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Abstract

In this paper, we simulate the Code Red II and
Nimda worms on different enterprise-scale net-
works to determine the impact that topology has
on worm propagation. A corporate network can
be designed to improve security and, as we show,
to decrease the propagation rate of worms that
use network scanning as a target discovery tech-
nique. We also examine the impact that LaBrea-
like devices have on propagation rates and com-
pare it to the impact of network topology.

1 Introduction

Due to their fast spreading nature and po-
tential damage to the network infrastructure,
worms have become a network security concern.
Though there has been a good deal of work de-
voted to studying various aspects of worm propa-
gation on the Internet, there has been little work
that has examined worm propagation in a cor-
porate enterprise network. Unlike the Internet,
each company has complete control over the de-
sign of their internal network.

In this paper, we focus on the impact that net-
work design has on worm propagation. Using
simulations, we examined the propagation of a
Code-Red-like and a Nimda-like worm through
a typical enterprise network of approximately
10,000 hosts. Two different network topologies
were simulated with each worm. We also simu-
lated the impact that LaBrea-like devices would
have on the worm propagation. In total, eight
scenarios were simulated.

In this paper, we show that the propagation of
physical network scanning worms, such as Code-
Red, can be mitigated by the introduction of in-
ternal firewalls and LaBrea-like devices. When
faced with a worm that uses both physical and
logical networks (e.g. an e-mail network) for
propagation, such as Nimda, these mechanisms
are found to be ineffective and additional logi-
cal network defensive techniques are needed. In
addition to providing results on the impact of
network design, we think this is the first work
to simulate a worm like Nimda that uses both e-
mail and network scanning as an infection mech-
anism.

In Section 2 of this paper, we examine the
background work including previous work on
worm simulations and modeling, a description of
the worms that we simulated, and an overview
of network defense mechanisms. Section 3 de-
scribes the two network topologies that we sim-
ulated and Section 4 describes the network and
e-mail simulator that we built. Section 5 pro-
vides the simulation results, Section 6 provides
future work, and Section 7 concludes the paper.

2 Background and Previous

Work

2.1 Worm Descriptions

In this section, we give an overview of the two
worms that were simulated. Both worms were
released on the Internet and caused widespread
infections. They were chosen because they have
different activation, or infection, techniques and
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because they were successful in infecting millions
of systems [5].

2.1.1 Code Red II

The CodeRed II worm exploits a buffer-overflow
vulnerability in IIS servers running on Windows
2000 [9]. An infected server will scan for and
infect other vulnerable servers. When a server
is infected, the worm code remains dormant for
one day and then starts to scan for vulnerable
servers. When the worm generates an IP ad-
dresses to scan, it chooses 50% from the same
class-A, 37.5% from the same class-B, and 12.5%
from a random network.

2.1.2 Nimda

The Nimda worm affects Microsoft Windows
9x/ME, NT 4.0 and 2000 machines [3]. Nimda
is unique because it uses four different propaga-
tion techniques to infect other systems. It will
scan for and infect IIS servers that are vulnera-
ble to a Unicode and escaped character decoding
vulnerability. It will search the system for e-
mail addresses and send an e-mail to the address
with the worm as an attachment. Nimda will
also search for local files with an HTM, HTML
and ASP extension and append itself in a script
that will exploit vulnerable versions of Internet
Explorer. Lastly, Nimda will search for open
network shares and copy a malicious DLL file to
them. When a host is infected, it immediately
attempts to use all four infection vectors. When
the worm generates an IP addresses to scan, it
chooses 50% from the same class-B, 25% from
the same class-A, and 25% from a random net-
work.

2.2 Worm Modeling and Simulation

Traditionally, researchers have studied the
spread of computer viruses and worms by us-
ing epidemiological models that were developed
to study the spread of infectious biological dis-
eases [6]. Kephart et al., were the first to ap-
ply epidemiological models to model propaga-
tion of computer viruses in a series of studies
[16, 15, 14]. Staniford et al. modeled the spread

of the CodeRed worm using the classical epi-
demic model [22] and Zou et al. modeled Code
Red with the effect of human countermeasures
and network congestion [27].

