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ABSTRACT

Vaidya, Jaideep Shrikant. Ph.D., Purdue University, August, 2004. Privacy Pre-
serving Data Mining over Vertically Partitioned Data. Major Professor: Chris
Clifton.

The goal of data mining is to extract or “mine” knowledge from large amounts

of data. However, data is often collected by several different sites. Privacy, legal and

commercial concerns restrict centralized access to this data. Theoretical results from

the area of secure multiparty computation in cryptography prove that assuming the

existence of trapdoor permutations, one may provide secure protocols for any two-

party computation as well as for any multiparty computation with honest majority.

However, the general methods are far too inefficient and impractical for computing

complex functions on inputs consisting of large sets of data. What remains open is

to come up with a set of techniques to achieve this efficiently within a quantifiable

security framework. The distributed data model considered is the heterogeneous

database scenario with different features of the same set of data being collected by

different sites. This thesis argues that it is indeed possible to have efficient and

practical techniques for useful privacy-preserving mining of knowledge from large

amounts of data. The dissertation presents several privacy preserving data mining

algorithms operating over vertically partitioned data. The set of underlying tech-

niques solving independent sub-problems are also presented. Together, these enable

the secure “mining” of knowledge.
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1 INTRODUCTION

It is possible to efficiently extract or “mine” knowledge from large amounts of verti-

cally partitioned data within quantifiable security restrictions. Knowledge Discovery

in Databases (KDD) is the term used to denote the process of extracting knowledge

from large quantities of data. The KDD process assumes that all the data is eas-

ily accessible at a central location or through centralized access mechanisms such

as federated databases and virtual warehouses. Moreover, advances in information

technology and the ubiquity of networked computers have made personal informa-

tion much more available. Privacy advocates have been challenging attempts to

bring more and more information into integrated collections. Attempts to combine

data have even resulted in public protest, witness Japan’s creation of a national

registry containing information previously held by the prefectures [87]. Data min-

ing in particular has come under siege, such as the introduction of U.S. Senate Bill

188, the “Data-Mining Moratorium Act of 2003” [35]. While aimed specifically at

the Total Information Awareness program [88], the bill as introduced would forbid

data-mining (including research and development) by the entire U.S. Department of

Defense, except for searches of public information or searches based on particular

suspicion of an individual. In addition, all U.S. government agencies would be re-

quired to report to congress on how their data-mining activities protect individual

privacy.

The irony is that data mining results rarely violate privacy. The objective of

data mining is to generalize across populations, rather than reveal information about

individuals. The hitch is that data mining works by evaluating individual data that

is subject to privacy concerns. Thus, the true problem is not data mining, but the

way data mining is done.
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However, the concern among privacy advocates is well founded, as bringing data

together to support data mining makes misuse easier. Much of this information has

already been collected, however it is held by various organizations. Separation of

control and individual safeguards prevent correlation of this information, providing

acceptable privacy in practice. However, this separation also makes it difficult to use

the information for purposes that would benefit society, such as identifying criminal

activity. Proposals to share information across agencies, most recently to combat

terrorism, would eliminate the safeguards imposed by separation of the information.

Imagine the following scenario. A law enforcement agency wants to cluster in-

dividuals based on their financial transactions, and study the differences between

the clusters and known money laundering operations. Knowing the differences and

similarities between normal individuals and known money launderers would enable

better direction of investigations. Currently, an individual’s financial transactions

may be divided between banks, credit card companies, tax collection agencies, etc.

Each of these (presumably) has effective controls governing release of the informa-

tion. These controls are not perfect, but violating them (either technologically or

through insider misuse) reveals only a subset of an individual’s financial records.

The law enforcement agency could promise to provide effective controls, but now

overcoming them gives access to an individual’s entire financial history. This raises

justifiable concerns among privacy advocates.

Similarly, application of data mining in other domains is also increasing. Recent

emphasis on bioinformatics and in the medical domain try to leverage the power of

data mining in finding interesting patterns, disease causes, effectiveness of drugs and

so on. In the healthcare domain, especially with patient databases, legal issues are

prominent obstacles in jointly utilizing information.

Privacy and data mining can coexist. The problem with the above scenario is not

the data mining results, but how they are obtained. If the results could be obtained

without sharing information between the data sources, and the results were truly

summary and could not be used to deduce private information, there would be no
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loss of privacy through data mining. While obtaining globally meaningful results

without sharing information may seem impossible, it can be done.

The goal of this dissertation is to develop and evaluate new algorithms to effi-

ciently solve several types of distributed computations over large data sets in a secure

manner.

Chapter 2 provides an overview of the state of the art in privacy, security and

data mining. Chapters 3, 4, and 5 constitute the main work in the thesis. Chapter

3 describes the solutions developed for some of the major data mining problems.

Chapter 4 presents solutions for the underlying secure primitives used in the work

of the prior chapter. The essential focus of this thesis/dissertation? has been to

propose efficient solutions for several data mining problems and to prove them secure.

Chapter 5 serves to experimentally validate the claims of efficiency as well as to place

them in context. Chapter 6 summarizes the thesis.

Apart from original work, several protocols developed by others are also used in

support of the work here. The Appendix provides a brief listing of these protocols

for completeness.
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2 STATE OF THE ART IN PRIVACY, SECURITY AND DATA MINING

This chapter provides the background material required to give an appropriate per-

spective for the work done in this thesis. The chapter begins with a short summa-

rization of prevalent data mining algorithms. Section 2.2 covers the state of the art

in distributed data mining and also gives some detail on the different data partition-

ing models. Section 2.3 provides an overview of Secure Multiparty Computation,

the theoretical framework we use for proof of security. The final section presents the

contemporary work done within Privacy Preserving Data Mining.

2.1 State of the Art in Data Mining Techniques

Data Mining is the analysis of (often large) observational data sets to find un-

suspected relationships and to summarize the data in novel ways that are both

understandable and useful to the owner [44]. There are many different data mining

functionalities. A brief definition of each of these functionalities is now presented.

The definitions are directly collated from [43]. Data characterization is the sum-

marization of the general characteristics or features of a target class of data. Data

Discrimination, on the other hand, is a comparison of the general features of target

class data objects with the general features of objects from one or a set of contrasting

classes. Association analysis is the discovery of association rules showing attribute-

value conditions that occur frequently together in a given set of data. Classification

is the process of finding a set of models (or functions) that describe and distinguish

data classes or concepts, for the purpose of being able to use the model to predict the

class of objects whose class label is unknown. The derived model can be represented

in various forms, such as classification rules, decision trees, mathematical formulae,

or neural networks. Unlike classification and prediction, which analyze class-labeled
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data objects, clustering analyzes data objects without consulting a known class label.

Outlier Analysis attempts to find outliers or anomalies in data. A detailed discus-

sion of these various functionalities can be found in [43]. Even an overview of the

representative algorithms developed for knowledge discovery is beyond the scope of

this dissertation. The interested person is directed to the many books which amply

cover this in detail [29, 43, 44].

2.2 Distributed Data Mining

In contrast to the centralized model, the Distributed Data Mining (DDM) model

assumes that the data sources are distributed across multiple sites. Algorithms

developed within this field address the problem of efficiently getting the mining

results from all the data across these distributed sources. Since the primary (if not

only) focus is on efficiency, most of the algorithms developed to date do not take

security consideration into account. However, they are still useful in framing the

context of the thesis.

A simple approach to data mining over multiple sources that will not share data

is to run existing data mining tools at each site independently and combine the

results [17, 18, 75]. However, this will often fail to give globally valid results. Issues

that cause a disparity between local and global results include:

• Values for a single entity may be split across sources. Data mining at individual

sites will be unable to detect cross-site correlations.

• The same item may be duplicated at different sites, and will be over-weighted

in the results.

• Data at a single site is likely to be from a homogeneous population. Important

geographic or demographic distinctions between that population and others

cannot be seen on a single site.



6

Cheung et al. proposed a method for horizontally partitioned data [21]. Dis-

tributed classification has also been addressed. A meta-learning approach has been

developed that uses classifiers trained at different sites to develop a global classi-

fier [17,18,75]. This could protect the individual entities, but it remains to be shown

that the individual classifiers do not disclose private information. Recent work has

addressed classification using Bayesian Networks in vertically partitioned data [20],

and situations where the distribution is itself interesting with respect to what is

learned [90]. Shenoy et al. [85] propose an efficient algorithm for vertically mining

association rules.

Data mining algorithms that partition the data into subsets have been developed

[82]. Although the goal of parallelizing data mining algorithms is performance, the

communication cost between nodes is an issue. Parallel data mining algorithms may

also serve as a starting point [51, 93]. However, none of this work directly addresses

privacy concerns.

With distributed data, the way the data is distributed also plays an important

role in defining the problem. Data could be partitioned into many parts either

vertically or horizontally.

2.2.1 Vertical Partitioning

Vertical partitioning (a.k.a. heterogeneous distribution) of data implies that

though different sites gather information about the same set of entities, they collect

different feature sets. For example, financial transaction information is collected by

banks, while the IRS collects tax information for everyone. An illustrative example

of vertical partitioning and the kind of useful knowledge we can hope to extract is

given in Figure 2.1. The figure describes two databases, one contains medical records

of people while another contains cell phone information for the same set of people.

Mining the joint global database might reveal information like “Cell phones with

Li/Ion batteries lead to brain tumors in diabetics.”
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Medical Records

DiabeticNo TumorPTR

Non-DiabeticNo TumorCAC

DiabeticBrain TumorRPJ

Cell Phone Data

NiCd3650PTR

nonenoneCAC

Li/Ion5210RPJ

Global Database View

CAC doesn’t have a cell phoneRPJ has diabetes

Cell Phones with Li/Ion batteries lead to brain 

tumors in diabetics

BatteryModelDiabetes?Brain Tumor?TID

Figure 2.1. Vertically partitioned database

Unless otherwise stated, the model assumed is as follows: There are k parties,

P0, . . . , Pk−1. There are a total of n transactions for whom information is collected.

Party Pi collects information about mi attributes, such that m =
∑k−1

i=0 mi is the

total number of attributes/features. This thesis only considers privacy-preserving

data mining in the case of vertical partitioning of data. For the sake of completeness,

the following section gives some detail on horizontal partitioning of data.

2.2.2 Horizontal Partitioning

In horizontal partitioning (a.k.a. homogeneous distribution), different sites col-

lect the same set of information, but about different entities. An example of that

would be grocery shopping data collected by different supermarkets (also known as

market-basket data in the data mining literature). Figure 2.2 illustrates horizon-

tal partitioning and shows the credit card databases of two different (local) credit

unions. Taken together, one may find that fraudulent customers often have similar

transaction histories, etc.



8

Bank A (Credit Card)

Global Database View

47906

98052

<20

<5

<$1000

$5000

Active

Passive

RPJ

CAC

ZIP#TransactionsCreditStatusTID

Bank B (Credit Card)

85732

47907

<20

>100

$10000

>$50000

Passive

Active

ABC

XYZ

Figure 2.2. Horizontally partitioned database

These different partitionings pose different problems, leading to different algo-

rithms for privacy-preserving data mining.

2.3 State of the Art in Secure Multiparty Computation

Consider a set of parties who do not trust each other, nor the channels by which

they communicate. Still, the parties wish to correctly compute some common func-

tion of their local inputs, while keeping their local data as private as possible. This,

in a nutshell, is the problem of Secure Multiparty Computation (SMC). It is clear

that the problem we wish to solve, privacy-preserving data mining, is a special case

of the secure multi-party computation problem.

Before proposing algorithms that preserve privacy, it is important to define the

notion of privacy. The framework of secure multiparty computation provides a solid
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theoretical underpinning for privacy. The key notion is to show that a protocol re-

veals nothing except the results. This is done by showing how everything seen during

the protocol can be simulated from knowing the input and the output of the protocol.

Yao first postulated the two-party comparison problem (Yao’s Millionaire Protocol)

and developed a provably secure solution [92]. This was extended to multiparty

computations (for any computable functionality) by Goldreich et al. [40] and to the

malicious model of computation by Ben-Or et al. [11]. Overall, a framework was

developed for secure multiparty computation. Goldreich [39] shows that computing

a function privately is equivalent to computing it securely.

We now cover some of the different models of computation in SMC.

2.3.1 Trusted Third Party Model

The gold standard for security is the assumption that we have a trusted third

party to whom we can give all data. The third party performs the computation

and delivers only the results – except for the third party, it is clear that nobody

learns anything not inferable from its own input and the results. The goal of secure

protocols is to reach this same level of privacy preservation, without the (potentially

insoluble) problem of finding a third party that everyone trusts.

2.3.2 Semi-honest Model

The Semi-honest model is also known in the literature as the honest-but-curious

model. A semi-honest party follows the rules of the protocol using its correct input,

but after the protocol is free to use whatever it sees during execution of the protocol

to compromise security / privacy.
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Two party computation

A formal definition of private two party computation in the semi-honest model is

given below. Computing a function privately is equivalent to computing it securely.

The formal proof of this can be found in [39].

Definition 2.3.1 (privacy w.r.t. semi-honest behavior) [39]:

Let f : {0, 1}∗ × {0, 1}∗ 7−→ {0, 1}∗ × {0, 1}∗ be a probabilistic, polynomial-

time functionality, where f1 (x, y)(respectively, f2 (x, y) denotes the first (respectively,

second) element of f (x, y)). Let Π be two-party protocol for computing f .

Let the view of the first (respectively, second) party during an execution of Π

on (x, y), viewΠ
1 (x, y) (respectively, viewΠ

2 (x, y)) be (x, r1, m1, . . . , mt) (respectively,

(y, r2, m1, . . . , mt)) where r1 represent the outcome of the first (respectively, r2 sec-

ond) party’s internal coin tosses, and mi represents the ith message it has received.

The output of the first (respectively, second) party during an execution of Π on

(x, y) is denoted outputΠ1 (x, y) (respectively, outputΠ2 (x, y)) and is implicit in the

party’s view of the execution.

Π privately computes f if there exist probabilistic polynomial time algorithms S1

and S2 such that

{(S1 (x, f1 (x, y)) , f2 (x, y))}x,y∈{0,1}∗ ≡
C

{(

viewΠ
1 (x, y) , outputΠ2 (x, y)

)}

x,y∈{0,1}∗

{(f1 (x, y) , S2 (x, f1 (x, y)))}x,y∈{0,1}∗ ≡
C

{(

outputΠ1 (x, y) , viewΠ
2 (x, y)

)}

x,y∈{0,1}∗

where ≡C denotes computational indistinguishability.

Privacy by Simulation The above definition says that a computation is secure

if the view of each party during the execution of the protocol can be effectively

simulated given the input and the output of that party. Thus, in all of our proofs

of security, we only need to show the existence of a simulator for each party that

satisfies the above equations.

This does not quite guarantee that private information is protected. Whatever

information can be deduced from the final result obviously cannot be kept private.
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For example, consider a secure sum functionality which simply outputs the sum of

the local input of the participants. With two parties, the output reveals the input

of the other party. This is an artifact of the functionality itself, not of the process of

computing it. Thus, this breach of privacy cannot be avoided as long as computing

the result is deemed necessary. The key to the definition of privacy is that nothing

is learned beyond what is inherent in the result.

A key result we use is the composition theorem. We state it for the semi-honest

model. A detailed discussion of this theorem, as well as the proof, can be found

in [39].

Theorem 2.3.1 (Composition Theorem for the semi-honest model): Suppose that g

is privately reducible to f and that there exists a protocol for privately computing f.

Then there exists a protocol for privately computing g.

Proof. Refer to [39].

In summary, a truly secure multi-party protocol should not reveal more informa-

tion to a particular party than the information that can be induced by looking at

that party’s input and the final output.

Multiparty computation

The above definitions are easily extended to more than two parties.. Details can

be found in [39].

2.3.3 Malicious Model

In the malicious model, no restrictions are placed on any of the participants.

Thus any party is completely free to indulge in whatever actions it pleases.

Similar definitions of privacy/security exist for both two-party and multi-party

computation in this model. The key result of Goldreich is valid even in the case of

malicious adversaries. Details can be found in [39].
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In general, it is quite difficult to develop efficient protocols that are still valid un-

der the malicious model. However, the semi-honest model does not provide sufficient

protection for many application. As an intermediate step, it is possible to develop

protocols valid under a weakened malicious model – for example, still assuming no

collusion between parties, no guarantees on the results if a party is malicious, but

a guarantee that there is no disclosure to a malicious party beyond that the party

could achieve in the trusted third party model. Other such models are also possible

requiring successively stricter conditions.

Despite all of such models, it is still possible for parties to actually modify their

inputs to the protocol to begin with. Since this problem exists even with the trusted

third party model itself, it is not addressed by cryptography. Other models are

needed to address this problem. We discuss one such notion below, which should be

used in conjunction with cryptographic approaches.

2.3.4 Other (Partial) Models – Incentive Compatibility

While the semi-honest and malicious models have been well researched in the

cryptographic community, other models outside the purview of cryptography are

possible. One example is the interesting economic notion of incentive compatibility.

A protocol is incentive compatible if it can be shown that a cheating party is either

caught or else suffers an economic loss. Under the rational model of economics,

this would serve to ensure that parties do not have any advantage by cheating. Of

course, in an irrational model (for example – in the case of a monopoly where one

party is willing to suffer losses to ensure the loss/elimination of another party), this

would not work. Incentive compatibility can be used with methods presented in

this dissertation to ensure that complete data mining applications provide adequate

privacy protection.
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2.4 State of the Art in Privacy Preserving Data Mining Algorithms

The solutions proposed in this thesis rely mostly on cryptographic techniques.

However, other techniques have also been used with some success. We now give a

brief overview of other techniques as well as note other solutions that have been

developed independent of this thesis.

2.4.1 Data Perturbation Techniques

The basic idea of data perturbation is to alter the data so that real individual

data values cannot be recovered, while preserving the utility of the data for statistical

summaries. Since the data doesn’t reflect the real values of private data, even if a

data item is linked to an individual that individual’s privacy is not violated. (It

is important that such data sets are known to be perturbed, so anyone attempting

to misuse the data knows the data cannot be trusted.) This approach has been

brought to a high art by the U.S. Census Bureau with the Public Use Microdata sets.

A primary perturbation technique used is data swapping: exchanging data values

between records in ways that preserve certain statistics, but destroy real values [64].

An alternative is randomization: Adding noise to data to prevent discovery of the

real values. Since the data no longer reflects real-world values, it cannot be (mis)used

to violate individual privacy. The challenge is obtaining valid data mining results

from the perturbed data.

In [7], Agrawal and Srikant presented the first solution to this problem. Given

the distribution of the noise added to the data, and the randomized data set, they

were able to reconstruct the distribution (but not actual data values) of the data set.

This enabled a data mining algorithm to construct a much more accurate decision

tree than mining the randomized data alone, approaching the accuracy of a decision

tree constructed on the real data.

Other methods for distribution reconstruction have also been developed. Agrawal

and Aggarwal [2] developed an approach based on Expectation Maximization that
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also gave a better definition of privacy, and an improved algorithm. Evfimievski

et al. [33] applied a similar technique to mine association rules. Rizvi and Haritsa

[80] consider the case where different item values (0 and 1) have differing privacy

requirements. Polat and Du [74] propose a technique for doing collaborative filtering

using randomized perturbation techniques. Solutions for other data mining tasks are

certainly feasible. While one will not get the exact same data mining results post-

randomization as pre-randomization, the results have been experimentally shown

to be accurate enough in the case of both classification [7] and association rule

mining [33].

One concern with randomization approaches it that the very techniques that

allow us to reconstruct distributions also give information about the original data

values. For example, consider the case of perturbing age. It is clear from the general

distribution of age that there are no drivers under 16. Assume that it is known that

randomization was done by adding noise randomly chosen from the range [-15,15].

Though the reconstructed distribution does not appear to tell us the age of any

individual – a driver who is 40 years old is equally likely to have their age given as

anything from 25 to 55 – but what about an individual whose age is shown as 1

in the noisy data? We know (from the reconstructed distribution) that no drivers

are under the age of 16 – so the driver whose age is given as 1 in the noisy data

must be 16 years old! Work has been done to quantify the privacy provided by

randomization techniques; they must be used carefully to ensure that the desired

privacy is really achieved. Kargupta et al. [52] formally analyze the security of

randomization techniques and show that in many cases it falls short of the desired

minimum. Evfimievski et al. [32] show how to limit privacy breaches while using

randomization for privacy preserving data mining.
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2.4.2 Secure Multiparty Computation Based Solutions

There have been some cryptography based algorithms as well. Lindell and

Pinkas [59] first introduced a secure multi-party computation technique for classifica-

tion using the ID3 algorithm, over horizontally partitioned data. Du and Zhan [28]

propose a cryptographic protocol for making the ID3 algorithm privacy preserv-

ing over vertically partitioned data. Lin and Clifton [58] propose a secure way for

clustering using the EM algorithm [25] over horizontally partitioned data. Kantar-

cioglu and Clifton describe protocols for privacy preserving distributed data mining

of association rules on horizontally partitioned data [48, 50], privately computing

distributed top-k queries [49]. Kantarcioglu and Vaidya [47] present an architecture

for privacy preserving mining of client information. Agrawal et al. [3] present a tech-

nique for computing set intersection, union, and equi-joins for two parties. Clifton

et al. provide a good overview of tools for privacy preserving distributed data min-

ing [22], while Clifton and Marks [23] present an early position paper on the privacy

implications of data mining.

2.5 Other Work

There has been some other work that does not properly fall into either the per-

turbation or cryptographic categories. Atallah et. al [8] explore the disclosure lim-

itation of sensitive rules. Saygin et al. [83] present a way of using special values,

known as “unknowns”, to prevent the discovery of association rules. Oliveira and

Zaiane [69–72] develop several different methods for association rule mining, clus-

tering and access control for privacy preserving data mining. There has also been

extensive work done in statistical databases. This work is outside the scope of this

thesis, however, Adam and Wortmann [1] provide a good starting point. There has

also been extensive work in cryptography creating building blocks, which is also

outside the scope of this thesis. Many examples can be found in [26].
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3 PROBLEMS ADDRESSED

This chapter covers the various data mining problems solved in this thesis. Solutions

to the primitives used are presented in the following chapter.

3.1 Two-party Association Rule Mining

This section presents a way to mine association rules from vertically partitioned

data. This section presents an algorithm for two parties while the following section

presents a general solution for multiple parties. Informally, the problem is to mine

association rules across two heterogeneous data sets. One database is designated the

primary, and is the initiator of the protocol. The other database is the responder.

There is a join key present in both databases. The remaining attributes are present

in one database or the other, but not both. The goal is to find association rules

involving attributes other than the join key.

3.1.1 Problem Definition

The association rule mining problem can be formally stated as follows [4]: Let

I = {i1, i2, · · · , im} be a set of literals, called items. Let D be a set of transactions,

where each transaction T is a set of items such that T ⊆ I. Associated with

each transaction is a unique identifier, called its TID. We say that a transaction

T contains X, a set of some items in I, if X ⊆ T . An association rule is an

implication of the form, X ⇒ Y , where X ⊂ I, Y ⊂ I, and X ∩ Y = φ. The rule

X ⇒ Y holds in the transaction set D with confidence c if c% of transactions in D

that contain X also contain Y . The rule X ⇒ Y has support s in the transaction

set D if s% of transactions in D contain X ∪ Y .
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Within this framework, we consider mining boolean association rules. The ab-

sence or presence of an attribute is represented as a 0 or 1. Transactions are strings

of 0 and 1; the database can be represented as a matrix of {0,1}.

3.1.2 Algorithm

The algorithm is based on the classic Apriori algorithm of Agrawal and Srikant [5].

The key issue is computing the support of an itemset. To find out if a particular

itemset is frequent, we count the number of records where the values for all the

attributes in the itemset are 1. This translates into a simple mathematical problem,

given the following definitions:

Let the total number of attributes be l +m, where A has l attributes A1 through

Al, and B has the remaining m attributes B1 through Bm. Transactions/records are

a sequence of l + m 1s or 0s. Let k be the support threshold required, and n be the

total number of transaction/records.

Let ~X and ~Y represent columns in the database, i.e., xi = 1 iff row i has value 1

for attribute X. The scalar (or dot) product of two cardinality n vectors ~X and ~Y

is defined as

~X · ~Y =
n

∑

i=1

xi ∗ yi

Determining if the two-itemset 〈XY 〉 is frequent thus reduces to testing if ~X · ~Y ≥ k.

In Section 4.3 we present an efficient way to compute scalar product ~X ·~Y without

either side disclosing its vector. First we will show how to generalize the above

protocol from two-itemsets to general association rules without sharing information

other than through scalar product computation.

