
CERIAS Tech Report 2004-34

SECURE INTEROPERATION IN A MULTI-DOMAIN ENVIRONMENT

by Basit Shafiq

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

SECURE INTEROPERATION IN A MULTI-DOMAIN ENVIRONMENT

A Preliminary Report

Submitted to the Faculty

of

Purdue University

by

Basit Shafiq

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

April 2004

ii

TABLE OF CONTENTS

TABLE OF CONTENTS.. ii

LIST OF TABLES... iv

LIST OF FIGURES .. v

ABSTRACT.. vii

1 INTRODUCTION .. 1

2 OVERVIEW OF MULTI-DOMAIN RBAC SYSTEM... 5

2.1 Role Based Access Control (RBAC)... 5

2.2 The NIST RBAC Model.. 7

2.3 Graph-based Specification Model for RBAC.. 8

2.4 Security Requirements in a Multi-domain RBAC System............................ 10

3 MULTI-DOMAIN POLICY INTEGRATION... 14

3.1 Information Sharing Policy.. 14

3.2 Heterogeneity Issues in Policy Integration .. 16

3.3 RBAC Policy Integration... 19

3.3.1 Policy Integration Requirements (PIR)... 19

3.3.2 RBAC Policy Integration Algorithm .. 22

3.3.3 Properties of RBAC-integrate... 29

3.3.4 Time Complexity of RBAC-integrate... 32

iii

4 OPTIMAL CONFLICT RESOLUTION .. 34

4.1 IP Formulation of a Multi-Domain RBAC Policy... 35

4.1.1 Constraint Transformation Rules.. 35

4.1.2 Optimality Criteria.. 37

4.2 Autonomy Consideration... 38

4.3 Conflict Resolution Algorithm .. 41

4.4 An illustrative example.. 43

4.5 Verification of Multi-domain policy ... 54

5 CONCLUSION... 59

5.1 Summary of Current Work .. 59

5.2 Future Work... 60

5.2.1 Verification of RBAC policy specification 60

5.2.2 Policy Evolution ... 63

5.2.3 Autonomy and interoperability trade-off .. 63

5.2.4 Policy partitioning for enterprise splitting .. 64

6 REFERENCES ... 65

7 APPENDIX... 71

iv

LIST OF TABLES

Table 3.1 Functions/predicates used in this report.. 21

Table 4.1 Description of roles involved in collaboration among county offices.............. 49

Table 4.2 Information sharing policy of collaborating domains....................................... 50

Table 4.3 Cardinality and user assignment of roles used in autonomy loss measurement of

Fig. 4.5 .. 51

v

LIST OF FIGURES

Fig. 1.1 Policy Integration Framework ... 4

Fig. 2.1 Constraints and hierarchy in RBAC .. 5

Fig. 2.2 RBAC type graph .. 9

Fig. 2.3 An example of RBAC graph ... 9

Fig. 2.4 A multi-domain access control policy defining interoperation between CTO and

CCO .. 12

Fig. 2.5 Example of a cross-domain separation of duty (SoD) constraint........................ 13

Fig. 3.1 An abstract view of inter-domain information sharing 15

Fig. 3.2. Information exchange between the County Treasurer Office and District Clerk

Office .. 17

Fig. 3.3 Hierarchical heterogeneity... 19

Fig. 3.4 Policy integration algorithm .. 23

Fig. 3.5 Procedures used by Role-Integrate during Policy Integration............................. 24

Fig. 3.6 Example of induced SoD... 28

Fig. 4.1 IP formulation of multi-domain RBAC policy shown in Fig. 4.2....................... 42

Fig. 4.2 (a) RBAC policy graph of domain A and B in example 4, (b) Integrated RBAC

policy defining interoperation between domains A and B.. 42

Fig. 4.3 Conflict resolution algorithm... 43

Fig. 4.4 RBAC policy graphs of collaborating county offices ... 51

vi

Fig. 4.5 Integrated RBAC policy governing collaboration among the county offices 52

Fig. 4.6 Interoperability versus autonomy loss... 53

Fig. 7.1. Cases of role-specific SoD violations involving cross-domain paths................. 80

Fig. 7.2. User-specific SoD violation through a cross-domain path................................. 84

vii

ABSTRACT

Shafiq, Basit. Ph.D., Purdue University, April 2004. Optimal Secure Interoperation in a

Multi-Domain Environment. Major Professor: Arif Ghafoor.

The rapid proliferation of the Internet and the cost effective growth of its key

enabling technologies such as database management systems, storage and end-systems,

and networking are revolutionizing information technology and have created

unprecedented opportunities for developing large scale distributed applications and

enterprise-wide systems. At the same time, there is a growing need for information

sharing and resource exchange in a collaborative environment that spans multiple

enterprises. Various businesses, government, and other organizations have realized that

information and resource sharing is becoming increasingly critical to their success.

However, increase in inter-domain information and resource exchange poses new threats

to the security and privacy of data. Numerous studies have shown that unauthorized

access, in particular by insiders, constitutes a major security problem for enterprise

application environments. This problem can get magnified in a collaborative environment

where, distributed, heterogeneous, and autonomous organizations interoperate with each

other. Collaboration in such a diverse environment requires integration of the access

control policies of local domains to compose a global security policy for controlling

information accesses across multiple domains. In this proposal, we address the issue of

policy integration in a multi-domain system that allows information and resource sharing

in a collaborative environment. The proposed policy integration mechanism is a two

phase process that first defines a mapping among the cross-domain entities and then

resolves the underlying access control policy conflicts. For conflict resolution, we

propose an integer programming (IP) based approach that maximizes inter-domain

information and data exchange according to some specified optimality criterion. As an

viii

extension to the policy integration framework, we plan to address the problem of access

control policy verification and policy evolution in the context of secure interoperation. In

addition, we will investigate the problem of semantic partitioning of a single access

control policy into multiple independent, autonomous, and functional policies.

1

1 INTRODUCTION

The rapid proliferation of the Internet and the cost effective growth of its key

enabling technologies such as database management systems, storage and end-systems,

and networking are revolutionizing information technology and have created

unprecedented opportunities for developing large scale distributed applications and

enterprise-wide systems. At the same time, there is a growing need for information

sharing and resource exchange in a collaborative environment that spans multiple

enterprises. Various businesses, government, and other organizations have realized that

information and resource sharing is becoming increasingly critical to their success. In the

commercial sector, companies collaborate with each other for supply chain arrangements,

subcontracting relationships, or joint marketing campaigns [Coh02]. In the public sector,

government has taken various initiatives to increase collaboration among government

agencies and NGOs in order to provide better public service to citizens, and to make

available timely, accurate, and complete information to relevant government agencies and

general public. Two major projects initiated in this regard are Digital Government

Program and Integrated Justice Information Systems. The aim of the Digital Government

Program is to make use of information and communication technologies for empowering

citizens with greater access to services and increase their involvement in decision making

process, leading to improved citizen-government interaction [Elm01]. Integrated justice

is an initiative taken by Department of Justice to improve information management and

sharing between justice system agencies at all levels of government [IJIS]. Whether

collaboration is solely among government agencies, or incorporates both government and

commercial organizations, information and resource exchange beyond the individual

domain boundary is crucial to meet the business requirements of organizations in today’s

world.

2

With the increase in information and data accessibility, there is a growing concern

for security and privacy of data. Many studies show that unauthorized access, in

particular by insiders, constitutes a major security problem for enterprise application

environments [Pow00], highlighting the need for robust access control management

systems. This problem can be highly magnified in a collaborative environment where

distributed and heterogeneous organizations, each employing its own security policy,

interoperate with each other, allowing highly intensive inter-domain accesses [Jos01b,

Gon96]. Collaboration in such a diverse and heterogeneous environment requires

integration of local policies to compose a global security policy that governs information

and data accesses across domain boundaries. Integration of security policies, local to the

collaborating domains, entails various challenges regarding reconciliation of semantic

differences, secure interoperability, containment of risk propagation, and policy

management etc. [Jos01b]. An access control model that can be used to uniformly

represent policies of the individual domains is desirable. Such a model should allow

interoperation and information sharing among multiple domains and at the same time

guarantee that such inter-domain data accesses do not violate the underlying policies of

constituent domains. In particular, secure interoperation should enforce the following two

principles [Gon96]:

 The autonomy principle, which states that if access is permitted within an

individual system, it must also be permitted under secure interoperation

 The security principle, which states that if an access is not permitted within an

individual system, it must not be permitted under secure interoperation.

The problem of secure interoperation in a multi-domain environment has been

addressed in literature in the context of multi-level security (Bell-Lapadula) model

[Gon96, Bon96]. Multi-level security or Bell-Lapadula [Bel73] model is more suitable

for environments which have static constraints. For instance, in multi-level security

model, all accesses conform to the pre-specified security ordering. Security ordering in

this case is a static constraint, even though the security labels of entities may change with

time, e.g., declassification of documents after a certain period of time. In a multi-level

security model, if a subject s with security level a is authorized to access an object o with

3

security level b, then s can access o at all times provided the security levels of s and o

never change. Dynamic constraints on the other hand, may not allow subject s to access o

even though their security labels remain unchanged. Separation-of-duty (SoD) and

precedence constraints are example of such dynamic constraints and are required in most

commercial applications including digital government, e-commerce, health-care systems,

and workflow management systems [Ber99]. Traditional multi-level (LBAC) model

cannot be used to capture the dynamic constraint requirements of emerging applications

and information systems. Role based access control (RBAC) models are receiving

increasing attention as a generalized approach to access control [Nya99, San98b]. Due to

its inherent richness in modeling hierarchical, SoD, cardinality, and dependency

constraints, RBAC is emerging as a vital access control model capable of modeling a

wide range of access control policies. For the same reason, we use RBAC to express the

security policies of collaborating organizations/domains.

 In this report, we address the issue of policy integration in a multi-domain system

that allows information and resource sharing in a collaborative environment. The policy

integration mechanism described in this report is a two phase process as shown in Figure

1.1. In the first phase the role heterogeneity constraints among collaborating domains are

resolved and a global access control policy is generated from the given RBAC policies

and administrator specified constraints. The global policy generated in the first phase

may be conflicting and may allow violation of some of the security requirements. In the

second phase, conflicts are resolved by relaxing some of the access constraints. For

conflict resolution, we propose an integer programming (IP) [Wol98] based approach that

maximizes inter-domain information and data exchange according to some specified

optimality criterion.

This report is organized as follows. In Chapter 2, we provide a brief overview of the

RBAC model and discuss the basic security requirements in a multi-domain RBAC

system. The policy integration phase of Figure 1.1 is described in Chapter 3. Chapter 4

describes the conflict resolution strategy and illustrates the policy integration framework

through a detailed example. Chapter 5 provides a formal proof that the multi-domain

policy produced by the proposed policy integration framework satisfies the security

4

requirements of all collaborating domains. Chapter 6 gives a brief description of research

problems that we intend to address during the course of this research.

AC Policy
(Domain 1)

AC Policy
(Domain 2)

AC Policy
(Domain n) Administrator

specified
constraints

Conflict ResolutionPolicy Integration

Fig. 1.1 Policy Integration Framework

5

2 OVERVIEW OF MULTI-DOMAIN RBAC SYSTEM

2.1 Role Based Access Control (RBAC)

Role based access control (RBAC) is a flexible approach that has generated great

interest in the security community [Fer01, Giu95, Giu97, Jos01a, Jos01b, Ker02, Nya93,

Nya99, Osb00a, San95, San96, San97, San98a, Tar97b]. In RBAC, users are assigned

memberships to roles and these roles are in turn assigned permissions as shown in Fig.

2.1. A user can acquire all the permissions of a role of which he is a member. Role-based

approach naturally fits into organizational contexts as users are assigned organizational

roles that have well-defined responsibilities and qualifications [Fer93].

Role Hierarchies

Roles PermissionsUsers

Constraints

Manager

Senior
Engineer

Junior
Engineer

Employee

Senior
Administrator

Administrator

Fig. 2.1 Constraints and hierarchy in RBAC

According to a survey conducted by the U.S. National Institute of Standards and

Technology (NIST) [Fer93], RBAC has been found to address many needs of the

commercial and government sectors. This study showed that access control decisions in

many organizations are based on “the roles that individual users take on as part of the

organization.” Many surveyed organizations indicated that they had unique security

requirements and the available products did not have adequate flexibility to address them.

RBAC approach has several advantages, the key among which include [Jos01b, ,

San96]:

6

‚ Security management: The role in the middle approach to access control removes the

direct association of the users from the objects. This logical independence greatly

simplifies management of authorization in RBAC systems. For example, when a user

changes his role, all that needs to be done is to remove his membership from the

current role and assign him to the new role. In case authorizations were specified in

terms of direct associations between the user and the individual objects, this change

would require revoking permissions granted to all the objects and explicitly granting

permissions to the new set of objects. Using a role-based approach, the number of

assignments of users to permissions is considerably reduced. Generally, a system has

a very large number of subjects and objects, and hence, using RBAC has benefits in

terms of managing permissions.