Chen et al. presented a model called the
Analytical Active Worm Propagation (AAWP)
model that uses a discrete time model and deter-
ministic approximations to model network scan-
ning [4]. This model can also examine worms
that favor the local network when scanning.
These models were not used for our work be-
cause they focus on the spread of worms in the
Internet, take only network scanning worms into
account, or cannot easily incorporate filters and
firewalls.

Realistic mathematical models are the best
way to characterize and study computer worm
propagation, but they are usually hard or even
impossible to create [24]. Similarly, creating re-
alistic testbeds is also difficult because of the size
requirements. Therefore, simulation is an effec-
tive technique that is used to understand and
study worm propagation.

Wagner et al. [24] developed a worm sim-
ulator and documented their experiences with
it. Two popular simulation frameworks that can
model worms are Ssfnet [21] and EASEL [7]. N.
Weaver also wrote a small, abstract simulator of
a Warhol worm’s spread [25]. The NWS simula-
tor [8] is a simple Perl simulator that examines
connectivity between hosts and does not take la-
tency and bandwidth into consideration.

2.3 Defense Techniques

2.3.1 Containment

Moore et al. [18] simulated firewalls, content fil-
ters, and automated routing blacklists on the In-
ternet to contain a worm outbreak. They find
that content filtering can be more effective than
address blacklisting. Zou et al. [28] analyzed an
Internet-scale dynamic quarantine.

The previous two containment strategies were
for the Internet, but Staniford et al. [23] exam-
ined the effectiveness of containment strategies
in enterprise networks by identifying and block-
ing suspicious IP behavior. In our work, we
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study if the static design of enterprise network
topology can be effective in mitigating worm
propagation.

2.3.2 Network Topology

Recent work has been conducted to identify a
relationship between worm propagation and net-
work topologies. Briesemeister et al. [2] study
the spread of computer worms in artificially cre-
ated scale-free networks (power-law networks),
which the Internet is. They report that some
scale-free network topologies are inherently more
defensible than others against rapidly spreading
computer worms.

Newman et al. [19] explore the spread of email
worms in the “logical network” created by e-mail
connectivity. The connectivity graph from e-
mail address books is semi-directed and shows
a strongly connected giant component. The au-
thors show that the outbreak size can be signifi-
cantly reduced if 10% of nodes are removed from
the giant component.

2.3.3 Secure Network Design

There is little formal work specifically on secure
network design, but there are guidelines that are
offered by network companies and general secu-
rity guidelines that can be easily applied [10] [12]
[20]. The basic premise is to identify the value
and the risk associated with each system, or as-
set. Systems with similar value and functionality
can be grouped together and extra security mea-
sures placed around them.

In the case of an internal corporate network,
this typically involves identifying the servers and
desktop systems that have the most valuable in-
formation. The information could be financial
records, customer information, and other IP. For
example, with a secure design the financial de-
partment may be a separate subnet from the fac-
tory workers and firewalls prevent access to the
financial subnet except for key services from spe-
cific subnets.

2.3.4 LaBrea

The LaBrea tool [17] is a simple program that
Tom Liston designed after the outbreak of Code
Red to reduce a worm’s scanning rate. It is a
service that listens on the network and waits for
an ARP request that is not being responded to.
When this occurs, it assumes that the IP address
is not being used and it responds and establishes
a TCP connection. It will not close the connec-
tion or respond and will wait until the sender
times out. The sender will then use exponential
back off to resend the packet, which may repeat
for up to two minutes. Although, the worm may
give up earlier than that.

Chen et al. [4] used their AAWP model to
evaluate the performance of LaBrea in miti-
gating worm propagation through the Internet.
They found that the Internet needs at least 218

LaBrea hosts to effectively defend against active
worms.

3 Network Designs

This section describes the network topologies
that we used to simulate the worm propagation.
The goal was to simulate a typical 10,000 person
enterprise network that has not been designed
for security and a similar network that has.

