenting a comprehensive approach to purpose
management, which is the fundamental building block on
which purpose-based access control can be developed. Our
approach is based on intended purposes, which specify the
intended usage of data, and access purposes, which spec-
ify the purposes for which a given data element is accessed.
Both intended purposes and access purposes are specified
with respect to a hierarchical structure organizing a set of
purposes for a given enterprise. A key feature of our pro-
posed model is that it also supports explicit prohibitions,
thus allowing privacy officers to specify that data should
not be used for a given set of purposes. We also formally
define the notion of purpose compliance, which is the basis
for verifying that the purpose of a data access complies with
the intended purposes of the data. An important issue that
we also address in this paper is the granularity of data la-
beling; that is, the units of data with which purposes can be
associated. We address this issue in the context of relational
databases and propose four different labeling schemes, each
providing a different granularity. Using our approach it is

thus possible to associate a purpose (or a set of purposes)
with an entire table, with each column within a table, with
each tuple within a table, or with each attribute within a
tuple. In the paper we also propose an approach to repre-
senting purpose information, which results in very low stor-
age overhead. Furthermore, we exploit query modification
techniques to support data filtering based on purpose infor-
mation. Such techniques ensure efficient query processing
even in the case of fine-grained purpose labeling. Finally, in
the Appendix to the paper, we show possible extensions to
SQL to support purpose management.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief overview for privacy related technolo-
gies available today. Section 3 formally defines the notion of
purpose and describes its hierarchy and some relevant issues.
Section 4 describes our labeling model in detail. Section 5
presents our implementation, and Section 6 provides experi-
mental results. Section 7 suggests future work and concludes
our discussion.

2. RELATED WORK
Our work is related to many different areas of private and

secure data management, namely privacy policy specifica-
tion, privacy-preserving data management systems and mul-
tilevel secure database systems. We now briefly survey the
most relevant approaches in these areas and point out the
differences of our work with respect to these approaches.

The W3C’s Platform for Privacy Preference (P3P) [18] is
an industry standard that intends to provide an automated
method for users to gain control over the use of their per-
sonal information on web sites they visit. P3P allows web
sites to encode their privacy practice, such as what infor-
mation is collected, who can access the data for what pur-
poses, and how long the data will be stored by the sites, in
a machine-readable format. P3P enabled browsers can read
this privacy policy automatically and compare it to the con-
sumer’s set of privacy preferences which are specified in a
privacy preference language such as A P3P Preference Ex-
change Language (APPEL) [17], also designed by the W3C.

Even though P3P provides a standard means for enter-
prises to make privacy promises to their users, P3P does
not provide any mechanism to ensure that these promises
are consistent with the internal data processing. That is,
P3P is merely a tool for making promises and does not help
enterprises to keep their promises. Note that publishing
an attractive P3P policy without any adequate enforcement
mechanism may put an enterprise at risk of reputation dam-
age and potential lawsuits.

The Enterprise Privacy Authorization Language (EPAL)
[9] proposed by IBM is a formal language for writing enter-
prise privacy policies to govern data handling practices in IT
systems. An EPAL policy defines lists of hierarchies of data-
categories, user-categories, and purposes. User-categories
are the entities (users/groups) that use collected data, and
data-categories define different categories of collected data
that are handled differently from a privacy perspective. Pur-
poses model the services for which data is intended to be
used. An EPAL policy also defines sets of actions, obliga-
tions, and conditions. Actions model how the data is used,
and obligations define actions that must be taken by the
environment of EPAL. Lastly, conditions are boolean ex-
pressions that evaluate the context. Privacy authorization
rules are defined using these elements, and each rule allows

or denies actions on data-categories by user-categories for
certain purposes under certain conditions while mandating
certain obligations.

While providing a language for specifying policies on data
categories, EPAL does not provide support for linking the
data categories with data stored in databases. Nor does the
EPAL work address the issue of how to efficiently enforce
these policies when data is accessed.

Previous work on multilevel secure relational databases
[14, 4, 15, 8] also provides many valuable insights for de-
signing a fine-grained secure data model. In a multilevel
relational database system, every piece of information is
classified into a security level, and every user is assigned
a security clearance. Based on this access class, the system
ensures that each user gains access to only the data for which
he has proper clearance, according to the well known basic
restrictions, the Bell-LaPadula model [3]. These constraints
ensure that there is no information flow from a lower secu-
rity level to a higher security level and that subjects with
different clearances see different versions of multilevel rela-
tions.

A major difference of our approach with respect to mul-
tilevel secure databases is that in our approach each data
element is associated with set of purposes, as opposed to
a single access class. Also, the purposes form a hierarchy
and can vary dynamically. These requirements are more
complex than those concerning traditional multilevel secure
applications. On the other hand, we are not concerned with
information flow issues in this paper.

The concept of Hippocratic databases, incorporating pri-
vacy protection within relational database systems, was in-
troduced by Agrawal et al.[1]. The proposed architecture
uses privacy metadata, which consist of privacy policies and
privacy authorizations stored in two tables. A privacy pol-
icy defines for each attribute of a table the usage purpose(s),
the external-recipients and retention period, while a privacy
authorization defines which purposes each user is authorized
to use.

Recently, Lefevre et al.[12] present an approach to enforc-
ing privacy policy in database environments. Their work
focuses on ensuring limited data disclosure, based on the
premise that data providers1 have control over who is al-
lowed to see their personal data and for what purpose. In
their work, they introduce two models of cell-level limited
disclosure enforcement, which are table semantics and query
semantics. They also suggest an implementation based on
query modification techniques.

Although their work is closely related to ours, our ap-
proach has some notable differences. First, we introduce
more sophisticated concepts of purpose; i.e., purpose hier-
archy. Note that our approach, even though more sophisti-
cated, does not increase the complexity of data management,
nor does it introduce much overhead. The second difference
is that we support the explicit prohibition of purpose and
the association of a set of purposes with a data element,
which their approach does not provide. Third, we provide
a comprehensive framework for purpose and data manage-
ment and also suggest possible extensions to SQL, which are
not considered in their work.

1By data providers, we refer to the subjects about whom
the data is stored.

3. PURPOSE
In the various models proposed for privacy protection, the

purpose for accessing a data element plays a major role in de-
termining whether the access should be permitted or denied.
The reason is that a privacy policy mainly concerns with
which data object is used for what purpose(s). For exam-
ple, a typical privacy policy such as “we will collect and use
customer identifiable information for billing purposes and
to anticipate and resolve problems with your service” states
that the information can be accessed only for the purposes
of billing, customer service, and possibly some analysis. It
is an obvious consequence that purpose is a central concept
in any privacy protecting access control model, and yet the
concept of purpose has not been thoroughly investigated. In
this section, we formally define the notion of purpose and
discuss key related issues.