‚ Role hierarchy: Natural role hierarchies exist in many organizations based on the

principle of generalization and specialization [San98c]. For example, there may be a

general Employee role in a Consulting Firm as shown in Fig. 2.1: Employee,

Engineer, Senior Engineer, Administrator, Senior Administrator and Manager. Since

everyone is an employee, the Employee role models the generic set of access rights

available to all. A Senior Engineer role will have all the permissions that an Engineer

role will have, who in turn will have the permissions available to the Employee role.

Thus, permission inheritance relations can be organized in role hierarchies. This

further simplifies management of access permissions. Fig. 2.1 shows a simple

hierarchy.

‚ Principle of Least Privilege: RBAC can be configured to assign the least set of

privileges from a set of roles assigned to a user when that user signs on. Using least

privilege set minimizes the damage incurred to a system if someone not assigned to a

role acquires its permissions through other means, or if someone masquerades as

another user [Jos01b, sSan96].

‚ Separation of Duties: Separation of duties (SoD) has been considered a very desirable

organizational security requirement [Ahn00, Ber99b, Bew89, Kun99, Nya99, San91,

Sim97, Tid98]. SoD constraints are enforced mainly to avoid possible fraud in

organizations. RBAC can be used to enforce such requirements easily – both

statically and dynamically. For example, a user can be prevented from being assigned

to two roles to prevent possible fraud by using a static SoD which says that a user

cannot be assigned to two roles, one of which prepares a check and the other

authorizes it.

7

‚ Grouping Objects: Roles classify users according to the activity or the access needs

based on the organizational functions they carry out. Similar classifications can also

be possible for objects. For example, a secretary generally has access to all the

memos and letters in his/her office, whereas an accountant has access to all the bank

accounts belonging to his/her organization. Thus when permissions are assigned to

roles, it can be based on object classes instead of individual objects [San96]. This

further increases the manageability of authorizations.

‚ Policy-neutrality: Role-based approach is policy-neutral and is a means for

articulating policy [Jos01b, San96]. Role-based systems can be configured to

represent many useful DAC, MAC policies [Nay95, Osb97, Osb00b] and user-

defined and organizational security policies.

2.2 The NIST RBAC Model

The NIST RBAC model consists of the following four basic components: a set of

users, a set of roles, a set of permissions, and a set of sessions. A user is a human being

or a process within a system. A role is a collection of permissions associated with a

certain job function within an organization. Permission defines the access rights that can

be exercised on a particular object in the system. A session relates a user to possibly

many roles. When a user logs in the system he establishes a session by activating a set of

enabled role that he is entitled to activate at that time. If the activation request is satisfied,

the user issuing the request obtains all the permissions associated with the role he has

requested to activate. One of the most important aspects of RBAC is the use of role

hierarchies to simplify management of authorizations. The original RBAC model

supports only inheritance or usage hierarchy, which allows the users of a senior role to

inherit all permissions of junior roles. In order to preserve the principle of least privilege,

RBAC model has been extended to include activation hierarchy which enables a user to

activate one or more junior roles without activating senior roles [San98c]. A third type of

hierarchy inheritance-activation hierarchy can be defined on roles by composing

inheritance and activation hierarchies [Jos02]. From this point onward, we will use the

notations I, A, and IA to refer to inheritance, activation and inheritance-activation

hierarchies respectively. The symbols
* * *
, , and

I A IA
‡ ‡ ‡ are used to express I, A, and IA

8

relationship between two roles respectively. Accordingly,
*

, where { , , }i j
f

r r f I A I A‡ Œ ,

implies that role r i is senior to r j and the hierarchical relationship between them can be

either inheritance only, or activation only or inheritance-activation. If role r i is

immediately senior to role r j then the superscript * is omitted from the relation symbol
f
‡ .

2.3 Graph-based Specification Model for RBAC

A graph based formalism can be used to specify the RBAC policy of a domain. In

the graph based model, users, roles, and permissions are represented as nodes and the

edges of the graph describe the association between various nodes. In order to capture the

RBAC semantics, the nodes cannot be connected in an arbitrary manner. The type graph

shown in Figure 2.2, defines all possible edges that may exist between different nodes.

An edge between a user node u and a role node r indicates that role r is assigned to user

u. Self edges on the role node r models the role hierarchy. In the type graph, I-hierarchy,

A-hierarchy and IA-hierarchy are represented by solid, dashed and bold-edges

respectively. There can be edges between role and permission nodes. A permission is a

pair (object, access mode), which describes what objects can be accessed and in which

mode (read, write, execute, approve etc).The graph model also supports specification of

separation of duty (SoD) constraints. A role specific SoD constraint disallows assignment

and/or activation of conflicting roles to same user. Similarly, a user specific SoD

constraint prohibits conflicting users from assuming the same role simultaneously. In the

graph model, a role-specific SoD constraint between two roles is represented by a double

arrow between the corresponding roles. To represent conflicting users ui and uj for a role

rk, a double headed edge with a label rk is drawn between the user nodes ui and uj. The

label rk specifies that the corresponding users are conflicting for role rk and cannot

acquire permissions over rk simultaneously (user specific SoD constraint).

 Figure 2.3 shows the graphical representation of an RBAC policy instance. The

RBAC graph in Figure 2.3 consists of four roles ra, rb, rc and rd,

with , , and a c a d d b
A I A

r r r r r r‡ ‡ ‡ . User ua is assigned to ra, ub assigned to rb, and uc assigned

to rc. Note that user ua although inherits the permissions of role rd, is not authorized to

9

activate role rb which is junior to rb in the activation hierarchy semantics. There exists a

role specific separation of duty (SoD) constraint between role rb and rc, shown as a

double headed arrow between these two roles in Figure 2.3. Also users ua and uc are

conflicting users for role rc and are not allowed to access rc simultaneously.

u p

SoD

S
oD r r

I

A

IA

Fig. 2.2 RBAC type graph

rd

rb

rc

ra

SoD

ua

uc

ub

p1

p2

p4

p3

SoD

r c

Fig. 2.3 An example of RBAC graph

10

2.4 Security Requirements in a Multi-domain RBAC System

In a multi-domain environment where distributed and heterogeneous organizations,

each employing its own security policy, interoperate with each other, maintaining the

security and privacy of data is highly problematic [Jos01a, Jos01b, Gon96]. One key

aspect of this complex problem is the integration of diverse security policies and

mechanisms of partner organizations into a coherent capability for managing access and

use of local and cross-domain resources.

The goal of policy integration is to allow information and resource sharing without

violating the security and autonomy of individual domains or of the multi-domain system

as a whole. The security and autonomy requirements of the individual domains can be

extracted from their respective access control policies. Additional security constraints can

be defined by an administrator with global security responsibility. The administrator in

charge of global security policy may specify both permitted and restricted inter-domain

accesses. The global security policy constructed from the domains’ policies and

administrator specified access constraints may be inconsistent and may violate the

security requirements of constituent domains as well as of the multi-domain system.

We mainly focus on three types of security policy violations. Although these security

violations are independent of the underlying access control model, we describe them

using the RBAC formalism to be consistent with our earlier discussion. The security

policy violations include: i) violation of role assignment ii) violation of role-specific SoD

constraint, and iii) violation of user-specific SoD constraint. A role assignment violation

of domain k occurs when a user u of domain k acquires permission over role r of domain

k in the multi-domain environment even though the user u is not directly assigned to role

r or any of the senior roles of r that belong to domain k. A multi-domain policy violates

the role-specific SoD constraint of domain k if the policy allows any user to

simultaneously access two conflicting roles of domain k. Similarly, a user-specific SoD

constraint violation occurs when a multi-domain policy permits conflicting users of role r

to acquire permissions over r in concurrent sessions. The following examples illustrate

these three types of security violations.

11

Example 1

Figure 2.4 shows a multi-domain policy that allows collaboration between County

Treasurer Office (CTO) and County Clerk Office (CCO). The County Treasure Office has

following roles: Tax Collection Manager (TCM), Tax Assessment Clerk (TAC), Tax

Billing Clerk (TBC), Tax Collection Clerk (TCC), and Junior Tax Collection Clerk

(JTCC). TCM inherits all permissions of TCC which further inherits the permissions of

JTCC. The roles TAC and TBC are junior to TCM in the activation hierarchy semantics,

implying that a user assigned to TCM can assume the roles TAC and TBC without

actually activating TCM. However, an SoD constraint is defined between TAC and TBC

meaning that these roles cannot be assumed by same user simultaneously. There is a user-

specific SoD constraint between user u1 assigned to TCM, and u2 assigned to TAC. This

SoD constraint prohibits u1 and u2 to assume the role TAC concurrently. The County

Clerk Office has only two roles, namely: Property Tax Manager (PTM) and Property Tax

Clerk (PTC) with PTM inheriting the permissions of PTC.

The multi-domain policy shown in Figure 2.4 defines the following interoperation

between CTO and CCO:

1. TCM in the County Treasure Office inherits all the permissions available to PTM

in the County Clerk Office.

2. JTCC in the County Treasure Office inherits all the permissions available to PTC

in the County Clerk Office.

3. PTM in the County Clerk Office inherits all the permissions of TAC in the

County Treasurer Office.

4. PTC in the County Clerk Office inherits all the permissions of TCC in the County

Treasurer Office.

The above multi-domain policy leads to all three types of security violations. It

allows JTCC to access the permissions of its senior role TCC through PTC, which is a

violation of role assignment constraint. Moreover, this policy permits u1 to activate roles

TCM and TBC simultaneously. This leads to a violation of role-specific SoD, as by

activating the role TCM, u1 acquires the permissions of the role TAC through PTM.

Moreover, the multi-domain policy allows u1 to activate the role TCM and u2 to assume

12

the role TAC. u1 by activating TCM can acquire permission over TAC through the role

PTM. This is a violation of user-specific SoD constraint which prohibits u1 and u2 from

accessing the role TAC simultaneously.

Example 1 considers security constraints that are specific to a particular domain. The

security constraints can also be defined between cross-domain entities (roles and users).

Following example presents a case where cross-domain security constraints are needed.

TCM

TAC TBC TCC

JTCC

PTM

PTC

u1

u2

SoD

S
o

D

T
A

C

CTO

CCO

u3

Fig. 2.4 A multi-domain access control policy defining interoperation between CTO and CCO

Example 2

Consider Corporate Audit Department that performs tax auditing of public

companies for IRS. For each such company there is a separate auditor role which is

authorized to check the books and audit records maintained by the company. IRS may

also hire private auditing firms to perform tax auditing. Companies are also required to

document their financial information every year and they may also contract private audit

firms to perform their internal auditing. The internal auditor is allowed to access all the

financial records and books of the company being audited. However, the internal auditor

cannot acquire any permission that is exclusively assigned to the IRS auditor. If the

13

interoperation policy is not carefully designed then there may arise a situation in which

same audit firm performs IRS auditing and internal auditing of the same company. To

avoid this security flaw, an SoD constraint needs to be defined between the IRS auditor

role and the internal auditor role. Note that this SoD is defined between two cross-domain

roles. This is illustrated in Figure 2.5.

E&ECorp.
Auditor

XY Inc
Auditor

AB Corp.
Auditor Internal

Auditor

SoD

IRS cannot hire
ANDR Consultants
to audit ENR Corp

Corporate
Audit Dept.

(IRS)

E&E Corp.

SS Audit
Firm

A&A
Consultants

KPM
INC

Fig. 2.5 Example of a cross-domain separation of duty (SoD) constraint

14

3 MULTI-DOMAIN POLICY INTEGRATION

In this chapter, we elaborate on the policy integration phase of Figure 1.1. Before

describing the proposed policy integration mechanism, we first introduce the resource

sharing policy at the object level and then highlight some of the heterogeneity issues

involved in policy integration.

3.1 Information Sharing Policy

In the policy integration step of Figure 1.1, domain policies are composed to form a

global interoperation policy. Note that a domain may not allow complete sharing of its

data and resource objects. We will use the word object interchangeably for both data and

resources. An object can be a file, a database relation/view, or an I/O device etc. For each

of the sharable objects the following information needs to be provided by the

controller/owner domain of that object.

‚ Domains which can access the object.

‚ Sanitization requirements of an object before it is shared with other domains. For

instance, an object can be completely shared, or partially shared or the object

cannot be shared as is but only certain derived properties of the object are

shareable (statistical information).

‚ Access permissions (read, write, execute etc.) over an object that are available to

subjects of foreign domains.

‚ Any specific condition for sharing. For instance, an object can be shared

(completely or partially) with a cross domain subject only if a cross domain

subject has local access to certain attributes of the object in its own domain.

Based on the above information, each object can be logically partitioned into

multiple objects and only shareable sub-objects of a domain are presented to the policy

15

integration module. Figure 3.1 describes an abstract view of inter-domain information

sharing. This figure depicts partial sharing, which is the most common form of

interoperation and is exhibited in almost every collaborative environment. Note that in

this figure, access to local information resources is also reduced as a result of cross-

domain resource sharing. This reduction in local accesses results in decreasing the

autonomy of corresponding domains.

