
CERIAS Tech Report 2004-39

RIGHTS ASSESSMENT FOR DISCRETE DIGITAL DATA

by Radu Sion

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086



RIGHTS ASSESSMENT FOR DISCRETE DIGITAL DATA

A Thesis

Submitted to the Faculty

of

Purdue University

by

Radu Sion

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2004



ii

To Amy Brown.



iii

ACKNOWLEDGMENTS

I want to start by thanking both my advisers. Mike was always available, a good

friend, with amazing insights and advice (often on personal topics) for a green bean

as myself. Be it 2 am or 2 pm I knew he was going to be there with a good word or

a sharp research remark. Through his ways he made me experience and understand

respect and restraint. I owe much of the enjoyment I get out of research writing to

Sunil and his many great eye-opening perspectives, including on social dimensions of

academia and the much debated peer-review process. It was invaluable to experience

his entire tenure process parallel my graduate studies and succeed. I was extremely

lucky to have the academic parents I had. I never had to worry about funding,

going to (often expensive) conferences and organizing my own schedule. Thank you.

Growing up now, “away from home”, I will miss you.

I want to thank Amy Brown. For being. Bogdan Carbunar, my long-term apart-

ment mate and good friend. Melissa Dyehouse for allowing me to teach her skiing

and putting up with me for weeks through Europe. Daniel Aliaga for the racquetball,

mountain biking and car races. Nicoleta Neagu, for being there. Ion Constantinescu,

for shelter, skiing and personality. Mirela Mustata for driving through rain, snow and

mud for me, in times when I needed a friend. Jens Palsberg for the great comedy club

experiences and friendship. Irina Athanasiu for Pizza Hut. Murat Kantargioglu, for

Tomatina. Ladislau Boloni for latex (the digital kind). Ton Kalker for the insights

into issues of high dimensionality of usability spaces and friendship. Dr. Gorman,

clearly the most important person in our department, for great conversations during

empty campus holiday weeks, for advice, help and insights into the intricacies of

academic bureaucracy. Renate Mallus for dancing and smiling. The friends from the

Vienna Coffee-shop including Olga, Shared, Jacques, Mercan and Umut. For games,

fun and a great atmosphere.



iv

I would also like to thank my teachers at Purdue. Doug Comer for his PhD topic

generator and his great TCP/IP class. Susanne Hambrusch for the great advice

on the association between flower-power and academics. The members of my PhD

committee (Jens Palsberg, Elisa Bertino and Samuel Wagstaff) for useful advice and

insights. Debbie Frantz and the entire staff at CERIAS for great chats and help with

speedy travel reimbursements. Dan Marinescu for guidance and help in my first year

at Purdue. Eugene Spafford (Spaf) for a great research environment at CERIAS.

I thank my parents for coming up with the idea of having me, my father (1935-

2003) for teaching me the power of work and persistence. There are creations out

there that become relevant after they cease to exist, often leaving a bitter taste of

things that could’ve been on a backdrop of things that actually were. My mother,

for too many things, including reading the Dialogues of Socrates to a three and a

half year old version of me as bed-time stories.

I want to thank all of the above and those many others that I ought to but

probably forgot due to being stressed and growing older. My graduate student years

were the most amazing and fun years in my life so far and you all were a big part of

this experience. Thank you.



v

TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Deployment Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Rights Protection through Assessment . . . . . . . . . . . . . 3

1.1.2 Information Hiding vs. Newspaper Digests . . . . . . . . . . . 5

1.2 Watermarking vs. Watermarking . . . . . . . . . . . . . . . . . . . . 7

1.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Numeric Relational Data . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Categorical Data . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.4 Sensor Streams . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.5 Abstract Structures . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.6 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Model of Watermarking (Part One) . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Model and Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Consumer Driven Watermarking . . . . . . . . . . . . . . . . . . . . . 30

2.3 Steganography and Watermarking . . . . . . . . . . . . . . . . . . . . 33

2.4 Notations and Primitives . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Relational Data with Numeric Types . . . . . . . . . . . . . . . . . . . . . 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Available Bandwidth . . . . . . . . . . . . . . . . . . . . . . . 40



vi

Page

3.2.2 Model of the Adversary . . . . . . . . . . . . . . . . . . . . . 42

3.3 Simplified Problem: Numeric Collections . . . . . . . . . . . . . . . . 43

3.3.1 Solution Summary . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Selecting Subsets . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Amplifying Watermark Power . . . . . . . . . . . . . . . . . . 46

3.3.4 Resilience Analysis . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 The Relational Database . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Embedding Optimizations . . . . . . . . . . . . . . . . . . . . 58

3.4.3 On-the-Fly Update-Ability . . . . . . . . . . . . . . . . . . . . 61

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Detection Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.2 Subset Markers . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.3 Primary Key Dependence . . . . . . . . . . . . . . . . . . . . 65

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.1 Implementation: wmdb.* . . . . . . . . . . . . . . . . . . . . . 66

3.6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.3 Scenario: The Wal-Mart Sales Database . . . . . . . . . . . . 76

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.8 Conclusions. Future Research. . . . . . . . . . . . . . . . . . . . . . . 81

4 Relational Data with Categorical Types . . . . . . . . . . . . . . . . . . . . 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.2 The Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Categorical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.2 Bandwidth Channels . . . . . . . . . . . . . . . . . . . . . . . 88



vii

Page

4.3.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.4 Multiple Attribute Embeddings . . . . . . . . . . . . . . . . . 94

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1 Correlation Attacks . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.2 On-the-fly Quality Assessment . . . . . . . . . . . . . . . . . . 103

4.4.3 Vertical Partitioning Revisited . . . . . . . . . . . . . . . . . . 105

4.4.4 False Positives and Vulnerability to Attacks . . . . . . . . . . 107

4.4.5 Bijective Attribute Re-mapping . . . . . . . . . . . . . . . . . 109

4.4.6 Data Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.7 Minimizing Alteration Distance . . . . . . . . . . . . . . . . . 112

4.4.8 Blindness, Incremental Updates and Streams . . . . . . . . . . 113

4.4.9 Multi-Layer Self-Reinforcing Marks . . . . . . . . . . . . . . . 114

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Discrete Streaming Data. Sensor Streams. . . . . . . . . . . . . . . . . . . 120

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2.1 The Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3 An Initial Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.2 Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4.1 Defeating Correlation Detection . . . . . . . . . . . . . . . . . 136

5.4.2 Repeating Labels . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.4.3 Reconstructing Labels . . . . . . . . . . . . . . . . . . . . . . 139



viii

Page

5.4.4 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4.5 Defeating Bias Detection . . . . . . . . . . . . . . . . . . . . . 141

5.4.6 On-the-Fly Quality Assessment . . . . . . . . . . . . . . . . . 144

5.4.7 Finite Window . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4.8 Offline Detection . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4.9 Labeling Made Safer . . . . . . . . . . . . . . . . . . . . . . . 146

5.4.10 Summarization Revisited . . . . . . . . . . . . . . . . . . . . . 147

5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.6.1 Random Alterations . . . . . . . . . . . . . . . . . . . . . . . 155

5.6.2 Sampling and Summarization . . . . . . . . . . . . . . . . . . 157

5.6.3 Segmentation. Combinations . . . . . . . . . . . . . . . . . . . 158

5.6.4 Overhead and Impact on Data Quality . . . . . . . . . . . . . 159

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6 Semi-structured Aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2.1 The Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3 A Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.3.1 Tolerant Canonical Labeling . . . . . . . . . . . . . . . . . . . 167

6.3.2 Tolerant Content Summaries . . . . . . . . . . . . . . . . . . . 174

6.3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.4 Implementation and Experiments . . . . . . . . . . . . . . . . . . . . 179

6.4.1 The wmx.* Package . . . . . . . . . . . . . . . . . . . . . . . . 179

6.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7 Model of Watermarking (Part Two) . . . . . . . . . . . . . . . . . . . . . . 183



ix

Page

7.1 First Principle of Watermarking . . . . . . . . . . . . . . . . . . . . . 183

7.2 Challenge of Watermarking . . . . . . . . . . . . . . . . . . . . . . . 184

7.3 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3.2 A Sample Watermarking Algorithm . . . . . . . . . . . . . . . 187

7.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.4.1 Oracle Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.4.2 Persuasiveness and Watermark Length. Distance Metrics . . . 197

7.4.3 Note on Collusions . . . . . . . . . . . . . . . . . . . . . . . . 199

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8 The Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210



x

LIST OF FIGURES

Figure Page

1.1 Introduction: (a) Digital Watermarking conceals an indelible “rights
witness” (“rights signature”, watermark) within the digital Work to
be protected. (b) In court, a detection process is deployed to prove
the existence of this “witness” beyond reasonable doubt (confidence
level) and thus assess ownership. . . . . . . . . . . . . . . . . . . . . . 2

1.2 Introduction: Rights Assessment is useful when valuable content is to
be sold/outsourced to potentially un-trusted parties, even if rightfully
licensed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Introduction: A scenario where resilient information hiding for finger-
printing might reveal which secret agent leaked secret documents to
Lex Luthor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Introduction: Information Hiding classification according to Petitcolas
et al [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Introduction: Relational Data with Numeric Types – (a) The wmdb.*
package. (b) Random attack (non-zero average) on a normally dis-
tributed data set. (c) Impact of classification preservation on the
available watermarking bandwidth. . . . . . . . . . . . . . . . . . . . 12

1.6 Introduction: Relational Data with Categorical Types – (a) More
available bandwidth (decreasing e) results in a higher attack resilience.
(b) The watermark degrades almost linearly with increasing data loss. 15

1.7 Introduction: Discrete Streaming Data – (a) Watermark survival to
epsilon-attacks. (b) Watermark survival to combined sampling and
summarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.8 Introduction: Semi-structured Aggregates – Averaged watermark loss
over 10 runs of an 8 bit watermark embedded into an arbitrary 32 node
graph with 64 edges. Surgery attacks are applied randomly (node
removals 60%, link addition 20%, link removal 20%). The labeling
scheme was trained for 3 surgeries. . . . . . . . . . . . . . . . . . . . 20



xi

Figure Page

1.9 Introduction: Model of Watermarking – (a) No matter how sophisti-
cated the watermarking method, there exists a random attack with a
success probability of 33% and above (although we might not know
what the attack is). It can be seen that a more court convincing ǫw

value yields an even higher upper bound on attack success probability
(2D cut through (b)). (b) The 3D evolution of the probability of a
successful attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Model of Watermarking: (a) A 2-dimensional view of a usability space.
A point uniquely identifies a Work in D (e.g., coordinates in this space
are DCT coefficients considered for watermark embedding). Water-
marking results in a point O′, a “watermarked” version of O and is
naturally represented as a transform in the usability space. (b) Usabil-
ity vicinities of a certain Work O ∈ D for a given marking algorithm.
Udata is defined by the actual data type of the usability metrics. Umax

is the maximal allowable usability vicinity with respect to the asso-
ciated usability domain(s) (e.g., Human Visual System). The results
(Ualg) of a valid marking algorithm with respect to a given Work and
all other possible inputs should be contained within the maximal al-
lowable usability vicinity (Umax) of the Work. Uwm is determined by
ǫw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Model of Watermarking: In actuality, (symmetric) watermarking is
based on the use of a common secret (key) k shared between the
encoding and detection (e.g., in court) phases. . . . . . . . . . . . . . 29

2.3 Model of Watermarking: In consumer-driven watermarking a set of
data constraints are continuously evaluated in the encoding process
to ensure quality of the result. . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Relational Data: Rights assessment is important when valuable data
is outsourced to a third party. . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Relational Data with Numeric Types: Primitive Mark Power Am-
plification. Subset selection after sorting on keyed hash of the most
significant bits (MSB) of the normalized data items. This enables re-
covery after various attacks, including re-shuffling/sorting and linear
changes. The secrecy of the subsets to which the weak(er) encoding
is applied provides a resilience amplification effect. . . . . . . . . . . . 47

3.3 Relational Data with Numeric Types: Single Bit Encoding Algorithm
(illustrative overview). . . . . . . . . . . . . . . . . . . . . . . . . . . 50



xii

Figure Page

3.4 Relational Data with Numeric Types: Distribution of item set Si. En-
coding of the watermark bit relies on altering the size of the “positive
violators” set, vc(Si). . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Relational Data with Numeric Types: (a) Different error correcting
(wmdb. sys. RedundancyCoder) plugins can be added/removed at
runtime in order to provide an increased level of resilience for the
original watermark to be embedded. (b) Example of majority vot-
ing over three recovered watermark copies for a 6 bit sized original
watermark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Relational Data with Numeric Types: Watermark Embedding Algo-
rithm (version using subset markers and detection maps shown). . . . 59

3.7 Relational Data with Numeric Types: Watermark Detection Algo-
rithm (version using subset markers and detection maps shown). . . . 60

3.8 Relational Data with Numeric Types: The wmdb.* package. Appli-
cation runtime snapshot. . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 Relational Data with Numeric Types: The wmdb.* package. Overview. 68

3.10 Relational Data with Numeric Types: Resilience to data surgeries (a)
uniform distribution, (b) normal distribution, (c) single subset (1-bit)
encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.11 Relational Data with Numeric Types: Epsilon-attack (zero-average)
on normally distributed data. . . . . . . . . . . . . . . . . . . . . . . 72

3.12 Relational Data with Numeric Types: (a) Epsilon-attack (non-zero av-
erage) on a normally distributed data set. (b) Impact of guaranteeing
a Maximum Allowable Absolute Change on the available watermark-
ing bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.13 Relational Data with Numeric Types: Impact of a classification preser-
vation on the available watermarking bandwidth. . . . . . . . . . . . 75

4.1 Relational Data with Categorical Types: (a) Embedding Algorithm
(b) Alternative using embedding map (bit size adjustments omitted) . 90

4.2 Relational Data with Categorical Types: Overview of multi-bit wa-
termark encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Relational Data with Categorical Types: (a) Decoding Algorithm (b)
Alternative using embedding map . . . . . . . . . . . . . . . . . . . . 94

4.4 Relational Data with Categorical Types: Defeating vertical partitioning. 95



xiii

Figure Page

4.5 Relational Data with Categorical Types: Handling multiple marks
interference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Relational Data with Categorical Types: Defeating correlation attacks.100

4.7 Relational Data with Categorical Types: Defeating correlation attacks
revisited (multiple embeddings). . . . . . . . . . . . . . . . . . . . . . 102

4.8 Relational Data with Categorical Types: Data quality is continu-
ously evaluated. A backtrack log aids undo operations in cases where
the watermark embedding would violate quality constraints (see also
Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.9 Relational Data with Categorical Types: Handling extreme multi-set
partitioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.10 Relational Data with Categorical Types: Handling attribute remapping.111

4.11 Relational Data with Categorical Types: Handling an informed Mallory.115

4.12 Relational Data with Categorical Types: (a) The watermark degrades
gracefully with increasing attack size (e = 65). (b) More available
bandwidth (decreasing e) results in a higher attack resilience. . . . . . 117

4.13 Relational Data with Categorical Types: (a) The watermark alter-
ation surface with varying c (watermark modifications) and attack
size. Note the lower-left to upper-right tilt. (b) The watermark de-
grades almost linearly with increasing data loss. . . . . . . . . . . . . 118

4.14 Relational Data with Categorical Types: (a) Embedding time depen-
dency as a function of e and N . (b) Detection time requirements are
similar to embedding and linear in the size of the data. . . . . . . . . 118

5.1 Discrete Streaming Data: Sensor Streams Watermarking Scenario. . . 122

5.2 Discrete Streaming Data: Stream Processing is necessarily bound in
both time (stream rate) and space (window). . . . . . . . . . . . . . . 126

5.3 Discrete Streaming Data: (a) A sample stream. If all the extremes are
considered to be major, then the resulting label bits for K are shown
(for ̺ = 2) (b) δ-Radius characteristic subset of extreme η. . . . . . . 127

5.4 Discrete Streaming Data: Initial Embedding Algorithm . . . . . . . . 132

5.5 Discrete Streaming Data: Initial Detection Algorithm . . . . . . . . . 135

5.6 Discrete Streaming Data: Average exhaustive search iterations re-
quired in computing the closest point that satisfies the characteristic
subset bit encoding convention (logarithmic scale). . . . . . . . . . . . 143



xiv

Figure Page

5.7 Discrete Streaming Data: Overview of proof of concept implementation.154

5.8 Discrete Streaming Data: Label alteration for increasingly aggressive
uniform altering epsilon attacks. (a) Different label bit sizes shown.
A smaller label size seems to survive better. (b) Different altered data
percentages shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.9 Discrete Streaming Data: Watermark survival to epsilon-attacks. (a)
Naturally, increasing τ and ǫ values result in a decreasing watermark
bias. (b) Same shown for ǫ = 10%. (real data) . . . . . . . . . . . . . 156

5.10 Discrete Streaming Data: (a) Label resilience under sampling condi-
tions. A higher label bit-size naturally yields an increased fragility to
sampling. (b) Label alteration for summarization of increasing degree. 157

5.11 Discrete Streaming Data: (a) Watermark survival to summarization.
An increasing summarization degree results in a decreasing detected
watermark bias. (b) Watermark survival to sampling. A bias of 10
ensures a true-positive probability of 99.999%. (real data) . . . . . . 158

5.12 Discrete Streaming Data: (a) Watermark survival to segmentation.
(b) Watermark survival to combined sampling and summarization.
(real data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.13 Discrete Streaming Data: (a) Computation overhead (iterations) in
multi-hash encoding increases with increasing guaranteed resilience
(e.g., sampling degree) levels (logarithmic scale). (b) Decreasing the
number of considered bit-encoding extremes (increasing φ) decreases
the impact on mean and standard deviation in the watermarked data. 161

6.1 Semi-structured Aggregates: A webpage as a semi-structure. . . . . . 165

6.2 Semi-structured Aggregates: Tolerant Canonical Labeling. Compos-
ite Labels are a result of successive training sessions. . . . . . . . . . 169

6.3 Semi-structured Aggregates: A combination of propagated structural
and node content information determines a node label. . . . . . . . . 170



xv

Figure Page

6.4 Semi-structured Aggregates: (a) The surface defining the composite
label collisions appearing after 4 stages of training (i.e., i = 4) with
a random generated set of surgeries applied to the graph. It is to be
noted that lower γ values seem to yield a lower number of composite
label collisions but in turn results in a lower resistance to structural
attacks (i.e., as labeling will not be as resilient to graph surgeries).
(b) The zero-collision (for composite labels) surface in the (itera-
tions,alpha,gamma) space corresponding to the same set of surgeries.
Its existence proves the ability to label resiliently (to the considered
surgeries) without colliding resulting composite labels. Computed us-
ing the wmx.* package. (c) The considered graph. . . . . . . . . . . 173

6.5 Semi-structured Aggregates: Labeling Algorithm. . . . . . . . . . . . 174

6.6 Semi-structured Aggregates: Watermark Embedding Algorithm . . . 176

6.7 Semi-structured Aggregates: Watermark Detection Algorithm . . . . 177

6.8 Semi-structured Aggregates: Surfaces defining the composite label
collisions appearing after 3 stages of training with a random generated
set of surgeries. (a) Tree shaped graph. Much of the web content
online is tree-shaped. Again, note that lower γ values seem to yield
a lower number of composite label collisions. (b) Star shaped graph.
Note the smoother shape and the lower collision bounds, compared to
(a). The same nodes were used, differently interconnected. Computed
using the wmx.* package. . . . . . . . . . . . . . . . . . . . . . . . . 181

6.9 Semi-structured Aggregates: Averaged watermark loss over 10 runs of
an 8 bit watermark embedded into an arbitrary 32 node graph with 64
edges. Surgery attacks are applied randomly (node removals 60%, link
addition 20%, link removal 20%). The labeling scheme was trained
for 3 surgeries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.1 Model of Watermarking: Mallory attacks (different variations). . . . . 201

7.2 Model of Watermarking: (a) No matter how sophisticated the water-
marking method, there exists a random attack with a success prob-
ability (e.g. of 35% and above, shown here for 2-dimensional us-
ability spaces, see Section 7.3.4 for a discussion on high dimensional
spaces). It can be seen that a lower ǫw value (more convincing in
court) yields an even higher upper bound on attack success probabil-
ity (2D cut through (b)). (b) The 3D evolution of Psa with varying
ǫw and Ra/∆umax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202



xvi

7.3 Model of Watermarking: (a) Sparse maximum allowable usability
vicinity, Umax = ∪(Umaxi

), (b) A concave Umax does not respect opti-
mality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202



xvii

ABSTRACT

Sion, Radu. Ph.D., Purdue University, August, 2004. Rights Assessment for
Discrete Digital Data. Major Professors: Mikhail Atallah and Sunil Prabhakar.

Zero-cost verbatim digital copies, possibly one of the main features of the Infor-

mation Age threatens to become one if its significant road-blocks, as more and more

information is processed in fast, distributed environments. The ability to produce

duplicates of digital Works at almost no cost can now be misused for illicit profit.

This mandates mechanisms for effective rights assessment and protection.

One such mechanism is based on Information Hiding. By concealing a resilient

rights holder identity “signature” (watermark) within the digital Work(s) to be pro-

tected, Information Hiding for Rights Assessment (Watermarking) enables ulterior

court-time proofs associating particular Works with their respective rights holders.

One main challenge is the fact that altering the Work in the process of hiding

information could possibly destroy its value. Additionally, one has to be concerned

with a malicious adversary (“Mallory”), with major incentives to remove or alter

the watermark beyond detection (thus disabling the ability for court-time proofs)

without destroying the value of the Work (potential for illicit profit).

In this work we show that Information Hiding can be deployed as an effective tool

for Rights Assessment for discrete digital data. We explore a wide range of discrete

data domains, including numeric and categorical relational data, discrete sensor

streams and semi-structured aggregates. We then prove that there are inherent

limits to applying it effectively in hostile environments, limits illustrated best by a

trade-off between the ability to “convince” in court and at the same time survive

malicious adversaries.
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1 INTRODUCTION

Information, as an expression of knowledge, is probably the most valuable asset of

humanity today. By enabling relatively cost-free, fast, and accurate access channels

to information in digital form, computers have radically changed the way we think

and express ideas. As increasing amounts of it are produced, packaged and delivered

in digital form in a fast, networked environment, one of its main features threatens to

become its worst enemy: zero-cost verbatim copies. The inherent ability to produce

duplicates of digital Works at virtually no cost can now be misused e.g., for illicit

profit (see Figure 1.2). This dramatically increases the requirement for effective

rights assessment and protection mechanisms.

Different avenues are available, each with its advantages and drawbacks. Enforce-

ment by legal means is usually ineffective, unless augmented by a digital counterpart

such as Information Hiding. Digital Watermarking as a method of Rights Assess-

ment deploys Information Hiding to conceal an indelible “rights witness” (“rights

signature”, watermark) within the digital Work to be protected (see Figure 1.1).

The soundness of such a method relies on the assumption that altering the Work in

the process of hiding the mark does not destroy the value of the Work, and that it is

difficult for a malicious adversary (“Mallory”) to remove or alter the mark beyond

detection without destroying the value of the Work. The ability to resist attacks

from such an adversary (mostly aiming at removing the embedded watermark) is

one of the major concerns in the design of a sound watermarking solution.

There exists a multitude of semantic frameworks for discrete information process-

ing and distribution. Each distinct data domain would benefit from the availability

of a suitable watermarking solution. With the notable exception of software water-

marking [1], the overwhelming majority of research efforts [2] [3] have been invested

in the frameworks of signal processing and multimedia Works (e.g., images, video
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Figure 1.1. Introduction: (a) Digital Watermarking conceals an in-
delible “rights witness” (“rights signature”, watermark) within the
digital Work to be protected. (b) In court, a detection process is
deployed to prove the existence of this “witness” beyond reasonable
doubt (confidence level) and thus assess ownership.

and audio). In this dissertation, we analyze information hiding as a rights assessment

tool for discrete digital data types such as relational and time-series data. In this

framework we propose a theoretical model and ask: are there any limitations to what

watermarking can do? What are these and when can they be reached? (Chapters 2

and 7) We then design and analyze watermarking solutions for (i) numeric sets and

relational data (Chapter 3), (ii) categorical data (Chapter 4), (iii) discrete sensor

streams (Chapter 5) and (iv) semi-structures (Chapter 6).

1.1 Deployment Scenario

How does the ability to prove rights in court relate to our final desiderata, namely

to protect those rights? Why not simply publish a digest of the Works to be protected

in a newspaper, just before releasing them, enabling us to prove later on in court

that at least they were in our possession at the time of publication. In the following

we address these and other related issues.
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Figure 1.2. Introduction: Rights Assessment is useful when valuable
content is to be sold/outsourced to potentially un-trusted parties,
even if rightfully licensed.

1.1.1 Rights Protection through Assessment

The ability to prove/assess rights convincingly in court constitutes a deterrent to

Mallory. It thus becomes a tool for rights protection if counter-incentives and legal

consequences are set high enough. But because information hiding does not provide

means of actual access control, the question of rights protection still remains. How

are rights protected here?

It is intuitive that such a method would only work if the rightful rights-holder

(Alice) actually knows about Mallory’s misbehavior and is able to prove to the court

that: (i) Mallory possesses a certain Work X and (ii) X contains a “convincing” (e.g.,

very rare with respect to the space of all considered similar Works) and “relevant”

(e.g., a string stating “(c) by Alice”) watermark.
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What watermarking does not offer is a direct deterrent. If Alice does not have

the knowledge of Mallory’s illicit possession of the Work and/or if it is impossible to

actually prove this possession in court beyond reasonable doubt, then watermarking

cannot be deployed directly to prevent Mallory.

If, however, Information Hiding is aided by additional access control level levers,

it can become very effective.

For example, if in order to derive value from the given Work (e.g., watch a video

tape), Mallory has to deploy a known mechanism (e.g., use video player), information

hiding could be deployed to enable such a proof of possession, as follows. One simple

example would involve modifying the video player so as to detect the existence of a

watermark and match it with a set of credentials and/or “viewing tickets” (that can

be purchased) associated with the player’s owner. If no match is found, the tape is

simply not played back.

This is just one of many scenarios where watermarking can be deployed in con-

junction with other technologies to aid in managing and protecting digital rights.

Of course this scenario is simplistic and relies on the assumption that the cost of

reverse engineering this process is far higher than the potential derived illicit gain.

However this is essential in that it illustrates the game theoretic nature at the heart

of the watermarking proposition and of information security in general.

Another example application of Resilient Information Hiding as a tool aiding

rights management, would be its deployment to “track” license violators by hiding

a specific mark inside the Work, a mark that uniquely identifies the party it was

sold/outsourced to (fingerprinting). If the Work would then be found in the public

domain, that mark could be used to assess the source of the leak (see Figure 1.3).

Watermarking is a game with two adversaries, Mallory and Alice. At stake lies

the value inherent in a certain Work X, over which Alice owns certain rights. When

Alice releases X she deploys watermarking for the purpose of ensuring that one of

the following holds:
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Figure 1.3. Introduction: A scenario where resilient information hid-
ing for fingerprinting might reveal which secret agent leaked secret
documents to Lex Luthor.

• she can always prove rights in court over any copy or valuable derivate of X

(e.g., segment)

• any existing derivate Y of X, for which she cannot prove rights, does not

preserve any significant value (derived from the value in X)

• the cost to produce such an un-watermarked (for which she cannot prove rights)

derivate Y of X that is still valuable (with respect to X) is higher than its value

1.1.2 Information Hiding vs. Newspaper Digests

Apparently Alice could simply publish a (e.g., cryptographic) digest of X in

a newspaper, thus being able to at least claim a time stamp of possession of X
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Figure 1.4. Introduction: Information Hiding classification according
to Petitcolas et al [4]

later on. Why not deploy this as a rights assessment tool instead of information

hiding? There are many reasons why it would not work, including (i) scalability

issues associated with the need for a trusted third party (newspaper), (ii) the cost

of publishing a digest for each released Work, (iii) scenarios when the fact that the

Work is watermarked should be kept secret (stealthiness) etc.

Maybe the most important reason is that Mallory can now claim that his owner-

ship of the Work precedes X’s publication date, and that Alice simply (modified it

and) published a digest. It would then be up to the court to decide if Mallory is to be

believed or not, hardly an encouraging scenario for Alice. This could work if there

existed a mechanism for the mandatory publication of digests for each and every

valuable Work, again probably impractical due to both costs and lack of scalability.

It becomes clear that deploying such aids as rights assessment tools makes sense

only in the case of the Work being of value only un-modified. In other words if

it does not tolerate any changes (without losing its value) and Mallory is caught
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in possession of an identical copy, Alice can successfully prove in court that she

possessed the original at the time of its publication, but she cannot prove more.

Now, considering that, in the case of watermarking, the assumption is that, no

matter how small, there are modifications allowed to the Works to be protected,

in some sense the two approaches complement each other. If no modifications are

allowed, then a third-party “newspaper” service might work for providing a time-

stamp type of ownership proof that can be used in court.

1.2 Watermarking vs. Watermarking

In existing research, the term “watermarking” denotes the use of information hid-

ing techniques to (also) assess digital rights, overwhelmingly focused in the broader

frameworks of signal processing and multimedia Works.

In this dissertation we (appropriately) re-use this term, to denote the same con-

cept of using Information Hiding to provide proofs of rights. However this brings

about the question of the specifics of the relationship between the actual research

challenges and techniques deployed in both frameworks. Because, while the terms

might be identical, the associated model, challenges and techniques are different,

almost orthogonal: whereas in the signal processing case there usually exists a large

noise bandwidth, due to the fact that the final data consumer is likely human (with

associated limitations of the sensory system), in the case of discrete data types this

cannot be assumed and data quality assessment needs to be closely tied with the

actual watermarking process (see Section 2.2).

Another important differentiating focus in our research is the emphasis on the

actual ability to convince in court as a success metric, unlike most approaches in

the signal processing realm, that centered on bandwidth. We believe that, while

bandwidth is a relevant related metric, it does not consider important additional

issues such as malicious transforms and removal attacks. We are not as concerned

with packing a lot of rights assessment information (i.e., watermark bits) in the
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Works to be protected, as we are concerned with being able to both survive removal

attacks and convince in court. We explore this more in Chapter 7 (and [5], [6]).

Maybe the most important difference between the two domains is that, while in a

majority of watermarking solutions in the multimedia framework, the main domain

transforms are signal processing primitives (e.g., Works are mainly considered as

being compositions of signals rather than strings of bits), in our case data types are

mostly discrete and are not naturally handled as continuous signals. Additionally,

while (for example) discrete versions of frequency transforms can be deployed as

primitives in information encoding for digital images [2], the basis for doing so is

the fact that, although digitized (thus in discrete format), images are at the core

defined by a composition of light reflection signals and are consumed as such (by

the final human consumer). By contrast, arbitrary discrete data (e.g., categorical

data) is naturally discrete 1 and often to be ingested by a highly sensitive processing

component (e.g., a computer rather than a perceptual system tolerant of distortions).

Thus, while the term “watermarking” will be used throughout this dissertation to

denote the process of deploying information hiding for the purpose of rights assess-

ment, in terms of actual models, challenges and techniques, it is to be distinguished

from its use in the broader domain of signal processing and multimedia. And while

similarities are always to be found (e.g., “Gaussian noise addition” in the multimedia

case equates to a “random un-informed attack” in the discrete data case) we do not

believe that “everything is a signal” for the purpose of rights assessment. Comparing

efforts in the two domains can often result in comparing apples to oranges.

1.3 Summary of Contributions

The main contributions of this dissertation include: a theoretical model for rights

assessment through information hiding for discrete digital data (Chapters 2 and 7),

the design and analysis of watermarking solutions for numeric sets and relational

1Unless we consider quantum states and uncertainty arising in the spin of the electrons flowing
through the silicon.
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data (Chapter 3), categorical data (Chapter 4), discrete sensor streams (Chapter 5)

and semi-structures (Chapter 6).

1.3.1 Model

In Chapter 2 (and [5], [6]) we introduce a model for watermarking. We define

fundamental concepts including: usability domain - a set of functionals quantifying

a digital Work’s value in terms of its specific use; watermark - an induced prop-

erty of a watermarked Work O′, so rare, that if we consider any other Work O′′,

“close-enough” to the original Work O, the probability that O′′ exhibits the same

property can be upper-bounded; watermark vulnerability - the ability of an attack

to succeed against a watermarking scheme. One fundamental difference between

watermarking and generic data hiding resides in the main applicability and descrip-

tions of the two domains. Data hiding in general, and covert communication in

particular, aims at enabling Alice and Bob to exchange messages in a manner as

resilient and stealthy as possible, through a medium controlled by evil Mallory. Dig-

ital watermarking is deployed in court by Alice to prove rights over a given Work,

usually in a scenario where Mallory benefits from using/selling that very same Work

or maliciously modified versions of it. In digital watermarking, the actual value to

be protected lies in the Works themselves whereas information hiding usually makes

use of them as simple value “transporters”. Rights assessment can be achieved by

demonstrating that a particular Work exhibits a rare property (read “hidden mes-

sage” or “watermark”), usually known only to Alice (with the aid of a “secret” - read

“watermarking key”). For court convince-ability purposes this property needs to be

so rare that if one considers any other random Work “similar enough” to the one in

question, this property is “very improbable” to be present (i.e., very unlikely to arise

fortuitously). This defines a main difference from steganography: for its purpose,

the specifics of the property (e.g., watermark message) are irrelevant as long as Alice

can prove “convincingly” it is she who embedded/induced it to the original (non-
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watermarked) Work. Thus, in watermarking the emphasis is on “detection” rather

than “extraction”. Extraction of a watermark is usually a part of the detection but

just complements the process up to the extent of increasing the ability to convince

in court.

1.3.2 Numeric Relational Data

In Chapter 3 (and [7], [8], [9]) we introduce a solution for relational database con-

tent rights protection through watermarking. Rights protection for relational data is

of ever increasing interest, especially considering areas where sensitive, valuable con-

tent is to be outsourced. A good example is a data mining application, where data

is sold in pieces to parties specialized in mining it. Our solution addresses important

attacks, such as subset selection, linear data changes, random alteration attacks,

and data loss. We introduce wmdb.*, a proof-of-concept implementation and its

application to real-life data, namely in watermarking the outsourced Wal-Mart sales

data available at our institute.

The main challenges in this new domain derive from the fact that, since the

associated data types do not have fixed, well defined semantics (as compared to

multimedia) and may be designed for machine ingestion, identifying the available

“bandwidth” for watermarking becomes as important as the actual encoding algo-

rithms. Remember that one of the desiderata of watermarking is to insert an indelible

mark in the object such that the insertion of the mark does not destroy the value

of the object. Clearly, the notion of value or utility of the object is central to the

watermarking process. This is closely related to the type of data and its intended

use. For example, in the case of software the value may be in ensuring equivalent

computation, and for text it may be in conveying the same meaning (i.e., synonym

substitution is acceptable). Similarly, for a collection of numbers, the utility of the

data may lie in the actual or the relative values of the numbers, or in their distri-

bution (e.g., normal with a certain mean and variance). Because, one can always
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identify some use of the data that would be affected by even a minor change to

any portion of it, it becomes necessary that the intended purpose of the data to be

preserved is identified and integrated in the watermarking process.

Our solution starts by receiving as user input a reference to the relational data to

be rights-protected, a watermark to be embedded as a copyright proof, a secret key

used to protect the embedding, and a set of data quality constraints to be preserved

in the result. It then proceeds to watermark the data while continuously assessing

data quality, potentially backtracking and undoing undesirable alterations that do

not preserve data quality. Watermark embedding consists of two main parts: in the

first stage, the input data set is securely partitioned into subsets of items; the second

stage then encodes one bit of the watermark into each subset. If more subsets (than

watermark bits) are available, error correction is deployed to result in an increasingly

resilient embedding. The algorithms prove to be resilient to important classes of

attacks, including subset selection, linear data changes, and random alterations.

The system design, (including the mechanisms evaluating data quality constraints

through plugins), is outlined in Figure 1.5 (a). To exemplify the resilience of the

method (e.g., to random alterations), in Figure 1.5 (b), a comparison is made between

the case of uniformly distributed (i.e., values are altered randomly between 100%

and 120% of their original value) and fixed alterations (i.e., values are increased by

exactly 20%). In the case of fixed alterations the behavior demonstrates the self-

healing ability of our method: as more and more of the tuples (past the 50% mark)

are altered linearly, the watermark distortion decreases. When over 95% of the data

is modified consistently and linearly, the watermark suffers only 7% alterations.

Another important experiment analyzes the ability to preserve classes in the

resulting watermarked Work. Classification is extremely relevant in areas such as

data mining, and we envision that many of the actual deployment scenarios for our

relational watermarking application will require classification preservation. Classifi-

cation preservation deals with the problem of propagation of the classes occurring

in the original (input) data in the watermarked (output) version of the data. It
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Figure 1.5. Introduction: Relational Data with Numeric Types – (a)
The wmdb.* package. (b) Random attack (non-zero average) on a
normally distributed data set. (c) Impact of classification preserva-
tion on the available watermarking bandwidth.

provides thus the assurance that the watermarked version still contains most (or

within a certain allowed percentage) of the original classes. Figure 1.5 (c) depicts

how classification can be preserved while making optimal use of the available band-

width. For example, up to 90% of the underlying bandwidth can become available

for watermark encoding with a restrictive 6% classification preservation goodness.

These results confirm the adaptability of our watermarking algorithm. As clas-

sification tolerance is increased, the application adapts and makes use of an in-

creased available bandwidth for watermark encoding. This also show that classifi-

cation preservation is compatible with our distribution-based encoding method, an

important point to be made, considering the wide range of data-mining applications

that could naturally benefit from watermarking ability.

