CERIAS Tech Report 2004-46
X-RBAC : AN ACCESSCONTROL LANGUAGE FOR MULTI-DOMAIN ENVIRONMENTS
by James Joshi, Rafae Bhatti, Elisa Bertino, Arif Ghafoor
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086

X- RBAC
An Access Control Language for Multi-domain Environments

James B. D. Joshi?,
Rafae Bhatti?,
Elisa Bertino?,
Arif Ghafoor?

YUniversity of Pittsburgh, Pittsburgh, PA
>CERIAS & Purdue University, West Lafayette, IN

Contact Author: jjoshi@mail.sis.pitt.edu

Abstract

A multi-domain application environment consists of distributed multiple organizations, each employing its ow
security policy, allowing lghly intensive inter-domain accesses. Emgusecurity in such an environment poses
several challenges. XML technologies are being perceived as the most promising approach for developing pragmatic
security solutions for such environmerbecause of the integration and interoperation framework they provide. In
this paper, we highlight these challenges and propo3@thnbased access control specification language called X-
RBAC that addresses policy specificatimeeds of a multi-domain environment. Our specification language is based

on an extension of the widely accepted NIST RBAC model. X-RBAC allows specification of RBAC policies and
facilitates specification of timing comaints on roles as well as contextd content-based access requirements.
Furthermore, it provides a framework for specifying mediation policies in a multi-domain environment where

RBAC policies have been employed.

Keywords XML, RBAC, Access Control Policy, Security, Multi-domain

1. Introduction

Tremendous growth of large-scalestdibuted applications has been feklby the recent advances in high-
performance computing and networking technologies. With rapid proliferation of IT technologies,ysicurit
becoming a major concern. Many studies shiwat unauthorized access, in particulainsiders constitute a major
security problem for enterprise applications [Pow00] highlighting the need for robust accesssystdros. This
problem is magnified in a multi-domain environment where distributed multiple organizations, edchiregnis
own security policy, interoperate with each other [Jogkdn96]. Such multi-domain environments are already a
reality, as can be seen in most Internet-based applications, digital governments, and healthcare systems [Jos01].
EXtensible Markup Language (XML) technology has emerged as the most promising approdekefoping
pragmatic security solutions for such environments adlatvs uniform representatio interchange, sharing and
dissemination of information over heterogeneous enviemm[Ber01]. The key challenge for securing an XML-
based multi-domain environment is developing as@ntrol models witthe following capabilities:

1. Context and content-based accegscess may need to be restricted based on context such as users’
administrative domains, time of access, or an envirotahetate. Access may also be restricted based on
information content. For example, in the healthcardustry, selective content-based access to patient
information should be given to physicians and insurance providers.

2. Heterogeneity of subjects and objedBbject heterogeneity may exist in the form of different types of media,
concepts, or knowledge embodied in the information being protected. For instance, ial dilatiapiy, it may be
desirable to exercise access control for high-leva@icepts instead of individil objects. Furthermore,
information content can evolve with time, introducing scalability problems in privilege management. Subject
heterogeneity implies that users have diverse aciivitfiles and qualifications that may not be knaavpriori,
making access management difficult.

3. Policy heterogeneity managememach domain of a multi-domain environment can have its own security
policy, and the integration of these local policies entailsous challenges including reconciliation of semantic
differences between local policies, secure interaméty, containment of risk propagation and policy
management [Jos01]. In such an environment, uniform representation of policies of individaasd@an
desirable, and meta-policies are needed to med@tesses across domain boundafl®s01]. Of particular
importance in a multi-domain environment are the timingstaints. For instance, an organization may decide
to interlink its information system with those of its consulting firms for a period of time defined in their
contracts. When the contract expires, the systems should be de-linked to make sure that the erganizatio
information assets are no more asible to the consulting firms.

With regards to these requirements, Role Based AdCess$rol (RBAC) models show clear advantages over
traditional discretionary and mandataagcess control models [Jos01, Osb0A]particular, an RBAC approach
allows uniform representatiocof diverse security policies and sopis efficient security management.

In this paper, we propose an XMiased access control policy specificatlanguage that incorporates above
mentioned capabilities. We extend theSNIRBAC model with temporal constraints, role attributes, contextual
conditions, a notion of role states, and pre-conditions for state transitions. The proposed specification language
provides a wide range of protection granularity for protected data and supports policy mapping-dommait
environments. Our approach allows ascesntrol at the element-level graawity of XML sources, and provides

the capability to enforce concept-level access control on huge document regsoshio the best of our knowledge,

an XML-based RBAC language for acsemanagement in multi-domain enviroents has not been previously
investigated. An XML based approach to specify enterprise RBAC policies has been reported0Oil].[Vhe

OASIS XACML allows specification ofontext-based access specification RBAC profiles [Urla, Urlb]. Kerret.

al. present an Extended RBAC model for enterprise-wide control [Ker02]. However, they do not include the fine-
grained notion of role states, role pre-conditions, and temporal constraint expression proposed hereoreurtherm
our model provides support for specification of polcad arbitrary multi-domain environments. Keromyis al.
propose the STRONGMAN architecture to support policsebamanagement of multi-domain systems. However, it
uses KeyNote as low level policy language and does not support RBAC. STRONGMAN architecture provides
scalability and can supplement the scheme we propose. Bemaitipropose a policy composition algebra that can
supplement the XML integration framework proposed here [BonQ0].