The generalization of this protocol to a w-itemset is straightforward. Assume A

has p attributes a1 . . . ap and B has q attributes b1 . . . bq, and we want to compute

the frequency of the w = p+ q-itemset 〈a1, . . . , ap, b1, . . . , bq〉. Each item in ~X (~Y ) is

composed of the product of the corresponding individual elements, i.e., xi =
∏p

j=1 aj

and yi =
∏q

j=1 bj . This computes ~X and ~Y without sharing information between
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A and B. The scalar product protocol then securely computes the frequency of the

entire w-itemset.

For example, suppose we want to compute if a particular 5-itemset is frequent,

with A having 2 of the attributes, and B having the remaining 3 attributes. I.e., A

and B want to know if the itemset l = 〈Aa, Ab, Ba, Bb, Bc〉 is frequent. A creates a

new vector ~X of cardinality n where ~X = ~Aa ∗ ~Ab (component multiplication) and

B creates a new vector ~Y of cardinality n where ~Y = ~Ba ∗ ~Bb ∗ ~Bc. Now the scalar

product of ~X and ~Y provides the (in)frequency of the itemset.

The complete algorithm to find frequent itemsets is:

1. L1 = {large 1-itemsets}

2. for (k=2; Lk−1 6= φ; k++) do begin

3. Ck = apriori-gen(Lk−1);

4. for all candidates c ∈ Ck do begin

5. if all the attributes in c are entirely at A or B

6. that party independently calculates c.count

7. else

8. let A have l of the attributes and B have the remaining m attributes

9. construct ~X on A’s side and ~Y on B’s side where ~X =
∏l

i=1
~Ai and ~Y =

∏m
i=1

~Bi

10. compute c.count = ~X · ~Y =
∑n

i=1 xi ∗ yi

11. endif

12. Lk = Lk ∪ c|c.count ≥ minsup

13. end

14. end

15. Answer = ∪kLk

In step 3, the function apriori-gen takes the set of large itemsets Lk−1 found in

the (k − 1)th pass as an argument and generates the set of candidate itemsets Ck.

This is done by generating a superset of possible candidate itemsets and pruning

this set. [5] discusses the function in detail.
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Given the counts and frequent itemsets, we can compute all association rules

with support ≥ minsup.

Only the steps 1, 3, 10 and 12 require sharing information. Since the final result

∪kLk is known to both parties, steps 1, 3 and 12 reveal no extra information to either

party. Section 4.3 shows how to compute step 10 without revealing information.

3.1.3 Security Analysis

For a complete security analysis of the process, we must first analyze the security

of the component scalar product protocol, and then analyze the security of the entire

association rule mining algorithm.

The security of the scalar product protocol is based on the inability of either side

to solve k equations in more than k unknowns. More details are given in Section

4.3.4.

Therefore, the disclosure risk in this method is based on the number of data

values that the other party might know from some external source. The scalar

product protocol is used once for every candidate item set. Multiple w-itemsets in

the candidate set may be split as 1, w − 1 on each side. Consider two possible

candidate sets A1, B1, B2, B5 and A1, B2, B3. If A uses new/different equations for

each candidate set, it imperils the security of A1. However, B can reuse the values

sent the first time. The equations sent by B can be reused for the same combinations

of Bi, only a new sum must be sent. This reveals an additional equation, limiting

the number of times B can run the protocol.

3.1.4 Computation and Communication Analysis

The overall computation and communication analysis for the entire association

rule mining algorithm hinges on the computation and communication cost of the

scalar product protocol. The computation cost of the scalar product protocol is

O(n2) arithmetic operations, which is extremely low. There is no communication
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cost for any itemset wholly contained on either side. For every itemset split between

the 2 parties, we engage in the scalar product protocol once. As noted earlier, values

that have already been sent can be reused. The entire algorithm extends the apriori

algorithm. Essentially we provide a means of determining if a candidate itemset is

frequent. The communication cost can be expressed in terms of the i/o cost of the

apriori algorithm, in fact a constant multiple of the i/o cost of the apriori algorithm.

3.2 Three or More Party Association Rule Mining

An association rule is a simple probabilistic statement about the co-occurrence of

certain events in a database, and is particularly applicable to sparse transaction data

sets. The general idea of finding association rules originated in applications involving

“market-basket data”. These data are usually recorded in a database such that each

observation consists of an actual basket of items (such as grocery items), and the

variables indicate whether or not a particular item was purchased. Association rules

were invented as a way to find simple patterns in such data in a relatively efficient

computational manner.

We now formally define the association rule mining problem for heterogeneous

distribution of data over multiple parties.

3.2.1 Problem Definition

Let there be k (> 2) parties P1, P2, . . . , Pk. The database is vertically partitioned

between the k parties. The association rule mining problem has already been for-

mally stated in Section 3.1.1. The goal is to find association rules over the attributes

across all of the parties.
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3.2.2 Algorithm

A transaction database can be represented in several ways. One is to describe it as

a m×n boolean matrix, where m represents the number of items/attributes/features

and n represents the number of transactions. A 1 denotes the presence of an item

in the transaction, a 0 represents its absence.

A second representation is the transaction identifier (TID) list approach. Every

attribute/feature has a transaction identifier (TID) list associated with it. This TID-

list contains the identifiers of transactions that contain the attribute. This is a more

compact representation in practice, as most transactions are sparse (contain few

items). It also lends itself well to secure processing with our size of set intersection

protocol.

A clearer explanation of these representations is given by the following example.

Consider a database having ten transactions TID1, T ID2, . . . , T ID10, and three at-

tributes A, B, and C. The figure 3.1 illustrates the boolean matrix view and the

TID-list view of the database. The figure also gives the TID-list of all combinations

of attributes. It is clear that a transaction supports an itemset (set of attributes) if

and only if its TID is present in the TID-list for all the attributes in the itemset.

To find the number of transactions that support a given itemset we need only find

the cardinality of the intersection set of the TID-lists of these attributes.

Sections 4.1 and 4.2 present an efficient way to compute the cardinality of the

intersection set without disclosing the items in that set. We now show how to

generalize these protocols from a k-itemset where each party has one of the attributes

to general association rules. This generalization shares no information other than

through computing the size of the set intersections.

We first show how this can be generalized to the case where a single party con-

tributes fewer or more than one attribute to the itemset. A party that has none

of the attributes does not participate in the protocol. This reveals that it does not

have the attribute, but which attribute is at which site is presumed to be public.
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Figure 3.1. An example database in its various representations



23

It is the transactions, and which attributes are in which transaction, that must be

kept private. If a party contributes more than one attribute, it locally computes the

intersection before participating in the protocol.

For example, suppose we want to compute if a particular 5-itemset is frequent,

with

• P1 having 2 of the attributes, A11, A13,

• P2 having 2 of the attributes, A22, A23, and

• P3 having the remaining 1 attribute, A31.

P1, P2 and P3 want to know if the itemset l = 〈A11, A13, A22, A23, A31〉 is frequent.

P1 locally generates the set S1 = S11∩S13, P2 locally generates the set S2 = S22∩S23

and P3 generates the set S3 = S31. |S1 ∩ S2 ∩ S3| is the frequency of the itemset.

The full procedure for computing frequent itemsets is given in Algorithm 1. In

step 4, the function apriori-gen takes the set of large itemsets Lk−1 found in the

(k− 1)th pass as an argument and generates the set of candidate itemsets Ck. This

is done by generating a superset of possible candidate itemsets and pruning this

set. [5] discusses the function in detail. Given the counts and frequent itemsets, we

can compute all association rules with support ≥ minsup.

Two-itemsets pose a special problem, as the set intersection protocols only work

for three or more parties. Assuming we have at least three parties overall, we can

use one as an “untrusted third party” to compute the size of 2-itemsets. This is

analogous to the leaf actions of Protocol 18 (Section 4.2): the two parties exchange

keys, hash their items with both keys, and send the hashed sets to the third party.

The third party reports the size of the set if it is greater than the threshold. The same

argument as in the proof of Protocol 18 demonstrates the security of this approach.
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1: L1 = {large 1-itemsets}
2: for (k = 2; Lk−1 6= ∅; k + +) do

3: Lk = ∅
4: Ck = apriori-gen(Lk−1);

5: for all candidates c ∈ Ck do

6: if all the attributes in c are entirely at any one party Pl then

7: party Pl independently calculates c.count

8: else

9: let P1 have l1 of the attributes, . . . , Pk have lk attributes (
∑k

i=1 li = |c|)
10: construct S1 on P1’s side, . . . , Sk on Pk’s side,

11: where Si = Si1 ∩ . . . ∩ Sili , 1 ≤ i ≤ k

12: compute c.count = | ∩j=1..k Sj | using Protocol 17 or 18

13: end if

14: Lk = Lk ∪ c|c.count ≥ minsup

15: end for

16: end for

17: Answer = ∪kLk

Algorithm 1: Privacy Preserving Association Rule Mining Algorithm
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3.2.3 Proof of Correctness

Candidate itemsets are generated by a straightforward application of the Apriori-

gen procedure. For the proof of correctness of that procedure refer to [6]. As long

as the input to the procedure is correct, the Ck sets are generated correctly.

We show by induction that the Lj sets are generated correctly. For the basis

step with j = 1, L1 is correctly generated directly from the data. Assume that Lk−1

has been correctly generated. Hence Ck is generated correctly from Lk−1. Assuming

that step 12 computes the count correctly, Lk is correctly computed.

The critical step is computing c.count, step 12. The correctness of Protocols

17 and 18 is given in section 4.1 and section 4.2. Thus, the entire association rule

mining algorithm gives correct results.

3.2.4 Computation and Communication Analysis

The communication analysis critically depends on the number of times step 12 is

called. For each call to step 12, we incur the cost of the set intersection algorithm.

If we let r be the maximum size of a frequent itemset (i.e., no frequent r+1-itemsets

are found), and let Ci, (i = 1 . . . r) represent the number of candidate itemsets at

each round, the total communication using Protocol 18 is:

∑r
i=1 Ci ∗ (3k − 4) messages

∑r
i=1 Ci ∗ 2(k − 1) ∗ (m ∗ hashed item size + k log2(k) ∗ hash key size) bits

Surprisingly, a much more efficient association rule mining can be constructed

using Protocol 17. The goal of association rule mining is to find all frequent itemsets.

If we use Protocol 17 to immediately find the size of | ∩i=1..k Sk|, each party also has

enough information to find the intersection sizes, or support, of all smaller itemsets

that do not include its own items. The “flaw” in Protocol 17 becomes a benefit.

Each party compute all frequent itemsets based on the hashed sets received in the

initial intersection stage. If any of the frequent itemsets involve its neighbor’s set,

the corresponding hashed sets are forwarded to its neighbor. This gives every site
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complete information, but still prevents probing. The new association rule mining

algorithm can be defined as follows:

Call Protocol 17, with each attribute treated as a different site (even if both are

at the same site.)

Perform local association rule mining on the TSj to determine frequent itemsets

not involving ones own attributes

if Any frequent itemsets involve ones left or right neighbor then

Send the support of those itemsets to the neighbor

end if

Since the only action carried out involves calling the set intersection protocol, the

security analysis of this algorithm is completely reducible to the security of the set

intersection protocol. The one caveat is that each site learns the support of itemsets

in which it does not participate, even if they are below the support threshold. This

is less secure than Algorithm 1, but still does not reveal individual itemsets or allow

probing.

Since only one call to the set intersection algorithm takes place, the communi-

cation analysis is straightforward. Note that all the attributes that are frequent

1-itemsets are sent for intersection. No local intersection is carried out. The com-

munication cost is therefore

k ∗ (2k − 2) = O(k2) messages

K ∗ (2K − 2) ∗m ∗ encrypted item size = O(K2m) bits

k rounds

where K is the number of frequent attributes rather than the number of sites.

It is important to note that this communication cost is dependent entirely upon

the number of attributes, rather, a constant times the size of the database. It

is independent of the number of iterations of the Apriori [5] algorithm. This is

likely to lead to huge cost savings in extremely high dimensional, high transactional

databases.
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The computational complexity can be easily defined in terms of the computational

complexity of the underlying size of set intersection algorithm. Since, the size of set

intersection algorithm is only called once, the overhead in computational complexity

beyond that of Apriori is exactly the cost of a single invocation of the set intersection

algorithm. This cost can be found in section 4.1.3 and section 4.2.3.

3.2.5 Security Analysis

Only steps 1, 12 and 14 require exchanging information. Since the final result

∪kLk is known to both parties, steps 1 and 14 reveal no additional information.

In Sections 4.1 and 4.2, we show how to compute step 12 revealing only limited

information.

Theorem 3.2.1 Algorithm 1 privately computes the association rules present in the

database without revealing any information other than the support of all the possible

itemsets.

Proof. We use the basic idea of proof by simulation described in Section 2.3.

The key idea is to show that everything seen in the protocol can be simulated by

knowing just the input and the output. The security of the protocol is based upon

the security of steps 1, 12 and 14. The final result ∪kLk is known to both parties,

so steps 1 and 14 can be simulated directly from the result.

Step 12 consists of an invocation of a protocol to compute the size of set inter-

section (Protocol 17 or 18). The security discussion of those protocols can be found

in Sections 4.1.4 and 4.2.4. By appropriately setting the parameter r to minsupport

causes the protocol to abort if the itemset is not supported, so we only learn the

support of supported itemsets. Apart from giving the final count, Protocols 17 and

18 also reveal the sizes of some (or all) subsets of the itemset being tested (further

details can be found in Sections 4.1.4 and 4.2.4). However, a candidate k-itemset is

only generated if all its subsets are frequent. The result ∪kLk of Algorithm 1 includes

all frequent subsets. If we also include the support of the supported itemsets in the
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result, as is commonly done in association rule mining, the size of these frequent

subsets is also known. These sizes can be provided as input to the simulator to

prove the security of Protocols 17 and 18.

Now, we use the composition theorem 2.3.1 to prove the overall security of the

algorithm. Treating Protocols 17 and 18 as f , since their security is proven, we show

that the association rule computation, g, is computed privately.

This demonstrates that the association rule mining algorithm (Algorithm 1) is

fully secure under the Secure Multiparty Computation definitions.

3.3 k-means Clustering

Cluster Analysis is the problem of decomposing or partitioning a (usually mul-

tivariate) data set into groups so that the points in one group are similar to each

other and are as different as possible from the points in other groups [44]. There are

many situations where clustering can lead to the discovery of important knowledge

but privacy/security reasons restrict the sharing of data.

Imagine the following scenario. A law enforcement agency wants to cluster indi-

viduals based on their financial transactions, and study the differences between the

clusters and known money laundering operations. Knowing the differences and simi-

larities between normal individuals and known money launderers would enable better

direction of investigations. Currently, an individual’s financial transactions may be

divided between banks, credit card companies, tax collection agencies, etc. Each

of these (presumably) has effective controls governing release of the information.

These controls are not perfect, but violating them (either technologically or through

insider misuse) reveals only a subset of an individual’s financial records. The law

enforcement agency could promise to provide effective controls, but now overcoming

them gives access to an individual’s entire financial history. This raises justifiable

concerns among privacy advocates. What is required is a privacy preserving way of

doing clustering.
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We focus on k-means clustering [29,38] which is a simple technique to group items

into k clusters. k-means clustering is an iterative algorithm, which starts off with ran-

dom cluster centers. A single iteration assigns all objects to the closest clusters based

on their distances from the cluster means and then recomputes the cluster means.

Iterations are repeated until the algorithm converges to a set of stable clusters. The

basic k-means clustering algorithm is given below:

Initialize the k means µ1 . . . µk to 0.

Arbitrarily select k starting points µ′
1 . . . µ′

k

repeat

Assign µ′
1 . . . µ′

k to µ1 . . . µk respectively

for all points i do

Assign point i to cluster j if distance d(i, µj) is the minimum over all j.

end for

Calculate new means µ′
1 . . . µ′

k.

until the difference between µ1 . . . µk and µ′
1 . . . µ′

k is acceptably low.

The results come in two forms: Assignment of entities to clusters, and the cluster

centers themselves. We assume that the cluster centers µi are semiprivate infor-

mation, i.e., each site can learn only the components of µ that correspond to the

attributes it holds. Thus, all information about a site’s attributes (not just individual

values) is kept private; if sharing the µ is desired, an evaluation of privacy/secrecy

concerns can be performed after the values are known.

At first glance, this might appear simple – each site can simply run the k-means

algorithm on its own data. This would preserve complete privacy. Figure 3.2 shows

why this will not work. Assume we want to perform 2-means clustering on the data

in the figure. From y’s point of view (looking solely at the vertical axis), it appears

that there are two clusters centered at about 2 and 5.5. However in two dimensions it

is clear that the difference in the horizontal axis dominates. The clusters are actually

“left” and “right”, with both having a mean in the y dimension of about 3. The

problem is exacerbated by higher dimensionality.
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Figure 3.2. Two dimensional problem that cannot be decomposed
into two one-dimensional problems

3.3.1 Basic Approach

Given a mapping of points to clusters, each site can independently compute

the components of µi corresponding to its attributes. Assigning points to clusters,

specifically computing which cluster gives the minimum d(i, µj), requires cooperation

between the sites. We show how to privately compute this in Section 3.3.2. Briefly,

the idea is that site A generates a (different) vector (of length k) for every site

(including itself) such that the vector sum of all the site vectors is ~0. Each site

adds its local differences |point − µi| to its vector. At the same time, the vector is

permuted in an order known only to A. Each site (except a single holdout) sends

their permuted vector to site B. Site B sums the received vectors, then the holdout

site and B perform a series of secure additions and comparisons to find the minimum
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i without learning distances. B now asks A the real index corresponding to i, giving

the proper cluster for the point.

The second problem is knowing when to quit, i.e., when the difference between

µ and µ′ is small enough; we show how to privately compute this in Algorithm 3.

This makes use of secure sum and secure comparison, described on Page 36.

3.3.2 Algorithm

First, we formally define the problem. Let r be the number of parties, each

having different attributes for the same set of entities. n is the number of the

common entities. The parties wish to cluster their joint data using the k-means

algorithm. Let k be the number of clusters required.

The final result of the k-means clustering algorithm is the value/position of the

means of the k clusters, with each side only knowing the means corresponding to

their own attributes, and the final assignment of entities to clusters. Let each cluster

mean be represented as µi, i = 1, . . . , k. Let µij represent the projection of the mean

of cluster i on party j. Thus, the final result for party j is

• the final value/position of µij, i = 1 . . . k

• cluster assignments: clusti for all points (i = 1, . . . , n)

The k-means algorithm also requires an initial assignment (approximation) for

the values/positions of the k means. This is an important issue, as the choice of initial

points determines the final solution. Research has led to mechanisms producing a

good initial assignment [15]. Their technique uses classic k-means clustering done

over multiple subsamples of the data, followed by clustering the results to get the

initial points. For simplicity, we assume that the k means are selected arbitrarily.

Since the underlying operations in [15] involve k-means clustering, it is possible to

extend our algorithm to search for and start off with good initial means.

Thus, for i = 1 . . . k, every party selects its share µ′
ij of any given mean. This

value is local to each party and is unknown to the other parties.
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The basic algorithm directly follows the standard k-means algorithm. The ap-

proximations to the true means are iteratively refined until the improvement in one

iteration is below a threshold. At each iteration, every point is assigned to the proper

cluster, i.e., we securely find the cluster with the minimum distance for each point

(this is described in Section 3.3.2.) Once these mappings are known, the local com-

ponents of each cluster mean can be computed locally. We then use Algorithm 3

(checkThreshold) to test termination: was the improvement to the mean approxi-

mation in that iteration below a threshold? This is shown formally in Algorithm 2.

The checkThreshold algorithm (Algorithm 3) is straightforward, except that

to maintain security (and practicality) all arithmetic must be modn. This results

in a non-obvious threshold evaluation at the end, consisting of a secure addition /

comparison. Intervals are compared rather than the actual numbers. Since Th < n/2

and the domain of −D < n/2, if the result of m− Th′ is positive, it will be less than

n/2, and if it is negative, due to the modulo operation, it will be greater than n/2.

Thus, m − Th′ > Th′ −m(modn) if and only if m < Th′, and the correct result is

returned.

Securely Finding the Closest Cluster

This algorithm is used as a subroutine in the k-means clustering algorithm to pri-

vately find the cluster which is closest to the given point, i.e., which cluster should

a point be assigned to. Thus, the algorithm is invoked for every single data point

in each iteration. Each party has as its input the component of the distance corre-

sponding to each of the k clusters. This is equivalent to having a matrix of distances

of dimension k × r. For common distance metrics; such as Euclidean, Manhattan,

or any other Minkowski; this translates to finding the cluster where the sum of the

local distances is the minimum among all the clusters.
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Require: r parties, k clusters, n points.

1: for all sites j = 1 . . . r do

2: for all clusters i = 1 . . . k do

3: initialize µ′
ij arbitrarily

4: end for

5: end for

6: repeat

7: for all j = 1 . . . r do

8: for i = 1 . . . k do

9: µij ← µ′
ij

10: Cluster[i] = ∅
11: end for

12: end for

13: for g = 1 . . . n do

14: for all j = 1 . . . r do

15: {Compute the distance vector ~Xj (to each cluster) for point g.}
16: for i = 1 . . . k do

17: xij = |datagj −D µij |
18: end for

19: end for

20: Each site puts g into Cluster[closest cluster] {closest cluster is Algorithm

4}
21: end for

22: for all j = 1 . . . r do

23: for i = 1 . . . k do

24: µ′
ij ← mean of j’s attributes for points in Cluster[i]

25: end for

26: end for

27: until checkThreshold {Algorithm 3}

Algorithm 2: Privacy Preserving k-means clustering
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Require: Th is a threshold for termination, Random number generator rand pro-

duces values uniformly distributed over 0..n − 1 spanning (at least) twice the

domain of the distance function −D.

1: for all j = 1 . . . r do

2: dj ← 0

3: for i = 1 . . . k do

4: dj ← dj + |µ′
ij −D µij|

5: end for

6: end for

7: {Securely compute if
∑

dj ≤ Th.}
8: At P1: m = rand()

9: for j=1 . . . r-1 do

10: Pi sends m + dj (mod n) to Pj+1

11: end for

12: At Pr: m = m + dr

13: At P1: Th′ = Th + r

14: P1 and Pr return secure add and compare(m − Th′ (mod n) > Th′ − m

(mod n)) {Secure comparison is described on Page 36.}

Algorithm 3: checkThreshold: Find out if the new means are sufficiently close to old

means
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The problem is formally defined as follows. Consider r parties P1, . . . , Pr, each

with their own k-element vector ~Xi:

P1 has ~X1 =
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The goal is to compute the index l that represents the row with the minimum sum.

Formally, find

argmin
i=1..k

(
∑

j=1..r

xij)

For use in k-means clustering, xij = |µij − pointj |, or site Pj ’s component of the

distance between a point and the cluster i with mean µi.

The security of the algorithm is based on three key ideas.

1. Disguise the site components of the distance with random values that cancel

out when combined.

2. Compare distances so only the comparison result is learned; no party knows

the distances being compared.

3. Permute the order of clusters so the real meaning of the comparison results is

unknown.

The algorithm also requires three non-colluding sites. These parties may be among

the parties holding data, but could be external as well. They need only know the

number of sites r and the number of clusters k. Assuming they do not collude with

each other, they learn nothing from the algorithm. For simplicity of presentation, we

will assume the non-colluding sites are P1, P2, and Pr among the data holders. Using

external sites, instead of participating sites P1, P2 and Pr, to be the non-colluding

sites, is trivial.

The algorithm proceeds as follows. Site P1 generates a length k random vector

~Vi for each site i, such that
∑r

i=1
~Vi = ~0. P1 also chooses a permutation π of 1..k.
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P1 then engages each site Pi in the permutation algorithm [27] (see Section A.1.1)

to generate the sum of the vector ~Vi and Pi’s distances ~Xi. The resulting vector is

known only to Pi, and is permuted by π known only to P1, i.e., Pi has π(~Vi + ~Xi),

but does not know π or ~Vi. P1 and P3 . . . Pr−1 send their vectors to Pr.

Sites P2 and Pr now engage in a series of secure addition / comparisons to find

the (permuted) index of the minimum distance. Specifically, they want to find if
∑r

i=1 xli + vli <
∑r

i=1 xmi + vmi. Since ∀l,∑r
i=1 vli = 0, the result is

∑r
i=1 xli <

∑r
i=1 xmi, showing which cluster (l or m) is closest to the point. Pr has all components

of the sum except ~X2 + ~V2. For each comparison, we use a secure circuit evaluation

(see Page 36) that calculates a2 + ar < b2 + br, without disclosing anything but the

comparison result. After k − 1 such comparisons, keeping the minimum each time,

the minimum cluster is known.