To determine the number of servers that typi-
cally exist in a 10,000 person company, we asked
colleagues who have done security and network
consulting for companies of this size because no
reference material could be found with this in-
formation. Based on the worms that we were
simulating, we were concerned with the number
of web servers and the number of desktops.

The enterprise network that we simulated had
400 web-based applications and a production en-
vironment with two applications per web server.
Each application may have one QA and one stag-
ing web server. To determine where to put the
production servers, we used research that shows
that 80% of traffic leaves a group or subnet and
is destined for a remote server and 20% of traf-
fic stays in the local network [11]. Therefore, we
put the application servers in central server farm
and placed two Intranet servers in each subnet.
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Figure 1: The flat network topology that was
used to simulate the worm propagation.

The simulated network had a total of 96 class-
C subnets containing 11,800 desktop Microsoft
Windows systems and 880 Microsoft IIS web
servers. The topology of the typical network,
also called the flat network, can be seen in Figure
1. In this network, each system had connectivity
to every other system. There was one subnet for
the server farm with 200 production IIS servers.
There were four subnets for the software develop-
ers and each of these had 100 desktop and 100 IIS
servers. The IT subnet had 150 desktop systems
and 100 IIS servers. The remaining 90 subnets
were for “normal” desktop users and each had
125 desktops and 2 IIS servers. The flat network
had no internal firewalls.

This network was made more secure by adding
firewalls to each of the subnets. The following
filtering rules were used:

• All subnets can send e-mail to all subnets

• All subnets have outbound HTTP access to
the Internet.

• The server farm subnet allows inbound
HTTP access from all subnets.

• All “normal” subnets allow inbound HTTP
access from only the IT subnet

• All developer subnets allow inbound HTTP
access from only the IT subnet and other
developer subnets.

Figure 2: The filtered network topology that was
used to simulate the worm propagation.

• The IT subnet denies inbound HTTP access
from all subnets.

We can see the the filtered network in Figure 2.
We see that the developer network cannot con-
nect to servers in the normal subnets, but that
IT systems can. Any system can make connec-
tions to the server farm.

Our simulations also included two scenarios
that added LaBrea-type hosts to the flat net-
work design. The first scenario filled the unused
IP addresses in the server farm, developer net-
work, and normal subnets with LaBrea hosts.
The second scenario created 50 new class-C sub-
nets filled with LaBrea Hosts.

For our simulations, we assumed that there
was a firewall protecting the enterprise network
from the Internet and that it blocked incoming
HTTP traffic. We assumed that the initial net-
work infection was from an employee’s laptop
that was infected while at home. Therefore, the
infection will start in one of the developer, IT,
or normal subnets.

4 Simulator Design

4.1 General Design

For our simulations, we modified Bruce Ediger’s
NWS [8] simulator. It was chosen because it was
basic and primarily concerned with the connec-
tivity of networks and not the details of delay
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and throughput. Ultimately, it was too basic
and we had to add support for subnets, routing,
and filtering.

The Perl-based simulator initializes by creat-
ing hosts and network connectivity. The simu-
lator works in cycles and each host is examined
during a cycle. If the worm has infected a host,
then the host will perform one scan during the
cycle. If a host has not been infected, then it will
do nothing during the cycle. When a host needs
to communicate with another host, it sends a
message, which is the equivalent to a network
packet. The message payload is code that the
recipient will execute if they accept the message.
In our case, the payload is the worm code. Net-
work filters can block the message from being
delivered.

4.2 Simulating Network Propagation

This section will describe how we simulated the
network scanning worms. The first step was to
create the network topology using three types of
hosts: servers, desktops, and LaBrea. All of the
hosts started with no resident code. When the
simulation started, a host in a specified subnet
was infected by adding the worm code to it.

The worm code used the worm’s specific scan-
ning algorithm to identify other servers send
messages to. If the receiver of the message was
vulnerable and not already infected then it would
become infected. To simulate the time required
to download the code and infect the victim, both
the sender and victim would sleep for the next
6 cycles. When a LaBrea host was infected, it
would cause the sender to sleep for 120 cycles.
This was to simulate the sender not being able
to close its network connection. Both of these
values were arbitrarily chosen, but should not
have significant changes on the results. Filters
were added to the network topology when the
filtered network was simulated.

