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ABSTRACT 
 

Shafiq, Basit.  Ph.D., Purdue University, April 2004.  Optimal Secure Interoperation in a 

Multi-Domain Environment.  Major Professor:  Arif Ghafoor. 

 

The rapid proliferation of the Internet and the cost effective growth of its key 

enabling technologies such as database management systems, storage and end-systems, 

and networking are revolutionizing information technology and have created 

unprecedented opportunities for developing large scale distributed applications and 

enterprise-wide systems. At the same time, there is a growing need for information 

sharing and resource exchange in a collaborative environment that spans multiple 

enterprises. Various businesses, government, and other organizations have realized that 

information and resource sharing is becoming increasingly critical to their success.  

However, increase in inter-domain information and resource exchange poses new threats 

to the security and privacy of data. Numerous studies have shown that unauthorized 

access, in particular by insiders, constitutes a major security problem for enterprise 

application environments. This problem can get magnified in a collaborative environment 

where, distributed, heterogeneous, and autonomous organizations interoperate with each 

other. Collaboration in such a diverse environment requires integration of the access 

control policies of local domains to compose a global security policy for controlling 

information accesses across multiple domains. In this proposal, we address the issue of 

policy integration in a multi-domain system that allows information and resource sharing 

in a collaborative environment. The proposed policy integration mechanism is a two 

phase process that first defines a mapping among the cross-domain entities and then 

resolves the underlying access control policy conflicts. For conflict resolution, we 

propose an integer programming (IP) based approach that maximizes inter-domain 

information and data exchange according to some specified optimality criterion. As an 
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extension to the policy integration framework, we plan to address the problem of access 

control policy verification and policy evolution in the context of secure interoperation. In 

addition, we will investigate the problem of semantic partitioning of a single access 

control policy into multiple independent, autonomous, and functional policies.  
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1 INTRODUCTION 
 

The rapid proliferation of the Internet and the cost effective growth of its key 

enabling technologies such as database management systems, storage and end-systems, 

and networking are revolutionizing information technology and have created 

unprecedented opportunities for developing large scale distributed applications and 

enterprise-wide systems. At the same time, there is a growing need for information 

sharing and resource exchange in a collaborative environment that spans multiple 

enterprises. Various businesses, government, and other organizations have realized that 

information and resource sharing is becoming increasingly critical to their success.  In the 

commercial sector, companies collaborate with each other for supply chain arrangements, 

subcontracting relationships, or joint marketing campaigns [Coh02].  In the public sector, 

government has taken various initiatives to increase collaboration among government 

agencies and NGOs in order to provide better public service to citizens, and to make 

available timely, accurate, and complete information to relevant government agencies and 

general public. Two major projects initiated in this regard are Digital Government 

Program and Integrated Justice Information Systems. The aim of the Digital Government 

Program is to make use of information and communication technologies for empowering 

citizens with greater access to services and increase their involvement in decision making 

process, leading to improved citizen-government interaction [Elm01]. Integrated justice 

is an initiative taken by Department of Justice to improve information management and 

sharing between justice system agencies at all levels of government [IJIS]. Whether 

collaboration is solely among government agencies, or incorporates both government and 

commercial organizations, information and resource exchange beyond the individual 

domain boundary is crucial to meet the business requirements of organizations in today’s 

world. 
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With the increase in information and data accessibility, there is a growing concern 

for security and privacy of data. Many studies show that unauthorized access, in 

particular by insiders, constitutes a major security problem for enterprise application 

environments [Pow00], highlighting the need for robust access control management 

systems. This problem can be highly magnified in a collaborative environment where 

distributed and heterogeneous organizations, each employing its own security policy, 

interoperate with each other, allowing highly intensive inter-domain accesses [Jos01b, 

Gon96]. Collaboration in such a diverse and heterogeneous environment requires 

integration of local policies to compose a global security policy that governs information 

and data accesses across domain boundaries. Integration of security policies, local to the 

collaborating domains, entails various challenges regarding reconciliation of semantic 

differences, secure interoperability, containment of risk propagation, and policy 

management etc. [Jos01b]. An access control model that can be used to uniformly 

represent policies of the individual domains is desirable. Such a model should allow 

interoperation and information sharing among multiple domains and at the same time 

guarantee that such inter-domain data accesses do not violate the underlying policies of 

constituent domains. In particular, secure interoperation should enforce the following two 

principles [Gon96]: 

 The autonomy principle, which states that if access is permitted within an 

individual system, it must also be permitted under secure interoperation 

 The security principle, which states that if an access is not permitted within an 

individual system, it must not be permitted under secure interoperation. 

The problem of secure interoperation in a multi-domain environment has been 

addressed in literature in the context of multi-level security (Bell-Lapadula) model 

[Gon96, Bon96]. Multi-level security or Bell-Lapadula [Bel73] model is more suitable 

for environments which have static constraints.  For instance, in multi-level security 

model, all accesses conform to the pre-specified security ordering. Security ordering in 

this case is a static constraint, even though the security labels of entities may change with 

time, e.g., declassification of documents after a certain period of time. In a multi-level 

security model, if a subject s with security level a is authorized to access an object o with 
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security level b, then s can access o at all times provided the security levels of s and o 

never change. Dynamic constraints on the other hand, may not allow subject s to access o 

even though their security labels remain unchanged. Separation-of-duty (SoD) and 

precedence constraints are example of such dynamic constraints and are required in most 

commercial applications including digital government, e-commerce, health-care systems, 

and workflow management systems [Ber99]. Traditional multi-level (LBAC) model 

cannot be used to capture the dynamic constraint requirements of emerging applications 

and information systems. Role based access control (RBAC) models are receiving 

increasing attention as a generalized approach to access control [Nya99, San98b]. Due to 

its inherent richness in modeling hierarchical, SoD, cardinality, and dependency 

constraints, RBAC is emerging as a vital access control model capable of modeling a 

wide range of access control policies. For the same reason, we use RBAC to express the 

security policies of collaborating organizations/domains. 

 In this report, we address the issue of policy integration in a multi-domain system 

that allows information and resource sharing in a collaborative environment. The policy 

integration mechanism described in this report is a two phase process as shown in Figure 

1.1. In the first phase the role heterogeneity constraints among collaborating domains are 

resolved and a global access control policy is generated from the given RBAC policies 

and administrator specified constraints. The global policy generated in the first phase 

may be conflicting and may allow violation of some of the security requirements.  In the 

second phase, conflicts are resolved by relaxing some of the access constraints. For 

conflict resolution, we propose an integer programming (IP) [Wol98] based approach that 

maximizes inter-domain information and data exchange according to some specified 

optimality criterion.  

This report is organized as follows. In Chapter 2, we provide a brief overview of the 

RBAC model and discuss the basic security requirements in a multi-domain RBAC 

system. The policy integration phase of Figure 1.1 is described in Chapter 3. Chapter 4 

describes the conflict resolution strategy and illustrates the policy integration framework 

through a detailed example. Chapter 5 provides a formal proof that the multi-domain 

policy produced by the proposed policy integration framework satisfies the security 
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requirements of all collaborating domains. Chapter 6 gives a brief description of research 

problems that we intend to address during the course of this research. 

 

AC Policy 
(Domain 1)

AC Policy 
(Domain 2)

AC Policy 
(Domain n) Administrator 

specified 
constraints

Conflict ResolutionPolicy Integration

 

Fig. 1.1 Policy Integration Framework 
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2 OVERVIEW OF MULTI-DOMAIN RBAC SYSTEM 
 

2.1 Role Based Access Control (RBAC) 

Role based access control (RBAC) is a flexible approach that has generated great 

interest in the security community [Fer01, Giu95, Giu97, Jos01a, Jos01b, Ker02, Nya93, 

Nya99, Osb00a, San95, San96, San97, San98a, Tar97b]. In RBAC, users are assigned 

memberships to roles and these roles are in turn assigned permissions as shown in Fig. 

2.1. A user can acquire all the permissions of a role of which he is a member. Role-based 

approach naturally fits into organizational contexts as users are assigned organizational 

roles that have well-defined responsibilities and qualifications [Fer93].  

 

Role Hierarchies

Roles PermissionsUsers

Constraints

Manager

Senior
Engineer

Junior
Engineer

Employee

Senior
Administrator

Administrator

  

Fig. 2.1 Constraints and hierarchy in RBAC 

 

According to a survey conducted by the U.S. National Institute of Standards and 

Technology (NIST) [Fer93], RBAC has been found to address many needs of the 

commercial and government sectors. This study showed that access control decisions in 

many organizations are based on “the roles that individual users take on as part of the 

organization.” Many surveyed organizations indicated that they had unique security 

requirements and the available products did not have adequate flexibility to address them. 

RBAC approach has several advantages, the key among which include [Jos01b, , 

San96]: 
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‚ Security management: The role in the middle approach to access control removes the 

direct association of the users from the objects. This logical independence greatly 

simplifies management of authorization in RBAC systems. For example, when a user 

changes his role, all that needs to be done is to remove his membership from the 

current role and assign him to the new role. In case authorizations were specified in 

terms of direct associations between the user and the individual objects, this change 

would require revoking permissions granted to all the objects and explicitly granting 

permissions to the new set of objects. Using a role-based approach, the number of 

assignments of users to permissions is considerably reduced. Generally, a system has 

a very large number of subjects and objects, and hence, using RBAC has benefits in 

terms of managing permissions. 

‚ Role hierarchy:  Natural role hierarchies exist in many organizations based on the 

principle of generalization and specialization [San98c]. For example, there may be a 

general Employee role in a Consulting Firm as shown in Fig. 2.1: Employee, 

Engineer, Senior Engineer, Administrator, Senior Administrator and Manager. Since 

everyone is an employee, the Employee role models the generic set of access rights 

available to all. A Senior Engineer role will have all the permissions that an Engineer 

role will have, who in turn will have the permissions available to the Employee role. 

Thus, permission inheritance relations can be organized in role hierarchies. This 

further simplifies management of access permissions. Fig. 2.1 shows a simple 

hierarchy.  

‚ Principle of Least Privilege: RBAC can be configured to assign the least set of 

privileges from a set of roles assigned to a user when that user signs on. Using least 

privilege set minimizes the damage incurred to a system if someone not assigned to a 

role acquires its permissions through other means, or if someone masquerades as 

another user [Jos01b, sSan96].  

‚ Separation of Duties: Separation of duties (SoD) has been considered a very desirable 

organizational security requirement [Ahn00, Ber99b, Bew89, Kun99, Nya99, San91, 

Sim97, Tid98]. SoD constraints are enforced mainly to avoid possible fraud in 

organizations. RBAC can be used to enforce such requirements easily – both 

statically and dynamically. For example, a user can be prevented from being assigned 

to two roles to prevent possible fraud by using a static SoD which says that a user 

cannot be assigned to two roles, one of which prepares a check and the other 

authorizes it.  
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‚ Grouping Objects:  Roles classify users according to the activity or the access needs 

based on the organizational functions they carry out. Similar classifications can also 

be possible for objects. For example, a secretary generally has access to all the 

memos and letters in his/her office, whereas an accountant has access to all the bank 

accounts belonging to his/her organization. Thus when permissions are assigned to 

roles, it can be based on object classes instead of individual objects [San96]. This 

further increases the manageability of authorizations. 

‚ Policy-neutrality: Role-based approach is policy-neutral and is a means for 

articulating policy [Jos01b, San96]. Role-based systems can be configured to 

represent many useful DAC, MAC policies [Nay95, Osb97, Osb00b] and user-

defined and organizational security policies. 

 

2.2 The NIST RBAC Model 

The NIST RBAC model consists of the following four basic components: a set of 

users, a set of roles, a set of permissions, and a set of sessions. A user is a human being 

or a process within a system. A role is a collection of permissions associated with a 

certain job function within an organization. Permission defines the access rights that can 

be exercised on a particular object in the system. A session relates a user to possibly 

many roles. When a user logs in the system he establishes a session by activating a set of 

enabled role that he is entitled to activate at that time. If the activation request is satisfied, 

the user issuing the request obtains all the permissions associated with the role he has 

requested to activate.  One of the most important aspects of RBAC is the use of role 

hierarchies to simplify management of authorizations. The original RBAC model 

supports only inheritance or usage hierarchy, which allows the users of a senior role to 

inherit all permissions of junior roles. In order to preserve the principle of least privilege, 

RBAC model has been extended to include activation hierarchy which enables a user to 

activate one or more junior roles without activating senior roles [San98c]. A third type of 

hierarchy inheritance-activation hierarchy can be defined on roles by composing 

inheritance and activation hierarchies [Jos02]. From this point onward, we will use the 

notations I, A, and IA to refer to inheritance, activation and inheritance-activation 

hierarchies respectively. The symbols 
* * *
, , and 

I A IA
‡ ‡ ‡  are used to express I, A, and IA 
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relationship between two roles respectively. Accordingly,
*

,  where { , , }i j
f

r r f I A I A‡ Œ , 

implies that role r i is senior to r j and the hierarchical relationship between them can be 

either inheritance only, or activation only or inheritance-activation. If role r i is 

immediately senior to role r j then the superscript *  is omitted from the relation symbol
f
‡ . 

2.3 Graph-based Specification Model for RBAC 

A graph based formalism can be used to specify the RBAC policy of a domain. In 

the graph based model, users, roles, and permissions are represented as nodes and the 

edges of the graph describe the association between various nodes. In order to capture the 

RBAC semantics, the nodes cannot be connected in an arbitrary manner. The type graph 

shown in Figure 2.2, defines all possible edges that may exist between different nodes. 

An edge between a user node u and a role node r indicates that role r is assigned to user 

u. Self edges on the role node r models the role hierarchy. In the type graph, I-hierarchy, 

A-hierarchy and IA-hierarchy are represented by solid, dashed and bold-edges 

respectively. There can be edges between role and permission nodes. A permission is a 

pair (object, access mode), which describes what objects can be accessed and in which 

mode (read, write, execute, approve etc).The graph model also supports specification of 

separation of duty (SoD) constraints. A role specific SoD constraint disallows assignment 

and/or activation of conflicting roles to same user. Similarly, a user specific SoD 

constraint prohibits conflicting users from assuming the same role simultaneously. In the 

graph model, a role-specific SoD constraint between two roles is represented by a double 

arrow between the corresponding roles. To represent conflicting users ui and uj for a role 

rk, a double headed edge with a label rk is drawn between the user nodes ui and uj. The 

label rk specifies that the corresponding users are conflicting for role rk and cannot 

acquire permissions over rk simultaneously (user specific SoD constraint).  

 Figure 2.3 shows the graphical representation of an RBAC policy instance. The 

RBAC graph in Figure 2.3 consists of four roles ra, rb, rc and rd, 

with ,  , and  a c a d d b
A I A

r r r r r r‡ ‡ ‡ . User ua is assigned to ra, ub assigned to rb, and uc assigned 

to rc. Note that user ua although inherits the permissions of role rd, is not authorized to 
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activate role rb which is junior to rb in the activation hierarchy semantics. There exists a 

role specific separation of duty (SoD) constraint between role rb and rc, shown as a 

double headed arrow between these two roles in Figure 2.3. Also users ua and uc are 

conflicting users for role rc and are not allowed to access rc simultaneously.   

 

u p

SoD

S
oD r r

I

A

IA

 

Fig. 2.2 RBAC type graph 
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Fig. 2.3 An example of RBAC graph 
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2.4 Security Requirements in a Multi-domain RBAC System 

In a multi-domain environment where distributed and heterogeneous organizations, 

each employing its own security policy, interoperate with each other, maintaining the 

security and privacy of data is highly problematic [Jos01a, Jos01b, Gon96]. One key 

aspect of this complex problem is the integration of diverse security policies and 

mechanisms of partner organizations into a coherent capability for managing access and 

use of local and cross-domain resources.   

The goal of policy integration is to allow information and resource sharing without 

violating the security and autonomy of individual domains or of the multi-domain system 

as a whole.  The security and autonomy requirements of the individual domains can be 

extracted from their respective access control policies. Additional security constraints can 

be defined by an administrator with global security responsibility. The administrator in 

charge of global security policy may specify both permitted and restricted inter-domain 

accesses. The global security policy constructed from the domains’ policies and 

administrator specified access constraints may be inconsistent and may violate the 

security requirements of constituent domains as well as of the multi-domain system.   

We mainly focus on three types of security policy violations. Although these security 

violations are independent of the underlying access control model, we describe them 

using the RBAC formalism to be consistent with our earlier discussion. The security 

policy violations include: i) violation of role assignment ii) violation of role-specific SoD 

constraint, and iii) violation of user-specific SoD constraint. A role assignment violation 

of domain k occurs when a user u of domain k acquires permission over role r of domain 

k in the multi-domain environment even though the user u is not directly assigned to role 

r or any of the senior roles of r that belong to domain k. A multi-domain policy violates 

the role-specific SoD constraint of domain k if the policy allows any user to 

simultaneously access two conflicting roles of domain k. Similarly, a user-specific SoD 

constraint violation occurs when a multi-domain policy permits conflicting users of role r 

to acquire permissions over r in concurrent sessions. The following examples illustrate 

these three types of security violations. 
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Example 1 

Figure 2.4 shows a multi-domain policy that allows collaboration between County 

Treasurer Office (CTO) and County Clerk Office (CCO). The County Treasure Office has 

following roles: Tax Collection Manager (TCM), Tax Assessment Clerk (TAC), Tax 

Billing Clerk (TBC), Tax Collection Clerk (TCC), and Junior Tax Collection Clerk 

(JTCC). TCM inherits all permissions of TCC which further inherits the permissions of 

JTCC. The roles TAC and TBC are junior to TCM in the activation hierarchy semantics, 

implying that a user assigned to TCM can assume the roles TAC and TBC without 

actually activating TCM. However, an SoD constraint is defined between TAC and TBC 

meaning that these roles cannot be assumed by same user simultaneously. There is a user-

specific SoD constraint between user u1 assigned to TCM, and u2 assigned to TAC. This 

SoD constraint prohibits u1 and u2 to assume the role TAC concurrently. The County 

Clerk Office has only two roles, namely: Property Tax Manager (PTM) and Property Tax 

Clerk (PTC) with PTM inheriting the permissions of PTC.   