Sharable informationSharable information

Local and cross-domain information

available to a subjects of domain B after

integration

Local and cross-domain information

available to subjects of domain A after

integration

Information local to

domain B

Information local to

domain A

Information common to

domains A & B

The overlapping
region decides what
information can be
shared between cross
domain subjects

Fig. 3.1 An abstract view of inter-domain information sharing

Figure 3.2 depicts information sharing policy related to delinquent property tax

between County Treasurer Office (CTO) and District Clerk Office (DCO). CTO

maintains electronic records of tax defaulters containing information such as tax

defaulters name and social security number (SSN), delinquent property index and tax

amount owed to local govt. redemption cost, tax sale plea filed in district court, and

details of other property/properties owned by the tax defaulter. Delinquent taxes can be

sold to third parties after obtaining the tax sale order issued by the district court. The

District Clerk office (DCO), which keeps record of all court proceedings, is responsible

for providing the tax sale orders and other court documents related to delinquent tax

16

holder to CTO and other concerned agencies/departments. Similarly, DCO is allowed to

access the information of delinquent property, maintained by CTO, for record keeping. In

order to keep privacy of personal/unrelated information, not all the information about the

tax defaulter needs to be shared between the two domains. For instance, the information

about other real-estate property owned by the tax defaulter is kept private and is not

shared with DCO unless such property is declared delinquent. Similarly, CTO is not

allowed to access any information from DCO other than tax indictment record, tax sale

order, and local tax lien records. For this purpose, the tax defaulter record in the CTO is

partitioned into three objects: Ocom, OsT, and OrT. OrT is classified information that cannot

be shared with the DCO. OsT is a shareable object and can be accessed by DCO.

Similarly, the record in the DCO is partitioned into Ocom, OsC and OrC, where OrC is

confidential information, and OsC can be released to CTO. The object Ocom contains the

information about the name and social security number of the defaulted person and is

common to both domains. CTO can access only those records from DCO domain for

which there is a corresponding Ocom object in the delinquent tax table. Similarly, DCO

can access tax/property information of only those tax holders for which the Ocom from

court records matches with the Ocom of the delinquent tax record.

3.2 Heterogeneity Issues in Policy Integration

One key challenge in the composition of a multi-domain access control policy is

resolving semantic heterogeneity among the local policies of collaborating domains.

There are various types of heterogeneity that need to be addressed in the context of policy

integration. The heterogeneity may arise because of naming conflicts, schema mismatch,

and differences in constraint representation by different domains.

Naming Conflicts arise because of the use of synonyms, or identical names, to

represent different conceptual entities, and homonyms, or different names, to represent

same conceptual entities. Accordingly, there may be naming conflicts among different

inter-domain entities, which may cause security violations if not resolved before

establishing interoperation. Resolution of naming conflicts has been addressed in the

literature in the context of schema integration in the database area [Gua02, Vet98]. These

17

techniques require the use of a global lexicon to extract the conceptual meaning of

attributes from their names. Additionally, domain-based and value-set-based comparisons

can be performed for refinement [Li94].

Property

Index

Other Properties Owned

by the Defaulter

Tax Sale PleaRedemption

Cost

Delinquent Tax

Amount

NameSSN Property

Index

Other Properties Owned

by the Defaulter

Tax Sale PleaRedemption

Cost

Delinquent Tax

Amount

NameSSN

Delinquent Tax Holder Record (CTO)

Court Proceeding/Order Record (DCO)

Common information that relates

cross-domain information/data

objects

Shareable information/data

objects

Restricted information/data

objects

Information/data

objects can be

decomposed to

allow secure cross-

domain data access

Ocom Osh
Orh

Ocom

Osi Ori

Arraign-

ment

Record

Family

dispute

record

Court

Fee/Fines

Tax

Indictment

Record

Court

Warrants

State/Fed

Tax liens

Local Tax

Liens

Tax Sale

Order

NameSSN Arraign-

ment

Record

Family

dispute

record

Court

Fee/Fines

Tax

Indictment

Record

Court

Warrants

State/Fed

Tax liens

Local Tax

Liens

Tax Sale

Order

NameSSN

Ocom Osh
Orh

Fig. 3.2. Information exchange between the County Treasurer Office and District Clerk Office

Schema mismatch is another type of semantic heterogeneity that is characterized by

representation conflicts, meta-model conflicts and meta-meta-model conflicts [Pot03].

The term model is used to formally describe a complex application, such as a database

schema, an application interface, or an access control policy. Representation conflicts are

caused by conflicting representations of same real-world concept. For instance, in one

domain the attribute Name is represented by the element “Person Name,” while in

another domain, it is represented by two elements: “First Name” and “Last Name”. Meta-

model conflicts occur due to the use of different models for the same schema. For

example, one domain uses the relational model and the other uses the object oriented

model to specify the same schema. Conflicts also exist at the meta-meta-model level due

to the use of different relationship orderings and cross-relation implication among the

18

domain’s entities. Schema and model merging techniques [Bat86, She90, Pot03] address

the issue of reconciliation of semantic differences at the schema level.

In addition to naming and schema conflicts, heterogeneity may appear in the

specification of various access control policy constraints, including: hierarchy, SoD,

cardinality and other dynamic constraints. Reconciliation of semantic differences

becomes more challenging in presence of constraint heterogeneity.

Hierarchical heterogeneity among domains’ policies may exist because of two

reasons: a) use of different role hierarchies (inheritance I, activation A, inheritance-

activation IA, hybrid [Jos02]) by different collaborating domains; b) domains may use

different hierarchical ordering to represent same authorizations for a given role. The

following example illustrates the two types of hierarchical heterogeneity that may exist

between two or more cross-domain roles.

Example 3

 Consider the Senior Clerk (SC) and Junior Clerk (JC) roles of the City Clerk Office

shown in Figure 3.3(a). The hierarchical relationship between SC and JC is given by A-

hierarchy,
A

SC JC‡ , i.e., SC cannot directly inherit the permissions associated with the

role JC. Suppose permission p1 is assigned to role SC and p2 to JC. Figure 3.3(b) shows

the RBAC graph of County Clerk Office with two roles Clerk (C) and Assistant Clerk

(AC). The Clerk role (C) inherits all the permissions of Assistant Clerk,
I

C AC‡ . Note

that the roles C and AC are assigned same permissions as the roles SC and JC. However,

roles SC and C are not equivalent because SC is not authorized for permission p2,

whereas, C can directly access p2 without activating any junior roles. The difference in

authorization of the two roles is because of different types of hierarchy used in the two

domains.

It can also be noted in Figure 3.3 that the Accountant role in the City Clerk Office

has the same permission authorization as the Clerk role in the County Clerk Office, even

though the hierarchical ordering for the two roles is different.

19

SC

City Clerk

Office

JC

u1

u2

p1

p2

C

County Clerk

Office

AC

uc

uac

p1

p2

(a) (b)

A
p1

p2

Fig. 3.3 Hierarchical heterogeneity

3.3 RBAC Policy Integration

In this section, we focus on the issue of composing a global access control policy

from the access control policies of collaborating domains. The global policy governs both

intra-domain and inter-domain information and resource exchange. As mentioned earlier,

the access control policies of collaborating domains are specified using RBAC

framework. The domains’ policies are combined based on the similarity between the

permissions associated with the cross-domain roles. Before presenting the proposed

policy integration mechanism, we first introduce the general requirements for policy

integration.

3.3.1 Policy Integration Requirements (PIR)

The following PIRs define the semantics of a multi-domain RBAC policy in a

concrete manner. The RBAC policies are specified using the graph formalism described

in Chapter 2.

1. Element preservation: Each element (role, user, permission) in the input RBAC graph

has a corresponding element in the multi-domain graph G.

20

2. Relationship preservation: Each relationship in the input graph is explicitly in or

implied by the multi-domain graph G.

3. User authorization preservation: In the multi-domain graph G, for any user u of a

domain k, the permission authorization set of u over the objects of domain k should

not be different from the permission authorization set specified or implied in the input

RBAC policy of domain k.

4. Minimum overhead: In order to satisfy the constraints given above, the multi-domain

RBAC graph may include elements and relationships in addition to those given in the

input RBAC graphs. However, the number of additional elements should be

minimum.

5. Order independence: The order in which policies are integrated should not influence

the output of policy integration operation.

6. Constraint satisfaction: The multi-domain RBAC graph G must satisfy all the

constraints of the input RBAC policies.

The above PIRs are similar to the generalized merge requirements defined in the

context of model merging by Pottinger and Bernstein [Pot03]. Unlike [Pot03], we do not

define the conflict resolution strategy as a part of integration requirement. In general,

fundamental conflicts in schema/model merging arise because of type restriction,

cyclicity in relationships, and relation cardinality. These conflicts can be resolved using

priority-based pre-specified resolution rules. Use of static conflict resolution rules in

policy integration may severely reduce the amount of interoperation among the

collaborating domains. Moreover, the relationship semantics and cross-relation

implications in RBAC framework are different from schema models discussed in [Pot03].

Therefore, a pre-specified conflict resolution strategy that resolves model merging

conflicts on the fly cannot be applied for policy integration. We use a separate conflict

resolution module that resolves conflicts in the multi-domain policy obtained in the

policy integration phase of Figure 1.1.

In the following section, we describe an algorithm, RBAC-integrate, for integrating

policies of multiple domains. RBAC-integrate combines the RBAC policies of

21

component domains by comparing cross-domain roles. However, RBAC-integrate does

not resolve any conflicts occurring in the resulting multi-domain policy. For conflict

resolution, we propose a conflict resolution mechanism discussed in Chapter 4. It can be

proved that the multi-domain policy produced by RBAC-integrate, after conflict

resolution satisfies all the policy integration requirements given above.

Table 3.1 Functions/predicates used in this report

Function/predicate Description

Pset(r) Returns the set of all permissions either directly assigned to role r or are inherited by r.

Psetassign(r) Returns the set of permissions directly assigned to role r.

Class(O) Returns the conceptual class of object O.

Conf-rset(r) Returns the set of all roles conflicting with role r i.e., roles that cannot be acquired along

with role r by any user.

Conf-user(r) Returns the set of the sets of user that cannot acquire role r simultaneously.

Shareable(O ,a, X) Returns True if permission (O, a) can be shared with domain X

Seniormost-role(G) Returns the senior-most role of the RBAC graph G

Children(r) Returns all roles r’ such that ' '
I A

r r r r‡ ° ‡

Common-
permissions(r1,r2)

Returns the set of all directly assigned permissions that are common to the cross-domain

roles r1 and r2.

Common-juniors-
I(r 1,r2)

Returns the set of roles Rj

* +} ’j 1 2R : and ' _ (, ') '
I I

r r r r eq role r r r r? ‡ & ® ‡ , r1 and r2 are cross-domain roles.

New-role(r) Returns True if r is a newly created role as a result of role splitting.

Redundant(r) Returns True if r is a redundant role.

Not-compared-
previously(r1,r2)

Returns True if the cross-domain roles r1 and r2 are not compared by the algorithm Role-

integrate

Already-
linked(r1,r2)

Returns True if r1 and r2 are cross-domain roles and
1 2 2 1 and

I I
r r r r‡ ‡

Eq_role(r1,r2) Returns True if the following hold

1 2

1 1 1 2 2 2 1 2

1 1 1 2 2 2 1

() ()

for all such that there exists for which and _ (,)

for all such that there exists for which and _ (

assign assign

j j j j j j
I I

j j j j j
A A

pset r pset r

r r r r r r eq role r r

r r r r r r eq role r

? ®
Ç ×‡ ‡ ®É Ú

‡ ‡ 2,)jrÇ ×
É Ú

i.e., the roles r1 and r2 set of directly assigned permissions and are also equivalent in their

hierarchical structure.

contained(r1,r2) Returns True if the following hold

* + * +*

1 2 1 2 2() () ()assign assign k k k
I I

p Pset r p Pset r r r r r r rŒ µ Œ ® ‡ ® ” µ ‡

i.e., the set of directly assigned permissions of r1 must be contained in the set of directly

assigned permissions of r2 and all the roles junior to role r1 must also be junior to r2 in the

same hierarchy semantics.

Overlap(r1,r2) Returns True if the following hold

* + * +1 2 1 2 | () () , | (_ (,)assign assign k m k m k m
I I

p p Pset r p Pset r r r r r r r eq role r r& Œ µ Œ ° & ‡ µ ‡ ®

u-assign(u,r) Returns True if user u is assigned role r.

Conf-role(r1,r2) Returns True if r1 and r2 are conflicting roles

22

3.3.2 RBAC Policy Integration Algorithm

The proposed policy integration algorithm establishes correspondences between

cross-domain roles by considering the permissions associated with the corresponding

roles. Inter-domain roles are compared based on their permission assignments over

objects. This permission set includes both directly assigned permissions as well as

inherited permissions. We also assume that objects in the RBAC model are organized

into conceptual classes, e.g., account tables, insurance claims, and audit reports etc. Two

cross-domain permissions pA:(OA, aA) and pB:(OB, aB) of domains A and B respectively,

are termed equivalent if the cross domain objects OA and OB belong to the same

conceptual class and the permissions pA and pB are declared shareable in their respective

domain policies.

Using the above assumptions and the permission assignments of roles over the

objects, four types of relations can be defined between two cross-domain roles rA and rB

belonging to domain A and domain B respectively. The functions and predicates used in

defining these relations are explained in Table 3.1.

1. Equivalent: rA is equivalent to rB (rA Ã rB), if the following conditions hold.

a. The permission sets Pset(rA) and Pset(rB) of roles rA and rB are equivalent.