2. Extension of RBAC Model with Context and Content information

The NIST RBAC model is comprised of four key elements, nanuslgrs roles permissionsandsessionsFigure
1.1(a) depicts the simplified version of the NIST RBAC model. Constraints can be apphedassignment of user
and permissions to roles, and activation of roles by users in sessions. The extensions proipisseabier include
role states, parameterization of roles, and inclusion of context information, rtiaielgndlocation, and content-
based access control. Figure 1.1(a) depicts the pobayponents for defining vanis elements of our RBAC
model, e.g., XML User Sheet (XUS) is used to definesuaad their properties. Thesdlwe presented in detail in

later sections.

@

Permissions

activation

|-
'{ Active

Hierarchy Enabled)

P
<«

deactivation

mission

gnment deactivation

disabling
enabling

Disabled
(SoD, contextual)

b
@ (b)

Figure 1.1 (a) The NIST RBAC Model afalicy Components (tStates of a Role
2.1 Roles with Attributes

An important notion underlying our RBAC model is that roles may have some associated tempsiraints,
specifying when roles can be used. Depending on the application semantics, not all roles may be available to all
users at any time. This notion is reflected in our modehdsociating different states with roles. Figure 1.1 (b)
shows the three states that a role can bdigabled enabledandactive Thedisabledstate indicates that the role
cannot be activated in a session. A role indisabledstate can be enabled. Taeabledstate indicates that users
authorized for the role at the time of the request may activate the role. A roleaittittestate implies that there is

at least one user who has aated the role. A role in thenabledor active state transitions to thdisabledstate if a
disabling event occurs. We define the following three sypiepreconditions to specify conditions on which a role

can change its state:

1. Role enabling/disabling preconditidhat needs to be satisfied fhe role to be enabled.
2. Role assignment/deassignment preconditi@t needs to be satisfied to assign a user to the role.
3. Role activation/deactivation precondititimat needs to be satisfied beforeaathorized user can activate a role.

Each precondition consists of logical conditions defined on elements of a role’s parameter)setVsayse sets
Xem Xas @nd Xy to denote the elements &f that are associated with the three preconditidfs.consists of
parameters on which rolenabling depends. SeX,s contains parameters on which role assignments depgnd.
typically includes:

e attributes whose values are assigned to a user togeithethe authorization to use the role; these typically
refer to pre-specified organization specific values; or

e attributes whose values must be provided by the user and for which a certificate can be required;dhige typi
refer to generic values that any previously unknown user may present.

SetX,. represents the attributes related to activation of rotes©R]. Note that the three sets are not disjoint; that is,

the same parameters may affect enabling, assignment and activation of a role. Table 1 illustrates the notion of a
parameterized role and role preconditions for @&etorinTraining in a hospital anK ={time instant (t), time
duration(d), system loadl), user(u), role (x), certification (c)}.

Table 1. Example role preconditions

Role enabling preconditionXen = {t, I}): DoctorInTraining is enabled if conditions 1 and 2 hold:

1. tis atime instant that falls undevery workday between 9am-9pm
2. system loadlis low. Here, we assume that gystem loadharacterizes how many doctors amuaises are currently in active duty

Role assignment preconditiofXas = {c, f}): Dr. Smith can be assigned BoctorinTraining if conditions 1 and 2 hold:

1. Dr. Smith’s certification c is valid. Here,c represents the certificate of eligibility guided by a certifyingauthority. A predicate
ValidCertificatgc) can be defined for this purpose.

2. tis atime instant that falls undevery Mondays, Wednesdays and Tuesdays between 9am-9pm

Role activation preconditian X, = {t, u, r, d): An authorized user can activab®ctorInTraining if conditions 1 and 2 hold:

1. Dr. Jones is on active duty as a supervisor. Predicaiegu, r) can be used to test if usehas activated role If activgu, r) returnstrue
for u="“Dr. Jones” and = SupervisorDoctor, then this condition is satisfied,

2. Active durationd for Dr. Jones is less than or equal to 2 hours. We can define a préditaéDuratiorfu, r, d) to check ifu has activated
roler for durationd. It is then ued to check fou = “Jones”d = “2 Hours”.

2.2 Capturing Context and Content Information

In general, a parameterized role can be used to capture any type-e ariodicity Expression —
context-based access requirementsdbfining an appropriate set of <periodicTimeExpr pt_expr_id = *
parameters and predicates associatéd them. Below, we elaborat <StaDrtTer111€Expr_>“ Jond
on how our specification framework capttirae andlocation context. <Day daySet = onday.

Wednesday"/>
Time We use the periodic time expression represented by pairs of the SjaHr?%fmhggﬁf:: 9AM?/>
form [I, P] and calendarsto express timing constraint [Jos02]. <DurationExpr cal = * Hours” len =

calendaris defined as a countable set of contiguous intervals. We write/>

. i i . </PeriodicTimeExpr>
C.t G, if each interval of calend&;, is covered by a finite number o
intervals ofC, P is aperiodic expressiomlenoting an infinite set of| Figure 2.1Periodicity
periodic time instants, and | dégin , end) is an interval denoting| Expression

the lower and upper bounds imposed on instants in P. FormaIIyZE’inf1 0,.C; >x.Cq4, whereCy, Cy, ..., C, are

calendars andO; = all, O, € 28 U{all}, G = C; fori = 2,..,n, Cy E C,, andx € N. Expression on the left of
identifies the set of starting points of the intervals, and that on the right side indicates the duration of each interval in

terms of calenda€y. For example, dll.Years+ {3, 7}.Months> 2 Monthg represents the set of intervals that start
on the third and seventh month of every year and have duration of 2 months [Jos02]. Figuoav2.theshKML
specification for periodic time denoting evévipndaysbetween 9am-9pm in year 2003. Calend@ar, Monthand
Weekare by default assumed to be associatedallitfe.g.,all.Yeay).