The multi-domain policy shown in Figure 2.4 defines the following interoperation 

between CTO and CCO: 

1. TCM in the County Treasure Office inherits all the permissions available to PTM 

in the County Clerk Office.  

2. JTCC in the County Treasure Office inherits all the permissions available to PTC 

in the County Clerk Office.  

3. PTM in the County Clerk Office inherits all the permissions of TAC in the 

County Treasurer Office.  

4. PTC in the County Clerk Office inherits all the permissions of TCC in the County 

Treasurer Office.  

The above multi-domain policy leads to all three types of security violations. It 

allows JTCC to access the permissions of its senior role TCC through PTC, which is a 

violation of role assignment constraint. Moreover, this policy permits u1 to activate roles 

TCM and TBC simultaneously. This leads to a violation of role-specific SoD, as by 

activating the role TCM, u1 acquires the permissions of the role TAC through PTM. 

Moreover, the multi-domain policy allows u1 to activate the role TCM and u2 to assume 
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the role TAC. u1 by activating TCM can acquire permission over TAC through the role 

PTM. This is a violation of user-specific SoD constraint which prohibits u1 and u2 from 

accessing the role TAC simultaneously. 

Example 1 considers security constraints that are specific to a particular domain. The 

security constraints can also be defined between cross-domain entities (roles and users). 

Following example presents a case where cross-domain security constraints are needed. 

 

TCM

TAC TBC TCC

JTCC

PTM

PTC

u1

u2

SoD

S
o

D

T
A

C

CTO

CCO

u3

 

Fig. 2.4 A multi-domain access control policy defining interoperation between CTO and CCO 

 

Example 2 

Consider Corporate Audit Department that performs tax auditing of public 

companies for IRS. For each such company there is a separate auditor role which is 

authorized to check the books and audit records maintained by the company. IRS may 

also hire private auditing firms to perform tax auditing. Companies are also required to 

document their financial information every year and they may also contract private audit 

firms to perform their internal auditing. The internal auditor is allowed to access all the 

financial records and books of the company being audited. However, the internal auditor 

cannot acquire any permission that is exclusively assigned to the IRS auditor. If the 
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interoperation policy is not carefully designed then there may arise a situation in which 

same audit firm performs IRS auditing and internal auditing of the same company. To 

avoid this security flaw, an SoD constraint needs to be defined between the IRS auditor 

role and the internal auditor role. Note that this SoD is defined between two cross-domain 

roles. This is illustrated in Figure 2.5. 

 

E&ECorp.
Auditor

XY Inc
Auditor

AB Corp.
Auditor Internal

Auditor

SoD

IRS cannot hire 
ANDR Consultants
to audit ENR Corp

Corporate 
Audit Dept.

(IRS)

E&E Corp.

SS Audit 
Firm

A&A
Consultants

KPM
INC

 

Fig. 2.5 Example of a cross-domain separation of duty (SoD) constraint 
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3 MULTI-DOMAIN POLICY INTEGRATION 

In this chapter, we elaborate on the policy integration phase of Figure 1.1. Before 

describing the proposed policy integration mechanism, we first introduce the resource 

sharing policy at the object level and then highlight some of the heterogeneity issues 

involved in policy integration. 

3.1 Information Sharing Policy 

In the policy integration step of Figure 1.1, domain policies are composed to form a 

global interoperation policy. Note that a domain may not allow complete sharing of its 

data and resource objects. We will use the word object interchangeably for both data and 

resources. An object can be a file, a database relation/view, or an I/O device etc. For each 

of the sharable objects the following information needs to be provided by the 

controller/owner domain of that object. 

‚ Domains which can access the object. 

‚ Sanitization requirements of an object before it is shared with other domains. For 

instance, an object can be completely shared, or partially shared or the object 

cannot be shared as is but only certain derived properties of the object are 

shareable (statistical information). 

‚ Access permissions (read, write, execute etc.) over an object that are available to 

subjects of foreign domains. 

‚ Any specific condition for sharing. For instance, an object can be shared 

(completely or partially) with a cross domain subject only if a cross domain 

subject has local access to certain attributes of the object in its own domain.  

Based on the above information, each object can be logically partitioned into 

multiple objects and only shareable sub-objects of a domain are presented to the policy 
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integration module. Figure 3.1 describes an abstract view of inter-domain information 

sharing. This figure depicts partial sharing, which is the most common form of 

interoperation and is exhibited in almost every collaborative environment. Note that in 

this figure, access to local information resources is also reduced as a result of cross-

domain resource sharing. This reduction in local accesses results in decreasing the 

autonomy of corresponding domains. 

Sharable informationSharable information

Local and cross-domain information 

available to a subjects of domain B after 

integration 

Local and cross-domain information 

available to subjects of domain A after 

integration

Information local to 

domain B

Information local to 

domain A

Information common to 

domains A &  B

The overlapping 
region decides what 
information can be 
shared between cross 
domain subjects

 

Fig. 3.1 An abstract view of inter-domain information sharing 

Figure 3.2 depicts information sharing policy related to delinquent property tax 

between County Treasurer Office (CTO) and District Clerk Office (DCO). CTO 

maintains electronic records of tax defaulters containing information such as tax 

defaulters name and social security number (SSN), delinquent property index and tax 

amount owed to local govt. redemption cost, tax sale plea filed in district court, and 

details of other property/properties owned by the tax defaulter. Delinquent taxes can be 

sold to third parties after obtaining the tax sale order issued by the district court. The 

District Clerk office (DCO), which keeps record of all court proceedings, is responsible 

for providing the tax sale orders and other court documents related to delinquent tax 
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holder to CTO and other concerned agencies/departments. Similarly, DCO is allowed to 

access the information of delinquent property, maintained by CTO, for record keeping. In 

order to keep privacy of personal/unrelated information, not all the information about the 

tax defaulter needs to be shared between the two domains. For instance, the information 

about other real-estate property owned by the tax defaulter is kept private and is not 

shared with DCO unless such property is declared delinquent. Similarly, CTO is not 

allowed to access any information from DCO other than tax indictment record, tax sale 

order, and local tax lien records.   For this purpose, the tax defaulter record in the CTO is 

partitioned into three objects: Ocom, OsT, and OrT. OrT is classified information that cannot 

be shared with the DCO. OsT is a shareable object and can be accessed by DCO. 

Similarly, the record in the DCO is partitioned into Ocom, OsC and OrC, where OrC is 

confidential information, and OsC can be released to CTO. The object Ocom contains the 

information about the name and social security number of the defaulted person and is 

common to both domains. CTO can access only those records from DCO domain for 

which there is a corresponding Ocom object in the delinquent tax table. Similarly, DCO 

can access tax/property information of only those tax holders for which the Ocom from 

court records matches with the Ocom of the delinquent tax record. 

3.2 Heterogeneity Issues in Policy Integration 

One key challenge in the composition of a multi-domain access control policy is 

resolving semantic heterogeneity among the local policies of collaborating domains. 

There are various types of heterogeneity that need to be addressed in the context of policy 

integration. The heterogeneity may arise because of naming conflicts, schema mismatch, 

and differences in constraint representation by different domains. 

Naming Conflicts arise because of the use of synonyms, or identical names, to 

represent different conceptual entities, and homonyms, or different names, to represent 

same conceptual entities. Accordingly, there may be naming conflicts among different 

inter-domain entities, which may cause security violations if not resolved before 

establishing interoperation. Resolution of naming conflicts has been addressed in the 

literature in the context of schema integration in the database area [Gua02, Vet98]. These 
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techniques require the use of a global lexicon to extract the conceptual meaning of 

attributes from their names. Additionally, domain-based and value-set-based comparisons 

can be performed for refinement [Li94].  
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Fig. 3.2. Information exchange between the County Treasurer Office and District Clerk Office 

 

Schema mismatch is another type of semantic heterogeneity that is characterized by 

representation conflicts, meta-model conflicts and meta-meta-model conflicts [Pot03]. 

The term model is used to formally describe a complex application, such as a database 

schema, an application interface, or an access control policy. Representation conflicts are 

caused by conflicting representations of same real-world concept. For instance, in one 

domain the attribute Name is represented by the element “Person Name,” while in 

another domain, it is represented by two elements: “First Name” and “Last Name”. Meta-

model conflicts occur due to the use of different models for the same schema. For 

example, one domain uses the relational model and the other uses the object oriented 

model to specify the same schema. Conflicts also exist at the meta-meta-model level due 

to the use of different relationship orderings and cross-relation implication among the 
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domain’s entities. Schema and model merging techniques [Bat86, She90, Pot03] address 

the issue of reconciliation of semantic differences at the schema level.  

In addition to naming and schema conflicts, heterogeneity may appear in the 

specification of various access control policy constraints, including: hierarchy, SoD, 

cardinality and other dynamic constraints. Reconciliation of semantic differences 

becomes more challenging in presence of constraint heterogeneity.  

Hierarchical heterogeneity among domains’ policies may exist because of two 

reasons: a) use of different role hierarchies (inheritance I, activation A, inheritance-

activation IA, hybrid [Jos02]) by different collaborating domains; b) domains may use 

different hierarchical ordering to represent same authorizations for a given role. The 

following example illustrates the two types of hierarchical heterogeneity that may exist 

between two or more cross-domain roles. 

Example 3 

 Consider the Senior Clerk (SC) and Junior Clerk (JC) roles of the City Clerk Office 

shown in Figure 3.3(a). The hierarchical relationship between SC and JC is given by A-

hierarchy, 
A

SC JC‡ , i.e., SC cannot directly inherit the permissions associated with the 

role JC. Suppose permission p1 is assigned to role SC and p2 to JC. Figure 3.3(b) shows 

the RBAC graph of County Clerk Office with two roles Clerk (C) and Assistant Clerk 

(AC). The Clerk role (C) inherits all the permissions of Assistant Clerk,
I

C AC‡ . Note 

that the roles C and AC are assigned same permissions as the roles SC and JC. However, 

roles SC and C are not equivalent because SC is not authorized for permission p2, 

whereas, C can directly access p2 without activating any junior roles.  The difference in 

authorization of the two roles is because of different types of hierarchy used in the two 

domains. 

It can also be noted in Figure 3.3 that the Accountant role in the City Clerk Office 

has the same permission authorization as the Clerk role in the County Clerk Office, even 

though the hierarchical ordering for the two roles is different.  
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Fig. 3.3 Hierarchical heterogeneity 

 

3.3 RBAC Policy Integration 

In this section, we focus on the issue of composing a global access control policy 

from the access control policies of collaborating domains. The global policy governs both 

intra-domain and inter-domain information and resource exchange. As mentioned earlier, 

the access control policies of collaborating domains are specified using RBAC 

framework. The domains’ policies are combined based on the similarity between the 

permissions associated with the cross-domain roles. Before presenting the proposed 

policy integration mechanism, we first introduce the general requirements for policy 

integration.  

3.3.1 Policy Integration Requirements (PIR) 

The following PIRs define the semantics of a multi-domain RBAC policy in a 

concrete manner. The RBAC policies are specified using the graph formalism described 

in Chapter 2. 

1. Element preservation: Each element (role, user, permission) in the input RBAC graph 

has a corresponding element in the multi-domain graph G. 
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2. Relationship preservation: Each relationship in the input graph is explicitly in or 

implied by the multi-domain graph G.   

3. User authorization preservation: In the multi-domain graph G, for any user u of a 

domain k, the permission authorization set of u over the objects of domain k should 

not be different from the permission authorization set specified or implied in the input 

RBAC policy of domain k. 

4. Minimum overhead: In order to satisfy the constraints given above, the multi-domain 

RBAC graph may include elements and relationships in addition to those given in the 

input RBAC graphs. However, the number of additional elements should be 

minimum. 

5. Order independence: The order in which policies are integrated should not influence 

the output of policy integration operation. 

6. Constraint satisfaction: The multi-domain RBAC graph G must satisfy all the 

constraints of the input RBAC policies.  

The above PIRs are similar to the generalized merge requirements defined in the 

context of model merging by Pottinger and Bernstein [Pot03]. Unlike [Pot03], we do not 

define the conflict resolution strategy as a part of integration requirement. In general, 

fundamental conflicts in schema/model merging arise because of type restriction, 

cyclicity in relationships, and relation cardinality. These conflicts can be resolved using 

priority-based pre-specified resolution rules. Use of static conflict resolution rules in 

policy integration may severely reduce the amount of interoperation among the 

collaborating domains. Moreover, the relationship semantics and cross-relation 

implications in RBAC framework are different from schema models discussed in [Pot03]. 

Therefore, a pre-specified conflict resolution strategy that resolves model merging 

conflicts on the fly cannot be applied for policy integration. We use a separate conflict 

resolution module that resolves conflicts in the multi-domain policy obtained in the 

policy integration phase of Figure 1.1. 

In the following section, we describe an algorithm, RBAC-integrate, for integrating 

policies of multiple domains. RBAC-integrate combines the RBAC policies of 
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component domains by comparing cross-domain roles. However, RBAC-integrate does 

not resolve any conflicts occurring in the resulting multi-domain policy. For conflict 

resolution, we propose a conflict resolution mechanism discussed in Chapter 4. It can be 

proved that the multi-domain policy produced by RBAC-integrate, after conflict 

resolution satisfies all the policy integration requirements given above. 

Table 3.1 Functions/predicates used in this report 

Function/predicate Description 

Pset(r) Returns the set of all permissions either directly assigned to role r or are inherited by r. 

Psetassign(r) Returns the set of permissions directly assigned to role r. 

Class(O) Returns the conceptual class of object O. 

Conf-rset(r) Returns the set of all roles conflicting with role r i.e., roles that cannot be acquired along 

with role r by any user. 

Conf-user(r) Returns the set of the sets of user that cannot acquire role r simultaneously. 

Shareable(O ,a, X) Returns True if permission (O, a) can be shared with domain X  

Seniormost-role(G) Returns the senior-most role of the RBAC graph G 

Children(r) Returns all roles r’  such that '    '
I A

r r r r‡ ° ‡  

Common-
permissions(r1,r2) 

Returns the set of all directly assigned permissions that are common to the cross-domain 

roles r1 and r2. 

Common-juniors-
I(r 1,r2) 

Returns the set of roles Rj 

* +} ’j 1 2R :  and '  _ ( , ') '
I I

r r r r eq role r r r r? ‡ & ® ‡ , r1 and r2 are cross-domain roles. 

New-role(r) Returns True if r is a newly created role as a result of role splitting. 

Redundant(r) Returns True if r is a redundant role. 

Not-compared-
previously(r1,r2) 

Returns True if the cross-domain roles r1 and r2 are not compared by the algorithm Role-

integrate 

Already-
linked(r1,r2) 

Returns True if r1 and r2 are cross-domain roles and 
1 2 2 1  and  

I I
r r r r‡ ‡  

Eq_role(r1,r2) Returns True if the following hold 

1 2

1 1 1 2 2 2 1 2

1 1 1 2 2 2 1

( ) ( )

for all  such that  there exists  for which  and _ ( , )

for all  such that  there exists  for which  and _ (

assign assign

j j j j j j
I I

j j j j j
A A

pset r pset r

r r r r r r eq role r r

r r r r r r eq role r

? ®
Ç ×‡ ‡ ®É Ú

‡ ‡ 2, )jrÇ ×
É Ú

 

i.e., the roles r1 and r2 set of directly assigned permissions and are also equivalent in their 

hierarchical structure. 

contained(r1,r2) Returns True if the following hold 

* + * +*

1 2 1 2 2( ) ( ) ( )assign assign k k k
I I

p Pset r p Pset r r r r r r rŒ µ Œ ® ‡ ® ” µ ‡  

i.e., the set of directly assigned permissions of r1 must be contained in the set of directly 

assigned permissions of r2 and all the roles junior to role r1 must also be junior to r2 in the 

same hierarchy semantics. 

Overlap(r1,r2) Returns True if the following hold 

* + * +1 2 1 2 | ( ) ( ) , | ( _ ( , )assign assign k m k m k m
I I

p p Pset r p Pset r r r r r r r eq role r r& Œ µ Œ ° & ‡ µ ‡ ®  

u-assign(u,r) Returns True if user u is assigned role r. 

Conf-role(r1,r2) Returns True if r1 and r2 are conflicting roles 



 

 

22

3.3.2 RBAC Policy Integration Algorithm 

The proposed policy integration algorithm establishes correspondences between 

cross-domain roles by considering the permissions associated with the corresponding 

roles. Inter-domain roles are compared based on their permission assignments over 

objects. This permission set includes both directly assigned permissions as well as 

inherited permissions. We also assume that objects in the RBAC model are organized 

into conceptual classes, e.g., account tables, insurance claims, and audit reports etc. Two 

cross-domain permissions pA:(OA, aA) and  pB:(OB, aB) of domains A and B respectively, 

are termed equivalent if the cross domain objects OA and OB belong to the same 

conceptual class and the permissions pA and pB are declared shareable in their respective 

domain policies. 

Using the above assumptions and the permission assignments of roles over the 

objects, four types of relations can be defined between two cross-domain roles rA and rB 

belonging to domain A and domain B respectively. The functions and predicates used in 

defining these relations are explained in Table 3.1. 

1. Equivalent: rA is equivalent to rB (rA Ã rB ), if the following conditions hold.  

a. The permission sets Pset(rA ) and Pset(rB) of roles rA and rB are equivalent. 

Formally:    

        , : ( ) ( ) [( , ) ( ) ( , ) ( )]
i j i jA B A A B Bi j class O class O O a Pset r O a Pset r$ ? ® Œ ± Œ  

b. All the permissions in the sets Pset(rA ) and Pset(rB) are shareable with the 

domain of rA and rB  respectively. Formally: 

      ,  ( , , ) ( , , )
i jA Bi j shareable O a B shareable O a A$ ®  

2. Contain: rA contains rB (rA  ̶ rB ) if the following hold: 

a. The permission set Pset(rB ) of role rB is included in the permission set 

Pset(rA) of role rA. 