P2 and Pr now know the minimum cluster in the permutation π. They do not

know the real cluster it corresponds to (or the cluster that corresponds to any of the

others items in the comparisons.) For this, they send the minimum i back to site

P1. P1 broadcasts the result π−1(i), the proper cluster for the point.

The full algorithm is given in Algorithm 4. Several optimizations are possible,

we discuss these when analyzing the complexity of the algorithm in Section 3.3.5.

Section A.1.1 describes the permutation algorithm. We now describe the secure

addition comparison, which builds a circuit that has two inputs from each party, sums

the first input of both parties and the second input of both parties, and returns the

result of comparing the two sums. This (simple) circuit is evaluated securely using

the generic algorithm described on Page 36. We then prove the security of the

method. A graphical depiction of stages 1 and 2 is given in Figures 3.3 and 3.4.

Secure Comparison

We simply use the generic circuit based evaluation approach for the addition and

comparison function. The function is first represented as a combinatorial circuit, and
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Require: r parties, each with a length k vector ~X of distances. Three of these

parties (trusted not to collude) are labeled P1, P2, and Pr.

1: {Stage 1: Between P1 and all other parties}
2: P1 generates r random vectors ~Vi summing to ~0 (see Algorithm 5).

3: P1 generates a random permutation π over k elements

4: for all i = 2 . . . r do

5: ~Ti (at Pi) = add and permute(~Vi, π(at P1), ~Xi(at Pi)) {This is the permuta-

tion algorithm described in Section A.1.1}
6: end for

7: P1 computes ~T1 = π( ~X1 + ~V1)

8:

9: {Stage 2: Between all but P2 and Pr}
10: for all i = 1, 3 . . . r − 1 do

11: Pi sends ~Ti to Pr

12: end for

13: Pr computes ~Y = ~T1 +
∑r

i=3
~Ti

14:

15: {Stage 3: Involves only P2 and Pr}
16: minimal ← 1

17: for j=2..k do

18: if secure add and compare(Yj + T2j < Yminimal + T2minimal) then

19: minimal ← j

20: end if

21: end for

22:

23: {Stage 4: Between Pr (or P2) and P1}
24: Party Pr sends minimal to P1

25: P1 broadcasts the result π−1(minimal)

Algorithm 4: closest cluster: Find minimum distance cluster
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Require: Random number generator rand producing values uniformly distributed

over 0..n− 1 spanning (at least) the domain of the distance function −D.

Ensure: The sum of the resulting vectors is ~0.

1: for all i = 1 . . . k do

2: PartSumi ← 0

3: for j = 2 . . . r do

4: Vij ← rand()

5: PartSumi ← PartSumi + Vij (mod n)

6: end for

7: Vi1 ← −PartSumi (mod n)

8: end for

Algorithm 5: genRandom: Generates a (somewhat) random matrix Vk×r

r r(E (X  + R  ))π

E (X ), Er r r
Ri , π

r

P2

Pr

P1

X 2

X r

E (X ), E2 2 2

2 2 2(E (X  + R  ))π

Figure 3.3. Closest cluster – stage 1
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then the parties run a short protocol for every gate in the circuit. Every participant

gets (randomly selected) shares of the input wires and the output wires for every

gate. Since determining which share goes to which party is done randomly, a party’s

own share tells it nothing. Upon completion, the parties exchange their shares,

enabling each to compute the final result.

While impractical for large inputs and many parties, for a limited number of

simple two-party operations, such as the secure add and compare function used in

Algorithms 3 and 4, the complexity is reasonable. For two parties, the message cost

is O(circuit size), and the number of rounds is constant. We can add and compare

numbers with O(m = log(number of entities)) bits using an O(m) size circuit.

3.3.3 Security Discussion

Closest Cluster Computation Algorithm 4 returns the index of the closest

cluster (i.e., the row with the minimum row sum). To prove this algorithm is privacy

preserving, we must show that each party can construct a polynomial time simulator

for the view that it sees, given only its own input and this closest cluster index.

Theorem 3.3.1 Algorithm 4 privately computes the index of the row with the min-

imum row sum, revealing only this result assuming parties do not collude to expose

other information.

Proof. The simulator is constructed in stages, corresponding to the stages of the

algorithm.

Stage 1: The only communication occurring in this stage occurs in the r − 1

calls to the Permutation Algorithm. Thus, we simply need to apply the composition

theorem stated in Theorem 2.3.1, with g being the closest cluster computation al-

gorithm and f being the permutation algorithm. What remains is to show that we

can simulate the result Ti. The simulator for P1 is exactly the algorithm used by P1,

without sending any data. For the remaining sites, since the vi are unknown and
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chosen from a uniform distribution on (0..n − 1), vi + xi will also form a uniform

distribution on (0..n− 1). Each Pi, i = 2 . . . r can simulate the vector ~Ti by selecting

values randomly from a uniform distribution on (0..n− 1). This is indistinguishable

from what it sees in the algorithm.

Stage 2: All the parties other than P2 and Pr send their permuted result vectors

to the receiver. Since only Pr sees new information, we need only concern ourselves

with simulating what it sees. The received vectors can be simulated by Pr exactly

as they were simulated by the Pi in Stage 1. The vector ~Y is equal to the actual

distances minus ~T2. However, since ~T2 consists of values uniformly distributed over

(0..n− 1), ~Y is effectively distances− v, and is thus also uniformly distributed over

(0..n− 1). However, we cannot simulate it by generating random values, as we must

preserve the relationship ~Y = ~T1 +
∑r

j=3 Tj (mod n). Fortunately, the sum of the

simulator-generated ~Ti will give a vector ~Y that both meets this constraint and is

uniformly distributed over (0..n−1), giving a view that is indistinguishable from the

real algorithm.

Stage 3: Here P2 and Pr engage in a series of comparisons. Again, we use the

composition theorem. Each comparison is secure, so we need only show that we can

simulate the sequence of comparison results.

The simulator uniformly chooses a random ordering of the k clusters from the

k! possible orderings. We regard this as the distance-wise ordering of the clusters

relative to the point. This ordering is used to choose the appropriate result, ≤ or

>, for each comparison. Effectively, the simulator runs steps 17-21, but makes the

comparisons locally based on the random ordering. The probability of any given

ordering is 1/k!, the same as the probability of any given ordering achieved after the

permutation π in the actual view. Therefore, the probability of any given sequence

of comparison results is the same under the ordering as under the view seen in the

actual algorithm.
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Note that all of the possible 2(k−1) sequences are not equally likely, e.g., the

sequence of all >s corresponds to only one ordering, while the sequence of all ≤s

corresponds to (k − 1)! orderings. However, selecting random total orderings gen-

erates sequences matching the (non-uniform) probability distribution of the actual

sequences of comparisons.

Stage 4: Pr (or P2) sends the index i to P1. Since the true index it is the

final result known to all the parties, and P1 decides upon the permutation π, the

simulator generates π(it) = i as the message it receives.

The final result it is sent to all parties. Since this is the final result, obviously all

the parties can simulate it.

Since this simulator is also linear in the size of the input, and we have proven the

permutation algorithm to be secure, application of the composition theorem proves

that Algorithm 4 preserves privacy.

Stopping Criterion Before analyzing the security of the entire k -means algo-

rithm, we prove the security of the threshold checking Algorithm 3.

Theorem 3.3.2 Algorithm 3 determines if
∑ |µ′

ij −D µij| < Th|, revealing nothing

except the truth of this statement.

Proof. Steps 10 and 14 are the only steps of Algorithm 3 requiring communica-

tion, so the simulator runs the algorithm to this point. In step 10, party P1 first sends

m + d1 (mod n) where m is the random number known to P1. Each of the parties

Pj, j = 2 . . . r receive a message m +
∑i

j=1 dj from their left neighbor. Since m is

chosen from a uniform distribution on (0 . . . n−1), and all arithmetic is mod n, this

sum forms a uniform distribution on (0 . . . n−1) and can be simulated by generating

a random number over that distribution:

Pr
[

V IEWAlgorithm 3 Step 10
j = x

]

= Pr



m +
j
∑

i=1

di = x
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= Pr



m = x−
j
∑

i=1

di





=
1

n

= Pr [Simulatorj = x]

The secure add and compare algorithm gives only the final result: m − Th′

(mod n) > Th′−m (mod n) =
∑r

j=1 dj ≤ Th. Step 14 is easily simulated knowing

that result.

This simulator runs in the O(k) time required by the Algorithm, and is thus

polynomial. Applying the composition theorem with Algorithm 3 as f and taking

g to be the secure add and compare algorithm, along with the other facts given

above, proves that Algorithm 3 is secure.

Overall k-means algorithm We now analyze the security of the entire k-

means algorithm. In every iteration, the following things are revealed to the parties:

• Each party’s local share of the k cluster means.

• The cluster assignment for every point.

These values are the desired result of the final iteration. Since it is impossible to

know in advance the number of iterations required to halt, the number of iterations

needs to be accepted as part of the final output. The results from the intermediate

iterations may be used to infer information beyond this result. For example, if the

cluster centers for site j do not change between iterations, and a point moves between

two clusters, site j knows that those two clusters are both relatively close to the point

across the sum of the other sites. However, since the location of the point in the

other dimensions is not known, this information is of little use. In any iteration the

final assignment of points to clusters is the same for every party. If this intermediate

assignment should not be revealed, either a genuine third party will be required

or else the algorithm will be quite inefficient. Allowing the intermediate results

to be accepted as part of overall results allows an efficient algorithm with provable



44

security properties. Forbidding knowledge of intermediate results would prevent each

site from computing the next iteration locally, making the entire computation much

more expensive.

We therefore state the proven overall security properties in the following theorem.

Theorem 3.3.3 Algorithm 2 is a private algorithm computing the k clusters of the

combined data set, revealing at most the point assignment to clusters at each iteration

and the number of iterations required to converge.

Proof. All of the communication in Algorithm 2 all occurs in the calls to Algo-

rithms 4 and 3. The results of Algorithm 4 are point assignments to clusters, and

can be simulated from the known result for that iteration. The results of Algorithm

3 are easily simulated; for all but the final iteration it returns false, in the final

iteration it returns true. Applying the composition theorem shows that within the

defined bounds the k-means algorithm is secure.

3.3.4 Handling Collusion

Parties P1, and Pr have more information than the others during the execution

of the above algorithm. Specifically, P1 knows

1. the permutation π, and

2. the values of the random splits (i.e., the random matrix Vk×r).

Pr learns

1. the permuted result vectors of the permutation algorithm (~Ti) for all the parties

other than P2, and

2. the comparison results.

(Note that P2 also learns the comparison results.) While we have proven that this

information is meaningless in isolation, collusion between P1 and Pr provides enough
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information to derive the distances between each point and each party’s means. It

is necessary to carefully select these two parties so that all parties are confident the

two will not collude.

The assumption of non-collusion is often implicitly made in the real world. For

example, take the case of lawyers for parties on opposite sides in court. While no

technical means prevent collusion, safeguards exist in the form of severe punishments

for breaking this rule as well as the business penalty of lost reputation. Similar legal

and reputation safeguards could be enforced for privacy-preserving data mining. In

addition, if there were not at least two parties who did not want to share information,

there would be no need for a secure algorithm. Since collusion between P1 and Pr

reveals P1’s information to Pr, P1 would be unlikely to collude simply out of self-

interest.

However, technical solutions are more satisfying. Let p, 1 ≤ p ≤ r − 1, be a

user defined anti-collusion security parameter. We present a modification of the

algorithm that guarantees that at least p + 1 parties need to collude to disclose

additional information. The problem is in Algorithm 4. The key idea is that stage 1

is run p times, each time selecting a new party to act as P1. Thus, the permutation

π and the random matrix Vk×r is different for every run, however the row sum of

each V matrix is ~0, so the total sum is still the actual distance. In stage 4, to get the

true index from the permuted index, the p parties apply their inverse permutations

in order. Thus, the true index is π−1
1 (π−1

2 (. . . (π−1
p (i′)) . . .)).

3.3.5 Communication Analysis

We give a bottom-up analysis of the communication cost of one iteration of the

algorithm. The total cost is dependent on the number of iterations required to

converge, which is dependent on the data. Assume r parties, n data elements, and

that encrypted distances can be represented in m bits.
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The permutation algorithm requires only two rounds of communication. For

length-n vectors, the total bit cost is 2n ∗m + public key size = O(n) bits.

The secure add and compare algorithm is a two party protocol, implemented us-

ing secure circuit evaluation. There are several general techniques for implementing

circuit evaluation that optimize different parameters such as computation cost, com-

munication cost (number of rounds or total number of bits), etc. The basic tool used,

one out of two oblivious transfer, can also be implemented in several ways. Methods

exist that require a constant number of rounds of communication (by parallelizing

the oblivious transfers) with bit communication cost linear in the number of gates

in the circuit. An excellent survey is given in [36]. The secure add and compare

algorithm requires two addition circuits and one comparison circuit, all of m = log n

bits (where n is based on the resolution of the distance). For both addition and

comparison the number of gates required is linear in m. Therefore this step requires

constant rounds and O(m) bits of communication.

In Algorithm 4, closest cluster, there are several places where communication

occurs. Steps 4 − 5 make r − 1 calls to the permutation algorithm with size k

vectors. Steps 10 − 11 require r − 2 rounds of communication and (r − 2) ∗ k ∗m

bits. Steps 17− 18 use k− 1 calls to the secure add and compare algorithm. Steps

24− 25 require two rounds and O(r log k) bit cost. Thus the total cost is 2(r− 1) +

r− 2 + (k− 1) ∗ const ≈ 3r + const ∗ k = O(r + k) rounds and 2k ∗m ∗ (r− 1) + k ∗
m ∗ (r − 2) + (k − 1) ∗ const ∗ (log n) ≈ 3 ∗m ∗ kr + kc log n = O(kr) bits.

The collusion resistant variant of Section 3.3.4 multiplies the cost of steps 4− 5

and step 24 by a factor of p. This gives O(pr + k) rounds and O(pkr) bits.

We now give a communication analysis of Algorithm 3. Step 10 involves r − 1

rounds of communication, with bit cost (r − 1) ∗ m. Step 14 makes one call to

secure add and compare, for constant rounds and O(m) bits. Thus, the total cost

is O(r) rounds and O(rm) bits.

Finally, we come to the analysis of the entire algorithm. We do not count any

setup needed to decide the ordering or role of the parties. One iteration of the k-
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means algorithm requires one call to the closest cluster computation for every, point

and one call to the checkThreshold algorithm. Since all points can be processed in

parallel, the total number of rounds required is O(r + k). The bit communication

cost is O(nrk).

Optimizations The cost of secure comparisons in Stage 3 of Algorithm 4 can be

eliminated with a security compromise that would often be innocuous. First, the

random vector generated in step 2 is generated so the rows sum to randomly chosen

r instead of 0. In Stage 2, all the parties (including P2) send their permuted vectors

to Pr. Now Pr can independently find the index of the row with the minimum row

sum. Thus, the communication cost is 2(r− 1) + r− 1 + 2 ≈ 3r = O(r) rounds and

2k ∗m ∗ (r − 1) + k ∗m ∗ (r − 1) + 2(log k) ≈ 3krm bits.

The problem with this approach is that Pr learns the relative distance of a point

to each cluster, i.e., it learns that p is 15 units farther from the second nearest cluster

than from the cluster it belongs to. It does not know which cluster the second nearest

is. Effectively it gets k equations (one for each cluster) in k + 1 unknowns. (The

unknowns are the location of the point, the location of all clusters but the one it

belongs in, and the distance to the closest cluster center.) Since the permutation of

clusters is different for each point, as is the random R, combining information from

multiples points still does not enable solving to find the exact location of a point

or cluster. However, probabilistic estimates on the locations of points/clusters are

possible. If the parties are willing to accept this loss of security in exchange for the

communication efficiency, they can easily do so.

Let us now compare our communication cost with that of the general circuit

evaluation method. For one iteration of the algorithm a circuit evaluation would

be required for each point to evaluate the cluster to which the point is assigned.

Even with an optimized circuit the closest cluster computation requires at least

r − 1 addition blocks for each cluster, i.e., approx. kr addition circuits, and k − 1

comparison blocks. These blocks are all of width at least m bits. The best known
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general method still requires at least r2 bits of communication for every circuit.

Thus, a lower bound on the amount of bits transferred is O(kmr3) bits.

A simple upper bound on non-secure distributed k-means is obtained by having

every party send its data to one site. This gives O(n) bits in one round. Privacy is

adding a factor of O(r + k) rounds and O(rk) bit communication cost. While this

tradeoff may seem expensive, if the alternative is not to perform data mining at all,

it seems quite reasonable.

Clustering in the presence of differing scales, variability, correlation and/or out-

liers can lead to unintuitive results if an inappropriate space is used. Research has

developed robust space transformations that permit good clustering in the face of

such problems [55]. Such estimators need to be calculated over the entire data.

An important extension to our work would be to allow privacy preserving compu-

tation of such estimators, giving higher confidence in clustering results. Similarly,

extending this work to the more robust EM-clustering algorithm [25,61] under the

heterogeneous database model is a promising future direction. Another problem is

to find the set of common entities without revealing the identity of entities that are

not common to all parties.

3.4 Näıve Bayes Classification

Privacy-preserving classification on vertically partitioned data has many real-

world applications. For example, assume a medical research study wants to compare

medical outcomes based on techniques in pharmaceutical manufacturing processes

(e.g., to answer the question “are generic drugs really as effective as brand-name”,

and more important, what manufacturing processes produce the best results?) The

insurance companies can’t disclose individual patient data without permission [45],

and complete manufacturing processes are trade secrets (although individual tech-

niques may be commonly known.) Similar constraints arise in many applications; Eu-

ropean Community legal restrictions apply to disclosure of any individual data [30].
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Näıve Bayes is a simple but highly effective classifier. This combination of sim-

plicity and effectiveness has lead to its use as a baseline standard by which other

classifiers are measured. With various enhancements it is highly effective, and re-

ceives practical use in many applications (e.g., text classification [63]).

3.4.1 Näıve Bayes Classifier

method. The following description of a Näıve Bayes classifier is based on the

discussion in Mitchell [63]. The Näıve Bayes classifier applies to learning tasks where

each instance x is described by a conjunction of attribute values and the target

function f(x) can take on any value from some finite set V . A set of training examples

of the target function is provided, and a new instance is presented, described by the

tuple of attribute values < a1, a2, . . . , an >. The learner is asked to predict the target

value, or classification, for this new instance.

The Bayesian approach to classifying the new instance is to assign the most prob-

able target value, vMAP , given the attribute values < a1, a2, . . . , an > that describe

the instance.

vMAP = argmax
vj∈V

(P (vj|a1, a2, . . . , an)) (3.1)

Using Bayes theorem,

vMAP = argmax
vj∈V

(

P (a1, a2, . . . , an|vj)P (vj)

P (a1, a2, . . . , an)

)

= argmax
vj∈V

(P (a1, a2, . . . , an|vj)P (vj)) (3.2)

The Näıve Bayes classifier makes the further simplifying assumption that the

attribute values are conditionally independent given the target value. Therefore,

vNB = argmax
vj∈V

(

P (vj)
∏

i

P (ai|vj)

)

(3.3)

where vNB denotes the target value output by the Näıve Bayes classifier.

The conditional probabilities P (ai|vj) need to be estimated from the training

set. The prior probabilities P (vj) also need to be fixed in some fashion (typically by
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simply counting the frequencies from the training set). The probabilities for differing

hypotheses can be computed by normalizing the values received for each hypothesis.

Probabilities are computed differently for nominal and numeric attributes.

Nominal Attributes

For a nominal attribute X with r possible attributes values x1, . . . , xr, the proba-

bility P (X = xk|vj) =
nj

n
where n is the total number of training examples for which

V = vj, and nj is the number of those training examples that also have X = xk.

Numeric Attributes

In the simplest case, numeric attributes are assumed to have a “normal” or

“Gaussian” probability distribution. The probability density function for a normal

distribution with mean µ and variance σ2 is given by

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (3.4)

The mean µ and variance σ2 are calculated for each class and each numeric attribute

from the training set. Now the required probability that the instance is of the class

vj , P (X = x′|vj), can be estimated by substituting x = x′ in equation 3.4.

3.4.2 Model Issues – Splitting of Model Parameters

Since different sites hold different attributes, one issue of particular interest with

classification is the location and security properties of the class attribute. We can

divide this into two possibilities:

• All the parties hold the (common/public) class attribute, or

• Only a subset of the parties have the (secret) class attribute.

The first case is the simplest, assuming that the class attribute of the training data

is known to all parties. In some cases this is reasonable – e.g., manufacturers of
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subcomponents collaborating to determine expected failure rates of fully assembled

systems based on attributes of the subcomponents. In this case, it is easy to estimate

all the required counts for nominal attributes and means and variances for numeric

attributes locally, causing no privacy breaches. Prediction can be accomplished by

independently estimating the probabilities, and securely multiplying and comparing

to obtain the predicted class.

More interesting is the general case, where not all parties have the class attribute.

We can simplify this to the basic case where one party has the class attribute and the

other has the remaining attributes. Solving this enables us to solve any distribution

of attributes. (Extension to more than two parties, or where the party with the class

attribute has more information, is straightforward.)

It is also necessary that the model learned not reveal information – the model

parameters (probability distribution of classes) would reveal information about the

(protected) class values. Instead, we build a model where each party has random

shares of the model, and collaborate to classify an instance. The only knowledge

gained by either side is the class of each instance classified.

The obvious alternative, generating and sharing the classifier, reveals considerable

information about both the attributes and the classes. The relative distribution

of classes in the training data is likely to be sensitive, as is the mean/variance or

distribution of the attribute values. With our approach, neither party learns anything

new until a new instance is classified, and then the only thing learned is the predicted

class of that instance. While learning the predicted class of enough instances may

allow reverse-engineering the classifier, this is unavoidable given that the goal is to

learn the classes of the test data. In addition, if either party feels too much is being

revealed, they can simply dispose of their share of the classifier to ensure no more

of their information is disclosed. Also, it is possible to use the protocols developed

such that the class of each instance is learned only by the party holding the class

attribute (nothing is learned by the remaining parties). In some cases, this might be

preferable.
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Having both parties (the data site and the class site) hold shares of all the model

parameters complicates the evaluation of a new instance. Classifying a new instance

is no longer a straightforward task and a joint protocol is required to classify any

new instance. The method to do this is given in Section 3.4.4.

3.4.3 Building the Classifier Model

The basic idea behind our protocol is that each party ends up with shares of the

conditionally independent probabilities that constitute the parameters of a Näıve

Bayes classifier. By themselves, the shares appear random – only when added do

they have meaning. This addition only occurs as part of evaluating the classifier on

an instance – and the protocol that does this reveals only the class of the instance.

We start with computing the shares of the parameters. For nominal attributes,

the parameters are P (xi|vl) = ni/n for each class i and attribute value l. For Numeric

attributes, we need the mean and variance for the probability density function given

in Equation 3.4.

Nominal Attributes

Party Pd holds the nominal attribute D, while party Pc holds the class attribute

C. D has r possible values, a1, . . . , ar. C has k possible class values v1, . . . , vk. The

goal is to compute r × k matrices Sc, Sd where the sum of corresponding entries

sc
li + sd

li gives the probability estimate for class vi given that the attribute has value

al.

The key idea is that to compute a given entry sli, Pd constructs a binary vector

corresponding to the entities in the training set with 1 for each item having the value

al and 0 for other items. Pc constructs a similar vector with 1/ni for the ni entities

in the class, and 0 for other entities. The scalar product of the vectors gives the

appropriate probability for the entry.
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Require: Nominal attribute D, Class attribute C

Require: n transactions, r attribute values, k class values

Require: Const (field size / precision)

Ensure: r× k share matrices Sc, Sd where S = Sc + Sd gives the probability values

for each class/attribute

1: for i = 1 . . . k {For each class value} do

2: {Pc generates the vector ~Y from C:}
3: for j = 1 . . . n do

4: if cj = vi then

5: yj ← ⌊Const/ni⌋ {Class value is vi}
6: else

7: yj ← 0

8: end if

9: end for

10: for l = 1 . . . r {For each attribute value} do

11: {Pd generates the vector ~X from D:}
12: for j = 1 . . . n do

13: if dj = al then

14: xj ← 1 {Attribute value is al}
15: else

16: xj ← 0

17: end if

18: end for

19: sc
li, s

d
li ← ~X · ~Y computed using a secure scalar product protocol (Section

A.1.2)

20: end for

21: end for

Algorithm 6: Computing shares of all probabilities
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Algorithm 6 defines the protocol to compute the shares of these renormalized

ratios (probabilities) in detail. To accomplish the security proof, calculations must

occur over a closed field; as a result values are premultiplied by a constant and trun-

cated to integral values. To achieve full precision, this constant should be a multiple

of the least common multiple of n1, ..., nk, however sharing this would reveal private

information about the distribution of classes. (n! would be an acceptable multiple

that would not reveal class distributions, but is computationally intractable). In

practice, using n on the order of word size (e.g., 264) will give reasonable precision

and computational cost. To simplify presentation, we will speak of “probability”

when the algorithm in fact computes C ∗ probability.