Location We use a session parameter to record the dm®ain associated with access request to provide
location-based access control. Additionally, the proposed language allows capturing attributedagiohtise
login_date andduration of the session that profile user activities. Such information is processed dynamically and
incorporated into the access decisions.

Content-based accesSontent-based access control spedificais allowed at four levelsonceptuallevel, XML
schemaevel, XML instancelevel, andXML elementievel. We use a cluster-based approach to specify conceptual
level access control by grouping information content t@acept clusters using amslarity-based function for
content classification [BhaO4]. Accessntrol specification for the XML docuent sources can be done at the
schema, instance or element level, as detailed later.

3. RBAC Policy Specification Framework for Multi-domain Environments

Multi-domain environments have manifested in various forms of emerging systems. Those particularly becoming
prominent includéVeb-servicesind Grid-basedsystems [Azz02, PeaO2Veb Servicesre typically employed in

B2B applications where service providers expose specifizniration to clients, or an automated transaction is
carried out between two e-commerce applicati@r-basedsystems are emerging apramising technology that
can span an Internet size environment with heterogeneous systems distributed across multiple administrative
domains [Azz02]. In a multi-domain environment, the key sgcgoal is to ensure that no security violations occur
during inter-domain accesses. In particular, secure interoperation shmfolte the following two principles
[Gon96]:
e Theautonomy principlewhich states that if an access is permitt@tiivvan individual systm, it must also be
permitted under secure interoperation.
e Thesecurity principle which states that if an access is not perahittithin an individual system, it must also
not be permitted under secure interoperation.
Figures 3.1ij(a)-(b) illustrate a violation of the security principle. 1fetB, C, D, X, YandZ be roles and let the
links indicate inheritance, ieusers authorized for roke are also authorized for rol& CandD; users authorized
for C are also authorized f@, and so on. Let the linka andb indicate inter-domain accesses allowed between
domains 1 and 2. Assuming the inter-domain links also have inheritance semantics, users authorized éoe role
also authorized for roleéandZ. It is easy to see that linkksandb do not violate the above two principles in Figure
3.1()(a). Suppose, we add inter-domain lirkkandd as depicted in Figure 3i}({p). This results in a violation of the
security principle because usendginally authorized for roléC and not for roleA are now authorized for rola
because of the inheritance path fréno Yto Z to A.
Figure 3.1i{) depicts two architectural configurations that characterize a multi-domain environment. We refer to
them adoosely coupledndtightly coupledor federatedmulti-domain environments. Here, domaBst and 5 form
a federatedenvironment while domains 1 and 2 fornhoasely coupleanvironment. Multi-domain environments
may contain bothoosely coupledndfederatedcomponents. The arrows indicate general flow of access requests.
The dotted lines indicate that access requests receiveddmyain for information in dter domains are redirected
to the global layer.

__

Access Control Module Interdomein access Access Control Module ¢

>

.
<
Local Policy Base Local PolicyBase [
(dommaint) (domaire)

Loosely Coupled

Domain 1 e User's authorized view
(@ —_

@ LYy
E Local Policy Base Local Policy Base

@ (domaing) (domaind)

Domain 3 (© Domain 4 Domain 5 —

Global Policy
Base

Access Mediation Module

‘ Aooess Control Nbdul%

Local Policy Base
(domairt)

Figure 3.1(i)) An example multi-domain environmeni,) (Role Mappings in multi-domain environments

3.1 Loosely Coupled Multi-domain Environments

In a loosely coupledmulti-domain environment, independent systems dynamically come together to share

information for a period of time. An example olamsely couplecenvironment is that of a company allowing its

consulting firms to partially sharmformation during the p@d of their contractual agreements. Two access

mediation approaches can be employed in sucbselycoupledmulti-domain environment:;

1. Use a predefined set of role maprig mediate inter-domain accesses. Hpigroach requires the constituent
systems to indicate the level of sharing they want to allow, and establish a consistent set of mediation rules for
inter-domain accesses;

2. Use a certificate based approach to map unknown prin¢@pptedefined roles. This approach is suitable for an
environment like the Internet where access is given yoran presenting required cesdials or role attribute
values that satisfy role preconditions. Typically, thighod relies on a trust management infrastructure [Bla99]

In either case, a trust negotiation phase may be involved.
3.2 Federated Multi-domain Environments

In a federatedmulti-domain environment, one system is typically designated as the master and others as local
domains. The master is responsible for mediating accessatiidlual systems by maintaining a global policy. For
example, a digital government can be viewed Bedaratedsystem that attempts to provide users a set of services

by federating a number of government units [Jos01]. Such systems may also characterize merged organizational
systems, in which the policies are integrated. A gridklmwconsidered a federated system where “donor” systems

join it by submitting their local policies [Azz02, Pea02]. Typically, the global policy maps to local policies. For
instance, a global role can mto various local roles in individual domains. Figure i3(&) shows the mapping of a

global roleR to the local roleC in domainl, r1 andr2 in domain2, andX in domain3. Table 2 depicts such a
mapping specific to a healthcaapplication environment.