Formally:

 , : () () [(,) () (,) ()]
i j i jA B A A B Bi j class O class O O a Pset r O a Pset r$? ® Œ ± Œ

b. All the permissions in the sets Pset(rA) and Pset(rB) are shareable with the

domain of rA and rB respectively. Formally:

 , (, ,) (, ,)
i jA Bi j shareable O a B shareable O a A$ ®

2. Contain: rA contains rB (rA ̶ rB) if the following hold:

a. The permission set Pset(rB) of role rB is included in the permission set

Pset(rA) of role rA.

 * +: (,) () (,) () () ()
j i i jB B A A A Bj i O a Pset r O a Pset r class O class OÇ ×$ & Œ µ Œ ® ?É Ú

b. All the permissions in the set Pset(rB) are shareable with domain A.

23

RBAC-integrate(G1,G2,…,Gn)

1. G = {V[G1], E[G1]}

2. for i « 2 to n

3. r1 « seniormost-role(G)

4. r2 « seniormost-role(Gi)

5. G « Role-integrate(r1, r2)

6. for each r Œ G

7. if (new-role(r) and redundant(r))

8. then Remove-Role(G, r)

9. return

Role-integrate(r1, r2)

1.for each rc Œ children(r1)

2. do if ((Pset(rc) ̨ Pset(r2) ” h) and not-compared-previously(rc,r2))

3. then Role-integrate(rc,r2)

4.for each rc Œ children(r2)

5. do if ((Pset(r1) ̨ Pset(rc) ” h) and not-compared-previously(r1,rc))

6. then Role-integrate(r1,rc)

7.ﾓ return without doing anything if r1 and r2 are already linked

8.if already-linked(r1,r2)

9. then return

10. ﾓ * + * +*
(,)=True, if () () ()i j assign i assign j i k k j j kI I

contained r r p Pset r p Pset r r r r r r rŒ µ Œ ® ‡ ® ” µ ‡

11. if contained(r2, r1) and contained(r1, r2)

12. then if linking r1 and r2 do not violate RBAC consistency properties

13. then link(r1, r2)

14. return

15. else if contained(r2, r1)

16. then r1j=split(r1, common-permissions(r1,r2), common-juniors-I(r1,r2))

17. if linking r1j and r2 do not violate RBAC consistency properties

18. then link(r1j, r2)

19. return

20. else if contained(r1, r2)

21. then r2j=split(r2, common-permissions(r1,r2), common-juniors-I(r1,r2))

22. if linking r1 and r2j do not violate RBAC consistency properties

23. then link(r2j,r1)

24. return

25. ﾓ * + * +(,)=True, if | () () , | ((,)i j assign i assign j k m i k j m k m
I I

overlap r r p p Pset r p Pset r r r r r r r a lready linked r r& Œ µ Œ ° & ‡ µ ‡ ® /

26. else if overlap(r1,r2)

27. then r1j=split(r1, common-permissions(r1,r2), common-juniors-I(r1,r2))

28. r2j=split(r2, common-permissions(r1,r2), common-juniors-I(r1,r2))

29. if linking r1j and r2j do not violate RBAC consistency properties

30. then link(r1j, r2j)

31. return

32. return

Fig. 3.4 Policy integration algorithm

24

split(r, common-permissions, common-juniors)

1. rj « createrole()

2. insert(r->childrenlist-I,rj)

3. for each p Œ common-permissions

4. do remove(r->plist, p)

5. insert(rj->plist,p)

6. for each rc Œ common-juniors

7. do remove(r->childrenlist-I, rc)

8. insert(rj->childrenlist-I, r)

9. return rj

link(r1, r2)

1. insert(r1->childrenlist-I,r2)

2. insert(r2->childrenlist-I,r1)

3. for each ri s.t. *

1 1()i i I
r r r r? ° ‡

4. do for each rj s.t.
*

1 1(()) (())j j c c
I

r conf rset r r r r conf rset rŒ / ° ‡ ® Œ /

 do conf-rset(ri)=conf-rset(ri)̌rj

5. conf-rset(rj)=conf-rset(rj)̌ri

6. for each ri s.t. *

2 2()i i I
r r r r? ° ‡

7. do for each rj s.t.
*

2 2(()) (())j j c cI
r conf rset r r r r conf rset rŒ / ° ‡ ® Œ /

8. do conf-rset(ri)=conf-rset(ri)̌rj

9. conf-rset(rj)=conf-rset(rj)̌ri

return

Remove-role(rd)

1. Rp « Rp "̌ {r}, for all r such that

2. Rc « Rc "̌ {r}, for all r such that

3. for each rp Œ Rp

4. for each rc Œ Rc

5. If &r’ :

6. continue

7. insert(rp->childrenlist-I, rc)

8. remove(rc->parentlist-I, rd)

9. insert(rp->parentlist-I, rp)

10. for all re: re Œ equivalent(rd)

11. remove(re->parentlist-I, rd)

12. remove(re->childrenlist-I, rd)

13. for all rs: rd Œ conf-rset(rs)

14. remove(rs->conf-rset, rd)

15. for each rp Œ Rp

16. for each p Œ Pset(rd)

17. insert(rp->Pset, p)

18. deallocate(rd)

' ' 'd p c
I I

r r r r r r” ® ‡ ® ‡

Fig. 3.5 Procedures used by Role-Integrate during Policy Integration

3. Overlap: rA overlaps rB (rA O rB) if Pset(rA) and Pset(rB) have some common

shareable permissions and neither rA contains rB nor rB contains rA. Formally:

* +

, : () () [(,) ()

 (,) () (, ,) (, ,)]

 () ()

i j i

j i j

A B A A

B B A B

A B B A

i j class O class O O a Pset r

O a Pset r shareable O a B shareable O a A

r contain r r contain r

& ? ® Œ ®Ã Ô
Ä Õ ®
Ä ÕŒ ® ®Å Ö

¬ ®¬

4. Not related: rA is not related to rB (rA ” rB) roles rA and rB do not share any common

permissions. Formally:

 , : () () [(,) () (,) ()]
i j i jA B A A B Bi j class O class O O a Pset r O a Pset r¬& ? ® Œ ® Œ

Figure 3.4 shows the proposed policy integration algorithm, RBAC-integrate, that

integrates RBAC policies of n domains to produce a global multi-domain policy. The

input parameter Gi represents the RBAC policy of domain i specified in graphical form.

This algorithm iteratively combines the RBAC policies of component domains in a pair-

25

wise manner. In the first iteration, an integrated RBAC policy is composed from domains

1 and 2 by calling the procedure, role-integrate, with the senior-most roles of domains 1

and 2 respectively. In the subsequent iterations, RBAC policy of a new domain is

combined with the integrated RBAC policy obtained in previous iteration. After n-1

iterations, the RBAC policies of all n domains are integrated to produce a global multi-

domain policy. In each iteration, after calling role-integrate, all the newly created

redundant roles are removed from the integrated RBAC graph. Redundant roles, formally

defined in Section 3.3.3, are roles that do not have any permissions assigned to them nor

can any user activate them. Removal of redundant roles, created in the process of

integration, is essential to ensure that RBAC-integrate preserve PIR 4 and 5 listed above.

The procedure, role-integrate, integrates inter-domain roles based on their

permission assignment and hierarchical ordering. role-integrate is a recursive algorithm

that uses bottom-up strategy to establish role equivalence across two domains. The

algorithm basically checks all inter-domain roles for one of the above four relations. If

the roles do not share any permission, then it returns without doing anything. If the inter-

domain roles say, r1 and r2, are equivalent in their permission assignment and hierarchical

ordering then they are linked together. An inter-domain link in the graph model is

represented by a dashed double-headed arrow between two roles. Linking two inter-

domain roles r1 and r2 implies that a user say ui, authorized for role r1 inherits all the

permissions of role r2. Similarly, a user uj authorized for role r2 inherits all permissions in

the authorization set of r1. Role-integrate calls link function (shown in Figure 3.5) for

linking cross-domain roles r1 and r2. link makes r1 and r2 junior to each other in the I-

hierarchy sense. In addition, conflicting role sets of r1 and r2 and all their senior roles that

have an I-path to r1 and r2, and all the roles that conflict with r1 and r2 and their senior

roles are updated. This update in the conflicting role sets is essential to preserve the

hierarchical consistency property of RBAC model which requires that the conflicting role

set of a junior role must be contained in the conflicting role set of the senior role [Gav98].

As a result of this update in conflicting role sets, new SoD constraints are added between

two or more roles which do not conflict with each other in their original domain RBAC

policy. We will use the term induced SoD constraint to denote such SoD constraints that

26

are not present in the domains’ original RBAC policies. A formal definition of induced

SoD constraint is given in Section 4.2 of Chapter 4.

In presence of multiple hierarchy types, addition of roles in the conflicting role sets

may lead to a situation in which two conflicting roles, say r1 and r2, have a common

ancestor, say ra, which inherits both roles r1 and r2, (i.e., * *

1 2, a a
I I

r r r r‡ ‡). This situation

can be avoided by making r1 and r2 conflicting roles only if they do not have a common

ancestor role that inherits them. This is illustrated in Figure 3.6 which shows how linking

inter-domain roles change the conflicting set of linked roles. Figure 3.6(a) shows roles

r1, r2, r3, r4 and r5, with r1, r2 and r3 belonging to domain A, and r3 and r4 belonging to

domain B. The role r1 inherits all the permission of r2 and r3. As shown in Figure 3.6(a)

roles r4 and r5 are conflicting roles. Roles r2 and r4, and r3 and r4 are equivalent in terms

of their permission assignment and can be linked. Figure 3.6(b) shows the integration of

RBAC graph of Figure 3.6(a). Note that after linking, no role specific SoD constraint is

defined between r2 and r3 because they both have a common ancestor r1 in the inheritance

hierarchy semantics. In contrast, a SoD constraint is defined between r2 and r3 in Figure

3.6(d) which have a common ancestor role r1 in the activation hierarchy semantics. The

integrated policy shown in Figure 3.6(b) is conflicting and can be made consistent by

removing one of the links r2 – r4 or r3 – r5.

Two cross-domain roles may also have a subset-superset (containment) or

overlapping relationship. Role r1 is contained in r2 if the set of all permissions directly

assigned to r1 is contained in the set of permissions directly assigned to r2, and all the

roles that are junior to r1 in the I-hierarchy semantics are also junior to r2 in the I-

hierarchy semantics. Note that containment relation mentioned here is slightly different

from the containment relation defined earlier. In this case, hierarchical ordering is also

considered in addition to permission assignment in defining the containment relationship

between two roles. If r2 contains r1, then a junior role r2j is created by calling split

function shown in Figure 3.5. In the split function, all the permissions and junior roles (I-

hierarchy semantics) common to both r1 and r2 are removed from r2 and are assigned to

r2j. Splitting a role does not change the permission authorization set of user and is

27

formally proved in lemma 3.1. After permission reassignment r2j and r1 are linked

together. If r1 and r2 overlap but none of the roles contain each other, then two new roles

r1j and r2j are created and made junior to r1 and r2 respectively. Permissions and junior

roles common to both r1 and r2 are removed from the senior roles r1 and r2 and assigned

to the roles r1j and r2j. After this permission and role assignments, r1j and r2j are linked.

In Chapter 4, we provide an example of the proposed policy integration mechanism

for different offices of a county collaborating with each other for collection and sale of

real-estate taxes on property parcels located within the jurisdiction of the concerned

county. The county offices involved in this collaboration are County Clerk Office (CCO),

County Treasurer Office (CTO), County Attorney Office (CAO), and District Clerk office

(DCO). Figure 4.5 shows the graphical representation of RBAC policies of CCO, CTO,

and CAO and Figure 4.6 depicts the RBAC graph after applying the role-integrate

algorithm over the role graphs of Figure 4.5. The dotted double-headed arrow in Figure

4.6 between two cross-domain roles defines the access path between the respective roles.

If two cross-domain roles are linked together by a cross-domain link then a user who is

authorized for one of the roles can also inherit the permissions of the other and vice

versa. For instance, user u5 assigned to the DTC role in CTO is also authorized to access

the roles DTLO01 and DTLO00 in the CCO because of the presence of an inter-domain

link between the roles R5 in CTO and DTLO01 in CCO. Similarly, user u7 assigned to

TAC role in CCO is authorized to access the roles R207 and R205 in the CTO by virtue of

the inter-domain link between R908 and R205.

Note that some of the roles in Figure 4.6 are split into two or more roles with their

permissions redistributed among the newly created junior roles. For instance, the DTM

role in Figure 4.5 gets split into three roles DTM, DTM10 and DTM12 with DTM as the

senior of the remaining two (shown in Figure 4.6). The following lemma maintains that

role splitting does not change the authorization set of users provided that no user is

assigned to the newly created junior roles. Before stating the lemma, we would like to

informally introduce the notion of a uniquely activable set (UAS) of a role. Interested

readers are referred to [Jos03] for a formal definition of UAS of a role. Uniquely

activable set (UAS) of a role r is the set of role sets that can be concurrently activated by

28

a user assigned to role r. In other words, UAS gives the role combinations that can be

activated by a user concurrently.

r1

r2 r3

pa pb

r5 r4

pb pa

SoD r1

r2 r3

pa pb

r5 r4

pb pa

SoD

(a) (b)

r1

r2 r3

pa pb

r5 r4

pb pa

SoD r1

r2 r3

pa pb

r5 r4

pb pa

SoD

(c) (d)

SoD

u1 u1

u1 u1

A B

A B

A B

A B

Fig. 3.6 Example of induced SoD

Lemma 3.1: Let a role r is split into roles rs and r j with s j
I

r r‡ . Then r and rs verify

the following conditions:

pset(r) = pset(rs)

UAS(r) = UAS(rs)

The above lemma states that all the permissions that can be acquired through role r

(before splitting) can also be acquired through role rs.