The main contributions in this chapter include: (i) a resilient watermarking

method for numeric relational data, (ii) a technique for enabling user-level run-time

control over properties that are to be preserved as well as the degree of change in-

troduced, (iii) a complete, user-friendly implementation for numeric relational data,

and (iv) the deployment of the implementation on real data, in watermarking the

Wal-Mart Sales Database and the analysis thereof.



13

1.3.3 Categorical Data

In Chapter 4 (and [10], [11]) we introduce a novel method of watermarking rela-

tional data with categorical types. We discover new watermark embedding channels

and design novel watermark encoding algorithms. We analyze important theoretical

bounds including mark vulnerability. While fully preserving data quality require-

ments, our solution survives important attacks, such as subset selection and random

alterations. Mark detection is fully “blind” in that it does not require the original

data, an important characteristic especially in the case of massive data. We propose

various improvements and alternative encoding methods. We perform validation

experiments by watermarking the outsourced Wal-Mart sales data available at our

institute. We prove (experimentally and by analysis) our solution to be extremely

resilient to both alteration and data loss attacks, for example tolerating up to 80%

data loss with a watermark alteration of only 25%.

Important new challenges are associated with this domain. One cannot rely on

“small” alterations to the data in the embedding process. Any alteration may be sig-

nificant. The discrete characteristics of the data require discovery of fundamentally

new bandwidth channels and associated encoding algorithms. Our method proves to

be resilient to important attacks, including subset selection and random alterations.

Our solution starts by discovering two domain-specific watermark embedding

channels, namely (i) the inter-attribute associations and (ii) the value occurrence

frequency-transform (attribute frequency histogram). Next, embedding methods to

resiliently hide information in these channels are designed. The main method starts

with an initial user-level assessment step in which a set of attributes to be water-

marked are selected. Next, watermark encoding proceeds for each attribute pair

(K, A) in the considered attribute set, by selecting a subset of “fit” tuples (deter-

mined directly by the association between A and K). These tuples are then consid-

ered for mark encoding. Mark encoding alters the tuple’s value according to secret

criteria that induces a statistical bias in the distribution for that tuple’s altered



14

value. The mark decoding process relies on discovering this induced statistical bias.

Yet another embedding method is available to counter extreme vertical partitioning

attacks in which only a single attribute A is preserved in the result. If, intuitively,

for massive data sets, the number of possible discrete values for A is much smaller

than the data set size, then A contains many duplicate values. There is probably

very little value associated with knowing the set of possible values of A. The main

value in this scenario (in Mallory’s eyes) is (arguably) to be found in one of the

only remaining characteristic properties, namely the value occurrence frequency dis-

tribution for each possible value of A. If we could devise an alternative watermark

encoding method for this set then we would be able to associate rights also to this

aspect of the data, thus surviving this extreme partitioning attack. In Chapter 3

we introduce a watermarking method for numeric sets that is able to minimize the

absolute data alteration in terms of distance from the original data set. We propose

to apply this method here to embed a mark in the occurrence frequency distribution

domain. One concern we should consider is the fact that in the categorical domain

we are usually interested in minimizing the number of data items altered whereas in

the numeric domain we aim to minimize the absolute data change. It is fortunate

that, because we now have numeric values modeling occurrence frequency, a solution

minimizing absolute data change in this (frequency) domain naturally minimizes the

number of items altered in the categorical value domain.

The experimental results include an analysis of the relationship between the

amount of alterations required in the watermarking phase and a minimum guaranteed

watermark resilience. It can be seen in Figure 1.6 (a) that with a decreasing number

of encoding alterations (decreasing e) the vulnerability to random alteration attacks

increases accordingly. This illustrates the trade-off between the requirement to be

resilient and the preservation of data quality (e.g., fewer alterations). An experiment

analyzing resilience to data loss is depicted in Figure 1.6 (b). We observe here the

compensating effect of error correction. Compared to data alteration attacks, the

watermark survives even better with respect to attack size (in this case data loss).
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Figure 1.6. Introduction: Relational Data with Categorical Types
– (a) More available bandwidth (decreasing e) results in a higher
attack resilience. (b) The watermark degrades almost linearly with
increasing data loss.

The main contributions of this effort include: (i) the proposal and definition

of the problem of watermarking categorical data, (ii) the discovery and analysis of

new associated watermark embedding channels (iii) the design of novel encoding

algorithms and (iv) their experimental analysis.

1.3.4 Sensor Streams

Today’s world of increasingly dynamic computing environments naturally results

in more and more data being available as fast streams. Applications such as stock

market analysis, environmental sensing, web clicks and intrusion detection are just

a few of the examples where valuable data is streamed to its consumer. Often,

streaming information is available on the basis of a non-exclusive, single-use customer

license. One major concern, especially given the digital nature of the valuable stream,

is the ability to easily record and potentially “re-play” parts of it in the future.

If there is value associated with such future re-plays, it could constitute enough

incentive for a malicious customer (Mallory) to record and duplicate segments of
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data, subsequently re-selling them for profit. Being able to protect against such

infringements becomes a necessity.

In Chapter 5 (and [12]) we introduce the issue of rights protection for streaming

discrete (sensor) data through watermarking. This is a novel problem with many

associated challenges including: the inability to perform multiple-pass random ac-

cesses to the entire data set, the requirement to be fast enough to keep up with the

incoming stream rate, to survive instances of extreme sparse sampling and summa-

rizations, while at the same time keeping data alterations within allowable bounds.

We propose a solution and analyze its resilience to various types of attacks as well

as expected domain-specific alterations, such as sampling and summarization. We

implement a proof of concept software (wms.*) and perform experiments to assess

these resilience levels in practice. Our method proves to be well suited for this new

domain. For example, we can recover an over 97% confidence watermark from a sam-

pled (e.g., less than 8%) stream. Similarly, our encoding ensures survival to stream

summarization (e.g., 20%) and random alteration attacks with very high confidence

levels, often above 99%.

A set of novel challenges present themselves in this domain. Any stream process-

ing performed is necessarily both time and space bound. The time bounds derive

from the fact that the processing has to keep up with incoming data. The space

bounds are referring to the finiteness of any storage mechanism, when compared

with the virtually infinite nature of streaming data. At the same time, any quality

preservation constraints can be formulated only in terms of the current available

data window; including any history information will come at the expense of being

unable to store as much new incoming data. Moreover, the effectiveness of any rights

protection method is directly related to its ability to survive legitimate domain spe-

cific transformations as well as malicious attacks. In this framework we deal with

the following: (A1) summarization, (A2) sampling, (A3) segmentation (we would

like to be able to recover a watermark from a finite segment of data drawn from the

stream), (A4) scaling (there might be value in actual data trends, that Mallory could
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still exploit, by scaling the initial values), (A5) addition of stream values and (A6)

random alterations.

At an overview level, watermark embedding proceeds as follows: (a) first a set

of “major” data extremes (actual stream max/min values) are identified in the data

stream, extremes that feature the property that they (or a majority thereof) can be

recovered after a suite of considered alterations (possibly attacks) such as (random)

sampling and summarization. Next (b) a certain criteria is used to select some of

these extremes as recipients for parts of the watermark. Finally (c), the selected

ones are used to define subsets of items considered for 1-bit watermark embedding of

bits of the global watermark. The fact that these extremes can be recovered ensures

a consistent overlap (or even complete identity) between the recovered subsets and

the original ones (in the un-altered data). In the watermark detection process (d)

all the extremes in the stream are identified and the selection criteria in step (b)

above is used once again to identify potential watermark recipients. For each selected

extreme, (e) its corresponding 1-bit watermark is extracted and ultimately the global

watermark is gradually re-constructed, by possibly also using an error correction

mechanism. In summary, one of the main ideas behind our solution is the use of

extreme values in the stream’s evolution as watermark bit-carriers. The intuition

here lies in the fact that much of the stream value lies in its fluctuating behavior

(and associated extremes), more likely to survive value-preserving, domain-specific

transforms.

We performed experiments on watermark survival to a variety of transforma-

tions, including random alterations and combined sampling and summarization. In

Figure 1.7 (a), random alterations are illustrated. Naturally, an increasing level of

distortion results in decreasing detection. Nevertheless, for 50% of the data altered

within 10% of the original value, we still detect a watermark bias of roughly 25 bits,

yielding a very convincing false-positive rate of less than “one in thirty million”.

In Figure 1.7 (b) we outline the impact of a combined transformation (sampling

and summarization) on the watermark embedding. Because of the nature of both
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Figure 1.7. Introduction: Discrete Streaming Data – (a) Water-
mark survival to epsilon-attacks. (b) Watermark survival to com-
bined sampling and summarization.

transformations and of the resilience featured in each case, the combination seems to

be survived well. For example, 25% sampling, followed by 25% summarization still

yields a watermark bias of up to 20, corresponding to a favorable, low false-positive

rate of “one in a million”.

The main contributions in this chapter include: (i) the proposal and definition

of the problem of watermarking discrete sensor streams, (ii) the discovery and anal-

ysis of new watermark embedding channels for such data, (iii) the design of novel

associated encoding algorithms, (iv) a proof of concept implementation of the al-

gorithms and (v) their experimental evaluation. The algorithms introduced here

prove to be resilient to important domain-specific classes of attacks, including stream

re-sampling, summarization (replacing a stream portion by its average value) and

random changes.

1.3.5 Abstract Structures

While most existing work on watermarking is about specific kinds of media (in

fact most papers were about image watermarking), in this part of our research, rather

than dealing with single media at a time (image, audio, video), we explore a more
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general notion of a modern document. Generalized documents are aggregates of

multiple types of content – a document is a structured aggregation of many types of

data, and the information content of the document is as much in the structure (the

graph) as in the nodes (that contain particular data types). The fact that nodes in

semi-structures are value-carrying, means that a watermarking algorithm can make

use of their encoding capacity by using traditional watermarking, but the graph that

“glues” these together is another central element of the watermarking process. We

propose to combine and use these two facets (structural and node-content) to provide

a solution for the watermarking of aggregates.

In Chapter 6 (and [13]) we discuss the watermarking of abstract structured ag-

gregates of multiple types of content, such as multi-type/media documents. These

semi-structures can usually be represented as graphs and are characterized by value

lying both in the structure and in the individual nodes. Example instances include

XML documents, complex web content, workflow and planning descriptions. We pro-

pose a scheme for watermarking abstract semi-structures and discuss its resilience

with respect to attacks. While content-specific watermarking deals with the issue

of protecting the value in the structure’s nodes, protecting the value pertaining to

the structure itself is a new, distinct challenge. Nodes in semi-structures are value-

carrying, thus a watermarking algorithm could make use of their encoding capacity

by using traditional watermarking. For example if a node contains an image then

image watermarking algorithms can be deployed for that node to encode parts of

the global watermark. Also, given the intrinsic value attached to it, the graph that

“glues” these nodes together becomes in itself a central element of the watermarking

process that makes use of these two value facets, structural and node-content.

Multiple challenges are encountered in this framework, mostly derived from the

requirement to survive domain-specific transformations and likely attacks by Mallory,

including: elimination of value-“insignificant” nodes (A1), elimination of inter-node

relations (A2), value preserving graph partitioning into independent usable partitions

(A3), modification of node content, within usability vicinity (A4), addition of value
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watermark loss over 10 runs of an 8 bit watermark embedded into an
arbitrary 32 node graph with 64 edges. Surgery attacks are applied
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The labeling scheme was trained for 3 surgeries.

insignificant nodes (A5). Our solution is based on a canonical labeling algorithm that

self-adjusts to the specifics of the content. Labeling is tolerant to a significant number

of graph attacks (“surgeries”) and relies on a complex “training” phase at embedding

time in which it reaches an optimal stability point with respect to these attacks. We

perform attack experiments on the introduced algorithms under different conditions

with very encouraging results. In Figure 1.8 we show the watermark behavior to

data alteration in the case of a random artificially generated structure with 32 nodes

and 64 edges. The embedded watermark is 8 bits long. The labeling scheme was

trained for 3 surgeries. As the number of attack surgeries increases, the watermark

degrades slightly. The results are averaged over 10 runs on the same graph with

different random attacks. When 8 attack surgeries are applied to the graph we can

still recover 60 − 65% of the watermark. One has to consider also the fact that an

attacker is bound not to modify the structure beyond distortion limits.
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1.3.6 Limits

The main desiderata and features of watermarking in a signal processing/multimedia

framework, as outlined in [4] include: it should not degrade the perceived quality of

the marked Work; the ability to detect the presence/content of a watermark should

require the knowledge of a secret (key); different watermarks in the same Work

should not interfere with each other; collusion attacks should not be possible; the

watermark should survive any value-preserving transformation.

A common un-proved consensus has been implicitly assumed, namely that wa-

termarking indeed lives up to its claimed features. [2, 3, 14] present excellent area

surveys as well as comprehensive examples of algorithms for watermarking (mainly)

multi-media Works. We know now that arbitrary large collusion attacks cannot

be defeated against [15]. Moreover, while most watermarking algorithms prove to

be safe against a considered set of value-preserving transformations (e.g., JPEG

compression) they certainly fail with respect to many others. This shortcoming

can be directly traced back to the relativity of the “value” and “quality” concepts.

Several (mostly experimental) efforts explored the ability to analyze and quantify

the “goodness” of watermarking applications, resulting in various watermark bench-

marking “suites” mainly for multimedia (i.e., images). Additional research [16–18]

aimed at analyzing concepts such as available bandwidth in the broader area of infor-

mation hiding from a signal-processing, information-theoretic perspective, focusing

mainly on various multimedia techniques. One particular question becomes of in-

terest, namely: Are there theoretically assessable bounds on watermark vulnerability

with respect to an arbitrary watermarking method? In other words, what is the inher-

ent safety/vulnerability of a generic (i.e., with a minimum amount of assumptions,

without considering implementation particularities) watermarking algorithm? An

answer to this question might derive real-life recommendations for fine-tuning actual

algorithms to increase their marking resilience.
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success probability (2D cut through (b)). (b) The 3D evolution of
the probability of a successful attack.

In Chapter 7 (and [6]) we explore these and other issues in the broader dissertation

framework, for a broad class of watermarking algorithms. We use the previously

introduced model to assess watermarking resilience and bounds. While we believe it

generalizes to a much larger class of algorithms, the quantitative part of our analysis

is done within a well-defined algorithmic class framework, namely our research in

watermarking numeric relational data (see Chapter 3). We discover that indeed there

exist such limitations. More specifically, we identify an important convince-ability

trade-off: the more “convincing” in court a watermarking method is, the higher

the probability of success of a perfect attack. We further derive the watermarking

optimality principle that states that the vulnerability of a watermarking scheme (in

our considered class) is likely minimized when it yields watermarked results on the

boundary of the maximum allowable usability vicinity of the original un-watermarked

Works.
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From Mallory’s perspective this is good news. It turns out that it is possible to

defeat watermarking algorithms with a surprisingly high success rate, without any

additional (insider’s) knowledge. This is an inherent limitation of watermarking in

general. Any additional knowledge can only improve on this probability. This is the

case even if these algorithms conform to the optimality principle. Also, there seems

to exist a “sweet spot” in which the probability of a successful attack is maximized.

Mallory could make use of this by fine-tuning.

In summary, in this chapter we identify and analyze inherent limitations of wa-

termarking, including the trade-off between two important watermarking properties:

being suitably “convincing” in court while at the same time surviving a set of attacks.

In the attempt to become as court convincing as possible, a watermarking application

becomes more fragile to attacks aimed at removing the watermark, while preserving

the value of the Work. It thus becomes necessarily characterized by a significant

non-zero probability of being successfully attacked. We discovered an optimality

principle (quantified and proved for a broad class of algorithms) that postulates the

minimization of vulnerability in specific data points.
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2 MODEL OF WATERMARKING (PART ONE)

The main purpose of Digital Watermarking is to protect a certain content from

unauthorized duplication and distribution by enabling provable ownership over the

content. It has traditionally [2] [3] [14] [19] relied upon the availability of a large

noise domain within which the Work (data object) can be altered while retaining its

essential properties. For example, the least significant bits of image pixels can be

arbitrarily altered with little impact on the visual quality of the image (as perceived

by a human). In fact, much of the “bandwidth” for inserting watermarks (such as

in the least significant bits) is due to the inability of the human sensory system

(especially sight and hearing) to detect certain changes.

Although a considerable amount of research effort has been invested in the prob-

lem of watermarking multimedia data (images, video and audio), there is relatively

little work on watermarking other types of data such as text, software, and algo-

rithms. Since these data types often have very well defined semantics and quality

constraints, and may be designed for machine ingestion, the identification of the

available “bandwidth” for watermarking is as important a challenge as the algo-

rithms for inserting the watermarks themselves.

While a general background of watermarking has been provided above, in this

chapter we are introducing a more formal model for watermarking for discrete data

types. We propose, define and explore concepts such as “watermark”, “watermarking

algorithm”, “watermarking attack”, “usability spaces” etc. In Chapter 7 this model

is reasoned about and important principles are derived.
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2.1 Model and Definitions.

Let D be the domain of all possible Works to be considered for watermarking 1.

The value associated with such Works is owned by a given rights holder (possibly

the Work creator). Information Hiding (for rights protection) tries to protect the

association between the value carrying Work and the identity of its rights holder.

Considering any reasonable security assumptions and attacks, it becomes clear

that a correct watermarking algorithm has to assure that the domain of all possible

watermarked data Works (i.e., results from watermarking Works in D) should be

a subset of D. For simplicity we assume that any considered algorithm produces

watermarked Works only in D or that D is simply the union of all the closures over

D of all resulting watermarked Works from considered algorithms.

More specifically, watermarking deploys information hiding techniques in order

to embed a rights “witness” within the Work to be considered. The embedding pro-

cess usually distorts/changes the original Work. The level of distortion introduced

is usually measured within a model of tolerable change from a data consumer per-

spective. For example if the final data consumer is to be a human, and the data

domain is digital multimedia, the Human Sensory System’s limitations are defining

allowable distortion bounds in the watermarking framework. If the Work is a JPEG

image, the allowable distortion could be defined by the human eye limitations.

Works can exhibit different value levels when put to different uses. Thus we

need a way to express the different associated values of Works, for different use case

scenarios. We capture this insight through the concept of usability domains.

Usability Domain: A usability domain is defined as a set of functionals, e =

{f |f : D → [0, 1]}, quantifying intrinsic data value in terms of its specific use. In

a real world algorithm the considered usability domain is constructed by mapping

real world properties to actual parameterized functionals in e (for example the set of

Discrete Cosine Transform coefficients considered for alteration in a possible image

1For example in case of digital media Works we can simply assume that D is the set of all variable
sized strings over B = {0, 1}.
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watermarking scenario). Also often |e| = 1, that is, a domain contains only one

significant function of usability. Notation: Let the set of all usability domains be U.

Usability: The usability metric of a Work O ∈ D corresponding to a domain

e ∈ U (e = {f1, f2, ..., fq}) is defined as u(O, e) where u : D×U→ [0, 1]. u(O, e) is a

combination of all the elements of e. For simplicity we will assume that |e| = 1. In

this case we define e = {u}.

The concept of usability enables the definition of a certain threshold below which

the Work is not usable anymore in the given domain. In other words, it “lost its

value” to an unacceptable degree. The notion of usability is related to distortion. A

highly distorted Work (e.g., as result of watermark embedding or attacks) will likely

suffer a drop in its distortion domain usability. For simplicity, in the following we

consider a single usability domain e ∈ U, unless otherwise specified.

In real life settings each usability domain is characterized uniquely by the set of

alterable data items (or degrees of freedom) that a Work features for the purpose of

watermarking. For example in the case of image frequency transform encodings such

as the DCT transform [2], the main usability domain (associated with the human

sensory system) is uniquely identified by the set of DCT coefficients considered in the

watermarking process. This defines a multi-dimensional usability “space” in which

each point uniquely identifies a Work in D and watermarking becomes a simple

translation from a point O to the watermarked version O′ (see Figure 2.1 (a)).

Change in Usability: The difference in usability is defined as ∆u : D×D×U →

[−1, 1], where ∆u(O1, O2, e) = u(O1, e)− u(O2, e).

Usability Vicinity: Let v ∈ U be a usability domain and a maximum allowed

change in usability ∆umax. We say that element X ∈ D is in the radius ∆umax

usability vicinity of O ∈ D with respect to v 2 iff ∆u(O, X, v) < ∆umax. The concept

of a usability vicinity is basically expressing how far can one go in altering the

considered Work in the process of watermarking.

2And vice-versa. It is commutative.
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Figure 2.1. Model of Watermarking: (a) A 2-dimensional view of a
usability space. A point uniquely identifies a Work in D (e.g., coor-
dinates in this space are DCT coefficients considered for watermark
embedding). Watermarking results in a point O′, a “watermarked”
version of O and is naturally represented as a transform in the us-
ability space. (b) Usability vicinities of a certain Work O ∈ D for a
given marking algorithm. Udata is defined by the actual data type of
the usability metrics. Umax is the maximal allowable usability vicin-
ity with respect to the associated usability domain(s) (e.g., Human
Visual System). The results (Ualg) of a valid marking algorithm with
respect to a given Work and all other possible inputs should be con-
tained within the maximal allowable usability vicinity (Umax) of the
Work. Uwm is determined by ǫw.

Note that the usability vicinity of a certain Work O ∈ D with respect to a

considered usability domain defines actually the set of possible watermarked versions

of O with respect to it and ∆umax. In the usability space in Figure 2.1 (a) this

vicinity translates into an shape “around” the original Work O, labeled Umax. Thus,

the Work and any minor altered version of it (within usability vicinity bounds) can

be uniquely identified by its locality within the considered usability domain (i.e., by

its usability “coordinates”).

Watermark: Given an un-marked Work O ∈ D and the considered water-

marked version of it, O′ ∈ D, where O′ is within radius ∆umax usability vicinity
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of O, a key k ∈ K 3 , a usability domain v ∈ U and a maximum allowed change

in usability ∆umax, a watermark can be asserted by a special property functional

w : D×K→ B, defined by the following: w(O, k) = 0, w(O′, k) = 1 and there exists

ǫw ∈ (0, 1) such that we have

P (w(x, k) = 1, ∀x ∈ D, x 6= O′, x ∈ Umax|w(O′, k) = 1) < ǫw

Notation: Let WD be the set of all w over a given D.

In plain words, a watermark is defined as a special, induced (through watermark-

ing) property (w) of a watermarked Work O′ ∈ D, so rare, that if we consider any

other Work x ∈ D, “close-enough” to the original Work O, the probability that x

exhibits the same property can be upper-bounded. This is derived from the require-

ment to be enough “court-convincing” by bounding the rate of false-positives.

In Figure 2.1 (a) this probability maps into an area “around” the watermarked

Work O′, labeled Uwm, zone in which the points directly correspond to Works that

exhibit the watermark property (detection area). Of particular interest then becomes

the intersection between Umax and Uwm, an area bounded by the watermarking

construction (i.e., ǫw). This area defines the Works that are both valuable/usable

(with respect to the original Work) and watermarked. Intuitively, one main challenge

of watermarking becomes to find/derive O′ such that, given only O′ it will be very

hard for an attacker (e.g., Mallory) to determine an x 6= O′ inside the usability

vicinity of O, for which w(x, k) = 0.

In real life, w is likely a combination of the actual watermark detection method

and any and all encoding parameters and secret keys required to apply the method

on the watermarked result to yield the embedded watermark (see Figure 2.2).

Note: Throughout this chapter, for illustrative purposes, the usability spaces

are discussed in a 2-dimensional context. Real world usability spaces are multi-

dimensional (e.g., O(n2) in case of DCT encoding with a DCT matrix of size n×n).

We also assume a continuous nature of the usability vicinity shapes and propose

extensions later on, in Chapter 7.

3Where K is the set of secrets (i.e., keys) involved in the watermarking process.
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Figure 2.2. Model of Watermarking: In actuality, (symmetric) wa-
termarking is based on the use of a common secret (key) k shared
between the encoding and detection (e.g., in court) phases.

Algorithm: A watermarking algorithm can be defined as a functional a : D ×

K→ D×W, which, given as input an Work O ∈ D provides a watermarked version

of the Work, O′, and a property functional w that enables watermark detection.

Notation: Let AD be the set of all a over a given D.

In other words, a watermarking algorithm alters the original Work to produce its

watermarked version. It also provides the required ability to recover the watermark

(i.e., through w). Naturally, for a watermarking algorithm to be valid, its results,

with respect to a given Work and all other possible inputs should be contained within

the maximal allowable usability vicinity (Umax) of this Work, see Figure 2.1 (b).

Attack: Given a watermarking algorithm a ∈ AD, a Work O ∈ D and its

watermarked version O′ ∈ D, ∆umax, ∀k ∈ K , a successful watermarking removal

attack is defined by z : D→ D such that ∆u(z(O′), O) < ∆umax and w(z(O′), k) = 0.

In other words, an attack tries to maintain the attacked watermarked Work within

the usability vicinity of the original non-watermarked version, while removing the

watermark 4. Notation: Let Zw be the set of all attacks z for a given w.

Vulnerability: It is certainly desirable to be able to quantify the ability of a

given attack to succeed against a watermarking scheme. This can be used as a

metric of “goodness” of a specific scheme. The probability that a particular attack

4We focus on the arguably most common class of attacks, having a final goal of removing the
watermarking information while preserving the value.
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succeeds is not easy to compute as it depends on a variety of parameters, including

the potentially infinite set of input watermarked Works. Instead of focusing on

specific algorithms, one solution is to assess bounds for a generic class.

We define the single point vulnerability of a certain watermarking method with

respect to a given watermarked Work as the lower bound on the probability of

success (e.g., watermark removal, resulting Work still “usable”) of an attacker with

no additional knowledge but the actual watermarked Work itself. That is, given

a watermarked Work, this is the probability that an un-informed attack succeeds

to remove the watermark and produce a result within the usability vicinity (Umax)

of the original Work. It turns out that for a broad class of algorithms this can be

quantified exactly. It provides a natural measure of watermark fragility.

We define the algorithm vulnerability of a certain watermarking method as the

average of the single point vulnerability over the entire input space. Although this

value presents a great importance in assessing the quality of a watermarking method,

it is not trivial to compute, especially in cases with infinite input spaces. We can

define a k-sampling approximation of it that can be determined by taking k random

samples (i.e., Works to be watermarked) from the input space and computing the

algorithm vulnerability over this limited subset.

Throughout this dissertation we often explore single point vulnerability through

Psa, the probability of an attack to succeed, given as input only the watermarked

Work.

2.2 Consumer Driven Watermarking

Watermarking works by deploying resilient information hiding techniques to in-

sert an indelible mark in the data such that (i) the insertion of the mark does not

destroy the value of the data (i.e., the data is still useful for the intended purpose);

and (ii) it is difficult for an adversary to remove or alter the mark beyond detection

without destroying the value of the data. Clearly, the notion of value or utility of
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the data is central to the watermarking process. This value is closely related to the

type of data and its intended use. For example, in the case of software the value

may be in ensuring equivalent computation, and for text it may be in conveying the

same meaning (i.e., synonym substitution is acceptable). Similarly, for a collection

of numbers, the utility of the data may lie in the actual values, in the relative values

of the numbers, or in the distribution (e.g., normal with a certain mean).

An important point about watermarking should be noted. By its very nature,

a watermark modifies the item being watermarked. If the data to be watermarked

cannot be modified then a watermark cannot be inserted. The critical issue is not

to avoid changing the data, but to limit the change to acceptable levels with respect

to the intended use of the data.

Clearly, one can always identify some use of the data that is affected by even

a minor change to the any portion of the data. It is therefore necessary that the

intended purpose of the data that should be preserved be identified during water-

marking. Thus there exists a trade-off between the desired level of marking resilience

and resistance to attacks, and the ability to preserve data quality in the result (with

respect to the original). We believe it is important that watermarking-related alter-

ations to not interfere with known quality constraints (or other advertised guaranteed

properties of the result). For a watermarking solution to be sound, it has to operate

within these boundaries. It has to become aware and accommodate such a quality

guarantee principle.

At the same time, the concept of value of resulting Works, is necessarily relative

and largely influenced by each semantic context it appears in. For example, while a

statistical analyst would be satisfied with a set of feature summarizations (e.g., av-

erage, higher-level moments) of a numeric data set Work, a data mining application

may need a majority of the data items, for example to validate a classification hy-

pothesis. On the other hand, intuitively, to one extreme, if the embedded watermark

is to be very “strong” one can simply modify the entire Work such that a majority of

sub-segments feature the watermark, but at the same time probably also destroying
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Figure 2.3. Model of Watermarking: In consumer-driven watermark-
ing a set of data constraints are continuously evaluated in the encod-
ing process to ensure quality of the result.

its actual value. If any alterations are allowed to the data, the available bandwidth

is directly related to data entropy. As data quality requirements become increasingly

restrictive, any applied watermark is necessarily more vulnerable. Often we can ex-

press the available bandwidth as an increasing function of allowed alterations. At

the other extreme, a disproportionate concern with data quality will hinder most of

the watermarking alterations, resulting in a weak, possibly non-existent embedding.

Thus, the process of watermarking can be expressed metaphorically as a game

between the watermarker and Mallory. In this game, the watermarker and Mallory

play against each other within subtle trade-off rules aimed at keeping the quality of

the result within acceptable bounds. It is as if there exists an impartial referee (the

data itself) moderating each and every “move”. This is why we propose to make this

“referee” an explicit part of the marking process. We call this paradigm consumer

driven watermarking.
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The solutions discussed in Chapters 3, 4 and 5 are all consumer driven enabled

through feedback mechanisms (see Figure 2.3) that allow the watermarking process

to “rollback” modifications that would violate quality constraints in the result on

a step by step basis. This ensures the preservation of desired quality metrics with

respect to the original un-watermarked input Work.

2.3 Steganography and Watermarking

At this point it might be helpful to outline that there exists a fundamental dif-

ference between watermarking and generic information hiding (steganography) from

an application perspective (and associated challenges). Information hiding in gen-

eral (covert communication in particular), aims to enable Alice and Bob to exchange

messages in a manner as resilient and stealthy as possible, through a medium con-

trolled by evil Mallory. On the other hand, digital watermarking (especially for

rights assessment) is deployed by Alice to prove rights over a piece of data, to Jared

the Judge, usually in the case when Tim the Thief 5 benefits from using/selling that

very same piece of data or maliciously modified versions of it.

In digital watermarking, the actual value to be protected lies in the Works them-

selves whereas pure steganography usually makes use of them as simple value “trans-

porters”. Rights assessment can be achieved by demonstrating that a particular

Work exhibits a rare property (read “hidden message” or “watermark”), usually

known only to Alice (with the aid of a “secret” - read “watermarking key”). For

court convince-ability purposes this property needs to be so rare that if one considers

any other random Work “similar enough” to the one in question, this property is

“very improbable” to apply (i.e., bound on false-positives). It also has to be relevant,

in that it somehow ties to Alice (e.g., by featuring a bit string saying “(c) by Alice”).

There is a threshold determining Jared’s convince-ability related to the “very

improbable” assessment. This defines a main difference from steganography: from

5Tim’s middle name is Mallory.
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Jared’s perspective, specifics of the property (e.g., watermark message) are irrelevant

as long as they link to Alice (e.g., by saying “(c) by Alice”) and, she can prove

“convincingly” it is she who embedded/induced it to the (non-watermarked) original.

It is to be stressed here this particularity of watermarking in our model. In

watermarking the emphasis is on “detection” rather than “extraction”. Extraction

of a watermark (or bits of it) is usually a part of the detection process but just

complements the process up to the extent of increasing the ability to convince in

court. If recovering the watermark data in itself becomes more important than

detecting the actual existence of it (i.e., “yes/no” answer) then (from an application

point of view) this is a drift toward covert communication and pure information

hiding (steganography).

2.4 Notations and Primitives

Throughout this dissertation we repeatedly use a set of notations and security

primitives. In the following we summarize some of the more frequent ones. For

any value (e.g., numeric) x let b(x) be the number of bits required for its accurate

representation and msb(x, b) its most significant b bits. If b(x) < b we left-pad x

with (b − b(x)) zeroes to form a b-bit result. Similarly, lsb(x, b) is used to denote

the least significant b bits of x. If by wm we denote a watermark to be embed-

ded, wm[i] will then be the i-th bit of wm. Let set bit(d, a, b) be a function that

returns value d with the bit position a set to the truth-value of b. In any following

mathematical expression let the symbol ‘&” signify a bit-AND operation. A special

de-facto secure construct we are leveraging is the one-way cryptographic hash. If

crypto hash() is a cryptographic secure one-way hash, of interest are two of its prop-

erties: (i) it is computationally infeasible, for a given value V ′ to find a V such that

crypto hash(V ) = V ′ (one-wayness), and (ii) changing even one bit of the hash input

causes random changes to the output bits (i.e., roughly half of them change even if

one bit of the input is flipped). Examples of potential candidates for crypto hash()
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are the MD5 (used in the proof of concept implementation) or SHA hash. For more

details on cryptographic hashes consult [20]. Let H(V, k) = crypto hash(k; V ; k)

(where “;” denotes concatenation). We use crypto hashes in several scenarios, e.g.,

in fighting court-time exhaustive key search claims in Chapter 4.

2.5 Conclusions

In this chapter we proposed a model for watermarking discrete data types. We

defined and explored associated constructs, e.g., “watermark”, “watermarking algo-

rithm”, “watermarking attack”, “usability spaces” etc. This served two purposes:

(i) establishing a clear understanding of what watermarking is for the purpose of the

following chapters in which different discrete data types are explored, and (ii), setting

out the premises for Chapter 7 in which this model is reasoned about and associ-

ated principles and challenges of watermarking are derived and analyzed. Published

research results of this work include [5].
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3 RELATIONAL DATA WITH NUMERIC TYPES

In this chapter we introduce a solution for numeric relational data rights protection

through watermarking.

3.1 Introduction

A majority of current database management systems are based on a relational

data model [21]. A relational database is a data storage system in which relations

between information items are explicitly specified. In such a model data is orga-

nized as “a number of differently sized tables” composed of “related” rows/columns.

Thus, a table is a collection of rows or records and each row in a table contains the

same fields. Certain fields may be designated as data keys (not to be confused with

“cryptographic keys” – secrets usually aiding in security-related protocols and frame-

works), which means that searches for specific values of that field will possibly deploy

indexing to speed things up. Data is structured logically into valued attributes. From

this perspective, a table is a collection of such attributes (the columns of the table)

and models a relation among them. The data rows in the tables are also called tuples.

Data in this model is manipulated using a relational algebra. Main operations in this

algebra are set operations (e.g., union, intersection, Cartesian product), selection (of

some tuples in tables) and projection (of some columns/attributes).

Rights protection for such data is important in scenarios where it is sensitive and

valuable and about to be outsourced. A good example is a data mining application,

where data is sold in pieces to parties specialized in mining it (e.g., sales patterns

database, oil drilling data, financial data). Other scenarios involve for example online

B2B interactions (e.g., airline reservation and scheduling portals) in which data is

made available for direct, interactive use (see Figure 3.1). Given the nature of most



37

Third

Party


STOP


Data

Mining


...

...

...


...


...


...


Data

Rights

Holder


...


...


...


...


...


...


...


outsourcing


Figure 3.1. Relational Data: Rights assessment is important when
valuable data is outsourced to a third party.

of the data, it is hard to associate rights of the originator over it. Watermarking can

be used to solve this issue.

While extensive efforts have focused on various aspects of DBMS security, in-

cluding access issues [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33], little has

been done to enable the ability to assert rights over outsourced data. In this chapter

we explore the issue of securing valuable outsourced numeric relational data through

watermarking, enabling future court-proofs assessing proper rights over the content.
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Our solution starts by receiving as user input a reference to the relational data

to be protected, a watermark to be embedded as a copyright proof, a secret key

used to protect the embedding and a set of data quality constraints to be preserved

in the result. It then proceeds to watermark the data while continuously assessing

data quality, potentially backtracking and rolling back undesirable alterations that

do not preserve data quality. Watermark embedding is composed of two main parts:

in the first stage, the input data set is securely partitioned into subsets of items;

the second stage then encodes one bit of the watermark into each subset. If more

subsets (than watermark bits) are available, error correction is deployed to result

in an increasingly resilient embedding. The algorithms introduced here prove to

be resilient to important classes of attacks, including subset selection, linear data

changes and random item(s) alterations.

The chapter is structured as follows. Section 3.2 discusses the main challenges

for watermarking relational databases. Section 3.3 introduces an initial idea to a

primitive problem (watermarking numeric collections) to be used later in the global

algorithm. Section 3.4 constructs a solution for relational databases by building

upon the primitive building block introduced earlier. Various issues and algorithm

extensions are discussed in Section 3.5. Section 3.6 presents implementation details

as well as experiments and evaluations of the proposed watermarking technique on

real outsourced Wal-mart warehouse data. Section 3.8 concludes.

3.2 Challenges

While research related to the issue of embedding information into a set of num-

bers [34], can be found (sometimes implicitly) in different frameworks, associated

with various information hiding techniques (e.g., frequency domain embedding, DCT

and Wavelet watermarking [2]), relational data presents a different set of challenges

and associated constraints. These challenges are novel and directly related to the

specifics of the domain, namely large sets of items organized in a relational frame-
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work, with associated semantics to be preserved. This is not the case for multimedia

(mostly time-series type of) data, where semantics are associated with the data

stream only at a much higher composite level. For example in a multi-megabit au-

dio channel of news broadcast, the semantics to be protected are likely to be in the

broadcast speech text rather than directly in the underlying audio stream bits; thus

a fundamentally different and broader noise band becomes available for watermark

embedding, and with it different (possibly less accurate) encoding and evaluation

methods. By contrast, the low noise bandwidth of major relational framework data

uses (e.g., data-mining) require a different approach, taking a more careful look at

the actual tolerated changes on the given data.