      * +: ( , ) ( ) ( , ) ( ) ( ) ( )
j i i jB B A A A Bj i O a Pset r O a Pset r class O class OÇ ×$ & Œ µ Œ ® ?É Ú  

b. All the permissions in the set Pset(rB) are shareable with domain A. 
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RBAC-integrate(G1,G2,…,Gn) 

1. G = {V[G1], E[G1]} 

2. for i « 2 to n 

3.  r1 « seniormost-role(G) 

4.  r2 « seniormost-role(Gi) 

5.  G « Role-integrate(r1, r2) 

6.  for each r Œ G  

7.   if (new-role(r) and redundant(r) ) 

8.    then Remove-Role(G, r) 

9. return 

 

Role-integrate(r1, r2) 

1.for each rc Œ children(r1) 

2. do if  ((Pset(rc) ̨ Pset(r2) ” h) and not-compared-previously(rc,r2)) 

3.  then Role-integrate(rc,r2) 

4.for each rc Œ children(r2) 

5. do if ((Pset(r1) ̨ Pset(rc) ” h) and not-compared-previously(r1,rc)) 

6.  then Role-integrate(r1,rc) 

7.ﾓ return without doing anything if r1 and r2 are already linked 

8.if already-linked(r1,r2) 

9. then return 

10.  ﾓ * + * +*
( , )=True, if ( ) ( ) ( )i j assign i assign j i k k j j kI I

contained r r p Pset r p Pset r r r r r r rŒ µ Œ ® ‡ ® ” µ ‡  

11. if contained(r2, r1) and contained(r1, r2) 

12.  then if linking r1 and r2 do not violate RBAC consistency properties 

13.              then link(r1, r2) 

14.   return 

15. else if contained(r2, r1) 

16.  then r1j=split(r1, common-permissions(r1,r2), common-juniors-I(r1,r2) ) 

17.          if linking r1j and r2 do not violate RBAC consistency properties 

18.               then link(r1j, r2) 

19.   return 

20. else if contained(r1, r2) 

21.  then r2j=split(r2, common-permissions(r1,r2), common-juniors-I(r1,r2) ) 

22.           if linking r1 and r2j do not violate RBAC consistency properties 

23.                then link(r2j,r1) 

24.   return 

25. ﾓ * + * +( , )=True, if | ( ) ( ) , | ( ( , )i j assign i assign j k m i k j m k m
I I

overlap r r p p Pset r p Pset r r r r r r r a lready linked r r& Œ µ Œ ° & ‡ µ ‡ ® /  

26. else if overlap(r1,r2) 

27.  then r1j=split(r1, common-permissions(r1,r2), common-juniors-I(r1,r2) ) 

28.           r2j=split(r2, common-permissions(r1,r2), common-juniors-I(r1,r2) ) 

29.           if linking r1j and r2j do not violate RBAC consistency properties 

30.                 then link(r1j, r2j) 

31.   return 

32. return  

Fig. 3.4 Policy integration algorithm 
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split(r, common-permissions, common-juniors)      

1. rj « createrole() 

2. insert(r->childrenlist-I,rj) 

3. for each p Œ common-permissions 

4.  do remove(r->plist, p) 

5.       insert(rj->plist,p) 

6. for each rc Œ common-juniors 

7.  do remove(r->childrenlist-I, rc) 

8.       insert(rj->childrenlist-I, r) 

9.       return rj 

 

link(r1, r2) 

1. insert(r1->childrenlist-I,r2) 

2. insert(r2->childrenlist-I,r1) 

3. for each ri s.t. *

1 1( )i i I
r r r r? ° ‡  

4.    do for each rj s.t.     
*

1 1( ( )) ( ( ))j j c c
I

r conf rset r r r r conf rset rŒ / ° ‡ ® Œ /

            do conf-rset(ri)=conf-rset(ri)̌rj 

5.                    conf-rset(rj)=conf-rset(rj)̌ri 

6. for each ri s.t. *

2 2( )i i I
r r r r? ° ‡  

7.   do for each rj s.t. 
*

2 2( ( )) ( ( ))j j c cI
r conf rset r r r r conf rset rŒ / ° ‡ ® Œ /

 

8.             do conf-rset(ri)=conf-rset(ri)̌rj 

9.                conf-rset(rj)=conf-rset(rj)̌ri 

return 

 

 

 

 

Remove-role(rd) 

1.  Rp « Rp "̌ {r}, for all r such that  

2.  Rc « Rc "̌ {r}, for all r such that 

3.  for each rp Œ Rp   

4.   for each rc Œ Rc 

5.            If &r’ : 

6.                        continue 

7.             insert(rp->childrenlist-I, rc) 

8.             remove(rc->parentlist-I, rd) 

9.             insert(rp->parentlist-I, rp) 

10.  for all re: re Œ equivalent(rd) 

11.        remove(re->parentlist-I, rd) 

12.        remove(re->childrenlist-I, rd) 

13.  for all rs: rd Œ conf-rset(rs) 

14.        remove(rs->conf-rset, rd) 

15.  for each rp Œ Rp 

16.         for each p Œ Pset(rd) 

17.                insert(rp->Pset, p) 

18. deallocate(rd) 

  

' ' 'd p c
I I

r r r r r r” ® ‡ ® ‡

 

Fig. 3.5 Procedures used by Role-Integrate during Policy Integration 

3. Overlap: rA overlaps rB (rA O rB ) if Pset(rA ) and Pset(rB ) have some common 

shareable permissions and neither rA contains rB nor rB contains rA. Formally:  

 

* +

, : ( ) ( ) [( , ) ( )

                       ( , ) ( ) ( , , ) ( , , )]

                        (   ) (   )

i j i

j i j

A B A A

B B A B

A B B A

i j class O class O O a Pset r

O a Pset r shareable O a B shareable O a A

r contain r r contain r

& ? ® Œ ®Ã Ô
Ä Õ ®
Ä ÕŒ ® ®Å Ö

¬ ®¬

      

4. Not related: rA is not related to rB (rA ” rB ) roles rA and rB do not share any common 

permissions. Formally: 

      , : ( ) ( ) [( , ) ( ) ( , ) ( )]
i j i jA B A A B Bi j class O class O O a Pset r O a Pset r¬& ? ® Œ ® Œ  

 

Figure 3.4 shows the proposed policy integration algorithm, RBAC-integrate, that 

integrates RBAC policies of n domains to produce a global multi-domain policy. The 

input parameter Gi represents the RBAC policy of domain i specified in graphical form. 

This algorithm iteratively combines the RBAC policies of component domains in a pair-
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wise manner. In the first iteration, an integrated RBAC policy is composed from domains 

1 and 2 by calling the procedure, role-integrate, with the senior-most roles of domains 1 

and 2 respectively. In the subsequent iterations, RBAC policy of a new domain is 

combined with the integrated RBAC policy obtained in previous iteration. After n-1 

iterations, the RBAC policies of all n domains are integrated to produce a global multi-

domain policy. In each iteration, after calling role-integrate, all the newly created 

redundant roles are removed from the integrated RBAC graph. Redundant roles, formally 

defined in Section 3.3.3, are roles that do not have any permissions assigned to them nor 

can any user activate them. Removal of redundant roles, created in the process of 

integration, is essential to ensure that RBAC-integrate preserve PIR 4 and 5 listed above. 

The procedure, role-integrate, integrates inter-domain roles based on their 

permission assignment and hierarchical ordering. role-integrate is a recursive algorithm 

that uses bottom-up strategy to establish role equivalence across two domains. The 

algorithm basically checks all inter-domain roles for one of the above four relations. If 

the roles do not share any permission, then it returns without doing anything. If the inter-

domain roles say, r1 and r2, are equivalent in their permission assignment and hierarchical 

ordering then they are linked together. An inter-domain link in the graph model is 

represented by a dashed double-headed arrow between two roles. Linking two inter-

domain roles r1 and r2 implies that a user say ui, authorized for role r1 inherits all the 

permissions of role r2. Similarly, a user uj authorized for role r2 inherits all permissions in 

the authorization set of r1. Role-integrate calls link function (shown in Figure 3.5) for 

linking cross-domain roles r1 and r2. link makes r1 and r2 junior to each other in the I-

hierarchy sense. In addition, conflicting role sets of r1 and r2 and all their senior roles that 

have an I-path to r1 and r2, and all the roles that conflict with r1 and r2 and their senior 

roles are updated. This update in the conflicting role sets is essential to preserve the 

hierarchical consistency property of RBAC model which requires that the conflicting role 

set of a junior role must be contained in the conflicting role set of the senior role [Gav98]. 

As a result of this update in conflicting role sets, new SoD constraints are added between 

two or more roles which do not conflict with each other in their original domain RBAC 

policy. We will use the term induced SoD constraint to denote such SoD constraints that 
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are not present in the domains’ original RBAC policies. A formal definition of induced 

SoD constraint is given in Section 4.2 of Chapter 4. 

In presence of multiple hierarchy types, addition of roles in the conflicting role sets 

may lead to a situation in which two conflicting roles, say r1 and r2, have a common 

ancestor, say ra, which inherits both roles r1 and r2, (i.e., * *

1 2,   a a
I I

r r r r‡ ‡  ). This situation 

can be avoided by making r1 and r2 conflicting roles only if they do not have a common 

ancestor role that inherits them. This is illustrated in Figure 3.6 which shows how linking 

inter-domain roles change the conflicting set of linked roles.  Figure 3.6(a) shows roles 

r1, r2, r3, r4 and r5, with r1, r2 and r3 belonging to domain A, and r3 and r4 belonging to 

domain B. The role r1 inherits all the permission of r2 and r3. As shown in Figure 3.6(a) 

roles r4 and r5 are conflicting roles. Roles r2 and r4, and r3 and r4 are equivalent in terms 

of their permission assignment and can be linked. Figure 3.6(b) shows the integration of 

RBAC graph of Figure 3.6(a). Note that after linking, no role specific SoD constraint is 

defined between r2 and r3 because they both have a common ancestor r1 in the inheritance 

hierarchy semantics. In contrast, a SoD constraint is defined between r2 and r3 in Figure 

3.6(d) which have a common ancestor role r1 in the activation hierarchy semantics. The 

integrated policy shown in Figure 3.6(b) is conflicting and can be made consistent by 

removing one of the links r2 – r4 or r3 – r5.  

Two cross-domain roles may also have a subset-superset (containment) or 

overlapping relationship. Role r1 is contained in r2 if the set of all permissions directly 

assigned to r1 is contained in the set of permissions directly assigned to r2, and all the 

roles that are junior to r1 in the I-hierarchy semantics are also junior to r2 in the I-

hierarchy semantics. Note that containment relation mentioned here is slightly different 

from the containment relation defined earlier. In this case, hierarchical ordering is also 

considered in addition to permission assignment in defining the containment relationship 

between two roles. If r2 contains r1, then a junior role r2j is created by calling split 

function shown in Figure 3.5. In the split function, all the permissions and junior roles (I-

hierarchy semantics) common to both r1 and r2 are removed from r2 and are assigned to 

r2j.  Splitting a role does not change the permission authorization set of user and is 
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formally proved in lemma 3.1. After permission reassignment r2j and r1 are linked 

together. If r1 and r2 overlap but none of the roles contain each other, then two new roles 

r1j and r2j are created and made junior to r1 and r2 respectively. Permissions and junior 

roles common to both r1 and r2 are removed from the senior roles r1 and r2 and assigned 

to the roles r1j and r2j. After this permission and role assignments, r1j and r2j are linked. 

In Chapter 4, we provide an example of the proposed policy integration mechanism 

for different offices of a county collaborating with each other for collection and sale of 

real-estate taxes on property parcels located within the jurisdiction of the concerned 

county. The county offices involved in this collaboration are County Clerk Office (CCO), 

County Treasurer Office (CTO), County Attorney Office (CAO), and District Clerk office 

(DCO). Figure 4.5 shows the graphical representation of RBAC policies of CCO, CTO, 

and CAO and Figure 4.6 depicts the RBAC graph after applying the role-integrate 

algorithm over the role graphs of Figure 4.5.  The dotted double-headed arrow in Figure 

4.6 between two cross-domain roles defines the access path between the respective roles. 

If two cross-domain roles are linked together by a cross-domain link then a user who is 

authorized for one of the roles can also inherit the permissions of the other and vice 

versa. For instance, user u5 assigned to the DTC role in CTO is also authorized to access 

the roles DTLO01 and DTLO00 in the CCO because of the presence of an inter-domain 

link between the roles R5 in CTO and DTLO01 in CCO. Similarly, user u7 assigned to 

TAC role in CCO is authorized to access the roles R207 and R205 in the CTO by virtue of 

the inter-domain link between R908 and R205.  

Note that some of the roles in Figure 4.6 are split into two or more roles with their 

permissions redistributed among the newly created junior roles. For instance, the DTM 

role in Figure 4.5 gets split into three roles DTM, DTM10 and DTM12 with DTM as the 

senior of the remaining two (shown in Figure 4.6). The following lemma maintains that 

role splitting does not change the authorization set of users provided that no user is 

assigned to the newly created junior roles. Before stating the lemma, we would like to 

informally introduce the notion of a uniquely activable set (UAS) of a role. Interested 

readers are referred to [Jos03] for a formal definition of UAS of a role. Uniquely 

activable set (UAS) of a role r is the set of role sets that can be concurrently activated by 
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a user assigned to role r. In other words, UAS gives the role combinations that can be 

activated by a user concurrently.  

r1

r2 r3

pa pb

r5 r4

pb pa

SoD r1

r2 r3

pa pb

r5 r4

pb pa

SoD

(a) (b)
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r2 r3

pa pb

r5 r4
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r2 r3
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r5 r4

pb pa

SoD

(c) (d)

SoD
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u1 u1

A B

A B
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Fig. 3.6 Example of induced SoD 

 

Lemma 3.1: Let a role r is split into roles rs and r j with s j
I

r r‡  . Then r and rs verify 

the following conditions: 

pset(r) = pset(rs) 

UAS(r) = UAS(rs) 

The above lemma states that all the permissions that can be acquired through role r 

(before splitting) can also be acquired through role rs.   

Proof of Lemma 3.1 is given in appendix 
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3.3.3 Properties of RBAC-integrate 

In this section, we analyze the properties of the policy integration algorithm RBAC-

integrate in the context of the policy integration requirements discussed in Section 3.3.1. 

RBAC-integrate satisfies all the policy integration requirements (PIRs) except PIR6. 

Since conflict resolution is not included in RBAC-integrate, therefore the resulting multi-

domain policy may not satisfy all the constraints of input RBAC policies. However, the 

multi-domain policy obtained after conflict resolution, extensively discussed in Chapter 

4, satisfies all the integration requirements. Theorems 3.5, 3.6, and 4.7 provide a formal 

proof of this claim. 

In the following, we first formally define the notion of redundant role and then prove 

that RBAC-integrate satisfies the policy integration requirements except PIR 6. 

Definition 3.2: Let rd be a role; rd is said to be a redundant role if the following 

conditions hold: 

1. rd is not assigned to any user. 

2. rd is not assigned any permission. 

3. rd has at least one senior role r such that d
I

r r‡  

4. No role r’ exists such that ' d
A

r r‡   

5. No role r’’ exists such that "d
A

r r‡  

Redundant roles may be created during the process of policy integration. However, 

these roles can be removed from the integrated RBAC graph using the remove-role 

algorithm shown in Figure 3.5. Following lemma states that removal of a redundant role 

rd from a multi-domain RBAC graph G does not affect the security, autonomy, and 

interoperability allowed in G.  

Lemma 3.3: Let G be a multi-domain RBAC graph and rd be a redundant role in G. 

Let G’ be the RBAC multi-domain graph obtained by removing rd from G using the 

remove-role algorithm given in Figure 3.5. The following properties hold with respect to 

G and G’: 
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1. For any user u such that u Œ domain(rd), the authorization set of u over all the 

permissions associated with all the inter-domain roles r º domain(rd) remains 

unchanged. 

2. For any two roles rx Œ domain (rd) and rx ” rd and ry Œ domain (rd) and ry ” rd, if ry Œ 

conf-rset (rx) before the removal of rd, then ry Œ conf-rset (rx) after the removal of rd. 

3. For any user u such that u Œ domain(rd), the authorization set of u over all the 

permissions associated with all the intra-domain roles r Œ domain(rd) remains 

unchanged. 

4. For any user u such that u º domain(rd), the authorization set of u over all the 

permissions associated with all the roles r Œ domain(rd) remains unchanged. 

5. For any two roles rx ” rd and ry ” rd, if ry Œ conf-rset (rx) before the removal of rd, 

then ry Œ conf-rset (rx) after the removal of rd.   

1 and 2 imply that removal of a redundant role does not affect the security and 

autonomy of the domain containing the redundant role. 3, 4, and 5 imply that removing a 

redundant role does not affect the interoperation among the component domains 

Proof of Lemma 3.3 is given in Appendix. 

Lemma 3.4: The multi-domain policy produced by RBAC-integrate satisfies PIRs 1 

–  4. 

Proof of Lemma 3.4 is given in Appendix. 

One key requirement in composing a multi-domain policy is that the final outcome 

of the policy integration step should not be influenced by the order in which policies are 

integrated. If the integration mechanism depends on the order in which policies are 

combined, then one must find an integration order that gives maximum interoperation 

with minimum overhead. However, restricting the integration order may not be an 

attractive option as in most collaborative environments, domains join or leave 

collaboration any time. Nevertheless, the proposed policy integration mechanism is 
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independent of the order in which policies are integrated. We prove this by showing that 

the policy integration algorithm RBAC-integrate is both commutative and associative. 

Theorem 3.5 (Commutativity of RBAC-integrate): The policy integration 

operation performed by RBAC-integrate is commutative. 

Proof: RBAC-integrate is commutative if for any two domains A and B, RBAC-

integrate(GA,GB) = RBAC-integrate(GB,GA), where GA and GB are the RBAC graphs of 

domain A and B respectively. 