Numeric Attributes

For numeric attributes, computing the probability requires knowing the mean µ

and variance σ2 for each class value.

Computing the mean is similar to the preceding algorithm – for each class, Pc

builds a vector of 1/ni and 0 depending on whether the training entity is in the

class or not, and the mean for the class is the scalar product of this vector with

the projection of the data onto the attribute. The scalar product gives each party

a share of the result, such that the sum is the mean (actually a constant times the

mean, to convert to an integral value.) The result is a length k vector of the shares

of the means.

Computing the variances σ2
1, . . . , σ

2
k is more difficult, as it requires summing the

square of the distances between values and the mean, without revealing values to

Pc or classes to Pd, or means to either. This is accomplished with homomorphic

encryption: E(a + b) = E(a) ∗E(b). Algorithm 7 describes this process in detail, we

highlight some of the more confusing areas here.
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Require: n data items, k class values, precision/field size Const
Require: Pd has data vector ~D, Pc has class vector ~C
1: {Compute the mean:}
2: for i = 1 . . . k do

3: for j = 1 . . . n do

4: if cj = vi then

5: yj ← ⌊Const/ni⌋ {Class value is vi}
6: else

7: yj ← 0
8: end if

9: end for

10: µ′
i, µ

′′
i ←

~D · ~Y {Computed with secure scalar product.}
11: {shares µ′

i + µ′′
i = Const ∗ µi, where µi is the mean for class i}

12: end for

13:

14: {Compute the variance}
15: Pd: generate a homomorphic public key encryption pair Ek,Dk

16: for j = 1 . . . n do

17: de
j ← Ek(Const ∗ dj)

18: end for

19: for i = 1 . . . k do

20: me
i ← Ek(µ

′
i)

21: end for

22: Pd sends ~De, ~Me, and Ek to Pc

23: Pc: generate the vectors ~Z and ~X :
24: for j = 1 . . . n do

25: Generate random rj

26: zj ← y′j/(mcj
∗Ek(µ

′′
cj

+ rj))
27: {= Ek(Const ∗ dj − µ′

cj
− µ′′

cj
− rj)}

28: {= Ek(Const ∗ (dj − µcj
)− rj)}

29: end for

30: Pc sends ~Z to Pd

31: Pd decrypts all the transactions in ~Z to get ~W (i.e., wj ← Dk(Ek(Const ∗ (dj − µl) +
rj)) = Const ∗ (dj − µl) + rj)

32:

33: for j = 1 . . . n do

34: Shares t′j, t
′′
j ← (rj + wj)

2 using the protocol in Section A.1.3
35: end for

36: for i = 1 . . . k do

37: {~Y is vector for class k as generated in steps 1-5}
38: Compute shares temp, σ′′

j where temp + σ′′
j = ~T ′′ · ~Y

39: Pc : σ′′
j ←

~T · ~Y + temp

40: {Note σ′
j + σ′′

j = Const3 ∗ ( 1
nj
∗ (

∑
j(dj − µj)

2))}

41: end for

Algorithm 7: Computing Mean and Variance
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In lines 15-22, Pd computes encrypted vectors of the data values and its share

of the means and sends them to Pc, along with the encryption (but not decryption)

key.

In the next phase (lines 23-31), Pc takes the data values and subtracts the means

(both its share and the share sent by Pd) to get the distance needed to compute the

variance. Pc also subtracts a random value, keeping the random value as its share of

the distances. Homomorphic encryption makes this possible without decrypting. Pc

sends the vector back to Pd, which decrypts to get the distance plus a random value.

Next, the parties engage in a square computation protocol (Section A.1.3) to

compute shares t′j , t
′′
j of the square of the sum of Pc’s randoms rj and the decrypted

distance. The scalar product of Pd’s share vector and the class vector ~Y is taken,

giving two shares. To its share, Pc adds the scalar product of its vector of randoms

and ~Y . This gives each party a share of σ2 multiplied by the probability of an item

appearing in the class (again scaled to an integral value, in this case by the cube of

the chosen constant.)

The scalar product and square computation subroutines are based on previous

work, and are discussed in Section A.1.

3.4.4 Evaluation of an Instance

A new instance is classified according to Equation 3.3. Since both y = x2 and

y = ln x are monotonically increasing functions, squaring and taking the natural log

still preserves the correctness of the argmax. Thus the equation can be rewritten as

follows:

vNB = argmax
vj∈V

(

P (vj)
∏

i

P (ai|vj)

)

= argmax
vj∈V



ln

(

P (vj)
∏

i

P (ai|vj)

)2
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= argmax
vj∈V

(

(2 ∗ ln P (vj)) +
∑

i

ln
(

P (ai|vj)
2
)

)

= argmax
vj∈V







C + (2 ∗ ln P (vj))+
∑

i ln (P (ai|vj)
2)





 (3.5)

where the constant C is determined by the number and composition of the nominal

attributes. If there are l nominal attributes, C = Const1 ∗ . . . ∗ Constl where each

Consti is contributed by one nominal attribute due to the fact that the nominal

probabilities are multiplied with a constant. By taking the logarithm, the constant

multiplicative factor is converted to a constant additive factor.

For a nominal attribute,

ln
(

P (ai|vj)
2
)

= ln(
nj

n
)2 = 2 ln(p′ + p′′)

We have already shown how to compute p′ and p′′ in Section 3.4.3. The parties

can computes shares of the ln function securely using the secure ln method developed

by Lindell and Pinkas, outlined later in Section A.1.4. Finally, they can multiply

their shares by 2 to generate the necessary shares.

For a numeric attribute,

ln
(

P (ai|vj)
2
)

= ln
(

1

2πσ2
e−

(x−µ)2

σ2

)

= − ln(2πσ2)− (x− µ)2

σ2

= − ln(2π)− ln(σ2)− (x− µ)2

σ2
(3.6)

ln(2π) is publicly computable, but it does not even need to be computed since

it is a constant that does not affect comparison. Shares of σ2 are present with both

parties. Shares of ln(σ2) can again be computed using the method discussed in

Section A.1.4. Shares of (x − µ)2 can be computed using the square computation

method given in Section A.1.3. Finally, shares of (x−µ2)/σ2 can be computed using

the division protocol described in Section A.1.5. Thus, for every class value, for

each attribute, the shares of the required values are present with the party owning

the attribute and the party owning the class attribute. Now, evaluating equation
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3.5 reduces to a simple circuit evaluation. The required circuit adds up all of the

shares for each attribute for each class value and outputs the name of the class with

the maximum such value. This circuit is similar to the Secure Add and Compare

circuit used in Section 4.5 except that it is extended to multiple attributes.

The Taylor series expansion is a bounded approximation to the real value. How-

ever, the result class of the algorithm can only be wrong if the true Näıve Bayes

probability estimate of the correct class and the incorrect result are within some δ

(increasing the number of steps in the Taylor series expansions, and thus the com-

munication cost, allows the choice of δ to be arbitrarily small). If the correct class

and the class returned are this close, then the “incorrect” result is nearly as good an

answer as the best result, and likely to be adequate in practice.

3.4.5 Security Analysis

We now give a proof of security for protocols of Section 3.4.3, assuming security

of the sub-blocks used, and applying the composition theorem of [39] described in

Section 2.3. We start with a lemma that share splitting does in fact preserve privacy.

Lemma 3.4.1 If a function y = f(x1 + x2) is evaluated over a finite field F , where

the inputs x1 and x2 are shares known to two different parties and the output y is also

split into shares, where the share y1 is chosen randomly from an uniform distribution

over the field F and y2 = y − y1, then both parties can independently simulate their

share yi.

Proof. First, we need to prove that P (y2 = a) = 1
|F|

.

P (y2 = a) = P (y − y1 = a)

= P (y1 = y − a)

=
1

|F|
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This is equivalent to choosing y2 from an uniform distribution over the field

F . Note that though the joint distribution of y1, y2 is not necessarily uniform,

independently both y1 and y2 can be simulated using a uniform distribution.

Theorem 3.4.2 Algorithm 6 privately computes the shares of all the probabilities.

Proof. The only communication occurs at line 19 with the invocation of the

scalar product protocol. The results of the scalar product protocol are random

shares, which can be simulated as shown in Lemma 3.4.1. Protocol 6 can thus be

simulated, with the composition theorem 2.3.1 being applied to the scalar product

protocol.

Theorem 3.4.3 Algorithm 7 privately computes the shares of the means and vari-

ances.

Proof. Communication occurs only at lines 10, 22, 30, 34, 38. We prove the pro-

tocol secure by providing a simulator for both parties Pc and Pd. The simulator for

both Pc and Pd proceeds simply by executing the actual protocol. In order to show

that the view of each party can be simulated, we only need to simulate the messages

received by each party.

At line 10, the results of the scalar product protocol are random shares, which

can be simulated by both Pc and Pd as shown in Lemma 3.4.1.

At line 22, Pc simulates the message received by Pc generating a key pair and

using the generated encryption key for Ek. It also generates a n random numbers to

comprise ~De and k random numbers to form ~Me. Assuming security of encryption,

these are computationally indistinguishable from the true vectors and encryption

key.

To simulate the message received by Pd at line 30, Pd chooses n random numbers

from an uniform distribution over the field F and encrypts these numbers with

its key Ek to form the vector ~Z. Note that each zj simulates the encryption of



60

Const ∗ (dj − µcj
) − rj. Since the operations are over a finite field F and the rj is

also uniformly chosen over the finite field F ,

P (Dk(zj) = x) = P (Const ∗ (dj − µcj
)− rj = x)

= P (rj = Const ∗ (dj − µcj
)− x)

= 1
|F|

Thus simulating the value is possible by choosing a random number from an uniform

distribution over F and encrypting this random with the encryption key Ek.

At line 34, the results of the square computation are random shares, which can

be simulated by both Pc and Pd as shown in Lemma 3.4.1.

At line 38, the results of the scalar product protocol are random shares, which

can be simulated by both Pc and Pd as shown in Lemma 3.4.1.

Note that the scalar product in line 39 is a completely local computation by Pc

and thus does not need to be simulated by Pd. Protocol 7 can thus be simulated,

with the composition theorem 2.3.1 being applied to the scalar product protocol at

lines 10 and 38 and to the square computation protocol at line 34.

Theorem 3.4.4 The evaluation protocol in Section 3.4.4 privately computes the

class.

Proof. For nominal attributes, the shares of the probabilities are present with

both the parties to begin with. The secure ln computation returns random shares

to both the parties. By Lemma 3.4.1, these shares can be independently simulated

by both the parties.

Similarly, for numeric attributes, the shares of the means and variances are

present with both the parties. The secure ln computation returns random shares

of the variance to both the parties. By Lemma 3.4.1, these shares can be indepen-

dently simulated by both the parties. The shares of (x − µ)2 are computed by a

call to the secure square computation protocol. Since this protocol also computes

random shares, by Lemma 3.4.1, these shares can be independently simulated by

both the parties. Finally, the shares of (x − µ)2/σ2 are computed by an invocation
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of the division protocol which also computes random shares. Therefore by Lemma

3.4.1 these shares can also be independently simulated by both the parties.

The addition and comparison circuit is a generic circuit and thus has been proven

secure by [40]. The result is simply the output class, and is simulated exactly as

the final result is presumed known by the simulator. Applying Theorem 2.3.1 to the

secure ln computation, protocol 6, protocol 7 and square computation protocol, the

evaluation protocol is also secure.

3.4.6 Computation and Communication Analysis

For the purpose of this analysis, the number of distinct class values is assumed

to be k. For a nominal attribute with r attribute values, the scalar product protocol

is called a total of r ∗ k times over n-dimensional vectors. Thus depending on the

cost of the scalar product (which is typically linear in n), the cost of protocol 6 is

O(rkn). For small values of r, k this is feasible, though for large values it may be

quite inefficient. A mitigating factor is that if r, k are large relative to the size of the

training set n, Näıve Bayes is probably not a good classifier to use anyway.

For numeric attributes, to compute the shares of the means requires k invocations

of the scalar product protocol. To compute the variance, at line 22 Pd sends two

n-dimensional vectors to Pc. At line 30, Pc sends one n-dimensional vector to Pd.

Line 34 involves n invocations of the square computation protocol. Since the square

computation protocol consists of one polynomial evaluation for a polynomial of de-

gree 2, the communication cost of n invocations of the square computation require

only linear (O(n)) communication cost where the constant is quite small. Finally,

line 38 again involves k invocations of the scalar product protocol. Thus the total

communication cost is clearly linear in n (O(n)), where the constant is of the degree

of k. Thus the cost for numeric attributes is significantly lower than for nominal

attributes.



62

Selecting the parameters is done off-line, while classification of a new instance can

be considered “online”, and is done one instance at a time. Evaluation requires one

call to the secure ln protocol for every nominal attribute and one call to the secure

ln protocol, one call to the square computation protocol and one call to the division

protocol for every numeric attribute. Finally, it also requires one call to the generic

addition and comparison circuit to find the class having the maximum. Secure ln

computation requires running Yao’s protocol on a circuit that is linear in the size

of the inputs followed by the private evaluation of a polynomial of degree k ′ over

the field F . The value of this k′ is user decidable depending on the accuracy / cost

tradeoff. The total communication cost is dominated by the circuit evaluation and

thus is O(k′ log |F| · |S|) bits where |S| is the length of the key for a pseudo-random

function.

The cost of square computation protocol is insignificant (since it is a constant).

Similarly, the division protocol requires only two scalar products of vectors of con-

stant size (2 and 3). The cost for a numeric attribute is dominated by the secure ln

protocol.

The single generic circuit required to find the class with the maximum value

requires a total of k comparison circuits built on top of q addition circuits, where q

is the total number of attributes. The cost of this is linear in q + k. Thus for a total

of q attributes, the total cost of a single evaluation is O(qk′ log |F| · |S|) bits.

3.5 Decision Tree Classification

Decision Tree Classifiers are used effectively in a multitude of different areas:

radar signal classification, character recognition, remote sensing, medical diagnosis,

expert systems, and speech recognition, to name a few. One of the most important

features of decision tree classifiers is their ability to break down a complex decision

making process into a collection of simpler decisions, thus providing a solution which

is often easier to interpret. We look at the seminal ID3 [76] classification algorithm.
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While the problem has been addressed earlier [28], the prior solution is limited to

two parties and also requires that both parties have the class attribute. We present

a completely general solution to the problem. The method presented here works for

any number of parties, and the class attribute (or other attributes) need be known

only to one party.

Privacy preservation can mean many things: Protecting specific individual values,

breaking the link between values and the individual they apply to, protecting source,

etc. Here, we aim for a high standard of privacy: Not only individual entities

are protected, but to the extent feasible even the schema (attributes and possible

attribute values) are protected from disclosure. The goal is that each site need

disclose as little as possible, while still constructing a valid tree in a time suitable

for practical application.

To this end, all that is revealed is the basic structure of the tree (e.g., the number

of branches at each node, corresponding to the number of distinct values for an

attribute; the depth of each subtree) and which site is responsible for the decision

made at each node (i.e., which site possesses the attribute used to make the decision,

but not what attribute is used, or even what attributes the site possesses.) This

allows for efficient use of the tree to classify an object; otherwise using the tree would

require a complex cryptographic protocol involving every party at every possible level

to evaluate the class of an object without revealing who holds the attribute used at

that level.

Each site also learns the count of classes at some interior nodes (although only

the class site knows the mapping to actual classes – other sites don’t even know

if a class with 30% distribution at one node is the same class as one with a 60%

distribution at a lower node, except to the extent that this can be deduced from

the tree and it’s own attributes.) At the leaf nodes, this is desirable: one often

wants probability estimates, not simply a predicted class. As knowing the count of

transactions at each leaf node would enable computing distributions throughout the

tree anyway, this really doesn’t disclose much new information.
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Require: R, the set of attributes

Require: C, the class attribute

Require: T , the set of transactions

1: if R is empty then

2: return a leaf node, with class value assigned to most transactions in T

3: else if all transactions in T have the same class c then

4: return a leaf node with the class c

5: else

6: Determine the attribute A that best classifies the transactions in T

7: Let a1, . . . , am be the values of attribute A. Partition T into the m partitions

T (a1), . . . , T (am) such that every transaction in T (ai) has the attribute value

ai.

8: Return a tree whose root is labeled A (this is the test attribute) and has m

edges labeled a1, . . . , am such that for every i, the edge ai goes to the tree

ID3(R−A, C, T (ai)).

9: end if

Algorithm 8: ID3(R,C,T) tree learning algorithm

3.5.1 Privacy-Preserving ID3: Creating the Tree

The basic ID3 algorithm is given in Algorithm 8. We will introduce our dis-

tributed privacy-preserving version by running through this algorithm, describing

pieces as appropriate. We then give the full algorithm in Algorithm 14. Note that

for our distributed algorithm, no site knows R, instead each site i knows its own

attributes Ri. Only one site knows the class attribute C. In vertical partitioning,

every site knows a projection of the transactions ΠRi
T . Each projection includes a

transaction identifier that serves as a join key.

We first check if R is empty. This is based on Secure Sum [50, 84], and is given

in Algorithm 9. The idea is that the first party adds a random r to its count of

remaining items. This is passed to all sites, each adding its count. The last site
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Require: k sites Pi (the site calling the function is P1; any other site can be Pk),

each with a flag AttRemi = 0 if no remaining attributes, AttRemi = 1 if Pi has

attributes remaining.

Require: a commutative encryption function E with domain size m > k.

1: P1 chooses a random integer r uniformly from 0 . . .m− 1.

2: P1 sends r + AttRemi to P2

3: for i = 2..k − 1 do

4: Site Pi receives r′ from Pi−1.

5: Pi sends r′ + AttRemi mod m to Pi+1

6: end for

7: Site Pk receives r′ from Pk−1.

8: r′ ← r′ + AttRemi mod m

9: P1 and Pk create secure keyed commutative hash keys E1 and Ek {See Section

4.1 for discussion of commutative hash.}
10: P1 sends E1(r) to Pk

11: Pk receives E1(r) and sends Ek(E1(r)) and Ek(r
′) to P1

12: P1 returns E1(Ek(r
′)) = Ek(E1(r)) {⇔ r′ = r ⇔ ∑k

j=1 AttRemi = 0 ⇔ no

attributes remain }

Algorithm 9: IsREmpty(): Are any attributes left?
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?warm??high5

A 6A 5A 4A 3A 2A 1

Figure 3.5. A constraint tuple for a single site

and first then use commutative encryption to compare the final value to r (without

revealing either) – if they are the same, R is empty.

Line 2 requires determining the majority class for a node, when only one site

knows the class. This is accomplished with a protocol for securely determining the

cardinality of set intersection, given in Section 4.1. Each site determines which of

its transactions might reach that node of the tree. The intersection of these sets

with the transactions in a particular class gives the number of transactions that

reach that point in the tree, enabling the class site to determine the distribution and

majority class; it returns a (leaf) node identifier that allows it to map back to this

distribution.

To formalize this, we introduce the notion of a Constraint Set. As the tree is

being built, each party i keeps track of the values of its attributes used to reach

that point in the tree in a filter Constraintsi. Initially, this is all don’t care values

(‘?’). However, when an attribute Aij at site i is used (lines 6-7 of id3), entry j in

Constraintsi is set to the appropriate value before recursing to build the subtree. An

example is given in Figure 3.5. The site has 6 attributes A1, . . . , A6. The constraint

tuple shows that the only transactions valid for this transaction are those with a

value of 5 for A1, high for A2, and warm for A5. The other attributes have a value

of ? since they do not factor into the selection of an instance.

Formally, we define the following functions:

Constraints.set(attr, val): Set the value of attribute attr to val in the local con-

straints set. The special value ‘?’ signifies a don’t-care condition.
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satisfies: x satisfies Constraintsi if and only if the attribute values of the instance

are compatible with the constraint tuple: ∀i, (Ai(x) = v ⇔ Constraints(Ai) =

v) ∨ Constraints(Ai) = ‘?’.

FormTransSet:

Function FormTransSet(Constraints): Return local transactions meeting all

of the constraints

1: Y = ∅
2: for all transaction id i ∈ T do

3: if ti satisfies Constraints then

4: Y ← Y ∪ {i}
5: end if

6: end for

7: return Y

We can now determine the majority class (and distribution of classes) by computing

for each class
⋂

i=1..k Yi, where Yk includes a constraint on the class value. This is

given in Algorithm 10.

The next issue is determining if all transactions have the same class (Algorithm

8 line 3). Note that if they are not all the same class, we don’t want to disclose any

more than necessary. For efficiency, we do allow the class site to learn the count of

classes even if this is an interior node; since it could compute this from the counts

at the leaves of the subtree below the node, this discloses no additional information.

Algorithm 11 gives the details, it uses constraint sets and secure cardinality of set

intersection in basically the manner describe above for computing the majority class

at a leaf node. If all transactions are in the same class, we construct a leaf node.

The class site maintains a mapping from the ID of that node to the resulting class

distribution
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Require: k sites Pi with local constraint sets Constraintsi

1: for all sites Pi except Pk do

2: at Pi: Yi ← FormTransSet(Constraintsi)

3: end for

4: for each class c1, . . . , cp do

5: at Pk: Constraintsk.set(C, ci) {To include the class restriction}
6: at Pk: Yk ← FormTransSet(Constraintsk)

7: cnti ← |Y1 ∩ . . . ∩ Yk| using the cardinality of set intersection protocol (Algo-

rithm 17)

8: end for

9: return (cnt1, . . . , cntp)

Algorithm 10: DistributionCounts(): Compute class distribution given current con-

straints

Require: k sites Pi with local constraint sets Constraintsi

1: (cnt1, . . . , cntp)← DistributionCounts()

2: if ∃j s.t. cntj 6= 0 ∧ ∀i 6= j, cnti = 0 {only one of the counts is non-zero} then

3: Build a leaf node with distribution (cnt1, . . . , cntp) {Actually, 100% class j}

4: return ID of the constructed node

5: else

6: return false

7: end if

Algorithm 11: IsSameClass(): Are all transactions of the same class?
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The next problem is to compute the best attribute: that with the maximum

information gain. If an attribute A is used to partition the data set S, the information

gain can be computed as:

Gain(S, A) = Entropy(S)−
∑

v∈A

(

|Sv|

|S|
∗ Entropy(Sv)

)

The entropy of a dataset S is given by:

Entropy(S) = −
p
∑

j=1

Nj

N
log

Nj

N

where Nj is the number of transactions having class cj in S and N is the number of

transactions in S.

As we see, this again becomes a problem of counting transactions: the number of

transactions that reach the node N , the number in each class Nj, and the same two

after partitioning with each possible attribute value v ∈ A. Algorithm 13 details the

process of computing these counts; Algorithm 12 captures the overall process.