Whereas in the multimedia case, the data quality model is usually at best fuzzy,

because of the relativity of any model of human perception, one solution here is to

define the noise channel explicitly as part of the watermarking solution, in terms of

required customer constraints to be preserved on the final data. At watermarking

time, data quality can be continuously assessed as an intrinsic part of the marking

algorithm in itself. In this respect we can claim that, as opposed to other watermark-

ing algorithms in various domains (e.g., image watermarking), we maintain 100% of

the associated data value with respect to a set of given required data “goodness” con-

straints. We believe this is an essential part of any watermarking application in this

low-noise, high fragility domain of relational data, especially considering data-mining

issues, such as classification and JOIN results preservation (see Section 3.6.2).

Additionally, the watermark encoding method needs to feature a design suited to

the new constraints, namely the ability to survive a maximum level of attacks and

at the same time accommodate the existence of required data “usability” conditions

to be satisfied by the result. Our algorithm, deploying means for data distribution

manipulation, encoding the actual information in distribution properties of the data

rather than directly into the data itself, is best suited for its purpose, and almost

optimally so. For, while allowing an adjustable degree of freedom in alteration
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points selection, it provides at the same time a surprisingly high level of resilience

as evidenced by our extensive validation experiments (see Section 3.6.2).

3.2.1 Available Bandwidth

An important first step in inserting a watermark into a relational database (and

thereby altering it), is to identify changes that are acceptable. As was mentioned

earlier, the acceptable nature and level of change is dependent upon the application

for which the data is to be used.

With respect to particular data uses and metrics of quality, it is of utmost im-

portance that the watermarking process not interfere with the final data consumer

requirements. This is why these requirements need to be considered as an integral

part of the watermarking process, providing a feedback loop, in assessing the quality

of the final result (see consumer driven watermarking, Section 2.2).

In the following we define a functionality that will enable us to determine the

watermarking result as being valuable and valid, within permitted/guaranteed error

bounds. The available “bandwidth” for inserting the bits of the watermark text is

therefore not defined directly. Instead we define allowable distortion bounds for the

input data in terms of consumer-defined metrics. If the watermarked data satisfies

the metrics, then the insertion of the watermark is considered to be successful. This

quality assessment mechanism is part of the marking process.

Example One simple but relevant example is the maximum allowable mean

squared error (MSE) case, in which the usability metrics are defined in terms of

mean squared error tolerances as

(si − vi)
2 < ti, ∀i = 1, ..., n

and
∑

(si − vi)
2 < tmax

where S = {s1, ..., sn} ⊂ R, is the data to be watermarked, V = {v1, ..., vn} is the

result, T = {t1, ..., tn} ⊂ R and tmax ∈ R define the guaranteed error bounds at data
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distribution time. In other words T defines the allowable distortions for individual

elements in terms of MSE and tmax its overall permissible value.

Database Semantics Specifying only allowable change limits on individual

values and possibly an overall limit, fails to capture important semantic features

associated with the data – especially if the data is structured. Consider for example,

age data. While a small change to the age values may be acceptable, it may be critical

that individuals that are younger than 21 remain so even after watermarking if the

data will be used to determine behavior patterns for under-age drinking. Similarly,

if the same data were to be used for identifying legal voters, the cut-off would be

18 years. Further still, for some other application it may be important that the

relative ages (in terms of which one is younger) not change. Other examples of

constraints include: (i) uniqueness – each value must be unique; (ii) scale – the ratio

between any two number before and after the change must remain the same; and

(iii) classification – the objects must remain in the same class (defined by a range

of values) before and after the watermarking. As is clear from the above examples,

simple bounds on the change of numerical values are often not enough.

Structured Data Structured collections, for example a collection of relations,

present further constraints that must be adhered to by the watermarking algorithm.

Consider a data warehouse organized using a standard Star schema with a fact table

and several dimension tables. It is important that the key relationships be preserved

by the watermarking algorithm. This is similar to the “Cascade on update” option

for foreign keys in SQL and ensures that tuples that join before watermarking also

join after watermarking. This requires that the new value for any attribute should

be unique after the watermarking process. In other words, we want to preserve the

relationship between the various tables. More generally, the relationship could be

expressed in terms of an arbitrary join condition, not just a natural join. In addition

to relationships between tuples, relational data may have constraints within tuples.

For example, if a relation contains the start and end times of a web interaction, it
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is important that each tuple satisfies the condition that the end time be later than

the start time.

Also, an adversary attempting to destroy a watermark becomes much more ef-

fective if he can identify the values in which the watermark has been embedded. In

addition to specifying properties of the data that should be preserved for usability,

constraints can be used to prevent easy detection of watermark locations. For exam-

ple a tuple with start time later than its corresponding end time, or a customer with

age less than 12 years are very likely to be detected as resulting from watermarking.

3.2.2 Model of the Adversary

In order to be effective, the watermarking technique must be able to survive a

wide variety of attacks. These attacks may be malicious with the explicit intent

of removing the watermark, or may be the result of normal use of the data by the

intended user.

A1. Subset Selection The attacker (Mallory) can randomly select and use a

subset of the original data set that might still provide value for its intended purpose

(subtractive attack).

A2. Subset Addition Mallory adds a set of numbers to the original set.

This addition is not to significantly alter the useful (from the Mallory’s perspective)

properties of the initial set versus the resulting set.

A3. Subset Alteration Altering a subset of the items in the original data set

such that there is still value associated with the resulting set. A special case needs to

be outlined here, namely (A3.a) a linear transformation performed uniformly to all

of the items. This is of particular interest as such a transformation preserves many

data-mining related properties of the data, while actually altering it considerably,

making it necessary to provide resilience against it.

Given the attacks above, several properties of a successful solution surface. For

immunity against A1, the watermark has to be embedded in overall collection prop-
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erties that survive subset selection (e.g., confidence intervals). If the assumption

is made that the attack alterations do not destroy the value of the data, then A3

should be defeat-able by embedding the primitive mark in resilient global data prop-

erties. As a special case, A3.a can be defeated by a preliminary normalization step

in which a common divider to all the items is first identified and applied. For a given

item X, for notation purposes we are going to denote this “normalized” version of

it by NORM(X). Since it adds new data to the set, defeating A2 seems to be the

most difficult task, as it implies the ability to identify potential uses of the data (that

Mallory could benefit from).

3.3 Simplified Problem: Numeric Collections

This section deals with the foundations of a primitive numeric collection water-

marking procedure that will be later deployed as a sub-routine in the main water-

marking algorithm. Section 3.4 evolves this building block into a complete solution

in the relational framework.

Let S be a set of n real numbers S = {s1, ..., sn} ⊂ R. Then, the general

simplified problem of watermarking the set S can be defined as the problem of

finding a transformation from S to another item set V, such that, given all possible

imposed usability metrics sets G = ∪Gi for any and all subsets Si ⊂ S, that hold for

S, then, after the transformation yields V, the metrics should hold also for V 1. We

call V the “watermarked” version of S. Thus V = {v1, ..., vn} ⊂ R is the result of

watermarking S by minor alterations to its content.

But how much of a change is to be allowed to the content? For a numeric

collection, a natural starting point for defining the allowed change is to specify an

absolute (or relative) change in value. For example, each value may be altered

by no more than 0.0005 or 0.02%. Moreover a bound on the cummulative change

may be specified. Our solution for the simplified problem consists of several steps.

1In other words, if G is given and holds for the initial input data, S, then G should also hold for
the resulting data V.
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First, we deploy a resilient method for item labeling, enabling the required ability

to “recognize” initial items at watermarking detection time (i.e., after watermarking

and/or attacks). In the next step we ensure attack survivability by “amplifying”

the power of a given primitive watermarking method. The amplification effect is

achieved by deploying secrets in the process of selecting the subsets to become input

for the final stage, in which a primitive encoding method is deployed.

3.3.1 Solution Summary

A summary of the solution for the simplified problem reads as follows.

Encoding Phase: (E.1) Select a maximal number of unique, non-intersecting

(see below) subsets of the original set, using a set of secrets, as described in Section

3.3.3. (E.2) For each considered subset, (E.2.1) embed a watermark bit into it

using the encoding convention in Section 3.3.3 and (E.2.2) check for data usability

bounds. If usability bounds are exceeded, (E.2.3) retry different encoding parameter

variations or, if still no success, (E.2.3a) try to mark the subset as invalid (i.e., see

encoding convention in Section 3.3.3), or if still no success (E.2.4) ignore the current

set. 2 We repeat step E.2 until no more subsets are available for encoding. This

results in multiple embeddings in the data.

Decoding Phase: (D.1) Using the secrets from step E.1, recover a majority

of the subsets considered in E.1, (or all if no attacks were performed on the data).

(D.2) For each considered subset, using the encoding convention in Section 3.3.3,

recover the embedded bit value and re-construct watermarks. (D.3) The result of

D.2 is a set of copies of the same watermark with various potential errors. This

last step uses a set of error correcting mechanisms (e.g., majority voting schemes)

to recover the highest likelihood initial mark.

2This leaves an invalid watermark bit encoded in the data that will be corrected by the deployed
error correcting mechanisms (e.g., majority voting) at extraction time.
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3.3.2 Selecting Subsets

Watermarking a collection of data items requires the ability to “recognize” (i.e.,

re-discover, at detection time) most of the items before and after watermarking

and/or a security attack. In other words if an item was accessed/modified before

watermarking, e.g., being identified with a certain label L, then hopefully at water-

mark detection time the same item is identified with the same label L or a known

mapping to the new label. More generally, we would like to be able to identify a

majority of the initial elements of a subset after watermarking and/or attacks. As

we will see, our technique is resilient to “missing” a small number of items. For more

details see 3.3.4.

Our solution is based on lexicographically sorting the items in the collection,

sorting occurring based on a one-way, secretly keyed, cryptographic hash of the set

of most significant bits (MSB) of the normalized (see Section 3.2.2) version of the

items. The secret one-way hashing ensures that Mallory cannot possibly determine

the ordering. In the next step (see Section 3.3.3), subset “chunks” of the items

are selected based on this secret ordering. Chunk-boundaries (“subset markers”)

are then computed and stored for detection time (for a more in-depth discussion of

subset markers see Section 3.4).

More formally, given a collection of items as above, S = {s1, ..., sn} ⊂ R, and a

secret “sorting key” ks, we induce a secret ordering on it by sorting according to a

cryptographic keyed hash of the most significant bits of the normalized items. Thus

we have: index(si) = H(ks, MSB(NORM(si)), ks). The MSB space here is assumed

to be a domain where minor changes on the collection items (changes that still satisfy

the given required usability metrics) have a minimal impact on the MSB labels. This

is true in many cases (as usually the usability metrics are related to preserving the

“important” parts of the original data). If not suitable, a different labeling space

can be envisioned, one where, as above, minor changes on the collection items have

a minimal impact.



46

Note: In the relational data framework, the existence of a primary key associated

with the given attribute to be watermarked can make it easier to impose a secret

sorting. For more details see Section 3.4.

3.3.3 Amplifying Watermark Power

Current watermarking algorithms draw most of their court-persuasion power from

a secret that controlled watermark embedding (i.e., watermarking key). Much of the

attack immunity associated with a watermarking algorithm is based on this key and

its level of secrecy. Given a weak partial marking technique (e.g., (re)setting a bit),

a strong marking method can be derived by a method of “mark amplification” –

repeatedly applying the weak technique in a keyed fashion on different parts of the

data being watermarked.

Generic Solution. Let K = {k1, ..., km} be a set of m keys of n bits each. We

define Si = {sj ∈ S|(ki)bitj = 1}, i = 1, ..., m. In other words each Si ⊂ S is defined

by selecting a subset of S fully determined by its corresponding key ki ∈ K.

The main purpose of this step is to amplify the power of the general watermark.

The next step will simply consider each Si to be marked separately by building on a

simple watermarking method. The result will be at least an m-bit (i.e., i = 1, ..., m)

overall watermark bandwidth (unless we consider multiple embeddings and majority

voting, for error correcting purposes) in which each bit is embedded in each of the

marked Si (bit w[i] of the watermark is embedded into Si).

Note: In building the subsets Si we do not consider elements sj which are

subject to very restrictive usability metrics (e.g., with corresponding tj = 0, i.e., no

available encoding bandwidth). If any of the considered keys are selecting one of

those unalterable elements, we simply generate another key instead.

We presented the generic solution above for illustrative purposes. It works well

for cases when exact item labeling is available and there are no concerns of attacks
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Figure 3.2. Relational Data with Numeric Types: Primitive Mark
Power Amplification. Subset selection after sorting on keyed hash of
the most significant bits (MSB) of the normalized data items. This
enables recovery after various attacks, including re-shuffling/sorting
and linear changes. The secrecy of the subsets to which the weak(er)
encoding is applied provides a resilience amplification effect.

of the types A2 and A1 (i.e., subset addition, selection). The following idea takes

also into account these concerns.
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Actual Solution. Given a collection of items as above, S = {s1, ..., sn} ⊂ R,

and a secret “sorting key” ks, we first induce a secret ordering on it by sorting

according to a cryptographic keyed hash of the most significant bits of the normalized

items, e.g., index(si) = H(ks, MSB(NORM(si)), ks). We then build the subsets,

Si, as “chunks” of items, a “chunk” being a set of adjacent items in the sorted

version of the collection. This increases the ability to defeat different types of attacks

including “cut” and/or “add” attacks (e.g., A1 , A2), by “dispersing” their effect

throughout the data, as a result of the secret ordering. Thus, if an attack removes

5% of the items, this will result in each subset Si being roughly 5% smaller. If

Si is small enough and/or if the primitive watermarking method used to encode

parts of the watermark (i.e., 1 bit) in Si is made resilient to these kind of minor

transformations (see Section 3.6.2) then the probability of survival of most of the

embedded watermarks is accordingly higher (see Section 3.3.4). Additionally, in

order to provide resilience to massive “cut” attacks, we will select the subset “chunks”

to be of sizes equal to a given percent of the overall data set (i.e., not of fixed

absolute sizes). This choice provides adaptability of our subset selection scheme to

such attacks, assuring subsequent retrieval of the watermark even from, say, half of

the original data. Thus, the main purpose of this step is to amplify the power of

the general watermark. The next step will simply consider each Si to be marked

separately by building on a simple watermarking method. The result will be a m-bit

(i.e., i = 1, ..., m) overall watermark bandwidth in which each bit is “hidden” in each

of the marked Si.

Embedding the Watermark

Once each of the to-be-watermarked secret (keyed) sets Si are defined, the prob-

lem reduces to finding a reasonable, not-very-weak (i.e., better than “coin-flip”, ran-

dom occurrence) algorithm for watermarking a medium-sized set of numbers. While
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the “amplification” step provides most of the hiding power of our application in the

following we encode the watermark bits into the provided (secret) sub-sets.

A desired property of an encoding method is the ability to retrieve the encoded

information (“blindly”) without having the original data. This can be important

especially in the case of very large dynamic databases (e.g., 4-5 TBytes of data) where

data-mining portions were outsourced at various points in time. It is unreasonable

to assume the requirement to store each outsourced copy of the original data. Our

method satisfies this desiderata.

Single Bit Encoding

We now discuss how a single bit is encoded into a selected subset of the data. We

are given Si (i.e., one of the subsets secretly selected in the previous step) as well as

the value of a watermark bit b that is to be encoded into Si. Let G represent the set

of user specified change tolerance, or usability metrics.

Let vfalse, vtrue, c ∈ (0, 1), vfalse < vtrue be real numbers (e.g., c = 90%,

vtrue = 10%, vfalse = 7%). We call c a confidence factor and the interval (vfalse, vtrue)

confidence violators hysteresis. These are values to be remembered also for water-

mark detection time. We can consider them as part of the encoding key.

Definition: Let avg(Si) and δ(Si) be the average and standard deviation, re-

spectively, of Si. Given Si and the real number c ∈ (0, 1) as above, we define vc(Si)

to be the number of items of Si that are greater than avg(Si) + c × δ(Si). We call

vc(Si) the number of positive “violators” of the c confidence over Si, see Figure 3.4.

Mark encoding convention: Given Si, c, vfalse and vtrue as above, we define

mark(Si) ∈ {true, false, invalid} to be true if vc(Si) > (vtrue×|Si|), false if vc(Si) <

vfalse × |Si| and invalid if vc(Si) ∈ (vfalse × |Si|, vtrue × |Si|).

In other words, the watermark is modeled by the percentage of positive “confi-

dence violators” present in Si for a given confidence factor c and confidence violators

hysteresis (vfalse, vtrue). Encoding the single bit (see Figure3.3), b, into Si is therefore



50

encode(bit, set, vfalse, vtrue, c)

compute avg(set), δ(set)

compute vc(set)

if vc(set) satisfies desired bit value return true

if (bit)

compute v∗ ← vtrue − vc(set)

alter v∗ items close to the stddev boundary so that they become > vtrue

else

(!bit) case is similar

compute vc(set)

if vc(set) satisfies desired bit value return true

else rollback alterations (distribution shifted too much?)

return false

Figure 3.3. Relational Data with Numeric Types: Single Bit Encod-
ing Algorithm (illustrative overview).
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Figure 3.4. Relational Data with Numeric Types: Distribution of
item set Si. Encoding of the watermark bit relies on altering the size
of the “positive violators” set, vc(Si).

achieved by making minor changes to some of the data values in Si such that the

number of positive violators (vc(Si))is either (a) less than vfalse×|Si| if b = 0, or (b)

more than vtrue × |Si| if b = 1. Of course the changes made to the data must not

violate the change tolerances, G, specified by the user.

Note: Encoding the watermark bits into actual data distribution properties

(as opposed to directly into the data itself) presents a set of advantages, the most

important one being its increased resilience to various types of numeric attacks (see

Section 3.6.2) as compared to the fragility of direct data domain encoding.

Performing the required item alterations while satisfying the given “usability”

metrics (i.e., G) is one of the remaining challenges. To do this, the algorithm deploys

the primitive watermarking step (e.g., for Si) and then checks for data usability with

respect to G. If the tolerances are exceeded it simply ignores Si and considers the

next secretly selected subset to encode the rest of the watermark. This will result

in errors (misses) in the encoded marks but by deploying error correcting techniques

(e.g., majority voting, see Figure 3.5 (b)) the errors are mostly eliminated.

A decision needs to be made regarding the size of the subsets selected in the

amplification step (i.e., |Si|). Given that our method embeds 1 bit per subset, a
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trade-off is to be observed between larger sets (tolerant to more data alteration

attacks) but a small bandwidth, and smaller sets (more “brittle” to attacks) but

a larger encoding bandwidth. This can and should be considered as a fine-tuning

step for the particular data usability metrics provided. If those metrics are too

restrictive, more items will be needed inside Si to be able to encode one bit while

still preserving required usability. On the other hand if the usability metrics are

more on the relaxed side, Si can be very small, sometimes even 10-15 items. This

enables for more encoding bandwidth overall.

At watermark detection time, after recovering all the watermark copies from the

given data majority voting over all the recovered watermark bits (or any other

error correcting method for that matter, see Figure 3.5 (a)) can be employed in order

to determine the most likely initial watermark bits.

Another interesting point to be made here is that (as outlined by the optimality

principle in Chapter 7) bringing the watermarked data as close as possible to the

allowable distortion bounds (“usability vicinity” limits) is of definite benefit in mak-

ing the usability of the watermarked data as fragile as possible to any attack. An

attacker with the intent of removing/altering the watermark is now faced with the

fact that any further alterations performed have an increased likelihood of making

the data invalid with respect to the guaranteed usability metrics 3, thus potentially

removing its value. We integrated this idea also in our implementation. As wa-

termark embedding progresses, a certain embedding aggressiveness factor increases,

resulting in actual changes to the data to be performed more and more up to the

permitted limit and not only as required.

Note: The incremental nature of the aggressiveness factor increase is required so

as to make sure that at least several copies of the mark were embedded successfully.

Getting aggressive too fast might not allow for entire mark copies to be embedded

(while maintaining data usability).

3Because the watermarking process already altered the data up to its usability metrics limits.
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Figure 3.5. Relational Data with Numeric Types: (a) Different
error correcting (wmdb. sys. RedundancyCoder) plugins can be
added/removed at runtime in order to provide an increased level of
resilience for the original watermark to be embedded. (b) Example
of majority voting over three recovered watermark copies for a 6 bit
sized original watermark.

3.3.4 Resilience Analysis

Maybe the most important resilience-revealing questions in evaluating water-

marking algorithms, can be formulated as follows: What is the probability of success

of Mallory aiming at destroying at least one watermark bit, as a function of the

amount of data damage (i.e., number of surgeries)? The importance of an answer

to the above stems from the immediate ability to compute resilience and attack-

ability bounds of the watermarking algorithm by relating the required damage for a

successful attack to the maximum permissible damage levels.

Let us naturally assume a primitive 1-bit encoding method for subsets (of subset

size denoted by s) that is resilient to a minimum s× l random “surgeries” (data item

removals and/or alterations), l ∈ R. This resilience can be guaranteed by varying

the encoding parameters presented in Section 3.3.3. For now we are going to assume
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a most general scenario by not assigning values for l. Also let us consider an error

correcting mechanism (e.g., majority voting) able to correct

e×
n

s
×

1

m

bit errors where, as above, n is the number of total items in the input set, m is

the bit-size of the watermark to be embedded and e ∈ R, e ≥ 2. In other words e

naturally models the error correcting power proportional to the ratio of total available

bandwidth to watermark size. In order to keep a maximum degree of generality, we

are not assigning values for e at this point.

Let P (s, a′′) be the average success probability (i.e., actual bit-flip) of a random,

a′′ sized (i.e., a′′ surgeries) attack on a 1-bit encoding subset of size s. The assumption

of resilience to l surgeries of the subset encoding can be thus also expressed as

P (s, x) = 0, ∀x ≤ l

First, let us compute the local (i.e., at subset level) amount of surgeries required in

the case of an a-sized (i.e., a surgeries) global attack on the entire marking scheme.

Because of the additional sorting and one-way hashing step (see Section 3.3.3), for

illustrative purposes we introduce a simplifying assumption, namely that of a uniform

distribution of all the surgeries among the individual subsets. That is:

a′′ = a×
s

n

The probability of an a-sized attack affecting (e.g., flipping) exactly t bits in the

underlying data bandwidth, before error correction, Pt(s, a) is:

Pt(s, a) = Ct
n
s
× P (s, a′′)t × (1− P (s, a′′))n−t (3.1)

Given our e-bit error correction ability, the probability that one watermark bit is

altered by an a-sized attack becomes:
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P1(a) = 1−

e
∑

i=1

(Pi(s, a)) (3.2)

Getting back to P (s, a′′) let us recollect the fact that it actually represents the average

success probability (i.e., actual bit-flip) of a random, a′′ sized (i.e., a′′ surgeries)

attack on a 1-bit encoding subset of size s. There also exists the assumption of

resilience to l surgeries of the subset encoding.

Because the bit-encoding method is highly dependent on input data, its distri-

bution and actual values of the involved encoding parameters (e.g., c, vfalse, vtrue),

it becomes impossible to provide an exact, in-depth analysis of the actual value of

P (s, a′′) for arbitrary input data. Given a certain fixed data set, it might be possible

to actually exactly determine the value of P (s, a′′) but to no useful effect, as much

of the power of the encoding lies in its ability to watermark arbitrary input.

Another method of analyzing P (s, a′′) could take the form of an experiment,

sampling its value over a large number of potential different data inputs. We are

proposing to pursue this avenue in future research. For the scope of the current

analysis we are going to reasonably approximate P (s, a′′). Remember that we intro-

duced the assumed average l tolerated surgeries per 1-bit encoding. We know that,

on average, P (s, x) = 0, ∀x ≤ l. Let us assume that a′′ > l. Then we approximate

P (s, a′′) = q ×
a′′ − l

s
, ∀a′′ ∈ (l, s)

where q ∈ R, q ≥ 1 is a input data characteristic normalization constant. Now we

can write equation (3.1) as

Pt(s, a) = Ct
n
s
× (q ×

a′′ − l

s
)t × (1− (q ×

a′′ − l

s
))n−t (3.3)

For illustration purposes, by substituting t = 1, n = 10000, s = 50, a = 1000, l =

4, q = 1, and continuing the computation we obtain
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P1(50, 1000) =
1

200
×

1

50
× (

49

50
)9999 ≃ 1.86× 10−92 ≃ 0 (3.4)

There is a surprisingly low probability of destroying one bit in the underlying data

by a 1000-sized attack on an input set of 10000 where the subsets are of size 50 and

subset encoding is tolerant to at least 4 item-surgeries. In other words, for a 10000

tuples item set, an encoding with subsets of size 50 and an average 1-bit subset

encoding tolerance to 6% data item losses (experimental results show much higher

loss tolerance, see Section 3.6.2), this probability is surprisingly low, virtually zero.

Note: While the approximation introduced for P (s, a′′) is satisfying enough for

real life uses, confirmed also in our experiments presented in Section 3.6.2, it might

not be entirely accurate for generic data. Subject to future research is to theoretically

determine the exact shape of P (s, a′′) (or the feasibility of the computation thereof)

for generic normally distributed input data, for example.

3.4 The Relational Database

As discussed in Section 3.2, in the relational database setting it is essential to

preserve structural and semantic properties of the data. Sometimes it is undesirable

or even impossible to map higher level semantic constraints into low level (combined)

change tolerances for individual tuples or attributes. It should be noted that not all

constraints of the database need to be specified. For example, in certain scenarios,

a practical approach would be to begin by specifying a mean square error bound on

individual items. Further semantic or structural constraints that the final data con-

sumer (user) would like to preserve can be added to these basic ones. The practically

infinite nature of the set of these potential constraints that can be desired/imposed

on a given data set makes it such that a different, more versatile, “data goodness”

(i.e., semantically) assessment method is required. We propose a solution that han-

dles each of these constraints that need to be preserved as an inherent component

for the watermarking algorithm.
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Constraints that arise from the schema (chiefly key constraints), can easily be

specified in a form similar to (or derived from) SQL create table statements. In

addition, integrity constraints (e.g., such as end time being greater than begin time)

can be expressed. A tolerance (or usability metric) is specified for each constraint.

The tolerance is the amount of change or violation of the constraint that is acceptable.

This is an important parameter since it can be used to tailor the quality of the

watermark (at the expense of greater change in the data). As mentioned earlier, if

the tolerances are too low, it may not be possible to insert a watermark in the data.

In order to handle a very wide variety of constraints, our solutions allows various

forms of expression, e.g., in terms of arbitrary SQL queries over the relations, with

associated requirements (usability metric functions). For example, the requirement

that the result of the join (natural or otherwise) of two relations does not change by

more than 3% can be specified. Thus we can ensure that any changes made by the

watermarking algorithm do not violate the required properties. Some representative

examples of constraints are presented in Section 3.6.3 and were used to watermark

real Wal-mart data warehouse data.

3.4.1 Algorithm

The algorithm outline for watermarking relational data proceeds as follows (see

Figure 3.6): (i) User-defined queries and associated guaranteed query usability met-

rics and bounds are specified with respect to the given database. (ii) User input

determines a set of attributes in the database considered for watermarking, possibly

all. (iii) For each selected attribute we then deploy the simplified algorithm where

in step E.2.2 instead of checking for local data usability the algorithm simply checks

all global user-defined queries and usability bounds by execution.

An additional benefit of operating in the relational data domain is the ability to

use the actual relation key in the secret subset selection procedure, instead of the

proposed most significant bits of the data (i.e., watermarked attribute data). It is
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highly unlikely that an attack will entirely change the database schema and replace

the key attribute. Thus for most applications it might be a safe idea to use it (or

it’s MSB space), especially in cases where the actual data is subject to lax usability

metrics (i.e., making the data MSB domain less reliable).

Subset Selection. Subset selection proceeds as follows. The input data tuples

are sorted (lexicographically) on a secret keyed cryptographic hash of the primary

key attribute K. Based on this hash of the primary key attribute value in each tuple,

compose a criteria for selecting a set of “special” tuples such that they are uniformly

distributed and average a total number of

e =
length(attribute)

subset size

For example this criteria could be H(K, key)) mod e = 0. These special tuples are

going to be used as subset “markers”. Each subset is defined as the elements between

two adjacent markers, having on average subset size elements. The detection phase

will then rely on this construction criteria to re-discover the subset markers.

Note: Alterations to the data (such as attacks) have a non-zero probability of

destroying one of the markers, thus making recovery of the corresponding subset

impossible. This will result in a one bit loss in the underlying data (before error

correction), hopefully corrected by the error correction mechanisms. For a more in

depth discussion see Section 3.5.

3.4.2 Embedding Optimizations

The embedding optimality of the solution presented above is dependent on a

set of parameters such as c, subset size, vfalse, vtrue etc. These parameters define

a space in which each point corresponds to a different embedding. Intuitively, the

solution would benefit from a fine-tuning step in which a certain optimum can be

identified in this space, for example, a set of values for which the encoding bandwidth

is maximized. Subject to further research is determining potential shapes defined by

optimal or close to optimal points in this space. What are some criteria that could



59

wm(attribute, wm key, mark data[], plugin handler, db primary key, subset size, vfalse, vtrue, c)

sorted attribute ← sort on normalized crypto hash(wm key,db primary key,wm key)

for (i=0; i <
length(attribute)

subset size
;i++)

subset bin ← next subset size elements from sorted attribute

compute rollback data

encode(mark data[i % mark data.length], subset bin, vfalse, vtrue, c)

propagate changes into attribute

if (not goodness plugin handler.isSatisfied(new data,changes)) then

rollback rollback data

continue

else

commit

map[i] = true

subset boundaries[i] = subset bin[0]

return map, subset boundaries

Figure 3.6. Relational Data with Numeric Types: Watermark Em-
bedding Algorithm (version using subset markers and detection maps
shown).
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det(attribute, wm key, db primary key, subset sz, vfalse, vtrue, c, map[], subset boundaries[])

sorted attribute ← sort on normalized crypto hash(wm key,db primary key,wm key)

read pipe ← null

do { tuple ← next tuple(sorted attribute) }

until (exists idx such that (subset boundaries[idx] == tuple))

current subset ← idx

while (not(sorted attribute.empty())) do

do {

tuple ← next tuple(sorted attribute)

read pipe = read pipe.append(tuple)

} until (exists idx such that (subset boundaries[idx] == tuple))

subset bin ← (at most subset sz elements from read pipe, excluding last read)

read pipe.remove all remaining elements but last read()

if (map[current subset]) then

mark data[current subset] ← decode (subset bin, vfalse, vtrue, confidence)

if (mark data[current subset] != DECODING ERROR)

then map[current subset] ← true

current subset ← idx

return mark data, map

Figure 3.7. Relational Data with Numeric Types: Watermark De-
tection Algorithm (version using subset markers and detection maps
shown).
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help in determining such a point? Furthermore, another optimization, time and

storage permitting, would start by training the watermarking process to be resilient

to a set of transformations expected from any potential attacker. The training

process would first watermark the input data only to attack it afterward. If the post-

attack recovered watermark is not of a satisfactory level, change the input parameters

and restart the process. While this might yield considerably better embeddings it

is obviously time-consuming by nature and can probably only be applied if time

constraints are not an issue.

3.4.3 On-the-Fly Update-Ability

In most scenarios, watermarking outsourced relational content happens only once,

at outsourcing time. The main purpose of watermarking in this framework is rights-

protection and/or traitor tracing through fingerprinting. Thus, there seems to be

little to be gained from an ability to watermark at runtime, in the presence of up-

dates. Moreover, because watermarking inherently alters the data, it is unreasonable

to assume that a certain party would keep an altered (i.e., watermarked) copy of the

data as replacement for the original 4.

Nevertheless our solution naturally supports on-the-fly watermarking, especially

in the presence of updates. Let us analyze several different update scenarios: (i)

updates that add fresh tuples to the already watermarked data set, (ii) updates

that remove tuples from the already watermarked data and (iii) updates that alter

existing tuples. In each of the cases, we assume that the watermarking mechanism

runs continuously as a dormant process and is notified for each update, having full

control over the watermarked version of the relational data.

(iii) is naturally handled. As altering updates come in, the marking process lets

all updates go through that are not altering the watermark. In other words, if an

update is to alter a value that belongs to a certain subset set ⊂ S, it first verifies

4After all, how could it generate the outsourced version at the time of outsourcing?
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if the alteration is going to alter the vc(set) value. If this is the case, the marking

process automatically re-constructs the set from the original data (also updating the

new value), re-embeds the corresponding watermark bit and then updates the subset

values in the watermarked version. Otherwise simply let the update go through.

Scenario (i) is similarly handled. If the added value is within a subset set ⊂ S,

the process verifies if this addition (which increases the set size) alters the vc(set)

value. Then proceed as above. (i) becomes more challenging if we consider the

insertion of new tuples containing primary key values that would qualify them as

subset markers. This can be handled as follows: before inserting, a simple check is

performed if indeed the new tuple could be mistaken for a marker. If this is the

case, there are two options available. In option (A), the subset in which the tuple

is to be inserted is split into two parts, each part being used independently as a

subset in encoding one bit of the watermark. Another option (B) is to simply keep

a list of such fake markers (together with the detection maps) at the detector’s site,

awaiting the detection process. At detection time, such markers are simply ignored.

While (A) would result in producing a cleaner output, it presents the drawback of

requiring a more complex management of bit embeddings. More specifically, these

newly available, “out of bound”, bit “slots” (split subsets) need to be managed

in such a way as to not interfere with the already embedded bits (for efficiency

purposes). This can be done by keeping a mapping between each subset marker

and it’s corresponding underlying watermarking data bit index. This scheme allows

for more flexibility as subsequent data bits are to not be embedded in subsequent

subsets anymore. On the other hand, (B) is more straightforward but does not make

use of the newly available bandwidth.

(ii) is also challenging. Its main difficulty derives from the fact that some removed

tuples could be actually subset markers. If a subset marker is removed, then in the

detection phase, one bit in the underlying embedding bandwidth will be destroyed.

This does not necessarily result in a watermark deterioration as this could hopefully

be recovered in the error correction phase. Furthermore, an improvement dealing
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with this scenario is the use of an embedding map, remembering exactly which

subsets contain a watermark bit and which not (see Section 3.5.1). In the case of a

marker removal, the embedding map bit for the subset corresponding to this marker

can be reset to signal any future detection process that the marker was lost. Yet

another idea would be to simply add a fake marker tuple (satisfying the marker

criteria) at the right point in the data.

3.5 Discussion

3.5.1 Detection Maps

Storage space permitting, it might be helpful to store some information about the

validity of subsets embeddings. In the detection phase, this information can be used

to eliminate unusable bit encodings, in the case of invalid or un-marked subsets, thus

increasing detection accuracy. At watermarking time (including on-the-fly phase),

a bit for each encoding subset is maintained and updated by the marking process.

This map of bits is then used in the detection process to avoid invalid subsets. If

the bit is set, the subset is signaled as being valid, otherwise the detection process

ignores the corresponding subset.

In the case of small to medium data sizes, and arguably for larger data sizes

too, the detection map is not hard to store and “remember” (at the detector’s site)

for detection time. For example in Section 3.6.3, the embedding map used was only

2000 bits long, barely 1.5KBytes of data, certainly small enough to be stored together

with the embedding key and additional watermarking parameters awaiting detection

time. As a general rule, the detection map will be (naturally) length(attribute)
subset size

bits long.
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3.5.2 Subset Markers

The use of subset markers (both stored and criteria-based) increases the ability

to accurately re-construct the underlying partitions corresponding to the individual

bit embeddings.

While experimental results show the real-life resilience of the embedding method,

from a more theoretical viewpoint we would like to ask: (i) what is the likelihood of

Mallory removing a subset marker? (ii) what is the impact of this likelihood on the

final resulting watermark?

Let Pm(s, a) be the probability that an a sized removal attack eliminates a subset

marker in the resulting data. Naturally, for each subset (s items) there exists one

subset marker. Thus each individual data removal has a probability of 1
s

of succeeding

in removing an actual subset marker; for a < s we have

Pm(s, a) =
a

s

In other words, for each “subset-worth” of data (s tuples) removed from the data, on

average one subset marker is destroyed. An eliminated subset marker directly results

in the inability to detect the corresponding subset (unless the adjacent markers

are preserved in which case something can still be done), thus resulting in a lost

bit in the underlying embedding (before error correction). This result is intuitive

and encouraging because it shows a direct and linear behavior between data value

degradation (tuples removal) and subset marker loss. Mallory has to remove at

least this much data to be able to eliminate a marker. In the experiments we used

an implementation deploying markers, thus the results include this probability of

marker loss.

Another interesting issue related to using subset markers is that apparently the

embedding method can get to a point where it is difficult to find subset marker

selection criteria that would yield evenly sized sets in the data partitioning phase.

This can happen when the selection criteria do not uniformly spread the selected

markers over the input tuples. In the case of H(K, key) mod e = 0, this is the case
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iff the H(K, key) values are not uniformly distributed, which in turn can happen

(because of the one-way randomized nature of the cryptographic hash) only if the

K values are identical or partitioned in large chunks of values. But, the K values

are by nature (primary key) different for each data tuple, thus the marker selection

is naturally uniformly distributed and results in almost identical subset sizes.

3.5.3 Primary Key Dependence

In Section 3.3.2 we presented a subset selection idea for the case of the simplified

problem. The solution was performing a lexicographical, secret, one-way sort on the

most significant bit (MSB) space in the considered items, in order to then enable

the selection of subsets. While this idea provides a certain level of self-containment

and is well suited for the problem it was formulated in, where there exist no external

aids in defining an ordering on the data, in the relational data framework, we chose

to investigate the use of the primary key as such an aide.