The commutativity of RBAC-integrate depends on the commutativity of role-

integrate. Therefore, we first analyze the algorithm role-integrate. Role-integrate 

performs role comparison and linking in a recursive manner. Roles are linked by calling 

link function which is symmetric. Linking of equivalent roles (lines 11 -14 of role-

interate) and overlapping roles (lines 27 – 31) is symmetric and hence commutative. For 

the containment case, assume that contained(rB, rA) is true. When role-integrate(rA, rB) is 

called then the code in lines 15 – 18 is executed, and when role-integrate(rB, rA) is called, 

the code in lines 21 – 24 is executed. In both cases, role rA is split and a junior role rAj is 

created with A Aj
I

r r‡ , and rAj is linked to rB with same permission assignment and junior 

roles. This implies that the containment case is also symmetric and commutative.  

 It can be proved using induction that role-integrate(rA, rB) and role-integrate(rB, rA) 

produces same number of roles during the process of integration and they have same 

permission assignment and role-hierarchy. Hence, role-integrate is commutative, 

implying that RBAC-integrate is commutative. ﾐ 

Theorem 3.6 (Associativity of RBAC-integrate): The policy integration operation 

performed by RBAC-integrate is associative. 

Proof: 

Let GA, GB, and GC be the RBAC graph of domain A, B, and C respectively. 

P = RBAC-integrate(GA, GB) 

Q = RBAC-integrate(GB, Gc) 

X = RBAC-integrate(P, Gc) 
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Y = RBAC-integrate(GA, Q) 

To prove that policy integration operation is associative, we need to prove that the 

graph X is isomorphic to Y. Two policy models are said to be isomorphic if there is 1:1 

onto correspondence between their elements and they have the same relationships 

[Pot03]. To show that two final integrated policy models X and Y are isomorphic, we 

define a morphism l(X›Y) as follows: 

‚ For a user ui Œ X, l(ui) = ui 

‚ For a permission pj Œ X, l(pj) = pj 

‚ For a role r’ Œ X, l(r’) = r such that  psetassign(r’) = psetassign(r) 

In order to prove that l is an isomorphism we need to show the following: 

(i) l is 1:1 and onto 

(ii)  R(U) Œ RX if and only if R(l(U)) Œ RY    (U is a vector). 

The Appendix Section contains a detailed proof of (i) and (ii). 

Theorems 3.5 and 3.6 imply that the multi-domain policy composed by RBAC-

integrate is independent of the order in which domain policies are integrated. 

3.3.4 Time Complexity of RBAC-integrate 

The algorithm RBAC-integrate runs in polynomial time, as evident from the 

following Lemmas and Theorem: 

Lemma 3.7: If role graphs representing domains’ RBAC policies are acyclic, then 

the algorithm role-integrate terminates. 

 Proof: Given two acyclic role graphs to be integrated, suppose that the algorithm 

does not terminate, i.e., role-integrate is called recursively for an infinite number of 

times. This implies that there is a cycle in one or both of role graphs. Creation of new 

roles does not create any cycle as a newly created role is never made a parent of an 

existing role. Therefore, the cycle must be present in the input role graph(s) which is a 

contradiction of our initial assumption. Hence the algorithm role-integrate terminates.    

ﾐ  
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Lemma 3.8: The worst case complexity of role-integrate is O(|P|
3
), where |P| is the 

cardinality of the permission set.  

Proof: According to the above lemma, the recursive algorithm role-integrate 

terminates. Therefore, we can build a recursive tree in which each node corresponds to 

the pair of cross-domain roles to be compared. The predicate not-compared-previously in 

lines 4 and 7 ensures that inter-domain roles are compared only once. If |R1| and |R2| 

denotes the total number of roles in their respective domains, then the total number of 

role comparisons made by role- integrate while merging the two domains are |R1|x|R2|. 

Note that |R1| and |R2| also include newly created roles. However, no more that |P| 

number of roles can be created. Therefore at most O(|P|
2
) comparison are made in the 

integration step. Suppose that all the comparisons result in linking the roles under 

consideration. In the process of linking roles, the conflicting role sets are updated. In the 

worst case the conflicting set is updated for all roles. This implies that the time 

complexity of link is O(|P|). In the worst case, link is called after each comparison. 

Therefore, the complexity of role-integrate is O(|P|
3
).   ﾐ 

Corollary 3.9: The worst case complexity of RBAC-integrate is O(n|P|
3
), where n is 

the number of input domains.  ﾐ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

34

 

 

 

4 OPTIMAL CONFLICT RESOLUTION  

The policy integration algorithm described above takes as input the RBAC policies 

of the domains and creates an integrated multi-domain policy which allows inter-domain 

role accesses and is homogeneous in terms of role hierarchies and permission assignment. 

However, the multi-domain policy created in this phase may be inconsistent and may not 

completely satisfy the component domains’ security requirements. Moreover, security 

administrator(s), in charge of the global security policy, can define additional security 

constraints and specify both permitted and restricted inter-domain role accesses. These 

additional constraints may also conflict with the access control policies of individual 

domains. For instance, in Figure 4.6, allowing role LSO from CCO to inherit the 

permissions of role DTA from CTO (shown as dashed-dot arrow from LSO to DTA in 

Figure 4.6) will violate the role specific SoD constraints between roles DTA and DTM10. 

This inter-domain access constraint will enable user u6 to access role DTA through the 

role LSO. Also the presence of link between roles R1011 and DTM10 allows user u6 to 

access role r10. This is a violation of SoD constraint defined between roles DTA and DTM 

in the original domain policy.  

The solution to this problem is to remove either the unidirectional link (LSO – DTA) 

or the link (R1011 – DTM10). This raises an important question: which accesses from the 

set of conflicting accesses should be removed such that the security and autonomy 

requirements of constituent domains are not violated? Although, removing link(s) 

resolves conflicts in the given policy, it also changes the set of allowable accesses and a 

poor choice of removable inter-domain links may significantly reduce interoperation 

among the collaborating domains. A conflict resolution mechanism is needed that 

resolves the conflicts among the collaborating domains in an optimal manner. The 

problem of conflict resolution in a given multi-domain RBAC policy can be formulated 

as an optimization problem with the objective of maximizing permitted accesses 

according to some pre-specified optimality criterion. Various optimality measures such as 



 

 

35

maximizing direct or indirect accesses or minimizing the set of relaxed inter-domain 

access constraints can be used.  

4.1 IP Formulation of a Multi-Domain RBAC Policy 

In the following, we describe an approach for formulating the multi-domain policy 

integration problem into an integer program (IP).  The proposed IP formulation is generic 

in the sense that it can work for any of the above mentioned optimality criteria. Changing 

the optimality measure in our formulation only requires changing the weights in the 

objective function.  

In the IP formulation of RBAC policy, all the constraints such as hierarchical, SoD, 

permitted and restricted access constraints are defined using linear equations. The 

variables used in these equations convey both user and role information. For instance, the 

variables are of the form 
jiru  where the first subscript i identifies the user and the second 

subscript r j specifies the role. The variable 
jiru  is a binary variable, i.e., it can take a value 

of ‘0’ or ‘1’ only. If the variable 1
jiru ?  then user ui is authorized for role r j, otherwise ui 

is not authorized for r j and cannot access role r j by any means. If user ui and role r j are 

from different domains and 0
jiru ? then in the role graph, there should not be any path 

from the user node ui to the role node r j. Note that the given multi-domain RBAC policy 

may be inconsistent and a path may exist between user ui from one domain and role r j 

from another domain, and in the solution to the IP problem 0
jiru ? . This inconsistency is 

resolved by dropping an inter-domain edge that lies in the path between the user node ui 

and role node r j.  

4.1.1 Constraint Transformation Rules 

In the following, we list the transformation rules to generate IP constraint equations for 

an RBAC policy. In specifying the rules we denote by Uk and Rk the set of users and 

roles of domain k respectively; we also denote by U the union of all Uks and by R the 

union of all Rks. 
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1. For each domain k, if a user ui Œ Uk is not authorized for a role r j Œ Rk by the access 

control policy of domain k then 0
jiru ? .  

2. For a user ui Œ U and role r j Œ R, if domain(ui) ” domain(r j) and ui cannot inherit the 

permissions of role r j then  0
jiru ? . 

3. Let Au be the set of users assigned to a role r j. There should be at least one user from 

the set Au that is able to access role r j. Formally, 0
j

i u

ir
u A

u
Œ

@Â . 

4. Suppose 1
jiru ?  and there exists a role rk such that domain(r j) = domain(rk) and 

j k
I

r r‡ , then ui is also authorized to access role rk, i.e., 1
kiru ? .  

5. Consider a user ui and a role rk such that domain(ui) ” domain(rk). Let Rm be a set of 

roles such that for all rm Œ Rm, domain(rm) = domain(rk). Also, in the RBAC graph, 

there is a path from ui to rm and m k
I

r r‡ . We define two roles sets Rc and Rpc as follows: 

)})()( ( )),(_such that( R|{R

)}()(|{R

cpc

c

p
I

ppp

kk
I

rdomainrdomainrrruassignurrrr

rdomainrdomainrrr

?®‡°®?Œ&?

”®‡?

 

The following constraint equations define the conditions for a user ui to access role rk. 

a. 
mR , 0

m km ir irr u u$ Œ / ~   

b. 
cR

0
m n k

m m n

ir ir ir
r R r

u u u
Œ Œ

- / ‡Â Â  

c. 
pcR

0
m p k

m p

ir ir ir
r Rm r

u u u
Œ Œ

- / ‡Â Â  

The above set of constraint implies that a user ui may access a cross domain role rk 

only if one of the following two conditions holds: 

i. ui is authorized for a cross domain role rm such that domain(rm) = domain(rk) 

and m k
I

r r‡ . 

ii. ui is authorized for role rn and there is an inter-domain edge from rn to rk. 

Condition 5c is necessary to avoid any localized assignment of 1 to variables 

cR  where, and Œ
nnk iririr uuu  
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6. Consider any two users ui and uj and a role rk. Suppose ui is authorized to access role 

rk, i.e. .1?
kiru  Suppose that a cross-domain link exists from role rk to role r l. If user 

ui is able to access r l through the cross domain link (rk, r l), then user uj, if authorized 

for role rk, can also access r l through the link (rk, r l). Formally: 

* + * + * +
* + * +

 ( )  then   0

   0

k l k l

k l k l

i j k i r ir jr jr

ir ir jr jr

if dom(u ) dom u dom r u u u u

else u u u u

? ? / / / ?

/ / / ‡
 

7. A role specific SoD constraint may exist between two intra-domain or inter-domain 

roles. In the graph model, SoD constraint between two conflicting roles r j and rk is 

represented by a double-headed arrow between roles r j and rk. In the IP formulation, 

this SoD constraint can be written as: 

      1,    for all users  such that  can access either  or 
j kir ir i i j ku u u u r r- ~  

8. Suppose that a SoD constraint exists between two intra-domain roles rm and rn 

induced by a cross-domain roles rk and r l. This induced SoD constraint can be written 

in equation form as:  

3,    for all users  such that  can access either  or 
m n k lir ir ir ir i i m nu u u u u u r r- - - ~  

9. Let Ukc be the set of conflicting users for role rk. At most one user in the set Ukc is 

allowed to access/activate role rk at any given time. Formally: 

1u
U

irk
~Â

Œ kciu

 

 

4.1.2 Optimality Criteria 

The IP constraints described in the above section are used to define security 

requirements of collaborating domains’ RBAC policies. Once the RBAC constraints are 

transformed into linear IP constraints by using the above transformation rules, the multi-

domain RBAC policy can be formulated as the following integer programming problem. 

maximize    

Subject to   

                  , 0 or 1
j j

T
r

r

ir r ir

c u

Au b

u u u

~
$ Œ ?
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Where, c is the cost vector and A is the constraint matrix. The cost vector c defines 

the optimality criteria. The main purpose of formulating the multi-domain RBAC policy 

into an IP problem is to find a feasible solution (a set of users having permission to role 

accesses that do not violate the given security requirements of individual domains) that 

maximizes the objective function according to given optimality criterion. One of the 

optimality criteria might be to maximize the number of cross domain role accesses. In 

this case the objective function is the sum of all variables defining inter-domain user to 

role accesses.  

Maximizing inter-domain accesses may lead to relaxing or dropping some of the 

administrator-specified constraints which may not be desirable in certain situations. 

When administrative constraints are to be preserved, the element of cost vector 

corresponding to the administrator specified constraint is assigned a higher value. 

4.2 Autonomy Consideration 

One key requirement of policy integration is to maintain the autonomy of all 

collaborating domains. However, preserving the autonomy of individual domains may 

significantly reduce interoperation and in some cases may not allow interoperation at all. 

In other words, there is a trade-off between seeking interoperability and preserving 

autonomy. In the RBAC policy integration framework, violation of a domain’s autonomy 

occurs because of the following two reasons: 

Induced SoD constraint: An induced SoD constraint as mentioned in Chapter 3 is a 

SoD constraint between two intra-domain roles ra and rb which do not conflict with each 

other in their original domain’s RBAC policy. Such a SoD constraint is caused by a 

cross-domain roles rc and rd for which the following hold: 

domain(rc) ” domain(ra) = domain(rb) 

domain(rd) ” domain(ra) = domain(rb) 

( , ) ( ) ( )c d a c b d b c a d
I I I I

conf rset r r r r r r r r r rÇ ×/ ® ‡ ® ‡ ° ‡ ® ‡É Ú  

Figure 4.2(a) illustrates an induced SoD constraint between roles r2 and r3 of domain 

A caused by roles r4 and r5 of domain B. Note that in the original RBAC policy of 
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domain As shown in Figure 4.2(b), r2 and r3 are non-conflicting. As a result of this 

induced SoD constraint, user u1 who in the domain A’s original policy is authorized to 

access role r2 and r3 simultaneously, cannot access these roles in concurrent sessions in 

the multi-domain environment.  

Asymmetric cardinality of equivalent roles: There are various types of cardinalities 

associated with a given role, for instance, role-assignment cardinality, role-activation 

cardinality, per-user role-assignment cardinality, and per user role activation cardinality 

[Jos03]. For simplicity of discussion, we only consider role-activation cardinality which 

is defined as the maximum number of concurrent accesses of a role allowed by a given 

RBAC policy. Two cross-domain equivalent roles ra and rb are said to be asymmetric in 

their cardinality if they differ in their activation cardinalities. In order to establish 

interoperability between two cross-domain equivalent roles that are asymmetric in their 

activation cardinalities, the most restrictive cardinality constraint from the two roles is 

taken and is applied to both of them. For instance, if ra has a cardinality constraint of one 

and rb has a cardinality constraint of three, then the most restrictive cardinality constraint 

is one and should be applied to both ra and rb if they are to be made interoperable. 

Adding the most restrictive cardinality constraint may violate the autonomy of one or 

more of the collaborating domains. On the other hand, retaining the original cardinalities 

of interoperable roles may lead to security violation which is unacceptable. Obviously, 

the third option is to disallow any cross-domain accesses via roles with asymmetric 

cardinalities. This option reduces interoperation between two otherwise similar cross-

domain roles. Figure 4.6 depicts the trade-off between interoperability and autonomy in a 

graphical manner. A discussion on this graph is presented in Section 4.4. 

In general, composition of a global multi-domain policy that allows interoperation 

among multiple domains without any violation of collaborating domains’ security and 

autonomy is not a feasible task. In almost any collaborative environment, violation of any 

domain’s security policy is not permissible at all. However, domains may be willing to 

compromise their autonomy for the sake of establishing more interoperability. In 

particular, the autonomy violations described in the context of RBAC policy integration 

are less critical and can be tolerated. Nevertheless, if a domain’s RBAC policy does not 
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allow any autonomy violation of one or more of its roles, then such roles are not made 

interoperable with other similar cross-domain roles that either induce SoD constraints or 

have different role cardinalities.  

In a multi-domain environment in which certain autonomy violations can be 

tolerated, the objective of the conflict resolution phase is to maximize interoperation 

according to the given optimality criterion with a minimum loss of autonomies of 

collaborating domains. This goal of minimizing autonomy loss is reflected in the 

objective function of the IP problem by assigning a lower weight to user-role variables 

that result in autonomy violation and a relatively higher weight to user-role variables that 

do not cause violation of any sort. The following example illustrates this point in more 

detail. 

 
Example 4 

Consider two collaborating domains A and B with their respective RBAC policies 

shown in Figure 4.2(a). The multi-domain RBAC policy that allows inter-domain 

accesses between A and B is shown in Figure 4.2(b). The link from r3 to r5 and an 

administrator-specified access constraint that allows role r5 to inherit permission of role 

r1 make this multi-domain policy inconsistent. Note that the SoD constraint between r2 

and r4 is an induced SoD constraint and limits the autonomy of user u1. The conflict in 

this multi-domain policy can be resolved by either removing the edge (r3, r5) or (r5, r1). In 

both cases the number of cross-domain accesses will remain the same. However, 

removing (r3, r5) is preferred over (r5, r1) as it retains the autonomy of u1 over roles r2 and 

r3. The IP formulation of the multi-domain policy of Figure 4.2(b) is shown in Figure 4.1. 

Note that in the objective function, the variables 
4 5 4 51 1 2 3, , , and r r r ru u u u are assigned a 

lower weight than the remaining variables in the objective functions. These variables tend 

to retain the link from r2 to r4 and from r3 to r5, which prohibits user u1 to access r2 and r3 

simultaneously - a violation of domain A’s autonomy. An optimal solution to the IP 

problem shown in Figure 4.1 has following values of cross-domain variables. 

4 5 4 5 2 1 3 61 1 2 3 4 5 5 50,  0,  1,  0,  1,  1,  1,  1r r r r r r r ru u u u u u u u? ? ? ? ? ? ? ? . 
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Since 
33 1ru ?  (constraint c9 in Figure 4.1), and

53 0ru ? , the cross-domain edge (r3,r5) 

needs to be dropped from the multi-domain RBAC graph of Figure 4.2(b).  