Proof of Lemma 3.1 is given in appendix

29

3.3.3 Properties of RBAC-integrate

In this section, we analyze the properties of the policy integration algorithm RBAC-

integrate in the context of the policy integration requirements discussed in Section 3.3.1.

RBAC-integrate satisfies all the policy integration requirements (PIRs) except PIR6.

Since conflict resolution is not included in RBAC-integrate, therefore the resulting multi-

domain policy may not satisfy all the constraints of input RBAC policies. However, the

multi-domain policy obtained after conflict resolution, extensively discussed in Chapter

4, satisfies all the integration requirements. Theorems 3.5, 3.6, and 4.7 provide a formal

proof of this claim.

In the following, we first formally define the notion of redundant role and then prove

that RBAC-integrate satisfies the policy integration requirements except PIR 6.

Definition 3.2: Let rd be a role; rd is said to be a redundant role if the following

conditions hold:

1. rd is not assigned to any user.

2. rd is not assigned any permission.

3. rd has at least one senior role r such that d
I

r r‡

4. No role r’ exists such that ' d
A

r r‡

5. No role r’’ exists such that "d
A

r r‡

Redundant roles may be created during the process of policy integration. However,

these roles can be removed from the integrated RBAC graph using the remove-role

algorithm shown in Figure 3.5. Following lemma states that removal of a redundant role

rd from a multi-domain RBAC graph G does not affect the security, autonomy, and

interoperability allowed in G.

Lemma 3.3: Let G be a multi-domain RBAC graph and rd be a redundant role in G.

Let G’ be the RBAC multi-domain graph obtained by removing rd from G using the

remove-role algorithm given in Figure 3.5. The following properties hold with respect to

G and G’:

30

1. For any user u such that u Œ domain(rd), the authorization set of u over all the

permissions associated with all the inter-domain roles r º domain(rd) remains

unchanged.

2. For any two roles rx Œ domain (rd) and rx ” rd and ry Œ domain (rd) and ry ” rd, if ry Œ

conf-rset (rx) before the removal of rd, then ry Œ conf-rset (rx) after the removal of rd.

3. For any user u such that u Œ domain(rd), the authorization set of u over all the

permissions associated with all the intra-domain roles r Œ domain(rd) remains

unchanged.

4. For any user u such that u º domain(rd), the authorization set of u over all the

permissions associated with all the roles r Œ domain(rd) remains unchanged.

5. For any two roles rx ” rd and ry ” rd, if ry Œ conf-rset (rx) before the removal of rd,

then ry Œ conf-rset (rx) after the removal of rd.

1 and 2 imply that removal of a redundant role does not affect the security and

autonomy of the domain containing the redundant role. 3, 4, and 5 imply that removing a

redundant role does not affect the interoperation among the component domains

Proof of Lemma 3.3 is given in Appendix.

Lemma 3.4: The multi-domain policy produced by RBAC-integrate satisfies PIRs 1

– 4.

Proof of Lemma 3.4 is given in Appendix.

One key requirement in composing a multi-domain policy is that the final outcome

of the policy integration step should not be influenced by the order in which policies are

integrated. If the integration mechanism depends on the order in which policies are

combined, then one must find an integration order that gives maximum interoperation

with minimum overhead. However, restricting the integration order may not be an

attractive option as in most collaborative environments, domains join or leave

collaboration any time. Nevertheless, the proposed policy integration mechanism is

31

independent of the order in which policies are integrated. We prove this by showing that

the policy integration algorithm RBAC-integrate is both commutative and associative.

Theorem 3.5 (Commutativity of RBAC-integrate): The policy integration

operation performed by RBAC-integrate is commutative.

Proof: RBAC-integrate is commutative if for any two domains A and B, RBAC-

integrate(GA,GB) = RBAC-integrate(GB,GA), where GA and GB are the RBAC graphs of

domain A and B respectively.

The commutativity of RBAC-integrate depends on the commutativity of role-

integrate. Therefore, we first analyze the algorithm role-integrate. Role-integrate

performs role comparison and linking in a recursive manner. Roles are linked by calling

link function which is symmetric. Linking of equivalent roles (lines 11 -14 of role-

interate) and overlapping roles (lines 27 – 31) is symmetric and hence commutative. For

the containment case, assume that contained(rB, rA) is true. When role-integrate(rA, rB) is

called then the code in lines 15 – 18 is executed, and when role-integrate(rB, rA) is called,

the code in lines 21 – 24 is executed. In both cases, role rA is split and a junior role rAj is

created with A Aj
I

r r‡ , and rAj is linked to rB with same permission assignment and junior

roles. This implies that the containment case is also symmetric and commutative.

 It can be proved using induction that role-integrate(rA, rB) and role-integrate(rB, rA)

produces same number of roles during the process of integration and they have same

permission assignment and role-hierarchy. Hence, role-integrate is commutative,

implying that RBAC-integrate is commutative. ﾐ

Theorem 3.6 (Associativity of RBAC-integrate): The policy integration operation

performed by RBAC-integrate is associative.

Proof:

Let GA, GB, and GC be the RBAC graph of domain A, B, and C respectively.

P = RBAC-integrate(GA, GB)

Q = RBAC-integrate(GB, Gc)

X = RBAC-integrate(P, Gc)

32

Y = RBAC-integrate(GA, Q)

To prove that policy integration operation is associative, we need to prove that the

graph X is isomorphic to Y. Two policy models are said to be isomorphic if there is 1:1

onto correspondence between their elements and they have the same relationships

[Pot03]. To show that two final integrated policy models X and Y are isomorphic, we

define a morphism l(X›Y) as follows:

‚ For a user ui Œ X, l(ui) = ui

‚ For a permission pj Œ X, l(pj) = pj

‚ For a role r’ Œ X, l(r’) = r such that psetassign(r’) = psetassign(r)

In order to prove that l is an isomorphism we need to show the following:

(i) l is 1:1 and onto

(ii) R(U) Œ RX if and only if R(l(U)) Œ RY (U is a vector).

The Appendix Section contains a detailed proof of (i) and (ii).

Theorems 3.5 and 3.6 imply that the multi-domain policy composed by RBAC-

integrate is independent of the order in which domain policies are integrated.

3.3.4 Time Complexity of RBAC-integrate

The algorithm RBAC-integrate runs in polynomial time, as evident from the

following Lemmas and Theorem:

Lemma 3.7: If role graphs representing domains’ RBAC policies are acyclic, then

the algorithm role-integrate terminates.

 Proof: Given two acyclic role graphs to be integrated, suppose that the algorithm

does not terminate, i.e., role-integrate is called recursively for an infinite number of

times. This implies that there is a cycle in one or both of role graphs. Creation of new

roles does not create any cycle as a newly created role is never made a parent of an

existing role. Therefore, the cycle must be present in the input role graph(s) which is a

contradiction of our initial assumption. Hence the algorithm role-integrate terminates.

ﾐ

33

Lemma 3.8: The worst case complexity of role-integrate is O(|P|
3
), where |P| is the

cardinality of the permission set.

Proof: According to the above lemma, the recursive algorithm role-integrate

terminates. Therefore, we can build a recursive tree in which each node corresponds to

the pair of cross-domain roles to be compared. The predicate not-compared-previously in

lines 4 and 7 ensures that inter-domain roles are compared only once. If |R1| and |R2|

denotes the total number of roles in their respective domains, then the total number of

role comparisons made by role- integrate while merging the two domains are |R1|x|R2|.

Note that |R1| and |R2| also include newly created roles. However, no more that |P|

number of roles can be created. Therefore at most O(|P|
2
) comparison are made in the

integration step. Suppose that all the comparisons result in linking the roles under

consideration. In the process of linking roles, the conflicting role sets are updated. In the

worst case the conflicting set is updated for all roles. This implies that the time

complexity of link is O(|P|). In the worst case, link is called after each comparison.

Therefore, the complexity of role-integrate is O(|P|
3
). ﾐ

Corollary 3.9: The worst case complexity of RBAC-integrate is O(n|P|
3
), where n is

the number of input domains. ﾐ

34

4 OPTIMAL CONFLICT RESOLUTION

The policy integration algorithm described above takes as input the RBAC policies

of the domains and creates an integrated multi-domain policy which allows inter-domain

role accesses and is homogeneous in terms of role hierarchies and permission assignment.

However, the multi-domain policy created in this phase may be inconsistent and may not

completely satisfy the component domains’ security requirements. Moreover, security

administrator(s), in charge of the global security policy, can define additional security

constraints and specify both permitted and restricted inter-domain role accesses. These

additional constraints may also conflict with the access control policies of individual

domains. For instance, in Figure 4.6, allowing role LSO from CCO to inherit the

permissions of role DTA from CTO (shown as dashed-dot arrow from LSO to DTA in

Figure 4.6) will violate the role specific SoD constraints between roles DTA and DTM10.

This inter-domain access constraint will enable user u6 to access role DTA through the

role LSO. Also the presence of link between roles R1011 and DTM10 allows user u6 to

access role r10. This is a violation of SoD constraint defined between roles DTA and DTM

in the original domain policy.

The solution to this problem is to remove either the unidirectional link (LSO – DTA)

or the link (R1011 – DTM10). This raises an important question: which accesses from the

set of conflicting accesses should be removed such that the security and autonomy

requirements of constituent domains are not violated? Although, removing link(s)

resolves conflicts in the given policy, it also changes the set of allowable accesses and a

poor choice of removable inter-domain links may significantly reduce interoperation

among the collaborating domains. A conflict resolution mechanism is needed that

resolves the conflicts among the collaborating domains in an optimal manner. The

problem of conflict resolution in a given multi-domain RBAC policy can be formulated

as an optimization problem with the objective of maximizing permitted accesses

according to some pre-specified optimality criterion. Various optimality measures such as

35

maximizing direct or indirect accesses or minimizing the set of relaxed inter-domain

access constraints can be used.

4.1 IP Formulation of a Multi-Domain RBAC Policy

In the following, we describe an approach for formulating the multi-domain policy

integration problem into an integer program (IP). The proposed IP formulation is generic

in the sense that it can work for any of the above mentioned optimality criteria. Changing

the optimality measure in our formulation only requires changing the weights in the

objective function.

In the IP formulation of RBAC policy, all the constraints such as hierarchical, SoD,

permitted and restricted access constraints are defined using linear equations. The

variables used in these equations convey both user and role information. For instance, the

variables are of the form
jiru where the first subscript i identifies the user and the second

subscript r j specifies the role. The variable
jiru is a binary variable, i.e., it can take a value

of ‘0’ or ‘1’ only. If the variable 1
jiru ? then user ui is authorized for role r j, otherwise ui

is not authorized for r j and cannot access role r j by any means. If user ui and role r j are

from different domains and 0
jiru ? then in the role graph, there should not be any path

from the user node ui to the role node r j. Note that the given multi-domain RBAC policy

may be inconsistent and a path may exist between user ui from one domain and role r j

from another domain, and in the solution to the IP problem 0
jiru ? . This inconsistency is

resolved by dropping an inter-domain edge that lies in the path between the user node ui

and role node r j.

4.1.1 Constraint Transformation Rules

In the following, we list the transformation rules to generate IP constraint equations for

an RBAC policy. In specifying the rules we denote by Uk and Rk the set of users and

roles of domain k respectively; we also denote by U the union of all Uks and by R the

union of all Rks.

36

1. For each domain k, if a user ui Œ Uk is not authorized for a role r j Œ Rk by the access

control policy of domain k then 0
jiru ? .

2. For a user ui Œ U and role r j Œ R, if domain(ui) ” domain(r j) and ui cannot inherit the

permissions of role r j then 0
jiru ? .

3. Let Au be the set of users assigned to a role r j. There should be at least one user from

the set Au that is able to access role r j. Formally, 0
j

i u

ir
u A

u
Œ

@Â .

4. Suppose 1
jiru ? and there exists a role rk such that domain(r j) = domain(rk) and

j k
I

r r‡ , then ui is also authorized to access role rk, i.e., 1
kiru ? .

5. Consider a user ui and a role rk such that domain(ui) ” domain(rk). Let Rm be a set of

roles such that for all rm Œ Rm, domain(rm) = domain(rk). Also, in the RBAC graph,

there is a path from ui to rm and m k
I

r r‡ . We define two roles sets Rc and Rpc as follows:

)})()(()),(_such that(R|{R

)}()(|{R

cpc

c

p
I

ppp

kk
I

rdomainrdomainrrruassignurrrr

rdomainrdomainrrr

?®‡°®?Œ&?

”®‡?