1: for all sites Pi do

2: bestgaini ← −1

3: for each attribute Aij at site Pi do

4: gain← ComputeInfoGain(Aij)

5: if gain > bestgaini then

6: bestgaini ← gain

7: BestAtti ← Aij

8: end if

9: end for

10: end for

11: return argmaxj bestgainj {Could implement using a set of secure comparisons}

Algorithm 12: AttribMaxInfoGain(): return the site with the attribute having max-

imum information gain

Once the best attribute has been determined, execution proceeds at that site. It

creates an interior node for the split, then recurses.
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1: S ← DistributionCounts() {Total number of transactions at this node}

2: InfoGain← Entropy(S)

3: for each attribute value ai do

4: Constraints.set(A, ai) {Update local constraints tuple}

5: Sai
← DistributionCounts()

6: Infogain← Infogain− Entropy(Sai
) ∗ |Sai

|/|S| {|S| is
∑p

i=1 cnti}

7: end for

8: Constraints.set(A, ‘?’) {Update local constraints tuple}

9: return InfoGain

Algorithm 13: ComputeInfoGain(A): Compute the Information Gain for attribute

A
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Require: Transaction set T partitioned between sites P1, . . . , Pk

Require: p class values, c1, . . . , cp, with Pk holding the class attribute

1: if IsREmpty() then

2: Continue at site Pk up to the return:

3: (cnt1, . . . , cntp)← DistributionCounts()

4: Build a leaf node with distribution (cnt1, . . . , cntp)

5: {class← argmaxi=1..p cnti}

6: return ID of the constructed node

7: else if clsNode← (at Pk :) IsSameClass() then

8: return leaf nodeId clsNode

9: else

10: BestSite← AttribMaxInfoGain()

11: Continue execution at BestSite:

12: Create Interior Node Nd with attribute Nd.A← BestAttBestSite {This is best

locally (from AttribMaxInfoGain()), and globally from line 8}

13: for each attribute value ai ∈ Nd.A do

14: Constraints.set(Nd.A, ai) {Update local constraints tuple}

15: nodeId← PPID3() {Recurse}

16: Nd.ai ← nodeId {Add appropriate branch to interior node}

17: end for

18: Constraints.set(A, ‘?’) {Returning to parent: should no longer filter transac-

tions with A}

19: Store Nd locally keyed by Node ID

20: return Node ID of interior node Nd {Execution continues at site owning parent

node}

21: end if

Algorithm 14: PPID3(): Privacy-Preserving Distributed ID3
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Humidity

Outlook

Sunny Overcast Rain

High Normal Strong Weak

Yes

No Yes

Wind

No Yes

(a) The original tree

Val1 Val2 Val2

Val2 Val3

S1L1

S2L6S2L2

Val1

Val1

S2L3 S2L7 S2L8S2L4

S1L5

(b) The privacy preserving tree (Mapping from identifiers to attributes

and values is known only at the site holding attributes)

Figure 3.6. The ID3 decision tree on the weather dataset
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3.5.2 Using the Tree

Instance classification proceeds as in the original ID3 algorithm, except that

the nodes (and attributes of the database) are distributed. The site requesting

classification (e.g., a master site) knows the root node of the classification tree. The

basic idea is that control passes from site to site, based on the decision made. Each

site knows the transaction’s attribute values for the nodes at its site (and can thus

evaluate the branch), but knows nothing of the other attribute values. The complete

1: {The start site and ID of the root node is known}

2: if nodeId is a LeafNode then

3: return class/distribution saved in nodeId

4: else {nodeId is an interior node}

5: Nd← local node with id nodeId

6: value← the value of attribute Nd.A for transaction instId

7: childId← Nd.value

8: return childId.Site.classifyInstance(instId, childId) {Actually tail recur-

sion: this site need never learn the class}

9: end if

Algorithm 15: classifyInstance(instId, nodeId): returns the class/distribution for the

instance represented by instId

algorithm is given in Algorithm 15, and is reasonably self-explanatory if viewed in

conjunction with Algorithm 14.

We now give a demonstration of how instance classification would actually happen

in this instance for the tree built with the UCI “weather” dataset [13]. Assume two

sites: The weather observatory collects information about relative humidity and

wind, a second collects temperature and cloud cover forecast as well as the class

(“Yes” or “No”). Suppose we wish to know if it is a good day to play tennis. Neither

sites wants to share their forecasts, but are willing to collaborate to offer a “good

tennis day” service. The classification tree is shown in Figure 3.6(b), with S1 and S2
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corresponding to the site having information on that node. If today is sunny with

normal humidity, high temperature, and weak wind; classification would proceed as

follows: We know that Site 1 has the root node (we don’t need to know anything else).

Site 1 retrieves the attribute for from S1L1: Outlook. Since the classifying attribute

is outlook, and Site 1 knows the forecast is sunny, the token S2L2 is retrieved. This

indicates that the next step is at Site 2. Site 2 is called with the token S2L2, and

retrieves the attribute for S2L2: Humidity. The humidity forecast is normal, so the

token S2L4 is retrieved. Since this token is also present at Site 2, it retrieves the

class value for nodeId S2L4 and returns it: we receive our answer of “Yes”.

3.5.3 Security Analysis

We first analyze the security of the constituent algorithms, then the security of the

complete algorithm. Although it may seem that some of the constituent algorithms

leak a large quantity of information, in the context of the full algorithm the leaked

information can be simulated by knowing the distribution counts at each node, so

overall privacy is maintained.

Lemma 3.5.1 Algorithm 9 reveals nothing to any site except whether the total num-

ber of attributes left is 0.

Proof. The algorithm has two basic phases: The sum (through Pk), and the

comparison between Pk and P1. We start with the sum: simulating the messages

received at lines 2 and 7. The value received by Pi at these steps is

r +
i−1
∑

j=1

AttRemj mod m

We will simulate by choosing a random integer uniformly from 0 . . .m − 1 for r′.

We now show that the probability that the simulated r′ = x is the same as the

probability that the messages received in the view = x.

Pr{V IEWi = x} = Pr{x = r +
i−1
∑

j=1

AttRemj mod m}
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= Pr{r = x−
i−1
∑

j=1

AttRemj mod m}

=
1

m

= Pr{Simulatorir
′ = x}

The key to the second and fourth lines is that arithmetic is mod m. r and r′ are

chosen uniformly from 0 . . .m− 1, so the probability of hitting any particular value

in that range is 1/m.

Simulating the message received by Pk at line 11 is simple: Secure encryption

gives messages where the distribution is independent of the key/message, so a selec-

tion from this distribution of possible encrypted messages simulates what Pk receives.

The messages received by P1 are more difficult. The problem is that if r = r′,

Ek(r
′) must be such that when encrypted with E1 it is equal to Ek(E1(r)). For this,

the simulator requires the ability to decrypt (as in the set intersection proof). The

simulator computes m = D1(Ek(E1(r)) = Ek(r). If r = r′, this is the message used

to simulate Ek(r
′). If not, a random message 6= m is chosen, as in the simulator for

Pk.

Lemma 3.5.2 Algorithm 10 reveals only the count of instances corresponding to all

combinations of constraint sets for each class.

Proof. The only communication occurs at line 7 which consists of a call to Al-

gorithm 17 (Cardinality of Set Intersection). This reveals only the size of the inter-

section set for all subsets of Yi, which are the counts revealed. By application of the

composition theorem (2.3.1), with Algorithm 10 being g and Algorithm 17 being f ,

Algorithm 10 is secure.

Lemma 3.5.3 Algorithm 11 finds if all transactions have the same class, revealing

only the class distributions described in Lemma 3.5.2.

Proof. Line 1 is an invocation of Algorithm 10; the security of which has been

discussed. Everything else is computed locally, and can be simulated from the knowl-

edge from Lemma 3.5.2.
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Lemma 3.5.4 Algorithm 13 reveals nothing except the counts S, Sai
, and the con-

stituent subcounts described in Lemma 3.5.2 for each attribute value ai and class j,

assuming the number of distinct class values is known.

Proof. The only messages received are at lines 1 and 5, invocations of the

DistributionCounts() function. Applying the composition theorem to these, Al-

gorithm 13 is secure.

Lemma 3.5.5 Algorithm 12 finds the site with the attribute having the maximum

information gain while revealing only the best information gain at each site and the

information discussed in Lemma 3.5.4.

Proof. Communication occurs at lines 4 and 11. Line 4 consists of an invocation

of Algorithm 13. Line 11 is implemented by letting the site compare all the values;

revealing the value of the best information gain at each site. Assuming this is revealed

(part of the input to the simulator), it is trivially simulated. Repeated application

of the composition theorem completes the proof.

Further reduction of the information revealed is possible by using a secure protocol

for finding the maximum among a set of numbers. This would reveal only the site

having the attribute with the maximum information gain and nothing else.

Theorem 3.5.1 Algorithm 14 computes the decision tree while revealing only:

• The distribution subcounts of each node, as described in Lemma 3.5.2. (The full

counts, and some of the subcounts, can be computed knowing the distribution

counts at the leaves.)

• The best information gain from each site at each interior node (as discussed

above, this leak can be reduced.)

Proof. Knowing the final tree, the simulator at each site can uniquely determine

the sequence of node computations at a site and list the function calls occurring due
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to this. Given this function call list, if the messages received in each function call

can be simulated, the entire algorithm can be proven to be secure.

Line 1 is an invocation of Algorithm 9. The result is simulated as either true or

false depending on whether the node in question is a leaf node in the final tree or

not.

Line 3 is an invocation of Algorithm 10. The actual counts are given by the

counts in the leaf node, which are known to the site Pk that invoked the algorithm.

The subcounts revealed by Algorithm 10 are presumed known.

Line 7 is an invocation of Algorithm 11. If the node in question is not a leaf node

in the final tree, the result is false. Otherwise the result is the nodeId of the leaf

node.

Line 10 consists of an invocation of Algorithm 12. The result is actually equal

to the Site which will own the child node. This information is known from the tree

structure. The subcounts and information gain values revealed during this step are

presumed known.

Line 15 is a recursive invocation that returns a node identifier; a part of the tree

structure.

Since all of the algorithms mentioned above have been proven secure, applying

the composition theorem, Algorithm 14 is secure. The repeated invocations of the

cardinality of set intersection protocol (Algorithm 17) are valid because in each

invocation, a new set of keys are chosen. This ensures that messages cannot be

correlated across calls.

Theorem 3.5.2 Algorithm 15 reveals nothing other than the leaf node classifying

the instance.

Proof. All the computations are local. The only information passed between

various sites are node identifiers. This list of node identifiers can be easily simulated

from the classification tree once the final leaf is known.
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3.5.4 Computation and Communication Analysis

The communication/computation analysis depends on the number of transac-

tions, number of parties, number of attributes, number of attribute values per at-

tribute, number of classes and complexity of the tree. Assume that there are: n

transactions, k parties, c classes, r attributes, p values per attribute (on average),

and q nodes in final classification tree. We now give a rough analysis of the cost

involved in terms of the number of set intersections required for building the tree

(erring on the conservative side).

At each node in the tree the best classifying attribute needs to be determined.

To do this, the entropy of the node needs to be computed as well as the information

gain per attribute. Computing the entropy of the node requires c set intersections

(1 per class). Computing the gain of one attribute requires cp set intersections

(1 per attribute value and class). Thus, finding the best attribute requires cpr

set intersections. Note that this analysis is rough and assumes that the number

of attributes available at each node remains constant. In actuality, this number

linearly decreases with the depth of the node in the tree (this has little effect on our

analysis). In total, every node requires c(1 + pr) set intersections. Therefore, the

total tree requires cq(1 + pr) set intersections.

The intersection protocol requires that the set of each party be encrypted by

every other party. Since there are k parties, k2 encryptions are required and k2

sets are transferred. Since each set can have at most n transactions, the upper

bound on computation is O(nk2) and the upper bound on communication cost is

also O(nk2 ∗ bitsize) bits.

Therefore, in total the entire classification process will require O(cqnk2(1 + pr)

encryptions and cqnk2(1+pr)∗bitsize bits communication. Note that the encryption

process can be completely parallelized reducing the required time by an order of k.

Once the tree is built, classifying an instance requires no extra overhead, and is

comparable to the original ID3 algorithm.
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3.6 Outlier Detection

In the broadest sense, an outlier is an observation that lies an abnormal distance

from other values in a random sample from a population. This definition leaves it up

to the analyst (or a consensus process) to decide what will be considered abnormal.

Before abnormal observations can be singled out, it is necessary to characterize

normal observations. The goal of outlier detection is to find all outliers in the input

data.

Outlier detection has wide application; one that has received considerable atten-

tion is the search for terrorism. Detecting previously unknown suspicious behavior

is a clear outlier detection problem. The search for terrorism has also been the

flash point for attacks on data mining by privacy advocates; the U.S. Terrorism

Information Awareness program was killed for this reason [57].

Outlier detection has numerous other applications that also raise privacy con-

cerns. Mining for anomalies has been used for network intrusion detection [10, 56];

privacy advocates have responded with research to enhance anonymity [41,79]. Fraud

discovery in the mobile phone industry has also made use of outlier detection [34];

organizations must be careful to avoid overstepping the bounds of privacy legisla-

tion [30]. Privacy-preserving outlier detection will ensure these concerns are bal-

anced, allowing us to get the benefits of outlier detection without being thwarted by

legal or technical counter-measures.

We focus specifically on Distance Based Outliers. Knorr and Ng [53] define

the notion of a Distance Based outlier as follows: An object O in a dataset T is a

DB(p,dt)-outlier if at least fraction p of the objects in T lie at distance greater than dt

from O. Other distance based outlier techniques also exist [54, 78]. The advantages

of distance based outliers are that no explicit distribution needs to be defined to

determine unusualness, and that it can be applied to any feature space for which

we can define a distance measure. We assume Euclidean distances, although the

algorithms are easily extended to general Minkowski distances.
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3.6.1 Basic Approach

The problem is to find distance-based outliers without any party gaining knowl-

edge beyond learning which items are outliers. Ensuring that data is not disclosed

maintains privacy, i.e., no privacy is lost beyond that inherently revealed in know-

ing the outliers. Even knowing which items are outliers need not be revealed to all

parties, further preventing privacy breaches.

The approach duplicates the results of the outlier detection algorithm of [53]. The

idea is that an object o is an outlier if more than a percentage p of the objects in the

data set are farther than distance d from o. The basic idea is that parties compute the

portion of the answer they know, then engage in a secure sum to compute the total

distance. The key is that this total is (randomly) split between sites, so nobody

knows the actual distance. A secure protocol is used to determine if the actual

distance between any two points exceeds the threshold; again the comparison results

are randomly split such that summing the splits (over a closed field) results in a 1 if

the distance exceeds the threshold, or a 0 otherwise.

For a given object o, each site can now sum all of its shares of comparison results

(again over the closed field). When added to the sum of shares from other sites,

the result is the correct count; all that remains is to compare it with the percentage

threshold p. This addition/comparison is also done with a secure protocol, revealing

only the result: if o is an outlier.

3.6.2 Algorithm

We now present an algorithm for Distance Based Outliers meeting the definition

given of Knorr and Ng [53]. As discussed earlier, the algorithm is based on the

obvious one: Compare points pairwise and count the number exceeding the distance

threshold. The key is that all intermediate computations (such as distance compar-

isons) leave the results randomly split between the parties involved; only the final

result (if the count exceeds p%) is disclosed.
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Note that to obtain a secure solution, all operations are carried out modulo some

field. We will use the field D for distances, and F for counts of the number of entities.

The field F must be over twice the number of objects. Limits on D are based on

maximum distances; details on the size are given with each algorithm.

For each object i, the protocol iterates over every other object j. Each party can

compute a share of the pairwise distance locally; the sum of these shares is the total

distance. However, the distance must not be revealed, so a secure protocol is used to

get shares of the pairwise comparison of distance and threshold. A second protocol

allows comparing the shares with the threshold, returning 1 if the distances exceeds

the threshold, or 0 if it does not. The key to this second protocol is that the 1 or

0 is actually two shares m0 and mk−1, such that m0 + mk−1 = 1 (or 0) (mod F ).

From one share, a party learns nothing.

These shares are added to the running total kept at parties P0 and Pk−1. Once

all points have been compared, the parties sum their shares. Since the shares add

to 1 for distances exceeding the distance threshold, and 0 otherwise, the total sum

(mod F ) is the number of points for which the distance exceeds the threshold. P0 and

Pk−1 finally in a secure protocol that reveals only if the sum of the shares exceeds p%.

This ensures that no party learns anything except whether the point is an outlier.

An interesting side effect of this algorithm is that the parties need not reveal any

information about the attributes they hold, or even the number of attributes. Each

party locally determines the distance threshold for its attributes (or more precisely,

the share of the overall threshold for its attributes). Instead of computing the local

pairwise distance, each party computes the difference between the local pairwise

distance and the local threshold. If the sum of these differences is greater than 0,

the pairwise distance exceeds the threshold.

Algorithm 16 gives the full details.

In steps 5–9, the sites sum their local distances. The random x added by P0 masks

the distances from each party. In steps 11–18, Parties P0 and Pk−1 get shares of the

pairwise comparison result. The comparison is a test if the sum is greater than
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Require: k parties, P0, . . . , Pk−1; each holds a subset of the attributes for all objects
O.

Require: dtr : local distance threshold for Pr.
Require: Fields D larger than twice the maximum distance, F larger than |O|
1: for all objects oi ∈ O do
2: m′

0 ← m′
k−1 ← 0 (mod F )

3: for all objects oj ∈ O, oj 6= oi do
4: P0: Randomly choose a number x from a uniform distribution over the field

D; x′ ← x
5: for r ← 0, . . . , k − 2 do
6: At Pr: x′ ← x′ + Distancer(oi, oj) − dtr (mod D) {Distancer is local

distance at Pr}
7: Pr sends x′ to Pr+1

8: end for
9: At Pk−1: x′ ← x′ + Distancek−1(oi, oj)− dtk−1 (mod D)

10: {Using the secure comparison protocol (Section 4.5)}
11: P0 ← m0 and Pk−1 ← mk−1 such that:
12: if 0 < x′ + (−x) (mod D) < |D|/2 then
13: m0 + mk−1 = 1 (mod F )
14: else
15: m0 + mk−1 = 0 (mod F )
16: end if
17: At P0: m′

0 ← m′
0 + m0 (mod F )

18: At Pk−1: m′
k−1 ← m′

k−1 + mk−1 (mod F )
19: end for
20: {Using the secure comparison of Section 4.5}
21: P0 ← temp0 and Pk−1 ← tempk−1 such that:
22: if m′

0 + m′
k−1 (mod F ) > |O| ∗ p% then

23: temp0 + tempk−1 ← 1 {oi is an outlier}
24: else
25: temp0 + tempk−1 ← 0
26: end if
27: P0 and Pk−1 send temp0 and tempk−1 to the party authorized to learn the

result; if temp0 + temp1 = 1 then oi is an outlier.
28: end for

Algorithm 16: Finding DB(p,D)-outliers
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0 (since the threshold has already been subtracted.) The random split of shares

ensures that nothing is learned by either party. These two parties keep a running

sum of their shares. At the end, in steps 21–26, these shares are added and compared

with the percentage threshold. Both parties get a share of the result. Finally, the

shares are sent to the appropriate party that is authorized to know the result. This

party can sum up the shares and determine if the point is an outlier. Thus, only

that party (e.g., a fraud prevention unit) learns if oi is an outlier, the others learn

nothing.

Theorem 3.6.1 Proof of Correctness: Algorithm 16 correctly returns as output the

complete set of points that are global outliers.

Proof. In order to prove the correctness of Algorithm 16, it is sufficient to prove

that a point is reported as an outlier if and only if it is truly an outlier. Consider

point q. If q is an outlier, in steps 12–16 for at least p% ∗ |O|+1 of the other points,

m0 + mk−1 = 1 (mod F ). Since |F | > |O|, it follows that m′
0 + m′

k−1 > |O| ∗ p%.

Therefore, point q will be correctly reported as an outlier. If q is not an outlier, the

same argument applies in reverse. Thus, in steps 12–16 at most p% ∗ |O| − 1 points,

m0 + mk−1 = 1 (mod F ). Again, since |F | > |O|, it follows that m′
0 + m′

k−1 ≤

|O| ∗ p%. Therefore, point q will not be reported as an outlier.

3.6.3 Security Analysis

Theorem 3.6.2 Algorithm 16 returns as output the set of points that are global

outliers while revealing no other information to any party, provided parties do not

collude.

Proof. All parties know the number (and identity) of objects in O. Thus they

can set up the loops; the simulator just runs the algorithm to generate most of the

simulation. The only communication is at lines 7, 11, 21, and 27.
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Step 7: Each party Ps sees x′ = x+
∑s−1

r=0 Distancer(oi, oj), where x is the random

value chosen by P0. Pr(x′ = y) = Pr(x +
∑s−1

r=0 Distancer(oi, oj) = y) = Pr(x =

y −
∑s−1

r=0 Distancer(oi, oj)) = 1
|D|

. Thus we can simulate the value received by

choosing a random value from a uniform distribution over D.

Steps 11 and 21: The simulator for party P0 (respectively Pk−1) again chooses

a number randomly from a uniform distribution, this time over the field F . By

the same argument as above, the actual values are uniformly distributed, so the

probability of the simulator and the real protocol choosing any particular value

are the same. Since a circuit for secure comparison is used, using the composition

theorem, no additional information is leaked and steps 11 and 21 are secure.

Step 27: Since the final party knows the results (1 if oi is an outlier, 0 otherwise),

temp0 is simulated by choosing a random value, temp1 = result (1 or 0) −temp0 mod

F . By the same argument on random shares used above, the distribution of simulated

values is indistinguishable from the distribution of the shares.

The simulator clearly runs in polynomial time (the same as the algorithm). Since

each party is able to simulate the view of its execution (i.e., the probability of any

particular value is the same as in a real execution with the same inputs/results) in

polynomial time, the algorithm is secure with respect to Definition 2.3.1.

While the proof is formally only for the semi-honest model, it can be seen that a

malicious party in isolation cannot learn private values (regardless of what it does,

it is still possible to simulate what it sees without knowing the input of the other

parties.) A malicious party can cause incorrect results, but it cannot learn private

data values. Step 7 is particularly sensitive to collusion, but can be improved (at

cost) by splitting the sum into shares and performing several such sums (see [50] for

more discussion of collusion-resistant secure sum).
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3.6.4 Computation and Communication Analysis

Algorithm 16 suffers the drawback of having quadratic computation complexity

due to the nested iteration over all objects. While the Knorr and Ng [53] algorithm is

worst-case quadratic, it stops comparing a point to others as soon as it is determined

not to be an outlier. However, such early termination in a secure algorithm would

reveal that the point is close to at least (1− p)% ∗ |D| of the points to which it had

been compared.

Due to the quadratic complexity, Algorithm 16 requires O(n2) secure comparisons

(steps 10-16). While operation parallelism can be used to reduce the round com-

plexity of communication, the key practical issue is the computational complexity of

the encryption required for the secure comparison and scalar product protocols.

When there are three or more parties, assuming no collusion, we can develop

much more efficient solutions that reveal some information. While not completely

secure, the privacy versus cost tradeoff may be acceptable in some situations. We

cannot simply ask one party to take the shares and do the comparisons. Since all

of the parties share all of the points, partial knowledge about a point does reveal

useful information to a party. Instead, one of the remaining parties is chosen to play

the part of completely untrusted non-colluding party. With this assumption, a much

more efficient secure comparison algorithm has been postulated by Cachin [16] that

reveals nothing to the third party. The algorithm is otherwise equivalent, but the

cost of the comparisons is reduced substantially.
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4 PRIMITIVES DEVELOPED

This chapter describes building block primitives developed as part of this disser-

tation. Each following section describes a single primitive. Each section typically

consists of 4 subsections –

1. Subsection 1 defines the problem to be solved.

2. Subsection 2 outlines the solution protocol.

3. Subsection 3 analyzes the communication and computation complexity of the

protocol.

4. Subsection 4 provides a security analysis of the protocol.

In a few cases, different primitives solve the same problem in a different manner.

In these cases, for brevity, the problem definition of the following primitives merely

refers to the problem definition of the first primitive.

The final section of the chapter provides a comparative look at the protocols and

discusses possible advantages/disadvantages with using any of them as constituent

protocols in a global algorithm.

4.1 Securely Computing the Size of Set Intersection

The three or more party association rule mining algorithm (Section 3.2) requires

computing the size of the intersection set of local sets. Apart from this, it is an

interesting problem in its own right. Along with our work, there has been other

concurrent work solving this problem [3, 37]. Agrawal et. al’s solution [3] is similar

to ours except that their solution is limited to two semi-honest parties (intersection

of two sets). Freedman et al. [37] propose a completely different solution involving
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the formulation of polynomials by one party and their evaluation by another. This

solution is very efficient in terms of round and communication complexity. However,

in terms of computation complexity, it is not scalable to the sizes required for data

mining (since some of the assumptions used in their analysis no longer hold).

4.1.1 Problem Definition

Assume k > 2 parties, P0, . . . , Pk−1. Each party Pi has set Si ⊆ U chosen from

a common global universe. The problem is to securely compute the size of the

intersection set, | ∩k−1
i=0 Si|.

4.1.2 Algorithm / Protocol

A quick overview of the algorithm idea, along with several needed definitions are

now given, before presenting the entire protocol.

Algorithm Idea

The key idea behind the algorithm is simple. It is not necessary to have the

actual set elements to compute the cardinality of the intersection set. Instead, the

parties jointly generate a mapping from U that no party knows in its entirety. The

mapping is used to transform the sets Si, then the intersection is performed on

the transformed sets. Since no party knows the mapping, they cannot reverse the

mapping to find the value of any element.

A secure keyed commutative hash function can be used to perform such a map-

ping, and has other properties that will be useful in proving the security properties

of the algorithm. We now formally define such a hash function.
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Commutative One-way Hash Functions

The definitions of properties used below are collated from [62].