 

4.3 Conflict Resolution Algorithm 

Figure 4.3 shows an algorithm ConfRes for resolving conflicts from the RBAC graph 

G representing the multi-domain policy. This algorithm first transforms the RBAC policy 

constraints into IP constraints using the rules given in Section 4.1.1. Before transforming 

RBAC policy constraints into IP constraints, dummy users are assigned to two classes of 

roles which do not have any user assigned to them. Class one includes those roles which 

do not have any senior role in the inheritance hierarchy semantics. Assignment of dummy 

users to class one roles ensures that all the roles appear in the IP constraint equations, 

which is essential for conflict resolution. Class two includes roles which have a non-

empty set of conflicting users. The dummy user udj assigned to a class two role r j is also 

included in all the conflicting sets of users for role r j. Since udj is the only user assigned 

to r j therefore 1?
jdjru (by transformation rule 2).This prohibits any user uk that conflicts 

with udj for role r j to inherit the permissions of r j through a senior role rs without 

activating r j. Once all the IP constraints are defined, the IP problem is solved using the 

optimality criterion embedded in the objective function. Based on the solution of the IP 

problem, the graph G is modified by removing the conflicting cross-domain edges and 

induced SoD constraints. The resulting graph defines the multi-domain policy that 

satisfies the security requirements of all collaborating domains. This is formally proved 

in Chapter 5. 
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4 5 4 5 2 1 3 6

1 6 1 2 3 6

1 1 2 3 4 5 5 5

1 1 2 2 2 2

3

Maximize 2 2 2 2

Subject to
Constraints derived from rules 1, 2, 3, and 4
c1: 1,     c2: 1,    c3: 0,     c4: 1,     c5: 0,      c6: 0,   

c7: 

r r r r r r r r

r r r r r r

r

u u u u u u u u

u u u u u u
u

- - - - - - -

? ? ? ? ? ?

1 2 3 6 4 5

4 5 5 4 1 3

6 2

3 3 3 4 4

5 5 2 3 4 4

4 5

0,    c8: 0,   c9: 1,    c10: 0,   c11: 1,    c12: 0,    

c13: 0,c14: 1,c15: 0,   c16: 0,    c17: 0,    c18: 0,   

c19: 0,c20: 0

Constraints derive

r r r r r
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Fig. 4.1 IP formulation of multi-domain RBAC policy shown in Fig. 4.2 
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Fig. 4.2 (a) RBAC policy graph of domain A and B in example 4, (b) Integrated RBAC policy defining 

interoperation between domains A and B. 
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ConfRes(G) 

1.   Assign a dummy user udi to all roles ri for which the following hold: 

a. No user is assigned to r i. 

b.There does not exist any role rk for which i
I

k rr ‡ . 

2. Assign a dummy user udj to all roles rj which have a non-empty set of 

conflicting users. 

3. For each role r j that is being assigned a user udj in step 2, set 1?
jdjru  and 

update the conflicting set of users by doing the following: 

a. Define user-specific SoD constraint between udj and all the conflicting 

users for role r j that are not assigned to r j. 

b. add new conflicting set(s) of user for role r j containing the dummy user 

udj and a user uk for which the following holds: 

)]((),,()[(such that  , jiikij
t

A
iii ruserconfuruuuserconfrrRrUu /Œ®/®‡ŒŒ&  

4. Using the constraint transformation rules, write the RBAC policy constraints 

in algebraic form. 

5. Define the objective function. 

6. Find an optimal feasible solution for the integer programming (IP) problem. 

7. From the multi-domain RBAC policy graph G, remove the inter-domain 

edge (r i, r j) for which there exists a user uk such that 1?
ikru and 0?

jkru in 

the optimal feasible solution. 

)}()(         

 and 0 and 1such that  |),{(

ji

krkrkji

rdomainrdomain
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8. For an edge (r i, r j) removed from G, if r j induces an SoD constraint between 

r i and any role rk, then remove that induced SoD constraint from RBAC 

policy graph G 

9. From the graph G, remove the conflicting set of users added in step 3b. 
 

Fig. 4.3 Conflict resolution algorithm  

 

4.4 An illustrative example 

In this section, we illustrate the proposed policy integration framework by 

considering interoperation/collaboration among various offices of a county for collection 

and sale of real-state tax on property parcels located within the jurisdiction of concerned 

county. The concerned county offices include: County Clerk Office (CCO), County 

Treasure Office (CTO), County Attorney Office (CAO), District Clerk Office (DCO), and 

District Courts (DC). These offices/departments share information among each other for 

budget planning, tax billing and collection, sale of delinquent taxes, auditing and other 

legal purposes. Each county office keeps the information owned by it in its local 

databases. Integration of these local databases is needed to provide inter-domain 
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information access capability. Such an integration not only expedite the process of tax 

collection and sale by providing immediate access to timely, accurate, and complete 

information, but also improves the productivity of existing staff by reducing redundant 

data collection efforts among the county departments. 

In order to establish interoperation among various county offices, the access control 

policies of the collaborating county offices need to be integrated. Due to space limitation, 

we only focus on interoperation among three county offices: CCO, CTO, and CAO. 

Table 4.1 lists the roles, job description and permissions associated with each role of all 

three county offices. The permission authorization in Table 4.1 defines the access rights 

or permissions available to the corresponding roles on local as well as cross-domain 

information objects. As mentioned in Chapter 3, an information sharing policy is needed 

that explicitly specifies the access rights available to cross-domain-roles over a local 

object and the conditions under which such access is granted. Table 4.2 shows the 

information sharing policy of information/data objects that can be shared among the 

collaborating county offices. The letters W, R, and A in the access mode columns 

indicate write, read, and approve respectively. Note that in the information sharing policy 

listed in Table 4.2, domains that own information objects do not indicate the actual 

foreign domain roles that can inherit the permissions of their local objects. Rather the 

owner domains only specify the conditions that must be fulfilled by cross-domain roles in 

order to access foreign objects. Listing the prospective cross-domain roles that can access 

a given object is too cumbersome and requires the knowledge of the organization 

hierarchy and access control policies of other collaborating domains. Acquisition of this 

knowledge may not be feasible as domains may not be willing to reveal their access 

control policies to others. It is therefore the responsibility of the policy integration 

mechanism to determine the roles that satisfy the condition for accessing each others 

information objects and link them accordingly. 

Figure 4.6 shows the integrated RBAC policy after applying the policy integration 

operation, RBAC-Integrate, on the RBAC graphs shown in Figure 4.5. This integrated 

policy corresponds to the output of the policy integration step of Figure 1.1. In Figure 

4.6, the dotted double headed arrow between two cross domain roles indicates that these 
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roles are equivalent and can inherit the permissions of each other. For instance in Figure 

4.6, role DTM10 of CTO is equivalent to R1011 . This implies that a user of CTO domain 

can access the permissions of role R1011 through DTM10; similarly, a user who is 

authorized for role R1011 can also inherit the permissions of role DTM10 through R1011. 

Note that cross-domain roles are related by the I-hierarchy semantics only, which implies 

that user u1 of CTO cannot access the permissions of role R1011 without gaining access of 

role DTM10. Also, user u6 can access role DTM10 only if it has access over role R1011.  

In addition to the cross-domain links produced by RBAC-integrate between 

equivalent roles, Figure 4.6 also defines access constraints specified by the global 

security administrator(s). These administrator specified access constraints are depicted as 

dash-dotted arrows. In Figure 4.6, administrator-specified access constraints include the 

following edges: (TA, TAO), (PIO, TRA), (LSO, DTA), (DTLO, DTC), (TAC, DTA), 

(DTA, ACAT), (ACAT, TAC), and (DTM, ACAT). An administrator specified access 

constraint edge (ra, rb) implies that role ra inherits the permissions of the cross-domain 

role rb. Similar to the cross-domain link between equivalent roles, roles ra and rb in the 

administrator-specified constraint edge (ra, rb) are related according to the I-hierarchy 

semantics. 

The multi-domain policy shown in Figure 4.6 is conflicting and does not satisfy the 

security requirement of the collaborating county offices. For instance, the administrator 

specified access constraint edge (TA, TAO) conflicts with (PIO, TRA). If both of them 

are retained then a violation of SoD constraint between TRE and TRA occurs, enabling 

user u2 to access role TRE and TRA simultaneously.  Similarly, the cross-domain edge 

(LSO, DTA) conflicts with (DTLO, DTC) and (R1011, DTM10). These cross-domain 

access constraints allow user u6 to access roles DTA and DTM10 in concurrent sessions, 

which is again a violation of SoD constraint defined between roles DTA and DTM10. 

Note that in the original RBAC policy of CTO, a SoD constraint is defined between DTA 

and DTM (see Figure 4.5). Since DTM splits into roles DTM10 and DTM12, therefore 

these roles also conflict with DTA. The administrator specified access constraint edge 

(DTA, ACAT) and the link (PLAT9, DTM) allows u4 to access the role DTM which is a 

violation of role-assignment constraint as user u4 is assigned role DTA which is junior to 
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role DTM. The cross-domain edges (DTM, ACAT), (ACAT, TAC), and (TAC, DTA) 

results in a violation of the SoD constraint defined between roles DTM and DTA. These 

cross-domain edges enable u1 to access DTM and DTA simultaneously. 

Conflicts in the multi-domain policy shown in Figure 4.6 are resolved by applying 

the conflict resolution algorithm ConfRes. ConfRes first transforms the RBAC policy 

constraints into IP constraints. This IP constraint transformation process produces almost 

1500 constraints for the multi-domain RBAC policy of Figure 4.6.  The resulting IP 

problem is solved with the objective of maximizing all cross-domain accesses. The 

solution thus obtained removes the following edges from the multi-domain policy graph 

of Figure 4.6: (DTM, ACAT), (TAC, DTA), (DTA, ACAT), (PIO, TRA), and (LSO, 

DTA). A maximum of 102 cross-domain accesses are obtained if the above edges are 

removed. Note that in this case, all the cross-domain accesses are assigned equal weight 

in the objective function.  If some cross-domain accesses are more important than others 

then such accesses can be prioritized by assigning them a higher weight in the objective 

function. This will increase the likelihood of retaining high priority accesses in the multi-

domain policy. However the total number of accesses cannot exceed the maximum value 

obtained by assigning uniform weights to all cross-domain accesses. 

Figure 4.7(a-b) shows the trade-off between interoperability and autonomy for the 

domains CTO and CCO respectively. The role cardinalities and user assignment used in 

the measurement of interoperability and autonomy parameters are given in Table 4.3. A 

role with a cardinality of n implies that no more than n users can access that role 

concurrently. For this study/analysis, interoperability of a domain is defined as a measure 

of the number of cross-domain accesses to that domain. Autonomy of a domain at any 

given interoperability level is determined by the autonomy loss (AL) metric defined as: 

Total number of local accesses Total number of local accesses 

with no cross-domain accesses with  cross-domain accesses
( )

Total number of local accesses 

with no cross-domain accesses

N
AL N

Ã Ô Ã Ô
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In the interoperability versus autonomy loss graph, depicted in Figure 4.7, 

interoperability of a domain X is varied by selecting different sets of cross-domain edges 

from the set of edges EX.  The set EX is given by: 

{( , ) | ( ,  )  (( , ) )

     (  is a secure multi-domain graph obtained after applying  ConfRes algorithm)}

X a b a b a bE r r r X r X r r G

G

? º Œ ® Œ ®
 

The graph shown in Figures 4.7 contains two curves defining the upper bound and 

lower bound for the autonomy losses at various interoperability levels. At any given 

interoperability level, there can be multiple values of autonomy losses corresponding to 

different selection of cross-domain edges from the set EX. However, all the autonomy 

loss values are confined to the region bounded by the upper bound and lower bound 

curves shown in Figure 4.7. The output of the conflict resolution algorithm gives a set of 

secure edges that maximizes interoperability. However, the maximal interoperability 

point may result in a greater loss of autonomy. For instance in Figure 4.7(b), a maximum 

interoperability level of 43 results in an autonomy loss of 53%. This can be reduced to 

29% by selecting a different operating point with an interoperability value of 36.  In order 

to minimize autonomy losses, one should always select an operating point that lies on or 

close to the lower bound curve. However, this may result in compromising some of the 

prioritized cross-domain accesses due to the removal of the prioritized cross-domain 

links. 

The drastic variations in autonomy losses with a very small or no change in 

interoperability level is due to the different selection of cross-domain edges/links. For 

instance, on the lower bound curve of Figure 4.7(a) when the interoperability level 

increases from 30 to 31, the autonomy loss increases from 17% to 33%. To explain this 

drastic variation, we refer to the points (30, 17%) as A and (31, 33%) as B, and the 

corresponding set of cross domain edges at these operating points as ACTO and BCTO 

respectively.  The difference in this autonomy loss is due to the inclusion of the cross-

domain edge (R1011, DTM10) in BCTO. As a result, user u30, u32, u36, and u37 from domain 

CCO can now access the cross-domain role DTM10 which has a cardinality of four. 

Please refer to Table 4.3 for user assignments and role cardinalities. As a result of these 

cross-domain accesses, none of the users from domain CTO can access the role DTM10 
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and all the roles senior to DTM10 in the I-hierarchy semantics. This increases the 

autonomy loss of CTO domain from 17% to 33% at point B.   

In the above case, autonomy loss is due to the addition of a cross-domain edge. 

Addition of a cross-domain edge may also reduce autonomy loss. For instance, consider 

the points C(39,38%) and D(39,33%) in Figure 4.7(a). The set of cross-domain edges 

corresponding to points C and D are denoted by CCTO and DCTO respectively. The set 

DCTO contains the cross-domain edge (DTLO, DTC) which is not present in the set CCTO.  

The role DTLO has a cardinality of five and DTC has a cardinality of four. Linking 

(DTLO, DTC) reduces the effective cardinality of DTLO by four, implying that only four 

users can access the role DTLO and the roles that can be reached through DTLO only. 

The set of users from domain CCO, that can access DTLO includes users u30, u32, u36, u37, 

and u39. For maximum interoperability at point D, user u39 cannot access DTLO implying 

u39 cannot activate the cross-domain role R1 which has a cardinality of eleven. There are 

seven users from the domain CTO that are allowed to access R1. Since only four cross-

domain users are allowed to access R1, therefore none of the local accesses to R1 is 

blocked. However, when cross-domain link (DTLO, DTC) is removed, the cardinality of 

DTLO is restored to five, which allows u39 to access the role DTLO. User u39 can access 

role R1 through the role DTLO00 which is junior to DTLO in the I-hierarchy semantics. 

This increases the number of cross-domain accesses to role R1 by 5, implying that one 

local access to role R1 needs to be blocked. This blocked local access propagates upward 

in the role hierarchy of domain CTO thus increasing the autonomy loss from 33% to 

38%.  
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Table 4.1 Description of roles involved in collaboration among county offices 

Role Domain Job Description Permission Authorization 
Treasurer CTO Supervises all operations of treasurer 

office 

Inherits all permissions of TCM, 

TRM, and DTM 

Tax Assessor (TA) CTO Assess/prepare tax bills P6, P9, P10, P11 

Tax Bill Approver (TBA) CTO Reassess & approve of tax bils P6, P9, P10, P11, P12 

Tax Collector (TC) CTO Tax collection & tax sale, record 

keeping of tax bidders  

P11, P13, P14, P31, P32 

Tax Collection Manager 

(TCM) 

CTO supervises TA, TBA, and TC Inherits all authorized permissions of 

TA, TB, and TC 

Tax Refund Assessor (TRA) CTO Assess tax refunds, prepare tax refund 

orders 

P6, P9, P11, P17, P18 

Tax Refund Examiner (TRE) CTO Reassess/approve refund orders P6, P9, P11, P18, P19 

Tax Refund Clerk (TRC) CTO Prepare refund vouchers P42, P43 

Tax Refund Manager (TRM) CTO Approve refund vouchers P42, P43, P44 

Delinquent Tax Clerk (DTC) CTO Keep record of delinquent taxes P11, P14, P20, P21 

Delinquent Tax Assessor 

(DTA) 

CTO Assess delinquent tax records P11, P14, P20, P21,P22 

Delinquent Tax Manager 

(DTM) 

CTO Approve delinquent taxes for 

sale/resale (supervises DTC & DTA) 

Inherit permissions of DTC & DTA, 

P24P26P27 ,P29, P31, P32, P34, P36 

County Clerk CCO Supervises all operations of clerk 

office 

Inherits all permissions of PTAM & 

PDTM 

Property Value Assessment 

Officer (PVAO) 

CCO Property value assessment  P1, P2, P4 

Tax Assessment Clerk (TAC) CCO Determine property tax rates P2, P4, P5, P6, P9 

Tax Assessment Officer 

(TAO) 

CCO Reassess/approve tax rates P2, P4, P6, P7, P9 

Property Tax Assessment 

Manager (PTAM) 

CCO Supervise TAC & TAO Inherits permissions of TAC & TAO 

Property Indexing Officer 

(PIO) 

CCO Property indexing P2, P3, P4 

Delinquent Taxes & Lien 

Officer (DTLO) 

CCO Record keeping of delinquent taxes 

and other tax liens 

P2, P4, P11, P14, P21, P24, P27 

Lien Sale Officer (LSO) CCO Sale of delinquent taxes, keep record 

of tax buyers 

Inherit permissions of DTLO, P28, P29, 

P30, P31, P32, P34, P36  

Redemption Cost Assessor 

(RCA) 

CCO Prepare redemption cost estimates for 

delinquent taxes 

Inherit permissions of DTLO, P29, P31, 

P34, P35, P36 

Property Delinquent Tax 

Manager (PDTM) 

CCO Reassess/approve tax redemption cost 

estimates (supervises LSO & RCA) 

Inherit permissions of RCA & LSO, 

P33, P37 

County Attorney  CAO Heads county attorney department Permissions of all junior roles 

Deputy County Attorney Tax 

Section (DCAT) 

CAO Assess/approve tax sale plea Inherits permissions of ACAT, P45 

Asst. County Attorney Tax 

Section (ACAT) 

CAO Prepare tax sale pleas for delinquent 

taxes and other liens/ Supervise tax 

sales 

Inherits permissions of PLAT, P25 

Para Legal tax Section 

(PLAT) 

CAO Keep records of information obtained 

from CCO & CTO for tax related 

affairs, assists attorneys in preparing 

tax sale pleas 

P2, P4, P6, P9, P11, P14, P16, P21, P24, P26, 

P27, P29, P31, P32, P34,P36 
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Table 4.2 Information sharing policy of collaborating domains 

Information/data 

Object 

Owner 

domain 

Foreign 

domain

Access 

Mode 

available 

to owner 

domain

Access 

mode 

available 

to foreign 

domain

Purpose of access of 

foreign domain

Condition for cross-domain access

Property value record 

(O
1
) 