4.3 Simulating E-mail Propagation

To simulate e-mail propagation, each desktop
host was considered to have a user that would
check email from time to time. In the simulator,

e-mail was sent using the same message infras-
tructure that was used to pass server traffic, ex-
cept it was sent on port 25. Based on the general
design of email and the goals of the simulation,
we were presented with the following major chal-
lenges:

• Modeling e-mail network topology: E-
mail worms propagate using a logical net-
work based on address book entries and not
a physical network topology.

• Modeling e-mail checking patterns: E-
mail worms, in general, infect the host only
after the user manually opens the attach-
ment and not when the message is first re-
ceived.

In our simulation, we assumed that a user
opened all of his new e-mail when the e-mail
was checked. If one of the new e-mails contained
a worm message, the host became infected and
the worm code was be executed. We did not
model re-infections i.e., if an infected system re-
ceived a second worm than nothing happens. We
assumed that address books would not change
through the duration of the attack. This was
not unreasonable considering that our simulation
time frame was less than an hour. In the fol-
lowing sections, we describe how we approached
the aforementioned challenges. The terms e-mail

graph,e-mail topology and users,nodes are inter-
changeably used in the following discussion.

4.3.1 E-mail Network Topology

To the best of our knowledge, only two studies
have examined e-mail network topology. New-
man et al. [19] used the address books of users
at a university campus to build a graph model.
The resulting graph had a giant strongly con-
nected component and was semi-directed. The
degrees of the graph nodes were found to decay
following either a simple or a stretched exponen-
tial distribution.

Zou et al.[26] used three models for gener-
ating e-mail networks: a random-graph model,
a small-world model, and a power-law model.
Based on their observation of Yahoo! groups
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mailing list sizes, the authors concluded that a
power-law model was the most accurate model.
In a power-law model, the distribution of the de-
grees obey a power-law distribution.

We hypothesize that in a typical organiza-
tion that is structurally divided into departments
(like the one we simulated), the following asser-
tions hold:

1. E-mail address books will have most of the
entries filled with users in the same depart-
ment.

2. For any two users Alice and Bob, if Alice
has Bob in her address book, Bob is likely
to have Alice in his address book.

Assertion 1 implies that the e-mail graph de-
rived from the address books should exhibit
small-world characteristics with clustering be-
tween users within the same department. As-
sertion 2 implies that most of the edges in the
resulting graph should be bi-directional. Based
on our own hypothesizes and the observations by
Zou et al., it was clear that we needed an e-mail
graph that exhibited small-world characteristics
with mostly bi-directional edges and node de-
grees that followed a power-law distribution.

An algorithm by Jin et al. [13] was used to
generate such graphs. It includes a value p, 0 ≤

p ≤ 1, called the local probability, which is used
to determine the proportion of connections to
local nodes. The algorithm is as follows.

1. Assign a degree di to each user i, 1 ≤ i ≤ N ,
such that di follows the power-law distribu-
tion with α as the power-law exponent and
N is the number of e-mail users in the en-
terprise network.

2. Create local connections by connecting each
user i to p ∗ di users in the same subnet.

3. Create remote connections by connecting
each user i to (1− p)∗di users in other sub-
nets.

Jin et al. observed that a network with the
characteristics that we desire can be created
with small values of the power-law exponent α

(1 ≤ α ≤ 2) and moderate values of the local
probability p (0.5 ≤ p ≤ 0.7). In our simula-
tion, we used the values α = 1.52 and p = 0.7 to
generate the e-mail network.

4.3.2 E-mail Checking Frequencies

To model user e-mail checking patterns, we used
the work by Zou et al. Note that this pattern is
based on when a user is in front of her computer
and opens the e-mail and not based on the regu-
lar interval that the client uses to check for new
e-mail.