Thus, the solution as such features a certain dependency on the primary database

key. If attacks on the primary key occur, there are two potential options: (i) the

use of the initial MSB space sort idea and/or (ii) an initial normalizing step that

brings the primary key within a pre-defined range in which the subset selection step

in Section 3.4.1 (i.e., H(K ′, key) mod e = 0) is performed on a MSB portion of the

primary key K, i.e., K ′ = MSB(K). This is to be subject to further investigation,

hopefully resulting in primary key independence.

3.6 Experimental Results

This section presents our implementation and the experimental results of water-

marking real-life, commercial, data, namely the Wal-Mart Sales relational database.
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3.6.1 Implementation: wmdb.*

wmdb.* is our test-bed implementation of the algorithms presented in this chap-

ter. It is written using the Java language and uses the JDBC api.

The package receives as input a watermark to be embedded, a secret key to be

used for embedding, a set of relations/attributes to consider in watermarking as well

as a set of external usability plugin modules. The role of the plugin modules is to

allow user defined query metrics to be deployed and queried at run-time without

recompilation and/or software restart 5. The software uses those metrics to re-

evaluate data usability after each atomic watermarking step as explained in Sections

3.3 and 3.4.

Once usability metrics are defined and all other parameters are in place, the

watermarking module (see Figure 3.9) initiates the process of watermarking. An

undo/rollback log is kept for each atomic step performed (i.e., 1-bit encoding) until

data usability is assessed and confirmed (by querying the currently active usability

plugins). This allows for rollbacks in the case when data quality is not preserved by

the current atomic operation.

Watermark recovery takes as input the watermarking key used in embedding, the

set of attributes known to contain the watermark as well as various other encoding

specific parameters (see Figure 3.7). It recovers the set of watermark copies initially

embedded. A final step of error correction (e.g., majority voting) over the recovered

copies completes the recovery process.

3.6.2 Experiments

The Wal-Mart Sales Database contains most of the information regarding item

sales in Wal-Mart stores nationwide. Its main value lies in the huge commercial po-

tential deriving from mining buying patterns and association rules. In the following

5Usability metrics can be specified either as SQL queries, stored procedures or simple Java code
inside the plug-in modules.
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Figure 3.8. Relational Data with Numeric Types: The wmdb.*
package. Application runtime snapshot.



68

usability

metrics

plugin


handler


usability metric

plugin A


usability metric

plugin B


usability metric

plugin C
 JDBC


WM


evaluate
 user
mark


key


alteration rollback log


attributes


A1
 A2
 A3
 A4
 A5
 A6


DBMS


Figure 3.9. Relational Data with Numeric Types: The wmdb.*
package. Overview.

we present some of our experiments using the wmdb.* package to watermark the

Wal-Mart database.

Our experimental setup included access to the 4 TBytes Wal-mart data, (for-

merly) hosted on a NCR Teradata machine, one 1.8GHz CPU Linux box with Sun

JDK 1.4 and 384MB RAM. A subset of the relational schema of the data is presented

in the Appendix A. The amount of data available is enormous. For example, the

ItemScan relation contains over 840 million tuples.

For testing purposes, we deployed our algorithm on a randomly selected subset

of the original data (e.g., just a maximum of 141075 tuples for relation UnivClassTa-

bles.StoreVisits).

We assessed computation times and observed an intuitively (according to the

O(n) nature of the algorithm) linear behavior, directly proportional with the input

data size. Given the setup described above, in single-user mode, with a local database

we obtained an average of around 350-400 tuples/second for watermark embedding,

while detection turned out to be approximatively twice as fast. This occurs in the
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non-optimized, interpreted Java proof-of-concept implementation. We expect major

speedups (orders of magnitude) in a real life deployment version.

In the following we present experiments involving attacks (data loss, data al-

terations, linear changes, data resorting) as well as the evaluation of the available

bandwidth in the presence of different data goodness metrics (tolerable absolute

change and data classification preservation).

Data Loss Attacks (“Surgeries”)

In this attack scenario, we study the distortion of the watermark as the input

data is subjected to gradually increasing levels of data loss.

In Figure 3.10 (c) the analysis is performed repeatedly for single bit encoding

using the “confidence-violators” encoding method outlined in Section 3.3.3. The

results are then averaged over multiple runs. The “confidence-violators” primitive

set encoding proves to be resilient to a considerable amount of randomly occurring

uniformly distributed surgeries (i.e., item removals by Mallory, with no extra knowl-

edge) before watermark alterations occur. Even then, there exists the ability to

“trace” or approximate the original watermark to a certain degree (i.e., by trying to

infer the original mark value from an invalid set). The set size considered was 35, ex-

periments were performed on 30 different sets of close to normally distributed data.

Other parameters for the experiment include: vfalse = 5%, vtrue = 9%, c = 88%.

The average behavior is plotted in the graphs. Up to 25% and above data loss was

tolerated easily by the tested data, before mark alteration (i.e., bit-flip) occurred.

Figure 3.10 (a) and (b) depict more complex scenarios in which a real multi-

bit watermark is embedded into a larger data set (both uniform (a) and normal

distributions (b) were considered). The input data contained 8000 tuples, subset size

was 30 and the considered watermark was 12 bits long. Other parameters: vfalse =

15%, vtrue = 35%, c = 85%. This set is then subjected to various degrees of data loss

and the watermark distortion is observed. The encoding method again proves to be
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Figure 3.10. Relational Data with Numeric Types: Resilience to data
surgeries (a) uniform distribution, (b) normal distribution, (c) single
subset (1-bit) encoding

surprisingly resilient by allowing up to 45 − 50% data loss while still 40 − 45% of

the watermark survives. Also, in (a), as data alteration increases, the subset (i.e.,

secretly selected for encoding 1-bit, see 3.3.3) overlap (i.e., the “resemblance” to the

original content, the number of same elements in resulting subsets) degrades.

Note: Some of the figures presented in this section feature “spikes”. This is

a result of the adaptive data-dependent nature of the encoding. Different input

data reacts differently to data surgeries (for example) and feature slightly varying

behavior at distinct points. Averaging over multiple inputs provides a solution for

this issue. Nevertheless, we believe that, while it might soften the spikes it would also

(arguably) tone down distinct features for a given data set, features that inter-relate

figures. Instead of focusing on local variations, the figures should be interpreted as

an illustrative sample of the global governing trends.

Data Alteration Attacks (Epsilon-Attack)

Presented with the watermarked data Mallory is faced with two contradictory

tasks: preserving the inherent value of the data while at the same time removing

the hidden watermark. Given no knowledge of the secret watermarking key nor of

the original data the only available choice is to attempt (minor) random data mod-

ifications in the hope that at some point the watermark will be destroyed. Because
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the original data is unknown (thus also the current watermark-related distortion is

unknown) it is impossible for Mallory to determine the real “minority” of changes

he/she performs. In other words, because of the goal of preserving the data value,

Mallory cannot afford to perform significant change to the data.

In this experiment we analyze the sensitivity of our watermarking scheme to

randomly occurring changes, as a direct measure for watermark resilience. To do

this, we define a transformation that modifies a percentage τ of the input data

within certain bounds defined by two variables ǫ and µ. We called this transformation

epsilon-attack. Epsilon-attacks can model any uninformed, random alteration – the

only available attack alternative. A normal epsilon-attack modifies roughly τ
2

percent

of the input tuples by multiplication with (1 + µ + ǫ) and the other τ
2

percent

by multiplication with (1 + µ − ǫ). A uniform altering epsilon-attack modifies τ

percent of the input tuples by multiplication with a uniformly distributed value in

the (1 + µ− ǫ, 1 + µ + ǫ) interval.

In Figure 3.12 (a), a comparison is made between the case of uniformly dis-

tributed (i.e., values are altered randomly between 100% and 120% of their original

value) and fixed alterations (i.e., values are increased by exactly 20%). In the case

of fixed alterations the behavior demonstrates the effectiveness of the encoding con-

vention: as more and more of the tuples are altered linearly, the data distribution

comes increasingly closer to the original shape. For example when 100% of the data

is modified consistently and linearly the mark data suffers only 6% alterations. A

peak around 50% data alterations can be observed indicating that an attack chang-

ing roughly 50% of the data might have a greater chance of success. This is also

intuitively so (in the case of randomly distributed alterations) as a maximal change

in distribution is expected naturally when close to half of the data set is skewed in

the same “direction” (by addition or subtraction).

Parameter µ models the average of the data alteration distribution while ǫ con-

trols its width. Naturally, a zero-average epsilon-attack (µ = 0) is a transformation
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Figure 3.11. Relational Data with Numeric Types: Epsilon-attack
(zero-average) on normally distributed data.

that modifies roughly τ
2

percent of the input tuples by multiplication with (1 + ǫ)

and the other τ
2

percent by multiplication with (1− ǫ).

Figure 3.11 presents the behavior of our encoding algorithm to this type of at-

tack. This is particularly intriguing as it reveals clearly a special feature of the wa-

termarking method: since the bit-encoding convention relies on altering the actual

distribution of the data, it survives gracefully to any distribution-preserving transfor-

mation. Randomly changing the data, while it can definitely damage the watermark

(e.g., especially when altering around 50% of the data, see Figure 3.12 (a)), proves

to be, to a certain extent, distribution-preserving. A zero-average epsilon-attack is

survived very well. For example, altering 80% of the input data within 20% of the

original values still yields over 70% of the watermark.

Note: One could argue that, after all, if the watermark encoding relies too much

on the distribution of the data, one successful attack could be the one that alters

exactly this distribution. But this is not possible, as the power of the watermarking

scheme lies not only in the distribution itself but also in the secrecy of the encod-

ing subsets. In other words, where the bits are encoded (i.e., subsets, see Section

3.3) is as important as how. Altering global data characteristics would not only

destroy probably much of the value of the data but, as shown above, achieve little

in destroying the watermark.
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In Figure 3.11 (a), as the percentage of tuples altered and the alteration factor

goes up, so does the watermark distortion. Nevertheless, it turns out to be surpris-

ingly resilient. For example, altering 100% of the data within 1% of the original

values can yield a distortion as low as 5− 6% in the resulting watermark. The wa-

termark distortion increases with increasing alteration factor (b) or percentage of

data (c). Figure 3.11 (b) presents a comparison between the curves corresponding to

the alteration of 40% of the tuples versus 80% of the tuples. Naturally the curve for

the higher tuples percentage appears “above”. In (c) a comparison is made between

curves for the alteration factor 1% or 5%. The higher alteration curve is intuitively

“above”. Note that the curves are slightly increasing but not very steep: mark al-

teration is less dependent on the percentage of data altered than on the alteration

factor (as seen in (b)). Thus the watermarking scheme proves a natural resilience to

un-informed attacks (modeled by epsilon-attack transformations).

Data Quality (Goodness) Metrics

Here we analyze the impact of data goodness preservation on the available wa-

termark encoding bandwidth. Intuitively the more restrictive data constraints one

imposes, the less available bandwidth, as allowable data changes are directly im-

pacted. We present two results. The first analyzed goodness metric is a commonly

considered one, namely upper bounds imposed on the total and local tolerable ab-

solute change (i.e., of the new data with respect to the original).

Note: An identical experimental result was obtained for a related metric, the

maximum allowable mean squared error.

In Figure 3.12 (b), as data goodness metrics are increasingly restrictive, the

available bandwidth (guaranteeing higher resilience) decreases. In the illustrated

experiment, the allowed absolute change in the watermarked data (i.e., from the

original) is decreased gradually (from 0.1% to 0.02%) and the decrease in available

encoding bandwidth is observed (depicted as a percent of total potential bandwidth).
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Figure 3.12. Relational Data with Numeric Types: (a) Epsilon-
attack (non-zero average) on a normally distributed data set. (b)
Impact of guaranteeing a Maximum Allowable Absolute Change on
the available watermarking bandwidth.

The upper limit (approx. 90%) is inherently data-imposed and cannot be exceeded

due to original data characteristics, making it the maximum attainable bandwidth.

Another important experiment analyzes a classification-preserving data goodness

metric. Classification is extremely relevant in areas such as data mining and we en-

vision that many of the actual deployment scenarios for our relational watermarking

application will require classification preservation.

Classification preservation deals with the problem of propagation of the classes

occurring in the original (input) data in the watermarked (output) version of the

data. It provides thus the assurance that the watermarked version still contains

most (or within a certain allowed percentage) of the original classes.

To perform the experiment, we designed and implemented a data classifier which

allows for runtime fine-tuning of several important classification parameters such as

the number of (synthetic) classes to be associated with a certain data set as well as

the sensitivity of these classes. The sensitivity parameter can be illustrated best by

example. Given a certain data set to be altered (e.g., watermarked) and an item

X in this data set, the classification sensitivity models the amount of alterations X

tolerates before it “jumps” out of its original class.



75

 0
 0.4

 0.8sensitivity  0
 6

 12
 18

tolerance (%)

 20
 40
 60
 80

 100

bandwidth(%)

 50

 60

 70

 80

 90

 100

 0  5  10  15  20

ba
nd

w
id

th
 (

%
)

tolerance (%)

 30

 40

 50

 60

 70

 80

 90

 100

 0.005 0.01 0.015 0.02

ba
nd

w
id

th
 (

%
)

sensitivity

Figure 3.13. Relational Data with Numeric Types: Impact of a clas-
sification preservation on the available watermarking bandwidth.

Note: One different perspective on sensitivity can be obtained by linking it to

the notion of classification selectivity. The more selective a classification is, the more

sensitive its behavior.

The tolerance factor in Figure 3.13 represents the maximum tolerated classifica-

tion distortion (i.e., percentage of class violators with respect to the original). In (a),

as the classification tolerance and sensitivity go up, so does the available bandwidth.

Figure 3.13 (b) shows how the watermarking algorithm adapts to an increasing data

goodness tolerance (classification sensitivity 0.01). Figure 3.13 (c) depicts how for

classification tolerance fixed at 1%, the sensitivity of the classification impacts di-

rectly the available bandwidth.

Depending on classification sensitivity (e.g., 0.01 in (b)), up to 90% of the un-

derlying bandwidth can become available for watermark encoding with a restrictive

6% classification preservation goodness.

These results confirm the adaptability of our watermarking algorithm. As clas-

sification tolerance is increased, the application adapts and makes use of an in-

creased available bandwidth for watermark encoding. This also show that classifi-

cation preservation is compatible with our distribution-based encoding method, an

important point to be made, considering the wide range of data-mining applications

that could naturally benefit from watermarking ability.
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3.6.3 Scenario: The Wal-Mart Sales Database

A set of more complex experiments performed are outlined in Section 3.6.2. Here

we present an actual application of our watermarking software. The watermark

considered to be hidden was the string “(C)walmart” (80 bits in 8bit/character

encoding). Algorithm parameters were adjusted repeatedly in an attempt to maxi-

mize the number of embedded copies, finally establishing them as c = 85%, vfalse =

15%, vtrue = 30%. The attributes watermarked were:

ItemScan.TotalScanAmount

ItemScan.UnitCostAmount

StoreVisits.TenderAmt

StoreVisits.TotalVisitAmt

StoreVisits.SalesTaxAmt

The size of the subsets considered was roughly 70 for a total of around 2000 avail-

able encoding bits in the TotalScanAmount attribute for example. We considered a

set of usability metrics and associated queries, including the following:

(a) Intra-relational Consistency:

ItemScan.UnitCostAmount x ItemScan.ItemQuantity = ItemScan.TotalScanAmount

(b) Inter-relational Consistency:

StoreVisits.TotalVisitAmt < SUM(ItemScan.TotalScanAmount)

(c) General Attribute Constraints: MSE constraints for attribute StoreVisits.

TotalVisitAmt: introduced normalized mean squared error should not exceed 1%.

(d) General SQL Constraints: e.g., (d.1) for each store and date, the number of

sales after watermarking should not deviate more that 2% from the original data,

(d.2) for the join between SV and IS on the VisitNbr attribute, a maximum number

of 5% of the elements should be disturbed after watermarking. For example, the

actual numeric value in (d.2) can be formulated as follows:
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SELECT * AS J1 FROM ItemScanOrig, StoreVisitsOrig

WHERE ItemScanOrig.VisitNbr = StoreVisitsOrig.VisitNbr;

SELECT * AS J1 FROM ItemScanWM, StoreVisitsWM

WHERE ItemScanWM.VisitNbr = StoreVisitsWM.VisitNbr;

SELECT COUNT(*) FROM (

(SELECT * FROM J1 EXCEPT SELECT * FROM J2)

UNION

(SELECT * FROM J2 EXCEPT SELECT * FROM J1))

In the working system, each of these metrics was represented by a separate usabil-

ity metric plug-in, used in evaluating data usability after each atomic watermarking

step (see Figure 3.9). For example, the usability metric module for (d.2) executes

the above query and if the result exceeds a certain threshold, it simply returns false,

denying the watermarking module the proposed modifications to the data. The

watermarking module then rolls back those modifications and proposes (by back-

tracking) new ones. It eventually continues on to the next subset.

Deployment Issues

Some of the usability constraints above present a set of deployment challenges

especially when implemented as usability plug-in modules. Whereas (a), (b) might

be straight-forward to code, (c) presented some complications because of the need

of maintaining original reference data in order to be able to compute MSE values.

This was solved by creating an additional relation at run-time, used by the plug-in

to keep original data that was altered in the watermarked version.

Step (d) proved to be the most challenging, particularly (d.2) because of the

requirement to always compare JOINS on the original data to joins on the resulting

data. We tried two approaches. In the first approach, the entire original data was

duplicated temporarily and JOINS were dynamically performed at run-time. As

discussed above, space and computation constraints are not of concern here if within

reach, as this is done only once in the lifetime of the outsourced data. However, this

soon proved to be infeasible, and computation-intensive, often causing JDBC buffer
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related crashes and taking long times to execute. The second approach optimized

the idea by keeping just a record of watermark-related alterations and then directly

assessing their impact in the data JOIN result (i.e., determining whether a change

in tuple X in table SV will affect an as yet un-accessed tuple in the JOIN result

with table IS). This second approach, requiring less space and computation power,

proved to work well.

Using the attribute ItemScan.TotalScanAmount, the watermark was embedded

successfully roughly 21 times, leading to a good utilization (84%) of the potential

encoding bandwidth of 2000 bits (see above). This allows for a highly accurate final

majority voting step at mark retrieval/detection time (see Section 3.6.2 for attack

and resilience experiments).

3.7 Related Work

With respect to directly related work, one simultaneous published related effort

in the relational data framework [35] is available for comparison. Its main algorithm

proceeds as follows. A subset of the initial data tuples are selected based on a secret

criteria; for each tuple, a secret attribute and corresponding least significant (ξ)

bit position are chosen. This bit position is then altered according to yet another

secret criteria. The main assumption is, that changes can be made to any attribute

in a tuple at any least significant ξ bit positions. At watermark detection time,

the process will re-discover the watermarked tuples and, for each detected accurate

encoding, become more “confident” of a true-positive detection.

There are many fundamental differences between this effort and our work, in-

cluding: (i) In [35] there is no provision for multi-bit watermarks. (ii) Because the

watermark is embedded in multiple attributes at the same time, vertical partition-

ing attacks become of concern. In a schema with a primary key and two attributes,

removing one of the attributes will weaken the watermark embedding 50% (i.e., an

amount proportional to the number of total attributes used in embedding). (iii)
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The actual bit encoding of the watermark is naturally vulnerable to an entire set of

trivial attacks in the numeric domain (e.g., linear changes, see below). (iv) Maybe

the most important difference is the fact that our solution is built around a frame-

work considering higher level semantics to be preserved in the original data. [35]

only honors limits to fractional change in individual attribute values and there are

no provisions for imposing any constraints specific to relational databases, such as

preserving JOIN results, classifications, the relative values of attributes and other

requirements such as outlined in Section 3.2. Our solution was designed around the

concept of preservation of such higher level semantic constraints. All of these and

ad-hoc specified SQL constraints can be preserved and honored in the result.

This is so because we believe that a sound and truly resilient watermarking

method has to start by assessing the final purpose of the content to be watermarked,

together with its associated allowable alteration limits. These limits are often times

impossible to express as “least significant bit” constraints and require a higher level

semantic expression power such as offered by the data goodness plugins. As out-

lined in Section 3.2.1 one of the main challenges of watermarking is the ability of

the encoding method to not interfere with the final data uses. This is why (v) the

assumption that the least significant ξ bits in any tuple can be altered, has limited

applicability and is often plain wrong. It cannot be considered in many important

applications such as data mining that require the preservation of classification. Con-

sider a simple application where a relational data set is used in conjunction with a

classifier clustering individuals into several categories based on age, e.g., “pre-school”

(0-6 years), “child” (7-13), “teenager” (14-18), “young male” (19-21), “adult” (22+).

Naturally, there are likely many scenarios in which any minor alteration to the data

should not change a person’s class, for various reasons (e.g., adult movie rentals). If

the rights protection method deployed is not able to handle this semantic constraint,

using the watermarked result can lead to potentially illegal situations in which a

minor is able to purchase alcohol and/or rent adult movies. By randomly modifying

least significant bits, changing an age of 20 into 21 becomes quite likely and pro-
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duces a highly undesirable result. A higher level analogy can be constructed with

the image watermarking framework, where the LSB approach to watermarking was

among of the initial attempts and immediately proved its limits. LSB information

hiding was immediately discarded as an effective technique for resilient watermark-

ing [2] [19]. Modern media (e.g., sound, image) watermarking algorithms start from

human perceptual models of (assuming this is the final consumer of the Works) and

build on it by mapping the model into allowable tolerances for data changes. The

watermark encoding needs to preserve data quality. Cross-domain experience is re-

quired to deploy the same paradigm also in the relational framework. Our approach

builds on this experience.

(vi) In [35] resilience to true data alterations (e.g., linear changes to an arbitrary

subset of the data, non-uniform scaling of all or part of the data, and epsilon-attacks)

is not analyzed and the encoding method lacks fundamental provisions to resist

such alterations, many of which would certainly preserve value in the result. Even

minor-level epsilon-attacks such as the ones illustrated in Section 3.6.2 (where our

encoding survives up to 97%) would entirely remove the mark. Consider for example

the case of a data mining application aiming to discover association rules from a

data set with a schema composed of a primary key and two numeric attributes. By

multiplying all numeric values with e.g., 2 the resulting value bit strings are effectively

shifted, resulting in a total loss of the original watermark. If the association rules are

preserved in the result, the data is still valuable and Mallory can simply perform this

attack on any and all suspected watermarked data sets and completely remove the

watermark. Arguably a majority of associations are preserved if linear data changes

are performed to the underlying data consistently.

Aside from the issues outlined above, [35] features also one difference that results

in desirable properties of clear benefit. Partly because of the assumption of single

bit sized watermarks, the encoding is independent of tuple ordering (if the primary

key attribute is preserved and un-changed). The detection process is not required

to reconstruct an actual watermark string but rather relies on the detection of a
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statistical improbability in the result to return the one-bit watermark; thus data

location-awareness is not necessary, a partial reason for tuple ordering independence.

This independence results in two advantages of using an encoding such as in [35]:

the ability (vii) to detect a watermark bias in small amounts of the data and, in

certain scenarios, (viii) to handle multiple source data merging 6.

There surfaces a trade-off to be observed here. Handling multiple source data

merges and resisting massive data loss attacks are desirable important properties.

Preserving higher level semantics in the result and surviving value preserving data

alteration attacks (e.g., classification preserving linear changes, random epsilon-

attacks) are equally or even more important. Our solution balances the trade-off

between the ability to resist data loss up to 60-70%, major value-preserving numeric

attacks as well as preserve guaranteed levels of data quality in the result. It naturally

handles a certain level of data merging (similar to data addition). Nevertheless an

ability to handle increased merging levels could be obtained by designing an encoding

scheme with all the advantages of our solution and independent of tuple ordering.

We are currently investigating this issue.

Another interesting related research effort is to be found in [36] where the authors

discuss theoretical links between query result preservation and associated allowable

input data alterations.

3.8 Conclusions. Future Research.

In this chapter we introduced the problem of data security through watermark-

ing in the framework of numeric relational data. We (a) designed a solution to a

simplified version of our problem, namely watermarking a numeric collection by (a.i)

defining a new suitable mark encoding method for numeric sets and (a.ii) building

an algorithmic secure mapping (i.e., mark amplification) from a simple encoding

method to a more complex watermarking algorithm, and (b) applied the concept to

6This is the case if several watermarked data sources are combined, and the primary key attribute
that was used in the embeddings is preserved (e.g., as the join attribute) in the result.
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numeric relational databases. We thus provided a solution for resiliently watermark-

ing relational databases. We also developed a proof of concept implementation of

our algorithms under the form of a Java software package, wmdb.* which we then

used to watermark a commercial database, extensively used for data-mining in the

area of customer trends and buying patterns. Published research results of this work

include [7], [8], [9] and [37].
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4 RELATIONAL DATA WITH CATEGORICAL TYPES

A novel method of rights protection for categorical data through watermarking is

introduced in this chapter. New watermark embedding channels for relational data

with categorical types are discovered and associated novel watermark encoding al-

gorithms are proposed. While fully preserving data quality requirements, the in-

troduced solution is designed to survive important attacks, such as subset selection

and random alterations. Mark detection is fully “blind” in that it doesn’t require

the original data, an important characteristic especially in the case of massive data.

Various improvements and alternative encoding methods are proposed and valida-

tion experiments on real-life data performed. Important theoretical bounds including

mark vulnerability are analyzed. The method is proven (experimentally and by anal-

ysis) to be extremely resilient to both alteration and data loss attacks, for example

tolerating up to 80% data loss with a watermark alteration of only 25%.

4.1 Introduction

Categorical data is data drawn from a discrete distribution (often with a finite

domain). By definition, it is either non-ordered (nominal) such as gender or city, or

ordered (ordinal) such as high, medium, or low temperatures.

While in Chapter 3 we explored the issue of watermarking numeric relational

content, there are a multitude of applications that would benefit from a method of

rights protection for categorical data types. In this chapter we propose and analyze

this issue of rights protection for categorical relational content through watermarking.

Main challenges in this new domain derive from the fact that one cannot rely on

“small” alterations to the data in the embedding process. Any alteration is going to

necessarily be significant. This discrete characteristic of the data requires discovery
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of fundamentally new bandwidth channels and associated encoding algorithms. Ad-

ditionally, since the associated data types do not have fixed, well defined semantics

(as compared to multimedia) and may be designed for machine ingestion, identify-

ing the available “bandwidth” for watermarking becomes as important as the actual

encoding algorithms.

Our solution proves to be resilient to various important classes of attacks, includ-

ing subset selection and random item(s) alterations etc. The main contributions of

this chapter include: (i) the proposal and definition of the problem of watermarking

categorical data, (ii) the discovery and analysis of new watermark embedding chan-

nels for relational data with categorical types, (iii) the design of novel associated

encoding algorithms.

The Chapter is structured as follows. In Section 4.2 we present our main data

and adversary models. Section 4.3 introduces the main solution and outlines alter-

natives. Section 4.4 analyzes aspects of our algorithms and proposes improvements

for particular scenarios. It also discusses the inherent algorithm vulnerability to data

altering attacks. Section 4.5 outlines our experimental setup and results. Section

4.6 concludes.

4.2 Model

We choose to keep our model concise but representative. Our data schema in-

cludes a set of discrete attributes {A, B} and a primary data key K, not necessarily

discrete. Any attribute X ∈ {A, B} can yield a value out of nX possibilities. (e.g.,

city names, airline names). Thus our schema is (K,A,B).

4.2.1 Notation

Let the number of tuples in the database be N . For any categorical attribute

X we naturally have b(nX) ≤ b(X). Let Tj(X) be the value of attribute X in

tuple j. Let {a1, ..., anA
} the discrete potential values of attribute A. These are
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distinct and can be sorted (e.g., by ASCII value). Let fA(aj) be the normalized

(to 1.0) occurrence frequency of value aj in attribute A. fA(aj) models the de-facto

occurrence probability of value aj in attribute A.

4.2.2 The Adversary

There is a set of attacks that can be performed by evil Mallory with the purpose

of defeating the watermark while preserving the value in the data. Moreover these

perceived attacks may be the result of normal use of the data by the intended user. In

order to be effective, the watermarking technique has to consider these scenarios and

be able to survive them. In Chapter 3 we outlined attacks in the numeric relational

data framework. Here we discuss challenges specifically associated with categorical

data types.

A1. Horizontal Data Partitioning Mallory can randomly select and use a

subset of the original data set that might still provide value for its intended purpose.

A2. Subset Addition Mallory adds a set of tuples to the original data. This

addition is not to significantly alter the useful (from Mallory’s perspective) properties

of the initial set versus the resulting set.

A3. Subset Alteration Altering a subset of the items in the original data

set such that there is still value associated with the resulting set. In the categorical

data framework, subset alteration is intuitively quite expensive from a data-value

preservation perspective. One has also to take into account semantic consistency

issues that become immediately visible because of the discrete nature of the data.

A4. Vertical Data Partitioning In this attack, a valuable subset of the

attributes are selected (by vertical partitioning) by Mallory. The mark has to be

able to survive this partitioning. The encoding method has to feature a certain

attribute-level property that could be recovered in such a vertical partition of the

data. We believe that while vertical data partitioning attacks are possible and also

very likely in certain scenarios, often value is to be found in the association between
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a set of relation attributes. These attributes are highly likely to survive such an

attack, as the final goal of the attacker is to produce a still-valuable result.

A5. Attribute Remapping If data semantics allow it, re-mapping of relation

attributes can amount to a powerful attack that should be carefully considered. In

other words, if Mallory can find an, at least partial, value-preserving mapping from

the original attribute data domain to a new domain, a watermark should hopefully

survive such a transformation. The difficulty of this challenge is increased by the fact

that there naturally are an infinity of transformations available for a specific data

domain. Determining a value-yielding one is both data and consumer dependent.

This is thus an intractable task for the generic case. One special case is primary key

re-mapping. In Section 4.4.5 we discuss the particular case of bijective mappings.

Given the attacks above, several properties of a successful solution surface. For

immunity against A1, the watermark has to be embedded in overall data properties

that survive subset selection. If the assumption is made that the attack alterations

do not destroy the value of the data, then A3 should be defeat-able by embedding

the primitive mark in resilient global data properties. Since it adds new data to

the set, defeating A2 seems to be the most difficult task, as it implies the ability

to identify potential uses of the data (for the attacker). This is especially so in the

case of categorical data where we suspect the main attack will focus not as much on

expensive data alterations but more on data addition.

4.3 Categorical Data

The discrete nature of our data domain results in an inherent limitation in the

associated entropy. In order to enable watermarking, we first aim to discover ap-

propriate embedding channels. Then we propose new encoding methods, able to

leverage the newly discovered bandwidth.
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4.3.1 Challenges

Given our research in the numerical domain, the first impulse was to build an

extension of it for non-numeric attributes. This would start by establishing a map-

ping between the non-numeric domain and a numeric one, followed by a translation

of the input data A to a set of numbers N (after all, any data can be represented

as a string of bits). In the next step, the numeric watermarking method is deployed

on the translated data N and a watermarked version of it (N ′) is obtained. If the

mapping features certain properties (e.g., has an inverse), the algorithm can then

translate this watermarked version (N ′) back into the original data domain (ac-

cording to the inverse mapping) and produce A′, a watermarked version of A. The

assumption here is that there exists a mapping that is stable and is suitable. For

example in the case of A being an attribute containing multimedia JPEG images

(possibly under the form of BLOB fields), this mapping might be exactly the DCT

1 (or a combination of the significant DCT coefficients). The detection algorithm

will function similarly, by translating the suspected watermarked input data to the

numeric domain (using the inverse transform) and deploying the numeric detection

process on the translation.

Unfortunately, depending on the actual data domain, non-numeric relational data

will feature a different set of data value and quality metrics, and associated uses. For

many applications, this will make it difficult to directly apply the above idea. Let

us consider for example the case of categorical data. Important new challenges are

associated with watermarking in this domain. One cannot rely on “small” alterations

to the data in the embedding process as any alteration is going to necessarily be

significant. Changing DEPARTURE CITY from “Chicago” to “Bucharest” is likely

to affect the data quality of the result more then a simple change in a numeric domain.

There are no “epsilon” changes in this domain. This discrete characteristic of the

1Discrete Cosine Transform. A frequency-domain transform used in the compression process of
JPEG images, quantifying an image into a set of coefficients.
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data requires discovery of fundamentally new bandwidth channels and associated

encoding algorithms.

4.3.2 Bandwidth Channels

If the discrete attribute A has a finite set of possible values (nA), unless this

value is really high, the associated log2(nA) bits entropy is not going to be enough

for direct-domain embedding of a reasonable watermark length/convince-ability. For

example in the case of a departure cities attribute, a value of nA = 16000 is going to

yield only 14 bits.

In the case of categorical data however (and not necessarily in any other con-

tinuous data domain) there exists a natural, solid semantic association between A,

the rest of the schema’s categorical attributes (e.g., B) and the data’s primary key

K. This association derives from the fact that in most cases there exists no con-

cept of “minor” changes. Any change is going to necessarily be significant (e.g.,

change departure city from “Chicago” to “San Jose”). A comparatively large po-

tential encoding bandwidth can be found in these associations between categorical

attributes (including possibly the primary key). We propose to make use of it in

our embedding. Additionally, while direct-domain embedding does not seem to have

enough entropy potential, we will leverage a related dimension, the value occurrence

frequency-transform, (attribute frequency histogram) as an additional (or alternate)

encoding channel.

Our next objective is to provide an embedding method that is able to resiliently

hide information in the attribute association outlined above (while preserving guar-

anteed data distortion bounds) and then, if necessary, augment it with a direct-

domain watermark.

Note: Given the discrete nature of the data domain, as outlined above, any

watermark-related data alteration is going to necessarily be significant, e.g., chang-

ing “Chicago O’Hare” into “Chicago Metropolitan”. This is why, intuitively, one
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would desire to minimize the number of such alterations while maximizing encoding

resilience. Additionally, if there exists a certain distance metric in the attribute value

domain, then another possible desiderata would be to upper bind some function of

the distances of all performed alterations (see Section 4.4.7).

4.3.3 Algorithms

Surviving vertical partitioning attacks is important and requires a careful con-

sideration of the attribute association used in the embedding process. Selecting the

appropriate attributes is challenging as one has to determine many possible valuable

features to be found in the data that would still be preserved after vertical parti-

tioning. This is why we propose an initial user-level assessment step in which a set

of attributes are selected that are likely to survive vertical partitioning attacks (see

Section 4.3.4 for an extended discussion). In the extreme case (i), just one attribute

and the primary key are going to survive. A milder alternative (ii) assumes that sev-

eral (e.g., two) categorical attributes and the primary key survive the partitioning

process. Apparently, a watermarking method for (i) presents the disadvantage of a

direct primary key-dependency. In Section 4.3.4 we further expand on this.

Let us propose an encoding method for (i), in which we encode a watermark in the

bandwidth derived from the association between the primary key and a categorical

attribute A. In Section 4.4 we analyze (ii).

Mark Encoding

At mark encoding time we assume the following input: a relation with at least

a categorical type attribute A (to be watermarked), a watermark wm and a set of

secret keys (k1, k2) and other parameters (e.g., e) used in the embedding process.

The algorithm starts by discovering a set of “fit” tuples determined directly by

the association between A and the primary relation key K. These tuples are then

considered for mark encoding.
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wm embed(K,A,wm,k1,k2,e,ECC)

wm data← ECC.encode(wm, wm.len)

for (j ← 1; j < N ; j ← j + 1)

if (H(Tj(K), k1)) mod e = 0) then

t← set bit(H(Tj(K), k1), 0,

wm data[H(Tj(K), k2)])

Tj(A)← at

wm embed alt(K,A,wm,k1,e,ECC)

wm data← ECC.encode(wm, wm.len)

idx← 0

for (j ← 1; j < N ; j ← j + 1)

if (H(Tj(K), k1) mod e = 0) then

t← set bit(H(Tj(K), k1), 0, wm data[idx])

Tj(A)← at

embedding map[Tj(K)]← idx

idx← idx + 1

return embedding map

Figure 4.1. Relational Data with Categorical Types: (a) Embedding
Algorithm (b) Alternative using embedding map (bit size adjust-
ments omitted)

Step One. We say that a tuple Ti is “fit” for encoding iff H(Ti(K), k1) mod

e = 0, where e is an adjustable encoding parameter determining the percentage of

considered tuples 2 and k1 is a secret max(b(N), b(A))-bit key. In other words, a

tuple is considered “fit” if its primary key value satisfies a certain secret criteria 3.

Note on Error Correction. Because often the available embedding band-

width N
e

is greater than the watermark bit-size |wm|, we can afford the deploy-

ment of an error correcting code (ECC) that, upon embedding takes as input a

desired watermark wm and produces as output a string of bits wm data of length

N
e

containing a redundant encoding of the watermark, tolerating a certain amount

of bit-loss, wm data = ECC.encode(wm, N
e
). At decoding time, the ECC takes as

input (a potentially altered) wm data and produces the (most likely) correspond-

ing wm, wm = ECC.decode(wm data, |wm|). There are a multitude of error

2The set of fit tuples contains roughly N
e

elements. The parameter e can be controlled at embedding
time to adjust the trade-off between the level of data alteration and mark resilience. See Section
4.4.4 for a more detailed analysis.
3Similar criteria are found in various frameworks, such as [35].
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Figure 4.2. Relational Data with Categorical Types: Overview of
multi-bit watermark encoding.
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correcting codes to choose from. As this does not constitute the main contribu-

tion of this research, in our implementation we deploy majority voting codes. Let

wm data[i] be the i-th bit of wm data. Thus, before embedding, our algorithm

starts by deploying the error correcting code first to compute the bits to be embed-

ded wm data = ECC.encode(wm, N
e
).