Definition 4.1.1 A commutative keyed one way hash function (CKHF) is a func-

tion hk, parameterized by a secret key k, with the following properties:

1. ease of computation – for a known function hk, given a value k and an input

x, it is easy to compute hk(x).

2. 2nd-preimage resistance – it is computationally infeasible to find a second input

that has the same output as any specified input, i.e., given x, to find a 2nd-

preimage x′ 6= x such that h(x) = h(x′).

3. collision resistance – it is computationally infeasible to find any two distinct

inputs x, x′ that hash to the same output, i.e., h(x) = h(x′). A stronger form

of collision resistance is to require ∀x 6= x′, h(x) 6= h(x′).

4. commutative hashing – given two instances of a keyed hash function hk pa-

rameterized with 2 different keys k1 and k2 and an input x, hk1(hk2(x)) =

hk2(hk1(x)).

5. key non-recovery – given one or more text-hash pairs (xi, hk(xi)) for the same

k, it must be computationally infeasible to recover k.

A commutative public key encryption scheme such as Pohlig-Hellman can be used

to generate a hash function satisfying all our requirements. Each party generates its

own keypair (Ei, Di). The length in bits for the keypair is commonly agreed upon

and known to all parties (1024 bits is common today). The hash function hki
is

simply encryption with Ei. The decryption keys are not needed.

Algorithm

There are three stages to the protocol: hashing, initial intersection, and final

intersection. In the hashing stage, each party hashes (encrypts) its own items with its
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own key. The parties then pass the set to their neighbor to be hashed. This continues

until all sets have been encrypted by all keys. Since hashing is commutative, the

resulting values from two different sets will be equal if the original values were the

same (i.e., the item was present in both sets). Collision resistance ensures that this

will happen only if the original values were the same.

In the initial intersection stage, each party sends the set it has to all parties

except its right neighbor, the original owner of the set. All parties then compute the

intersection of all the sets received. If the size of this intersection is less than a user-

determined threshold r, the protocol is aborted. This is to avoid probing attacks;

an attempt to probe for the existence of a particular item in the set gives at best a

probability 1/r estimate of its existence. (A party whose items are all present in the

intersection also learns of the existence of particular items, but this is an unavoidable

artifact of the result. Revealing that an individual is one of a sufficiently large group

is often viewed as sufficient protection of privacy [81]; this also gives a floor for r.)

In the final stage, the intersections are sent to the right neighbor. The final result is

the size of the intersection of the received set with the one generated in the initial

intersection stage. A complete description of the algorithm is given as Protocol 17.

We now give additional clarification of the algorithm.

Hashing In this stage the sets of all the parties are hashed by all parties. Since

each party hashes with a key known only to itself, and the order of items is

randomly permuted, no other party can determine the mapping performed by

the previous party.

Initial Intersection In this stage, every party finds the intersection of all sets

except its own. The hashing prevents learning the actual values corresponding

to the hashed items received. The reason a site does not get its own set is to

prevent probing attacks: a site could initially generate a singleton set to probe

if that item existed at another site, i.e., if the intersection of its set with that
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Require: k > 2 sites, each having a local set Si

Require: Maximum local set size m, and threshold r used to protect against probing
for all sites i {Parallel operations} do

Generate the hash key Ei

for j = |Si| to m do
Si ← Si∪{prefix not in U.i.j} {Pad Si with items that will be unique to that
site and cannot contribute to the intersection.}

end for

{Stage 1 – Hashing}
M ← EncryptAndPermute(Si, Ei)
send M to site i + 1 mod k

for p = 1 . . . k − 2 do
M ′ ← receive from site i− 1 mod k
M ′′ ← EncryptAndPermute(M ′, Ei)
send M ′′ to site i + 1 mod k

end for

M ′ ← receive from site i− 1 mod k
M ′′ ← EncryptAndPermute(M ′, Ei)
send M ′′ to all sites except site i + 1 mod k

{Stage 2 – Initial Intersection of sets and check for probing}
TSj ← receive from site j, j 6= i− 1
TS ′

i ← ∩
k−1
p=0,p 6=i−1TSp

if |TS ′
i| < r then

broadcast ABORT {Detect/prevent probing}
else

{Stage 3 – Final Intersection to compute Final Result}
Send TS ′

i to party i + 1 mod k
Receive TS ′

i−1 mod k from party i− 1 (mod k)
TS ′

i ← TS ′
i ∩ TS ′

i−1 mod k

return |TS ′
i|

end if
end for

Protocol 17: Securely computing size of intersection set
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Function EncryptAndPermute(Set M , Key Ek)

Require: M is the input array to be hashed, Ek is the hash key

C ← ∅

for all j ∈M do

C ← C ∪ {Ek(j)} ;

end for

randomly permute C to prevent tracking values

return C

of another site is empty or of size 1. Aborting prevents probes for sets of size

less than r.

This also shows the reason that we require k > 2 parties. With two parties, no

intersection could be performed without access to the hashed values of one’s

own set. This prevents the probe detection/prevention.

Final Intersection Each party sends the remaining piece of the puzzle to its left

neighbor. This enables all parties to compute the final intersection and find

the final result, viz. the cardinality of the total intersection set.

The collision resistance property of the hash function ensures that no collisions

can occur. Thus the algorithm clearly generates the correct result for the size of

the intersection set. A similar technique was used by Agrawal et al. [3] to compute

intersection, equijoin, intersection size and equijoin size. However, their technique is

limited to two parties and to semi-honest adversaries.

4.1.3 Communication and Computation Analysis

Communication protocols of this type are generally analyzed either based on the

communication cost or number of encryptions performed. The encryption cost is

entirely contained in Stage 1: Each party hashes every item once, giving k2 ∗ m
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encryptions. The inherent parallelism gives a factor of k speedup, for a computation

time cost of k ∗m.

The communication cost for a single party is as follows. In stage 1, a set of

size m is transmitted in each of the first k − 1 rounds. In round k, a set is sent

to k − 2 of the other parties. Assuming no multicast this requires 2k − 3 messages

of m ∗ hashed item size bits. Stage 2 requires no transmission (except possibly a

broadcast ABORT). In Stage 3, a message is sent containing the intersection of all

but one party. This message is at most size m hashed items, but would typically be

closer to the lower bound of |S| items. Thus, neglecting abort, each site sends 2k−2

message of at most size m ∗ hashed item size bits.

The entire protocol is symmetric, so all of the parties transmit equal amounts of

data. So, to calculate the total communication cost, we simply multiply the single

party cost by k. Thus, the upper bound on the total communication cost of the

algorithm is

k ∗ (2k − 2) = O(k2) messages

k ∗ (2k − 2) ∗m ∗ hashed item size = O(k2m) bits

k rounds

The factor of m can be reduced to |Si|, at the cost of revealing the size of each

site’s set. This is done by skipping the padding to size m step at the beginning of

Protocol 17. As this is likely to be more sensitive than the sizes of intersections, we

have detailed the more secure version.

4.1.4 Security Analysis

The intersection algorithm described above clearly calculates the size of the in-

tersection set without revealing what items are present in any set. However, it is

not quite secure based on the standard of Definition 2.3.1. In addition to the size

of the complete set intersection, the parties can learn the size of the intersection of

subsets of the entire group. Specifically, for any set C ⊆ {0, . . . , k−1}∗ such that i 6∈

C, |C| ≥ 2, party i can compute | ∩j∈C Sj |.
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By acknowledging that these subset intersection sizes are revealed, we can prove

that nothing else is disclosed by Protocol 17. We effectively augment the result with

the “leaked information”. We then show how to build a polynomial time simulator

for the view of every party using only the augmented output for that party and their

own input.

Theorem 4.1.1 Protocol 17 privately computes the size of the intersection set |S| =

|∩k−1
p=0Sp|. Site i learns at most |∩p∈C Sp|, ∀C ⊆ {0, . . . , k−1}∗ such that i 6∈ C, |C| ≥

2. If | ∩p=0,...,i−2,i,...,k−1 Sp| ≥ r it learns that value and the final result |S|.

Proof. Since the protocol is symmetric, proving that the view of one party can

be simulated with its own input and output suffices to prove it for all parties. We

now show how to simulate the messages received by party i. Given these, it uses its

own input and hash key to simulate the rest of its view by running the appropriate

parts of Protocol 17. The protocol consists of three stages. The initialization phase

can be done based on i’s own input, so we begin with the messages received in Stage

1.

Stage 1 At each step of this stage, party i receives a new local set from part i −

1 mod k. However, each item in each of these sets has been hashed (encrypted). The

preimage resistance, collision resistance, and key non-recovery properties combine to

ensure that the distribution of the hashed values (as the key changes) is independent

of the distribution of the data. This allows us to state that the values in these sets

are computationally indistinguishable from numbers chosen from a uniform random

distribution. We can simulate the received set M ′ by randomly choosing m values

uniformly distributed over the domain of the hash function E.

This allows us to simulate a single M ′. Each M ′ seen by i is hashed by a different

set of keys, i.e., the first is hashed with Ei−1(x), the second by Ei−1(Ei−2(x)), etc.

(For brevity we drop the mod k, it should be assumed in all index computations.)

Regardless of any relationship between items in Si−1 and Si−2, the different hashes
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and permutation ensure that i sees no relationship. Therefore, the argument that

randomly choosing values allows us to simulate M ′ extends to the set of all k−1 M ′

sets.

Stage 2 Party i now receives k−1 sets TSj, corresponding to the fully hashed sets

from all but party i. TSi is the last M ′′ generated in Stage 1, and is simulated with

the final M ′′ generated in the simulation of Stage 1. While the hashing/encryption

guarantees that any single item in these sets is equally likely to come from anywhere

in the domain of E, we can not simply generate random values for the other TSj.

The problem is the need to simulate intersections. Since all parties have hashed

all items, and because the hashing is commutative, if Sg and Sh have an item in

common, then TSg−1 and TSh−1 will also have an item in common.

To simulate this, we take advantage of knowing | ∩p∈C Sp|. The simulator first

generates a directed acyclic graph from these intersection sizes, and uses this to

calculate the number of items that should be common at each node. It then does

a breadth-first traversal, generating the required number of items at each node and

placing the items in the leaf sets reachable from that node. “Generating” an item

happens in two ways: When TSi is one of the reachable leaves, an item is chosen

(without replacement) from TSi. Otherwise, a random value from the domain of E

is used.

A detailed description of this process is given as Simulator 1. A demonstration

of the simulation algorithm for three parties is given in Figure 4.1.

Party i can now generate TS ′
i and determine if it should send an ABORT message.

It also knows if it should receive an ABORT, as this is part of the result. If the result

is not an ABORT, we must simulate Stage 3.

Stage 3 Party i now receives TS ′
i−1. Since |TS ′

i−1| ≥ r, i is allowed to learn the size

of this set (i is not probing). This set is simulated by choosing |S| items from TS ′
i,

and randomly choosing |TS ′
i|−|S| from the domain of E. The encryption arguments
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Generate the hierarchical directed graph G connecting all of the intersection sets
to their immediate descendents.

• {0, . . . , i− 1, i + 1, . . . , k − 1} is the root,

• All sets with k − 2 elements are level 2,

• . . .

• All 2-sets are at level k − 2,

• {1}, . . . , {i − 1}, {i + 1}, . . . , {k − 1} (i.e. sets for all parties other than i)
are leaves at level k − 1,

• An edge is added from p to c if c is a subset of the set represented by p
obtained by removing one number.

Each node n is assigned the size of the corresponding intersection set | ∩p∈n Sp|,
nodes at level k − 1 are assigned m.
for l = 1..k − 1 do

for all nodes p at level l do
if i ∈ p then

items← remove p.size items from M ′′

else
items← remove p.size items from (domain of E −M ′′)

end if
for all TSj , j ∈ p do

TSj ← TSj ∪ items
end for
for all c child of n do

c.size← c.size − p.size
end for

end for
end for

Simulator 1: GenInput: Generating Input Sets for Party i
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Figure 4.1. Building the simulated input set
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used for Stage 1 still hold to protect the value of the items, and the known “leaked”

information is sufficient to perform the simulation.

Definition 2.3.1 requires that this simulation be polynomial time. Stages 1 and 3

are clearly polynomial. Stage 2 requires construction and breadth-first traversal of

a graph consisting of all powersets of k− 1 nodes. The graph is exponential in k, an

apparent conflict. However, the requirement is that the simulation be polynomial in

the size of the input m, we can treat k as fixed. In the graph traversal of Algorithm 1,

we generate k∗m items to fill the leaves. Since generating each item (either choosing

an item from TSi or randomly generating one) is polynomial, and we perform one

such operation for each item in the input, the simulation is polynomial.

The definitions we have given are for the semi-honest model: parties follow the

protocol, but may try to learn additional details from what they see during the

execution. The malicious model for Secure Multiparty Computation looks at the case

where parties may not play by the rules. Protocol 17 does not quite meet malicious

standards, as a malicious party can cause incorrect results without detection. From

the proof of Theorem 4.1.1 we can see that the disclosure properties do hold in the

face of a malicious party. No party sees information hashed with the same set of keys

twice, so altering an outgoing message to learn how it is hashed would not enable

learning anything from an incoming message. This is true as long as there is no

collusion between parties. However, if two parties collude, they could jointly mount

a probing attack by returning each party’s fully hashed items to that party.

4.2 A More Efficient Set Intersection Protocol

The symmetric algorithm we have presented in section 4.1 is simple and proven

effective at controlling the disclosure of information. We now present a more com-

plex variant that gives asymptotically improved performance in number of rounds,

number of messages, and total number of bits transmitted. It also provides a prac-
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tical improvement in information disclosure; the same total information is disclosed,

but each party only sees a piece of that information.

4.2.1 Problem Definition

The problem to be solved is the one defined in Section 4.1.1.

4.2.2 Algorithm / Protocol

The key insight behind this protocol is to overlap the hashing and intersection

phases. Note that any arbitrary parenthesization of the intersection expression still

gives the same result.

S0 ∩ S1 ∩ . . . ∩ Sk

≡

(. . . (S0 ∩ S1) ∩ S2) ∩ . . . ∩ Sk)

≡

(S0 ∩ S1) ∩ (S2 ∩ S3) ∩ . . . ∩ (Sk−1 ∩ Sk)

The second observation is that it is not necessary to hash every set with all keys before

intersecting the sets. Any time two items have been hashed by the same set of keys,

they can be tested for equality. With careful ordering of the hashing we can perform

the innermost intersections early. Repeating this at each level, the intersections can

be carried out in the form of a binary tree, reformulating the intersection as

(. . . (log k)− 1 . . . ((S0 ∩ S1) ∩ (S2 ∩ S3)) ∩ . . . ∩ (Sk−1 ∩ Sk) . . . log k . . .)

The difficulty is with carrying out intersections of two sets. As pointed out in

Section 4.1.2, a party that sees the hashed results of its own set can probe, requiring

at least three parties to perform the intersection. The solution is to use a party from

the opposite side of the tree as this third party. Each party hashes its set and sends

it to its “intersection partner”. The partner hashes it, and both send them to the
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5: C intersects both sets it receives to get the result
4: B encrypts and sends its set to C
3: A encrypts and sends its set to C

4: Eb(Ea(Y))3: Ea(Eb(X))

2: B sends its key, Eb, to A
1: A sends its key, Ea, to B

2: Eb

1:Ea

5

B

C

A

Figure 4.2. A single binary set intersection using a third party

parent third party. The third party performs the intersection. An example of this is

given in Figure 4.2.

Each parent now has the intersection of the sets of its children, hashed with the

keys of its children. To compute the intersection with its sibling, it must hash these

items with the keys of its sibling’s children. Since it does not see any items from

its sibling’s children, it gains no information by having these keys. Once this is

complete, the siblings can send their intersections up the tree to compute the next

level of intersection. This process is repeated until the root is reached, giving the

final intersection. This process is illustrated in Figure 4.3. The complete algorithm

is given in Protocol 18, and depicted graphically in Figure 4.4.

Interior nodes are assigned so that no node is on the path from itself (as a leaf)

to the root. This avoids any information leak based on knowing the size of the

intersection of one’s own set with any subset of other nodes. (The root is the only

node to learn the size of a subset containing its own set, but this subset contains
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2: n leaves send their encryption keys E’1 .. E’n to A

5: C intersects what it has received from both A and B to get the result

5

Y1X1 Xm

A B

C

Yn

1: m leaves send their encryption keys E1 .. Em to B

4: B applies all encryption keys to its set and sends it to C
3: A applies all encryption keys to its set and sends it to C

1: E1 .. Em 2: E’1 .. E’n

4: E1(..(Em(E’1(..(E’n(Y1 ..       .. Yn)..)

U

3: E’1(..(E’n(E1(..(Em(X1 ..       .. Xm)..)

U

Figure 4.3. Higher-level set intersection
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2

Stage 1

Stage 2

Stage   (log   k)

A

k−2,..,k

1,..,k

1,2,3,4

k−1,kk−2,k−33,41,2

k−1A k4321 AAAA

Figure 4.4. A more efficient protocol

half the nodes.) If the number of parties is a power of two, they form a complete

tree with each party acting as both a leaf and at most once as an interior node.

Only k − 1 parties are needed to act as interior nodes. If the tree is not complete,

we can still make such an assignment provided k ≥ 4. Leaf nodes whose sibling is

not a leaf hash their own set with their own key, and with the keys of their sibling’s

children. The protocol then proceeds as normal. This eliminates the need for one

interior node from the leaves on the other side of the tree. Balancing the tree with

respect to these singleton nodes enables an assignment such that no node is on its

own path to the root.

Since the sets each parent receives are hashed with the same set of keys, the

commutative hashing property guarantees that the intersection of those sets will

be of the correct size. Associativity of intersection ensures that the order does not
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Require: k > 3 sites numbered 0 . . . k − 1, each having a local set Si

Require: Maximum local set size m, threshold r used to protect against probing
for all sites i do

Generate a binary tree with k leaves at levels log
2
(k) and log

2
(k)− 1. Even leaves are to the

left of root, odd to the right. If the tree is not complete, the lowest numbered nodes form the
lowest level.
Number non-leaf nodes as follows. 0 is root. The left-hand side is numbered with odd numbers
using a preorder traversal, the right side with even numbers.
{Each site now has an identical view of the tree.}
Generate the hash key Ei

for j = |Si| to m do

Si ← Si ∪ {prefix not in U.i.j} {Pad Si with unique items.}
end for

M ← EncryptAndPermute(Si, Ei)
if the sibling of i is a leaf then

Send Ei to sibling
E ← receive from sibling
M ← EncryptAndPermute(M, E)

end if

Send {Ei} to the sibling of the parent of leaf i

if the sibling of i is a leaf then

Send M to parent
end if

end for

{Nodes now act based on their “interior” position in the tree. For nodes whose sibling is not a
leaf, the interior and leaf positions are the same.}
for all sites i > 0 do

KeySeti ← receive key set from left child of interior node i of sibling
KeySeti ← KeySeti∪ receive key set from right child of sibling
if the sibling of i is a leaf {site i is also an interior node} then

Ml ← receive from left child
Mr ← receive from right child
M ←Ml ∩Mr

end if

if |M | < r then

Broadcast ABORT {Potential Probe}
else

for all E ∈ KeySeti do

M ← EncryptAndPermute(M, E)
end for

if parent of i is not 0 then

Send KeySeti to sibling of parent of interior node i

end if

Send M to parent of interior node i

end if

end for

if site is 0 then

Ml ← receive from left child, Mr ← receive from right child
Broadcast result |Ml ∩Mr|

end if

Protocol 18: Tree-based protocol for computing size of set intersection
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affect the result. An inductive argument shows that the protocol generates the

correct result.

Protocol 18 demonstrates another optimization. Instead of sending sets to be

hashed by other sites, a site sends its key. The numbering of the tree ensures that

no site sees items hashed with any key it knows (except root, which knows only its

own key and sees items hashed with that plus several others.) Thus, in the absence

of collusion, sending a key gives the receiver no additional information.

4.2.3 Communication and Computation Analysis

At first glance, the encryption cost appears similar to Protocol 17. Every item in

the final intersection is hashed with every key. However, duplicate items are filtered

out at higher levels. This reduces the number of items to be hashed. Leaf nodes

perform 2m encryptions. Lowest level parent nodes perform 2 additional encryptions

on every item in the intersection of their children; at most 2m. The next level must

hash with 4 keys. The level below the root ends up with k/2 keys. Multiplying by

the number of nodes at each level gives k ∗m encryptions at each level, for a worst

case total of (2k + k log2(k)) ∗ m encryptions. Parallelism gives some benefit, but

since the upper levels perform more encryptions the encryption time is still O(k∗m).

More important is the savings in number of rounds and messages. The number of

rounds of messages is one for the leaf key exchange, and ⌈log2(k)⌉ rounds of sending

key sets and hashed sets up the tree. The key exchange requires each leaf to send

one message of the number of bits in the hash key. (The one or two “extra” nodes

whose sibling is not a leaf are spared sending this message.) For each edge in the

tree there is one “hashed set” message and (except for the root) a corresponding

key set message, for a total of 2k− 4 messages. Each hashed set message is at most

m ∗ hashed item size bits. The key set messages grow as they grow up the tree; a

total of k ∗ hash key size bits are sent at each level.
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The overall communication cost of Protocol 18 is then:

3k − 4 = O(k) messages

k log2(k) ∗ hash key size + 2(k − 1)m ∗ hashed item size ≈ O(k ∗m) bits

⌈log2(k)⌉ = O(log k) rounds

This is a substantial improvement over the O(k2) messages, O(k2m) bits, and O(k)

rounds of Protocol 17.

The number of bits and number of encryptions is in practice a pessimistic esti-

mate. It is likely that the size of intersections will be significantly smaller than m,

and will rapidly approach |S|. While the asymptotic results do not change, the effect

of parallelism on the encryption cost is likely to improve significantly, as the majority

of encryptions occur only at the low levels. The set message sizes at higher levels will

also shrink, although each key transmission message will grow. Thus, the effective

total time to run the algorithm should be closer to O(m + log k) than O(m log k).

4.2.4 Security Analysis

Protocol 17 is symmetric, and reveals to all parties the intersections of any subset

of items except its own. Protocol 18 reveals the same type of information, however,

each site learns the intersection size of at most three subsets:

• | ∩p∈descendants Sp|

• | ∩p∈left descendants Sp|

• | ∩p∈right descendants Sp|

The total information revealed is considerably less, O(k) intersections as opposed to

O(2k). In addition, the limited amount revealed to any party enables an assignment

of parties to nodes based on trust and which specific intersections can be disclosed.

This gives considerable flexibility in meeting specific security policy goals.

Theorem 4.2.1 Protocol 18 privately computes the size of the intersection set |S| =

| ∩k−1
p=0 Sp|. Each site learns the final result, and if it serves as an interior node in the

tree it learns:
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• | ∩p∈descendants Sp|

• | ∩p∈left descendants Sp|

• | ∩p∈right descendants Sp|

Proof. The proof proceeds by simulating the view of a party i as it proceeds

through Protocol 18. The simulator effectively runs Protocol 18, all we need to show

is that the received messages can be simulated.

First, let us look at the case of an “extra” node: a leaf whose sibling is not a

leaf. These nodes (at most two, one odd and one even) serve in the same spot as a

leaf and interior node. If i is one of these nodes, it will receive the keys Ei−2 and

Ei−4. This is the only message it receives. Since these were not used to generate any

information i will receive, they can be simulated by randomly generating keys for the

hash function E. Protocol 18 generates the rest of the view for these nodes, except

for receiving the final result. As the result is known to the simulator, generating it

is trivial.

The remaining non-root nodes are slightly more complex, as they receive three

sets of messages. The first message received is the key of their sibling in their

position as a leaf. This is simulated by randomly generating a key for the hash

function E. The next are the two sets of keys of their sibling’s descendants based on

their position as an interior node. These are simulated by randomly generating keys

for the hash function E, the number of keys to generate is known from i’s position

in the tree. The final messages received by i are the intersection sets of i’s left and

right descendants. To simulate these, i takes advantage of three facts:

1. i knows the sizes |∩p∈left descendantsSp| and |∩p∈right descendantsSp| of the received

sets,

2. i knows the number of items the two sets have in common | ∩p∈descendants Sp|,

and

3. i has no knowledge of the keys used to hash the items in the sets.
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Using fact 2, the simulator for i generates |∩p∈descendantsSp| items, by randomly select-

ing items from a uniform distribution over the domain of E, and places them in both

the simulated Ml and Mr. Fact 1 is then used to complete Ml and Mr, by generating

| ∩p∈left descendants Sp| − | ∩p∈descendants Sp| to insert into Ml and | ∩p∈right descendants

Sp| − | ∩p∈descendants Sp| to insert into Mr.