The e-mail checking interval between consec-
utive e-mail checks by a user i is defined by a
variable Ti, i = 1, · · ·N . The variable Ti is as-
sumed to be an exponentially distributed ran-
dom variable with a mean E[Ti]. We also as-
sume that E[Ti] is a random variable, denoted
as T . Since the number of users N is large
and user habits are typically independent of each
other, T can be safely assumed to approximate
to a normal distribution (central-limit theorem)
i.e., T ∼ N(µT , σ2

T
). In our simulations, we use

T ∼ N(8, 100). Though these numbers are arbi-
trary, any change in them is unlikely to signifi-
cantly affect the results.

4.3.3 Nimda Simulation Implementation

When the simulator is initializing, each desktop
host is assigned an address book degree and a
random variable for its email checking frequency.
After all hosts have been created, we use the
power-law distribution to build the address book
for each desktop host.

When an e-mail message is sent to a desktop,
it is placed in the receiver’s queue. At each cy-
cle after receiving the e-mail, the host produces
a exponentially distributed random variable to
determine if it will open the email in that cycle.
Once the desktop “opens” the email and executes
the virus message, it sends virus messages to the
other desktops in its address book and starts to
scan for vulnerable servers. The other desktops
that the message is sent to will not become in-
fected until they randomly remove it from their
queue.
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Figure 3: 10 Rounds of Code Red II propagation
in the flat network model. The star line is the
average of the rounds.

5 Simulation Results

5.1 Code Red II Worm Results

We simulated four scenarios for the Code Red
II worm in the flat and filtered networks with
no LaBrea hosts. For each scenario, the simu-
lation was performed 10 times and the average
was calculated. We will first show the results
of each scenario and then compare the results.
Note that Code Red infects only IIS servers, so
we are not concerned about the total number of
desktops. As a reference to the real world, it was
observed that servers infected by Code Red were
conducting roughly two scans per second [4] and
therefore we can assume that two simulator cy-
cles occur per second. This is an estimate, but
any change in the value should not change the
relative changes between each scenario.

The first scenario was to simulate the worm
on the flat network. The results, shown in Fig-
ure 3, show the growth of infected servers and it
has the typical S shape. 10% of the vulnerable
servers were infected in about 750 to 1500 cycles.
On average, 10% of the vulnerable servers were
infected in 950 cycles and all 880 servers were
infected in 2750 cycles.

The next three scenarios used the filtered net-
work topology. The difference in each scenario is
where the worm started from: developer subnet,
IT subnet, or a normal subnet. The location will
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Figure 4: 10 Rounds of Code Red II propagation
in the filtered network starting in a normal sub-
net. The star line is the average of the rounds.

affect how many other servers can be infected.

The second scenario was when the infection
started in a normal user subnet. These results
can be seen in Figure 4. The normal subnets
had access to the two servers in their subnet and
the 200 servers in the server farm, which is 23%
of the total servers. In this scenario, 10% of all
servers were infected between 4000 to 6000 cy-
cles. On average, it took 4750 cycles for 10% of
the servers to be infected.

The third scenario was when the infection
started in one of the developer subnets. The
results can be seen in Figure 5. A server in a
developer subnet had access to 400 servers in de-
veloper subnets and the server farm for a total
of 600 servers, or 68% of the total network. In
this scenario, 10% of all servers were infected be-
tween 1000 to 3500 cycles. On average, it took
1900 cycles to infect 10% of the servers.

The fourth scenario was when the infection
started in the IT network, which had access to
all servers. The results can be found in Figure 6.
In this scenario, 10% of all servers were infected
between 1200 to 2000 cycles. It took 1550 cycles
on average to infect 10% of the servers. This sce-
nario had many more systems that it could infect
and the servers in the normal subnets could be
reached only from the infected IT servers. At
the end of 10,000 cycles, only 4 out of 10 rounds
had infected more than 800 of the 880 servers.
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Figure 5: 10 rounds of Code Red II propaga-
tion in the filtered network starting in the devel-
oper’s subnet. The star line is the average of the
rounds.