Table 2. Example role mapping in a federated system

Mapped te> | Hospital 1 roleC Hospital 2 roles1 andr2 Hospital 3 roleX
C =DayDoctor in PT; r1 =DayDoctor in PT,=[l, P], representing every X = SupervisorDoctor in
Ris =[I,P]; representing every | TuesdaysndThursdays PT,=[l, P], representing
Mondays andWednesdays every Weekends
FederatedDoctor r2 =EmergencyDoctor in PT; =[l, P]; representing
every Fridays

Under this mapping, a doctor who needs to be cross-appointed to different hospitals at tiffesgrior instance,
can be assigned to tkederatedDoctor role between 8m-6pmon MondaysthroughSaturdaysThis means during
daytime betweend@n-6pm Dr. Smith can assume:

» DayDoctor role inhospitall onMondaysandWednesdaysand inhospital2 onTuesdaysindThursdays
» EmergencyDoctor role inhospital2 onFridays and
» SupervisorDoctor role onSaturdaysn hospital3.

4. XML-based Specification Language for RBAC Model

We have developed an XML specification framework for expresging
RBAC policies as well as mediation policies in blathsely couplegnd
thefederatedmulti-domain environments, called X-RBAC. ¢

Figure 4.1 shows the XML syntax for policy specification. The o ome ar oot oo
appendix to the paper gives details on the notation used to expregs the- XML Role Sheet-->
grammar of our XML language. Key policy component definitiohs S Ei;TEi‘g“ASSQ%e;;Zm__>
include XML Role Sheet (XRS)XML User Sheet (XUS), XML <l-- XML Role-Permission Assignment-->
Permissions Sheet (XPS) XML UsRole Assignment Sheet (XURAS) {:: ;‘;‘ﬁi' Féoéil‘;{ignesfm‘“%'j:ﬁ'r';ilns__>]
and XML Permission-Role Assigment Sheet (XPRAS); these <xpolicy> Y .
correspond to various components qf.the RBAC model depic@eld in Fi W¥yure 4.1X-RBAC Policy
1.1(a). X-RBAC also allows spedifition of integrated policies b specification format
including other policy definitions as a component through Local
Policy Definitions --> thus supporting the dynamic creation of articulated
and complex multi-domain policies. Each constituent policy bea local policy of a federated system or a policy
of a partner domain in a loosely coupka/ironment. Local policy definitionsaincluded or simply referred to by
usingids of the local policies. If local policies are defindtkbn the set of relationships between the global policy
and each of the local policieged to be defined througih- Policy Relationship Definitions-->.

4.1 X-RBAC Policy Specification
We now present an overview of each of the basic policy specification components.

Policy Definition --> ::=
<XPolicy [policy_id = “(value)’]>
<PolicyName> (name)

XUS: An XUS is used to define users and their credentygles. Credentials are used when unknown users are to

be provided access to the system. Credential values prseifitee checked by the system to see if they satisfy
assignment precondition for the requested role. Figure 4.2 shows the specification syntax. Credential type definition
specifies the attribute list associateittva credential type. Consider the following user credential based on a general

credential expression of the forncigd _type _name cred, type),idred_exp), wherecred_type_idis a unique
credential type identifier antted_expiis a set of attribute-value pairs.

((Nurse, “C100"), {(user_name, “John”, mand), (age, 30, opt), (level, fifth, mand)})
Each attribute of a credential type may be definedaasl, to indicate that it is mandatory, or@s, to indicate that
it is optional. User definition may simply define useame and user_id or additionally specify the assigned
credentials that the user may carry. An XildStance is shown in Figure 4.4(a). TMaxRoles tag indicates the
maximum number of roles that a user can be assigned to.

<l-- XML User Sheet --> ::=

<XUS xus_id = “"]>
[<!-- Definitions of Credential Types -->]
<l-- User Definitions -->

</XUS>

<l-- Definitions of Credential Types -->::=
<XCredType>

[<!-- Credential Type Definition -->]+
</XCredType>
<l-- Credential Type Definition --> ::=
<CredType ct_id = (id)

type_name = (type name)>
<AttributeList>
[<!-- Attribute Definition -->]+

<AttributeList>

<CredType>

<l-- Attribute Definition -->::=
<Attribute [attr_id = (id)]>
<AttributeName
usage = “mand | opt”

type =(type)> (name)
</AtriibuteName>

</Attribute>
<l-- User Definitions --> ::=
<Users>
<User [user_id = (id)]>
[<UserName> (name) </Userame>]

[<!-- User credential>]
<MaxRoles> (number) </MaxRoles>
</User>
</Users>
<l-- User credential -->::=
<CredType [cred_type_id = (id)]
[type_name = (type name)]>
<!-- CredentialExpression -->
</CredType>
<l—Credential Expression -->::=
<AttributeValuePairs>
[<(attribute name)> (attribute value)
</(attribute name)>]+
</AttributeValuePairs>

<!-- XML Permission Sheet -->::=
<XPS>
[<Permission [perm_id = (id)>
<Object [id= (id)] [type = (ype)]>
(name) </Object>
<Operation> (op) </Operation>
</Permission>]+
</XPS>

Figure 4.2Syntax for XUS / XPS

<l-- XML Role Sheet>::=
<XRS[xur_id = (id)]>

<!-- Role Definitions >

[<!-- Separation of Duty Definition>]
</XRS>

<!-- Role Definitions>::=

<Roles>

[<!-- Role Definition>]+
</Roles>
<l-- Role Definition -->::=
<Role>

<RoleName [r_id =
</RoleName >
[<Attributes>
[<AtributeName> (name)
</AtributeName>]+
</Attributes>]
[<!-- Enabling Constraint -->]
[<!-- Activation Constraint -->]
[<Junior> (name) </Junior>]
[<Senior> (name) </Senior>]
[<Cardinality> (num)</Cardinality>]
</Role>
<l—Assignment Condition-->::=
[<AssignCondition [pt_expr_id =(id)]
[d_expr_id =(id)]>
[<!—Logical Expression->]+
</AssignCondition >+
<l--Enabling Constraint --> ::=
<EnabConstraint [op=(AND|OR|NOT|XOR)]>
[<EnabCondition [pt_expr_id =(id)]>
[<l—Logical Expression>]+
</EnabCondition>]+
<EnabConstraint>