CCO CTO, 

CAO

W:P1, R:P2 R:P2 Property value & tax rate 

assessment

Access available to subjects dealing 

with property tax assessment and 

billing

Property ownership 

and location record 

(O
2
) 

CCO CTO, 

CAO

W:P3, R:P4 R:P4 Tax billing, notification Access available to subjects dealing 

with tax billing and tax auditing

Tax rate record (O
3
) CCO CTO, 

CAO

W:P5, R:P6, 

A:P7

R:P6 Tax billing Access available to subjects dealing 

with tax billing and tax auditing

Tax exemption record 

(O
4
) 

CCO CTO, 

CAO

W:P8, R:P9 R:P9 Tax adjustment, billing Access available to subjects dealing 

with tax billing, adjustments, refunds 

and tax auditing

Tax Bill (O
5
) CTO CCO, 

CAO

W:P10, 

R:P11, 

A:P12

W:P10, 

R:P11

Auditing, tax 

readjustment, imposing 

penalties and fines for 

non payment or late 

payment of taxes, 

checking payment record 

of tax payers for other 

purposes 

Access available to subjects dealing 

with tax billing, adjustments, refunds, 

tax auditing and delinquent taxes and 

redemption

Tax Payment record 

(O
6
) 

CTO CCO, 

CAO

W:P13, 

R:P14

W:P13, 

R:P14

Auditing, receive 

payment in certain cases 

(delinquent taxes, 

tax/lien sale)

Access available to subjects dealing 

with tax billing, adjustments, refunds, 

tax auditing and delinquent taxes and 

redemption

Refund order (O
8
) CTO CCO W:P17, 

R:P18, 

A:P19

W:P17, 

R:P18

Refunds for unsuccessful 

tax bidders

Access available to subjects dealing 

with tax refunds and tax sale refunds

Delinquent tax record 

(O9) 

 

CTO CCO, 

CAO

W:P20, 

R:P21, 

A:P22

W:P20, 

R:P21

Preparing tax sale plea, 

redemption cost 

estimates, tax sale, 

auditing

Access available to subjects dealing 

with delinquent taxes, tax sale, tax 

redemption, and tax auditing

Tax Liens (O10) 

 

DCO CCO, 

CTO, 

CAO

R:P24 Preparing tax sale plea, 

redemption cost 

estimates, tax sale, 

auditing

Access available to subjects dealing 

with delinquent taxes, tax sale, tax 

redemption (write), and tax auditing

Tax Sale Plea (O11) 

 

CAO CCO, 

CTO

W:P25, 

R:P26, 

A:P45

R:P26 Record keeping, 

identifying pending tax 

sales awaiting court 

orders, auditing

Access available to subjects dealing 

with delinquent taxes, tax sale, tax 

redemption, and tax auditing

Tax Sale Judgement 

Order (O12) 

 

DCO CCO, 

CTO, 

CAO

R:P27 Record Keeping, tax sale 

and redemption, auditing

Access available to subjects dealing 

with delinquent taxes, tax sale, tax 

redemption, and tax auditing

Tax Sale Record (O13) CTO CCO, 

CAO

W:P28, 

R:P29

W:P28, 

R:P29

Record Keeping, tax sale 

and redemption, tax 

refunds

Access available to subjects dealing 

with delinquent taxes, tax sale, tax 

redemption (write), and tax auditing

Tax Buyer Record 

(O14) 

CTO CCO, 

CAO

W:P30, 

R:P31

R:P30 Record Keeping, tax 

redemption, tax refunds, 

auditing

Access available to subjects dealing 

with delinquent taxes, tax sale, tax 

redemption and refunds, and auditing

Tax Redemption 

Record (O15) 

CTO CCO, 

CAO

W:P33, 

R:P34

W:P33, 

R:P34

Record Keeping, tax 

redemption and refunds, 

auditing

Access available to subjects dealing 

with delinquent taxes, tax sale, 

redemption (Write) and refunds, and 

tax auditing

Redemption Cost 

record (O17) 

CCO CTO, 

CAO

W:P35, 

R:P36, 

A:P37

W:P35, 

R:P36

Redemption of 

delinquent taxes, 

refunds, auditing

Access available to subjects dealing 

with delinquent tax redemption 

(Write) and refunds, and tax auditing
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Table 4.3 Cardinality and user assignment of roles used in autonomy loss measurement of Fig. 4.5 

Role Cardinality User 

assigned 

Role Cardinality User 

assigned 

Role Cardinality User 

assigned 

Treasurer 1 u1 R2 11  R7 12  

TCM 2 u2 R1 11  TAC 4 U33 

TRM 2 u3 R402 7  TAO 4 U34 

DTM 2 u4 R205 11  PVAO 4 U35 

TA 3 u5 R207 11  PIO 8 U38 

TBA 3 u6 DTM10 4  R9 11  

TC 3 u7 DTM12 5  DTLO00 11  

TRE 4 u8 CC 1 u30 DTLO01 11  

TRA 4 u9 PTAM 2 u31 R1003 7  

DTA 4 u10 PDTM 2 u32 LSO04 7  

DTC 4 u11 LSO 5 u36 R806 11  

TRC 8 u12 RCA 5 u37 R908 11  

R6 11  DTLO 6 u39 DTLO09 11  

R5 11  R10 9  DTLO13 5  

R4 7  R8 9  R1011 4  
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Fig. 4.4 RBAC policy graphs of collaborating county offices 
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Fig. 4.5 Integrated RBAC policy governing collaboration among the county offices 
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Fig. 4.6 Interoperability versus autonomy loss 
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4.5 Verification of Multi-domain policy 

In this section, we formally analyze the proposed policy integration mechanism in the 

context of security constraints of collaborating domains. As mentioned in chapter 24, 

interoperation may results in three types of security constraint violations, including: role-

assignment constraint, role-specific SoD constraint, and user-specific SoD constraint. 

However, the multi-domain policy produced by the proposed policy integration 

mechanism satisfies all the security constraints of all collaborating domains. Before 

proving the afore-mentioned claim, we first introduce some notations and definitions that 

help in defining security constraints in a formal manner. 

Adjacency matrix: An adjacency matrix Ak represents the user-role graph of domain k. 

Ak defines role hierarchy and user to role assignment for domain k. 

||R||U|| ||R||U||)dim( kkkkkA -·-? , where Uk is the set of user and Rk is the set of roles 

of domain k. 

Closure matrix: A closure matrix Ak
+
 is the transitive closure of the adjacency matrix 

Ak. )dim()dim( kk AA ?-
. 

Projection operator: A projection operator rur takes an adjacency or closure matrix as 

input and returns a matrix with users along the rows and roles along the 

column. :{ , } U xRur k k k kA Ar - › , Projection of a closure matrix Ak
+
 defines all possible 

user to role accesses in domain k. 

Ì
Ë
Ê?Œ -

otherwise    ,1

 access  toauthorizednot  is  if    ,0
),A(any for ji

ijkurij
ru

aa r  

Note that aij=1 does not imply that ui is allowed to access role r j. An SoD or cardinality 

constraint may prevent ui from accessing r j even though aij=1 in the projected closure 

matrix.  

State matrix: A state matrix S is a matrix of dimension |U| x |R| ( k

k

U= UI , k

k

R= RI ) 

and it describes the user to roles accesses in the multi-domain environment. Note that the 

state matrix captures both intra-domain and inter-domain role accesses. 

Ì
Ë
Ê?Œ

otherwise    ,0

userby  accessed being is  role    ,1
,Sany for ij

ijij

 ur
ss  
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State projection operator: There are two types of projection operator defined on state 

matrix, namely: per domain user-role projector (rur_k) and per domain role projector 

(rr_k).  

The operator rur_k takes any state matrix as input and projects the elements 

corresponding to the users and roles of domain k. It is defined as: kkkur RUS:_ ·›r , 

where Uk Ø U and Rk Ø R.  

The operator rr_k takes any state matrix as input and projects the elements 

corresponding to the roles of domain k. It is defined as: kkur RUS:_ ·›r . 

R-SoD matrix: A R-SoD matrix, R
k
SoD, is a M · N matrix that defines role-specific SoD 

constraints of domain k. M is the number of roles in domain k (M = |Rk|) and N is the 

number of role-specific SoD constraints defined in domain k. Note that a given domain 

can have multiple conflicting role sets Rcon. Each column in the R-SoD matrix 

corresponds to one of the conflicting role sets Rcon. Let np
 be the pth

 column of R
k
SoD, and 

Rcon_p be the corresponding conflicting role set, then for each r j Œ Rk. 

_1,  if 
( )

0,  otherwise

p j con pr R
jn

ŒÊ
? Ë
Ì

 

U-SoD matrix: A U-SoD matrix, U
k
SoD_r, is a M · N matrix that defines user-specific 

SoD constraints for a role r Œ Rk. M is the number user-specific SoD constraints defined 

for the role r . N is the total number of users (N = |U|). Note that any role, r, in a given 

domain can have multiple sets of conflicting users (or). The set Ur_con denotes the union 

of all the conflicting user sets of role r, i.e., _

1
r

M
i

r con
i

U o
?

?I , where 
r

io  is the i th
 conflicting 

user set of role r.  Each row in the U-SoD matrix corresponds to one of the conflicting 

user sets or. Let tq
 be the qth

 row of U
k
SoD_r and or

q 
be the corresponding conflicting user 

set for role r Œ Rk, then for each ui Œ U,  

1,  if 
( )

0,  otherwise

q
q r
r

u
j

o
t

Ê Œ
? Ë
Ì

. 

Definition 4.1: A state S is secure with respect to the role-assignment constraints of 

domain k, if: 
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_( 1) ( 1),  where ( ) and ij ij ij ur k ij ks a s S a Ar -? µ ? Œ Œ . Alternatively, state S is secure if 

there does not exist any user ui Œ Uk who accesses a role r j Œ Rk in state S (sij = 1) and no 

intra-domain access path exists from ui to r j. Formally: 

 

_ 1

1 1 2 1 2

1

1 2 ( 1)

for any (S), 1 ,..., R  such that 

( ) ( ... ) ( ... )
 ( , )

( .. ... )

ij ur k ij j jn k

j j j j j n j j j j n j
I I I A A A

i j
j j jk j k jn j

A A I I I

s s r r

r r r r r r r r r r
u assign u r

r r r r r r

r

-

Œ ? µ & Œ

? ° ‡ ‡ ‡ ° ‡ ‡ ‡ °Ç ×
È Ù/ ®

‡ ‡ ‡ ‡ ‡È ÙÉ Ú

         (A) 

Proposition 4.2: A state S is secure with respect to the role-assignment constraints 

of domain k if and only if: 

_

_

(S) (A )

i.e., (S), ,   where (A )

ur k ur k

ij ur k ij ij ij ur ks s a a

r r

r r

-

-

~

$ Œ ~ Œ
 

Proof: µ In the transitive closure matrix Ak
+
 of domain k, for a user ui and role r j, aij 

= 1 if and only if there is an intra-domain access path for ui to r j. Formally: 

1

1 1 2 1 2

1

1 2 ( 1)

for any a (A ), 1 ,..., R  such that 

( ) ( ... ) ( ... )
 ( , )

( .. ... )

ij ur k ij j jn k

j j j j j n j j j j n j
I I I A A A

i j
j j jk j k jn j

A A I I I

a r r

r r r r r r r r r r
u assign u r

r r r r r r

r -

-

Œ ? ± & Œ

? ° ‡ ‡ ‡ ° ‡ ‡ ‡ °Ç ×
È Ù/ ®

‡ ‡ ‡ ‡ ‡È ÙÉ Ú

            (B) 

(A) and (B) imply that _ (S) (A )ur k ur kr r -~ . 

²If _for all (S), ,   where (A )ij ur k ij ij ij ur ks s a ar r -Œ ~ Œ , then condition (A) is satisfied 

and by Definition 4.1, S is secure with respect to the role-assignment constraints of 

domain k. ﾐ 

Definition 4.3: A state S is secure with respect to the role-specific SoD constraints of 

domain k, if no user ui Œ U exists who accesses two or more roles in the conflicting role 

set 1{ ,..., | ( , ),   where 1 ,  and }con n i jR r r conf role r r i j n i j? / ~ ~ ” . Formally: 

for all  U, 1 
j con

i i j
r R

u s
Œ

Œ ~Â        (C) 

R-SoD matrix: A R-SoD matrix, R
k
SoD, is a M · N matrix that defines role-specific 

SoD constraints of domain k. M is the number of roles in domain k (M = |Rk|) and N is the 

number of role-specific SoD constraints defined in domain k. Note that a given domain 
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can have multiple conflicting role sets Rcon. Each column in the R-SoD matrix 

corresponds to one of the conflicting role sets Rcon. Let np
 be the pth

 column of R
k
SoD, and 

Rcon_p be the corresponding conflicting role set, then for each r j Œ Rk. 

_1,  if 
( )

0,  otherwise

p j con pr R
jn

ŒÊ
? Ë
Ì

 

Proposition 4.4: A state S is secure with respect to the role-specific SoD constraints 

of domain k if and only if: 

_ _(S)r k SoD k kRr · ~ S                                                                                                (D) 

Where, Sk is a matrix of dimension |U| · |Rk| with all elements equal to one. 

Proof: µ immediate from Definition 4.3 when applied to all conflicting role sets 

Rcon of domain k. 

² Any user u Œ U in state S accesses at most one role from all the conflicting role 

sets of domain k. Hence, by Definition 4.3, S is secure.    ﾐ 

Definition 4.5: A state S is secure with respect to the user-specific SoD constraints 

of domain k, if for each role r Œ Rk which have a non-empty set (Ur_con) of conflicting 

user sets, at most one user from each of the conflicting user sets (or Œ Ur_con)  accesses 

role r in sate S. Formally: 

_R U , 1
j

i

j k r con ij
u

r s
o

o
Œ

Ã Ô
$ Œ $ Œ ~Ä Õ

Å Ö
Â                                                                          (E) 

U-SoD matrix: A U-SoD matrix, U
k
SoD_r, is a M · N matrix that defines user-specific 

SoD constraints for a role r Œ Rk. M is the number user-specific SoD constraints defined 

for the role r . N is the total number of users (N = |U|). Note that any role, r, in a given 

domain can have multiple sets of conflicting users (or). The set Ur_con denotes the union 

of all the conflicting user sets of role r, i.e., _

1
r

M
i

r con
i

U o
?

?I , where 
r

io  is the i th
 conflicting 

user set of role r.  Each row in the U-SoD matrix corresponds to one of the conflicting 

user sets or. Let tq
 be the qth

 row of U
k
SoD_r and or

q 
be the corresponding conflicting user 

set for role r Œ Rk, then for each ui Œ U,  
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1,  if 
( )

0,  otherwise

q
q r
r

u
j

o
t

Ê Œ
? Ë
Ì

. 

Proposition 4.6: A state S is secure with respect to the user-specific SoD constraints 

of domain k, if and only if for all roles r j Œ Rk which have a non-empty set of conflicting 

user sets _( )
jr conU , the following condition holds: 

_ j j

k
SoD r j rU s s· ~                 (F) 

Where, sj is the jth 
column of the state matrix S and 

jrs  is a vector with all elements 

equal to one. The length of 
jrs  is equal to the number of user-specific SoD constraints 

defined for role r j. 

Proof: µ immediate from Definition 4.5. 

² For all roles r j with at least one conflicting set of users, _ j j

k
SoD r j rU s s· ~  implies 

that at most one user from each of the conflicting set of users for role r j accesses role r j in 

state S. Hence, by definition 6.5, S is secure with respect to the user-specific SoD 

constraints of domain k.   ﾐ 

Having described the formal specification and conditions for the satisfaction of security 

constraints, we now provide a formal proof that the multi-domain policy generated by the 

policy integration mechanism, satisfies the security requirements of all collaborating 

domains. 

Theorem 4.7: Let K1, …..,Kn, n ‡ 2, be collaborating domains such that the security 

policy of each Ki be consistent. Let G be the multi-domain RBAC graph obtained from 

K1, …..,Kn by applying the conflict resolution algorithm ConfRes. Any state S reachable 

from G is secure with respect to the role-assignment, role-specific SoD, and user-specific 

SoD constraints of all collaborating domains.   

  Proof of Theorem 4.7 is given in Appendix 
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5 CONCLUSION  
 

5.1 Summary of Current Work 

Our current research focuses on the problem of integrating the access control policies 

of heterogeneous and autonomous domains to allow inter-domain information and 

resource sharing in a secure manner. The policy integration mechanism, discussed in this 

proposal, is a two step process including composition of a global multi-domain policy 

from the access control policies of collaborating domains and removing conflicts from 

the global policy in an optimal manner without compromising the security of constituent 

domains.  Another key requirement of policy integration is to maintain the autonomy of 

all collaborating domains. There is a trade-off between seeking interoperability and 

preserving autonomy.  Violation of a collaborating domain’s security policy in general is 

not permissible. However, some domains may tolerate a compromise in their autonomy 

for establishing more interoperability. We have formulated the problem of secure 

interoperation as an optimization problem with an objective of maximizing 

interoperability with minimum autonomy losses and without causing any security 

violation of collaborating domains. The multi-domain policy obtained from the proposed 

policy integration framework is conflict-free and satisfies the security requirements of the 

collaborating domains. However, the resulting policy may not yield the desired autonomy 

level.   Various heuristics can be used to obtain a sub-optimal solution from the given 

optimal solution to attain the desired autonomy level. One such heuristic is to try all 

possible combinations of cross-domain links obtained from the optimal solution and then 

selecting a solution which meets the desired autonomy loss with maximum 

interoperability. The multi-domain policy produced by this heuristic is also secure and 

conflict free.   
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5.2 Future Work 

Following are four research problems related to policy management that we intend to 

address during the course of this research. 

1. Verification of RBAC policy specification using state-space analysis techniques.  

2. Reconfiguration of interoperation policy because of changes in domains’ access 

control policies. 

3. Evaluation of domains’ autonomy in the collaborative environment. 

4. Semantic partitioning of a single access control policy into multiple independent 

and autonomous policies. Partitioning of a policy is required when an 

organization or a business alliance breaks up into multiple organizations or 

alliances 

A description of these problems and a possible strategy is given below. 