Figure 7 shows a comparison of the propaga-
tion rates of the flat network and each of the
filtered network scenarios. If the 10% infection
times from the three filtered network scenarios
are averaged and compared to the times in the
flat network, a 188% increase in the propagation
rate can be seen.

The total infection from the normal user sub-
nets is much smaller because it had access to only
the subnet servers and the server farm. Unfor-
tunately, with Code Red II, it is unlikely that a
normal user would be infected by the Code Red
II worm because it affects IIS servers. An in-
fection seems more likely to start from the IT
or developers network where it would be more
common for them to run IIS.

5.2 Code Red II Worm with LaBrea

We next simulated the Code Red II worm on the
flat network with LaBrea hosts installed. The
goal was to determine if we could slow the prop-
agation rate while not having to determine com-
plex network topologies and firewall rules. When
a LaBrea host was infected, it caused the infect-
ing host to sleep for 120 cycles, or roughly 60
seconds. There were two scenarios that were sim-
ulated. Their results are presented and followed
by a comparison to the results for the flat and
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Figure 6: 10 rounds of Code Red II propagation
in the filtered network starting in the IT subnet.
The star line is the average of the rounds.
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Figure 7: Comparison of the average Code Red
II propagations in the flat and filtered networks.

filtered networks without LaBrea.

The first LaBrea scenario had LaBrea hosts in-
stalled in the unused IP addresses of the server
farm, developer, and other normal subnets. This
added 11,795 LaBrea hosts to the existing net-
work. The results can be found in Figure 8. On
average, it took 8,450 cycles to infect 10% and
23,750 cycles to infect 95% of the servers. In two
of the rounds, not all of the 880 servers were in-
fected after 25,000 cycles. In these cases, it took
a long time for the systems that were initially in-
fected to infect other servers because they were
always getting stuck with a LaBrea host.

The second scenario added 50 subnets of 255
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Figure 8: 10 rounds of Code Red II propagation
in the flat network with LaBrea hosts using the
unused IP addresses in each subnet. The star
line is the average of the rounds.

LaBrea hosts to the flat network topology, for
a total of 12,750 LaBrea hosts. The number 50
is arbitrary and has no special meaning. The
results of this simulation can be seen in Figure
9. It took between 12,500 and 17,500 cycles to
infect 10% of the servers. On average, it took
15,650 cycles to infect 10% and 35,000 cycles to
infect 95% of the servers. This figure shows that
it took 85% longer to infect 10% of the systems
when using the LaBrea subnets instead of filling
in unused hosts in existing subnets, even though
only 8% more LaBrea hosts were used.

To compare the Code Red II results, we
graphed all of the simulation results, as shown
in Figure 10. You can see how the LaBrea sce-
narios had a much smaller propagation rate than
the flat network and the filtered network.

A summary of all Cod Red simulations can
be found in Table 1. We conclude that LaBrea
is a powerful tool to slow down the propagation
of worms, even when the enterprise network is
not compartmentalized. Filling in the unused
IP addresses in the flat network caused a 798%
increase in time to reach 10% server infection
and adding 50 LaBrea subnets caused a 1,547%
increase.
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Figure 9: 10 rounds of Code Red II propagation
in the flat network with 50 subnets full of LaBrea
hosts. The star line is the average of the rounds.

Table 1: Summary of the cycles needed for 10%
infection in different scenarios.

Network Design Cycles until
10% Infection

Flat 950

Filtered - IT 1,550

Filtered - Developer 1,900

Filtered - Normal 4,750

Flat with unused IP LaBrea 8,450

Flat with 50 LaBrea subnets 15,650

5.3 Nimda Worm Results

In this section, we present our simulation re-
sults of the Nimda worm. The Nimda worm is
a multi-vector worm that infects the desktops
and servers, as described in Section 2.1. For
this simulation, we used only the e-mail and net-
work scanning infection routines. To determine
how many seconds a cycle corresponded to, we
looked for references that identified the observed
scan rate of Nimda, but none could be found.
Using the values used for the e-mail frequency
checking, we think that six cycles occur per sec-
ond. As noted for Code Red, the exact conver-
sion value will not change the relative changes
between topologies.