Step Two. For each “fit” tuple Ti, we encode one bit by altering Ti(A) to

become Ti(A) = at where

t = set bit(msb(H(Ti(K), k1), b(nA)), 0, wm data[msb(H(Ti(K), k2), b(
N

e
))])

, where k2 is a secret key k2 6= k1. In other words, we are generating a secret value of

b(nA) bits (depending on the primary key and k1) and then force its least significant

bit to a value according to a corresponding (random, depending on the primary key

and k2) position in wm data.

Note: The use of a second different key here ensures that there is no correlation

between the selected tuples for embedding (selected also by k1) and the corresponding

bit value positions in wm data (selected by k2). Such a correlation would potentially

cause certain bits to be never considered in the embedding process. In summary, the

new attribute value is selected by the secret key k1, the associated relational primary

key value and a corresponding bit from the watermark data wm data.

The “fitness” selection step provides several advantages. On the one hand this

ensures the secrecy and resilience of our method, on the other hand, it effectively

“modulates” the watermark encoding process to the actual attribute-primary key

association. Additionally, this is the place where the cryptographic safety of the

hash one-wayness is leveraged to defeat court-time attacks in which Mallory claims

that the data in dispute is not actually watermarked but that rather certain values

for k1,k2 were searched for to yield the watermark.

Note: When computing t (i.e., selecting a new value for Ti(A)) there can be

(arguably rare) cases when we select the same wm data bit to embed. The pseudo-

random nature of H(Ti(K), k2) guarantees on average that a large majority of the
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bits in wm data are going to be embedded at least once. The ulterior step of error

correction can tolerate such small changes.

Alternately, we could keep an on-the-fly hash-table/mapping (with (N
e
) entries,

see Figures 4.1 (b) and 4.3 (b)) between Ti(K) values and the actual considered

bit index in wm data. This mapping can be used at detection time to accurately

detect all wm data bits. In this case, also we do not require an extra watermark

bit selection key (k2). Although we use this alternative in our implementation, for

simplicity and conciseness reasons we are not going to discuss it here.

The advantage of using H(Ti(K), k2) in selecting the wm data bit to embed

becomes clear when we discuss data loss alterations. Because the selected bit is

directly related only to the currently considered tuple, this method naturally survives

subset selection and data addition attacks. More on this in Section 4.5.

While it does a good job in watermark embedding, data alteration is an expensive

operation because it effectively destroys valuable data. There are also other data

transformations that we can make use of, each with a different degree of associated

data distortion and benefits. For a discussion on an alternative (i.e., data addition)

see Section 4.4.6.

Mark Decoding

In the decoding phase we assume the following input: the potentially water-

marked data, the secret keys k1, k2 and e. We then use the same criteria for discov-

ering “fit” tuples. That is, we say that a tuple Ti is “fit” for encoding iff H(Ti(K), k1)

mod e = 0.

The first aim of the decoding algorithm is to discover the embedded wm data bit

string. For each “fit” tuple Ti, with Ti(A) = at, we set

wm data[msb(H(Tj(K), k2), b(
N

e
))] = t&1
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wm dec(K,A,k1,k2,e,ECC)

for (j ← 1; j < N ; j ← j + 1)

if (H(Tj(K), k1) mod e = 0) then

determine t such that Tj(A) = at

wm data[msb(H(Tj(K), k2), b(
N
e
))] = t&1

wm← ECC.decode(wm data, wm.length)

return wm

wm dec alt(K,A,k1,e,ECC,embed map)

for (j ← 1; j < N ; j ← j + 1)

if (H(Tj(K), msb(k, b(K))) mod e = 0) then

determine t such that Tj(A) = at

wm data[embed map[Tj(K)]] = t&1

wm← ECC.decode(wm data, wm.length)

return wm

Figure 4.3. Relational Data with Categorical Types: (a) Decoding
Algorithm (b) Alternative using embedding map

Once wm data (possibly altered) is available, the error correcting mechanism

is invoked to generate the (“closest”, most likely) corresponding watermark wm =

ECC.decode(wm data, |wm|).

4.3.4 Multiple Attribute Embeddings

The above encoding method makes use of the bandwidth present in the associ-

ation between the primary key and the categorical type attribute A. It does not

touch the primary key attribute but rather relies on modulating A through minor

alterations (and data additions, see Section 4.4.6).

In the following we extend this algorithm to provide more generality and re-

silience, in particular to attacks of the type A4 (vertical data partitions). In a

possible attack scenario Mallory partitions the data in such a way as to preserve

only two attributes and no primary key. Moreover, if one of the remaining attributes

can act as a primary key, this partitioning results in no duplicates-related data loss

(in the two attributes).

Defeating this scenario leads to a natural extension. Instead of relying on the

association between the primary key and A, the extended algorithm considers all
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pairs 4 of attributes and embeds a watermark separately in each of these associations.

In other words, if the original watermarking method read mark(K, A) for a schema

composed of the primary key K and A, in the case of a (K, A, B) schema we apply

the watermark several times, for example mark(K, A); mark(K, B); mark(A, B). In

each case, we treat one of the attributes as a primary key (see Section 4.3.3), while

maintaining the rest of the algorithm in place. This provides protection against

A4 attacks and allows for more resilience in the rest of the scenarios (as there are

more rights “witnesses” to testify). In addition, it effectively “breaks” the previous

algorithm’s dependency of the primary key.

Several issues need to be resolved. One apparent problem is the issue of interfer-

ence. If we watermark the pair (K, A) and then aim to watermark (K, B) everything

seems to work out fine as the modified attributes A, B are different. With the ex-

ception of semantic consistency issues that would need to be handled (as they would

also be in the initial case, see Section 4.4) the two encodings seem to be independent.

But in the case of additionally watermarking the pair (A, B), modifying B suddenly

interferes with the modifications occurred in the (K, B) case.

Although the level of interference is likely to be very low 5, there exists a solution

to this problem. Maintaining a hash-map at watermarking time, “remembering”

modified tuples in each marking pass, allows the algorithm (extended accordingly)

to avoid tuples and/or values that were already considered.

Additionally, when considering the association between two attributes A, B as

an encoding channel for a watermark, if values in B were already altered during a

previous encoding, instead of deploying mark(A, B) (which would result in further

alterations to B), we propose the deployment of mark(B, A). While still encoding

the mark in the association between A and B, by modifying A (assumed un-modified

4For simplicity we consider pairs for now, but believe that an arbitrary number of attributes could
be considered.
5As the probability of the same tuple to be considered again in the second encoding is low, especially
in large data sets, see Section 4.4.4 for a related analysis.
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yet, otherwise it doesn’t matter anyway) we effectively “spread” the watermark

throughout the entire data, increasing its level of resilience.

Moreover, if data constraints allow, we propose watermarking each and every

attribute pair by first building a closure for the set of attribute pairs over the entire

schema that minimizes the number of encoding interferences while maximizing the

number of pairs watermarked.

Note: The discrete nature of categorical attributes complicates the watermarking

process of a pair (A, B) in which a categorical attribute A is used as a primary key

(in the initial algorithm). In the extreme case, A can have just one possible value

which would upset the “fit” tuple selection algorithm. It remains to be investigated if

a pair-closure can be constructed over the schema such that no categorical attributes

are going to be used as primary key place-holders. See Section 4.4.1 for a related

analysis and extension.

4.4 Discussion

4.4.1 Correlation Attacks

The solution above features a particular issue of concern in certain cases of multi-

attribute embeddings where two non-key attributes are used in the encoding, i.e.,

mark(A,B). Because of the correlation between the watermarking alteration (the

newly selected value Ti(B) = bt) and its actual location (determined by the fitness

selection, H(Ti(A), k1) and e), sometimes Mallory can mount a special attack with

the undesirable result of revealing some of the mark bit embedding locations. This

occurs if the fitness criteria decides that a particular value of A yields a tuple fit and

that value of A appears then in multiple (statistically significant) different tuples.

This is possible only if A is not a primary key but rather another categorical attribute

(with repeating duplicate values).

The attack then proceeds by first realizing that, despite the one-wayness of the

deployed hash function H(), in fact, A is the only variable that determines both
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the bit embedding location (tuple “fitness”) and its value. If Mallory is able to

detect this correlation for potential candidates (tuples), it would quickly lead to

exposing some of the ones carrying a watermark bit. But how does he check for the

correlation? Mallory can simply build a set of “hash buckets” for each separate value

of A (yielding the same value of H(Ti(A), k1)) and count (for all matching tuples)

if there is a statistical bias for a certain value (e.g., “true”) of the least significant

bit of t (see Section 4.3.3). If such a bias is discovered, e.g., if a majority of LSB

values are “true” then Mallory suspects (rightfully so) that the respective tuples are

“fit” and a watermark bit of “true” (for example) is embedded in those locations.

Mallory can now obliterate the embedding in these tuples by randomization, leading

to a loss of the corresponding watermark bit.

In other words, if, as a result of the extension proposed in Section 4.3.4, two

attributes A and B are used in a watermarking process, mark(A, B), (and the data

set contains many “fit” tuples with repeated values for attribute A), Mallory can

discover the association between the individual unique values of A and the bit-

embeddings in B. He can then use this discovered association to randomize the

embeddings and effectively remove the corresponding watermark bits. Thus, the

problem lies here in the correlation between the actual bit location and the bit

value, correlation induced by the fact that a single variable (A) determines both of

these and this variable can have repeated values for different tuples, allowing for a

“bucket counting” attack as described above.

One solution to this issue would be to simply restrict the fitness selection criteria

for tuples so as to only include the ones with attribute T (A) values that do not have

a significant number of repeats throughout the data.

A more radical idea would be to simply search the space of potential k1 values

until the fitness criteria results in selecting tuples with different values for A.

These solutions work only if A indeed does contain a significant number of non-

repeating values in the data. In any case, this problem has the potential to introduce

a significant reduction in available encoding bandwidth. In the extreme where A only



100

Issue: How to survive a correlation attack aimed at detecting 
a bias in the case of non-primary key first argument ?

Solution: Larger target 
value sets for fit tuples.

�������

��

�

�
	���

�
����� �� �
�
	���
�
����

problem: values in A (non-key) can repeat

→→→→ Mallory can “count buckets’’ for ����� ������� � !�"
pairs and identify “hot spots’’

#%$'&)(
∈ *,+.- ��$'/0$1� � �32�(4��576�8�91$;:=<>(?(=@A2

∈ *CBED � B 9%�GFIH=H

solution: increase size of possible assigned 
target values for B when encoding.
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contains a few unique values (e.g., true/false as in a binary attribute), it cannot be

used as the first argument in a mark(X, Y ) operation.

Note: An interesting extreme scenario occurs in the case of binary attributes,

i.e., attributes with only two possible values. If for example A can only take values

in the {0, 1} set (e.g., quite likely in many data mining sets), intuitively, it cannot

be used as a first argument in an mark(X, Y ) operation (that is, it cannot play the

pseudo primary key role) This is so due to the fact that the fitness selection criteria

(controlled by X) is going to either (i) fail to discover any fit tuples (i.e., resulting

in no available encoding bandwidth), (ii) possibly partition the entire data set into

two, namely a subset of “fit” tuples (e.g., corresponding to the Ti(A) = 1 values)

and the rest or (iii), deem all tuples fit in which case the entire data set is going to

be altered in a potential watermarking operation. This case is interesting because

it illustrates the impact of nX (the cardinality of the first attribute’s possible values

set) on the mark(X, Y ) operation.

Multiple Embeddings

There exists a refinement that would overcome many of the above. What if the

actual watermark were to consist of a combination of several different embeddings,

each in turn being an encoding using a different k1 value. While each of these “low

impact” encodings would be weaker than the original solution, their combined “sum”

can be made (arguably) arbitrarily strong(er), by increasing their number. At the

same time correlation attacks would be defeated.

If for example we embed two watermarks with different keys k1 and k′
1, the

correlation attack cannot be performed “across” the encodings, as the H(Ti(A), k1)

and H(Ti(A), k′
1) values are not going to be consistent with each other, making

“bucket counting” impossible.

One price to pay is the amount of computation required at each step to decode

all of the potential watermarks. Another issue of (arguably) minor concern could
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be the fact that the same tuple might be considered in multiple encodings, in which

case some of these will suffer a mark loss. This is however of low probability due

to the random nature of the cryptographic hashes used. Other provisions could be

deployed to handle this situation.

4.4.2 On-the-fly Quality Assessment

In the relational framework it is important to preserve structural and semantic

properties of the data. Because by its very nature, watermarking alters its input, we

have to provide a mechanism ensuring that these alterations are not degrading the

data beyond usability. Preserving data quality requires the ability to express and

enforce data constraints. Sometimes it is undesirable or even impossible to directly

map higher level semantic constraints into low level (combined) change tolerances

for individual tuples or attributes 6. The practically infinite set of potential semantic

constraints that can be desired/imposed on a given data set makes it such that versa-

tile, “data goodness” (i.e., semantically) assessment methods are required. Thus, we

propose to extend the marking algorithm with semantic data constraints awareness.

We introduced and successfully analyzed this idea (an instance of consumer driven

encoding) in Chapter 3. Each property of the database that needs to be preserved

is written as a constraint on the allowable change to the dataset. The watermarking

algorithm is then applied with these constraints as input and re-evaluates them

continuously for each alteration. A backtrack log (see Figure 4.8) is kept to allow

undo operations in case certain constraints are violated by the current watermarking

step. Due to space considerations, we are not going to elaborate on this further. In

the following we are going to focus on the encoding method itself.

6It should be noted that not all constraints of the database need to be specified. A practical
approach would be to begin by specifying a upper bound on the percentage of allowable data
alterations. Further semantic or structural constraints that the user would like to preserve can be
added to these basic constraints.
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4.4.3 Vertical Partitioning Revisited

While most vertical partitioning attacks can be handled by a multiple attribute

embedding solution as described in Section 4.3.4, consider an extreme vertical par-

titioning attack scenario in which Mallory only preserves a single (categorical) at-

tribute A (a multi-set).

An intuitive assumption is that nA (the number of possible values in A) is much

smaller than N , thus A (by itself) is naturally containing many duplicate values. Be-

cause there is probably very little value associated with knowing the set of possible

values of {a1, ..., anA
}, the main market-able value of A (in Mallory’s eyes) is (ar-

guably) to be found in one of the only remaining characteristic properties, namely

the value occurrence frequency distribution [fA(ai)]i∈(1,nA). If we could devise an

alternative watermark encoding method for this set we would be able to associate

rights also to this aspect of the data, thus surviving this extreme partitioning attack.

Note: If the data value occurrences are uniformly distributed (often unlikely,

imagine airport or product codes) distinguishing among these values will not work

and (arguably) there is nothing one can do to watermark that result.

In Chapter 3 we introduced a watermarking method for numeric sets that is able

to minimize the absolute data alteration in terms of distance from the original data

set. We propose to apply this method here to embed a mark in the occurrence

frequency distribution domain. One concern we should consider is the fact that in

the categorical domain we are usually interested in minimizing the number of data

items altered whereas in the numeric domain we aim to minimize the absolute data

change. It is fortunate that, because [fA(ai)]i∈(1,nA) are values modeling occurrence

frequency, a solution minimizing absolute data change in this (frequency) domain

naturally minimizes the number of items changed in the categorical value domain.

Other concerns include issues such as multi-mark interference (with the other encod-

ings), which can be solved by an approach similar to the one in Section 4.3.4 using
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embedding markers and/or deploying a mark interference graph/tree (see Figure 4.5)

and watermarking in a bottom-up traversal order of it.

4.4.4 False Positives and Vulnerability to Attacks

In order to fight false-positive claims in court we ask: What is the probability of a

given watermark of length |wm| to be detected in a random data set of size N? The

natural assumption is that |wm| < N
e

(enough bandwidth).

It can be easily proven that this probability is ( 1
2
)|wm|. In case multiple em-

beddings are used (e.g., majority voting) and all available bits are utilized, this

probability decreases even more to ( 1
2
)

N
e . For example, in the case of a data set with

N = 6000 tuples and with e = 60, this probability is approximately 7.8× 10−31.

In the absence of additional information, Mallory, faced with the issue of destroy-

ing the watermark while preserving the value of the data, has only one alternative

available, namely a random attack (here we discuss data alteration attacks). We ask:

what is the probability of success of such an attack? In other words, if an attacker

randomly alters a total number of a data tuples and succeeds in each case to flip the

embedded watermark bit with a success rate p, what is the probability of success of

altering at least r, r < a watermark bits in the result, P (r, a)? This metric illustrates

the relationship between attack vulnerability and embedding bandwidth. It can be

shown that

P (r, a) =
a

∑

i=r

(a
i )× pa × (1− p)a−i

Remember that only every e-th tuple (on average) is watermarked, thus Mallory

effectively attacks only an average of a
e

tuples actually watermarked. If r > a
e

then

P (r, a) = 0. In the case of r < a
e

we have the corrected version

P (r, a) =

(a
e
)

∑

i=r

(
a
e

i )× pi × (1− p)(a
e
)−i (4.1)
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Consider r = 15, p = 70% (it is quite likely that when Mallory alters a watermarked

tuple, it will destroy the embedded bit), a = 1200 (20% of the tuples are altered by

the attacker7, |wm| = 10 and e = 60 (|wm data| = 100).

Because we have an effectively binomial distribution experiment with Xi = 1,

with probability p and Xi = 0, with probability 1 − p. E[Xi] = p, var(Xi) =

E[X2
i ]− (E[Xi])

2 = ... = p× (1− p), by using the central limit theorem [38], we can

derive that f(
∑

Xi), where

f(
∑

Xi) =

∑

Xi − a
e
× p

√

a
e
× p× (1− p)

(4.2)

effectively behaves like a normal distribution N(0, 1) (when a
e
×p ≥ 5 and a

e
×(1−p) ≥

5). In other words, the probability that (
∑

Xi) > r (attack altering at least r bits)

can be rewritten as the probability of f(Xi) > f(r). Because of the normal behavior

of f(x) (we know f(r)) we can estimate this probability by normal distribution table

lookup. Thus, we get P (15, 1200) ≈ 31.6%.

If we assume that the error correcting code tolerates an average of tecc = 5%

alterations to the underlying data and that the alteration propagation is uniform

and stable 8 then the final watermark is going to incur only an average fraction of

(
r
N
e

− tecc)×
|wm|

|wm data|

alteration. In our case this is only 1.0%, corresponding to an average of 1.0 bit in

the watermark. Thus in order to modify one bit in the watermark Mallory has to

alter at least 20% of the data and even then has only a success rate of 31.6% ! This

analysis was done in a highly attack-favorable scenario in which error correction can

only handle 5% alterations in wm data.

Because data alteration is expensive, naturally we aim to minimize the number of

altered tuples in the watermarking process. If we define attack vulnerability as the

7This is likely a highly value-damaging operation overall. Such an attack is unlikely because Mallory
cannot afford destroying the data beyond use. We present it for illustration purposes.
8These are intuitive terms we use to denote the fact that if one bit in wm data is altered above the
tecc bound then a stable average of |wm|

|wm data| are altered in the resulting error corrected watermark

wm = ECC.decode(wm data, |wm|).
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probability P (r, a)1 to succeed in altering one bit in the final watermark (wm), and

the number of altered tuples is defined by the ratio N
e
, we ask: what is the relationship

between the required number of fit tuple encodings (i.e., available bandwidth) and

attack vulnerability? In other words, what is the minimum number of alterations

we have to allow (and perform) in the watermarking phase that would guarantee a

certain upper bound on the overall attack vulnerability. While this relationship is

somewhat defined by equation (4.1), we are interested here in an actual estimate for

a likely scenario.

If we assume that Mallory cannot afford to modify more than 10% of the data

items (a = 600) and we set a maximum tolerable threshold τ = 10% for P (r, a)1

(P (r, a)1 < τ), let us compute the minimum required e to guarantee these bounds

(the other values are as above). By using equation (4.2) and doing a normal distri-

bution table lookup we derive that (for τ = 10%) we have to satisfy

r − a
e
× p

√

a
e
× p× (1− p)

= 1.28

which results in e ≈ 23. In other words, we have to alter only ≈ 4.3% of the data to

guarantee these bounds !

4.4.5 Bijective Attribute Re-mapping

Consider the scenario of an attack in which the categorical attribute A is re-

mapped through a bijective function to a new data domain. In other words, the

{a1, ..., anA
} values are going to be mapped into a different set {a′

1, ..., a
′
nA
}. The

assumption here is that from Mallory’s perspective, the re-mapped data still features

enough value that can be banked upon 9.

The problem of remapping becomes clear in the mark detection phase when,

after tuple fitness selection, the bit decoding mechanism will fail, being unable to

determine t such that Tj(A) = at. It will instead determine a t value that maps to

9Even more, Mallory could sell a secret secure black-box “reverse mapper” together with the re-
mapped data to third parties, still producing revenue.
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the {a′
1, ..., a

′
nA
} value set. Thus our main challenge is to discover the mapping (or

a major part of it) and apply its inverse in the detection phase.

Unless the items in the initial set {a1, ..., anA
} feature a peculiar distinguishing

property, intuitively this task is impossible for the general case, as there are a large

number of possible mappings. Nevertheless, over large data sets we argue that a

such distinguishing property might exist, namely the value occurrence frequency for

the items in {a1, ..., anA
}. We propose to sample this frequency in the suspected

(remapped) dataset and compare the resulting estimates (E[fA(a′
j)]j∈(1,nA)) with the

known occurrence frequencies ((fA(aj))j∈(1,nA)). Next, we sort both sets and asso-

ciate items by comparing their values. For example if the closest value to E[fA(a′
i)]

(in the set E[fA(a′
j)]j∈(1,nA)) is fA(aj) (in the set (fA(aj))j∈(1,nA)), then we add i→ j

to the inverse mapping to be used at watermark decoding time.

4.4.6 Data Addition

While it does a good job in watermark embedding, data alteration is an expensive

operation because it effectively destroys valuable data. There are also other data

transformations that we can make use of, each with a different degree of associated

data distortion and benefits. In particular, data addition seems to be a promising

candidate. Intuitively it features a much lower data distortion rate (no actual alter-

ations) and thus presents potentially higher benefits. On the other hand there likely

exists an upper bound on the number of tuples that can be added to the data. Let

padd be the upper bound on the allowed additional percentage of tuples to be added.

We propose that in addition to the initial data-altering step, we artificially “inject”

watermarked tuples that conform to the “fitness” criteria (while conforming to the

overall data distribution, in order to preserve stealthiness).

But isn’t data addition of “fit” tuples inhibited by the one-way nature of the used

cryptographic hash? Not exactly. Because e effectively “reduces” the fitness criteria

testing space to a cardinality of e, we can afford to massively produce random tuple



111

�
∈ �������	� �
����
��

Issue: Bijective value re-mappings

Solution: Discover inverse mapping 
by using frequency histograms.

�

��

����
���� ���� ����

�

����

� � ��
� � �� � � �� � � ��

���
∈ ��� � � � � �
� � � 
��

! ��"$#%�'&)(+*,� � &

-/.1032547698 :
≅≅≅≅
-/.;032<4=63>)8 :

→→→→ ? 0A@B03CD@FEG65H%IKJL4=6 8 :

Figure 4.10. Relational Data with Categorical Types: Handling at-
tribute remapping.



112

values (within the appropriate attribute data domain) and test for “fitness”. On

average (depending on the randomness of the tuple producing mechanism), one in

every e tuples should conform (as the values are evaluated modulo e).

If a percentage of padd artificially produced tuples are to be added to the data,

the watermark is effectively enforced with an additional padd ×N bits. See Section

4.4.4 for an analysis on the impact of watermark bits on the encoding resilience.

4.4.7 Minimizing Alteration Distance

An interesting problem to consider is the case when, for a given “fit” tuple,

certain alterations would be preferred to others. For example, if the given attribute

represents airport names, intuitively, it is likely that an alteration changing ”Chicago,

O’Hare” into ”Las Vegas” produces more damage overall than one that would result

in ”Chicago, Metro”. In other words, what if there exists a certain distance metric

model for the values within a categorical attribute and the encoding is to minimize

a (e.g.,) sum (for each change in the data) of these associated alteration distances.

This scenario can be easily dealt with through the design of a data quality plugin

that continuously evaluates the amount of damage already performed and allows

only the alterations that conform. However such a solution suffers from several

issues. For one, upon encountering a “fit” tuple that doesn’t conform to this quality

metric, the only alternative available to the data quality plugin is to simply veto the

proposed modification. Depending on the restrictiveness of the desired alteration

distance upper bound, this will possibly yield only few tuples that can be used in the

marking process, thus resulting in a reduced bandwidth. Additionally, a condition

like the one above (sum of all alteration distances to not exceed maximum) is not

easy to implement so as to result in a resilient embedding. A trivial implementation

would simply allow all alterations until the sum exceeds a certain upper bound. But

in this case, if the data is read sequentially, this will result in a data set watermarked

only in a portion at its beginning, after which most of the alterations will be denied.
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A smarter version would be to “spread” the allowed modifications throughout the

data, which in turn would require the data quality plugin to allow encoding only to

some of the good “fit” tuples, to “save” some of the allowed alteration distance for

future ones. This would hopefully result in the coverage of the entire data.

But what if we could modify the encoding method so as to naturally accommodate

such a case? We propose to modify the tuple alteration criteria to result not in one

value for t in the selection of Ti(A) = at (see Section 4.3.3) but rather in an entire

set of γ < nA potential candidate values. Let us define

t′ = set bit(msb(H(Ti(K), k1), b(nA − γ)), 0, wm data[msb(H(Ti(K), k2), b(
N

e
))])

and

St′ = {at|msb(t, nA − γ) = msb(t′, nA − γ)}

Then, at each encoding step for a fit tuple i, its new value Ti(A) is selected from St′

so as to minimize the alteration distance.

In other words, we “divide” the set of potential discrete values for A into nA

γ

subsets of γ elements (sharing the first b(nA−γ) most significant bits). Each t′ value

then selects a certain subset St′ , and the final corresponding Ti(A) is constructed by

selecting the “closest” (in terms of the above discussed alteration distance metric)

data value in St′ .

The number and size of the subsets are controlled through a choice of an appro-

priate γ. To the extreme, if γ = nA− 1, only two such subsets exist (i.e., one subset

with values having the most significant bit of their index “true” and the other subset

with the rest).

4.4.8 Blindness, Incremental Updates and Streams

Our watermarking method is blind, in that it doesn’t require the original data

in the detection process. This is important, because it is un-realistic to assume the

original data available after a longer time elapses, especially in the case of massive

data sets.
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The method supports incremental updates naturally. As updates occur to the

data, the resulting tuples can be evaluated on the fly for “fitness” and watermarked

accordingly. Therefore, the encoding also (gracefully) handles data streaming in

which tuples are available only in a one-pass streaming model with limited stor-

age space and processing power. This makes it ideal for a transparent deployment

scenario in which a black box “sits” at the data “exit” point and continuously wa-

termarks outgoing information.

4.4.9 Multi-Layer Self-Reinforcing Marks

The above solution (and any symmetric/single-key watermarking method) is vul-

nerable to a scenario in which Mallory (who might have participated in a public court

hearing) finds out the key that was used to watermark a given Work. He can then

use the key to remove the watermark and have illicit access to the original version.

Efforts in asymmetric multi-media watermarking [39] [40] [41] [42] [43] [44] [45]

deploy different keys for detection (public) and embedding (secret). The design of an

asymmetric version of our solution is to be subject to future research. Now however,

we propose a draft idea that seems to handle this scenario reasonably well.

The idea is to simply embed multiple weak watermarks with different secret keys

and reveal in court only a certain subset of these, enough to satisfy the convince-

ability requirements. Having these keys would only enable the removal of the cor-

responding watermarks and nothing more. The data will still feature the remaining

ones, hopefully enough for the next court hearing instance.

Yet another idea would be to embed multiple self-reinforcing pairs of watermarks

(w1, w2)i with different keys (k1, k2)i such that altering w2 will result in enforcing

w1. The feasibility, details and benefits of such a method are to be subject to further

investigation.
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4.5 Experiments

We implemented a Java proof-of-concept of the watermarking algorithm and de-

ployed it on categorical attributes in the Wal-Mart Sales Database. The Wal-Mart

Sales Database contains most of the information regarding item sales in Wal-Mart

stores nationwide. In the following we present some of our experiments in water-

marking categorical attributes within this database. Our experimental setup in-

cluded access to the 4 TBytes Wal-mart data, (formerly) hosted on a NCR Teradata

machine, one 1.6GHz CPU Linux box with Sun JDK 1.4 and 384MB RAM. The

amount of data available is enormous. For example, the ItemScan relation contains

over 840 million tuples. For testing purposes, we deployed our algorithm on a ran-

domly selected subset of size equal to a small percentage of the original data size

(e.g., just a maximum of 141000 tuples for relation UnivClassTables.ItemScan). The

relational schema included the attributes:

Visit_Nbr INTEGER PRIMARY KEY

Item_Nbr INTEGER NOT NULL

To illustrate and test our watermarking algorithm we chose Item Nbr, a categori-

cal attribute, uniquely identifying a finite set of products. The watermark considered

was 10 bits long, all the presented data is the result of an averaging process with 15

passes (each seeded with a different key), aimed at smoothing out data-dependent

biases and singularities.

In the first experiment we analyzed the behavior of the embedded watermark

in the presence of massive data alterations. As the attack size grows (random al-

terations to the data), the watermark distortion increases. The error correction

mechanism (majority voting in this case) does a good job in error recovery. This

is particularly so in the case of random alterations to the underlying data, the only

available data altering attack option as discussed in Section 4.4.4. Figure 4.12 (a),

depicts this phenomena for two values of e.
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Figure 4.12. Relational Data with Categorical Types: (a) The wa-
termark degrades gracefully with increasing attack size (e = 65). (b)
More available bandwidth (decreasing e) results in a higher attack
resilience.

The next experiment aims at exploring the relationship between the amount of

data modifications required in the watermarking phase and a minimum guaranteed

watermark resilience. It can be seen in Figure 4.12 (b) that as e increases (decreasing

number of encoding modifications) the vulnerability to random alteration attacks

increases accordingly. This illustrates the trade-off between the requirement to be

resilient and the preservation of data quality (e.g., fewer alterations).

Figure 4.13 (a) represents the composite surface for both experiments.

A very interesting phenomena can be seen here. The surface presents some

“crevasse” like shapes (also to be found in Figure 4.12 (b)) at the boundaries. We

believe these to be the result of a less than perfect implementation of the MD5 hash

used which results in a bias in the fitness selection process.

An experiment analyzing resilience to data loss is depicted in Figure 4.13 (b).

We observe here the compensating effect of error correction. Compared to data

alteration attacks, the watermark survives even better with respect to the attack

size (in this case loss of data).

In Figure 4.14 various aspects of the implementation execution times are illus-

trated. In (a) it becomes clear that there seems to be a minimal dependency of e of
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Figure 4.14. Relational Data with Categorical Types: (a) Embed-
ding time dependency as a function of e and N . (b) Detection time
requirements are similar to embedding and linear in the size of the
data.

the embedding (detection graph is virtually identical, thus omitted) times. Execu-

tion time seems to be mainly linear in the data size, as also expected. In (b) it can

be seen that detection yields almost identical times as the embedding process. The

linear dependency is clear. An average of 25K tuples can be processed per second by

our proof of concept implementation. We expect a speed-up of orders of magnitude

in an optimized industry-level version.
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4.6 Conclusions

In this chapter we defined the problem of watermarking categorical data. We

proposed a solution and analyzed it both in theory and in practice. We outlined a

set of extensions (e.g., an alternative for occurrence frequency encoding to survive

extreme vertical partitioning attacks) and discussed main associated attacks and

challenges. We implemented a proof-of-concept for our algorithm and deployed it in

experiments on real Wal-Mart sales data. Our method proves (experimentally and

by analysis) to be extremely resilient to both alteration and data loss attacks, for

example tolerating up to 80% data loss with a watermark alteration of only 25%.

Published research results of this work include [10] and [11].

Various issues remain to be explored. Additive watermark attacks need to be

analyzed and handled. Also, while the concept of on-the-fly quality assessment (see

Section 4.4.2) has a good potential to function well, as confirmed also by experiments

in Chapter 3, another interesting avenue for further research would be to augment the

encoding method with direct awareness of semantic consistency (e.g., classification

and association rules). This would likely result in an increase in available encoding

bandwidth, thus in a higher encoding resilience. One idea would be to define a

generic language (possibly subset of SQL) able to naturally express such constraints

and their propagation at embedding time.
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5 DISCRETE STREAMING DATA. SENSOR STREAMS.

Today’s world of increasingly dynamic environments naturally results in more and

more data being available as fast streams. Applications such as stock market anal-

ysis, environmental sensing, web clicks and intrusion detection are just a few of the

examples where valuable data is streamed. Often, streaming information is offered

on the basis of a non-exclusive, single-use customer license. One major concern, es-

pecially given the digital nature of the valuable stream, is the ability to easily record

and potentially “re-play” parts of it in the future. If there is value associated with

such future re-plays, it could constitute enough incentive for a malicious customer

(Mallory) to record and duplicate data segments, subsequently re-selling them for

profit. Being able to protect against such infringements becomes a necessity.

In this chapter we introduce the issue of rights protection for discrete streaming

data through watermarking. This is a novel problem with many associated challenges

including: operating in a finite window, single-pass, (possibly) high-speed stream-

ing model, surviving natural domain specific transforms and attacks (e.g.,extreme

sparse sampling and summarizations), while at the same time keeping data alter-

ations within allowable bounds. We propose a solution and analyze its resilience to

various types of attacks as well as some of the important expected domain-specific

transforms, such as sampling and summarization. We implement a proof of concept

software (wms.*) and perform experiments on real sensor data from the NASA In-

frared Telescope Facility at the University of Hawaii, to assess encoding resilience

levels in practice. Our solution proves to be well suited for this new domain. For

example, we can recover an over 97% confidence watermark from a highly down-

sampled (e.g., less than 8%) stream or survive stream summarization (e.g., 20%)

and random alteration attacks with very high confidence levels, often above 99%.
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5.1 Introduction

In this chapter we introduce and study the problem of watermarking discrete

(sensor) streams data, which to the best of our knowledge, has not been addressed.

Streaming data sources represent an important class of emerging applications [46]

[47]. These applications produce a virtually endless stream of data that is too large

to be stored directly. Examples include output from environmental sensors such as

temperature, pressure, brightness readings, stock prices etc. Recent efforts in the

broader area of streaming data deal with the database challenges of its management

[48] [49] [50] [51].

Our work on discrete/itemized data types (e.g. Chapters 3, 4) and related efforts

[35], all rely upon the availability of the entire dataset during the watermarking

process. While this is generally a reasonable assumption, it does not hold true for the

case of streaming data [46]; since the streamed data is typically available as soon as it

is generated, it is desirable that the watermarking process be applied immediately on

subsets of the data. Additionally, the attack and transformation models in existing

research does not apply here. For example a process of summarization would defeat

any of the above schemes. Yet another difference from previous research is the lack

of a “primary key” reference data set, an essential, required, part in both Chapter 3

and [35]. Due to these differences, earlier work on watermarking relational data sets

is not applicable to streams.

But why is watermarking streaming data important? Couldn’t we simply water-

mark the data once it is stored? This surely would work and enable rights protection

for the stored result. But it would not deter a malicious customer (Mallory), with

direct stream access, to duplicate segments of the stream and re-sell them or simply

re-stream the data for profit. The main rights protection scenario here (see Figure

5.1) is to prevent exactly such leaks from a licensed customer.

Our contributions include (i) the proposal and definition of the problem of water-

marking sensor streams, (ii) the discovery and analysis of new watermark embedding
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Figure 5.1. Discrete Streaming Data: Sensor Streams Watermarking Scenario.

channels for such data, (iii) the design of novel associated encoding algorithms, (iv)

a proof of concept implementation of the algorithms and (v) their experimental eval-

uation. The algorithms introduced here prove to be resilient to important domain-

specific classes of attacks, including stream re-sampling, summarization (replacing a

stream portion by its average value) and random changes. For example, sampling the

data stream down to less than 8% still yields a court-time confidence of watermark

embedding of over 97%. Summarization (e.g., 20%) and random data alterations are

also survived very well, often with a false-positive detection probability of under 1%.

The chapter is structured as follows. Section 5.2 outlines the major challenges in

this new domain. It proposes an appropriate data and transform model, discusses

associated attacks and overviews related work. In Section 5.3 an initial solution

is provided. Further resilience-enhancing improvements and attack handling capa-

bilities are gradually introduced in Section 5.4. Section 5.5 analyzes the ability to

convince in court to survive attacks and natural domain transformations. Section
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5.6 presents wms.*, a proof-of-concept java implementation of our solution; our

experimental setup and results are introduced. Section 5.7 concludes.

5.2 Challenges

5.2.1 The Adversary

As outlined above, the nature of most “fast” time-series data applications im-

poses a set of strict requirements on any on-the-fly data processing method, such as

watermarking. For one, it has to be able to keep up with the incoming data rate

and, the fact that only a finite window of memory (e.g., of size ̟, see below) is avail-

able for processing makes certain history-dependent computations difficult or simply

impossible. At the same time, metrics of quality can only be handled within this

space; any preservation constraints can be formulated only in terms of the current

available data window. Including any history information will come at the expense

of being unable to store as much new incoming data. In summary, the nature of this

new domain is such that only a limited amount of time is available to be spent in

processing each incomming data item and only a limited number of such items can

be considered at a time (limited window).

Moreover, the effectiveness of any rights protection method is directly related to

its ability to deal with normal domain specific transformations as well as malicious

attacks. There are several transforms relevant in a streaming scenario, including the

following: (A1) summarization, (A2) sampling, (A3) segmentation (we would like to

be able to recover a watermark from a finite segment of data drawn from the stream),

(A4) linear changes 1 (there might be value in actual data trends, that Mallory could

still exploit, by scaling the initial values), (A5) addition of stream values and (A6)

random alterations.