3.1 Definition of Purposes
In order to preserve the privacy of data providers, ev-

ery access to any piece of information must be controlled by
privacy policies to which data providers have agreed. A typ-
ical privacy policy for a data element includes purpose(s),
retention, condition, and obligation, and it states that the
particular data element can be accessed only for the specific
purpose(s) on the specific condition. The retention indicates
how long the data element can be retained, and the obliga-
tion designates the actions that must be followed after an
access to the data element is allowed. The aspect that is
most interesting to us in this paper is the purpose as the
purpose directly dictates how accesses to data items should
be controlled. P3P defines purpose as “the reason(s) for
data collection and use” and specifies a set of purposes, in-
cluding current, admin, develop, contact, telemarketing [18].
The support of purpose information must address two major
requirements. The first requirement is that in common busi-
ness environments purposes naturally have a hierarchy based
on the principles of generalization and specialization. This
requirement suggests arranging purposes according to some
hierarchical organization which also simplifies the manage-
ment of purposes. The second requirement is that a system
often interacts with other autonomous systems. In order to
resolve any semantic conflict during interactions, we adapt
ideas from current work on ontologies. An ontology con-
sists of a set of concepts together with relationships defined
among these concepts. The concepts and their relation-
ships are generally described using a formal language. In
our work, we use an ontology for binding each purpose with
a set of keywords that are semantically equivalent. The next
definition formalizes the above notions.

Definition 1. (Purpose and Purpose Ontology) A purpose
describes for what reasons data is collected or used and it
is defined as a tuple 〈Conceptual-name, Keyword-set〉. A
purpose ontology is defined as 〈P, ≤〉, where:

• P is a set of purposes such that for any two distinct
purposes in P , pi = 〈Conceptual-namei, Keyword-
seti〉 and pj = 〈Conceptual-namej , Keyword-setj〉, the
following conditions hold:

1. Conceptual-namei 6= Conceptual-namej

2. Keyword-seti ∩ Keyword-setj = ∅

• ≤ is a partial order defined over P . Let pi, pj ∈ P .
We say that pi is a specialization of pj if pi ≤ pj . 2

� � � � � � � � � � � 	
 � �� �
 � � � �� � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � �� 	 � � � � � � � � � � � � � � � � � � � 	 � � � � �� � � � � � �� � � � � � � � � � �
 � � � �� � � � � �� � � �
 � �� � 	 	 � �
Figure 1: Purpose Tree

In this paper, we assume that the partial order is a tree2

which we refer to as Purpose Tree. Figure 1 gives an exam-
ple of purpose tree, where for simplicity we show only the
conceptual names of purposes.

The following notations will be used through out this pa-
per.

Notation 1. (Root, Ancestors, and Descendants) Let PT
be a purpose tree and P be the set of purposes in PT . Let
pi be a purpose in PT .

1. Root(PT) is the root node of PT , and it represents
the most general purpose in PT .

2. Ancestors(pi) is the set of all nodes that are ancestors
of pi in PT , including pi itself.

3. Descendants(pi) is the set of all nodes that are descen-
dants of pi in PT , including pi itself.

Example 1. Let PT be the purpose tree in Figure 1.

1. Root(PT) = {General-Purpose}
2. Ancestors(Analysis) = {Analysis, Admin, General-

Purpose}
3. Descendants(Third-Party) = {Third-Party, T-Email,

T-Postal}

Intuitively, an access to a specific data element is allowed
if the purposes allowed by the privacy policies for the data
include or imply the purpose for accessing the data. We refer
to purposes associated with data and thus regulating data
accesses as Intended Purposes, and to purposes for accessing
data as Access Purposes. Intended purposes can be viewed
as brief summaries of privacy policies for data, stating for
which purposes data can be accessed. When an access to
data is requested, the access purpose is checked against the
intended purposes for the data.

Most privacy policies are positive in nature in that they
selectively allow data access for a set of purposes. Thus,
the absence of a particular purpose from the set of allowed
purposes is interpreted as that data access for the purpose
is not allowed. This concept is adopted in privacy policy
languages such as P3P [18]. However, some privacy policies

2It is advantageous to organize purposes according to a DAG
instead of a tree as it allows us to use a node to represent
multiple purposes that have a similar meaning. For instance,
D-Email and T-Email in Figure 1 could be represented in a
single node Email in a DAG. However, this introduces am-
biguous semantics as Email alone does not provide sufficient
information; e.g., Email could be a specialization of either
Direct or Third-Party. This subject of purpose management
will be investigated in our future work.

may explicitly prohibit access to data for certain purposes.
For example, suppose that in order to comply with COPPA
[6], a company decides not to use any information about
children of age under 13 for Marketing. This policy is neg-
ative in nature as it explicitly prohibits access to the data
items belonging to minors for a particular purpose.

Our design of intended purposes supports both positive
and negative privacy policies. An intended purpose consists
of two components: Allowed Intended Purposes and Pro-
hibited Intended Purposes. This structure provides greater
flexibility to our access control model. Moreover, by using
prohibited intended purposes, we can guarantee that data
accesses for particular purposes are never allowed. Conflicts
between the allowed intended purposes and the prohibited
intended purposes for the same data element are resolved by
applying the denial-takes-precedence policy where prohib-
ited intended purposes override allowed intended purposes.

Definition 2. (Intended Purpose) Let PT be a purpose
tree and P be the set of purposes in PT . An intended
purpose, IP, is a tuple 〈AIP, PIP〉, where AIP = {aip1, . . . ,
aipn} is a set of allowed intended purposes and PIP = {pip1,
. . . , pipm} is a set of prohibited intended purposes. AIP and
PIP satisfy the following two conditions:

1. (AIP ⊆ P) ∧ (PIP ⊆ P)
2. AIP 6= ∅

Let AIP be a set of allowed intended purposes and PIP
be a set of prohibited intended purposes, respectively. We
define the set of intended purposes entailed by AIP and PIP
as follows:

1. AIP∗ =
S

aipj∈AIP Descendants(aipj)
2. PIP∗ = (

S

pipk∈PIP Ancestors(pipk)) ∪
(

S

pipk∈PIP Descendants(pipk)) 2

The condition “AIP 6= ∅” in the definition above ensures
that every data element can be accessed for some purpose(s)
unless it is explicitly prohibited by the corresponding PIP;
we assume that data items without any allowed intended
purpose should not be collected at all. Note that a complete
block of data access can still be achieved by using PIP if
needed.

Example 2. Suppose IP = 〈{Admin, Direct}, {D-Email}〉
is defined over the purpose tree given in Figure 1.