 

5.2.1 Verification of RBAC policy specification 

The consistency of the multi-domain policy generated by the proposed policy 

integration framework depends on the consistency of the access control policies of the 

collaborating domains. If the access control policy of any one of the collaborating domain 

is conflicting then the resulting multi-domain policy will be inconsistent. Therefore, the 

access control policies of domains need to be verified before interoperation is established. 

The verification of security policies of individual domains must precede the policy 

integration step. 

Security policy verification in general is an undecidable problem [Har76]. However, 

much work has been done to determine reasonable models and limitations under which 

safety is decidable and tractable [Amm91, Amm92, Amm94, Sny97, Jae01 Koc02]. 

Verification of a domain’s access control policy entails various challenges, including: i) 

specifying policy using a formal model, ii) identifying the safety requirements, and iii) 

determining if a given policy yields unauthorized accesses. The policy specification 

model should be generic and flexible enough to express a wide range of security and 

access control policies. Generally the safety requirements are specified in the form of 

security constraints. The security constraints can be a part of the policy specification 
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model or can be expressed separately. In both cases the positive authorizations implied by 

the model and the negative authorizations defined by the constraints may conflict, 

making the policy inconsistent. 

 In some application domains, it may not be possible to transform all the safety 

requirements into formal constraints which can derive the underlying access control 

policy specification. For instance, in state-event based applications with huge state space, 

it may not be possible to define security constraints on all the states that may lead to 

insecure or unsafe states. In this case state space partitioning [Jae03] can be used to check 

the consistency of an access control policy. Accordingly, the entire state space can be 

partitioned into the following two state spaces: prohibited space consisting of 

authorizations precluded in the safety policy specification; and specified space consists of 

authorizations/permissions implied by the access control policy under current 

configuration. However, finding the prohibited space and specified space is not an easy 

task. In order to explore state spaces a state generating machine is needed that can be 

driven by the underlying policies under any arbitrary configuration. Petri-nets and its 

variants have been widely used as a specification and modeling tool for most event driven 

applications, including: multi-media documents, workflow applications, and business 

transaction procession systems [Lit93, Atl97, Atl98]. The structural properties of Petri-

nets together with the use of predicates can be used to model a wide range of constraints 

in access control, including: hierarchy, SoD, and cardinality constraints. Moreover, the 

state-event semantics of the Petri-nets can be exploited to capture the event-based 

constraints of access control policies that cannot be modeled by simple graph-based 

models. In our earlier work on interoperation in a multi-domain environment, we 

concentrated on the role assignment, SoD and cardinality constraints and did not 

extensively address the event-based constraints. To some extent the activation hierarchy 

captures the event based semantics of RBAC, however, it does not fully characterize the 

wide range of dynamic constraints needed in trigger based systems such as active 

databases and workflow systems. We plan to combine the event-based approach taken in 

GTRBAC [Jos03] with the Petri-net based model to develop a framework for modeling 

and analysis of non-temporal RBAC policies. This will allow us to perform state-based 
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analysis for policy verification and also facilitate in developing an event-based execution 

model of an RBAC system in order to ensure safety. Furthermore, several formal tools 

and techniques are available for Petri-nets that can be used to carry out relevant analysis 

for correctness verification. 

 Deciding the correctness of an access control policy is one aspect of the 

verification problem. In some cases, it may not be possible completely eliminate conflicts 

from a given policy. Therefore, some conflict resolution strategy is needed to resolve 

conflicting authorizations from a given policy. Policy conflicts can be broadly classified 

into two classes: i) conflicts that are independent of the system state or configuration and 

can be captured in the policy specification, ii) conflicts that depend on the state or 

configuration of the system. State independent conflicts can be identified using offline 

analysis techniques and can be removed by modifying the policy specification. There 

may be several policy readjustment options available to resolve a given conflict, and each 

option may yield a different set of constraints and accesses. However, one would desire 

an option that resolves the conflicts in an optimal manner. There can be several 

optimality measures such as maximizing accessibility, minimizing new constraint 

additions, and maximizing active constraint set. We believe that the Integer Programming 

based approach discussed in the context of policy integration can be used to resolve state-

independent conflicts present in a domain’s security policy in an optimal manner. 

However, the underlying treatment of constraints would be different. In the multi-domain 

policy integration problem, the security of collaborating domains is given utmost 

importance in establishing interoperation. However, in a single domain, policy conflicts 

are caused by the security constraints. Conflict resolution in this case involves dropping 

some security constraints. Question is how much compromise in security is acceptable? 

We believe that the policy designing framework must have the capability to infer relative 

importance of the security constraints specified in the given policy. In the context of 

RBAC, such inference can be made by analyzing the role attributes, permissions 

assignment, and credentials of users assigned to the roles. The policy designers can also 

provide their input by prioritizing different security constraints.  
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For the state dependent conflicts, several dynamic conflict resolution policies can be 

defined depending on the domain [Ber03, Fer00]. Examples of dynamic conflict 

resolution policies are denials take precedence, most specific authorization take 

precedence, and permission takes precedence. Note that dynamic conflict resolution does 

not make the underlying security policy consistent. It only provides an exceptional 

handling mechanism, which may also lead to an inconsistent state. This again motivates 

for the state-space based policy verification approach discussed above. 

 

5.2.2 Policy Evolution 

 In a multi-domain collaborative environment, the local access control policy of 

the collaborating domains may evolve with time. The security policy of the multi-domain 

system itself may change. System administer(s) responsible for the global interoperation 

policy may define new rules or constraints for cross-domain accesses. Consequently, the 

interoperation policy needs to be redefined to incorporate the new security and access 

control requirements. Defining a new interoperation policy by reintegrating the access 

control policies is a time consuming process and may not be viable in environments 

where domain policies change frequently. Therefore, a policy adjustment mechanism is 

needed that upon sensing any policy changes, reconfigures the existing interoperation 

policy in a timely manner. The readjusted policy may not yield an optimal level of 

interoperation, but it must preserve the security and autonomy of collaborating domains.  

 

5.2.3 Autonomy and interoperability trade-off 

 We plan to investigate the relationship between interoperability and autonomy in 

a distributed collaborative environment. The autonomy and interoperability trade-off 

discussed in Chapter 4 of this proposal, is based on the worst-case analysis in which it is 

assumed that a user by assuming a local roles also acquires the permissions of related 

cross-domain roles. This is a very conservative assumption and may unnecessarily restrict 

interoperability because of the possibility of autonomy losses. Moreover, in presence of 

temporal and event-based constraints, assumption of a local role may not enable 

acquisition of cross-domain permissions all the time. The event-based constraints may 
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even restrict the time during which the local roles can be acquired. This motivates for 

reassessing the affect of interoperability on domains’ autonomy and vice versa. We 

believe that stochastic estimates will help in determining the access patterns of users for 

both cross-domain and local accesses. This probabilistic analysis can then be used in 

determining the autonomy losses at a given interoperability level.   

5.2.4 Policy partitioning for enterprise splitting 

 Our major focus until now has been on the integration of access control policies 

for facilitating interoperation and business collaboration. However, in a ever-changing 

business world, collaborations and business alliances keep evolving, big companies get 

split, merge and sometimes displaced by entirely new companies. Splitting of companies 

is not a new phenomenon.  Giant companies sometimes split into multiple independent 

units for various reasons. In the event of an organization split-up, the information 

infrastructure owned by the parent organization is also divided among the newly formed 

organizations.  Consequently, policies governing access to the inherited information 

resources need to be defined for the new setup. The organizational hierarchy of the newly 

formed organizations may not differ drastically from the organizational hierarchy of the 

parent organization. This implies that the access control policy of the parent organization 

can be used to derive the policies of new organizations. Therefore, a policy generation 

framework is needed that can compose access control policies for organizational units 

formed as a result of a company split-up. Input provided to this framework may consist of 

the access control policy of the parent organization, scope and business requirement, 

potential organizational hierarchy, and a list of information resources and assets inherited 

by the new organizational unit. In an abstract sense, this problem can be considered as a 

partitioning of a policy based on the scope and business requirement of new organization. 

Since we have considered a graph based formalism for access control policy 

specification, we plan to explore different graph transformation and partitioning 

techniques to solve the policy partitioning problem. 
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7 APPENDIX 
 

Proof of Lemma 3.1:  The split function, given in Figure 3.5, first creates a new role 

r j and makes it junior to rs. Note that until line number 2 of the split function, role r 

before splitting and rs have same directly assigned permissions and all the roles that are 

related to r are also related to rs in the same manner.  

Lines 3 - 4 in the split function algorithm make sure that all the permissions that are 

removed from rs are assigned to r j. Since s j
I

r r‡ , therefore these permissions are still 

included in the permission set of rs, i.e., pset(rs) Æ psetassign(r j). 

Lines 6 -8 ensures that the inheritance relationship is maintained between rs and all 

the roles that were junior to the unsplit role in the I-hierarchy semantics. Since psetassign(r) 

= psetassign(rs) ̌ psetassign(r j) and all the roles that can be reached from the unsplit role r 

through an I-path can also be reached from rs through an I-path; therefore, pset(r) = 

pset(rs) 

It can be noted that splitting a role does not change the activation hierarchy and the 

user to role assignment. That is, all the users that were assigned to unsplit role r remain 

assigned to role rs and all the roles that are related to r by an A-edge are also related to rs 

by an A-edge. This implies that the uniquely activable set of role rs is same as that of the 

unsplit role r.      ﾐ 

 

Proof of Lemma 3.3: The algorithm remove-role ensures that the inheritance 

relationship between all the roles rp such that p d
I

r r‡  and all roles rc such that d c
I

r r‡ is 

maintained, that is, p c
I

r r‡ holds after role rd is removed. Since rd is a redundant role, no 

user is assigned to rd nor is any permission assigned to it. Hence, the user set and the 
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permission set is unaffected by the removal of the redundant role rd. Since all the user-to-

role assignment relations, role-to-permission-assignment relations and hierarchy relations 

among roles other than rd are preserved, properties 1, 3, and 4 hold. Moreover, the 

algorithm remove-role does not remove any role other than rd from the conflicting role 

set of any role, implying that 3 and 5 hold.   ﾐ 

Proof of Lemma 3.4 

PIR 1 Element preservation: RBAC-integrate does not remove any element except 

the newly created redundant roles. Since these roles are not a part of any of the input 

RBAC graphs, RBAC-integrate satisfies element preservation requirement. 

PIR 2 Relationship preservation: In RBAC-Integrate, relationship between the 

elements of input RBAC graph is altered when a newly created redundant role is removed 

or when a role is split. Lemma 3.3 states that removing a newly created redundant role 

does not change the relationship that exists between the elements of input RBAC graphs. 

When a role is split some of the relations involving the split roles are removed and some 

new relations are added. This modification may alter some of the explicit relationships 

specified in the input RBAC graphs, however, the original relations are implied in the 

final graph G as stated in Lemma 3.1.  

PIR 3 User authorization preservation: In RBAC-integrate no user to role 

assignment is removed and all the hierarchical relationship between roles is maintained 

(PIR 2). Furthermore, equivalent roles have same permission assignment and inheritance. 

Therefore, the permission authorization set of users is preserved by RBAC-integrate. 

PIR 4 Minimum overhead: The algorithm RBAC-integrate may create new roles 

during the process of policy integration. These roles are not present in the original RBAC 

policies of component domains and are created as a result of role splitting. These 

additional roles are considered as an overhead associated with the integration process. It 

is therefore important to minimize any additional number of roles created during the 

integration step. However, some of these newly created roles are essential for allowing 

cross-domain accesses in a secure manner. Some of newly created roles are redundant 

and do not have any permissions associated with them. Lemma 3.3 states that the removal 
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of redundant roles does not affect any intra and inter-domain accesses in the multi-

domain environment, hence all the newly created redundant roles are removed by RBAC-

integrate. 

Splitting roles unnecessarily may also introduce considerable overhead. However, 

RBAC-integrate maintains the minimal splitting property defined below. This property 

ensures that cross-domain equivalent roles are not split unless there is a third role from 

some other collaborating domain, which has some permission(s) in common with the 

permissions associated with the cross-domain equivalent roles. 

Minimal splitting: When integrating RBAC policies of two domains A and B, no 

roles r i Œ A and r j Œ B exist for which all the following conditions hold: 

(a)   _ ( , )i jeq role r r    

(b)   , : ( _ ( , ))is js is js is i js j is js
I I

r r r A r B r r r r eq role r r& Œ ® Œ ® ‡ ® ‡ ® _ ( , )i jeq role r r    

(c)   ri, r j, r iS, and r jS are not present in the original RBAC policies of A and B and are 

created during the process of integration. 

We assume that duplicate permission assignment to two or more roles belonging to 

the same domain is not permitted in the input RBAC graph, that is. two or more roles 

belonging to same domain cannot have same permissions assigned to them. Also, in 

RBAC-integrate two cross-domain roles are compared only once. Consequently, when 

integrating the RBAC graphs of two domains, say A and B, the permission set of any 

newly created role rA in A does not include any permissions assigned to any role r’  in B 

except for one role rB in B for which eq_role(rA, rB) is true. This means that during the 

process of integrating the RBAC graphs of domains A and B, a newly created role cannot 

split. 

RBAC-integrate maintains non-redundancy (all redundant roles are removed from 

the integrated policy) and minimal splitting. Removing any role from a multi-domain 

RBAC graph that maintains minimal splitting property may either violate the element 

preservation property (PIR 1) or reduces the level of interoperation. This implies that the 

multi-domain RBAC policy output by RBAC-integrate has minimum overhead.  ﾐ 
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Proof of Theorem 3.5: We first show that the morphism ‘l’  is onto. (i.e., for all y Œ 

Y, there exists x Œ X such that l(x) = y). 

 is onto: The elements in X and Y can be divided into two types: (i) elements which 

are present in GA, GB, and GC, (ii) elements that are created in the process of integration 

of local graphs. As stated in the above theorem that RBAC-integrate satisfies the element 

preservation property, therefore all the elements of type (i) are present in both X and Y.  

Type (ii) elements include those roles that are not present in GA, GB, and GC and are 

created during the process of policy integration. These roles are created by the role split 

function in the RBAC-integrate algorithm. Note that type (ii) elements do not include any 

redundant role as the redundant roles that are created in the policy integration step are 

eliminated from X and Y.  To complete the proof that l is onto, we need to show that for 

all type (ii) roles r Œ Y, there exists r’  Œ X such that l(r’ ) = r and for all p such that pŒ 

psetassign(r) µ p Œ psetassign(r’)  

In the following we use the terminology r Œ dom(X) if r Œ GX or r is created by 

splitting a role rs Œ dom(X). Without loss of generality, assume that there exists a role rA 

Œ GA such that pset(rA) Æ pset(r). Also r is created by splitting role rA i.e., r Œ dom(A). 

Since r is created in the process of integration, therefore one of the following three 

conditions holds for r. 

(a) & rBA Œ dom(B): eq_role(r,rBA) ® ¬& rCA Œ dom(C): eq_role(r,rCA) 

(b) & rCA Œ dom(C): eq_role(r,rCA) ® ¬& rBA Œ dom(B): eq_role(r,rBA) 

(c) & rBA Œ dom(B), rCA Œ dom(C) : eq_role(r,rBA) ® eq_role(r,rCA) 

Case a: & rBA Œ dom(B): eq_role(r,rBA) ® ¬& rCA Œ GC: eq_role(r,rCA) 

The above implies that there is no role in GC whose permission set overlaps with that of 

r or rBA. Role r does not exist in Q; however, rBA may or may not exist in Q.  

If rBA exists in Q then rBA Œ GB and the following is true in Y: 

(i)  ( ) (   ) (   )A A BA BA A
I

r r r contains r r contains r‡ ® ® ¬  

If rBA does not exists in Q, then there exists a role rB Œ GB such that that pset(rB) ̨ 

pset(rA) = pset(rBA), and the following hold in Y: 
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(ii)  ( ) (   )A A B
I

r r r overlaps r‡ ®  

Since eq_role(r,rBA) holds, therefore psetassign(rBA) = psetassign(r) and pset (rBA) = pset (r) 

For the case rBA Œ GB and rA Œ GA, since rA contains rBA, when integrating GA and GB, 

a role r’  junior to rA is created and is assigned the permission in the set psetassign(rBA) ̨ 

psetassign(rA). This means that there exists a role r’ in P with psetassign(r’ ) = psetassign(rBA) ̨ 

psetassign(rA) = psetassign (rBA) = psetassign (r). Also, when integrating P with GC role r’ is not 

split nor the permission in the set psetassign(r’ ) gets redistributed as there is no role in GC 

whose permission set overlaps with that of r’ . 

For the case rBA º GB, rA Œ GA and rB Œ GB, since rA overlaps rB, when integrating GA 

and GB, role r’  junior to rA, and rBA junior to rB are created with psetassign(r’ ) = 

psetassign(rB) = psetassign(rBA) ̨ psetassign(rA). This means that there exists a role r’  in P with 

psetassign(r’ ) = psetassign (rBA) = psetassign (r). Also, when integrating P with GC role r’  is not 

split nor the permission in the set psetassign(r’ ) gets redistributed as there is no role in GC 

whose permission set overlaps with that of r’ .  

Therefore for a type (ii) role r Œ Y, for which case a holds, there exists a role r’  Œ X 

such that psetassign(r’ ) = psetassign(r), i.e., l(r’ ) = r. In a similar manner, we can prove the 

above for case b and c as well. Hence, for all type (ii) roles r Œ Y, there exists a role r’  Œ 

X such that psetassign(r’ ) = psetassign(r), i.e., l(r’ ) = r. 