While we discuss most of these and other attacks in the next sections, let us

note here that a scaling attack (A4) can be handled by an initial normalization step,

1Taken care of by the initial normalization step.
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e.g., yielding values in the (−0.5, 0.5) interval. If the data distribution is assumed

to be known, normalization can also be easily performed at detection time. If data

distribution is not known, then we propose an initial “discovery” run in which data is

simply read and a reference data distribution is constructed and updated on the fly.

This will yield a certain data-dependent inaccuracy in the initial phases of detection

but will likely quickly converge as more data is read. If detection is performed

offline on a static segment of data, normalization is eased by the ability to read

the data multiple times. In the following, unless specified otherwise, we consider

this normalization step to have been performed, yielding a normalized version of

the stream, with values in the interval (−0.5, 0.5). To survive sampling and other

minor stream transformations, several improvements to the normalization process

are proposed in Section 5.3.2. with respect to (A5), Mallory is bound to add only

a limited amount of data (in order to preserve the value in the original stream) and

these new values are to be drawn from a similar data distribution, lest they become

easy to identify in the detection process as not conforming to the known original

distribution. Also, it can be seen that (A6) is naturally modeled by a combination

of (A2) and (A5).

Apparently, data re-sorting might be also of concern as an attack. At closer

inspection however, if value is to be found in the stream, it is assumed to lie in two

aspects of it: the data values and their relative ordering. In other words, in most

applications, a recorded stream (even sampled) is (arguably) only valuable if its re-

play is preserving the relative ordering of the values (with exception of some extreme

cases). Re-ordering the sequence of values in the stream is going to significantly alter

its core value. For example consider the case of stock market data. If the evolution

of a given stock is modeled by a stream of values, a recording of it is only valuable

if the sequence ordering is preserved. Also, significant on-the-fly data re-sorting, is

simply not possible given the finite processing window and speed assumptions. In

this chapter we consider data re-sorting to significantly alter the core value of the
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data set, not a successful attack choice Mallory would consider. Our method does

however handle minor data re-sorting gracefully.

5.2.2 Model

For the purpose of simplicity let us define a data stream as an (almost) infinite

timed sequence of (x[t]) values “produced” by a set of data sources of a particular

type (e.g., temperature sensors, stock market data). x[t] is a notation for the value

yielded by our source(s) at time t. Unless specified otherwise, lets denote a stream

as (x[], ς) where ς is the number of incoming data values per time unit (data rate) 2.

Note: While a time-stamp t can be assigned naturally to each and every data

value when produced by a data source, it often becomes irrelevant after such domain-

specific transformations as sampling and summarization which destroy the exact

association between the value x[t] and the time it was initially generated, t. Thus,

the notation x[t] is merely used to distinguish separate values in the stream and is

not intended for suggesting the preservation of the time-stamp-value in the resulting

stream (which is ultimately just a sequence of values).

Any stream processing is necessarily both time and space bound. The time

bounds derive from the fact that it has to keep up with incoming data. We are going

to model the space bound by the concept of a window of size ̟. At each given

point in time, no more than ̟ of the stream (x[t]) values (or equivalent amounts

of arbitrary data) can be stored locally, at the processing point. Unless specified

otherwise, as more incoming data becomes available, the default behavior of the

window model is to “push” older items out (i.e., to be transmitted further, out of

the processing facility) and “shift” the entire window (e.g., to the right) to free up

space for new entries.

For simplicity, without sacrificing generality, for the remainder of the chapter we

are going to assume the stream values being normalized in the interval (−0.5, +0.5).

2The proposed solution does not rely on any characteristic of the actual stream data rate. For
space and simplicity purposes in this chapter we are discussing streams with fixed data rates.
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Figure 5.2. Discrete Streaming Data: Stream Processing is necessar-
ily bound in both time (stream rate) and space (window).

This assumption does not need to hold in general but instead just simplifies the task

of understanding the algorithms.

For the purpose of the current framework, we define the uniform random sampling

of degree χ of a stream (x[], ς) as another stream (x′[], ς ′) with

ς ′ =
ς

χ

such that for each sample data item x′[t], there exists a contiguous subset of (x[]),

(x[t1], x[t2]) such that

x′[t] ∈ (x[t1], x[t2])

and

{x′[t− 1], x′[t + 1]} * (x[t1], x[t2])

and t is uniformly distributed in (t1, t2). In other words, it is constructed by randomly

choosing one value out of every χ values in the original. A subtle variation of uniform

random sampling is the case when x′[t] is not randomly chosen but rather always

the first element in it’s corresponding χ sized subset (e.g., t = t1). We call this fixed

random sampling of degree χ.

We define the summarization of degree ν of a stream (x[], ς) as another stream

(x′[], ς ′) with

ς ′ =
ς

ν
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Figure 5.3. Discrete Streaming Data: (a) A sample stream. If all the
extremes are considered to be major, then the resulting label bits for
K are shown (for ̺ = 2) (b) δ-Radius characteristic subset of extreme
η.

such that for each two adjacent sample data items x′
1[t], x

′
2[t + ν], there exist two

contiguous, adjacent, non-overlapping ν-sized subsets of (x[]), (x[t− ν +1], x[t− ν +

2], ..., x[t]), (x[t + 1], x[t + 2], ..., x[t + ν]) such that

x′
1[t] =

∑

i∈(1,ν) x[t− ν + i]

ν

and

x′
2[t + ν] =

∑

i∈(1,ν) x[t + i]

ν

. In other words, for a continuous chunk of ν elements from the original stream

summarization outputs its average.

Note: Various other similar aggregates could be envisioned here (e.g., min/max,

most likely value). We believe that in the current scope, considering averaging

summarization is both illustrative and qualitatively identical and does not complicate

the analysis too much

We define an extreme η in a stream simply as either a local minimum or local

maximum value. We define the extreme’s characteristic subset of radius δ, noted

Ξ(η, δ) (see Figure 5.3 (b)), as the subset of stream items forming complete “chunks”,

immediately adjacent to η and conforming to the following criteria: item i, with value
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vi ∈ Ξ(η, δ) iff |η − vi| < δ and all the items “between” i and the extreme η, also

belong to Ξ(η, δ).

A major extreme of degree χ and radius δ is defined as an extreme η such that

at least one item in Ξ(η, δ) can be found in any uniform random sampling of degree

χ of (x[]) (i.e., some items in Ξ(η, δ) “survive” sampling of χ degree). For example,

in Figure 5.3 (a), intuitively, it seems likely that extremes such as F,I and J have

a smaller chance of surviving sampling than C,E or G. This is so because of the

temporal shape of the stream’s evolution. C,E,G seem to yield characteristic subsets

much “fatter” than F,I,J. Intuitively, δ needs to be chosen such that the characteristic

subsets are of an average size greater than χ (to handle a sampling of degree χ).

To model the “fluctuating” nature of a stream, let ε(χ, δ) be the average number

of stream data items encountered/read per major extreme (i.e., before encountering

a major extreme) of degree χ and radius δ. 1
ε(χ,δ)

defines the average “frequency of

major extremes” in terms of the number of observed data items.

5.2.3 Related Work

Could existing results in non-media data sets watermarking such as relational

data, discussed in Chapters 3 and 4 or related work [35] (discussed in Section 3.7),

be adapted to the new domain? These solutions requires access to the entire data set

in an almost random access model, which is certainly not possible here at embedding

time. Also, these efforts seem to make extensive use of the existence of a primary key

(or an additional attribute, e.g., in Chapter 4), thus rendering a direct adaptation

impossible. Moreover, the expected attacks and transformations are different. For

example a process of summarization would defeat any of the above schemes. Never-

theless it might be worth noting that, if a primary key is assumed to exist, e.g., if

there is a guarantee that the time-stamp information for each stream value is going

to be preserved in the result, then both the bit alteration method proposed in [35]

(for numeric types; see Section 3.7) and the solution in Chapter 4 (for discrete data)
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could be adapted to work on a single attribute, namely the stream value. The result

would likely be resilient to (time-stamp preserving) sampling, but fail with respect

to any other attack or transformation.

But what about multimedia watermarking? Given the “streaming” nature of

our data, would it not be possible to simply adapt an existing audio (or media)

watermarking algorithm [2] [19] [52] [53] [54] since audio data is also an example of

a data stream? In other words, why is our problem different? While there seem to

be similarities between watermarking audio and sensor data for example, at a closer

inspection these similarities prove to be merely superficial. A multitude of differences

are to be found between the two frameworks mainly deriving from different data

models, associated semantic scopes and the itemized nature of sensor stream data.

In theory, a sensor stream could be viewed as an audio signal for example and

processed as such. However, for all practical purposes such an approach would not

suit reality and/or often yield undesired results. For example, while in sensor data

streams, summarization and sampling are routinely expected natural operations,

audio streams are not to be summarized, and sampling in the audio domain entails

an entirely different semantic. Summarization for example would not be survived

by any of the existing results. Moreover, data quality to be preserved in audio

streaming is usually related to the human auditory system and its limitations. Any

watermark-related alteration can be induced as long as the stream still “sounds”

good. In the case of sensor streams (e.g., temperature) on the other hand, many

scenarios involve widely different quality metrics, that often need to also consider

overall stream characteristics 3.

In summary, while experiences in the multi-media domain are valuable, due to

the nature of this new application domain, a solution for watermarking discrete

sensor streams needs to naturally handle attacks and transformations such as the

ones outlined in Section 5.2.1.

3e.g., the total alteration introduced per data item should not exceed a certain threshold.
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5.3 An Initial Solution

This Section outlines the main solution and then gradually improves it to a more

robust and resilient version, by identifying and fixing potential flaws.

5.3.1 Overview

The first issue to be considered when watermarking in such a framework are the

data assumptions that the detection process is expected to handle. More specific,

are we concerned with (i) an on-the-fly streaming detection process or (ii) the ability

to detect a watermark offline, in a static “chunk” of data (with associated multiple-

pass, random access), likely a subset of the original stream? These two different

scenarios apparently feature distinct challenges. Intuitively a watermarking solution

for (ii) could potentially yield an increased detection accuracy (with respect to the

same amount of data), due to the ability to repeatedly iterate on the entire data

set, without restrictive time bounds. Because any on-the-fly solution can be directly

applied to (ii), for the time being let us consider a solution for (i). In Section 5.4.8

we analyze the offline case.

At an overview level, watermark embedding proceeds as follows: (a) first a set of

“major” extremes (actual stream items) are identified in the data stream, extremes

that feature the property that they (or a majority thereof) can be recovered after

a suite of considered alterations (possibly attacks) such as (random) sampling and

summarization. Next, (b) a certain criterion is used to select some of these extremes

as recipients for parts of the watermark. Finally (c), the selected ones are used

to define subsets of items considered for 1-bit watermark embedding of bits of the

global watermark. The fact that these extremes can be recovered ensures a consistent

overlap (or even complete identity) between the recovered subsets and the original

ones (in the un-altered data). In the watermark detection process (d) all the extremes

in the stream are identified and the selection criteria in step (b) above is used once

again to identify potential watermark recipients. For each selected extreme, (e) its
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corresponding 1-bit watermark is extracted and ultimately the global watermark is

gradually re-constructed, by possibly also using error correction.

Thus, one of the main insights behind our solution is the use of extreme values

in the stream’s evolution as watermark bit-carriers. The intuition here lies in the

fact that much of the stream value lies in exactly its fluctuating behavior and the

associated extremes, likely to survive value-preserving, domain-specific transforms.

5.3.2 Embedding

Using the notation in Section 5.2.2, let α, β ∈ Z such that α + β ≤ b(x[]), where

b(x[]) is the bit-size of the values in the considered stream (x[]). Let χ be a secret

integer and δ ∈ (0, 1) chosen such that

δ < 2(b(x[])−α)

(i.e., all elements within a characteristic subset Ξ(η, δ) have the same most significant

α bits). α, β, δ, χ are secret. We use the term “advance the window” to denote

reading in more new data items while discarding old ones.

In the initial step of our embedding algorithm we first identify the first major

extreme of degree χ and radius δ in the current window. The assumption here is

that there exists a major extreme in the current window. If this is not the case, we

can simply advance the window until we find one. The “majority” of an extreme

can be easily evaluated by comparing the size of its characteristic subset Ξ(η, δ)

with the sampling degree χ. The characteristic subset containing at least χ elements

guarantees that in a random sampling of degree χ, at least one of those elements

is going to survive. If no major extremes can be found for given δ and χ values,

one could consider instead extremes with characteristic subsets smaller than χ that

guarantee an acceptable chance (e.g., 70%) of survival in case of sampling (i.e.,

subset size
χ

> 70%?).

Note: δ and the desired values for χ can be adjusted such that eventually (in the

extreme) all characteristic subsets feature enough elements to survive a sampling of
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wm embed(δ,α,β,wm,k1,φ)

while (true) do

η ← first major extreme in win[]

compute Ξ(η, δ)

i← H(msb(η, α), k1)modφ

if i ≤ b(wm) then

bit← H(msb(η, α), k1)modβ

foreach v ∈ Ξ(η, δ) do

v[bit− 1]← false

v[bit]← wm[i]

v[bit + 1]← false

advance win[] past η

Figure 5.4. Discrete Streaming Data: Initial Embedding Algorithm

degree χ. We should not forget though that we also aim to minimize the amount

of change introduced. Thus an ideal choice for δ would yield just enough major

extremes with characteristic subsets large enough to survive the required level of

sampling but no more. This is a fine data dependent trade-off that needs to be

considered in practice.

Once a major extreme (η) is identified in the current window, in the second

step, a selection criterion is used to determine whether η is going to be used in the

embedding process. If

H(msb(η, α), k1)modφ = i

and

i ≤ b(wm)
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then η is considered for embedding bit i of the watermark, wm[i]. φ ∈ (b(wm), b(wm)+

k2) (k2 > 0) is a secret unsigned integer fixed at embedding time, ensuring that only

a limited number (a ratio of b(wm)
φ

) of these major extremes are going to be selected

for embedding. We used a similar “fitness” selection criteria in Chapter 4. Its power

derives strength from both the one-wayness and randomness properties of the de-

ployed one-way cryptographic hash, forcing Mallory into a “guessing” position with

respect to watermark encoding location. The reason behind the use of the most

significant bits of η in the above formula, is resilience to minor alterations and errors

due to sampling. As discussed above, the assumption is that

msb(x, α) = msb(η, α), ∀x ∈ Ξ(η, δ)

If η is the result of the previous selection step, in the third step we embed bit

wm[i] into Ξ(η). This is done by first, selecting a certain bit position

bit = H(msb(η, α), k1)modβ

for embedding. Next, for each value v ∈ Ξ(η, δ) and in η itself, that bit position

is set to wm[i] and the adjacent bits are set to false (to prevent overflow in case of

summarization). In other words v[bit − 1] = false, v[bit] = wm[i] and v[bit + 1] =

false. The reasoning behind modifying an entire subset of items (Ξ(η, δ)) is to

survive summarizations. This is the case if the bit encoding is such that the average

of any combination of (ν < |Ξ(η)| or less) items in Ξ(η, δ), would preserve the

embedded bit. It is easy to show that this is indeed the case. Finally, the window is

advanced past η and the process re-starts.

5.3.3 Detection

We are going to illustrate a specific flavor of the detection process, namely the

case when majority voting is deployed as an error correction mechanism.

In the detection process the watermark is gradually reconstructed as more and

more of the stream data is processed. The reconstruction process relies on an array
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of majority voting “buckets” as follows. For each bit wm[i] in the original watermark

wm, let wm[i]T and wm[i]F be “buckets” (unsigned integers) which are incremented

accordingly each time we recover a corresponding true/false bit wmdet[i] from the

stream. In other words, if the detection process yields at some point wmdet[i] =

false, then the wm[i]F value is incremented. Similarly, for wmdet[i] = true, wm[i]T

is incremented. In the end, the actual wm[i] will be estimated by the difference

between wm[i]T and wm[i]F , i.e., if

wm[i]T − wm[i]F > υ

then the estimated value for this particular bit becomes wmest[i] = true (and con-

versely if wm[i]F − wm[i]T > υ then wmest[i] = false) where υ > 0. If detection

would be applied on random, un-watermarked data, the probability of detecting

wmdet[i] = false would equal the probability of wmdet[i] = true, thus yielding virtu-

ally identical (υ is used to distinguish this exact case) values for wm[i]T and wm[i]F .

In this case, wmest[i] would be un-defined, thus the data considered un-watermarked.

The watermark effectively lies in a statistical bias in the true/false distribution for

each bit encoding.

Detection starts by identifying the first extreme η in the current window. The

selection criteria deployed in the embedding phase is tested on η. If

H(msb(η, α), k1)modφ = i

and i ≤ b(wm), then η was likely used in embedding bit i of the watermark, wm[i].

This bit is then extracted from bit-position H(msb(η, α), k1) mod β and depending

on its value, the corresponding bucket wm[i]T or wm[i]F is incremented. Finally, the

window is advanced past η and the process re-starts. It is to be noted that, because

of the infinite nature of the stream, detection is a continuous process. This is why

it is enclosed in a while loop. At the same time it shares the wm[] array with the

watermark reconstruction process (wm construct()).

The detection process does not consider only “major” extremes but rather any

and all extremes that can be identified in the stream. The reason behind this is
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wm detect(δ,α,β,wm,k1,φ)

while (true) do

η ← first extreme in win[]

i←H(msb(η, α), k1)modφ

if i ≤b(wm) then

bit←H(msb(η, α), k1)modβ

if (η[bit]==true) then

wm[i]T ←wm[i]T + 1

else

wm[i]F ←wm[i]F + 1

advance win[] past η

wm construct(wm[]T ,wm[]F ,υ)

for (i← 0;i < b(wm);i← i + 1)

if (wm[i]T − wm[i]F > υ) then

wm[i]←true

else

if (wm[i]F − wm[i]T > υ) then

wm[i]←false

else

wm[i]←undefined

return wm[]

Figure 5.5. Discrete Streaming Data: Initial Detection Algorithm

the fact that the stream could have been subjected to sampling (A2) and/or sum-

marization (A1) in the meantime. Considering “major” extremes only and their

corresponding characteristic subsets in the embedding phase was a means to en-

sure survival to exactly such transformations. Nevertheless, the detection process

apparently suffers now from the fact that it also considers extremes that were poten-

tially not watermarked in the first place, possibly yielding false watermark readings.

At a deeper insight, it becomes clear that this does not constitute a problem. As

the watermark reconstruction problem relies on a statistical bias and as this bias is

zero in the case of random data (as discussed above), introducing new, random, un-

watermarked data points into the detection does not affect the watermark-induced

bias at all. This is yet another reason why this embedding will prove resilience to

data addition (A5).
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5.4 Improvements

Various resilience enhancing improvements are possible with respect to the initial

solution introduced above. These are discussed here.

5.4.1 Defeating Correlation Detection

One particular issue of concern in the above solution is the fact that because

there exists a correlation between the watermarking alteration (the wm[i] bit) and

its actual location (determined by H(msb(η, α), k1))), Mallory can mount a special

attack with the undesirable result of revealing the mark embedding locations. The

attack proceeds by first realizing that, despite the one-wayness of the deployed hash

function H(), in fact, η is the only variable that determines both the bit embedding

location as well as its value. Mallory can now simply build a set of “hash buckets”

for each separate value of msb(η, α) (if α is secret the job becomes harder but not

impossible) and count, for each extreme η encountered, which of the lower β bits of

η is set (resp. reset) more often. For each η for which a bias in a bit position is

discovered, that particular bit position is considered mark-carrying and randomized.

Thus, the problem lies here in the correlation between the actual bit location and

the bit value, correlation induced by the fact that a single variable (η) determines

both of these. A fix could possibly rely on a separate source of information to

determine the location of the embedded bit, independently of the bit value. Also,

this source of information would need to be consistently recoverable at detection

time. For example, if time-stamp information would be assumed available, i.e., if all

the processing and the attacks on the data stream could be assumed to preserve the

time-stamp to value association, then the actual time-stamp would present an ideal

candidate, effectively labeling each and every stream extreme uniquely while at the

same time not being correlated (directly) to their values. This unique label could

then be used in computing the bit position for embedding. In the selection of the bit

embedding location, instead of using bit = H(msb(η, α), k1) mod β which yields a
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result correlated to the actual embedded bit value (wm[i], where i = H(msb(η, α), k1)

mod φ) we propose to use

bit = H(msb(label(η), α), k1)modβ

where label(η) is the (virtually) unique label of extreme η. A labeling scheme like

this would make “bucket counting” attacks impossible. In our model however, times-

tamps are not assumed to be preserved. Can we envision a different labeling scheme

(at least) for extremes, that would survive the attacks and transformations outlined

in Section 5.2.1? We propose to build it from scratch.

Because the data can be subject to both sampling and summarization and we

would like to enable watermark detection also from a finite segment of the data (see

Section 5.2.1), this task becomes especially challenging. Sampling and summariza-

tion are already survived (by design) by the extremes selected using the “majority”

criteria in Section 5.2.2. We could maybe make use of this fact in the labeling scheme.

One of the challenging aspects of such a labeling scheme becomes clear when one

considers data segmentation. To support segmentation, it needs to function based

solely on information available close (in terms of stream location) to the consid-

ered to-be-labeled extreme. Also, labels computed at detection time from potential

segments of sampled and/or summarized data, need to (at least) converge to the

original ones, as more and more watermarked data is available. Let λ be the (secret)

bit length of the labels resulting in our labeling scheme. Let ̺ > 1 be a (secret)

unsigned integer. We propose the following labeling scheme: given two extremes i

and a subsequent i + ̺, we define label bit(i, i + ̺) = true iff

msb(abs(val(i)), α) < msb(abs(val(i + ̺)), α) (5.1)

and false otherwise. We define the label for extreme i + λ, label(val(i + λ)) as

the bit string composed of the concatenation of ”1” (binary true) followed by each

and every label bit(j, j + ̺) in ascending order of j ∈ (i − ̺, i + λ − ̺). In other
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words, an extreme is labeled by a certain differential interpretation of some of the

preceding extreme values, e.g., in Figure 5.3 (a), the label for extreme K becomes

“110100” (̺ = 2). The main role of ̺’s secrecy is to hide the actual labeling scheme

locations from a potential attacker, making a random-alteration attack necessarily

more damaging to the value of the data, thus increasingly un-successful. To illustrate

this, consider for example the case where Mallory knows that ̺ = 2. Now all it needs

to do is alter any and only two successive extremes (in any continuous chunk of 2λ

extremes), just enough to flip one label bit. But now, if ̺ is secret, Mallory has to

alter a larger, arbitrary number of successive extremes. Further improvements are

discussed in Section 5.4.9.

Before going any further, let us analyze what happens if an important extreme

is “lost”, e.g., if one extreme i is altered so much that its α most significant bits

flip inequality (5.1), corrupting its corresponding label bit. What happens is in fact

not too damaging: labels that were constructed using this particular extreme will

be corrupted, until the detection process encounters again a continuous sequence

of extremes not altered beyond recognition. But Mallory cannot afford altering

extremes to such extents, and the secrecy of ̺ makes a random alteration attack the

only choice.

In summary, the main purpose of such a labeling scheme is to ensure that Mallory

cannot mount the “bucket counting” type of statistical analysis attack as outlined

above. Different labels for adjacent extremes together with the use of one-way hash-

ing completely defeat such an attack. The labeling scheme provides an independent,

un-correlated source of information for determining the bit position to be altered.

Remember that our ability to survive “bucket counting” type of attacks was depen-

dent on the labels being un-correlated with respect to the actual extreme values,

while at the same time being virtually unique for each extreme.
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5.4.2 Repeating Labels

But the finite nature of the considered bit size of the label poses a certain problem

in this respect by necessarily allowing for duplicates (e.g., in the optimal case only

due to “wrap-around” of the λ-sized space) if the considered data segment is small.

For example if λ = 10 and we label 2000 extremes, on average, if we are lucky we

will have each label repeated only roughly twice. A more complex analysis needs to

also include data-time behavior, e.g., what is the likelihood of low to high vs. high

to low transitions, given the considered ̺? If there is a bias in this data behavior

then the resulting labels are going to contain possibly more one-bits than zeroes

etc. Nevertheless, in summary our problem is now that, because some labels might

repeat themselves, an unfortunate circumstance could make it such that enough data

for a particular label becomes available for Mallory to mount yet again a “bucket

counting” attack.

There are two fixes for the above issue: (i) the selected size of the considered

labels could be kept secret, within a certain range (e.g., λ ∈ (10, 20)) – there is a

trade-off here between the ability to converge in case of data loss and a higher λ

value, but for λ = 20 and ̺ = 3 for example, roughly 3 million extremes need to

pass by before a label is going to be repeated; (ii) once the un-correlated nature

of the labels has been established by their independent information source, we can

re-consider the use of the most significant bits of the extreme values. If we re-define

the labels as a concatenation between the initial label bit(j, j + 1)-derived labels bit

string and msb(abs(val(i)), α) we significantly decrease the probability of duplicates.

5.4.3 Reconstructing Labels

Labeling, while providing a defense for the correlation attack, introduces the

requirement to be able to identify major extremes at detection times, possibly in a

summarized and/or sampled stream. This becomes a challenge as the definition of

“major” does not make sense anymore in the context of a sampled version of the
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original stream. We propose the following solution. In a first stage, the degree of

the transformation performed is determined. In a second stage, the definition of

majority of an extreme is updated to reflect the fact that the considered stream

is already transformed. A major extreme of degree χ and radius δ in the original

stream (x[], ς), becomes a major extreme of degree χ

γ
and radius δ in the transformed

stream (x′[], ς
γ
), where γ is the degree of the transformation (e.g., summarization,

sampling) applied to (x[], ς). Once we know γ identifying major extremes in the

transformed stream is simply a matter of considering this updated definition. But

how do we determine γ? In a dynamic stream, with consistent stream data rates,

γ can be determined by simply dividing the original stream rate to the current

(transformed) stream rate, γ = ς
ς′
. The more challenging scenario is to determine

the value of γ corresponding to a (possibly transformed) stream (x′[], ς ′) for which

only a segment is available. In other words, given a certain segment of a transformed

stream (x′[], ς ′), corresponding to an original stream (x[], ς), how do we determine the

degree of the transform(s) applied to (x[], ς)? A reasonable assumption that can be

made is that the transform was applied uniformly to the entire stream. In this case,

one solution would start by preserving some information about the initial stream,

namely the average size of the characteristic subsets of extremes, for a given δ. Then,

in the transformed segment, extremes are identified and their average characteristic

subset size for the same δ is computed. It is to be expected (arguably) that in a

transformed (sampled and/or summarized) stream these sizes would shrink according

to the actual transform degree. Dividing the original average characteristic subset

size by the sampled stream average would thus yield an estimate of the transform

degree γ. In our proof of concept implementation this method is used successfully.

5.4.4 Hysteresis

The labeling features yet another interesting challenge. While ̺’s secrecy indeed

makes it more difficult on Mallory to precisely alter extremes so as to flip label bits,
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what is to stop him from still altering a large number of consecutive extremes with

the same purpose? This attack is likely not of much concern as the assumption is

that Mallory cannot afford such modifications throughout the data as the required

modifications to flip several consecutive bits are likely quite significant. Unfavorable

data distribution and data semantics preservation are further arguments that Mallory

would not be able to deploy such an attack.

Nevertheless, a solution is available and we propose its use. It proceeds by

changing the labeling scheme as follows: given two extremes i and i + ̺, we de-

fine label bit(i, i + ̺) = true iff

(msb(abs(val(i))) −msb(abs(val(i + ̺)))) < ι− < 0

and label bit(i, i + ̺) = false iff

0 < ι+ < (msb(abs(val(i))) −msb(abs(val(i + ̺))))

As can be seen, these new formulas induce a hysteresis (defined by (ι−, ι+)). Now

Mallory is not only presented with the dilemma of which extremes to alter but

also unable to determine what the minimum change is that would flip the label’s

corresponding bit.

5.4.5 Defeating Bias Detection

But what prevents Mallory from identifying all the major extremes for which

there exists a majority of (possibly all) items in the characteristic subset with a

certain bit position set to the same identical value? These extremes would then

be (rightfully so) considered watermark carrying and Mallory could mount a simple

attack of randomizing those bit positions. This attack threatens the validity of the

entire watermarking scheme. How can we fix this while surviving summarization?

Remember that the main reason behind embedding the same bit multiple times at the

same position in different items in the characteristic subset was directly mandated

by the requirement to survive summarization. We propose a new approach that
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survives summarization and results in alterations effectively appearing random to

the eyes of an attacker. Let Ξ(η, δ) = {x1, x2, ..., xa}. For each i ≤ j ∈ [1, a], let

mij =

∑
u∈[i,j] xu

|j − i + 1|

Then we define the characteristic subset bit encoding convention as follows: (i) we

say that a bit value of “true” is embedded in Ξ(η, δ) iff

∀(j, i), lsb(H(lsb(mij , β), label(η)), ζ) = 2ζ − 1

Similarly, (ii) we say that “false” is embedded iff ∀j, i we have

lsb(H(lsb(mij , β), label(η)), ζ) = 0

where ζ > 0 is a secret fixed at embedding time. The embedding method simply

alters the least significant β bits in the values in Ξ(η, δ) until the criteria is satisfied

for the desired wm[i] bit value. It is to be noted that these alterations should aim

to minimize the Euclidean distance (or possibly any other distance metric) from the

point defined by {x1, x2, ..., xa}. We call this a “multi-hash encoding”.

The use of mij ensures survival to summarization, while the cryptographic hash

provides the appearance of randomness. But is it feasible to assume that one could

find such a point in the a-dimensional space defined by the items in Ξ(η, δ)? How

many computations are required to at least find one? For each item in Ξ(η, δ) we

consider its β least significant bits, thus we effectively operate over an input space

of aβ bits. There are a(a+1)
2

possible mij averages (including all mii = xi values).

For each we consider the last ζ bits of its hash, effectively getting an output space

of ζ a(a+1)
2

bits. The probability that a desired pattern occurs in this space is then

2−ζ
a(a+1)

2

Thus, on average, the expected number of configurations in the input space that

would need to be tested in an exhaustive search before yielding one that results in

the desired output, is 2ζ
a(a+1)

2 . For example if ζ = 1 and a = 5 we have 215, that
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Figure 5.6. Discrete Streaming Data: Average exhaustive search
iterations required in computing the closest point that satisfies the
characteristic subset bit encoding convention (logarithmic scale).

is, approx. 32,000 computations would need to be performed (for each considered

major extreme in the window). See Section 5.6.4 for an experimental analysis. We

confirmed these results also experimentally.

In Figure 5.6 we illustrate an experiment in which an un-optimized exhaustive

search was deployed. The exponential nature of the required amount of computation

becomes clear by the linear behavior in the logarithmic graph.

If enough computation power is available with respect to the incoming stream

data rate, larger values for ζ and a could be handled, resulting in an increased level of

court-time persuasiveness. Nevertheless, given the exponential nature of the increase

in required computations for an increasing number of items in the characteristic sub-

set, it is probably not likely to be able to exhaustively handle subsets with more than

8 − 10 items efficiently. While out of the scope of the current chapter, the design

and use of efficient pruned-space algorithms would be required to significantly reduce

these requirements. Alternately, we could deploy a computation-reducing technique

that limits the number of mij averages for which (i) or (ii) needs to hold in the
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subset bit encoding convention above. In other words, the search process (in the

{x1, x2, ..., xa} space) will be stopped once a certain number of the mij averages fea-

ture the desired encoding convention ((i) or (ii)). We call these mij values “active”.

The resulting decrease in required computation time comes at the expense of de-

creased resilience to transforms. More specifically, the fact that the bit-embedding

can only be “seen” through a limited number of “good” mij ’s (which feature the

appropriate subset bit encoding) makes it such that detecting the corresponding wa-

termark bit in a transformed stream will fail if the stream does not contain at least

one of the active mij values.

If such a reducing technique is applied, a desired property would be the ability

to survive to as many levels of summarization as possible. Thus, after ensuring the

subset bit encoding convention for every mii (original items, so as to survive also

sampling), we propose to “divide” the remaining computing cycles so as to enable a

non-zero probability of bit detection for any degree of summarization. This would

be achieved, if for any considered summarization degree ν to be survived, there

would exist at least one mij with |j − i| = ν (ensuring a non-zero probability of this

average to appear in a ν-degree summarized stream) that allows the extraction of

the associated watermark bit.

Also, an (arguably) fast(er) encoding than the use of cryptographic hashes above

could be adapted from [34]. The method works by altering the β least significant

bits until every one of the longest k pre-fixes of the whole value (most significant bits

included), when treated as an integer, becomes a quadratic residue modulo a secret

large prime, for embedding a ‘true” value and a quadratic non-residue modulo the

secret prime for embedding a ‘false” value.

5.4.6 On-the-Fly Quality Assessment

As discussed in Section 2.2, in any watermarking framework, it is important to

preserve structural and semantic properties of the watermarked data. Because by its
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very nature, watermarking alters its input, one has to provide a mechanism ensuring

that these alterations do not degrade the data beyond usability. Preserving data

quality also requires the ability to express and enforce data constraints. Sometimes

it is undesirable or even impossible to directly map higher level semantic constraints

into low level (combined) change tolerances for individual data items. The practi-

cally infinite set of semantic constraints that can be desired of a given data set makes

it such that a versatile “data goodness” (i.e., semantically) assessment method is

required We propose to augment our sensor stream marking algorithm with such

semantic constraints awareness. Each data property that needs to be preserved is

written as a constraint on the allowable change to the dataset, the watermarking

process is then applied with these constraints as input and re-evaluates them con-

tinuously for each alteration (consumer driven encoding). An “undo” log (quite like

the “rollback” log in Chapter 3) is kept to allow undo operations in case certain

constraints are violated by the current watermarking step (see Figure 5.7). The new

challenges in this framework are related to the fact that now, due to storage limi-

tations, any data quality preservation constraints can only be formulated in terms

of the current available data window. Likely only few window slots can be used to

store data aggregates, possibly including some history information to be used in the

quality evaluation process but this will all come at the expense of being unable to

store and process as much new incoming data.

5.4.7 Finite Window

With respect to finite space constraints, we believe the solution is an ideal fit for

an on-the-fly finite-window processing model. The only requirements are: (i) to be

able to detect at least one major extreme at a time for each window, (ii) to be able

to fit its characteristic subset (or parts thereof) within the same window and (iii) to

have enough remaining space to store some insignificant amounts of information such

as the past ̺λ encountered major extremes. Even if the stream behavior is such that
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entire characteristic subsets (if it is just one of them, we can simply ignore it, we are

concerned here with a majority of the extremes) cannot fit in the current window,

the embedding gracefully handles subsets with fewer elements. Yet another solution

would be to adjust δ so as to result in smaller characteristic subsets. Nevertheless,

we believe this is (arguably) not a concern as most likely the window would contain

severals extremes.

5.4.8 Offline Detection

As outlined above, the detection process is designed to function on-the-fly, in one

pass over the data and compute the statistical bias for the embedded watermark

bits. Time and storage space permitting, would a offline detection process possi-

bly yield more accuracy? In other words, could there be any advantages to having

more memory (e.g., 2×̟) and unlimited amounts of time in the detection process?

The answer is no. The only improvement that could be achieved would be in the

normalization process. If the actual data distribution is not known, on-the-fly nor-

malization (as discussed in Section 5.2.1) suffers from the need to perform an initial

(non-detection) “discovery” run in which (hopefully) enough data is seen so as to

construct a reasonable accurate reference data distribution. Some of the data read

in this process would be lost for detection purposes due to storage space limitations.

In the offline detection scenario, if multiple-pass access is assumed, this data can be

used in detection, effectively enforcing the overall watermark.

5.4.9 Labeling Made Safer

The safety of the labeling process with respect to an attack in which Mallory

purposefully alters previous extreme values adjacent to a considered extreme (in the

hope of flipping one bit in the corresponding label), could be improved as follows.

Instead of using ̺ as a sequential “step” factor in selecting some previous extremes to

construct the current extreme’s (η) label bits, we could use H(msb(η, α), k1) as a bit-
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mask, to select a subset of the past extremes to define the label. For example out of

the past 20 extremes we select 10 to be used in the 10-bit label computation, selection

based on the last 20 bits of H(msb(η, α), k1) (if a bit in the bit-mask is “true”, the

corresponding past extreme value is used in the label computation). This process

yields both the benefits of shorter labels (more resilient overall, see Section 5.6) and

forcing Mallory to consider all 20 bits (instead of 10) in his alteration attack, likely

significantly more damaging to the data. For example, in Figure 5.3 (a), if we have

the last 5 bits of H(msb(val(K), α), k1) equal “01101” then the 4-bit label of extreme

K would be “1010”.

Yet another resilience enhancing idea for labeling would be the use of multi-

ple labels instead of just one, labels constructed using several different subsets of

previously seen extremes. Then embedding/detection proceed by enforcing the bit

encoding convention considering both labels.

5.4.10 Summarization Revisited

Massive summarization is often used in scenarios involving storage and processing

of streaming data. Summarization can be viewed as a normalized integration process.

High summarization degrees (ν) are likely destroying much of the high frequency

domain in the original stream. Often there exists a trade-off between preserving

data of high-granularity in the recent past and of increasingly lower granularity in

the distant past. The watermarking solution introduced here survives summarization

very well up to high degrees. However, naturally, distant past data, if summarized

to a higher degree would yield a more degraded version of the watermark than recent

data. One solution to this issue would be to embed multiple layers of watermarks for

different ν values, e.g., one layer for the low frequency domain (i.e., small ν values)

and another layer for the high frequency domain (i.e., higher ν values). This would

ensure an increasing accuracy on detection for both higher and lower degrees.
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5.5 Analysis

In this Section we analyze the ability of our method to convince in court, survive

attacks and transforms.