1. AIP∗ = Descendants(Admin)
S

Descendants(Direct)
= {Admin, Profiling, Analysis}

S

{Direct, D-Email,
D-Phone, D-Postal, Special-Offers, Service-Updates}

2. PIP∗ = Descendants(D-Email)
S

Ancestors(D-Email)
= {D-Email, Special-Offers, Service-Updates}

S

{D-
Email, Direct, Marketing, General-Purpose}

It is important to note that the use of both AIP and PIP
is not strictly necessary. In fact, IP = 〈AIP, PIP〉 can be al-
ways transformed into IP′ = 〈AIP′, ∅〉, where AIP′ = AIP∗

− PIP∗. IP and IP′ are semantically equivalent. However,
we decide to use both AIP and PIP in our model for the
following reasons. First, as previously mentioned, some pri-
vacy policies are naturally positive whereas some are nat-
urally negative. The support for both types of policies is
valuable as it minimizes the possibility of implementation er-
rors. Second, using PIP as exceptions, IP can be expressed
in a more compact manner. For instance, suppose a pri-
vacy policy allows data access for any purpose except for

Third-Party in Figure 1. This can be simply expressed as
IP = 〈{General-Purpose}, {Third-Party}〉 using both AIP
and PIP while using AIP only, IP = 〈{Admin, Purchase,
Shipping, Direct}, ∅〉. Lastly, using PIP one can make sure
that data access for particular purpose(s) is never allowed.
This guarantee is often required for organizations who wish
to keep their data management practice in compliance with
privacy laws.

An access purpose is the purpose of a particular data ac-
cess, which is determined or validated by the system when
the data access is requested. How to determine or verify
access purposes is not trivial, and this issue has not been
thoroughly investigated in previously proposed models. We
discuss this issue in detail in Section 3.3. We now formally
define access purpose.

Definition 3. (Access Purpose) Let PT be a purpose tree.
An access purpose, denoted by AP, is a purpose for accessing
a data element, and it is a node in PT . 2

As already discussed, an access decision is made based
on the relationship between the access purpose and the in-
tended purposes of data. That is, an access is granted if
the access purpose is entailed by the allowed intended pur-
poses and not entailed by the prohibited intended purposes;
in this case we say the access purpose is compliant with the
intended purpose. The access is denied if any of these two
conditions fails; we then say that the access purpose is not
compliant with the intended purpose.

Definition 4. (Access Purpose Compliance) Let PT be a
purpose tree. Let IP = 〈AIP, PIP〉 and AP be an intended
purpose and an access purpose defined over PT , respec-
tively. AP is said to be compliant with IP according to PT ,
denoted as AP ⇒PT IP, if and only if the following two
conditions are satisfied:

1. AP /∈ PIP∗

2. AP ∈ AIP∗
2

Example 3. Let PT be the purpose tree in Figure 1, and
let IP and AP be an intended purpose and an access purpose
defined based on PT , respectively.

1. Suppose IP = 〈{General-Purpose}, {Third-Party}〉. If
AP = Marketing, then AP ;PT IP as Marketing ∈
PIP∗. However, if AP = Admin, then AP ⇒PT IP as
Marketing /∈ PIP∗ and Marketing ∈ AIP∗.

2. Suppose IP = 〈{Admin, Purchase, Shipping}, {General-
Purpose}〉. Then no AP defined over PT is compliant
with IP.

3. Suppose IP = 〈{General-Purpose}, ∅〉. Any AP de-
fined over PT is compliant with IP.

3.2 Intended Purpose Management
Based on the purpose tree, an intended purpose is then

specified for each data element according to the privacy pol-
icy on which the data provider has agreed. We assume that
the organization has already established a set of compre-
hensive privacy policies which are compliant with existing
privacy laws and that, as a part of the data collection pro-
cess, data providers are informed of and agree to the privacy
policies via some mechanism such as P3P [18]. Under this

� � � � � � � � � � � 	

� � � � � � � � � �
� � � � � � � � � � �
 � � � � � � � � � 	 � � � �
 � � � �
 � � � � �� � � � � � � � � � � �
 �
 � � � ��
 � � � � � � � � ��� � � � � � � � � � � � � � � � �� � � � � � 	 	 � � � � � �� � � � � � � 	 � � �

Figure 2: Intended Purpose Management Process

assumption, the privacy policy concerning each data ele-
ment is predetermined; consequently, the intended purposes
of most data items are predetermined.

We use the phrase “most data items” deliberately as in
some exceptional cases the intended purpose for certain data
can vary depending on individual data providers. For in-
stance, enterprises who wish to fully comply with COPPA
should have a different set of intended purposes concerning
data collected from children under thirteen. Another exam-
ple can be found in enterprises whose business activities span
multiple nations. As different regions have different privacy
requirements, such enterprises must carefully differentiate
data providers from various regions and apply appropriate
privacy policies (e.g., a set of intended purposes) to the col-
lected data. The intended purposes can also vary due to
additional options provided by enterprises. A common ex-
ample of these options is the enrollment of a mailing-list.
Whether or not the email address of a particular customer
can be used for sending information about new services is
dependent on the explicit decision of the customer. Note
that the intended purposes can be further individualized
upon the requests from data providers after data collection
as well. The overall organization of the purpose manage-
ment process is illustrated in Figure 2.

Example 4. Suppose a company has established the fol-
lowing privacy policies.

• We use your information for purchasing purposes, to
provide services to you, and to inform you of services
that may better meet your needs.

• We will not disclose your information to third parties
who want to market products to you unless you allow
us to do so.

• We do not use information of children under thirteen
for any purpose other than providing requested ser-
vices.

• The web server administrators may collect some data
such as your IP address, referrer, and your web browser
information. We do not make use of this information,
but it may be used by system administrators to provide
better service to you.

Table 1 illustrates the intended purposes for the data col-
lected by the company, based on the privacy policies above
and the purpose tree in Figure 1. Group 1 represents cus-
tomers who are not children and have given consents for
third-party marketing, and Group 2 represents customers
who are not children and have not given consents for third-
party marketing.

Under 13 Group 1 Group 2

name 〈{G},{A,M}〉 〈{G},∅〉 〈{G},{T}〉
address 〈{G},{A,M}〉 〈{G},∅〉 〈{G},{T}〉
phone 〈{G},{A,M}〉 〈{G},∅〉 〈{G},{T}〉

order-history 〈{G},{A,M}〉 〈{G},∅〉 〈{G},{T}〉
web-log 〈{A},{A,M}〉 〈{A},∅〉 〈{A},{T}〉

G = General, A = Admin, P = Purchase, S = Shipping, M =

Marketing, T = Third-party

Table 1: Predetermined Intended Purposes

3.3 Access Purpose Determination
An access purpose is the reason for accessing a data ele-

ment, and it must be determined by the system when a data
access is requested. How the system determines the access
purpose of an access request is crucial as the access deci-
sion is made directly based on the access purpose. In this
section we discuss some possible methods for determining
access purposes.