The following constraint equations define the conditions for a user ui to access role rk.

a.
mR , 0

m km ir irr u u$ Œ / ~

b.
cR

0
m n k

m m n

ir ir ir
r R r

u u u
Œ Œ

- / ‡Â Â

c.
pcR

0
m p k

m p

ir ir ir
r Rm r

u u u
Œ Œ

- / ‡Â Â

The above set of constraint implies that a user ui may access a cross domain role rk

only if one of the following two conditions holds:

i. ui is authorized for a cross domain role rm such that domain(rm) = domain(rk)

and m k
I

r r‡ .

ii. ui is authorized for role rn and there is an inter-domain edge from rn to rk.

Condition 5c is necessary to avoid any localized assignment of 1 to variables

cR where, and Œ
nnk iririr uuu

37

6. Consider any two users ui and uj and a role rk. Suppose ui is authorized to access role

rk, i.e. .1?
kiru Suppose that a cross-domain link exists from role rk to role r l. If user

ui is able to access r l through the cross domain link (rk, r l), then user uj, if authorized

for role rk, can also access r l through the link (rk, r l). Formally:

* + * + * +
* + * +

 () then 0

 0

k l k l

k l k l

i j k i r ir jr jr

ir ir jr jr

if dom(u) dom u dom r u u u u

else u u u u

? ? / / / ?

/ / / ‡

7. A role specific SoD constraint may exist between two intra-domain or inter-domain

roles. In the graph model, SoD constraint between two conflicting roles r j and rk is

represented by a double-headed arrow between roles r j and rk. In the IP formulation,

this SoD constraint can be written as:

 1, for all users such that can access either or
j kir ir i i j ku u u u r r- ~

8. Suppose that a SoD constraint exists between two intra-domain roles rm and rn

induced by a cross-domain roles rk and r l. This induced SoD constraint can be written

in equation form as:

3, for all users such that can access either or
m n k lir ir ir ir i i m nu u u u u u r r- - - ~

9. Let Ukc be the set of conflicting users for role rk. At most one user in the set Ukc is

allowed to access/activate role rk at any given time. Formally:

1u
U

irk
~Â

Œ kciu

4.1.2 Optimality Criteria

The IP constraints described in the above section are used to define security

requirements of collaborating domains’ RBAC policies. Once the RBAC constraints are

transformed into linear IP constraints by using the above transformation rules, the multi-

domain RBAC policy can be formulated as the following integer programming problem.

maximize

Subject to

 , 0 or 1
j j

T
r

r

ir r ir

c u

Au b

u u u

~
$ Œ ?

38

Where, c is the cost vector and A is the constraint matrix. The cost vector c defines

the optimality criteria. The main purpose of formulating the multi-domain RBAC policy

into an IP problem is to find a feasible solution (a set of users having permission to role

accesses that do not violate the given security requirements of individual domains) that

maximizes the objective function according to given optimality criterion. One of the

optimality criteria might be to maximize the number of cross domain role accesses. In

this case the objective function is the sum of all variables defining inter-domain user to

role accesses.

Maximizing inter-domain accesses may lead to relaxing or dropping some of the

administrator-specified constraints which may not be desirable in certain situations.

When administrative constraints are to be preserved, the element of cost vector

corresponding to the administrator specified constraint is assigned a higher value.

4.2 Autonomy Consideration

One key requirement of policy integration is to maintain the autonomy of all

collaborating domains. However, preserving the autonomy of individual domains may

significantly reduce interoperation and in some cases may not allow interoperation at all.

In other words, there is a trade-off between seeking interoperability and preserving

autonomy. In the RBAC policy integration framework, violation of a domain’s autonomy

occurs because of the following two reasons:

Induced SoD constraint: An induced SoD constraint as mentioned in Chapter 3 is a

SoD constraint between two intra-domain roles ra and rb which do not conflict with each

other in their original domain’s RBAC policy. Such a SoD constraint is caused by a

cross-domain roles rc and rd for which the following hold:

domain(rc) ” domain(ra) = domain(rb)

domain(rd) ” domain(ra) = domain(rb)

(,) () ()c d a c b d b c a d
I I I I

conf rset r r r r r r r r r rÇ ×/ ® ‡ ® ‡ ° ‡ ® ‡É Ú

Figure 4.2(a) illustrates an induced SoD constraint between roles r2 and r3 of domain

A caused by roles r4 and r5 of domain B. Note that in the original RBAC policy of

39

domain As shown in Figure 4.2(b), r2 and r3 are non-conflicting. As a result of this

induced SoD constraint, user u1 who in the domain A’s original policy is authorized to

access role r2 and r3 simultaneously, cannot access these roles in concurrent sessions in

the multi-domain environment.

Asymmetric cardinality of equivalent roles: There are various types of cardinalities

associated with a given role, for instance, role-assignment cardinality, role-activation

cardinality, per-user role-assignment cardinality, and per user role activation cardinality

[Jos03]. For simplicity of discussion, we only consider role-activation cardinality which

is defined as the maximum number of concurrent accesses of a role allowed by a given

RBAC policy. Two cross-domain equivalent roles ra and rb are said to be asymmetric in

their cardinality if they differ in their activation cardinalities. In order to establish

interoperability between two cross-domain equivalent roles that are asymmetric in their

activation cardinalities, the most restrictive cardinality constraint from the two roles is

taken and is applied to both of them. For instance, if ra has a cardinality constraint of one

and rb has a cardinality constraint of three, then the most restrictive cardinality constraint

is one and should be applied to both ra and rb if they are to be made interoperable.

Adding the most restrictive cardinality constraint may violate the autonomy of one or

more of the collaborating domains. On the other hand, retaining the original cardinalities

of interoperable roles may lead to security violation which is unacceptable. Obviously,

the third option is to disallow any cross-domain accesses via roles with asymmetric

cardinalities. This option reduces interoperation between two otherwise similar cross-

domain roles. Figure 4.6 depicts the trade-off between interoperability and autonomy in a

graphical manner. A discussion on this graph is presented in Section 4.4.

In general, composition of a global multi-domain policy that allows interoperation

among multiple domains without any violation of collaborating domains’ security and

autonomy is not a feasible task. In almost any collaborative environment, violation of any

domain’s security policy is not permissible at all. However, domains may be willing to

compromise their autonomy for the sake of establishing more interoperability. In

particular, the autonomy violations described in the context of RBAC policy integration

are less critical and can be tolerated. Nevertheless, if a domain’s RBAC policy does not

40

allow any autonomy violation of one or more of its roles, then such roles are not made

interoperable with other similar cross-domain roles that either induce SoD constraints or

have different role cardinalities.

In a multi-domain environment in which certain autonomy violations can be

tolerated, the objective of the conflict resolution phase is to maximize interoperation

according to the given optimality criterion with a minimum loss of autonomies of

collaborating domains. This goal of minimizing autonomy loss is reflected in the

objective function of the IP problem by assigning a lower weight to user-role variables

that result in autonomy violation and a relatively higher weight to user-role variables that

do not cause violation of any sort. The following example illustrates this point in more

detail.

Example 4

Consider two collaborating domains A and B with their respective RBAC policies

shown in Figure 4.2(a). The multi-domain RBAC policy that allows inter-domain

accesses between A and B is shown in Figure 4.2(b). The link from r3 to r5 and an

administrator-specified access constraint that allows role r5 to inherit permission of role

r1 make this multi-domain policy inconsistent. Note that the SoD constraint between r2

and r4 is an induced SoD constraint and limits the autonomy of user u1. The conflict in

this multi-domain policy can be resolved by either removing the edge (r3, r5) or (r5, r1). In

both cases the number of cross-domain accesses will remain the same. However,

removing (r3, r5) is preferred over (r5, r1) as it retains the autonomy of u1 over roles r2 and

r3. The IP formulation of the multi-domain policy of Figure 4.2(b) is shown in Figure 4.1.

Note that in the objective function, the variables
4 5 4 51 1 2 3, , , and r r r ru u u u are assigned a

lower weight than the remaining variables in the objective functions. These variables tend

to retain the link from r2 to r4 and from r3 to r5, which prohibits user u1 to access r2 and r3

simultaneously - a violation of domain A’s autonomy. An optimal solution to the IP

problem shown in Figure 4.1 has following values of cross-domain variables.

4 5 4 5 2 1 3 61 1 2 3 4 5 5 50, 0, 1, 0, 1, 1, 1, 1r r r r r r r ru u u u u u u u? ? ? ? ? ? ? ? .

41

Since
33 1ru ? (constraint c9 in Figure 4.1), and

53 0ru ? , the cross-domain edge (r3,r5)

needs to be dropped from the multi-domain RBAC graph of Figure 4.2(b).

4.3 Conflict Resolution Algorithm

Figure 4.3 shows an algorithm ConfRes for resolving conflicts from the RBAC graph

G representing the multi-domain policy. This algorithm first transforms the RBAC policy

constraints into IP constraints using the rules given in Section 4.1.1. Before transforming

RBAC policy constraints into IP constraints, dummy users are assigned to two classes of

roles which do not have any user assigned to them. Class one includes those roles which

do not have any senior role in the inheritance hierarchy semantics. Assignment of dummy

users to class one roles ensures that all the roles appear in the IP constraint equations,

which is essential for conflict resolution. Class two includes roles which have a non-

empty set of conflicting users. The dummy user udj assigned to a class two role r j is also

included in all the conflicting sets of users for role r j. Since udj is the only user assigned

to r j therefore 1?
jdjru (by transformation rule 2).This prohibits any user uk that conflicts

with udj for role r j to inherit the permissions of r j through a senior role rs without

activating r j. Once all the IP constraints are defined, the IP problem is solved using the

optimality criterion embedded in the objective function. Based on the solution of the IP

problem, the graph G is modified by removing the conflicting cross-domain edges and

induced SoD constraints. The resulting graph defines the multi-domain policy that

satisfies the security requirements of all collaborating domains. This is formally proved

in Chapter 5.

42

4 5 4 5 2 1 3 6

1 6 1 2 3 6

1 1 2 3 4 5 5 5

1 1 2 2 2 2

3

Maximize 2 2 2 2

Subject to
Constraints derived from rules 1, 2, 3, and 4
c1: 1, c2: 1, c3: 0, c4: 1, c5: 0, c6: 0,

c7:

r r r r r r r r

r r r r r r

r

u u u u u u u u

u u u u u u
u

- - - - - - -

? ? ? ? ? ?

1 2 3 6 4 5

4 5 5 4 1 3

6 2

3 3 3 4 4

5 5 2 3 4 4

4 5

0, c8: 0, c9: 1, c10: 0, c11: 1, c12: 0,

c13: 0,c14: 1,c15: 0, c16: 0, c17: 0, c18: 0,

c19: 0,c20: 0

Constraints derive

r r r r r

r r r r r r

r r

u u u u u
u u u u u u
u u

? ? ? ? ? ?
? ? ? ? ? ?
? ?

2 4 3 5 2 4 3 5

5 1 5 3 1 6 4 2

1 1 1 1 2 2 3 3

5 5 5 5 5 5 4 4

d from rule 5

c21: 0, c22: 0, c23: 0, c24: 0,

c25: 0, c26: 0, c27: 0, c27: 0

Constraints

r r r r r r r r

r r r r r r r r

u u u u u u u u

u u u u u u u u

/ ‡ / ‡ / ‡ / ‡

/ ‡ / ‡ / ? / ‡

3 5 3 5 2 4 2 4

5 1 5 1

4 5 4 5 4 5

3 3 1 1 2 2 1 1

5 5 3 3

4 4 5 5 1 1 2

derived from rule 6

c28: 0, c29: 0

c30: 0

Constraints derived from rule 7

c31: 1, c32: 1, c33: 1, c34:

r r r r r r r r

r r r r

r r r r r r r

u u u u u u u u

u u u u

u u u u u u u

/ / - ? / / - ?

/ / - ‡

- ~ - ~ - ~
4 5

4 5 2 5 2 5 2 5

3 4 3 4 3 4

2

2

3 3 1 1 2 2 4 4

3 3 1 1 5 5

1 1

1,

c35: 1, c36: 1, c37: 1, c38: 1,

c39: 1, c40: 1: c41: 1

Induced SoD Constraint derived from rule 8

c42:

r

r r r r r r r r

r r r r r r

r

u

u u u u u u u u

u u u u u u

u u

- ~

- ~ - ~ - ~ - ~

- ~ - ~ - ~

-
3 4 51 1 3r r ru u- - ~

Fig. 4.1 IP formulation of multi-domain RBAC policy shown in Fig. 4.2

r1

r2 r3

pa pb

r5 r4

pb pa

SoD

u1

r6 pd

u3u2

u5 u5

r1

r2 r3

pa pb

r5 r4

pb pa

SoD

u1

r6 pd

u3u2

u5 u5

SoD

SoD

SoD

A B A B
(a) (b)

Fig. 4.2 (a) RBAC policy graph of domain A and B in example 4, (b) Integrated RBAC policy defining

interoperation between domains A and B.

43

ConfRes(G)

1. Assign a dummy user udi to all roles ri for which the following hold:

a. No user is assigned to r i.

b.There does not exist any role rk for which i
I

k rr ‡ .

2. Assign a dummy user udj to all roles rj which have a non-empty set of

conflicting users.