Now, we need to show that for all roles r Œ Y, there exists a role r’  Œ X such that 

psetassign(r’ ) = psetassign(r). We have proved this for type (ii) roles, now we need to prove it 

for type (i) roles. Type (i) role can be further classified into two types: (a) roles which 

remain unsplit during policy integration; (b) roles which split in the policy integration 

step. Note that the permissions assigned to a role are removed from that role only if it 

gets split in the process of integration. Consider an unsplit role r in Y and with out loss of 

generality assume that r Œ GA. Since r is an unsplit role therefore, there does not exist 

any role r’’  Œ {GB, GC} such that psetassign(r) Ł psetassign(r’’ ). This and the element 

preservation property implies that there exists a role r’ Œ X, such that psetassign(r’ ) = 

psetassign(r).  
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We need to prove the above for the type (i) roles that get split. Consider a role r Œ Y 

that got split in the process of policy integration to produce a junior role r j. We already 

proved that there exists a role r j’  Œ X such that psetassign(r j’ ) = psetassign(r j).Without loss of 

generality suppose that r Œ GA. Note that r j º {GA, GB, GC}, which also implies that r j’  º 

{GA, GB, GC}. Therefore there exists a role r’  that produce r j’  after splitting. We maintain 

that psetassign(r’ ) = psetassign(r). Suppose this is not the case and psetassign(r’ ) ” psetassign(r) . 

Both r j and r j’  Œ dom(A), which implies that r’  Œ dom(A). Suppose that psetassign(r’ ) ̶ 

psetassign(r). Note that permissions are removed from a role only if the role gets split and 

the removed permissions are assigned to the newly created role that is made junior to the 

role being split. Before splitting, r’  and r have same permission assignment. However, 

after splitting we assume that  psetassign(r’ ) 伊̶psetassign(r), implying that either psetassign(r j’ ) 

Ł psetassign(r j) which is not possible, or r has at least one more newly created junior role 

r j2 which acquires  some of the permissions that were earlier assigned to r. If this is the 

case then r j2 must be equivalent to some role r j2' Œ X with psetassign(r j2') = psetassign(r j2). 

Nevertheless, r j2' resulted from the split of role r’ . This implies that all the permissions in 

the psetassign(r’ )\ psetassign(r) are removed from r’  and are assigned to r j2'. Therefore, 

psetassign(r) ª  psetassign(r’ ) 

If we assume psetassign(r’ ) Ł psetassign(r) then, either psetassign(r j’ ) ̶ psetassign(r j) which is 

not possible; or there exists at least one more  newly created child role r j2’  (r j2’ ” r j’ ) of 

role r’ . In this case psetassign(r j2’ ) = psetassign(r) \ psetassign(r’ ). Note that r j2’  Œ dom(A) and 

therefore there exists a role r” Œ {GB, GC} such that either r’  contains r”  or  r’  overlaps 

r”. The element preservation property of RBAC-integrate ensures that r” also exists in Q. 

When integration between GA and Q is performed role r is compared with r” and role r is 

split to produce a child role r j2 with psetassign(r j2) = psetassign(r) ̨ psetassign(r”) = 

psetassign(r j2’ ). This proves that psetassign(r’ ) ª psetassign(r) provided r is split once or twice. 

Using induction we can prove that psetassign(r’ ) ª psetassign(r) is independent of the 

number of times role r is split. The above implies that for a type (i) split role r Œ Y, there 

exists a role r’  Œ X such that psetassign(r’ ) = psetassign(r), hence l(r’ ) = r. 
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The final step in proving that l is onto is to show that all the elements in X map to at 

least one element in Y.  The element preservation property of RBAC-integrate maintains 

that all the user, permissions and type (i) roles that are present in X are also present in Y. 

So, all the users, permissions and type (i) roles in X can be mapped to at least one 

element in Y. Since we disallow non-redundant roles and addition of new permissions 

and users during the process of integration therefore both X and Y have same number of 

type (ii) roles. We already proved that for every type (ii) role in Y there exists a type (ii) 

role in X with the same permission assignment. Since the cardinality of type (ii) roles in 

both X and Y is same, therefore there exists a 1:1 correspondence between the type two 

roles in X and Y. 

This concludes the proof that l is onto. 

 is 1:1 (for all e1, e2 Œ X, l(e1) = l(e2) › e1 = e2) 

The element preservation property of the integration algorithm implies that all the 

elements in the input graphs GA, GB, GC are present in X and Y. Moreover, RBAC-

integrate does not add any new user, permission and type (i) roles, i.e., the cardinality of 

user set, permission set, and type (i) role set is same in both X and Y. We already proved 

that l is onto. Since we disallow non-redundant roles and duplicate permission 

assignment during the process of integration therefore both X and Y have same number 

of type (ii) roles. This implies that there is 1:1 correspondence between the user, 

permission and role elements between X and Y. Hence, l is 1:1. 

Relationship Preservation: To conclude the proof that l is isomorphic, we need to 

show that any relation R(U) Œ RX if and only if R(l(U)) Œ RY. The relationship 

preservation property of RBAC-integrate guarantees that each relation R (except the P-

assign) in the input RBAC graph has a corresponding relationship R’ in the integrated 

RBAC graph. We already proved that for any role r’  in X, there exists exactly one role r 

in Y such that that psetassign(r) = psetassign(l(r)). Moreover, l is a 1:1 morphism. This 

implies that for any permission p P-assign(r,p) Œ RX if and only P-assign(l(r),p) Œ RY.  

This concludes the proof that l is isomorphic, implying that the operator RBAC-

integrate is associative.   ﾐ 
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Proof of Theorem 4.7: We prove this theorem separately for role assignment, role-

specific SoD, and user-specific SoD constraints. 

Any state S reachable from G is secure with respect to the role-assignment 

constraint of all collaborating domains. Suppose this is not true. This means that in 

some state S reachable from G there exists a user ui Œ Uk who accesses a role r j Œ Rk (sij = 

1, sij Œ rur_k(S)), while aij = 0, where, aij Œ rur(Ak
+
), i.e., there is no intra-domain access 

path from ui to r j. The above implies that in the multi-domain RBAC graph G, there is a 

path from ui to r j that consists of at least two cross-domain edges. Without loss of 

generality, assume that these cross-domain edges are (r l, rm) and (rn, rp), where, r l, rp Œ Rk 

and rm, rn º Rk; and * + * + * +* *
1

lir m n m n p j p j
I I

u r r r r r r r r? ® ‡ ° ? ® ‡ ° ? .  

Since there is no intra-domain access path from ui to r j, 0
jiru ?  is specified as one of 

the constraint to the IP problem (constraint transformation rule 1). Therefore, in any 

feasible solution 0 and 0
j pir iru u? ? .There are two possibilities for the variable

niru  in any 

feasible (optimal feasible) solution: 

1
niru ? . If this is an optimal feasible solution to the IP problem, then step 7 of the 

algorithm ConfRes removes the edge (rn, rp). 

0
niru ? . If this yields an optimal solution then step 7 of the algorithm ConfRes 

removes the edge (r l, rm) if 0
miru ? , otherwise it removes the edge (rn, rp). 

In either case, any cross-domain edge leading ui to r j through rn is dropped. If there 

are multiple such paths through other cross-domain roles, then in a similar manner those 

paths will be eliminated by ConfRes. Hence in the resulting graph G there is no cross-

domain path from ui to r j, implying that sij = 0. This contradicts our initial assumption.  

 

Any state S reachable from G is secure with respect to the role-specific SoD 

constraint of all collaborating domains. We prove this statement by considering all 

possible role-specific SoD violations that might occur as a result of interoperation. The 
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following cases capture all the role-specific SoD violations in the multi-domain 

environment: 

Case 1: In this case, a local user ul accesses two conflicting roles r i and r j Œ Rk. 

There are following sub-cases corresponding to case 1: 

Sub-case 1(a): The security policy of domain k does not allow ul to access any of the 

roles r i and r j. If we assume that in some state S, ul is able to access r i and r j through 

some cross-domain role (see Figure 7.1(a)), then this will be a violation of role-

assignment constraint of domain k. However, all the reachable states from the multi-

domain RBAC graph obtained after applying conflict resolution algorithm, ConfRes, are 

secure with respect to the role-assignment constraints of all collaborating domains 

(proved above). Hence in this sub-case, ul cannot access r i and r j simultaneously. 

Sub-case 1(b): RBAC policy of domain k allows ul to access r i but not r j as depicted 

in Figure 7.1(b). Since the multi-domain policy is secure with respect to the role-

assignment constraints of domain k (proved above), therefore, ul cannot access r j through 

a cross-domain path, implying that SoD violation between r i and r j never occurs in this 

case. 

Sub-case 1(c): Suppose ul is assigned to rs and
*

s i
A

r r‡ , 
*

s j
A

r r‡ . Moreover, r i and r j are 

conflicting roles as shown in Figure 7.1(c). A role-specific SoD violation occurs if ul 

activates one of the conflicting roles, say r i, and inherits the other one, say r j, through r t 

such that * +* *

s t s t t j
A I

r r r r r r‡ ° ? ® ‡ .  For a hierarchically consistent RBAC policy, the 

conflicting role set of a junior role must be contained in the conflicting role set of the 

senior role.
*

( ) ( )t j t j
I

r r conf rset r conf rset r‡ µ / Æ / . This means that r i Œ conf-rset(r t). If 

there is no inter-domain path from ul to r t then user ul cannot access r t and r i 

simultaneously implying that ul cannot access r i and r j simultaneously. If there exists an 

inter-domain path from ul to r t, then by using induction we can show that there exist a 

role ru Œ Rk such that * + * +* *
( , )s u s u u t u i

A I
r r r r r r conf role r r‡ ° ? ® ‡ ® / and there does not 

exists a cross-domain role ro º Rk such that
* *

s o u
I I

r r r‡ ‡ . If rs = ru then this leads to sub-
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case 1(d) discussed next. If not then this means that ul cannot access ru and r i 

simultaneously implying that ul cannot access r t and r i simultaneously, which in turns 

imply that ul cannot access r j and r i simultaneously. 
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Fig. 7.1. Cases of role-specific SoD violations involving cross-domain paths 

Sub-case 1(d): Suppose ul is assigned to rs and
*

s i
A

r r‡ . Moreover, rs and r i are 

activation time conflicting roles as shown in Figure 7.1(d). If security policy of domain k 

is consistent then there is no intra-domain path from rs to r i consisting of only I-edges. 

Suppose that there is a cross-domain path from rs to r i. Such a path must have at least two 

cross-domain edges. Without loss of generality, assume that these cross-domain edges are 

(r l, rm) and (rn, rp), where, r l, rp Œ Rk and rm, rn º Rk; 

and * + * + * +* * *

s l s l m n m n p i p i
I I I

r r r r r r r r r r r r‡ ° ? ® ‡ ° ? ® ‡ ° ? . This cross-domain path 

enables any user to access permissions of r i by accessing role rs, which is a violation of 

SoD constraint between rs and r i. At least one user activates role rs (Step 1 of the ConfRes 

algorithm and transformation rules 3 and 4 ensures that each role in the multi-domain 

graph is accessed by at least one user). Let the user be ul. Since rs and r i are conflicting 

roles, therefore 1~-
is lrlr uu  is one of the constraint of the IP problem formulated in the 
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step 4 of conflict resolution algorithm Confres. Since 1?
slru , therefore in any feasible 

solution 0?lriu  and 0?lrpu . There are two possibilities for the variable 
nlru in any 

feasible (optimal feasible) solution: 

1?
nlru . If this is an optimal feasible solution to the IP problem, then step 7 of the 

algorithm Confres removes the edge (rn, rp). 

0?
nlru . If this yields an optimal solution then step 7 of the algorithm ConfRes 

removes the edge (r l, rm) if 0?
mlru , otherwise it removes the edge (rn, rp). 

In either case, any cross-domain edge leading ul to r j through rn is dropped. If there 

are multiple such paths through other cross-domain roles, then in a similar manner those 

paths will be eliminated by ConfRes. Hence in the resulting graph G there is no cross-

domain path from rs to r i, implying that ul cannot access role rs and r i simultaneously.   

Case 2: In this case, a foreign user ul º Uk accesses two conflicting roles r i and r j Œ 

Rk. There are three sub-cases corresponding to case 2. Figures 7.1(e), 7.1(f) and 7.1(g) 

depicts these sub-cases. 

Sub-case 2(a): Suppose ul is assigned to rs and there is a cross-domain path from rs to 

r i and from rs to r j as shown in Figure 7.1(e). For the cross-domain path from rs to r i the 

following hold: 

* + * + * +* * *

s p p s p m m i m i
I I I

r r r r r r r r r r‡ ° ? ® ‡ ® ‡ ° ?  

Similarly, for the cross-domain path from rs to r j the following hold: 

* + * + * +* * *

s q s q q n n j n j
I I I

r r r r r r r r r r‡ ° ? ® ‡ ® ‡ ° ?  

Since r i and r j are conflicting roles and a user ul assigned to rs have an access path to 

both r i and r j, therefore 1~-
ji lrlr uu is one of the constraint of the IP problem formulated 

in the step 4 of conflict resolution algorithm Confres. At least one user activates role rs 

(Step 1 of the ConfRes algorithm and transformation rules 3 and 4 ensures that each role 

in the multi-domain graph is accessed by at least one user). Let the user be ul, i.e., 
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1?
slru , which also implies that 1?

plru  and 1?
qlru . There are three possibilities for the 

variables 
ji lrlr uu  and in any feasible solution. 

0?
ilru and 0?

jlru , implying that 0?
mlru  and 0?

nlru . If this is an optimal solution 

then step 7 of ConfRes removes the edges (rp, rm) and (rq, rn). 

0?
ilru  and 1?

jlru , implying that 0?
mlru . If this is an optimal solution then step 7 

of ConfRes removes the edge (rp, rm). 

1?
ilru and 0?

jlru , implying that 0?
nlru . If this is an optimal solution then step 7 of 

ConfRes removes the edge (rq, rn). 

In any of the above cases, at least one of the cross-domain paths from rs to r i or r j is 

removed in the process of conflict resolution. Hence, ul cannot access both r i and r j 

simultaneously in the resulting RBAC graph G. 

Sub-case 2(b): Suppose ul is assigned to rs and
* *

s p s q
A A

r r r r‡ ® ‡ . Let there be a cross-

domain path from rp to r i and a cross-domain path from rq to r j. This is depicted Figure 

7.1(f). These cross-domain relationship 
*

p i
I

r r‡  and
*

q j
I

r r‡  induces an SoD constraint 

between rp and rq as shown in Figure 7.1(e). This implies that user ul cannot activate rp 

and rq concurrently, and therefore cannot access the cross-domain roles r i and r j 

simultaneously. 

Sub-case 2(c): Suppose ul is assigned to rs and * +* *

s p s q s q
A I

r r r r r r‡ ® ‡ ° ? . Let there be 

a cross-domain path from rp to r i and a cross-domain path from rq to r j. The 

relation
*

q j
I

r r‡  implies
*

s j
I

r r‡  . This is depicted Figure 7.1(g). These cross-domain 

relationship i
t

I
p rr ‡  and j

t

I
s rr ‡ induces an SoD constraint between rp and rs as shown in 

Figure 7.1(e). This implies that user ul cannot activate rs and rp concurrently, and 

therefore cannot access the cross-domain roles r i and r j simultaneously. 

Any of the role-specific SoD constraint can be reduced to one of the above cases. In 

all of the above cases, we have proved that SoD violation between conflicting roles can 
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never happen. Hence, any state S reachable from the multi-domain RBAC graph G 

obtained after applying conflict resolution algorithm, ConfRes, is secure with respect to 

the role-specific SoD constraints of all collaborating domains.     

Any state S reachable from G is secure with respect to the user-specific SoD 

constraint of all collaborating domains. A user-specific SoD violation of role rt occurs 

when a user ui belonging to the conflicting user set(s) of rt accesses rt through multiple 

paths and at least one of such path includes cross-domain edges. This is shown in Figure 

7.2, in which users u1, u2,.., um conflict with user udt for role rt. The following relationship 

exists among the roles depicted in Figure 7.2. 

* + * + * + * + * + * +* * * * * * *

s t s t s l s l s l l m m n n p p t p t
A I A I I I I

r r r r r r r r r r r r r r r r r r r r‡ ° ? ® ‡ ° ‡ ° ? ® ‡ ® ‡ ® ‡ ® ‡ ° ?

 

Where, rs, r l, rp, and r t Œ Rk; and rm and rn º Rk, otherwise, domain k’s RBAC policy 

becomes inconsistent. The case when rs and r t are not distinct is trivial and does not 

involve any cross-domain path for SoD violation. The following discussion considers the 

case when rs and r t are distinct roles. 

In Figure 7.2, a user specific SoD is violated when udt activates role r t and any of the 

users conflicting with udt for role r t accesses role r l. By accessing role r l, a user, say u1, 

accesses the permissions of r t through the cross-domain path.  

After step 3 of the conflict resolution algorithm, ConfRes, all the user specific SoD 

constraints in the multi-domain RBAC graph G can be reduced to the case shown in 

Figure 7.2. Since users u1, u2,.., um conflict with user udt for role r t, therefore the 

following is included as one of the constraints to the IP problem formulated in step 4 of 

ConfRes.  

1
1

~-Â
?

m

i
dtrir tt

uu , Also 
tdtru  is set to one in step 3 of the algorithm Confres. This 

implies that in any feasible solution the the IP problem, 0?
tiru  for all i Œ {1,2,..,m}.  

There are two possibilities for the variable
niru  in any feasible (optimal feasible) 

solution: 
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1
niru ? . If this is an optimal feasible solution to the IP problem, then step 7 of the 

algorithm ConfRes removes the edge (rn, rp). 

0
niru ? . If this yields an optimal solution then step 7 of the algorithm ConfRes 

removes the edge (r l, rm) if 0
miru ? , otherwise it removes the edge (rn, rp). 

In either case, any cross-domain edge leading ui to r t through rn, is dropped. If there 

are multiple such paths through other cross-domain roles, then in a similar manner those 

paths will be eliminated by ConfRes. This implies that no user ui belonging to the 

conflicting user set(s) of r t can access r t through a cross-domain path.  

Hence, any state S reachable from the multi-domain RBAC graph G obtained after 

applying conflict resolution algorithm, ConfRes, is secure with respect to the user-

specific SoD constraints of all collaborating domains provided their access control 

policies are consistent.   
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Fig. 7.2. User-specific SoD violation through a cross-domain path 

This concludes the proof of Theorem 4.7.  ﾐ 

 