First, the users can be required to state their access pur-
pose(s) along with the requests for data access. Even though
this method is simple and can be easily implemented, it re-
quires complete trust on the users and the overall privacy
that the system is able to provide entirely relies on the users’
trustworthiness. Another possible method is to register each
application or stored-procedure with an access purpose. As
applications or stored-procedures have limited capabilities
and can perform only specific tasks, it can be ensured that
data users use them to carry out only certain actions with
the associated access purpose. This method, however, can-
not be used for complex stored-procedures or applications as
they may access various data for multiple purposes. Lastly,
the access purposes can be dynamically determined, based
on the current context of the system. For example, sup-
pose an employee in the shipping department is requesting
to access the address of a customer by using a particular
application in a normal business hour. From this context
(i.e., the job function, the nature of data to be accessed, the
application identification, and the time of the request), the
system can reasonably infer that the purpose of the data
access must be shipping.

In this paper, we assume the first method where the users
are required to explicitly state their access purpose(s) when
they try to access data. That is, the users provide an access
purpose for each query they issue. To make our discussion
more concrete, we extend SQL queries as well as update
commands by adding an additional clause for access pur-
poses. For instance, a simple select statement “SELECT
name FROM customer” is extended to a form of “SELECT
name FROM customer FOR marketing”. Our proposed
SQL extensions are provided in the Appendix.

We are currently extending this simple idea by adding a
validation process which verifies the stated access purposes.
When a query with an access purpose is submitted, the sys-
tem first tries to validate the access purpose by verifying
them with the data user’s attributes such as currently ac-
tivated role(s), job position, and location. If the validation
fails, the query is rejected without being further processed.
Here we assume that after data users are authenticated,
their user identifications and their attributes are available
to the access control mechanism. This extension will be fur-
ther developed in our future work. Figure 3 illustrates the
overall query execution process.

� � � � � � � � � 	
� � � � � � � � � � � � � � � � � � � �
 � 	
� � � � � 	
� � � � � � � � � � �
 � �� � � � �
 �� �
 � � � � � �� � �
 	 	 � � � � � 	
 � � � � �
 � � �
 � �

� �
 � � �
 	 � � �
� � � � � � �
 � � �
 � �

Figure 3: Query Process Steps

4. DATA LABELING MODEL
In order to build an access control model based on the

notion purpose, we must consider a specific data model and
based on this model devise a proper labeling scheme. A ma-
jor question here is how intended purposes are associated
with data. More specifically, we have to determine at what
level of granularity data will be associated with intended
purposes. For instance, consider the relational data model.
Under such a model, intended purpose can be assigned to
every relation, to every tuple in every relation, to every at-
tribute in every relation, or to every data element in every
relation.

Data providers (e.g., customers) are usually reluctant to
allow any use of their information unless it is absolutely nec-
essary. At the same time, data users (e.g., enterprises) want
to make use of the collected data for the necessary tasks as
well as other tasks such as analysis and marketing. Con-
sequently, some form of negotiating process may occur be-
tween these two parties through opt-in/opt-out procedures.
Note that the comfort level of privacy can considerably vary
from individual to individual. Consider a fictional data cat-
egory purchase history, which consists of customer name,
financial-info, product, and purchase-date. As this category
includes sensitive information such as financial-info, many
customers would not want to allow any use of the informa-
tion in this category. However, information such as name,
product, and purchase-date can be very valuable for enter-
prises as they can use such information for analyzing their
sale patterns or profiling customers. It is obvious that in
order to make the best use of data while at the same time
ensure that data providers feel comfortable, the granularity
of the data labeling model must be fine. Thus, the labeling
model should allow the assignments of intended purposes
with data at the most fine-grained level. That is, we should
be able to assign an intended purpose to each data element
in every tuple; e.g., for each attribute and for each data
provider (see Table 2)3.

However, this most fine-grained approach is not always
necessary. For instance, some data naturally have a hier-
archical structure. Suppose that the addresses of customers
are stored in a relation that consists of street, city, state, and
postal-code. Typically, a customer allows or prohibits access

3The Tables 2-6 only represent a logical view and are in-
tended to be used only for illustration. The actual imple-
mentation and organization of purpose labeling will be dis-
cussed later in the paper.

c id c id ip name name ip income income ip

1001 〈{G},∅〉 John 〈{G},{M}〉 110,000 〈{A},{M}〉
1002 〈{G},∅〉 Paul 〈{G},∅〉 56,000 〈{G},∅〉
1003 〈{G},∅〉 Jack 〈{G},∅〉 48,000 〈{G},{T}〉
G = General, A = Admin, M = Marketing, T = Third-party

Table 2: Customer Table

c id street city state zip code addr ip

1001 32 Oval Dr Lafayette IN 47907 〈{G},{A,M}〉
1002 433 State Rd Chicago IL 46464 〈{G},∅〉
1003 199 First Ave Boston CA 02139 〈{G},{T}〉
G = General, A = Admin, M = Marketing, T = Third-party

Table 3: Address Table

to the entire address, not to the individual sub-elements.
Thus, it is not necessary to associate each data element with
an intended purpose because labeling in the element-level
granularity would result in storing an identical intended pur-
pose for every data element redundantly. However, intended
purpose for the address can vary depending on each individ-
ual. To address these concerns, the labeling model should
allow the assignment of intended purpose to each tuple of a
relation (see Table 3).

Another case we should consider is that there exists some
information for which corresponding privacy policies are man-
dated by enterprises or by laws; i.e., data providers do not
have a choice to opt-out from the required intended pur-
poses. An example is the Order information in Table 4.
As such information must be accessed to perform necessary
tasks, enterprises can choose not to give customers any op-
tion to change the privacy policies governing this informa-
tion. In such cases, the data elements in each column in
the relation have the identical intended purpose. Thus, in
order to avoid any redundancy, intended purposes should be
assigned to each attribute of a relation using a privacy pol-
icy table (see Table 5). It is also possible that the intended
purposes of every attribute in a relation be identical. Such
cases occur when information in a relation is meaningful as
a whole tuple, but individual elements or tuples do not have
any usefulness. The Access-Log table in Table 6 is one such
relation. In this case, the intended purposes are assigned
to the entire relation by using a single entry in the privacy
policy table (see Table 5).

Now we define our labeling model more formally.

Definition 5. (Relation, Attribute, Tuple, and Element)
As in the standard relational model, data are stored in re-
lations. A relation is characterized by the following two
components.

1. A state-invariant relation scheme R(A1,. . ., An), where
R is the name of the relation and each Ai is an at-
tribute over some domain Di. Attributes(R) denotes
the set of names of attributes in R.