3. For each role r j that is being assigned a user udj in step 2, set 1?
jdjru and

update the conflicting set of users by doing the following:

a. Define user-specific SoD constraint between udj and all the conflicting

users for role r j that are not assigned to r j.

b. add new conflicting set(s) of user for role r j containing the dummy user

udj and a user uk for which the following holds:

)]((),,()[(such that , jiikij
t

A
iii ruserconfuruuuserconfrrRrUu /Œ®/®‡ŒŒ&

4. Using the constraint transformation rules, write the RBAC policy constraints

in algebraic form.

5. Define the objective function.

6. Find an optimal feasible solution for the integer programming (IP) problem.

7. From the multi-domain RBAC policy graph G, remove the inter-domain

edge (r i, r j) for which there exists a user uk such that 1?
ikru and 0?

jkru in

the optimal feasible solution.

)}()(

 and 0 and 1such that |),{(

ji

krkrkji

rdomainrdomain
uuUurrGG

ji

”
??Œ&/?

8. For an edge (r i, r j) removed from G, if r j induces an SoD constraint between

r i and any role rk, then remove that induced SoD constraint from RBAC

policy graph G

9. From the graph G, remove the conflicting set of users added in step 3b.

Fig. 4.3 Conflict resolution algorithm

4.4 An illustrative example

In this section, we illustrate the proposed policy integration framework by

considering interoperation/collaboration among various offices of a county for collection

and sale of real-state tax on property parcels located within the jurisdiction of concerned

county. The concerned county offices include: County Clerk Office (CCO), County

Treasure Office (CTO), County Attorney Office (CAO), District Clerk Office (DCO), and

District Courts (DC). These offices/departments share information among each other for

budget planning, tax billing and collection, sale of delinquent taxes, auditing and other

legal purposes. Each county office keeps the information owned by it in its local

databases. Integration of these local databases is needed to provide inter-domain

44

information access capability. Such an integration not only expedite the process of tax

collection and sale by providing immediate access to timely, accurate, and complete

information, but also improves the productivity of existing staff by reducing redundant

data collection efforts among the county departments.

In order to establish interoperation among various county offices, the access control

policies of the collaborating county offices need to be integrated. Due to space limitation,

we only focus on interoperation among three county offices: CCO, CTO, and CAO.

Table 4.1 lists the roles, job description and permissions associated with each role of all

three county offices. The permission authorization in Table 4.1 defines the access rights

or permissions available to the corresponding roles on local as well as cross-domain

information objects. As mentioned in Chapter 3, an information sharing policy is needed

that explicitly specifies the access rights available to cross-domain-roles over a local

object and the conditions under which such access is granted. Table 4.2 shows the

information sharing policy of information/data objects that can be shared among the

collaborating county offices. The letters W, R, and A in the access mode columns

indicate write, read, and approve respectively. Note that in the information sharing policy

listed in Table 4.2, domains that own information objects do not indicate the actual

foreign domain roles that can inherit the permissions of their local objects. Rather the

owner domains only specify the conditions that must be fulfilled by cross-domain roles in

order to access foreign objects. Listing the prospective cross-domain roles that can access

a given object is too cumbersome and requires the knowledge of the organization

hierarchy and access control policies of other collaborating domains. Acquisition of this

knowledge may not be feasible as domains may not be willing to reveal their access

control policies to others. It is therefore the responsibility of the policy integration

mechanism to determine the roles that satisfy the condition for accessing each others

information objects and link them accordingly.

Figure 4.6 shows the integrated RBAC policy after applying the policy integration

operation, RBAC-Integrate, on the RBAC graphs shown in Figure 4.5. This integrated

policy corresponds to the output of the policy integration step of Figure 1.1. In Figure

4.6, the dotted double headed arrow between two cross domain roles indicates that these

45

roles are equivalent and can inherit the permissions of each other. For instance in Figure

4.6, role DTM10 of CTO is equivalent to R1011 . This implies that a user of CTO domain

can access the permissions of role R1011 through DTM10; similarly, a user who is

authorized for role R1011 can also inherit the permissions of role DTM10 through R1011.

Note that cross-domain roles are related by the I-hierarchy semantics only, which implies

that user u1 of CTO cannot access the permissions of role R1011 without gaining access of

role DTM10. Also, user u6 can access role DTM10 only if it has access over role R1011.

In addition to the cross-domain links produced by RBAC-integrate between

equivalent roles, Figure 4.6 also defines access constraints specified by the global

security administrator(s). These administrator specified access constraints are depicted as

dash-dotted arrows. In Figure 4.6, administrator-specified access constraints include the

following edges: (TA, TAO), (PIO, TRA), (LSO, DTA), (DTLO, DTC), (TAC, DTA),

(DTA, ACAT), (ACAT, TAC), and (DTM, ACAT). An administrator specified access

constraint edge (ra, rb) implies that role ra inherits the permissions of the cross-domain

role rb. Similar to the cross-domain link between equivalent roles, roles ra and rb in the

administrator-specified constraint edge (ra, rb) are related according to the I-hierarchy

semantics.

The multi-domain policy shown in Figure 4.6 is conflicting and does not satisfy the

security requirement of the collaborating county offices. For instance, the administrator

specified access constraint edge (TA, TAO) conflicts with (PIO, TRA). If both of them

are retained then a violation of SoD constraint between TRE and TRA occurs, enabling

user u2 to access role TRE and TRA simultaneously. Similarly, the cross-domain edge

(LSO, DTA) conflicts with (DTLO, DTC) and (R1011, DTM10). These cross-domain

access constraints allow user u6 to access roles DTA and DTM10 in concurrent sessions,

which is again a violation of SoD constraint defined between roles DTA and DTM10.

Note that in the original RBAC policy of CTO, a SoD constraint is defined between DTA

and DTM (see Figure 4.5). Since DTM splits into roles DTM10 and DTM12, therefore

these roles also conflict with DTA. The administrator specified access constraint edge

(DTA, ACAT) and the link (PLAT9, DTM) allows u4 to access the role DTM which is a

violation of role-assignment constraint as user u4 is assigned role DTA which is junior to

46

role DTM. The cross-domain edges (DTM, ACAT), (ACAT, TAC), and (TAC, DTA)

results in a violation of the SoD constraint defined between roles DTM and DTA. These

cross-domain edges enable u1 to access DTM and DTA simultaneously.

Conflicts in the multi-domain policy shown in Figure 4.6 are resolved by applying

the conflict resolution algorithm ConfRes. ConfRes first transforms the RBAC policy

constraints into IP constraints. This IP constraint transformation process produces almost

1500 constraints for the multi-domain RBAC policy of Figure 4.6. The resulting IP

problem is solved with the objective of maximizing all cross-domain accesses. The

solution thus obtained removes the following edges from the multi-domain policy graph

of Figure 4.6: (DTM, ACAT), (TAC, DTA), (DTA, ACAT), (PIO, TRA), and (LSO,

DTA). A maximum of 102 cross-domain accesses are obtained if the above edges are

removed. Note that in this case, all the cross-domain accesses are assigned equal weight

in the objective function. If some cross-domain accesses are more important than others

then such accesses can be prioritized by assigning them a higher weight in the objective

function. This will increase the likelihood of retaining high priority accesses in the multi-

domain policy. However the total number of accesses cannot exceed the maximum value

obtained by assigning uniform weights to all cross-domain accesses.

Figure 4.7(a-b) shows the trade-off between interoperability and autonomy for the

domains CTO and CCO respectively. The role cardinalities and user assignment used in

the measurement of interoperability and autonomy parameters are given in Table 4.3. A

role with a cardinality of n implies that no more than n users can access that role

concurrently. For this study/analysis, interoperability of a domain is defined as a measure

of the number of cross-domain accesses to that domain. Autonomy of a domain at any

given interoperability level is determined by the autonomy loss (AL) metric defined as:

Total number of local accesses Total number of local accesses

with no cross-domain accesses with cross-domain accesses
()

Total number of local accesses

with no cross-domain accesses

N
AL N

Ã Ô Ã Ô
/Ä Õ Ä Õ

Å Ö Å Ö?
Ã

Å

Ô
Ä Õ

Ö

47

In the interoperability versus autonomy loss graph, depicted in Figure 4.7,

interoperability of a domain X is varied by selecting different sets of cross-domain edges

from the set of edges EX. The set EX is given by:

{(,) | (,) ((,))

 (is a secure multi-domain graph obtained after applying ConfRes algorithm)}

X a b a b a bE r r r X r X r r G

G

? º Œ ® Œ ®

The graph shown in Figures 4.7 contains two curves defining the upper bound and

lower bound for the autonomy losses at various interoperability levels. At any given

interoperability level, there can be multiple values of autonomy losses corresponding to

different selection of cross-domain edges from the set EX. However, all the autonomy

loss values are confined to the region bounded by the upper bound and lower bound

curves shown in Figure 4.7. The output of the conflict resolution algorithm gives a set of

secure edges that maximizes interoperability. However, the maximal interoperability

point may result in a greater loss of autonomy. For instance in Figure 4.7(b), a maximum

interoperability level of 43 results in an autonomy loss of 53%. This can be reduced to

29% by selecting a different operating point with an interoperability value of 36. In order

to minimize autonomy losses, one should always select an operating point that lies on or

close to the lower bound curve. However, this may result in compromising some of the

prioritized cross-domain accesses due to the removal of the prioritized cross-domain

links.

The drastic variations in autonomy losses with a very small or no change in

interoperability level is due to the different selection of cross-domain edges/links. For

instance, on the lower bound curve of Figure 4.7(a) when the interoperability level

increases from 30 to 31, the autonomy loss increases from 17% to 33%. To explain this

drastic variation, we refer to the points (30, 17%) as A and (31, 33%) as B, and the

corresponding set of cross domain edges at these operating points as ACTO and BCTO

respectively. The difference in this autonomy loss is due to the inclusion of the cross-

domain edge (R1011, DTM10) in BCTO. As a result, user u30, u32, u36, and u37 from domain

CCO can now access the cross-domain role DTM10 which has a cardinality of four.

Please refer to Table 4.3 for user assignments and role cardinalities. As a result of these

cross-domain accesses, none of the users from domain CTO can access the role DTM10

48

and all the roles senior to DTM10 in the I-hierarchy semantics. This increases the

autonomy loss of CTO domain from 17% to 33% at point B.

In the above case, autonomy loss is due to the addition of a cross-domain edge.

Addition of a cross-domain edge may also reduce autonomy loss. For instance, consider

the points C(39,38%) and D(39,33%) in Figure 4.7(a). The set of cross-domain edges

corresponding to points C and D are denoted by CCTO and DCTO respectively. The set

DCTO contains the cross-domain edge (DTLO, DTC) which is not present in the set CCTO.

The role DTLO has a cardinality of five and DTC has a cardinality of four. Linking

(DTLO, DTC) reduces the effective cardinality of DTLO by four, implying that only four

users can access the role DTLO and the roles that can be reached through DTLO only.

The set of users from domain CCO, that can access DTLO includes users u30, u32, u36, u37,

and u39. For maximum interoperability at point D, user u39 cannot access DTLO implying

u39 cannot activate the cross-domain role R1 which has a cardinality of eleven. There are

seven users from the domain CTO that are allowed to access R1. Since only four cross-

domain users are allowed to access R1, therefore none of the local accesses to R1 is

blocked. However, when cross-domain link (DTLO, DTC) is removed, the cardinality of

DTLO is restored to five, which allows u39 to access the role DTLO. User u39 can access

role R1 through the role DTLO00 which is junior to DTLO in the I-hierarchy semantics.

This increases the number of cross-domain accesses to role R1 by 5, implying that one

local access to role R1 needs to be blocked. This blocked local access propagates upward

in the role hierarchy of domain CTO thus increasing the autonomy loss from 33% to

38%.