<l-- Activation Constraint --> ::=
<ActivConstraint
[op=(AND|OR|NOT|XOR)]>
[<ActivCondition [pt_expr_id =(id)]>
[<!—Logical Expression->]+
</ActivCondition>]+
<ActivConstraint>
<l—Logical Expression -->::=
<LogicalExpression
[op = “AND | OR | NOT | XOR">
[<!-- Predicate -->]+
</LogicalExpression>

<l-- Predicate -->:=
<Predicate>
[<Operator> (Itlgtleqg|neq) </Operator>
[<FuncName>(name)</FuncName>]
[<ParamName>(name)</ParamName>]+
<RetValue>(value)</RetValue>]
| <l—Logical Expression->]
</Predicate>

(id]> (name)

Figure 4.3Syntax for XRS

<XUS> <XRS> <XPS>
<Useru_id =* ul"> <Roles> <Permission perm_id = “ P1">
<UserName> JSmith <Role role_name="_ SpecialDoctor"> <Object type = * Cluster”
</UserName> <EnapCondmon pt_expr_id="* PT1"> id=" CL100">
<CredType c_type_id = <LogicalExpr> EyeDisease </Object>
C100"> <Predicate> <Operation> read
<CredExpr> <Operator> eq</Operator> </Operation>
<FName> John</FName> :g:?;gﬁ::};‘sm“veqF””CName> </Permission>
<LName> Smith</LName> type=rale> SupervisorDoctor <Perm_issi0n perm_id =* pP2">
<age> 30</age> </ParamName> <Object type = “Schema”
<level> 5</level> <RetValue> true</RetValue> id=" XS101">
</CredExpr> </Predicate> PatientEyeReport</Object>
</CredType> </LogicalExpr> <Operation> all
<MaxRoles> 2 </MaxRoles> </EnabCondition> </Operation>
</User> <Junior> Resident </Junior> </Permission>
</XUS> <Cardinality> 8</Cardinality> <Permission perm_id = * P3">
() </Role> <Object type = “Instance”
<</so:e r;)le_namez" DBA” /> id=* X1100">
oles .
< SDRoIg SeF ssdid = ¢ sSD1” <O§Z?§ii;r)1t;rtForJoe</ObJect>a”
ssd_cardinality = “ 1> </Operation>
ZSSDRole> Spesaboctor</SSDRole> IPermission>
ole> SpecialDoctor ole: e S ”
<SSDRole> Dispenser</SSDRole> <Pe<m(;'bsjse'gt” pt‘;;n;—'d:" “Elemen'zfl >
<SSDRole> DBA</SSDRole> id=* XE100">
</SSDRoleSet> -
<DSDRoleSetdsd id=* DSD1" EyeColor</Object> .
dsd_cardinality = “2"> <Operation> navigate
<DSDRole> DBA</DSDRole> </Operation>
<DSDRole> Accountant </DSDRole> S/Permission>
<DSDRole> Cashier</DSDRole> <IXps>
</DSDRoleSet> ©
<IXRS> (0)

Figure 4.4Examples of XUS, XRS and XPS

XPS: Permissions are specified in X-RBAC using the syntax for XPS shown in Figure 4.2. The permissions for a
given system are defined in termsatfjectsand associatedperations Figure 4.4(c) shows an XML instance of
permission specifications. Herperm_idis a unique permission identifier. Awbject can represent either & (
cluster, (i) schema (iii) instance documenor (v) document elemenWe useobject typedo distinguish them.
Clusters, schemas and documentsidentified by their respectivids provided by the system administratg§Path

(XML Path Language) expressions are used to spe@fgegits within an XML docunm. Having access privileges

to a cluster implies that access to all schemas and aestiotuments belonging to the cluster is allowed Similar
semantics apply to schema and its elements and instdteresissions can have a propagation option that indicates
whether or not it propagates down the object hierarchy [Ber01].

In Figure 4.4(c), the permission identified 1" allows a ‘read’ operation on all documents within the scope of
cluster identified by CL100" with the default propagation option (i.end prop”). Similarly, the permissions
identified by ‘P2"and “P3” allow “all” operations on: (i) all document instances conforming to the schema
identified by ‘XS101”, and (ii) the document instance identified BXI100”, respectivey, with the default
propagation option. Lastly, the permission identified By™ allows “navigate” operation on the XML element
“Name”, also with the default propagation option.

XRS: Role definitions are provided in an XRS as showrkrigure 4.3. For each role, a set of role attributes is
specified. Each role may have associated with it preconditions fematsling, assignmergndactivation that are
separately defined using theErabCondition >, <AssignCondition > and <ActivCondition > tags.