2. A state-dependent relation instance ri
4 over R com-

posed of distinct tuples of the form (a1, . . ., an), where

4We assume that relation names are used as arguments of
relational algebraic expressions.

or id c id product credit info date status

101 1001 P303 V3434-343-2222 10/23/03 shipped
102 1002 P887 V5675-374-5892 07/20/04 packaged
103 1003 S99-6 M6584-677-4911 08/22/04 ordered

Table 4: Order Table

table name column name ip

order product 〈{A, P, S}, ∅〉
order credit info 〈{P}, {M}〉
order date 〈{A, P, S}, {M}〉
order status 〈{A, P, S}, ∅〉

access log ALL 〈{A, P}, ∅〉
A = Admin, P = Purchase, S = Shipping, M = Marketing

Table 5: Privacy-Policy Table

client ip date time requested url

4.33.163.99 15/08/04 18:35:22 /sci-fi/books/index.html
218.232.444.33 15/08/04 19:35:53 /home.html
63.344.343.75 15/08/04 19:36:02 /kids/music/index.html

Table 6: Access-Log Table

each element ai is a value in domain Di. 2

Definition 6. (Intended Purpose Labeling) Let PT be a
purpose tree and P be the set of purposes in PT . Let IP
be a set of all possible intended purposes defined over P and
R(A1, . . ., An) be a relation. In our data labeling model,
intended purposes are associated with R according to one
of the following methods.

1. (Relation-based) A relation-based labeling is a pair 〈R,
ip〉, where ip ∈ IP . Access to any data element in
instances of R is governed by ip.

2. (Attribute-based) An attribute-based labeling is a set
{〈Ai, ipi〉 | Ai ∈ Attributes(R) ∧ ipi ∈ IP}. Access
to data element ai in any instance of R is governed by
ipi.

3. (Tuple-based) A tuple-based labeling is a relation scheme
Rtl(A1,. . ., An, ℓ), where ℓ is a column having IP for
its domain, such that R =

Q

A1,...,An(Rtl). Access to
any data element in the j th tuple in any instance of R
is governed by ℓj .

4. (Element-based) An element-based labeling is a rela-
tion scheme Rel(A1, ℓ1,. . ., An, ℓn), where ℓi (i = 1,. . .,
n) is a column having IP for its domain, such that R
=

Q

A1,...,An(Rel). Access to data element ai in any
instance of R is governed by ℓi. 2

The first two types of labeling are intensional labeling
schemes as they are defined at schema level. On the other
hand, the third and fourth types are extensional labeling
schemes as they are associated with data elements inside
relation extensions.

The element-based labeling scheme is illustrated by Ta-
ble 2, where each data element is labeled with an intended
purpose. Table 3 is an example of the tuple-based label-
ing scheme, and here intended purposes are associated with
each tuple. Tables 4, 6, and 5 illustrate the relation- and
attribute-based labeling schemes. Note that these tables
only represent a logical view. We discuss actual implemen-
tation strategies in the following section.

5. IMPLEMENTATION
In this section we discuss two important implementation

issues. The first is related to approaches for storing purpose
information and for recording which purposes are associated
with which data elements. The other issue is related to
query modification techniques supporting data filtering with
respect to the notion of purpose.

� � � � � � � � � 	
 � 	 	�
_
� � �

_� � 	 � � 	 � � � � � 	 � �
_� � � 	 � � �

_� � � 	� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� �! " � � � � � � � � � � � � � � � �� # � � � � � � � � � � � � � � � �$ % ! � � � � � � � � � � � � � � �� � & ! � � � � � � � � � � � � � � $
 � � � � � � _� ' (

)* + ,- . / 01 2

Figure 4: Purpose Tree Storage

5.1 Privacy Metadata Storage
For both storage and performance efficiency, purposes are

encoded as bit strings. Consider the purpose tree in Figure
4(i). This purpose tree is encoded into a relation pt table as
shown in Figure 4(ii). The first column p id represents the
identification number of each purpose node, which is deter-
mined according to the breadth-first search order of the tree.
The second column p name represents the name of each pur-
pose node, and the third column parent is used to capture
the hierarchical relationships among the purpose nodes. The
column code is the binary encoding of each purpose. For
instance, in Figure 4 the purpose A is encoded as binary
number ‘1000000000’, which is equivalent to ‘0x200’ in hex-
adecimal representation, while the purpose D is encoded as
‘0001000000’, which is ‘0x040’ in hexadecimal form. Note
that a binary representation provides significant advantages
in that it is very efficient in terms of storage and computa-
tion.

The last two columns aip code and pip code are pre-
calculated encodings of purpose entailments. As described
in Section 3, when a purpose pi is used as an AIP, it entails
that every descendant of pi, including pi itself, is allowed.
For instance, the purpose B in Figure 4(i) used as an AIP
entails that access is allowed for the purpose of B as well as
E and F. Thus, the aip code of B contains the entailed set
of B in that the value is the sum of the codes of B, E and
F. Similarly, when a purpose pi is used as a PIP, it entails
that every descendant and every ancestor of pi, including
pi itself, is prohibited. For instance, the purpose B in Fig-
ure 4(i) used as a PIP entails that access is prohibited for
the purpose of B as well as E, F, and A; thus, the pip code
of B is the sum of the codes of B, E, F, and A. Note that
the last three columns of the pt table can be automatically
generated based on the first three columns using a simple
procedure.

The other type of metadata to be stored is the intended
purposes for the actual data. As described in Section 4, data
elements are associated with intended purposes according to
one of the intended purpose labeling schemes. When using

the element-based labeling scheme, a table with n columns
is extended to (n + 2n) columns5; n data columns plus 2n
columns for AIP and PIP. When using the tuple-based la-
beling scheme, a table with n columns is extended to (n +
2) columns; n data columns plus 2 columns for AIP and
PIP. While the element- and tuple-based labeling schemes
require extensions to data tables, the attribute-based label-
ing scheme for a table with n columns requires n entries in
the privacy policy table as shown in Table 5. Similarly, the
relation-based labeling scheme for a table requires a single
entry in the privacy policy table.

As every data element is associated with an intended pur-
pose, the size of the metadata increases as the size of actual
data grows. Especially for element-based labeling scheme,
the storage overhead cost can be very high. However, this is
not a practical issue as the number of data items which re-
quire the element-based labeling scheme is relatively small
in practice. In fact, typical privacy policies would specify
intended purposes for most data items without providing
any option for opt-in or opt-out. As the intended purposes
of these data items are not changeable and cannot be indi-
vidualized, the attribute- or relation-based labeling schemes
should be used for these data items. Therefore, the element-
or tuple-based labeling schemes will be used only for a few
data items with opt-in or opt-out options.

Intended purposes are encoded using the purpose encod-
ings in the pt table. As intended purposes have their en-
tailments, purposes will be encoded using values from the
aip code or the pip code instead of using values in the code.
Also, purposes can be combined by performing bitwise OR
operations on the encodings of the purposes. Consider, for
example, the intended purpose of a data element is 〈{B, C},
{G}〉 with respect to the purpose tree in Figure 4(i). Then
the AIP of the data element is encoded as ‘0x1B0’, which is
the result of (0x130 | 0x080), where | is bitwise OR opera-
tor. The PIP is simply represented as ‘0x24B’, which is the
pip code of G. Note that using stored procedures and GUI
tools, the management of intended purposes can be easily
carried out.