The simulated sets Ml and Mr are now the same size as those seen in the actual

protocol, and their intersection contains the same number of items as those in the

actual protocol. Since i has no knowledge of the keys used to hash the items (fact 3),

security of hashing/encryption guarantees values in hashed sets are computationally

indistinguishable from values chosen from a uniform random distribution over the

domain of the hash function E. Therefore, the simulated view is computationally

indistinguishable from that seen by i during the actual execution of the protocol.

The argument for site 0, the root, is slightly different. The simulator is the same

as other interior nodes. This site receives only E2, the key of its sibling. It does see

items hashed with E2, as well as its own key E0, so fact 3 does not hold. However,

by the time it sees items hashed with E0 and E2, they have also been hashed with

(at least) E1. Since 0 does not know E1, the computational indistinguishability

argument still holds.

The simulator requires one key generation or selection of a random value from the

domain of E for each item in the received messages. The number of items is bounded

by the maximum set size m. Assuming key generation or random value selection is

polynomial in the size of the input, and that Protocol 18 runs in polynomial time

(see Section 4.2.3), the view seen by any site i can be simulated in time polynomial

in the size of the input.

Absent collusion, Protocol 18 is as effective as Protocol 17 with malicious parties.

A malicious party can alter what it sends, however, since it never sees anything based

on messages it has sent except the final output it can only gain information from the

final result. This constitutes a probing attack, and the information gain possible is

restricted by the minimum size threshold r. Site 0 does see information based on its
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first set of messages, however the intermediate hashing and threshold test prevents

it from gaining additional information from what it sent as a leaf.

Collusion poses a significant problem. Collusion between the parent of a leaf

node and its right child can give it both the hash key El and the hashed set Ml of

the left child. It can now probe for the existence of any item I in that set, by testing

if El(I) ∈Ml. Collusion with its own sibling or the sibling of its ancestors also gives

it this key. Even if some sites were not trusted (i.e., they may collude with some

other sites), it would often be possible to assign sites to tree nodes in such a way

that the untrusted sites would not gain by colluding.

4.3 Algebraic Method for Computing Dot Product

4.3.1 Problem Definition

Consider two real-valued vectors ~X and ~Y of cardinality n, ~X = (x1, · · · , xn), ~Y =

(y1, · · · , yn). The scalar product (or dot product) of ~X and ~Y is defined as ~X · ~Y =
∑n

i=1 xi ∗ yi. If party A has the vector ~X and party B has the vector ~Y , securely

compute the scalar product ~X · ~Y .

4.3.2 Protocol

Scalar product protocols have been proposed in the Secure Multiparty Compu-

tation literature [9], however these cryptographic solutions do not scale well to data

mining problems. We give an algebraic solution that hides true values by placing

them in equations masked with random values. The knowledge disclosed by these

equations only allows computation of private values if one side learns a substantial

number of the private values from an outside source. (A different algebraic tech-

nique has recently been proposed [46], however it requires at least twice the bitwise

communication cost of the method presented here.)

We assume without loss of generality that n is even.
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Step 1: A generates randoms R1 . . . Rn. From these, ~X, and a matrix C forming

coefficients for a set of linear independent equations, A sends the following vector

~X ′ to B:

〈x1 + c1,1 ∗R1 + c1,2 ∗R2 + · · ·+ c1,n ∗Rn〉

〈x2 + c2,1 ∗R1 + c2,2 ∗R2 + · · ·+ c2,n ∗Rn〉
...

〈xn + cn,1 ∗R1 + cn,2 ∗R2 + · · ·+ cn,n ∗Rn〉

In step 2, B computes S = ~X ′ · ~Y . B also calculates the following n values:

〈c1,1 ∗ y1 + c2,1 ∗ y2 + · · ·+ cn,1 ∗ yn〉

〈c1,2 ∗ y1 + c2,2 ∗ y2 + · · ·+ cn,2 ∗ yn〉
...

〈c1,n ∗ y1 + c2,n ∗ y2 + · · ·+ cn,n ∗ yn〉

But B can’t send these values, since A would then have n independent equations

in n unknowns (y1 . . . yn), revealing the y values. Instead, B generates r random val-

ues, R′
1 . . .R′

r. The number of values A would need to know to obtain full disclosure

of B’s values is governed by r.

B partitions the n values created earlier into r sets, and the R’ values are used

to hide the equations as follows:

〈c1,1 ∗ y1 + c2,1 ∗ y2 + · · ·+ cn,1 ∗ yn + R′
1〉

...

〈c1,n/r ∗ y1 + c2,n/r ∗ y2 + · · ·+ cn,n/r ∗ yn + R′
1〉

〈c1,(n/r+1) ∗ y1 + c2,(n/r+1) ∗ y2+

· · ·+ cn,(n/r+1) ∗ yn + R′
2〉

...

〈c1,2n/r ∗ y1 + c2,2n/r ∗ y2 + · · ·+ cn,2n/r ∗ yn + R′
2〉

...

〈c1,((r−1)n/r+1) ∗ y1 + c2,((r−1)n/r+1) ∗ y2+

· · ·+ cn,((r−1)n/r+1) ∗ yn + R′
r〉

...

〈c1,n ∗ y1 + c2,n ∗ y2 + · · ·+ cn,n ∗ yn + R′
r〉
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Then B sends S and the n above values to A, who now has:

S =(x1 + c1,1 ∗R1 + c1,2 ∗R2 + · · ·+ c1,n ∗Rn) ∗ y1

+(x2 + c2,1 ∗R1 + c2,2 ∗R2 + · · ·+ c2,n ∗Rn) ∗ y2

...

+(xn + cn,1 ∗R1 + cn,2 ∗R2 + · · ·+ cn,n ∗Rn) ∗ yn

Simplifying further and grouping the xi ∗ yi terms gives:

S =(x1 ∗ y1 + x2 ∗ y2 + · · ·+ xn ∗ yn)

+(y1 ∗ c1,1 ∗R1 + y1 ∗ c1,2 ∗R2 + · · ·+ y1 ∗ c1,n ∗Rn)

+(y2 ∗ c2,1 ∗R1 + y2 ∗ c2,2 ∗R2 + · · ·+ y2 ∗ c2,n ∗Rn)

...

+(yn ∗ cn,1 ∗R1 + yn ∗ cn,2 ∗R2 + · · ·+ yn ∗ cn,n ∗Rn)

The first line of the right hand side can be succinctly written as
∑n

i=1 xi ∗ yi, the

desired final result. In the remaining portion, we group all multiplicative components

vertically, and rearrange the equation to factor out all the Ri values, giving:

S =
n

∑

i=1

xi ∗ yi

+R1 ∗ (c1,1 ∗ y1 + c2,1 ∗ y2 + · · ·+ cn,1 ∗ yn)

+R2 ∗ (c1,2 ∗ y1 + c2,2 ∗ y2 + · · ·+ cn,2 ∗ yn)

...

+Rn ∗ (c1,n ∗ y1 + c2,n ∗ y2 + · · ·+ cn,n ∗ yn)

Adding and subtracting the same quantity from one side of the equation does

not change the equation in any way. Hence, the above equation can be rewritten as

follows:
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S =
n∑

i=1

xi ∗ yi

+{R1 ∗ (c1,1 ∗ y1 + c2,1 ∗ y2 + · · ·+ cn,1 ∗ yn)

+R1 ∗R′
1 −R1 ∗R′

1}

...

+{Rn/r ∗ (c1,n/r ∗ yn/r + c2,n/r ∗ y2 + · · ·+ cn,n/r ∗ yn)

+Rn/r ∗R′
1 − Rn/r ∗R′

1}

+{Rn/r+1 ∗ (c1,n/r+1 ∗ yn/r+1 + c2,n/r+1 ∗ y2 +

· · ·+ cn,n/r+1 ∗ yn)

+Rn/r+1 ∗R′
2 − Rn/r+1 ∗R′

2}

...

+{R2n/r ∗ (c1,2n/r ∗ y2n/r + c2,2n/r ∗ y2 +

· · ·+ cn,2n/r ∗ yn)

+R2n/r ∗R′
2 −R2n/r ∗R′

2}

...

...

+{R(r−1)n/r+1 ∗ (c1,(r−1)n/r+1 ∗ y(r−1)n/r+1 +

c2,(r−1)n/r+1 ∗ y2 + · · ·+ cn,(r−1)n/r+1 ∗ yn)

+R(r−1)n/r+1 ∗R′
r −R(r−1)n/r+1 ∗R′

r}

...

+{Rn ∗ (c1,n ∗ y1 + c2,n ∗ y2 + · · ·+ cn,n ∗ yn)

+Rn ∗R′
r −Rn ∗R′

r}
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Now A factors out the Ri from the first two components and groups the rest

vertically, giving:

S =
n∑

i=1

xi ∗ yi

+R1 ∗ (c1,1 ∗ y1 + c2,1 ∗ y2 + · · ·+ cn,1 ∗ yn + R′
1)

...

+Rn/r ∗ (c1,n/r ∗ yn/r + c2,n/r ∗ y2 +

· · ·+ cn,n/r ∗ yn + R′
1)

+Rn/r+1 ∗ (c1,n/r+1 ∗ yn/r+1 + c2,n/r+1 ∗ y2 +

· · ·+ cn,n/r+1 ∗ yn + R′
2)

...

+R2n/r ∗ (c1,2n/r ∗ y2n/r + c2,2n/r ∗ y2 +

· · ·+ cn,2n/r ∗ yn + R′
2)

...

+R(r−1)n/r+1 ∗ (c1,(r−1)n/r+1 ∗ y(r−1)n/r+1 +

c2,(r−1)n/r+1 ∗ y2 + · · ·+ cn,(r−1)n/r+1 ∗ yn + R′
r)

...

+Rn ∗ (c1,n ∗ y1 + c2,n ∗ y2 + · · ·+ cn,n ∗ yn + R′
r)

−R1 ∗R′
1 − · · · −Rn/r ∗R′

1

−Rn/r+1 ∗R′
2 − · · · −R2n/r ∗R′

2

...

−R(r−1)n/r+1 ∗R′
r − · · · − Rn ∗R′

r

A already knows the n Ri values. B also sent n other values, these are the

coefficients of the n Ri values above.
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A multiplies the n values received from B with the corresponding Ri and sub-

tracts the sum from S to get:

Temp =
n∑

i=1

xi ∗ yi

−R1 ∗R′
1 − · · · − Rn/r ∗R′

1

−Rn/r+1 ∗R′
2 − · · · − R2n/r ∗R′

2

...

−R(r−1)n/r+1 ∗R′
r − · · · − Rn ∗R′

r

Factoring out the R′
i gives:

Temp =
n∑

i=1

xi ∗ yi

−(R1 + R2 + · · ·+ Rn/r) ∗R′
1

−(Rn/r+1 + Rn/r+2 + · · ·+ R2n/r) ∗R′
2

...

−(R((r−1)n/r)+1 + R((r−1)n/r)+2 + · · ·+ Rn) ∗R′
r

To get the desired final result (viz.
∑n

i=1 xi ∗ yi), A needs to add the sum of the

r multiplicative terms to Temp.

In step 3, A sends the r values to B, and B (knowing R’) computes the final

result. Finally B replies with the result.

Selection of ci,j

The above protocol requires a matrix C of values that form coefficients of linear

independent equations. The necessity of this is obvious from the fact that the equa-

tions are used to hide the data values. If any equation can be eliminated using less

than half of the other equations, a linkage between less than n/2 of the unknowns is

created.
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Table 4.1
Communication cost

Rounds Bitwise cost

4 2 ∗ n ∗MaxV alSz O(n)

MaxValSz = Maximum bits to represent any input value

With high probability, a coefficient matrix generated by a pseudo-random func-

tion will form linearly independent equations. This enables construction of the ci,j

matrix by sharing only a seed and a generating function.

4.3.3 Communication and Computation Analysis

We first look at the computation cost. In step 1, A has to generate n random

numbers, and perform n2 multiplications and additions. In step 2, B performs n2 +n

additions and multiplications. In step 3, A performs n + r multiplications and

additions (where r << n). In step 4, B performs r computations. Overall, it is quite

clear that the protocol requires O(n2) additions and multiplications, which is quite

low since these are simple arithmetic operations.

Computing support for each candidate itemset requires one run of the component

scalar product protocol. The cost of each run (based on the number of items n is

as follows: A sends one message with n values. B replies with a message consisting

of n + 1 values. A then sends a message consisting of r values. Finally B sends the

result, for a total of four communication rounds. The bitwise communication cost is

O(n) with constant approximately 2 (assuming r is constant). This is summarized

in Table 4.1.

There is also the quadratic cost of communicating the ci,j values. However, this

cost can made constant by agreeing on a function and a seed value to generate the

values.
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Table 4.2
Security analysis of protocol

Protected Number of Total number Number of

values randoms of unknowns equations

generated revealed

A x1 · · ·xn n 2n n + r

B y1 · · ·yn r n + r n

4.3.4 Security Analysis

The security of the scalar product protocol is based on the inability of either side

to solve k equations in more than k unknowns. Some of the unknowns are randomly

chosen, and can safely be assumed as private. However, if enough data values are

known to the other party, the equations can be solved to reveal all values. Therefore,

the disclosure risk in this method is based on the number of data values that the

other party might know from some external source. Table 4.2 presents the number

of unknowns and equations generated. This shows the number of data values the

other party must have knowledge of to obtain full disclosure.

4.4 Cryptographic Method for Computing Boolean Dot Product

This section presents a purely cryptographic primitive for computing the dot

product for boolean vectors. To be precise, we show how to compute the number of

1s in the logical AND vector of several boolean vectors.

4.4.1 Problem Definition

Let k be the total number of parties with the parties being P1, P2 · · · , Pk. Each

party has a corresponding n dimensional vector Xi. I.e.,
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P1 has the vector ~X1 = (x11, . . . , x1n)

P2 has the vector ~X2 = (x21, . . . , x2n)
...

Pk has the vector ~Xk = (xk1, . . . , xkn)

where all the xij are boolean (either 0 or 1).

Thus, the problem can be defined as follows:

Component Multiplication of k n-dimensional vectors ~X1 = (x11, . . . , x1n), ~X2 =

(x21, . . . , x2n), · · ·, ~Xk = (xk1, . . . , xkn) is defined as ~X =
∏k

i=1
~Xi ie. ∀n

i=1Xi =
∏k

j=1 Xji

Now, we wish to calculate the sum of the elements of the resulting vector, Sum =
∑n

i=1 Xi The final step is to check if this sum is greater than the threshold t, ie.

Sum > t? We now show how to compute Sum.

4.4.2 Generic Encryption System

The protocol described below requires a homomorphic probabilistic encryption

system. The generic system used can be described as below (the presentation is

patterned from [86]):

• A security parameter s. This is used to derive several finite domains (R(s),

X(s), Y (s)) which are identified with initial subset of integers. Thus we use

R(s) for {x : 0 < x < r(s)}, X(s) for {x : 0 ≤ x < x(s)} and similar notation

for Y (s).

• A public probabilistic encryption function, f : R(s) × X(s) → Y (s), and a

private decryption algorithm g : Y (s)→ X(s) such that

(∀(r, x) ∈ R(s)×X(s)) g(f(r, x)) = x (4.1)
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Note that the existence of a decryption algorithm implies that the function is

injective with respect to its second parameter, that is, for (r1, x1), (r2, x2) ∈

R(s)×X(s), if f(r1, x1) = f(r2, x2), then x1 = x2

We also require several additional important properties, which are described as

follows:

1. The encryption function should be homomorphic, that is:

∀(r1, x1), (r2, x2) ∈ R(s)×X(s),

f(r1, x1)f(r2, x2) = f(r3, x1 + x2 mod x(s))

where r3 can be computed in polynomial time from r1, r2, x1 and x2.

2. We ask that the encryption function have semantic security. Informally, this

means that for a polynomially bounded adversary, the analysis of a set of

ciphertexts does not give more information about the cleartexts than what

would be available without knowledge of the ciphertexts. [42] provides a formal

definition.

3. As a result of the prior properties, one more can be deduced. There exists a

“hiding” function hide : R(s) × Y (s) → Y (s), depending only on the public

parameters of the system and such that:

∀(r, x) ∈ R(s)×X(s), ∀s ∈ R(s),

hide(s, f(r, x)) = f(sr′ mod r(s), x)

where r′ can be computed in polynomial time from r, x. Indeed, hide can be

defined by hide(s, x) = f(s, 0) ∗ x.

4. Finally, we ask that the domain and range of the system are suitably high (to

compute the required sum)

Several real encryption systems satisfy all of the properties required above. Ex-

amples are the Goldwasser-Micali cryptosystem [14], the Benaloh cryptosystem [12],

the Naccache-Stern cryptosystem [65] and the Okamoto-Uchiyama cryptosystem [68].
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Any of these cryptosystems, excepting the Goldwasser-Micali cryptosystem (since it

is limited to arithmetic mod 2) can be used for our purpose.

4.4.3 Algorithm

We assume that the parties jointly decide on one of the suitable cryptosystems.

The parties also randomly order themselves into a ring. To simplify the presentation,

we assume that this order is the canonical order P1, . . . , Pk. In general, any order

is acceptable. The first party, P1, generates a public key E and private key D for

the cryptosystem decided on above. The public key, E, is broadcast to all the other

parties. The private key, D, is secret and known only to P1. The basic idea of

the algorithm is as follows: for each bit, x1,i, in its vector, P1 generates a random

encryption of that bit (Mi = E(r, x1,i), where r is randomly chosen from R(s)).

P1 sends Mi to P2. Parties P2, . . . , Pk−1 act as follows: When Party Pj receives

a message Mi from Pj−1, if its own bit is one (i.e., xj,i = 1), Pj simply hides the

message it receives (computes f(s,0)*x) and sends the hidden message on to the next

party. However, if its bit is 0, Pj then sends a random encryption of 0 to the next

party. Party Pk follows the same computation, so that it has a random encryption

of either 0 or 1 (it does not know which). Now, Pk multiplies all of the encryptions

it has together. Due to the homomorphic property of the encryption, this results

in the sum of all of the component bits. Pk sends this final encrypted result back

to P1. P1 decrypts this message to get the sum, Sum. It can now check whether

Sum > t, which gives the required result. Protocol 19 gives the complete details of

the algorithm.

Proof of Correctness

Theorem 4.4.1 Algorithm 19 correctly computes Sum.
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Require: k parties P1, . . . , Pk, n-dimensional vectors

1: P1 generates a public and private key pair E, D for the homomorphic encryption

system agreed upon.

2: P1 broadcasts the public key E to all other parties.

3:

4: for i = 0; i < n; i + + {For each bit} do

5: P1:

6: Compute M1,i = E(r, x1,i), (r randomly chosen from R(s))

7: Send M1,i to P2

8:

9: Pj , j = 2, . . . , k − 1:

10: if xj,i = 0 then

11: Compute Mj,i = hide(r, Mj−1,i), (r randomly chosen from R(s))

12: else

13: Compute Mj,i = E(r, xji)(= E(r, 1)), (r randomly chosen from R(s))

14: end if

15: Send Mj,i to Pj+1

16:

17: Pk:

18: if xk,i = 0 then

19: Compute Mk,i = hide(r, Mk−1,i), (r randomly chosen from R(s))

20: else

21: Compute Mk,i = E(r, xk,i)(= E(r, 1)), (r randomly chosen from R(s))

22: end if

23: end for

24: Pk : EncSum←
∏n

j=1 Mk,j

25: Pk : Send EncSum to P1

26: P1: Compute Sum = D(EncSum)

Algorithm 19: Computing the boolean dot product, Sum
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Proof. All of the bits in the vector undergo the same operations. Thus to prove

the correctness of the entire algorithm, it is sufficient to prove that a single bit of

the result is the correct componentwise multiplication of the corresponding bits of

the vectors ~X1, . . . , ~Xk (i.e., we just need to prove that D(mk,i) = x1,i ∗ . . . ∗ xk,i).

Observe that if xj,i = 0, then party Pj sends forward a random encryption of

0. When Pj has 1, it simply sends forward an obfuscated form of the message it

receives (with P1 sending an encryption of 1 to begin with). Thus Mk,i = E(r, 1)

if and only if ∀j, xj,i = 1. Other wise Mk,i = E(r, 0), for some r ∈ R(s). Now,

due to homomorphic property of the encryption, multiplying all of the Mk,i together

gives the encryption of the sum. Thus the decryption of EncSum correctly gives the

required sum, Sum.

4.4.4 Communication and Computation Analysis

The entire protocol is quite efficient. P1 broadcasts the key E to all other parties.

Each party also sends the entire (encrypted) vector to the next party once. Pk

finally sends the encrypted sum back to P1. Thus the total communication cost is

(k−1)∗keysize+(k∗n+1)∗encrypted msg size = O(kn) bits, and k−1+k = 2k−1

messages (assuming the entire vector can be sent off as a single message.

In terms of computation, every party has to perform n encryptions (one for each

bit in its vector), pk has to perform n multiplications and finally P1 has to perform

1 decryption to get the final result. Thus, there is a total of kn encryptions and 1

decryption.

We ran tests on a SUN Blade 1000 workstation with a 900 Mhz processor and 1

gig of RAM. A C implementation of the Okamoto-Uchiyama [68] encryption system

was tested. The key size was fixed at 1152 bits. The computation time required for

different values of n are summarized in Table 4.3. The encryption/decryption cost

approximately linearly increases with the number of items. The cost of multiplication

is much lower than the cost of decryption. Using this table, it is very easy to estimate
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100 1000 10000 100000

encrypt 1.33s 13.06s 2.2min 21.5min

decrypt 2.11s 20.80s 3.5min 35.3min

Table 4.3
Computation time required for encryption/decryption

the actual time required for different number of parties and different vector sizes.

For example, 5 parties with vectors of size 100, 000 would require approximately 150

minutes. The time required would be significantly lower with smaller key sizes and

with use of special purpose encryption hardware.

4.4.5 Security Analysis

We now give a proof of security for the entire protocol.

Theorem 4.4.2 Protocol 19 computes the required sum, Sum while revealing noth-

ing to any site other than its input and the final output.

Proof. A simulator is presented for the view of each party. We only show how

to simulate the messages received. The rest of the proof trivially follows from this.

P1: The only message received is on line 25. Since the final result (Sum) is known to

P1, it simply generates a random encryption of this to simulate the message it receives

(choose a random r from R(s) and compute E(r, Sum). This is computationally

indistinguishable from the message it receives since the only thing different is the

choice of random r.

P2: The only messages received are on line 2 and 7. The public key E is simulated

simply by randomly choosing a key E over the space of possible keys. The message

M1,i can be simulated by randomly choosing a bit b (0 or 1), uniformly choosing
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a random r from R(s), and computing E(r, b). The semantic security property of

the encryption system guarantees that no advantage or information can be gained

from the ciphertext resulting from the encryption algorithm (even while knowing

the public key, as long as the private key is secret). In other words, it is not com-

putationally possible to distinguish between the encryption of a 0 or a 1 when r is

randomly chosen with uniform probability over R(s). Thus, by selecting a random

r and a random bit b (0 or 1), the encrypted message generated is computationally

indistinguishable from the message received.

P3, . . . , Pk: The only messages received are on lines 2 and 15. The same argument

as for P2 applies. The public key E is simulated simply by randomly choosing a key E

over the space of possible keys. The message Mj,i (j = 2, . . . , k−1) can be simulated

by randomly choosing a bit b (0 or 1), uniformly choosing a random r from R(s),

and computing E(r, b). This message is computationally indistinguishable from the

message received since the semantic security of the encryption system guarantees that

no extra information is revealed (read prior paragraph for detailed discussion).

4.5 Modified Secure Comparison Protocol

In many protocols, at some stage we need to securely compare the sum of two

numbers with some threshold, with the output split between the parties holding those

numbers. This can be accomplished using the generic circuit evaluation technique

first proposed by Yao [92]. Formally, we need a modified secure comparison protocol

for two parties, A and B. The local inputs are xa and xb and the local outputs are

ya and yb. All operations on input are in a field F1 and output are in a field F2.

ya + yb = 1 (mod F2) if xa + xb (mod F1) > 0, otherwise ya + yb = 0 (mod F2).

A final requirement is that ya and yb should be independently uniformly distributed

over F (clearly the joint distribution is not uniform).

This builds on the standard secure multiparty computation circuit-based ap-

proach for solving this problem [39]. Effectively, A chooses ya with a uniform distri-
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bution over F , and provides it as an additional input to the circuit that appropriately

computes yb. The circuit is then securely evaluated, with B receiving the output yb.