Court-convinceability can be naturally expressed as follows: given a one bit (e.g.,

true) watermark, what is the probability of false positives (Pfp) for the watermark

encoding? In other words, we ask: What is the probability of a one-bit (true) water-

mark to be detected in a random data stream? If this probability is low enough, then

a positive detection would constitute a strong proof of rights, with a “confidence” of

1−Pfp. Here we define confidence as the probability that a given detected watermark

was indeed purposefully embedded in the data by the rights owner.

Using the notation in Section 5.4.5, for each considered extreme η, the occurrence

probability of a “good” corresponding mij (i.e., encoding “true” with respect to

the bit encoding convention) in a random stream is naturally 1
2
, because of the

cryptographic hash used in the encoding. There are a(a+1)
2

possible mij averages

(including all mii = xi values). Because for each we consider the last ζ bits of its

hash, we effectively have an output space of ζ a(a+1)
2

bits. Thus the probability of the

bit “true” being encoded consistently by all of these becomes (per extreme)

2−ζ
a(a+1)

2

Now, for each ε(χ, δ) items there is a potential major extreme recipient of a one-bit

encoding. Out of these how many are actually selected for encoding? As discussed

in Section 5.3.2 only a fraction of 1
φ

(because now b(wm) = 1) of them are actually

selected for embedding. Thus if ς is the stream data rate, we can determine the

relationship between the time elapsed since we started reading the incoming stream

(t) and the reached level of persuasiveness, as follows.

If ε(χ, δ) models the average number of items that need to be read before a major

extreme is encountered, then ε(χ,δ)
ς

represents the average time-interval “between”

major extremes. But only 1
φ

of the major extremes are selected for embedding, and so
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the time-interval between two major extremes that encode the watermark is φε(χ,δ)
ς

,

thus the number of extremes that we are likely to see in a time interval of size t, is

tς

φε(χ, δ)

As discussed above, each major extreme has an associated probability of false

positives of 2−ζ
a(a+1)

2 , thus if we discover a consistent pattern of embedding in a time

interval t, the probability of a false-positive becomes

Pfp(t) = (2−ζ
a(a+1)

2 )
tς

φε(χ,δ)

For example if ζ = 1, a = 5, ς = 100Hz, φ = 20%, ε(χ, δ) = 50, after detecting a bit

“true” for only t = 2 seconds we have

Pfp(2) = (2−15)20 ≈ 0

and an associated proof of rights, with a confidence of close to 100%. Even, at

the limit, when due to transforms such as sampling and summarization, for each

extreme, only one single mij average survives and the probability of false positives

for each extreme becomes only 1
2
, Pfp(2) becomes roughly only “one in a million”.

Thus, the persuasion power of our method quickly converges to a comfortable level.

In Section 5.6 we provide experimental results for watermark resilience to various

transforms, including random attacks.

Next we explore a theoretical analysis of the vulnerability of our scheme under

the following attack model: Mallory starts to modify randomly every a1-th (a1 > 1)

extreme (η) in such a way as to alter a ratio of a2 ∈ (0, 1) of the items in the extreme’s

characteristic subset of radius a3, Ξ(η, a3). (Thus, on average, Mallory alters only

one in every a′
1 = a1φ bit-carrying extremes).

The assumption here is that these alterations do not impact the associated la-

beling scheme, in other words, they don’t change the “greater than” relationship

between extremes used in the labeling process. An extension considering this case

is out of the current limited-space scope. To strengthen our derived bounds, we
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are going to focus directly on a more challenging, “informed”, Mallory, aware of the

characteristic subset radius used at encoding time. In other words, we assume that

a3 = δ is known to Mallory, see Section 5.3.2.

We propose two ways to analyze this vulnerability: (i) looking at how much an

attack “weakens” the encoding, i.e., how many of the active mij values are actually

destroyed divided by the total number of active ones (making it thus proportionally

harder to detect a watermark in court) and (ii) what is the probability that all of the

active ones are obliterated? It is easy to see that, for a given extreme η, for which

Ξ(η, a3) = {x1, x2, ..., xa} the number of corresponding mij values altered is

cm =
1

2
aa2(2a− aa2 + 1)

Now, for (i), the “weakening” of the encoding can be defined as

cm ×
2

a(a + 1)

which is the ratio of mij values that are altered from the total number of potential

active ones for each altered extreme. Because one in every a′
1 = a1φ bit-carrying

extremes gets impacted, the overall “weakening” factor can be defined as

a1 × cm ×
2

a(a + 1)

To answer (ii), we first model this scenario by a sampling experiment without re-

placement. In this experiment, x + t, t > 0 balls are randomly removed from a bowl

with a total of y balls. The question answered is: if the bowl contained exactly x

black balls what is the probability that the x + t removals emptied the bowl of all

of them. It can be shown that this is

P (x + t, x, y) =
(y−x
t )

(y
x+t)

(5.2)

In our model (x+ t) = cm, y = a(a+1)1
2

and if x = a4y (a4 is the ratio of active mij

values) we can compute the probability that all of them are altered.

Thus, for each attacked extreme we have a non-zero probability of altering all

active mij values and removing the corresponding watermark bit. Next we ask, how
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do these alterations impact our ability to convince in court and detect a watermark

bias in the resulting data? Because the alteration is necessarily random (the ran-

domness of the one-way hashes in the encoding in Section 5.4.5 guarantee this) we

can model the attack as essentially a random noise addition attack. Evaluating the

resilience of any watermark bias becomes now a matter of asking how many of the

embeddings actually survive until detection time. Are there enough of them to ac-

tually convincingly reconstruct the multi-bit watermark after error correction? At

the beginning of the section we looked at how the watermark bias becomes more

convincing in time (and seen data). Loosing a fraction of the mark bit encoding

extremes can be in fact seen as a reduction of the φ value (see Section 5.3.2). If, for

each of the a′
1 = a1φ bit carrying extremes that are altered by Mallory, the attack

success probability is given by P (x + t, x, y) (equation 5.2) we can perform a similar

reasoning with a new

φ′ = φ + a′
1 × P (x + t, x, y)

What now happens is that the persuasiveness (court-time convince-ability) converges

proportionally slower. In other words, we need to see a1×P (x+ t, x, y) more stream

data to be able to provide an equally convincing proof in court.

For example, for a1 = 5, a = 6, a4 = 50%, a2 = 50% we get the average

probability P (15, 10, 21) ≈ 0.85% of a complete alteration of all the active mij values

at each extreme. This effectively translates in the need to see only an average of

a1 × P (x + t, x, y) ≈ 4.25% more data to be equally convincing at detection.

But how does our encoding handle transforms? By construction it certainly

survives sampling (A2) up to a degree of χmax = |Ξ(η, δ)|. Indeed this is so if

at least one element in the characteristic subset of η is to be found in a sampling

of degree χmax. This element can be used in the detection process to recover the

corresponding watermark bit for η. Higher degrees of sampling are also quite likely

to be survived as there is a non-zero probability of elements in Ξ(η, δ) to be in the

sampled stream even for χ > χmax. This is experimentally analyzed in Section 5.6.
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Summarization (A1) up to a degree of νmax = |Ξ(η, δ)| is also handled well by

design, for example due to the use of mij in the bit-encoding procedure illustrated

in Section 5.4.5. Any summarization of a degree ν ≤ νmax naturally results in

at least one of the mij averages being in the summarized stream. Even in the

initial algorithm, the bit encoding pattern used on the elements in the characteristic

subset ensured survival of the pattern in the process of averaging (thus surviving

summarization) within the subset. Summarization is experimentally analyzed in

Section 5.6.

But how well is segmentation (A3) survived? More specifically, what is the

minimum size of a stream segment from which we are able to recover the watermark?

For simplicity let us assume a one-bit watermark, i.e., b(wm) = 1. In the following

we are trying to determine the minimum required size of a contiguous watermarked

stream segment that would enable a proof more “convincing” than a coin-flip stating

that a watermark is embedded in the data. This proof would be obtained if we can

correctly detect at least two consistent bits (equal to wm[0]) from two different

extremes found in the segment. In that case, the probability of a false-positive

becomes lower than a random coin-flip. But what is the minimum amount of data

we need to see to be able to decode two bits? In the best case, the two extremes

are adjacent and we need to see enough data to build correct labels for those two

extremes. To build the labels correctly, we need to have seen all the previous λ̺

major extremes correctly. Further qualitative analysis must be data dependent, for

example if the fluctuating nature of the stream features a major extreme of degree

χ and radius δ for every ε(χ, δ) data items, then the minimum required size of a

segment enabling watermark detection is ε(χ, δ)λ̺.
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5.6 Experimental Results

We implemented wms.* a Java proof-of-concept of the watermarking solution.

Our experimental setup included one 1.8GHz CPU Linux box with Sun JDK 1.4 and

384MB RAM.

We also implemented a temperature sensor synthetic data stream generator with

controllable parameters, including the ability to adjust the data stream distribution,

fluctuating behavior (e.g., ε(χ, δ)) and rate (ς). This sensor was used in the initial

design phase of some of our experiments because of the ability to produce various

fine-tuned data inputs impacting specific strengths of the encoding.

We explored experiment scenarios modeling both the behavior of sub-systems

such as the on-the-fly labeling module as well as the overall watermark resilience.

Synthetic (temperature sensor model) and real-world data was used in our evaluation.

Because, as discussed in Section 5.3.3, watermark encoding relies on altering

a certain secret statistical bias within the data, when we present resilience results

we refer to the ability to detect and reconstruct this bias as an overall measure

of encoding performance. In this case, the notion of a “watermark bias” refers to

the number of instances of active extremes for which the characteristic subset bit

encoding (see Section 5.4.5), survives with a positive true-bit embedding bias.

Note: With respect to court-time confidence, for example, a detected watermark

bias of 10 yields a false-positive probability of 1
210 , and an associated proof of rights

with a confidence of roughly 99.9%, as discussed in Section 5.5.

Unless specified otherwise, the experimental results presented here refer to an

underlying normalized stream with values distributed normally with a mean of 0 and

a standard deviation of 0.5. The fluctuating behavior of the stream was determined

by an average ε(χ, δ) = 100 (100 items per each major extreme) and ς = 100Hz

(100 items per second). Other parameters include: φ = 3, α = 16, β = 16, υ = 2,

k1 was chosen by a random number generator. Whenever exact quantitative results

are shown, they refer to a data set drawn from about 50 seconds of stream data
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Figure 5.7. Discrete Streaming Data: Overview of proof of concept
implementation.
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(i.e., roughly 5000 data values). Additionally, when experiments were performed on

real-life test data this is specified in the figure captions. The real life data sets [55]

were obtained from the environmental monitors of the NASA Infrared Telescope on

the summit of Mauna Kea, at the University of Hawaii. They represent multiple

sets of once-every-two-minutes environmental sensor (i.e., temperature) readings at

various telescope site locations. The reference data set used refers to 30 days worth

of data from the month of September 2003, totaling a number of 21630 temperature

readings (with values on the Celsius scale roughly between 0 and 35 degrees).

Some of the figures presented in this Section feature a “spikey” behavior. This

is a result of the adaptive data-dependent nature of the encoding. Different input

data sets react differently to sampling for example, yielding slightly varying behavior

at distinct points. Averaging over multiple inputs would provide a solution for this

issue. Nevertheless, we believe that, while it might soften the spikes it would also

(arguably) tone down distinct features for a given data set, features that inter-relate

figures. Instead of focusing on local variations, the figures should be interpreted as

qualitative samples of global governing trends.

5.6.1 Random Alterations

In Chapter 3 we defined the epsilon-attack in the relational data framework, a

transformation that modifies a percentage τ of the input data values within cer-

tain bounds defined by two variables ǫ (amplitude of alteration) and µ (mean of

alteration). Epsilon-attacks can model any uninformed, random alteration – often

the only available attack alternative. A uniform altering epsilon-attack (as defined

in Chapter 3) modifies τ percent of the input tuples by multiplication with a uni-

formly distributed value in the (1− ǫ + µ, 1 + ǫ + µ) interval. We believe this attack

closely resembles (A6), a very likely combination of (A5) and (A2). In Figures 5.8

and 5.9 (µ = 0) we analyze the sensitivity of both our labeling module and overall

watermarking scheme to such randomly occurring changes, as direct measures for
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encoding resilience. In Figure 5.8 (a), label alteration increases with an increasing

degree of data change. Smaller label bit sizes seem to better survive such an attack.

In Figure 5.8 (b), as the percentage of altered data items increases, the labeling

scheme naturally degrades.

In Figure 5.9, an embedded watermark (bias) is detected in a randomly altered

stream. Naturally, an increasing distortion results in a decreasing bias detection.
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Nevertheless, it is to be noted that the encoding scheme proves to be quite resilient

by design, for example for τ = 50% of the data altered within ǫ = 10% (Figure 5.9

(b)), the detected bias is still above 25, yielding a false-positive rate of less than “one

in thirty million”.

5.6.2 Sampling and Summarization

The ability to survive summarization (A1) and sampling (A2) is of extreme im-

portance as both are expected attacks. In Figure 5.10 the labeling algorithm is

evaluated with respect to (a) sampling and (b) summarization. Intuitively, a higher

label bit-size results in increased fragility to sampling (shown is a sampling degree

of 3). Summarization seems to be naturally survived by our design. For example,

a summarization of the data down to 5% (ν = 20) still preserves over 20% of the

original label values, thus conferring a strong back-bone to watermark embedding.

The behavior of the watermark encoding algorithm to sampling and summariza-

tion is outlined in Figure 5.11. The natural strength of the bit encoding convention

is clearly illustrated here. Both transformations are survived extremely well.
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5.6.3 Segmentation. Combinations

In Section 5.5 we theoretically assessed the ability of our scheme to survive seg-

mentation (A3), by answering the question: what is the minimum size of a stream

segment from which we are able to recover the watermark? In Figure 5.12 (a) we

analyze the impact of actual recovered segment size on the detected watermark

bias. From a segment of only 2000 stream values we can detect a watermark bias

of 10, corresponding to a very convincing low false positive rate of roughly 0.001.

In Figure 5.12 (b) we outline the impact of a combined transformation (sampling

and summarization) on the watermark embedding. Because of the nature of both

transformations and of the resilience featured in each case, the combination seems

to be survived equally well. For example, a 25% sampling, followed by a 25% sum-

marization process still yields a watermark bias of up to 20, corresponding to a low

false-positive rate of “one in a million”.
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5.6.4 Overhead and Impact on Data Quality

The proposed watermarking solution is highly adaptive to both speed and space

constraints. By far the most computationally intensive operation is the one-bit

encoding operation which alters the characteristic subset data to conform to the bit

encoding convention defined in Section 5.4.5. At the expense of embedding resilience,

this operation can be sped up significantly by both pruning of the search space or,

more importantly, deployment of a computation-reducing technique as described in

Section 5.4.5. Depending on the actual stream rate, these speed-ups can be gradually

deployed to be able to keep up with the incoming data. Additionally, the average

amount of computation to be performed per window-load of data is defined also

by the actual fraction of extremes “selected” to be bit-carriers. This fraction is

determined by b(wm)
φ

. If the incoming data rate is too high, φ can be increased to

reduce the workload.

While our solution is naturally designed for stream processing it is of importance

to assess this ability also in practice. We performed experiments aimed at evaluat-

ing the introduced watermarking computation overhead. Unless specified otherwise,

we used the multi-hash encoding discussed in Section 5.4.5 and parameters set such
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that the resulting watermark survives 100% any combined sampling and summa-

rization up to a degree of 6. First, we compared the computing times required by

the watermarking process with the times spent in a simple read and copy model in

which each stream item is read and copied to an output port (with fixed writing

time-cost). We obtained consistent value classes clearly identifying each of the sep-

arate encoding methods presented. It became clear that, as expected, the majority

of time is spent in the actual bit encoding convention routine (and not as much in

the labeling module). Not surprising, the encoding convention introduced in Section

5.3.2 performed fastest with an average of only 5.7% increase in processing times per

stream item. The poorest performer was the more complex multi-hash routine in

Section 5.4.5 with an average increase of over 1000%, as expected decreasing almost

perfectly exponential with the decrease of guaranteed resilience (see Figure 5.13 (a)).

There are two lessons to be learned here. First, different encodings should be used

for different scenarios with associated value models. For example for a temperature

stream with a likely average reading rate of under 1Hz, deploying the multi-hash

encoding routine for high resilience would be best suited whereas in a very fast

streaming scenario the encoding in Section 5.3.2 would perform much better. Ad-

ditionally, subject to future research is the issue of better pruning algorithms as

discussed in Section 5.4.5.

We also performed experiments evaluating the impact of our encoding on data

quality. More specifically we analyzed the alterations incurred by the mean and

standard deviation of the stream data. For the above parameter settings, over a

large number (12000+) of runs over the real (and synthetic) data sets, the value of

the mean of the watermarked stream varied less than a mere 0.21% average from

the original. The alteration to the standard deviation also maintained itself nicely

within 0.27% of the original data. There exists a tunable trade-off between at-

tack/transformation resilience and the incurred alterations. A lower level of resilience

would definitely require less modifications to the data and have a lower impact on

global statistics. In Figure 5.13 (b) we show how decreasing the number of consid-
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ered bit-encoding major extremes decreases the impact on the average and standard

deviation in the result.

Due to the random nature (with respect to the stream data values) of the encoding

specifics we expected a virtually zero impact on such statistics over the longer term.

While we observed a certain convergence to zero, it had not as fast a pace as expected;

we were actually not able to actually reach the zero-impact point. We suspect this

is due to a bias introduced by the MD5 hash implementation used in our proof of

concept, although the complex nature of the multi-hash embedding used (see Section

5.4.5) might also hold some of the answers. We are further investigating this.

5.7 Conclusions

In this chapter we introduced the issue of rights protection for sensor streams.

We proposed a watermarking solution, based on novel ideas such as on-the-fly label-

ing and watermark encoding, resilient to important domain-specific transforms. We

implemented a proof of concept of the proposed solution and evaluated it experi-
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mentally on real data. The method proves to be extremely resilient to all considered

transforms, including sampling, summarization, random alterations and combined

transforms. Published research results of this work include [12].

In upcoming research we propose to analyze streams of categorical data, to in-

vestigate other aggregates (instead of averages) in the summarization process (e.g.,

min, max, most likely value) and to experiment with alternative bit-encodings.
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6 SEMI-STRUCTURED AGGREGATES

While in the previous chapters we discussed very specific data types, here we in-

troduce an algorithm for watermarking abstract structured aggregates of multiple

types of content that can be usually represented as graphs and are characterized by

value lying both in the structure and in the individual nodes (e.g., XML documents,

complex Web Content, workflow and planning descriptions).

6.1 Introduction

In this chapter we discuss the watermarking of abstract structured aggregates

of multiple types of content, such as multi-type/media documents. These semi-

structures can be usually represented as graphs and are characterized by value lying

both in the structure and in the individual nodes. Example instances include XML

documents, complex web content, workflow and planning descriptions, etc. We pro-

pose a scheme for watermarking abstract semi-structures and discuss its resilience

with respect to attacks. While content specific watermarking deals with the issue

of protecting the value in the structure’s nodes, protecting the value pertaining to

the structure itself is a new, distinct challenge. Nodes in semi-structures are value-

carrying, thus a watermarking algorithm could make use of their encoding capacity

by using traditional watermarking. For example if a node contains an image then

image watermarking algorithms can be deployed for that node to encode parts of

the global watermark. But, given the intrinsic value attached to it, the graph that

“glues” these nodes together is in itself a central element of the watermarking pro-

cess we propose. We show how our approach makes use of these two value facets,

structural and node-content.
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In fact, good resilience can be achieved even if fairly weak watermarking algo-

rithms are used in the individual nodes – using the aggregation graph as well as the

individual nodes has an “amplification” effect on the overall resilience.

Our solution is based on a canonical labeling algorithm that self-adjusts to the

specifics of the content. Labeling is tolerant to a significant number of graph attacks

(“surgeries”) and relies on a complex “training” phase at watermarking time in which

it reaches an optimal stability point with respect to these attacks. We perform attack

experiments on the introduced algorithms under different conditions.

The chapter is structured as follows. Section 6.2 is dedicated to a more in depth

presentation of generic issues associated with watermarking in the framework of

semi-structures. We analyze associated challenges and discuss attacks. Section 6.3

introduces important building blocks and concepts for the presented semi-structure

watermarking algorithm, such as tolerant canonical labeling and tolerant content

summaries. It presents and analyzes the main algorithm. Section 6.4.2 discusses

experimental results. The wmx.* package is introduced. Section 6.5 concludes.

6.2 Challenges

When dealing with graphs in general and semi-structures in particular, we are

faced with the issue of uniquely identifying and referencing nodes 1. In graph theory,

this is summarized under the term canonical labeling [56] [57] [58] [59] and no solution

has been provided with a high enough degree of generality.

Thus, before deploying any specific mark encoding techniques we have to ensure

a resilient labeling scheme, able to survive minor modifications and attacks on the

actual graph structure. We show how content specific watermarking techniques

(for node content watermarking) coupled with a technique of content summarization

provide a resilient labeling scheme, suited for our watermarking purposes. The value-

carrying nodes are solving the labeling issue in quite a surprising manner.

1Especially if required to maintain consistency before and after attacks (e.g., possible structural
changes).
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6.2.1 The Adversary

Given a certain value carrying watermarked semi-structure several attack op-

tions present themselves, including: elimination of value-“insignificant” nodes (A1),

elimination of inter node relations (A2), value preserving graph partitioning into

independent usable partitions (A3), modification of node content, within usability

vicinity (A4), addition of value insignificant nodes aimed at destroying ulterior la-

beling attempts (A5). One has to keep in mind the ultimate goal of any attack,

namely eliminating the watermark property, while preserving most of the attached

value, within usability limits 2.

In order to prevent success for A5, we propose a preliminary step of value prun-

ing in which all value-insignificant nodes are marked as to-be-ignored in the ulterior

watermarking steps. Another approach deploys structural changes to bring the semi-

structure to the limits of the usability space (see Chapter 7), increasing its fragility

to further modifications and thus the failure likelihood of any ulterior attempts to

attack by adding nodes. A4 mandates the ability of the labeling scheme to depend as

little as possible on node content or to provide for a mechanism of detecting altered-

content nodes at extraction time. Another possibility of defending against A4 would

be to actually alter the main considered nodes toward their allowed fragility limit,

such that any further un-knowledgeable changes will fail to provide a usable result.

Attack A3 is one of the most powerful challenges. In order to survive it, meaning

that the watermark has to be preserved (maybe in a weaker form) also in the re-

sulting graph’s partitions, the watermarking scheme has to consider some form of

hierarchical embedding in such a way as to “touch” most of the potential partitions

in the graph. The issue becomes more complex if the usability domains of all possible

graph partitions are unknown, making it difficult to envision the attacker’s “cut”.

Fortunately, in many cases the number of available partitioning schemes that make

2Collusion attacks are not discussed in this chapter as they are relevant when fingerprinting is
deployed. Although we envision extensions of this work for fingerprinting, we are not considering
these here.
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sense and the associated usability domains are limited. Cases A1 and A2 make it

necessary to devise a node labeling scheme that tolerates node and edge elimination

while preserving most of the other nodes’ labels. This is a must because of the ne-

cessity to reference nodes at extraction time. Even if there would exist a working

traditional canonical graph labeling algorithm it would need to be heavily modified

in order to provide for edge and node removal tolerance. We used the term “heavily”

to outline the fact that canonical labeling has always been linked to proofs of graph

isomorphism, whereas in this case the trend is aimed exactly toward the opposite,

namely preserving node labels in the context of admittedly slight graph changes.

6.3 A Solution

6.3.1 Tolerant Canonical Labeling

The node labeling scheme is at the heart of watermarking semi-structures. The

ability to identify and reference nodes within the to-be-watermarked structure is of

paramount importance and the labeling scheme has to take into account the specifics

of the case, in particular the requirement to be able to “recognize” all relevant nodes

in an attacked version of the graph, based on labels issued on the original one.

Although canonical labeling for graphs was known for a long time to be a hard

problem of graph theory, specific algorithms have been developed for some cases . In

particular, reasonable solutions have been proposed for tree canonical labeling and

apparently, many semi-structure watermarking applications (e.g., HTML) would fit

the assumption of tree structuring. One can partition existing value-carrying semi-

structures into a set of tree-shapes and remaining structural elements. Watermarking

only those partitions might provide enough power and reduce the problem to tree

shapes. Unfortunately the requirement of being able to label nodes consistently

before and especially after attacks, renders useless existing tree canonical labeling

algorithms due to their high fragility to any structural changes (e.g., attacks).
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Fortunately, the dual nature of semi-structures enables a novel approach to la-

beling, the main idea being the use of a combination of structural and node content

information. On the one hand, content is combined in computing a node’s label

by using a special “tolerant” summary (i.e., a function of the content with specific

properties, see Section 6.3.2) of its content. The assumption here is that content

changes are small and that we are able to construct a function of the node content

that will basically degrade gracefully with minor alterations to its input. On the

other hand some node topology information is necessarily involved in the relative

position of the node versus its neighbors and the entire graph. One simple solution

that comes to mind is to use the neighbors’ labels, which does capture the position

of the current node in relationship to its neighbors, and through the entire labeling

scheme, applied recursively, to the graph as a whole. Thus the primitive labeling

algorithm can be summarized by the following iterative formula:

l(node) = α ∗ l(node) + γ ∗
∑

nb∈neighbors(node)

l(nb)

Note: α determines the “weight” of the node content in the labeling scheme.

If essential content changes are unlikely in an attack, α is to be increased so as to

provide labeling stability. γ provides control over being able to more specifically

localize the node with respect to the neighbors and also to the entire graph. If

structural changes are highly unlikely in the course of an attack an increased γ

provides for stability 3.

The algorithm starts with the initial labels as being the keyed tolerant content

summary values SUMMARY (key, content(node), key) (see Section 6.3.2).

Step One. The first step performs a number of iterations i over the formula above

(this number being kept as part of the watermark detection key and used later on in

re-labeling the attacked graph), until the necessary labeling provisions are met. At

this stage we are mainly concerned with a minimal number of identical labels 4.

3It might be interesting to note the fact that if γ is 0, this labeling scheme converges to a simple
intuitive content-based addressing scheme.
4A number of iterations at least equal to the diameter of the graph are necessary in order to localize
a given node with respect to the entire graph. But this is sometimes not desired nor required. The
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Figure 6.2. Semi-structured Aggregates: Tolerant Canonical Label-
ing. Composite Labels are a result of successive training sessions.
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Figure 6.3. Semi-structured Aggregates: A combination of propa-
gated structural and node content information determines a node
label.
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Step Two. In order to provide resilience to a certain number of graph modifica-

tions (“surgery”), the next step is to artificially degrade the graph and re-perform

step one again.

Intuitively (for experimental results see Section 6.4.2), removing and/or adding

nodes and relations to the graph will result in changes in the initial labeling per-

formed on an un-modified graph. Control over those changes is enabled by specifying

the α and γ values. Experiments show that, given a graph, for certain α and γ value

bounds, labeling becomes controllable.

In each step, all the resulting labels and the corresponding iteration number,

α and γ values are kept. This enables later on, computing of the optimal values.

This indeed leads to non-trivial storage requirements and a O(n2) complexity. But

this only happens once in the lifetime of the watermarked object, that is, at graph

labeling time. Subject to future exploration is how to deploy dynamic programming

and dependency graphs to reduce storage and computation requirements.

The result of step two, for each node, is a range of values for the corresponding

label, depending also on the three main control factors (step-one iteration num-

ber, α, γ). The actual label of the node will be defined by the lower and upper

bounds of the resulting labeling range. This basically ensures that, when labeling

the attacked/modified version of the graph (i.e., by performing step one of this same

algorithm later on, in court), the resulting labels will fall within the corresponding

node’s label interval with a high likelihood. For a given set of surgeries, performing

the labeling algorithm in the space of (α, γ, i) results in a “bounded space of labeling

points” (see Figure 6.4).

The next challenge is to identify an optimum in this “space”, given a certain

ability to compare two particular “points”. Remember that a “point” corresponds

to a labeled graph as a set of interval-labels for the graph’s nodes, given the particular

(α, γ, i) coordinates. Our initial comparison formula for two different graph interval-

ability to set the number of performed iterations and make it part of the recovery key is another
point of control over the labeling scheme.
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label sets aims at capturing optimality in terms of both minimal number of label

overlaps within each set as well as minimal potential for future overlap. If the two

considered “points” are the actual interval-label sets A = {(a11, a12), ..., (an1, an2)}
and B = {(b11, b12), ..., (bn1, bn2)} (i.e., (ai1, ai2) is the label-interval corresponding to

node i in the graph labeling A) then the comparison formula is

compare1(A,B) = overlaps(B) × avg overlap(B) - overlaps(A) × avg overlap(A)

compare2(A,B) = closest inter label size(A) - closest inter label size(B)

compare(A,B) = compare1(A,B) + compare2(A,B)

where overlaps(X) is the number of overlapping interval-labels in labeling X,

avg overlap(X) the average interval size of the overlapping portions and closest

inter label size(X) the size of the interval between the closest two interval-labels

in X. Intuitively, compare1() models and compares the current optimality of both

labellings and compare2() captures the potential for future overlap (i.e., because

having very “close” interval-labels hints to possible issues in labeling the graph in

an attacked version of it). Now let us consider what happens if labeling intervals

overlap (“colliding composite labels”)?

• If nodes are in virtually identical/indistinguishable positions and with similar

content then this is normal. The nodes are marked as such and treated identical

throughout the watermarking process.

• If nodes differ in content but positions are similar, or content is close but

positions are different, then variations in α, γ and the content summary key

are performed in such a way as to differentiate labels

• If nodes differ in both content and position, changing also the iteration number

in step one is required.

• If everything has been done and label intervals are still overlapping we can

simply “melt” the labels together and treats the nodes as in case 1 (i.e., iden-

tical).
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Figure 6.4. Semi-structured Aggregates: (a) The surface defining the
composite label collisions appearing after 4 stages of training (i.e.,
i = 4) with a random generated set of surgeries applied to the graph.
It is to be noted that lower γ values seem to yield a lower number of
composite label collisions but in turn results in a lower resistance to
structural attacks (i.e., as labeling will not be as resilient to graph
surgeries). (b) The zero-collision (for composite labels) surface in
the (iterations,alpha,gamma) space corresponding to the same set
of surgeries. Its existence proves the ability to label resiliently (to
the considered surgeries) without colliding resulting composite labels.
Computed using the wmx.* package. (c) The considered graph.

In summary, the labeling process (i) collects all relevant labeling data over a

number of iterations in which all of (α, γ, numbers of step-one iterations (i), content

summary key and number of performed surgeries) are varied, and then (ii) decides

upon a certain point in this space (defined by α, γ, i, content summary key and

number of performed surgeries) which minimizes the number of overlapping label

intervals and the potential for future overlaps (in case of attacks). By adapting to

the given structure (i.e., by adjusting α, γ, etc), the labeling algorithm allows for

control over the required trade-offs between label resilience and tolerated changes.

Note: Special consideration needs to be offered to the case of an attack modifying

all existing nodes’ content in a similar fashion. Alteration to the labeling scheme

can be prevented in this case by introducing an additional final step of globally

normalizing the labels (label intervals).
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label(graph G)

foreach node n do label(n) = SUMMARY (key, n)

for (α = 0.1; α < 0.9; α = α + 0.1)

for (γ = 0.1; γ < 0.9; γ = γ + 0.1)

foreach artificial graph “surgery” (i.e., expected attacks) do

perform surgery (remove node/relation(s))

for (iteration = 1; iteration < diameter(G); iteration + +)

foreach node n do

label(n) = α× label(n) + γ ×∑
neighbors(n) label(nb)

foreach node n do store label(n)

foreach node n do store clabel(n) = [min(label(n)), max(label(n))]

choose (α, γ) minimizing the number of overlapping label intervals

Figure 6.5. Semi-structured Aggregates: Labeling Algorithm.

6.3.2 Tolerant Content Summaries

Finding an appropriate (set of) content summary function(s) that satisfy the re-

quirements above is not trivial and strongly tied to the type of semi-structure node

content and its associated transforms and envisioned attacks. The main require-

ments of the content summary functions considered are the ability to be at the same

time quite content specific while also degrading gracefully with minor changes in the

content. The idea is to capture and quantify certain global specific properties of the

content that are still preserved in the watermarking/attack process. Research by Ari

Juels et. al. [60] investigate a related notion, “fuzzy commitment”.

In our implementation we used a simple content summary, a linear combination

of the high order bits of the node content. The assumption here was that high

order bits are reasonably stable to changes and attacks. Other applications require
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different consideration. In the case of JPEG content for example, frequency domain

transforms like the DCT could be considered. The tolerant summary of a JPEG file

would be a combination of the most significant bits of its significant DCT coefficients

etc. In the multimedia framework, feature extraction algorithms (e.g., property

histograms) could be also explored as means to provide tolerant content summaries.

6.3.3 Algorithm

The main idea behind our algorithm is to use the structural resilience of the

labeling scheme while leveraging content-specific one-bit watermarking methods for

each node. In other words, each node in the semi-structure is considered to be a

potential recipient of a one-bit watermark (using a traditional content-type specific

marking method), while the actual instances of these encodings are going to be

determined in a secret fashion by the node labels.

Let clabels() be the composite labeling intervals as computed above (see Section

6.3.1). Depending on the size of the intervals in clabels(), choose b as the maximal

number of most significant bits that can be considered in the numbers of every

interval such that ∀(x, y)j ∈ clabels(), msb(x, b) = msb(y, b). In other words we aim

to discover an interval-specific invariant. For each node j and corresponding interval

(x, y)j by notation, let msbj = msb(x, b).

Let k be a seed to a b-bit random number generator RND and k1, ..., kn the first

n b-bit random numbers produced by RND after a secret-size initial warm-up run.

We say that node j is “fit” for encoding iff (msbj ⊕ kj) mod e = 0, where e is a

adjustable encoding parameter determining the percentage of considered nodes. In

other words, a node is considered “fit” if its label satisfies a certain secret criteria.

On the one hand this ensures the secrecy and resilience of our method, on the other

hand, it effectively “modulates” the watermark encoding process according to the

actual graph structure. This naturally provides a witness and rights “protector” for

the structure itself.
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embed(G, wm, k, e)

clabels() = label(graph)

b = {max(z)|∀(x, y)j ∈ clabels(), msb(x, z) = msb(y, z)}
initialize RND(k)

i = 0

sort clabels()

foreach (x, y)k ∈ clabels() do

kj = RND()

if ((msb(x, b)⊕ kj) mod e = 0) then

content wm node(k,(wmi ⊕ lsb(kj , 1)),kj)

i = i + 1

Figure 6.6. Semi-structured Aggregates: Watermark Embedding Algorithm

Each node considered fit is then watermarked with the one-bit watermark de-

fined by the XOR between the least significant bit of its corresponding kj and

wmi, i ∈ (0, |wm|) the corresponding watermark bit. Because of the e factor we

have an average guaranteed bandwidth of n
e
. In case the watermark length |wm| is

less than n
e
, we can choose for example, the watermark bit (n

e
mod |wm|), effectively

deploying a majority voting scheme etc. The 1-bit watermark embedding uses tradi-

tional (node) content-watermarking techniques. Because these do not constitute the

main contribution of this research, in our abstract watermarking suite we considered

a simple place-holder, in which each node contains a large integer value. A ”1”

watermark bit is considered to be present when the value is odd, a ”0” otherwise.

Note: The key used in the content-watermarking technique can be the same kj

or any other agreed upon secret. There might be some benefit associated with using

the same single key for all nodes as this could defeat inter-node collusion attacks

(in which the same node content is watermarked with different keys). It is also
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assumed that the content watermarking method deployed is respecting the maximum

allowable distortion bounds associated with the given content. In particular, these

node content-specific constraints are not impacting structural consistency. In other

words, slight modifications to the actual node content (e.g., JPEG images or natural

language text) do not alter global structural consistency constraints. This is subject

to further research.

In the decoding phase, the clabels() set is re-computed. The result should be

identical (in case no alterations occurred) or fairly close (because of the inherent

labeling tolerance to alterations). We know k1, ..., kn, the secret node-selection keys

and b. Based on these values and the composite labels, the algorithm performs

node-selection and identifies a majority (or all in the case of some graph alterations

occurring) of the initial nodes that were watermarked. Content-specific watermark

detection is then applied to each node to retrieve each watermark bit.

detect(G, k, e, b)

clabels() = label(graph)

initialize RND(k)

i = 0

sort clabels()

foreach (x, y)k ∈ clabels() do

kj = RND()

if ((msb(x, b) ⊕ kj) mod e = 0) then

wmi = content det node(k,kj)

i = i + 1

Figure 6.7. Semi-structured Aggregates: Watermark Detection Algorithm

In order to perform error correction, if enough bandwidth is available (e.g., n is

large enough), the algorithm embeds multiple copies of the watermark (or any other
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error correction encoding). Upon detection, majority voting is deployed to increase

the likelihood of accurate detection.

6.3.4 Discussion

What happens if we cannot discover a “nice enough” b? That is, what happens

if different label intervals in clabels() are behaving so “wildly” apart that b is going

to be really small. In other words, what if there exists a node whose composite label

interval has its endpoints very very far away such that the MSB common bits are

just a few, or even none.

We would argue that this is a highly unlikely scenario and experiments confirm

it. But if it is indeed the case then we have several options, one of which is simply

ignoring the label(s) that are having far-away endpoints. Another option would be

to introduce an initial normalizing step in which all the labels are normalized with

respect to a common “average” value (e.g., means of means).

In order to fight false-positive claims in court we ask: What is the probability

of a given watermark of length m to be detected in a random graph of size n. The

assumption is of course that m < n
e
. It is easy to prove that this probability is ( 1

2
)m.