Within a precondition tag, arType attribute may be specified to imdite whether the precondition is for the
enabling(activation) or thedisabling(deactivation. For enabling/disabling preconditions, we use the periodic time
expression (Figure 2.1) as a condition. We may defiltitianal predicates to be used to express context-based
conditions using the generic syntax for logical conditions shown in Figure 4.3. Note that we may allow any complex
logical expression using this syntax. A role definition may specify hierarchy relations by specifying its jodiors a
seniors using the Junior > and <Senior > tags respectively , and express role cardinality using the

<Cardinality> tag. Separation of duty (SoD) constraints are specified by constructing a role set, and specifying
a cardinality stating how many roles from the set maysk@ned to (Static SoD), or activated (Dynamic SoD) by a
user. An XML instance document describiBgecialDoctor and DBA roles along with the corresponding SSD
(static SoD) and DSD (dynamic SoD) role sstshown in Figure 4.4 (b). Accordingi$pecialDoctor belongs to

the SSDRoleSet identified bySSD1, with cardinality 1, and hence users may not be assigned to more than one
role from this set. Similarly, thBBA role belongs to thBSDRoleSet identified byDSD1, with cardinality 2, and

hence no more than two roles can be activated at the same time by authorized users.

XURAS, XPRAS: The system administrator uses XURAS and XPRAS to specify the user-role and permission-role
assignment. The syntax is depicted in Figure 4.5. An XML instance of XURAS for assigning user credentials to a
role is shown in Figure 4.6. This exam@ssociates a set afedentials with th&pecialDoctor role. It states that

ANY user with the credential typdurse can be assigned to t&@ecialDoctor role only if “level” is greater than 5

and ‘age” is less than 80. The assignment of permissions to corresponding roles reflects the policy specifications at
the conceptual, schema, instancd alement levels in an XPRAS.
<XURAS>

<l--XML User-Role Assignment>::= <XPRAS>

<XURAS> <URA ura_id=" URAL" <PRA pra_id=" PRA1"
role_name="SpecialDoctor “>
<AssignUsers>

[<!-- User-Role Assignment>]+

role_name="EyeDoctor">
</XURAS>

<AssignPermission perm_id =

<l--User-Role Assignment>::= <AssignUser user_id = “ any™> “P1">
<URA ura_id=(id) <AssignCondition pt_expr_id = </PRA>
role_name (name)> “PT1™> <PRA pra_id=" PRA2"
<AssignUsers> <LogicalExpr op = “ AND™> role_name=" DBA">
<AssignUser [user_id = (id)]> <Predicate> <AssignPermission perm_id

<Operator> gt </Operator> “p2">

</AssignUser> <ParamName> level</ParamName> <AssignPermission perm_id
</AssignUsers> <RetValue> 5</RetValue> “P3">
</URA> </Predicate> </PRA>

[<l—Assignment Condition-->]

<l--XMLPermission-Role
Assignment>::=
<XPRAS>

[<!-- Permission-Role Assignment>]+
</XPRAS>
<l--Permission-Role Assignment>::=
<PRA pra_id=(id)

<Predicate>
<Operator> It </Operator>
<ParamName>age</ParamName>
<RetValue> 80</RetValue>
</Predicate>
</LogicalExpr>
</AssignCondition>

<PRA pra_id=" PRA3"
role_name="Dispenser”>
<AssignPermission perm_id =
“P4>
</PRA>
</XPRAS>

role_name (name)> </AssignUser>
<AssignPermissions> </AssignUsers>
<AssignPermission [perm_id = </URA>

(id)]> </XURAS>
[<!—Assignment Condition-->]
</AssignPermission>
</AssignPermissions>

</PRA>

Figure 4.7 An example of

Figure 4.5 Syntax for XURAS | Figure 4.6 An example of XURAS XPRAS

Conceptual Level Specificatio@onceptual level access control uses rolkgad to concepts. An instance of such

a schema specification is shown in Figure 4.7. Here, the mapping identifi€Rib§1” associates th&yeDoctor

role with the permissionP1”, which refers to an object cluster referring to a concept (see Figure 4.4(c)). In this
case, an EyeDoctor” role is authorized toread’ all the documents within the cluster identified by cluster id
“CL100".

Schema, Instance and Elent-level SpecificatianXML schemas, document instan@esd elements within can be
protected similarly by associatingetin with corresponding roles. Foistance, the mapping identified bipRM2”

in Figure 4.7 associates tBBA role with the permissiond?2” and “P3”, which refer to a schema object and an
instance document, respectively (segué 4.4(c)). In this case, tBBA role is authorized tor&ad/write/navigaté

all instance documents conforming to the schema®Bi101”, and the instance documerXl100”. Similarly, the
mapping identified by PRM3” associates th®ispenser role with the permissionP4” referring to theName
element. Hence, thRispenser role is authorized only tonavigaté the Name element in all conforming instance
documents.

4.2 X-RBAC Specification of Mediation Policies

Within a policy definition, we can include local policy definitions usithg-Local Policy Definitions --> as shown in
Figure 4.8. Note that each policy mayelfsbe a global policy over a set ofcld domains. A relevant principle for
mediation policies is the following scoping rule:

Scoping rulelf a policy P becomes a local policy of a highevel policy, then P’s local policy definitions and
the policy relations are not knawo the higher level policy

<l—Local Policy Definitions -->::=
<XLPD>

[<!— Policy Definition -->]+
</XLPD>
<l—Policy Relationship Definitions -->::=
<XPRD>