The complexity of this is equivalent to the complexity of Yao’s Millionaire’s problem

(simple secure comparison). The security of the protocol is also obvious, since the

generic circuit evaluation technique is used.
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5 EXPERIMENTAL VALIDATION

Apart from presenting algorithms to solve the problem, we must pay attention to the

actual realization of those algorithms in practice. Thus, instead of simply presenting

prototype versions of some of the algorithms developed, we would like to build a

framework in which privacy preserving data mining can be demonstrated. As a

part of the experimental validation, we give experimental results on two problems –

decision tree classification and association rule mining. Other solutions are also being

implemented, but the first two serve as a starting point to validate the techniques

developed.

5.1 Weka

To demonstrate real practicality, we implemented the methods as part of an

existing and widely used Data Mining toolkit. Weka [91], developed at the University

of Waikato in New Zealand, is a collection of machine learning algorithms for data

mining tasks implemented in Java. Apart from providing algorithms, it is a general

implementation framework, along with support classes and documentation. It is

extensible and convenient for prototyping purposes. However, the Weka system is

a centralized system meant to be used at a single site. We extended the Weka core

classes “Instance and Instances” to provide support for distributed instances. A

distributed instance consists of only the key identifier and the site identifiers for the

sites that together contain the whole instance.
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5.2 Decision Tree Classification

We first developed a general model of operation to extend Weka for privacy

preserving distributed classification. The general model of privacy preserving dis-

tributed classification is as follows. The user initiates a request to build a classifier

and then request(s) classification of an instance whenever required. The process of

building the classifier needs to be co-ordinated so that the data sites locally con-

struct enough state to enable them to jointly satisfy a classification request. To

this end, every centralized classification class must be extended with a distributed

class that provides the same functionality, however the implementation of these func-

tions/messages is in a distributed manner.

In the current case, we extend the ID3 class with the new class distId3 that fulfills

the same contracts as promised by ID3. When called with normal instance(s) the

behavior is identical to ID3, when called with distributed instance(s) the algorithm

performs in a distributed fashion. There is one global co-ordinating class/interface

that provides access to the classification functionality. Figure 5.1 demonstrates the

basic usage model.

We ran experiments with two and three sites on two data sets from the UCI

repository [13]. Each of the processors used in the experimentation was a SUN

Blade 1000 with a 900Mhz processor and 1gig of RAM. The trees, as expected, are

identical to the original ID3 trees. The weather dataset consists of four attributes

plus the class, and fourteen transactions. The car − large is the UCI car dataset;

the car − small is a random subset of 1/2 the transactions, used to demonstrate

scaling in number of transactions. These datasets have six attributes with about

four distinct values each, and a four-class class attribute. There are 885 transactions

in car − small, 1728 in car − large. The sample experimental results are given in

Tables 5.1 and 5.2.

The ID3 trees for the car datasets are over 300 nodes. This is quite complex.

We can see that this scales linearly in the number of transactions, as expected.
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IGC: Inter Group Communication (Protocol)
3: Classifier is built
4: User requests classification of an instance
5: Main site asks Master to initiate classification
6: Class of instance returned to Master
7: Class of instance returned to User

1: User Requests a classifier
2: Main Site sends request to Master to initiate model construction

Figure 5.1. Basic classifier model
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Table 5.1
Building the classifier on real data sets

Sites: 2 3

Weather 10s 86s

Car-Small 3.5 hrs 27 hrs

Car-large 7.1 hrs 62hrs

Table 5.2
Classifying an instance on real data sets

Sites: 2 3

Weather < 0.01s 0.02s

Car-Small 0.125s 0.2s

Car-large 0.14s 0.46s

Increase in the number of parties causes a quadratic expansion in the amount of

time required. One of the most important factors affecting the computation time of

the protocol is the size of the tree built. Simpler trees are much faster to build. A

good thing to note is that once the classification tree is built, classifying an instance

takes very little time. Thus, if the (much more expensive) protocol to build the tree

has already been executed, it is an easy (and much less computationally intensive)

task to classify any given instance.

The current implementation is multi-threaded and does exploit parallelism to

the extent possible. Readily available hardware for encryption or implementation in

more highly optimized languages than Java would result in significant improvement.

This prototype is meant as a demonstration of the viability and correctness of the

protocol.
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Table 5.3
Computation and communication cost of encryption

Number of Key Size Transfer

items encrypted 256 512 1024 Time

1k < 0.0001s 5s 29s 0.0027s

10k 10s 47s 286s 0.007s

100k 90s 467s 2827s 0.04s

1M 900s 4660s 28762s 0.41s

5.3 Association Rule Mining

We have run experiments to evaluate what the actual cost would be for a number

of different cases. The experiments were run on a SUN Blade 1000 workstation with

a 900Mhz processor and 1GB of RAM. First, we tabulate the pure encryption cost

for different key sizes. An encryption key size of 512 bits is sufficient for typical

applications. It can be seen that the computation cost rises linearly with the number

of item to be encrypted (as expected). Note that encryption can proceed at different

sites in parallel. Thus Table 5.3 gives the encryption time per round.

We also measured the transfer time required to send the encrypted data from

one site to another over a 100Mb network. The encrypted data required comparable

size in the GNU GMP raw bit format regardless of key size.

Using the data generated in the prior table we can easily estimate the extra cost

incurred by privacy while doing association rule mining in a particular situation

(characterized by the number of transactions, attributes and parties). Table 5.4 esti-

mates the computation cost assuming that the encryption key size is 512 bits. Table

5.5 estimates the communication cost assuming communication is over a 100Mb net-

work. Both assume that attributes can have at most 100k transactions. We give a

worst case scenario estimate assuming that all the attributes are frequent 1-itemsets
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and also encrypting and communicating the entire attribute. In practice, the cost

would be much lower (at least an order of magnitude), since all attributes may not

be frequent and even the frequent attributes are present in only a fraction of the

total number of transactions. The cost for other values of key size and communica-

tion bandwidth can be easily extrapolated using the data provided above. It is clear

from this data that the computation cost greatly exceeds the communication cost.

Computation cost can be drastically reduced by optimizing the code (we used the

generic variant of GNU gmp), or through widely-available special-purpose encryp-

tion hardware. Note that the cost described here is the additional cost of assuring

privacy. We still need to compute the association rules at each site. Overall, though

expensive, the process is much faster than obtaining necessary approval to release

data, assuming such approval could be obtained.

5.4 Summary

A first look at the experimental results may suggest that in comparison to cen-

tralized data mining algorithms, our performance is exceedingly slow. However,

there are two caveats to this. First, our performance is much better than the gen-

eral secure solutions possible. Second, and even more importantly, privacy is not

free. If one has no privacy/security concerns, there is no reason why any of these

algorithms should be used. It is simple enough to simply send all the data to a cen-

tral site and let it do the mining, or use other distributed data mining techniques.

However, when privacy/security concerns do exist, one can clearly see that the true

comparison is between the time taken by our algorithms versus the time required

to get approval, e.g., through an Institutional Review Board for Human Subjects

Research, if it is even possible. In this sense, our algorithms are clearly practical and

enable functionalities which would otherwise be prohibited.
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Table 5.4
Worst-case added computation to achieve privacy

Number of Number of Sites

attributes 2 3 5 10 20

10 9340s 14010s 23350s 46700s -

50 13hr 19.5hr 32.5hr 65hr 130hr

100 26hr 39hr 65hr 130hr 260hr

200 52hr 78hr 130hr 260hr 520hr

Table 5.5
Worst-case communication cost increase to achieve privacy

Number of Number of Sites

attributes 2 3 5 10 20

10 1.6s 3.6s 10s 40s -

50 8s 18s 50s 200s 800s

100 16s 36s 100s 400s 1600s

200 32s 72s 200s 800s 3200s
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6 SUMMARY

To summarize, the thesis is that privacy-preserving data mining over vertically par-

titioned data is both feasible and practical. The dissertation has presented a set of

underlying techniques, which are used to construct several privacy-preserving data

mining algorithms operating over vertically partitioned data, which enable the “min-

ing” of knowledge.

Privacy/Security concerns have become an enduring part of society and com-

merce. It is increasingly necessary to ensure that useful computation does not vio-

late legal/commercial norms for the safety of personal data. The thesis demonstrates

that Privacy and Data Mining are not inherently in conflict. The major contribu-

tion has been to develop solutions for representatives of all of the major data mining

tasks: classification, clustering, association rule mining and outlier detection.

Some of the tools developed are interesting in and of themselves. They are

definitely applicable even beyond the scope of data mining. For example, we have

developed privacy preserving solutions for optimization problems (such as linear

programming) by utilizing some of the underlying techniques developed. In the

future, we intend to look at other interesting practical problems.

One of the big drawbacks of Secure Multiparty Computation is that it is restricted

to securing the process. There is no analysis of what the results themselves might

reveal. This is an important problem which needs to be solved for any practical

application of the techniques developed. Also, most of the solutions developed are

valid within the semi-honest model of computation. Some go beyond that, but none

are suitable for completely malicious behavior. It would be interesting to see how to

extend our techniques to the malicious model without giving up on efficiency.
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A DISCUSSION OF SECURE MULTIPARTY COMPUTATION TECHNIQUES

We first discuss some of the other primitives used from the SMC literature. We

then present a complete solution and analysis using the General Secure Multiparty

approach to a single problem to serve as a reference point for comparison.

A.1 Primitive Used from the Literature

The methods in Chapter 3 made use of several previously developed primitives.

For completeness, they are described here.

A.1.1 Permutation Algorithm

The secure permutation algorithm developed by Du and Atallah simultaneously

computes a vector sum and permutes the order of the elements in the vector. We

repeat the idea here for completeness, for more details see [27]. We do present a

more formal proof of the security of the algorithm than that in [27].

The permutation problem is an asymmetric two party algorithm, formally defined

as follows. There exist 2 parties, A and B. B has an n-dimensional vector ~X =

(x1, . . . , xn), and A has an n-dimensional vector ~V = (v1, . . . , vn). A also has a

permutation π of the n numbers. The goal is to give B the result π( ~X + ~V ), without

disclosing anything else. In particular, neither A nor B can learn the other’s vector,

and B does not learn π. For our purposes, ~V is a vector of random numbers from a

uniform random distribution, used to hide the permutation of the other vector.

The solution makes use of a tool known as Homomorphic Encryption. For a

detailed discussion, see Section 4.4.2. The key is that homomorphic encryption

allows us to perform addition of encrypted data without decrypting it.
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The permutation algorithm consists of the following steps:

1. B generates a public-private keypair (Ek, Dk) for a homomorphic encryption

scheme.

2. B encrypts its vector ~X to generate the encrypted vector ~X ′ = (x′
1, . . . , x

′
n), x′

i =

Ek(xi).

3. B sends ~X ′ and the public key Ek to A.

4. A encrypts its vector ~V generating the encrypted vector ~V ′ = (v′
1, . . . , v

′
n), v′

i =

Ek(vi).

5. A multiplies the components of the vectors ~X ′ and ~V ′ to get ~T ′ = (t′1, . . . , t
′
n),

t′i = x′
i ∗ v′

i.

Due to the homomorphic property of the encryption,

x′
i ∗ v′

i = Ek(xi) ∗ Ek(vi) = Ek(xi + vi)

so ~T ′ = (t′1, . . . , t
′
n), t′i = Ek(xi + vi).

6. A applies the permutation π to the vector ~T ′ to get ~T ′
p = π( ~T ′), and sends ~T ′

p

to B.

7. B decrypts the components of ~T ′
p giving the final result ~Tp = (tp1, . . . , tpn), tpi =

xpi + vpi.

Security Analysis

The permutation algorithm reveals nothing to A, so A’s view must be simulated

using only it’s own input. B gets the result vector.

Theorem A.1.1 The Permutation Algorithm (Section A.1.1) privately computes a

permuted vector sum of two vectors, where one party knows the permutation π and

the other gets permuted sum π( ~X + ~V ).
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Proof.

A′s view:

A receives an encryption key Ek and a encrypted vector ~X ′ of size n. It can simulate

the encryption key by generating a single random number from a uniform random

distribution. Assuming security of encryption and since A knows the n, the vector ~X ′

can also be simulated simply by generating n randoms from an uniform distribution.

Using its own vector ~V and the simulated input, the simulator for A can perform

steps 4–6 to complete the simulation of A’s view.

B′s view:

The simulator for B performs steps 1 and 2 to generate Ek and ~X ′. In step 6 B

receives a size n vector ~T ′
p. To simulate ~T ′

p, B encrypts the components of the result

Tp = π( ~X + ~V ): t′pi = Ek(tpi).

The simulator for both runs in time linear in the size of the input vectors, meeting

the requirement for a polynomial-time simulation.

A.1.2 Scalar Product Protocol

One of the key sub-protocols required is a protocol for computing the scalar

product of two vectors. Many scalar product protocols have been proposed in the

past [27, 46, 89]. We now briefly describe one of the scalar product protocols given

in [27]. The problem is defined as follows: Alice has a n-dimensional vector ~X while

Bob has a n-dimensional vector ~Y . At the end of the protocol, Alice should get

ra = ~X · ~Y + rb where rb is a random number chosen from an uniform distribu-

tion and is known only to Bob. The key idea behind the protocol is as follows:

Alice splits up its vector into multiple parts. She then hides each part with some

other random vectors and sends them to Bob. Bob computes the scalar product of

his vector with all the vectors he receives while adding a random he generates to

the result. Alice then uses Oblivious Transfer to get back the correct part results

from all the numbers that Bob has generated. The Oblivious Transfer primitive
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is described in the following subsection. First, here is the actual scalar product

protocol:

Alice and Bob agree on two numbers p and m, such that pm is considered large

enough (for security).

Alice generates m random vectors ~V1, . . . , ~Vm such that ~X =
∑m

i=1
~Vi.

Bob generates m random numbers r1, . . . , rm such that rb =
∑m

i=1 rj .

for j = 1 . . .m do

Alice generates a secret random number k, 1 ≤ k ≤ p.

Alice sends ( ~H1, . . . , ~Hp) to Bob, where ~Hk = ~Vj , and the rest of ~Hi

′
s are random

vectors. Since k is secret, Bob does not know the position of ~Vj .

for i = 1 . . . p do

Bob computes Zj,i = ~Hi · ~Y + rj.

end for

Using the 1-out-of-p Oblivious Transfer protocol, Alice get Zj = Zj,k = ~Vj ·~Y +rj,

while Bob learns nothing about k

end for

Alice computes ra =
∑m

j=1 Zj = ~X · ~Y + rb

The key primitive used in this protocol is the 1-out-of-p Oblivious Transfer.

1-out-of-N Oblivious Transfer

The 1-out-of-N Oblivious Transfer protocol involves two parties, Alice and Bob.

Alice has an input σ, 1 ≤ σ ≤ N , while Bob has N inputs X1, . . . , Xn. At the end of

the protocol, Alice learns only Xσ and nothing else while Bob learns nothing at all.

The 1-out-of-2 Oblivious Transfer (OT 2
1 ) was suggested by Even, Goldreich and Lem-

pel [31] as a generalization of Rabin’s “oblivious transfer” [77]. Naor and Pinkas [67]

provide efficient protocols for 1-out-of-N Oblivious Transfer. For completeness, we

now describe a very simple (though inefficient) method for doing Oblivious Transfer.

Bob generates N public key pairs E1, D1, . . . , EN , DN
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Bob sends E1, . . . , EN to Alice.

Alice generates an asymmetric key K.

Alice forms the vector ~V : if i = σ, Vi = Ei(K), otherwise Vi = (a random) Rj.

Alice sends the N -dimensional vector ~V to Bob

Bob decrypts ~V to form the vector ~K where Ki = Di(Vi)

Bob encrypts his data items with the keys in ~K ands sends them to Alice (i.e.

Bob sends Ki(Xi), i = 1 . . .N to Alice)

Since Kσ = Dσ(Eσ(K)) = K, Alice decrypts the σ row with K to get Xσ

Clearly this protocol reveals nothing to Bob. In the semi-honest model, as long

as Alice acts exactly according to the protocol, she too does not learn anything since

all the other values are encrypted with random keys unknown to her. Though it is

easy to break this protocol when parties are allowed to be malicious, better protocols

(more secure and efficient) can easily be found in the literature.

A.1.3 Square Computation

The problem is defined as follows: There exist two sites, A and B. A holds

xa, while B holds xb. Together they wish to compute shares of the function f =

(xa + xb)
2. Thus, at the end of the protocol, A should have ya and B should have yb

such that ya+yb = (xa+xb)
2. An obvious way to do this is using oblivious evaluation

of polynomials. A first generates a random value ya. A then forms the polynomial

P (z) = (1)z2 + (2xa)z + (x2
a − ya). An oblivious evaluation of P (xb) by B gives B,

yb = P (xb). Note that yb + ya = x2
b + 2xaxb + x2

a − ya + ya = (xa + xb)
2 as required.

Oblivious Evaluation of Polynomials

Alice has a polynomial P of degree k over some finite field F . Bob has an el-

ement x ∈ F and also knows k. Alice would like to let Bob compute the value

P (x) in such a way that Alice does not learn x and Bob does not gain any ad-

ditional information about P (except P (x)). This problem was first investigated
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by [66]. Subsequently, there have been more protocols improving the communica-

tion/computation efficiency [24] as well as extending the problem to floating point

numbers [19]. For our protocols, we use the protocol given in [24] since it requires

only O(k) exponentiations to evaluate a polynomial of degree k (where the con-

stant is very small). This works well since we only require evaluation of low-degree

polynomials.

We now briefly describe the protocol used for oblivious polynomial evaluation.

This description is excerpted from [59]: Let P (y) =
∑k

i=0 aiy
i be Alice’s input and

x be Bob’s input. The following protocol enables Bob to compute gP (x), where g

is a generator of a group in which the Decisional Diffie-Hellman (DDH) assumption

holds. The protocol can be converted to one computing P (x) using the methods of

Paillier [73], who presented a trapdoor for computing discrete logs. The protocol is

quite simple when the parties are assumed to be semi-honest. Bit-commitment and

zero knowledge proofs can be used to achieve security against malicious parties. The

protocol consists of the following steps:

Bob chooses a secret key s, and sends gs to Alice.

for i = 0 . . . k do

Bob generates a random ri.

Bob computes ci = (gri, gsrigxi

).

end for

Bob sends c0, . . . , ck to Alice.

Alice computes C =
∏k

i=0 (ci)
ai = (gR, gsRgP (x)), where R =

∑k
i=0 riai.

Alice chooses a random value r and computes C ′ = (gRgr, gsRgP (x)gsr).

Alice sends C ′ to Bob.

Bob divides the second element of C ′ by the first element of C ′ raised to the power

of s, and obtains gP (x).

By the DDH assumption, Alice learns nothing of xi from the messages c0, . . . , ck

sent by Bob to her. On the other hand, Bob learns nothing of P from C ′.
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A.1.4 Privately Computing ln x

In Section 3.4.4, we need to be able to privately compute lnx, where x = x1 +x2

with x1 known to P1 and x2 known to P2. Thus, P1 should get y1 and P2 should get

y2 such that y1 + y2 = lnx = ln(x1 + x2). One of the key results presented in [59]

was a cryptographic protocol for this computation. We now describe the protocol in

brief: Note that ln x is Real while cryptography works over finite fields. Thus there

needs to be some way of doing numerical analysis. The basic idea behind computing

random shares of ln(x1 + x2) is to use the Taylor approximation for lnx. Remember

that the Taylor approximation gives us:

ln(1 + ǫ)

=
∞∑

i=1

(−1)i−1ǫi

i

= ǫ−
ǫ2

2
+

ǫ3

3
−

ǫ4

4
+ . . . for − 1 < ǫ < 1

For an input x, let n = ⌊log2 x⌋. Then 2n represents the closest power of 2 to x.

Therefore, x = x1 + x2 = 2n(1 + ǫ) where −1/2 ≤ ǫ ≤ 1/2. Consequently,

ln(x) = ln(2n(1 + ǫ))

= ln 2n + ln(1 + ǫ)

≈ ln 2n +
∑

i=1...k

(−1)i−1ǫi/i

= ln 2n + T (ǫ)

where T (ǫ) is a polynomial of degree k. This error is exponentially small in k.

There are two phases to the protocol. Phase 1 finds an appropriate n and ǫ. Let

N be a predetermined (public) upper-bound on the value of n. First, Yao’s circuit

evaluation is applied to the following small circuit that takes x1 and x2 as input and

outputs random shares of ǫ2N and 2Nn ln 2. Note that ǫ2n = x − 2n, where n can

be determined by simply looking at the two most significant bits of x and ǫ2N is

obtained simply by shifting the result by N − n bits to the left. Thus the circuit

outputs random α1 and α2 such that α1 + α2 = ǫ2N , and also outputs random β1
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and β2 such that β1 +β2 = 2Nn ln 2. This circuit can be easily constructed. Random

shares are obtained by having one of the parties input random values α1, β1 ∈R F

into the circuit and having the circuit output α2 = ǫ2N − α1 and β2 = 2Nn ln 2− β1

to the other party.

Phase 2 of the protocol involves computing shares of the Taylor series approxi-

mation, T (ǫ). This is done as follows: P1 chooses a random w1 ∈ F and defines a

polynomial Q(x) such that w1 + Q(α2) = T (ǫ). Thus Q()̇ is defined as

Q(x) = lcm(2, . . . , k)
k
∑

i=1

(−1)i−1

2N(i−1)

(α1 + x)i

i
− w1

P1 and P2 then execute an oblivious polynomial evaluation with P1 inputting Q(·)

and P2 inputting α2, where P2 obtains w2 = Q(α2). P1 and P2 define u1 =

lcm(2, . . . , k)β1 + w1 and u2 = lcm(2, . . . , k)β2 + w2. We have that u1 + u2 ≈

2N lcm(2, . . . , k) lnx

Further detail on the protocol as well as the proof of security can be found in [60].

Theorem A.1.1 Protocol A.1.4 privately computes ln x, for x = x1 + x2 split be-

tween two parties.

Proof. Refer to [60].

A.1.5 Division Protocol

The problem of division is described as follows: Alice has inputs a1, a2. Bob has

inputs b2, b2. At the end of the protocol, Alice and Bob get shares of (a1+b1)/(a2+b2).

Thus Alice should get ca while Bob gets cb such that:

ca + cb =
a1 + b1

a2 + b2
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We present an efficient protocol to do this based on the Division Protocol developed

in [27].

Alice chooses 3 randoms ca, r1, r2.

Alice forms Bob forms

~U =















r1(a1 − ca ∗ a2)

r1

−r1 ∗ ca















~V =















1

b1

b2















Alice and Bob engage in a secure scalar product so that (only) Bob gets

x1 = ~U · ~V

= r1(a1 − ca ∗ a2) + r1 ∗ b1 − r1 ∗ ca ∗ b2

= r1(a1 + b1 − ca(a2 + b2))

Alice forms Bob forms

~W =







r2 ∗ a2

r2







~X =







1

b2







Alice and Bob engage in a secure scalar product so that (only) Bob gets

x2 = ~W · ~X

= r2a2 + r2b2

= r2(a2 + b2)

Alice sends x3 = r2

r1
to Bob

Bob computes

cb = x1

x2
∗ x3

= a1+b1−ca(a2+b2)
a2+b2

= a1+b1
a2+b2

− ca

Though neither this protocol nor the underlying division protocol have been

formally proven secure, it is also possible to do division in a provably secure fashion

using the generic circuit evaluation method.
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A.2 A Complete Solution and Analysis using the General Secure Multiparty Ap-

proach

This dissertation is predicated on the impracticality of generic circuit evaluation

for solving problems involving large datasets. To demonstrate this, we present a

construction of the size of set intersection as a comparison with the efficient solutions

in Chapter 4.

For demonstration, we limit the problem to 2 parties. We also assume that the

input set sizes can be at most n and that all numbers are m bit. A simple circuit

to do this would compare each value of one set in succession with all of the values

of the other set. The comparator returns 1 if the values are equal, 0 otherwise.

Assuming that we are looking at sets (i.e. objects cannot be repeated), at most one

of the comparators can return 1. Thus, we need n2 comparator circuits. We also

need a layer of addition circuits to add up all the outputs of the comparators. The

result of the final addition circuit gives the total number of items that are common

to both of the input sets. Thus we need a total of n2 comparators and n2 adders.

The comparators operate over m bit numbers while the adders have to operate over

log2 n bit numbers. In terms of depth, the complete circuit has log2n + 1 layers

(one for each of the addition layers and one for the comparators). It is possible

to actually determine the number of AND gates required for a single adder and a

single comparator. That number gives the number of Oblivious Transfers required

to compute the circuit. In general, while polynomial in the size of the circuit, this is

extremely inefficient and thus infeasible.
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