With this encoding method, the purpose compliance can
be efficiently checked. Recall that an access purpose is com-
pliant with an intended purpose if and only if the access
purpose is not prohibited by PIP and it is allowed by AIP.
Thus, the purpose compliance check can be done with two
bitwise AND operations as follows. Given the encodings of
an access purpose6, AIP and PIP, say ap code, aip code and
pip code respectively, the access purpose is compliant with
the intended purpose if and only if (ap code & pip code)
= 0 ∧ (ap code & aip code) 6= 0, where & is bitwise AND
operator and ∧ is logical AND operator.

5.2 Access Control Using Query Modification
Privacy-preserving access control mechanisms must en-

sure that a query result contains only the data items that
are allowed for the access purpose of the query. In other
words, the system must check the intended purpose of each
data element accessed by the query and filter out its value

5A different method is to store intended purposes in sepa-
rate tables. However, storing data and intended purpose in
separate tables will cause additional overhead introduced by
join operations.
6Access purposes are represented using the values in the
code of the pt table.

Comp_Check (Number ap, Number aip, Number pip)
Returns Boolean
1. if (ap & pip) ≠ 0 then
2. return False;
3. else if (ap & aip) = 0 then
4. return False;
5. end if;
6. return True;

Modifying_Query (Query Q)
Returns a modified privacy-preserving query Q’
1. Let R1, ..., Rn be the relations referenced by Q
2. Let P be the predicates in WHERE clause of Q
3. Let a1, ..., am be the attributes referenced in both

the projection list and P
4. Let AP be the access purpose encoding of Q
5.
6. for each Ri where i = 1, ..., n do
7. if (Ri is relation-based labeling AND
 Comp_Check (AP, Ri.aip, Ri.pip) = False) then
8. return ILLEGAL-QUERY;
9. else if Ri is attribute-based labeling then
10. for each aj which belongs to Ri do
11. if Comp_Check (AP, aj.aip, aj.pip) = False then
12. return ILLEGAL-QUERY;
13. end if;
14. end for;
15. else if Ri is tuple-based labeling then
16. add ‘ AND Comp_Check (AP, Ri_aip, Ri_pip)’ to P ;
17. else if Ri is element-based labeling then
18. for each aj which belongs to Ri do
19. add ‘ AND Comp_Check (AP, aj_aip, aj_pip)’ to P;
20. end for;
21. else // Ri is a relation without labeling
22. do nothing;
23. end if;
24. end for;
25.
26. return Q with modified P;

Figure 5: Query Modification Algorithm

if the access purpose is not compliant with the intended
purpose of the data element. In our implementation, this
fine-grained access control is achieved using query modifica-
tion [16]. Note that query modification provides powerful
and flexible controls without requiring any alteration in un-
derlying mechanisms.

Our query modification algorithm is outlined in Figure 5.
Note that this method is invoked only if the access purpose
of the query is verified to be acceptable by the validate func-
tion, as described in Section 3. If the access purpose is not
acceptable, then the query is rejected without further being
processed.

In Lines 7 and 9 the compliance checks for relations with
the relation- or attribute-based labeling schemes are exe-
cuted statically by the query modification method. On the
other hand, the compliance checks for relations with the
tuple- or element-based labeling schemes are performed dur-
ing query processing by the predicates which are added by
the query modification algorithm (Lines 15 and 17).

The query modification algorithm checks both the at-
tributes referenced in the projection list and the attributes
referenced in predicates (Line 3). As the attributes in the
projection list determine what data items will be included in
the result relation of a query, it may seem enough to enforce
privacy policy based only on the attributes in the projec-
tion list. However, the result of a query also depends on
the predicates, and not enforcing privacy constraints on the
predicates may introduce inference channels. For example,

Query Modified Query

Select name, phone Select name, phone
From customer From customer
For Marketing Where Comp Check(‘0x200’, name aip, name pip)

and Comp Check(‘0x200’, phone aip, phone pip)
Select name, city Select name, city
From customer as C, From customer as C, address as A

address as A Where C.c id = A.c id
Where C.c id = A.c id and Comp Check(‘0x400’, Address aip, Address pip)
For Shipping and Comp Check(‘0x400’, A.name aip, A.name pip)

and Comp Check(‘0x400’, A.c id aip, A.c id pip)
Select product Select product
From order From order
Where c id = 1101 Where c id = 1101
For Profiliing

Table 7: Query Modification Examples

consider the following query: “Select name From customer
Where income > 100000 For Third-Party”. Suppose that
according to the established privacy policies, name can be
accessed for the purpose of Third-Party, but income is pro-
hibited for this purpose. If the privacy constraint is not
enforced on the predicates, this query will return a record
containing the names of customers whose income is greater
than 100,000. This is highly undesirable as this result im-
plicitly conveys information about the customers’ income.
Note that if the privacy policy is enforced at the predicate
level, such inference channels cannot be created.

Notice that the provided algorithm filters out a tuple if
any of its elements that are accessed is prohibited with re-
spect to the given access purpose. For instance, consider the
following query: “Select name, phone From customer For
Marketing”. Suppose there is a customer record of which
the name is allowed for marketing, but the phone is pro-
hibited for this purpose. Then our algorithm excludes the
record from the query result. We note that in the environ-
ments where partially incomplete information is acceptable,
the query modification algorithm can be easily modified to
mask prohibited values with null values using the case ex-
pression in SQL.

Example 5. Table 7 illustrates how queries are modified
by our algorithm. Tables 2-6 are used for this example. Note
that the purpose encodings of Marketing and Shipping are
assumed to be ‘0x200’ and ‘0x400’, respectively.

6. EXPERIMENTAL EVALUATION
The main goal of our experiment is to investigate per-

formance and storage overheads of our approach. As the
relation- and attribute-based labeling schemes do not add
significant runtime overheads, we mainly focus on the tuple-
and element-based labeling schemes. We consider the im-
pact of the purpose hierarchy and compare the performance
overheads of different labeling schemes. We also examine the
response times of queries, varying the numbers of attributes
accessed. Lastly, we test the scalability of our approach by
experimenting with relations of different cardinalities.

6.1 Experimental Setup
The experiments were performed on a 2.66 GHz Intel ma-

chine with 1 GB of memory. The operating system on the
machine was Microsoft Windows XP Professional Edition,
and Oracle Database 10g Enterprise Edition Release 1 was
used as our DBMS.