In case multiple embeddings are used (e.g., majority voting) and all available bits

are utilized, this probability decreases even more to ( 1
2
)

n
e . For example, in the case

of a structure with 60 nodes and with e = 3, this probability reads one in a million,

reasonably low.

In the absence of additional information, Mallory, faced with the issue of destroy-

ing the watermark while preserving the value of the data, has only one alternative

available, namely a random attack. Two sub-types of attacks present themselves as

outlined in Section 6.2.1: structural and node-content altering.

Structural attacks are handled by the tolerant nature of the labeling scheme and

an experimental analysis is presented in Section 6.4.2. Here we are concerned with

the node-content alteration attacks. We ask: what is the probability of success
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of such an attack? In other words, if an attacker starts to randomly alter a total

number of a nodes and succeeds in each case to flip the embedded watermark bit

with a success rate p, what is the probability of success of altering at least r, r < a

watermark bits in the result, P (r, a)? It can be shown that

P (r, a) =

a
∑

i=r

(a
i )× pa × (1− p)a−i

Now, remember that only every e-th node is watermarked, thus the attacker ef-

fectively attacks only an average of a
e

nodes actually watermarked. If r > a
e

then

P (r, a) = 0. In the case of r < a
e

we have we have the corrected version

P (r, a) =

(a
e
)

∑

i=r

(
(a

e
)

i )× p(a
e
) × (1− p)(a

e
)−i

If r = 4, p = 10%, a = 20 (33% of the nodes are altered by the attacker !) and

e = 4, we have P (4, 20) ≈ 55× 10−6, again a reasonable figure, reading fifty-five in

a million. Space constraints do not allow for a more in-depth analysis.

6.4 Implementation and Experiments

6.4.1 The wmx.* Package

wmx.* is our java software test-bed package for watermarking abstract semi-

structures. We developed and implemented the algorithms presented and experi-

mented with various semi-structured shapes. The package allows for dynamic gen-

eration and storing of graphs, graph surgeries and attacks, as well as for run-

time customizable labeling and watermarking parameters (e.g., α, γ, iterations,

collision bounds). In the experiments, most of the nodes were defined as allowing

for specific node content watermarking that encodes one bit per node.

Given the low probability of attack and false-positives discussed above in Section

6.3.4, one thing we believe needs to be analyzed in more detail is the actual feasibil-

ity and resilience of the labeling method. Given its importance to the overall algo-

rithm, we implemented a test suite that allows experiments on abstract, dynamically
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redefine-able structures composed of a customizable number of nodes with associated

random generated (or predefined) content. We then extended the package to allow

for watermarking of abstract define-able semi-structures. We performed experiments

on structures with varying number of nodes and levels of connectedness. The com-

putations were conducted on a 500Mhz PC with 128MB RAM running Linux. Code

was written in Java.

6.4.2 Experiments

One of our main concern was labeling collisions, i.e., composite label sets clabels()

in which multiple labeling intervals are overlapping. These appear as a result of the

training surgery phase, in which modifications are performed to the graph to produce

the new label set. It is bad news as it creates potential ambiguity in the detection

process. Surprisingly, in most cases, by adjusting the labeling training parameters

α, γ, iterations we could obtain points that did feature zero collisions. In Figure 6.8

we show the zero-collision surfaces (in the α, γ space, with 3 training iterations) for

two simple structures.

The considered set of training surgeries (i.e., the set of surgeries performed on

the original graph before each individual labeling iteration) was randomly computer-

generated from a set of global surgeries and included peripheral node removals, edge

additions and removals. (To be noted that this is consistent with the assumptions

made in Section 6.2.1 when discussing attack A5).

In Figure 6.9 we show the watermark behavior in the case of a random artificially

generated structure with 32 nodes and 64 edges. The embedded watermark is 8 bits

long. The labeling scheme was trained for 3 surgeries, also e = 3 (average bandwidth

available is thus 10.6 bits, enough for the 8 bit watermark). It can be seen how

composite labeling training results in highly resilient labels. As the number of attack

surgeries increases, the watermark degrades slightly. The results are averaged over

10 runs on the same graph with different random attacks. When 8 attack surgeries
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Figure 6.8. Semi-structured Aggregates: Surfaces defining the com-
posite label collisions appearing after 3 stages of training with a
random generated set of surgeries. (a) Tree shaped graph. Much
of the web content online is tree-shaped. Again, note that lower γ
values seem to yield a lower number of composite label collisions. (b)
Star shaped graph. Note the smoother shape and the lower collision
bounds, compared to (a). The same nodes were used, differently
interconnected. Computed using the wmx.* package.
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are applied to the graph we can still recover 60-65% of the watermark. One has

to consider also the fact that an attacker is bound not to modify the structure too

much as it will eventually distort.

6.5 Conclusions

We introduced an algorithm for rights protection watermarking of semi-structured

content. More specifically we are concerned with protecting the value inherent in

the structure itself. Various new challenges are associated with this new domain.

Benefiting from the dual nature of semi-structures, our algorithm makes use of both

the available node content as well as of the value-carrying structure, through the

processes of canonical labeling, node content summarization and content-specific

mark encoding. The idea behind content-specific mark encoding is to use traditional

known watermarking techniques, in encoding parts of the watermark in the node

content. Providing a canonical labeling scheme, “trained” to tolerance for a set of

graph modifications is essential in being able to later-on identify nodes selected in the

1-bit node mark content-specific encoding process. Our algorithm does not require

the original un-watermarked object in order to perform mark detection. Published

research results of this work include [13].

Further work is required in improving content summarization and tolerant label-

ing. Different application domains will require specific approaches. An alternative

idea would be using bandwidth available in the specifications of inter-node relations.
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7 MODEL OF WATERMARKING (PART TWO)

In Chapter 2 we introduced a model defining main constructs for our watermarking

framework. After designing a set of specific watermarking solutions for different data

types and aggregates, we are aiming to understand some of the more generic chal-

lenges and limitations of watermarking. Does it indeed live up to its expectations?

Are there generic limits to it? Can those be assessed and quantified for a broad class

of applications? These are some of the issues we are looking at in this chapter.

7.1 First Principle of Watermarking

Intuitively, the more one modifies a Work with the purpose of encoding a wa-

termark, the higher the potential of that watermark to be resilient to attacks. This

is so, because now Mallory will need to perform a proportionally higher amount of

work. However this potential can only materialize if there is a direct semantic and

quantitative link between the amount of modifications performed in watermarking

and the work that Mallory has to perform to defeat the watermark. In the absence

of any external aids (e.g., legal means), this link is enforceable by mark encodings

that actually alter the value of the data, thus necessarily forcing any related attack

to also operate in this domain and potentially alter the value of the data.

Then, as mentioned before (Chapter 2), this becomes (metaphorically) a game

between the watermarker and Mallory. In this game, the watermarker and Mallory

play against each other within subtle trade-off rules aimed at keeping the quality of

the result within acceptable bounds. This is why from the watermarker’s perspective

it would be nice to yield the “best bang for the buck”, i.e., for minimal watermarking

modifications to yield a maximum resilience to attacks (see Section 7.2).



184

Now, if the encoding is based in a non-valued part of the Work, it can be simply

removed without altering the resulting value. Similarly, given a set of dimensions

of value of the Work (usability domains), if the watermarking encoding does not

alter all of them, then Mallory can simply “extract” and illicitly profit from that

particular value. Thus we define the first principle of watermarking.

Given a Work and a set of associated dimensions of value (usability

domains), a sound watermark algorithm results in an encoding that

necessarily alters the Work in all of these domains.

What then happens is that we, in effect, tie Mallory’s hands behind the back and

force him into the only viable attack scenario which is also altering the Work. This

enables the semantic link discussed above and starts the game.

7.2 Challenge of Watermarking

From the watermarker’s perspective it would be nice to yield the “best bang

for the buck”, i.e., for minimal watermarking modifications to yield a maximum

resilience to attacks. Thus, one challenge of watermarking derives from the main

trade-off to be found here, namely between the requirement to preserve data us-

ability and the desire to provide an encoding as resilient as possible to malicious

transformations and attacks.

Given a maximum allowable bound for difference in usability ∆umax and a max-

imum upper bound on the false positive probability ǫmax, we define the challenge of

watermarking as the ability to find the most powerful marking algorithm a ∈ AD for

a given key k ∈ K that still works within the given usability bounds, that is,

∆u(d′, d) < ∆umax

and

P (w(x, k) = 1|w(d′, k) = 1) < ǫw < ǫmax
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for all x inside of d’s usability vicinity of radius ∆umax, where d′ is defined by

a(d, k) = (d′, w).

In other words, the main concern in watermarking lies with keeping the required

usability level of the object unchanged or close to its original value, while still fea-

turing enough power. A sound solution will try to determine the main usability

domains for a particular to-be-watermarked object and then preserve usability in

those domains.

7.3 Limits

This section discusses inherent vulnerabilities of digital watermarking that affect

its mainstream purpose of rights protection. We ask: how resistant is watermarking

to un-informed attacks? We identify an inherent trade-off between two important

properties of watermarking algorithms: being “convincing enough” in court while

at the same time surviving a set of attacks, for a broad class of watermarking al-

gorithms. We show that there exist inherent limitations in protecting rights over

digital Works. In the attempt to become as convincing as possible (e.g., in a court

of law, low rate of false positives), watermarking applications become more fragile

to attacks aimed at removing the watermark while preserving the value of the Work.

They are thus necessarily characterized by a significant (e.g., in some cases 35%+)

non-zero probability of being successfully attacked without any knowledge about

their algorithmic details. We quantify this vulnerability for a class of algorithms

and show how a minimizing “sweet spot” can be found. We then derive a set of

recommendations for watermarking algorithm design.

7.3.1 Introduction

Up to this point, a common consensus has been implicitly assumed with respect

to watermarking, namely that it indeed lives up to its claimed features. As previ-

ously outlined, the main desiderata and features of watermarking include: it should
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not degrade the perceived quality of the marked Work; the ability to detect the

presence/content of a watermark should require the knowledge of a secret (key); dif-

ferent watermarks in the same Work should not interfere with each other; collusion

attacks should not be possible; the watermark in a certain Work should survive any

value-preserving transformation on that particular Work.

But how well do algorithms and their associated implementations conform to

these ideals? With respect to the fingerprinting application of watermarking, we

know now that arbitrary large collusion attacks cannot be defeated against [15].

Moreover, while most watermarking algorithms prove to be safe against a considered

set of value-preserving transformations (e.g., JPEG compression) they certainly fail

with respect to many others. This shortcoming can be directly traced back to the

relativity of the “value” and “quality” concepts.

Several, mostly experimental efforts explored the ability to analyze and quan-

tify the “goodness” of watermarking applications, resulting in various watermark

benchmarking “suites” such as StirMark [61] CheckMark [62] OptiMark [63] mainly

for multimedia (i.e., images). Additional research [16] [17] [18] aimed at analyzing

concepts such as available bandwidth in the broader area of information hiding from

a signal-processing, information-theoretic perspective, focusing mainly on various

multimedia techniques.

For example, in Chapter 3, watermarking relational data is often subject to a very

restrictive set of data quality assessments, making it often difficult to embed even

a single bit watermark. This narrow embedding bandwidth raises major concerns

with respect to theoretical watermarking vulnerability limits. After all, it seems that

if the changes allowed to be performed are small and very application-specific, an

attacker would be more likely to undo them or simply alter the Work enough to

destroy the watermark while preserving sufficient value.

Thus one particular question becomes of interest, namely: Are there theoretically

assessable bounds on watermark vulnerability with respect to an arbitrary watermark-

ing method? In other words, what is the inherent safety/vulnerability of a generic
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(i.e., with a minimum amount of assumptions, without considering implementation

particularities) watermarking algorithm? An answer to this question might after-

ward derive real-life recommendations for fine-tuning actual algorithms to increase

their marking resilience.

In this section we: (i) identify and analyze inherent limitations of watermarking,

including the trade-off between two properties: being enough ‘convincing” in court

while at the same time surviving a set of attacks. This trade-off derives naturally

from the inverse proportional nature of their relationship. In the attempt to become

as court convincing as possible, a watermarking application becomes more fragile to

attacks aimed at removing the watermark, while preserving the value of the Work.

It becomes thus necessary characterized by a significant non-zero probability of be-

ing successfully attacked. (ii) define a quantifiable measure of generic watermarking

safety, namely watermark vulnerability. (iii) outline an optimality principle (quan-

tified and proved for a broad class of algorithms) that postulates the minimization

of watermark vulnerability in specific data points.

7.3.2 A Sample Watermarking Algorithm

The main purpose of this section is not the discussion of a certain watermarking

algorithm but rather of general bounds that could be discovered over large classes

of algorithms. While, in order to validate and quantify any potential results, it is

desirable to be able to refer to a certain algorithm, care needs to be taken in making

sure that it features just enough specifics to be usable for the purpose, while at the

same time being representative for a majority of watermarking applications.

Thus, let us define a generic marking algorithm, featuring properties likely to be

found in many existing ones. The starting point is our work on numeric relational

data in Chapter 3. While the implementation and design details are complex, the

main behavior characteristics of the encoding, we believe, is quite representative of
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many watermarking applications. Here we present a simplified view of that work,

that should allow the use of this as an example without sacrificing any generality.

Let us consider the input Work (i.e., relational data) being a set of n numbers

(si)i∈(1,n). The output of the watermarking algorithm is another set of numbers

(vi)i∈(1,n), the watermarked version. The usability space is n-dimensional in this

case. It suffices to know that watermark encoding occurs by slight modifications

in the number set (altering some secret distribution characteristics) 1. For more

embedding algorithm details see e.g., Chapter 3. (vi)i∈(1,n) is an altered version of

(si)i∈(1,n) and, in a sound watermarking application, the performed alterations are

bounded by semantic value constraints. In other words, the result (watermarked

data) has to still be of (acceptable) value, with respect to the value metric for the

considered application.

One potential quality metric here can be defined in terms of the euclidean distance

between the original Work and it’s watermarked version, i.e., as the normalized sum

of the square roots of all the performed (small) changes:

MSE =

∑

(si − vi)
2

n
(7.1)

The quality of the result is said to be satisfactory if this distance is below a certain

allowed upper bound ∆umax, in other words, if the resulting watermarked Work is

not “too far away” from the original. In the associated n-dimensional usability space

this quality assessment defines a vicinity Umax of the initial data set, in the shape of

a sphere of radius ∆umax.

For simplicity, let’s assume for now that Uwm (the zone in which we find Works

that exhibit the watermark property) is continuous and also sphere-shaped (any

euclidean-type of distance would result in this). We are relaxing this assumption

later on. A 2-dimensional illustration of this is given in Figure 2.1 (a).

1The generality of this is warranted by the fact that many other existing algorithms [2] are pro-
ceeding similarly, by mapping the input Works (e.g., images) to a quantifiable domain (e.g., DCT
coefficients, Least Significant Bit spaces) that is then to be “modulated” (i.e., altered) according
to the watermark signal.
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While, intuitively, considering other more complex encoding details and differ-

ent quality metrics might result in changes in the quantitative results, arguably,

qualitative aspects are likely to be very similar.

7.3.3 Analysis

Given a certain Work O (whose rights belong to Alice) and its watermarked

version O′, lets put ourselves in the position of Mallory attempting to attack O ′ and

yield an un-watermarked Work O′′, still usable with respect to O.

There exists a court-authority to which both Mallory and Alice would like to

prove their rights ownership to. Lets assume this court mandates a certain maximal

value on ǫw (see Section 2.1), for example 3% 2 , value which Mallory knows (usually

public). There also exists an associated maximal allowable distortion bound, ∆umax

(the radius of Umax), guaranteed on the resulting watermarked Work with respect to

the original. This value is probably also public as it is included in the watermarked

Work specification, delivered by Alice.

Mallory knows O′ and it is only reasonable to assume that it is also aware of the

quality metric (e.g., MSE, see Section 7.3.2) associated with the data domain of the

Work in question. What Mallory doesn’t know is the original Work O as well as its

maximal usability vicinity (Umax).

Getting back to playing Mallory, what are our options in attacking? Given the

knowledge of O′, it is the only natural starting point of our attack. It is also safe to

assume that Alice encoded a watermark that does not exceed the ǫw false positive

rate (modeled by Umax ∩ Uwm), thus

||Umax ∩ Uwm|| = ǫw||Umax||

Given this limited amount of available knowledge, the remaining thing to do is

to randomly define a distance Ra from O′ and “attack” by picking a point inside the

resulting Ra radius vicinity of O′, Uattack, see Figure 7.1.

2The court is convinced only above a 97% true-pozitive rate.
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Note: Because we know ǫw, we can estimate the minimal area of Uwm as being

at least ǫw||Umax||. This is why when choosing Ra we have to make sure that the

resulting Uattack vicinity shape is larger than Uwm. Thus we have at least

Ra >
√

ǫw∆umax

Otherwise, this, and the fact that Uattack is also centered in O′ lead immediately to

the conclusion that each point inside of Uattack corresponds to a watermarked Work,

thus no attack success is achieved. Thus, we can improve our success probability

even more by picking an “attack point” only within Uattack \ Uǫw
, where Uǫw

is a

vicinity of O′ of radius ǫw. For space reasons this provision is not included in this

analysis. An extension is discussed in Section 7.3.4.

Also because ∆umax is assumed to be public, Mallory can infer that there is no

point in choosing an Uattack larger than required to just include Umax (all points out-

side of Umax are irrelevant anyway). Thus at the limit, Ra < 2∆umax. In conclusion,

we have
Ra

∆umax

∈ (
√

ǫw, 2) (7.2)

Given the above, a successful attack is one which yields results in the area Usa =

Umax ∩ (Ua \ Uwm). The probability of this becomes then

Psa =
||Usa||
||Ua||

=
||Ua2 \ Uwm1||
||Ua||

=
||Ua2|| − ||Uwm1||

||Ua||
(7.3)

We know that
||Uwm ∩ Umax||
||Umax||

=
||Uwm1||
||Umax||

= ǫw

||Umax|| = π∆u2
max

and

||Ua|| = πR2
a

thus (7.3) becomes

Psa =
||Ua2|| − ǫw||Umax||

||Ua||
=
||Ua2|| − ǫwπ∆u2

max

πR2
a

(7.4)
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Convince-ability Trade-off: Equation (7.4) outlines the direct relationship

between the probability of a successful attack and ǫw.

The smaller the ǫw value is (i.e., the more “convincing” in court,

from a false-positive rate point of view), the higher the probability

of success of an attack.

Because the usability shapes are “circular” (see Section 7.3.2), the radius of Umax

is ∆umax and the radius of Ua is Ra. ||Ua2|| becomes

||Ua2|| = ∆u2
maxcos−1(

d2 + ∆u2
max − R2

a

2d∆umax
) + R2

acos
−1(

d2 − ∆u2
max + R2

a

2dRa
)−

1

2

√

(−d + Ra + ∆umax)(d + Ra − ∆umax)(d − Ra + ∆umax)(d + Ra + ∆umax) (7.5)

where d = d(O, O′) is the distance between O and it’s watermarked version (O′) 3

Because O′ has to be within maximum allowable usability vicinity of the original, it

is necessary that d ≤ ∆umax. It can be seen that ||Ua2|| decreases with the increase

of d. It reaches minimum when d is maximal, namely when d = ∆umax, in other

words, when the watermarking algorithm produces a resulting watermarked Work

O′ (asymptotically) on the boundary of Umax.

Optimality Principle: From (7.4) and (7.5) we derive that (in our class)

the vulnerability of a watermarking scheme is minimized when it

yields watermarked results on the boundary of the maximum al-

lowable usability vicinity of the original un-watermarked Works.

Recommendation: The optimality principle postulates (and we prove it for

this example) the naturally occurring minimization of the successful attack proba-

bility on the usability vicinity boundary. This yields a recommendation to make the

3For simplicity, this formula is valid for values of Ra < ∆umax, see [64]. The reasoning for Ra ∈
(∆umax, 2∆umax) is identical.
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watermarking algorithms by design conform to this principle. Choosing this design

in our relational database watermarking software increased its resilience to random

ǫ-attacks (see Chapter 3) by as much as 15%.

From now on let us assume that we are going to conform to this principle, in

other words d = ∆umax, in which case we have the revised version of (7.5)

||Ua2|| = d2 cos−1(1− R2
a

2d2
) + R2

a cos−1(
Ra

2d
)− 1

2
Ra

√

(2d− Ra)(2d + Ra)

and (7.4) becomes

Psa =
d2 cos−1(1− R2

a

2d2 ) + R2
a cos−1(Ra

2d
)− 1

2
Ra

√

4d2 − R2
a − ǫwπd2

πR2
a

For a typical value of ǫw = 0.03 (e.g., the court is convinced with a 3% false-

pozitive rate) Figure 7.2 (a) depicts Psa as a function of the Ra/∆umax ratio. It can be

seen that there exists a clear maximum vulnerability spot (around Ra/∆umax = 0.4)

in which the probability of success of an attack exceeds 30 − 35% ! This result

is not dependent on the technicalities of the watermarking method. It becomes so

much more compelling as it occurs for any marking algorithm (using similar Works

quality metrics, see Section 7.3.4) and any input. In this same figure we depicted

the evolution of Psa for ǫw = 0.01. This more court-convincing setting (lower false-

positive rate) results in even higher attack success rates (up to 40% and above).

From Mallory’s perspective this is good news. It turns out that it is possible to

defeat watermarking algorithms with a surprisingly high success rate, without any

additional (insider’s) knowledge 4. This is the case even if these algorithms conform

to the optimality principle outlined above. There seems to exist a “sweet spot”

(characterized by Ra

∆umax
∈ (0.4, 0.6)) in which Psa is maximized. Mallory could make

use of this by fine-tuning its attacks. This is confirmed in real data experiments (see

Chapter 3) in which random attacks were more likely to succeed within this range.

4This is an inherent limitation of watermarking as a concept. From the smart attacker’s perspective,
any additional knowledge can only improve on this probability.
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7.3.4 Discussion

In the previous sections we analyzed a special class of watermarking algorithms

considered to be simple and illustrative enough yet within the space and complexity

constraints of the current scope. This class is defined by a set of assumptions.

The quantitative details of our attack analysis are developed for a particular data

quality metric, mean squared error. This resulted in the usability vicinity for the

watermarking algorithm considered to be continuous and of a spheric shape. How

restrictive are these assumptions? Can the results be applied to broader classes of

algorithms and how? In the following we are discussing these and other issues and

propose extensions.

High dimensional usability spaces. In the above we considered a finite

dimension of the usability space. In particular, the quantitative analysis was per-

formed on 2D shapes. While many of real life applications feature only a finite

dimensionality we can’t help to wonder what happens (e.g., to Usa) when the num-

ber of dimensions of the usability space grows. To the extreme, what happens when

we go to infinity? While a full fledged analysis is out of the current scope, the in-

tuitive feel is that in that case Usa goes to zero. On the other hand, arguably, the

Usa/Uattack ratio has to be preserved. Thus it is unclear what the behavior would be

in that case. We propose to explore this in future research.

Shape. The assumption of a particular quality metric (mean squared error)

determines directly the shapes of the analyzed Work’s usability vicinities. How does

this affect the generality of our analysis? With respect to continuous shapes, while

quantities may vary, the behavior of any watermarking algorithm is arguably ruled

qualitatively by the convince-ability trade-off. This is an immediate result of the

generality of (7.3) which does not depend on shape.

The validity of the optimality principle is intuitive for quality metrics resulting in

convex usability vicinities. As the watermarked results are closer to the boundary of

Umax, the probability of success of an uninformed attack decreases (see Figure 7.1).
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This is not obvious in the non-convex case. Figure 7.3 (b) illustrates a case where it

does not work. Both O′
1 and O′

2 are (asymptotically) on the boundary of Umax but

while O′
1 seems to minimize it’s associated Psa, O′

2 offers a highly attackable starting

point for an uninformed Mallory5. A possible solution could be the construction of

a “safe” subset of the shape’s boundary. In this case, a watermarking algorithm

should start by determining a subset of Umax in which watermarked Works result in

a minimized Psa. This is subject to further exploration.

Sparsity. How does our analysis suffer if the considered usability vicinities

(e.g., Umax, Uwm) were to be sparse, “scattered” throughout Udata? Sparsity in this

domain is directly related to the function defining the maximal allowable change to

the initial Work. While most known applications (e.g., wavelets, DCT for media)

feature continuous usability vicinities 6, considering the case of sparsity becomes in-

teresting as it might offer more generality. Sparsity is often associated with higher

level semantic constraints. One scenario, image watermarking within a health care

framework might present various legal and medical restrictions. For example, en-

coding a mark in a composite heart-disease image might be required not to result in

alterations to the actual region containing the heart itself.

Given the sparse nature of the vicinity shapes (see Figure 7.3 (a)), it all boils

down to the assumption made about the amount of knowledge available to Mal-

lory. If Mallory is aware of the details of the actual cause of sparsity (i.e., function

of allowable change), then it can deploy a virtually identical attack (with the one

considered in our initial analysis) targeted at each sub-part composing the sparse

distribution. In this case our analysis is identical.

The scenario becomes different if this knowledge is not available to Mallory. In

this case the only viable option is to randomly attack within the known data do-

main. In this case the attack success probability has to suffer at least by a factor of

Umax/Udata (assuming uniform distribution of the sparse fragments of Umax through-

5Because its attack vicinity (Uattack2) “intersects” comparably much of Umax as any interior point
does. As discussed in the case of the optimality principle, interior points are by default non-optimal.
6Encoding ultimately occurs by altering a set of numbers within MSE types of constraints.
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out Udata). Apparently this is good news for Alice. It seems that if the distortion

constraints are of a higher semantic nature (i.e., resulting in sparse vicinities), suc-

cessful watermark embedding 7 is less vulnerable (by a factor of Umax/Udata). This

scenario requires more attention.

Partial Sparsity. A particular case occurs when only some of the vicinities are

sparse, for example Uwm. This is equivalent to saying that the false positive upper

bound, ǫw is “spread” throughout Umax. Then (see Figure 7.1) in (7.3) ||Uwm1|| is to

be replaced by ǫwUmax
Ua2

Umax
= ǫwUa2 (assuming uniform distribution of Uwm1 across

Umax) and we yield

Psa = (1− ǫw)
||Ua2||
||Ua||

(7.6)

with a similar qualitative behavior to (7.3), thus our analysis holds.

Increasing Psa. In the case of a continuous Uwm, Mallory can increase Psa even

more as follows. Knowing ∆umax and

||Uwm1|| = ǫwπ∆u2
max

can immediately result in the computation of the radius Rwm of (the entire) Uwm with

a formula similar to (7.5). Once Rwm is known, Mallory can increase Psa by choosing

a point only within Uattack \Uwm which is now clearly specified. This increase to Psa

in (7.4) could be quantitatively significant, in our example, by a factor of

R2
a

R2
a + R2

wm

7.4 Discussion

7.4.1 Oracle Attacks

But couldn’t Mallory simply try out different watermarking keys with the purpose

of removing a potential watermark in a given Work? While this might appear to be

7Although probably less likely to succeed given these very constraints often hard to accommodate.
For example most watermarking methods in the frequency domain [3] can not directly handle a
constraint such as the health-care example above.
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a valid concern at a first glance, a deeper insight will immediately reveal the fact

that, in order to actually “know” that a certain key does or doesn’t “work”, Mallory

needs to “ask” somebody that does know. This would be usually Alice (the actual

rights holder, see Figure 1.2) or any party enabled to deliver such a response. Let’s

call this party an oracle and Mallory’s attempts an oracle attack. An oracle could

be used by Mallory to effectively “explore” usability spaces possibly “plotting” them

out fully, thus defeating any other watermark.

Fortunately, oracle attacks are not of concern in the general case simply because

such oracles do not exist usually. The incentive of Alice or anyone else being able

to perform watermark detection (thus usually possessing the original key – in a

symmetric watermarking system), in doing so at the request of arbitrary third parties

is (arguably) zero.

While the existence of an oracle is not (arguably) of concern, Mallory could

however attend court sessions in which certain Works are in dispute. Because of the

nature of most court-proceedings, the watermark detection key is going to be usually

subject to public disclosure (or limited to the disputing parties, but then Mallory

could be one of them). This would enable Mallory to (in effect) build a limited oracle

attack machine by collecting disclosed copies of (Work,watermark) pairs. While we

believe that the limited number of such disclosures does not generally enable effective

oracle attacks (with respect to the usually large key space), nevertheless, we believe

that oracle attacks are interesting to explore, for example under a limited oracle

model (e.g., limited number of allowed inquiries). Alternately a zero-knowledge

method for mark detection could be devised. This is subject for future research.

Another related public-disclosure court-related issue is the fact that, in the case

of symmetric watermarking methods, revealing the detection key is equivalent to

revealing the original (un-watermarked) Work. The court cost-model and default

trial claims should be devised so as to consider this and provide strong counter-

incentives for Mallory. The damages that Mallory should pay to Alice should cover

also this associated public disclosure of the original Work.
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7.4.2 Persuasiveness and Watermark Length. Distance Metrics

In this section we are trying to answer the following question: what happens if the

recovered watermark is disturbed with respect to the expected one? In other words,

how convincing is a proof based on a detected watermark that does not exactly match

the original? As the main goal of such a solution is to provide a method for proving

ownership of data in a court of law this question becomes of particular concern.

We start the search for an answer by a reminder that the essence and resilience

power of a certain watermark as a rights protection witness (its ability to convince

in court) can be naturally modeled by the “improbability” of its occurrence in a

random piece of data (see Chapter 2). The probability of a random occurrence of

the watermark property (false positives) needs to be bounded and sufficiently small.

Nevertheless, because watermarking deploys Information Hiding and historically de-

rives from it, the common practice is to associate the (essentially boolean) watermark

property with a string of bits with some attached meaning, e.g., “(c) walmart”. Then

the Work to be protected is said to be watermarked if it somehow “hides” the given

string of bits. In other words, the boolean watermark property now becomes the

predicate “Work contains mark string”. The challenge of a good watermarking al-

gorithm is to make optimal use of the data in such a way as to maximize the ability

to answer the “contains mark string” question at detection time, beyond doubt (i.e.,

beyond a certain threshold of likelihood, e.g., 97%) while retaining its value.

Given a certain amount of encoding bandwidth (e.g., considering a particular

encoding method), at one extreme, the mark string can simply be 1 bit long, in

which case it directly corresponds to the boolean translation of the yes/no answer

to the detection question. In the other extreme, the mark string could be as long

as the actual available bandwidth. In the general case, the watermark is probably

going to be of a size equal to a fraction of the available bandwidth.

In all of these encodings, the main resilience of the particular method is not

related to the length of the mark string but rather to the resistance to attacks



198

(of the ability to answer the question beyond doubt) and the probability of false

positives, directly deriving from the underlying maximal bandwidth. As also outlined

in Section 2.3, this is one of the important differences that distinguish Watermarking

from pure Steganography. In Watermarking, what matters is the available underlying

encoding bandwidth and its optimal utilization in inducing a highly-unlikely data

property (rights witness) resistant to alterations and attacks. The payload (mark

bit) size and content plays a little (if any) role in rights protection. The underlying

bandwidth is the element that directly defines the available encoding entropy.

For example, packing/hiding x y-sized bit strings into a z = xy sized underly-

ing band (e.g., z “fit” tuples) is ultimately equivalent from a convince-ability point

of view with packing 2x y

2
-sized strings in the same z sized band. Intuitively, us-

ing a mark string longer than one bit does not affect the inherent mark resilience

(probability of a false-positive and resilience to random changes) but rather only

the ability to recover all the mark bits correctly, as each bits embedding is going

to be on average weaker (less underlying “support” bits, before error correction).

But, because the mark string is longer, the probability that it appears randomly

(even damaged) decreases with its length. In summary, the resulting false-positive

probability is the same and derives from the number of underlying available bits,

before error correction, an often clearly quantifiable measure.

For example, as also discussed in Section 4.4.4 the likelihood of a certain string of

size s to appear in a random Work is 2−s. Thus if the original underlying watermark

bandwidth was (approximately) N
e

(see Section 4.3.3) and, at detection time it turns

out that Mallory succeeded in distorting a number of l bits in the result (before error

correction), this likelihood drops down according to the number of still “matching”

bits and it becomes 2−(N
e
−l). The convince-ability of the embedding is then 1 −

2−(N
e
−l). If N = 6000, e = 60 and Mallory succeeds in eliminating 50% of the bits

(i.e., l = 50, highly unlikely, see Section 4.4.4), this is still a very convincing 1−2−50,

very close to 1.
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With respect to the mark string associated with a given watermark, the ques-

tion arises: how do we compare two strings in this domain in a quantifiable way?

More specifically, how do we measure watermark distortion? Because of the direct

dependence between the number of correct recovered watermark bits and the actual

encoding convince-ability outlined above, we chose to use the hamming distance as

a natural metric for mark loss 8. Thus, if w is the “original” mark string and w′ a

“distorted” version of it, then the mark distortion is defined to be the normalized

Hamming distance Hamming(w,w′)
|w|

, between the two strings. Using a normalized value

ensures the ability to compare distortion values between different applications (i.e.,

with different mark string sizes).

7.4.3 Note on Collusions

In this dissertation Watermarking was defined as a method deploying Information

Hiding for the purpose or Rights Assessment for Digital Works. A related mechanism

that could benefit from some of the tools developed here, is fingerprinting, i.e.,

deploying Information Hiding for the purpose of tracing license agreement violators.

Fingerprinting works by deploying different watermarks for each sold copy of a

certain digital Work, each mark identifying the legal license purchaser of the corre-

sponding Work. If a certain Work containing a watermark pointing to party A is

then found in possession of a different party B (or in the public domain) it can be

inferred that A did provide B with a copy of the Work. This may or may not violate

A’s use license for the Work.

A specific challenge associated with fingerprinting is an attack by multiple ma-

licious parties “colluding” by e.g., purchasing (different) copies of the same Work

(i.e., fingerprinted with different watermarks) and then “combining” them into one

copy that doesn’t contain a valid watermark anymore.

8Because the actual dependency is exponential, this also models a somewhat logarithmic scale of
the “loss of convince-ability”.
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While some of the tools and solutions developed in this dissertation could be used

for fingerprinting, this potential was not addressed in detail here. This is also why

collusion attacks have not been specifically discussed as, for rights assessment only,

it is (arguably) reasonable to assume the existence of a single watermark identifying

the rights owner throughout the lifetime of the digital Work 9.

While arbitrary large collusions (many Mallory’s) cannot be defeated against10 if

one can bound the number of possible sold copies (and thus the maximum collusion

size) a special coding scheme was designed to defeat against collusions [15]. These

results can be directly applied in our framework. It would be interesting for future

research to explore this into more details.

7.5 Conclusions

In this chapter we explored limitations of watermarking. We asked: does it indeed

live up to its expectations? Are there generic limits to it? We then quantified those

limits for a broad class of applications and discovered a set of associated bounding

principles. Published results of this work include [6].

9If the rights-owner changes (e.g., from A to B) an external sale-document can be signed by A and
handed to B specifying the “sale of rights” and the actual watermark can remain un-changed in
the sold Works.
10At the extreme, each Mallory’s copy contains at least one bit of the original Work. Then a
collusion equal to the bit-size of the Work can simply concatenate these “correct” bits together to
obtain an original un-watermarked Work.
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8 THE FUTURE

In this dissertation we defended our thesis that Information Hiding can be success-

fully deployed as a tool for Rights Assessment for discrete digital Works. We defined

and explored a foundational model and used it to discover associated principles and

challenges of watermarking. We proposed and analyzed solutions for resilient Infor-

mation Hiding for different discrete data types, including numeric and categorical in

a relational framework, streaming sensors, and semi-structured aggregates.

This work yielded real-world impact results, including a industry-level software

package for relational data watermarking and an associated pending patent appli-

cation. We believe it to be of significant additional potential, for example in the

deployment in an industry standard database management system.

A multitude of associated research avenues present themselves, including: a

deeper understanding of limits of watermarking for a broader class of algorithms, the

ability to defeat additive watermark attacks, an exploration of oracle attacks, zero-

knowledge watermarking, deploying the solutions introduced here for fingerprinting,

a solution for categorical sensor streams, handling scenarios at the intersection of

numeric and categorical data types in a relational framework.

Additionally, of particular interest for future research exploration, we envision

cross-domain applications of Information Hiding in distributed environments such

as sensor networks, with applications ranging from resilient content annotation to

runtime authentication and data integrity proofs.

As increasing amounts of valuable discrete information is transferred through and

processed within distributed inter-connected environments, the technological ability

to assert and prove associated rights (and possibly propagate integrity proofs) be-

comes essential. Our work is to constitute a step toward an unified rights protection

framework for arbitrary digital Works.
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A APPENDIX

Appendix A: Excerpt from the Wal-Mart Sales Database Schema

(842,556,378 tuples)

Table Univ_Class_Tables.Item_Scan

Visit_Nbr Integer Not Null

, Store_Nbr Smallint Not Null

, Item_Nbr Integer Not Null

, Item_Quantity Decimal(9,2) Not Null

, Total_Scan_Amount Decimal(9,2) Not Null

, transaction_Date Date Format ’YYYYMMDD’ Not Null

, Unit_Cost_Amount Decimal(9,4) Not Null

, Unit_Retail_Amount Decimal(9,2) Not Null

, Tax_Collect_Code Char(1) Not Null Compress ’1’

Primary Index (Visit_Nbr);

(835,760,698 tuples)

Table Univ_Class_Tables.Visit_Scan_lookup

Store_nbr SMALLINT NOT NULL,

, Transaction_date DATE Format ’YYYYMMDD’NOT NULL,

, Item_Nbr INTEGER NOT NULL,

, Visit_nbr INTEGER NOT NULL

Primary Index (Store_Nbr, Transaction_Date, Item_Nbr);
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