[<!--Policy Relationship-->]+
</XPRD>

Figure 4.8 Definitions of local
policies and mapping relations

<XPR xpr_id =* XPRg">
<InterDomainMapping [idMap_id = “
<RoleMapping>
<MappedRole>
<Role policy_id = *
</Role>
</MappedRole>
<MappedTo>
<Role policy_id = *
<MappingCondition pt_expr_id = “
</MappedTo>
<MappedTo>
<Role policy_id="
</Role>
<MappingCondition pt_expr_id = “
</MappedTo>
<MappedTo>
<Role policy_id = *“ Policy5">
SupervisorDoctor</Role>
<MappingCondition pt_expr_id = “
</MappedTo>
<MappedTo>
</RoleMapping>
</InterDomainMapping>
</XPR>

IDMg"]>

Global™> FederatedDoctor

Policy3"> DayDoctor</Role>
PT1" />

Policy4"> EmergencyDoctor

PT1” />

PT1" />

Figure 4.10Policy relation specification for
example 3.1.iJ(c)

<!-- Policy Relationship --> ::=
<XPRxpr_id = (id) [pt_expr_id = (id)]>
<InterDomainMapping [idMap_id = (id)] >
<RoleMapping>
[<Mapping Definition>]+
</RoleMapping>
</InterDomainMapping>
</XPR>
<Mapping Definition>::=
<MappedRole>
<Role [role_id=(id)] [policy_id = (id)]> (name)
</Role>
[<Mapped(To|From) Definition>]+
</MappedRole>

<Mapped(To|From) Definition>::=
<Mapped(To|From)>
<Role [role_id=(id)] [policy_id = (id)]> (name)

</Role>
<MappingCondition [pt_expr_id = (id)>
[<!--LogicalExpression-->]
</MappingCondition>

</Mapped(To|From)>

Figure 4.9 Syntax of golicx relation

<!-- Policy Definition for Domains of Figure 3.1(i)(a) -->
<XPolicy policy_id = *“ Policyl™>
<l—Policy Definition -->
<XPR pxr_id =* XPR1">
<InterDomainMapping idMap_id = *
<RoleMapping>
<MappedRole>
<Role policy_id =*“
</MappedRole>
<MappedTo>
<Role policy_id = *
</MappedTo>
</RoleMapping>
<RoleMapping >
<MappedRole>
<Role policy_id =
</MappedRole>
<MappedFrom>
<Role policy_id =*
</MappedFrom>
</RoleMapping>
</InterDomainMapping>
<IXPR>
</XPolicy>
<XPolicy policy_id = *“
<l—Policy Definition -->
<XPR xpr_id =* XPR2">
<InterDomainMapping idMap_id = *
<RoleMapping>
<MappedRole>
<Role policy_id =*“
</MappedRole>
<MappedTo>
<Role policy_id = *
</MappedTo>
</RoleMapping>
<RoleMapping >
<MappedRole>
<Role policy_id =
</MappedRole>
<MappedFrom>
<Role policy_id =*
</MappedFrom>
</RoleMapping>
</InterDomainMapping>
<IXPR>
</XPolicy>

Figure 4.11Policy relation specification for exampl
3.1.0(@)

IDM1">
Policyl™> C </Role>

Policy2™> Y </Role>

Policyl™> D </Role>

Policy2™> Z </Role>

Policy2">
IDM2” >
Policy2”> Z </Role>

Policyl™ D </Role>

Policy2”> Y </Role>

Policyl”™> C </Role>

10

The above rule indicates that, within a global policy dédin, only the entities of its local policies and not those of
constituent domains of these local policies are visiblés @bstraction simplifies the meta-policy construction.
However, if the higher level policy management must @eethe consistency of the overall federation, then this
rule may need to be relaxed. With local policies included, we need to define the relationships among their policy
entities with the global entities. The XML syntax for defining policy relationships is shown in Figure 4.9. Each
global role may be mapped onto a number of local roles, which may belong to the same or Hiffefelaimains.

For each mapping, a condition may be specified. We edhat the local roles onto which a global role can be
mapped are included in the local policy definitions. Figure 4.10 illustrates the specification of the global to local role
mapping defined in example 3i€).

We can use the same structure to capghenediation policies for the looselgupled systems. In such a case, each

of the local policy definition comprises a part of the domain policy of the partner domain. For example consider
domains 1 and 2 of Figure 3iR(with policiesPolicy 1andPolicy 2 In the specification dPolicy 1, some entities

of Policy 2 are known, specifically role¥ and Z and appear in thel—Local Policy Definitions --> section
Similarly, in Policy 2 a part of entity definitions oPolicy 1 (i.e., rolesC and D) will appear as local policy
definition. We note that the role-to-role mappings can be from one domain to the other, as dfiguwreif.1i)(a),

or bidirectional. To capture mapping direction, we include <MappedFrom>...</MappedFrom> syntax

similar to the<MappedTo>...</MappedTo> syntax. Snapshots of relationship definitions for the role-to-role
mapping of Figure 3.1ij(a) are shown in Figure 4.11.

5. Policy Integration Challenges in Multi-domain Environments

There are several issues such as semantic heterogernkjpplany consistency that pose considerable challenges in
multi-domain environments. To manage semantic heterogeneity and integration of multiple heterogeneous policies
in an XML-integrated multi-domain environment, approaches used for semantic integration rofjdreteus
database schema may be useful. We have developed a policy integration methodology for a multi-domain
environment, which consists of the following four phases:

e Pre-integrationphase dealing with the bookkeeping aspects of integration involving semantic information about
policy entities of each domain that facilitate resolving semantic differences. The overall process in this phase
can use a data dictionary-based approach, or can involve building a common ontology.

e Policy comparisorphase involving detection of semantic dmt$, including naming conflicts among domain
roles, or structural conflicts among role hierarchigsis is facilitated by information obtained in the pre-
integration phase. Technigues for detection of semantic conflicts, automatically or semi-automatically, need to
be developed.

e Policy conformance phasthat deals with the issue of resolving semantic and conflicts. Automatic
techniques are needed to synthesize mediation policies when security violations such as one shown in Figure
3.1(i)(b) occur.

e Merging and restructuring phagbat deals with needed readjustment to local policies for obtaining consistent
merged policy after removing inconsistencies.