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

Number of Attributes Accessed

100K Medium Size Tuples, PT Size = 14

No Label
Tuple-Based(AIP only)
Tuple-Based(AIP,PIP)

Element-Based(AIP,PIP)

Figure 6: Labeling Scheme and Performance

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

Number of Attributes Accessed

100K Medium Size Tuples

Tuple-Based(PT Size=5)
Tuple-Based(PT Size=14)

Element-Based(PT Size=5)
Element-Based(PT Size=14)

Figure 7: Purpose Size and Performance

For the experiments, we generated synthetic datasets, which
were simpler versions of the Wisconsin Benchmark [5]. Then
we extended each relation by adding intended purpose label
columns, according to our labeling schemes described in Sec-
tion 4. In order to precisely compare the overheads of differ-
ent intended purpose labeling schemes, we set the selectivity
of all data elements to 100 percent; i.e., all intended purpose
labels are set to allow access for every access purpose.

After creating all necessary relations, we measured the
response times7 of various queries and modified versions8

of those queries. We ran each query 10 times, flushing the
buffer cache and the shared pool before each run.

6.2 Impact of Labeling Schemes and Purpose
Hierarchy

Figure 6 shows the response times of queries against rela-
tions with various labeling schemes. As shown, the response
time increases as the granularity of labeling scheme becomes

7To measure the response time of a query, we measured the
time to retrieve the selected tuples into a relation; thus, the
reported response times here include the time for inserting
the selected tuples, in addition to the time for retrieving the
tuples.
8As we had not implemented the query modification algo-
rithm, each query was modified manually before the exper-
iment. Our future work includes a full implementation of
the query modification method in a public domain database
management system.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

T
a

b
le

 S
iz

e
(M

B
)

 Small Tuples Medium Tuples Large Tuples

100K Tuples, PT Size = 14

No Label
Tuple-Based

Element-Based

Figure 8: Storage Overhead of Labeling Scheme

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7

O
v

er
h

ea
d

 R
a

te
s

Number of Attributes Accessed

100K Tuples, Element-Based, PT Size = 14

Small Tuples
Medium Tuples

Large Tuples

Figure 9: Storage Overhead and Performance

finer. This increase is indeed expected as more purpose-
compliance checks are needed for finer labeling schemes. For
the element-based labeling scheme, the number of attributes
accessed by queries is also a major factor. As the element-
based labeling scheme requires a compliance check for every
element a query is accessing, the overhead for compliance
checks becomes more significant as the number of accessed
attributes increases. However, as the tuple-based labeling
scheme requires only one purpose-compliance check for each
tuple, the number of accessed attributes does not have any
impact on the tuple-based labeling scheme. Figure 6 also
shows that the use of both AIP and PIP does not intro-
duce much overhead, compared to the case where only AIP
is used. This is a reasonable result as using AIP and PIP
requires only one additional bitwise-AND operation for a
compliance check.

Figure 7 shows the results of our experiments with two
different sizes of purpose trees. The first purpose tree has
five nodes with the height of two, and it requires five bits to
encode all possible intended purposes. The second purpose
tree has 14 nodes with the height of five, requiring 14 bits
for all possible intended purpose encodings. As the result
shows, the size of purpose tree does not make any substan-
tial difference in either the tuple- or element-based labeling
scheme. The reason for this indifference is that bitwise-AND
operations are very efficient regardless of the length of en-
codings.

6.3 Storage Overhead vs. Performance Over
head

In this section, we consider the storage overhead intro-
duced by our intended purpose labeling schemes. In fact,
the storage overhead of labeling schemes can be easily cal-
culated as follows. Let rc be the cardinality of the relation
R, ts be the size of a tuple and nc be the number of columns
in R. Also let ps be the size of the purpose tree, and ℓs be
the size of an intended purpose label; ℓs = (ps / 8) in bytes.
Then the size of the unextended relation is (rc × ts), and
assuming the element-base labeling scheme, the size of the
extended relation Rext becomes rc × (ts + 2 × nc × ls).
We remind readers that the element-based labeling scheme
extends a relation with n columns to a relation with with
(n + 2n) columns; n data columns plus 2n columns for AIP
and PIP. Thus, the storage overhead rate of the element la-
beling scheme becomes 1 - [Size(Rext) / Size(R)] = (2 × nc

× ls) / ts. This clearly suggests that if the original relation
contains large data elements (which we believe is a common
case for databases storing information about individuals),
the storage overhead of our labeling scheme becomes negli-
gible. Figure 8 shows the storage overheads of the element-
based labeling scheme with relations of three different tuple
sizes; small, medium and large. Note that all three relations
have the same cardinality of 100K.

The storage overhead has an effect on the performance
of modified queries as well. Figure 9 shows performance
overhead rates of modified queries for relations with three
different tuples sizes. Here, the overhead rate is measured
as [(response time of the modified query) / (response time of
the unmodified query)]. In particular, the table with small-
sized tuple is doubled in its size by intended purpose label-
ing, and the performance overhead on this extended table
becomes very large. However, this is an extreme case as
typical private data would be much larger in its size than
the size of an intended purpose label.

6.4 Scalability
As our method filters out prohibited values by perform-

ing a purpose-compliance check for each tuple in case of the
tuple-based labeling scheme or for each element in case of the
element-based labeling scheme, the cardinality of relations
can significantly impact performance. For instance, query-
ing a relation with one million tuples will require at least
one million compliance checks. Even though our implemen-
tation of the compliance check is merely two bitwise-AND
operations, the runtime compliance checks can be a heavy
burden for large databases. Figure 10 shows the perfor-
mance overhead rates of the element-based labeling scheme
for relations with various cardinalities. As expected, the
performance becomes poorer as the cardinality of relations
increases. However, this problem can be easily addressed by
using function-based indexes [13]. The function-based index
allows creating indexes on a function by pre-computing the
given function. Thus, we can pre-build a function-based in-
dex for each possible access purpose and use these indexes
when queries are executed. Figure 11 displays the results of
our experiment with two indexes; a bitmap index and a B+
tree index. Notice that as the compliance check is always
evaluated to either true or false (0 or 1), the bitmap index
performs slightly better than B+ tree index. Nonetheless, a
huge performance improvement is gained when either type
of index is used. This shows that using indexes, our ap-

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7

O
v

er
h

ea
d

 R
a

te
s

Number of Attributes Accessed

Medium Sized Tuple, Elment-Based, PT Size = 14

100K
200K
500K

1M

Figure 10: Cardinality and Performance

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7

R
es

p
o

n
se

 T
im

es
 (

S
ec

o
n

d
s)

Number of Attributes Accessed

1M Medium Sized Tuples, PT Size = 14

No Label
Element-Based(no index)
Element-Based(B+ Tree)
Element-Based(Bitmap)

Figure 11: Cardinality and Performance (Index)

proach introduces very minimal performance overhead and
is highly scalable.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed an access control model for

privacy protection based on the notion of purpose. We dis-
cussed a comprehensive definition of purpose and introduced
the concepts of intended purpose and access purpose. For
data labeling, we presented four different labeling schemes,
each providing a different granularity. We also discussed var-
ious implementation issues and suggested a method based on
query modification. Through our experiments, we showed
that our method introduces very minimal overheads in both
storage and performance and is highly scalable.