This worm takes much longer to simulate than
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Figure 10: Comparison of the average Code Red
II propagation in the flat, filtered, and LaBrea
subnets. The shorter lines were not run for as
many cycles because all reachable servers were
infected.

Code Red II does because there are over 11,000
vulnerable hosts in our network. We simulated
only five rounds of the infection in both the flat
network and the filtered network and the results
were averaged. The flat network results can be
seen in Figure 11 and the filtered network results
can be seen in Figure 12. The graphs show the
desktop infection rate from e-mails, the server
infection rate from scanning, and the total num-
ber of infections. As can be seen, these graphs
are very similar and show that network topology
did not have an impact on the propagation.

In many enterprise networks, the number of in-
fected servers could be more important than the
total number of infected hosts, so we examined
the infection rate of only servers and ignored the
large number of vulnerable desktops, as shown in
Figure 13. We see that the filtered network slows
the infection rate, but that all of the servers are
infected in the end. This is because the virus can
pass the firewalls via e-mail, so no server is im-
mune from infection. In the flat network, it took
533 cycles to reach 10% server infection and 575
cycles in the filtered network. For 90% server
infection, it took 1,275 cycles in the flat network
and 3,325 cycles in the filtered network.

Figure 14 shows the total number of Nimda
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Figure 11: 5 rounds of Nimda propagation in the
flat network.
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Figure 12: 5 rounds of Nimda propagation in the
filtered network.

infections in the flat and filtered network sim-
ulations. The propagation is roughly the same
because email was not being stopped at any sub-
net. To reduce the impact of multi-vector worms
like Nimda, an email defense technique is also
needed.

6 Future Work

Simulating worm propagation in an enterprise
network is a new area and there are several other
scenarios that should be considered. A basic
change to our simulations would include the flat
network with outbound filtering from the server
farm subnet and filters within the server farm.
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Figure 14: Comparison of total Nimda propaga-
tion in flat and filtered network.

This would decrease the infection rate once one
of the servers was infected by a network scanning
worm. Another topology may consider an en-
terprise network with multiple campuses, which
may affect where the servers are located. Fu-
ture work should also include more research into
e-mail propagation and simulation techniques.

Research and commercial products are focus-
ing on the detection and dynamic response to
worm outbreaks in an enterprise [1, 23] and their
effectiveness could be evaluated using simula-
tors. For example, in our Code Red II simula-
tion on the filtered network, we could have mon-
itored the internal firewalls to detect a subnet
that was sending lots of packets that were be-

ing dropped. The router for that subnet could
have quarantined the network from the enter-
prise. The simulations could also account for
systems being patched or new virus definitions
that are installed while the e-mail virus is prop-
agating.

7 Conclusion

In this paper, we have examined the impact that
network topology has on worm propagation by
simulating two widespread worms on different
networks. An enterprise network can be more
easily redesigned than the Internet and therefore
this work could be used by network designers and
companies when they examine the benefits of re-
designing a network.

By simulating the Code Red II worm we were
able to show that, on average, it took almost 3
times as long for our network with internal fire-
walls to reach 10% infection when compared with
the same network without internal firewalls. On
the other hand, by simulating the Nimda worm
on the same network topologies, we were able
to show that when a logical network, such as e-
mail, is used by a worm, then static physical net-
work defenses, such as firewalls, are ineffective.
Dynamic defenses and logical network defenses
may provide better results and it is likely that
many worms in the future will use multiple at-
tack vectors. We believe that this was the first
work to simulate a worm using network scanning
and e-mail as propagation techniques.

Using the Code Red II worm, we simulated
the effect that the LaBrea network device has on
slowing network infections. These results showed
that LaBrea devices have a bigger impact than
topology alone for network scanning worms. Fur-
ther, the simulations showed better results from
creating subnets filled with LaBrea hosts instead
of filling in unused IP addresses in existing sub-
nets. In practice, LaBrea systems may be easier
to deploy in a large network because they do not
require the network to be redesigned.
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