Policy
Comparison

Policy
Conformance

Merging/
Restructuring

Consistent, complete
and minimal policy

Pre-integration

External mediation policy may be needed to hardleflicts/incompleteness

Figure 5.1Policy Integration Phases

This process can be iterative in nature. In particulae removal of inconsistencies can entail considerable
restructuring and refinement of the mediation policies. Such iteration, in conjunction with ityegooiformance
phase, is carried out by the merging/restructuring phase.

5. Conclusion and Future Work

We have presented an XML-based policy specification language for expressing RBAC policies with temporal
constraints. We have prototypesh X-RBAC system and demonstrated its use for Web-based access control

11

[Bha04]. We plan to extend our work in several directigkssthe XUS maintains a lot of user data, a provision for
user privacy is highly desirable. We plan to pursue X-RBAC extensions to provide a provisionvémy pri
preferences. We also plan to extemd framework to allow interoperation of our mechanism with single sign-on
mechanisms and apply it to securely compose interogevedtb-services. Furthermore, we plan to extend the X-
RBAC language to include the full set of tempo@straints introduced in the GTRBAC model [Jos02].

References

[Azz02] F. Azzedin, M. Maheswaran, “Towards Trust-Aware Resource Managerfeateedings of the"?
IEEE/ACM International Symposiuom Cluster Computing and the Gi@CGrid’02).

[BerO1] E. Bertino, S. Castano, E. Ferrari, “Securing XML Documents with AuthdEEE Internet Computing
May-June 2001.

[BhaO4] Rafae Bhatti, James B. D. Joshi, ElisatiBer Arif Ghafoor, “XML-based Specification for Web-
Services Document SecurityEE ComputerVol. 37, No. 4, April, 2004.

[Bla99] M. Blaze, J. Feigenbaum, J. loannidis, #dKeromytis, “The KeyNote Trust-Management System
Version 2,” Internet RFC 2704, September 1999.

[Bon00] P. Bonatti, S. De Capitani di Vimercati,Jamarati. A Modular Approach to Composing Access Control
Policies.Proc. of the Seventh ACM Conference on Computer and Communications Sédhatys,
Greece, November 1-4, 2000.

[Fer01] D. Ferraiolo, R. Sandhu, S. Gavrila, R. KuRn Chandramouli, “The NIST Model for Role-Based
Access Control: Towards a Unified StandardCM Transactions on Information and System Segurity
Vol 4, Issue 3, August 2001, pp. 224-274.

[Gon96] L. Gong and X. Qian, “Computational Issues in Secure InteroperafiiE, Transaction on Software
and EngineeringVol. 22, No. 1, January 1996.

[Jos01] J. B. D. Joshi, A. Ghafoor, W. Aref, E. HaSprd, “Digital Government Security Infrastructure Design
Challenges”|EEE ComputerVol. 34, No. 2, February 2001, pages 66-72.

[Jos02] J. B. D. Joshi, Elisa Bertino, Usman Latifif &hafoor, "Generalized'emporal Role Based Access
Control Model",Accepted for publication in IEEE Trangamn on Knowledge and Data Engineering

[Ker02] A. Kern, “Advanced Features for tEmprise-Wide Role-Based Access Controfnnual Computer
Security Applications Conferenc2002

[Ker03] Angelos D. Keromytis, Sotiris loannidis, Michael B. Greenwald, and Jonathan M. Smith, “The
STRONGMAN Architecture,” In Proceedings of tBed DARPA Information Survivability Conference
and Exposition (DISCEX lllpp. 178 - 188. April 2003, Washington, DC.

[Osb00] S. L. Osborn, R. Sandhu, Q. Munawer, “Ggunring Role-Based Access Control to Enforce Mandatory
and Discretionary Access Control PolicieBCM Transactions on Information and System Secguriby.
3, No. 2, February 2000, pp. 85-106.

[Pea02] L. Pearlman, V. Welch, lan Foster, Carl Kesselman, S. Tuecke, “A Community Authorization Service for
Group Collaboration,2002 IEEE Workshop on Policies for Distributed Systems and Networks

[Pow00] R. Power, ““Tangled Web": Tales DBfgital Crime from the Sadows of CyberspaceQue/Macmillan
Publishing Aug. 31, 2000.

[URLa] XACML 1.0 Specification: http://xml.coverpages.org/ni2003-02-11-a.html
[URLb] XACML Profile for RBAC: http://xml.@verpages.org/OASIS-XACML-RBACProfile.pdf

[Vuo01] N. N. Vuong, G. S. Smith, Y. Deng, “ManagiSgcurity Policies in a Distributed Environment Using
eXtensible Markup Language (XML)Symposium on Applied Computitdarch 2001.

Appendix

We follow the following notation to express compactly trammar for our XML languge. “<!-- X -->" indicates a
term that needs to be defined; J[Xndicates zero or one occurrence of termA%+ indicates repetition.(Value)”
represents a constant value. “XMitockdef indicates that term X is expanded by definitibfockdef <Xyz
[exprl] [expr2] expr3> represents actual XML tagyz and optional expressiorexprl andexpr2
and mandatory expressiespr3.

12