Our proposed model provides a comprehensive framework
for privacy preserving access control systems, but much more
work still remains to be done. Our future work includes
devising a high level language for purpose-oriented privacy
policy which can be used to automatically manage the in-
tended purposes of data. Compatibility issues with P3P will
also be investigated. We also plan to extend our model to
cope with other elements of privacy such as obligations and
complex conditions. In order to achieve this, we will intro-
duce event-based privacy management, which makes use of
trigger mechanisms. We have also observed a need for spe-
cialized benchmarks for private data management systems.
We also plan to investigate techniques according to which

our logical proposed extensions to SQL could be supported
without requiring actual extensions to the DBMS internals.
Last but not least, we will explore the notion of sticky-policy
paradigm [10]. The sticky-policy paradigm requires that the
policy under which data have been collected governs the use
of these data at all times. This is a challenging problem, but
we believe that this is a vital element of privacy protection.

8. REFERENCES

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu.
Hippocratic databases. In The 28th International
Conference on Very Large Databases (VLDB), 2002.

[2] P. Ashley, C. S. Powers, and M. Schunter. Privacy
promises, access control, and privacy management. In
Third International Symposium on Electronic
Commerce, 2002.

[3] D. E. Bell and L. J. LaPadula. Secure computer
systems: mathematical foundations and model.
Technical report, MITRE Corporation, 1974.

[4] E. Bertino, S. Jajodia, and P. Samarati. Database
security: Research and practice. In Information
Systems, 1996.

[5] D. Bitton, D. J. DeWitt, and C. Turbyfill.
Benchmarking database systems: a systematic
approach. In Ninth International Conference on Very
Large Data Bases, Nov. 1983.

[6] F. T. Commision. Children’s online privacy protection
act of 1998. Available at
www.cdt.org/legislation/105th/privacy/coppa.html.

[7] F. T. Commission. Privacy online: Fair information
practices in the electronic marketplace: A report to
congress. Technical report, May 2000. Available at
www.ftc.gov/reports/privacy2000/privacy2000.pdf.

[8] D. Denning, T. Lunt, R. Schell, W. Shockley, and
M. Heckman. The seaview security model. In The
IEEE Symposium on Research in Security and
Privacy, 1998.

[9] IBM. The Enterprise Privacy Authorization Language
(EPAL). Available at
www.zurich.ibm.com/security/enterprise-privacy/epal.

[10] G. Karjoth, M. Schunter, and M. Waidner. Platform
for enterprise privacy practice: Privacy-enabled
management of customer data. In The 2nd Workshop
on Privacy Enhancing Technologies (PET 2002), Apr.
2002.

[11] A. Kobsa. Personalized hypermedia and international
privacy. Communications of the ACM, 2000.

[12] K. LeFevre, R. Agrawal, V. Ercegovac,
R. Ramakrishnan, Y. Xu, and D. DeWitt. Disclosure
in hippocratic databases. In The 30th International
Conference on Very Large Databases (VLDB), Aug.
2004.

[13] Oracle. The Oracle Database SQL References, Dec.
2003. Availabe at www.oracle.com.

[14] R. Sandhu and F. Chen. The multilevel relational
data model. In ACM Transaction on Information and
System Security, 1998.

[15] R. Sandhu and S. Jajodia. Toward a multilevel secure
relational data model. In ACM International
Conference on Management of Data (SIGMOD), 1991.

[16] M. Stonebraker and E. Wong. Access control in a
relational data base management system by query
modification. In ACM CSC-ER Proceedings of the
1974 Annual Conference, Jan. 1974.

[17] World Wide Web Consortium (W3C). A P3P
Preference Exchange Language 1.0 (APPEL 1.0).
Available at www.w3.org/TR/P3P-preferences.

[18] World Wide Web Consortium (W3C). Platform for
Privacy Preferences (P3P). Available at
www.w3.org/P3P.

APPENDIX

A. SQL EXTENSIONS

A.1 Data Definition Language(DDL)

1. (Table Creation) The purpose labeling specification
will be stored in the system catalog and the provided
purposes will be used as default values.

Create table-name {
column-name1 data-type,
column-name1 data-type,
. . .
} [With Labeling]

where Labeling is one of the followings:
1. EBL(purpose1, purpose2, . . .) : Element-based
2. TBL(purpose) : Tuple-based
3. ABL(purpose1, purpose2, . . .) : Attribute-based
4. RBL(purpose) : Relational-based

2. (Column Addition) The table must be element- or
attribute-based labeling. If not provided a default pur-
pose (e.g., none-allowed) will be used.

Alter Table table-name
Add column-name data-type [With purpose]

3. (Column Removal) No change is needed.

Alter Table table-name
Drop Column column-name

A.2 Data Manipulation Language(DML)

1. (Query) If For clause is not provided, the most gen-
eral purpose (i.e., the root of the purpose tree) will be
used.

Select column-names
From table-names
Where column-name = some-value
[For purpose]

2. (Insertion) The table must be tuple- or element based
labeling. If With clause is not provided, the default
purpose, specified at the creation of table, will be used.

Insert into table-name
Values (v1, v2, . . .)
[With (purpose1, purpose2, . . .]

3. (Deletion) If For clause is not provided, the most
general purpose (i.e., the root of the purpose tree) will
be used.

Delete from table-name
Where column-name = some-value
[For purpose]

4. (Update) If For clause is not provided, the most gen-
eral purpose (i.e., the root of the purpose tree) will be
used.

Update table-names
Set column-name = new-value
Where column-name = some-value
[For purpose]

A.3 Purpose Management Language(PML)

1. (Purpose Creation) The root of the purpose tree
(e.g., General-Purpose) is initially created by the sys-
tem.

Create Purpose purpose-name
Parent purpose-name

2. (Purpose Deletion) If the purpose is not a leaf, the
descendants of the purpose will be deleted as well.

Delete Purpose purpose-name

3. (Intended Purpose View) If the table is element-
or tuple-based labeling, both column-name and value
must be provided. For attribute-based labeling, only
column-name is required. For relation-based labeling,
none is required.

View Purpose table-name
[column-name] [= value]

4. (Intended Purpose Update) If the table is element-
or tuple based labeling, both column-name1 and Where
clause must be provided. For attribute-based labeling,
only column-name1 is required. For relation-based la-
beling, none is required.

Update table-names
Set Purpose [column-name1 =] new-Purpose
[Where column-name2 = some-value]