49

Table 4.1 Description of roles involved in collaboration among county offices

Role Domain Job Description Permission Authorization
Treasurer CTO Supervises all operations of treasurer

office

Inherits all permissions of TCM,

TRM, and DTM

Tax Assessor (TA) CTO Assess/prepare tax bills P6, P9, P10, P11

Tax Bill Approver (TBA) CTO Reassess & approve of tax bils P6, P9, P10, P11, P12

Tax Collector (TC) CTO Tax collection & tax sale, record

keeping of tax bidders

P11, P13, P14, P31, P32

Tax Collection Manager

(TCM)

CTO supervises TA, TBA, and TC Inherits all authorized permissions of

TA, TB, and TC

Tax Refund Assessor (TRA) CTO Assess tax refunds, prepare tax refund

orders

P6, P9, P11, P17, P18

Tax Refund Examiner (TRE) CTO Reassess/approve refund orders P6, P9, P11, P18, P19

Tax Refund Clerk (TRC) CTO Prepare refund vouchers P42, P43

Tax Refund Manager (TRM) CTO Approve refund vouchers P42, P43, P44

Delinquent Tax Clerk (DTC) CTO Keep record of delinquent taxes P11, P14, P20, P21

Delinquent Tax Assessor

(DTA)

CTO Assess delinquent tax records P11, P14, P20, P21,P22

Delinquent Tax Manager

(DTM)

CTO Approve delinquent taxes for

sale/resale (supervises DTC & DTA)

Inherit permissions of DTC & DTA,

P24P26P27 ,P29, P31, P32, P34, P36

County Clerk CCO Supervises all operations of clerk

office

Inherits all permissions of PTAM &

PDTM

Property Value Assessment

Officer (PVAO)

CCO Property value assessment P1, P2, P4

Tax Assessment Clerk (TAC) CCO Determine property tax rates P2, P4, P5, P6, P9

Tax Assessment Officer

(TAO)

CCO Reassess/approve tax rates P2, P4, P6, P7, P9

Property Tax Assessment

Manager (PTAM)

CCO Supervise TAC & TAO Inherits permissions of TAC & TAO

Property Indexing Officer

(PIO)

CCO Property indexing P2, P3, P4

Delinquent Taxes & Lien

Officer (DTLO)

CCO Record keeping of delinquent taxes

and other tax liens

P2, P4, P11, P14, P21, P24, P27

Lien Sale Officer (LSO) CCO Sale of delinquent taxes, keep record

of tax buyers

Inherit permissions of DTLO, P28, P29,

P30, P31, P32, P34, P36

Redemption Cost Assessor

(RCA)

CCO Prepare redemption cost estimates for

delinquent taxes

Inherit permissions of DTLO, P29, P31,

P34, P35, P36

Property Delinquent Tax

Manager (PDTM)

CCO Reassess/approve tax redemption cost

estimates (supervises LSO & RCA)

Inherit permissions of RCA & LSO,

P33, P37

County Attorney CAO Heads county attorney department Permissions of all junior roles

Deputy County Attorney Tax

Section (DCAT)

CAO Assess/approve tax sale plea Inherits permissions of ACAT, P45

Asst. County Attorney Tax

Section (ACAT)

CAO Prepare tax sale pleas for delinquent

taxes and other liens/ Supervise tax

sales

Inherits permissions of PLAT, P25

Para Legal tax Section

(PLAT)

CAO Keep records of information obtained

from CCO & CTO for tax related

affairs, assists attorneys in preparing

tax sale pleas

P2, P4, P6, P9, P11, P14, P16, P21, P24, P26,

P27, P29, P31, P32, P34,P36

50

Table 4.2 Information sharing policy of collaborating domains

Information/data

Object

Owner

domain

Foreign

domain

Access

Mode

available

to owner

domain

Access

mode

available

to foreign

domain

Purpose of access of

foreign domain

Condition for cross-domain access

Property value record

(O
1
)

CCO CTO,

CAO

W:P1, R:P2 R:P2 Property value & tax rate

assessment

Access available to subjects dealing

with property tax assessment and

billing

Property ownership

and location record

(O
2
)

CCO CTO,

CAO

W:P3, R:P4 R:P4 Tax billing, notification Access available to subjects dealing

with tax billing and tax auditing

Tax rate record (O
3
) CCO CTO,

CAO

W:P5, R:P6,

A:P7

R:P6 Tax billing Access available to subjects dealing

with tax billing and tax auditing

Tax exemption record

(O
4
)

CCO CTO,

CAO

W:P8, R:P9 R:P9 Tax adjustment, billing Access available to subjects dealing

with tax billing, adjustments, refunds

and tax auditing

Tax Bill (O
5
) CTO CCO,

CAO

W:P10,

R:P11,

A:P12

W:P10,

R:P11

Auditing, tax

readjustment, imposing

penalties and fines for

non payment or late

payment of taxes,

checking payment record

of tax payers for other

purposes

Access available to subjects dealing

with tax billing, adjustments, refunds,

tax auditing and delinquent taxes and

redemption

Tax Payment record

(O
6
)

CTO CCO,

CAO

W:P13,

R:P14

W:P13,

R:P14

Auditing, receive

payment in certain cases

(delinquent taxes,

tax/lien sale)

Access available to subjects dealing

with tax billing, adjustments, refunds,

tax auditing and delinquent taxes and

redemption

Refund order (O
8
) CTO CCO W:P17,

R:P18,

A:P19

W:P17,

R:P18

Refunds for unsuccessful

tax bidders

Access available to subjects dealing

with tax refunds and tax sale refunds

Delinquent tax record

(O9)

CTO CCO,

CAO

W:P20,

R:P21,

A:P22

W:P20,

R:P21

Preparing tax sale plea,

redemption cost

estimates, tax sale,

auditing

Access available to subjects dealing

with delinquent taxes, tax sale, tax

redemption, and tax auditing

Tax Liens (O10)

DCO CCO,

CTO,

CAO

R:P24 Preparing tax sale plea,

redemption cost

estimates, tax sale,

auditing

Access available to subjects dealing

with delinquent taxes, tax sale, tax

redemption (write), and tax auditing

Tax Sale Plea (O11)

CAO CCO,

CTO

W:P25,

R:P26,

A:P45

R:P26 Record keeping,

identifying pending tax

sales awaiting court

orders, auditing

Access available to subjects dealing

with delinquent taxes, tax sale, tax

redemption, and tax auditing

Tax Sale Judgement

Order (O12)

DCO CCO,

CTO,

CAO

R:P27 Record Keeping, tax sale

and redemption, auditing

Access available to subjects dealing

with delinquent taxes, tax sale, tax

redemption, and tax auditing

Tax Sale Record (O13) CTO CCO,

CAO

W:P28,

R:P29

W:P28,

R:P29

Record Keeping, tax sale

and redemption, tax

refunds

Access available to subjects dealing

with delinquent taxes, tax sale, tax

redemption (write), and tax auditing

Tax Buyer Record

(O14)

CTO CCO,

CAO

W:P30,

R:P31

R:P30 Record Keeping, tax

redemption, tax refunds,

auditing

Access available to subjects dealing

with delinquent taxes, tax sale, tax

redemption and refunds, and auditing

Tax Redemption

Record (O15)

CTO CCO,

CAO

W:P33,

R:P34

W:P33,

R:P34

Record Keeping, tax

redemption and refunds,

auditing

Access available to subjects dealing

with delinquent taxes, tax sale,

redemption (Write) and refunds, and

tax auditing

Redemption Cost

record (O17)

CCO CTO,

CAO

W:P35,

R:P36,

A:P37

W:P35,

R:P36

Redemption of

delinquent taxes,

refunds, auditing

Access available to subjects dealing

with delinquent tax redemption

(Write) and refunds, and tax auditing

51

Table 4.3 Cardinality and user assignment of roles used in autonomy loss measurement of Fig. 4.5

Role Cardinality User

assigned

Role Cardinality User

assigned

Role Cardinality User

assigned

Treasurer 1 u1 R2 11 R7 12

TCM 2 u2 R1 11 TAC 4 U33

TRM 2 u3 R402 7 TAO 4 U34

DTM 2 u4 R205 11 PVAO 4 U35

TA 3 u5 R207 11 PIO 8 U38

TBA 3 u6 DTM10 4 R9 11

TC 3 u7 DTM12 5 DTLO00 11

TRE 4 u8 CC 1 u30 DTLO01 11

TRA 4 u9 PTAM 2 u31 R1003 7

DTA 4 u10 PDTM 2 u32 LSO04 7

DTC 4 u11 LSO 5 u36 R806 11

TRC 8 u12 RCA 5 u37 R908 11

R6 11 DTLO 6 u39 DTLO09 11

R5 11 R10 9 DTLO13 5

R4 7 R8 9 R1011 4

County Clerk

PTAM

P3

TAC TAO PVAO

PIO

P2, P4R7

P6

R8

P9

R9

P5 P7 P1

PDTM

LSO

DTLO

RCA

P11, P14, P21, P24, P27

P28, P30, P32

R10 P29, P31, P34, P36

P35

P33, P37

SoD

u6

u7

u7

Treasurer

TCM TRM DTM

TA
TBA TC

TRE TRA

TRC

DTA DTC

R1

P11

R2

P6, P9
R3

P18

P19

P17

P10 P12

R4

P31, P32

R5

P14

P13

P42, P43

P44

R6

P21

P20 P22

P24, P26, P27,

P29, P34, P36SoD

SoD

SoD

u1

u2

u3

u4 u4

County

Attorney

DCAT

ACAT

PLAT

P2, P4, P6, P9, P11, P14,

P16, P21, P24, P26, P27, P29,

P31, P32, P34, P36

P25

P45

u9

u10

(a)

(b)

(c)CTO

CCO

CAO

S
o
D

Fig. 4.4 RBAC policy graphs of collaborating county offices

52

Treasurer

TCM TRM DTM

TA
TBA TC

TRE TRA

TRC

DTA DTC

R1

P11

R2

R3

P18

P19

P17

P10 P12

R4

P32

R5

P14

P13

P42, P43

P44

R6

P21

P20 P22

P26

SoD

SoD

SoD

R402

P31

DTM12

P24, P27

DTM10

P29, P34

P36

R207

R205

P9

P6

County Clerk

PTAM

P3

TAC TAO PVAO

PIO

P2, P4R7

R8

R9

P5

P7 P1

PDTM

LSO

DTLO

RCA

P28, P30

R10

P29, P34, P36

P35

P33, P37

SoD

LSO04

P32

DTLO01 P14

DTLO00 P11

DTLO09 P21

DTLO13 P27, P24

R806

P6

R908P9

R1011

P31R1003

S
oD

So
D SoD

u1

u2 u3

u4

u5

u6

u7

u8

(TA,TAO) conflicts

with (PIO,TRA)

(PIO,TRA) conflicts

with (TA,TAO)

(LSO,DTA) conflicts

with (DTLO,DTC) & (R1011,DTM10)

(DTLO,DTC) conflicts

with (LSO,DTA)

(R1011,DTM10) conflicts

with (LSO,DTA)

CA

DCAT

ACAT

PLAT

P25

P45

P16

PLAT9 P26

PLAT3 PLAT7
PLAT8P32 P24,P27

P29,P34,P36

PLAT2P14

PLAT0 P31

PLAT1P11

PLAT6

P21

PLAT10

P2,P4

PLAT5

P9

PLAT4P6

u10

u11

CTO

CCO

CAO

Fig. 4.5 Integrated RBAC policy governing collaboration among the county offices

53

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 5 10 15 20 25 30 35 40

Interoperability (cross-domain accesses to CTO)

%
ag

e
A

ut
o.

 lo
ss

 o
f C

T
O

Upper Bound

Low er Bound

C(39,38%)

D(39,33%)A(31,33%)

B(30,17%)

0%

10%

20%

30%

40%

50%

60%

0 10 20 30 40 50

Interoperability (cross-domain accesses to CCO)

%
ag

e
A

ut
o

lo
ss

 o
f C

C
O

Upper Bound

Low er Bound

(a)

(b)

Fig. 4.6 Interoperability versus autonomy loss

54

4.5 Verification of Multi-domain policy

In this section, we formally analyze the proposed policy integration mechanism in the

context of security constraints of collaborating domains. As mentioned in chapter 24,

interoperation may results in three types of security constraint violations, including: role-

assignment constraint, role-specific SoD constraint, and user-specific SoD constraint.

However, the multi-domain policy produced by the proposed policy integration

mechanism satisfies all the security constraints of all collaborating domains. Before

proving the afore-mentioned claim, we first introduce some notations and definitions that

help in defining security constraints in a formal manner.

Adjacency matrix: An adjacency matrix Ak represents the user-role graph of domain k.

Ak defines role hierarchy and user to role assignment for domain k.

||R||U|| ||R||U||)dim(kkkkkA -·-? , where Uk is the set of user and Rk is the set of roles

of domain k.

Closure matrix: A closure matrix Ak
+
 is the transitive closure of the adjacency matrix

Ak.)dim()dim(kk AA ?-
.

Projection operator: A projection operator rur takes an adjacency or closure matrix as

input and returns a matrix with users along the rows and roles along the

column. :{ , } U xRur k k k kA Ar - › , Projection of a closure matrix Ak
+
 defines all possible

user to role accesses in domain k.

Ì
Ë
Ê?Œ -

otherwise ,1

 access toauthorizednot is if ,0
),A(any for ji

ijkurij
ru

aa r

Note that aij=1 does not imply that ui is allowed to access role r j. An SoD or cardinality

constraint may prevent ui from accessing r j even though aij=1 in the projected closure

matrix.

State matrix: A state matrix S is a matrix of dimension |U| x |R| (k

k

U= UI , k

k

R= RI)

and it describes the user to roles accesses in the multi-domain environment. Note that the

state matrix captures both intra-domain and inter-domain role accesses.

Ì
Ë
Ê?Œ

otherwise ,0

userby accessed being is role ,1
,Sany for ij

ijij

 ur
ss

55

State projection operator: There are two types of projection operator defined on state

matrix, namely: per domain user-role projector (rur_k) and per domain role projector

(rr_k).

The operator rur_k takes any state matrix as input and projects the elements

corresponding to the users and roles of domain k. It is defined as: kkkur RUS:_ ·›r ,

where Uk Ø U and Rk Ø R.

The operator rr_k takes any state matrix as input and projects the elements

corresponding to the roles of domain k. It is defined as: kkur RUS:_ ·›r .

R-SoD matrix: A R-SoD matrix, R
k
SoD, is a M · N matrix that defines role-specific SoD

constraints of domain k. M is the number of roles in domain k (M = |Rk|) and N is the

number of role-specific SoD constraints defined in domain k. Note that a given domain

can have multiple conflicting role sets Rcon. Each column in the R-SoD matrix

corresponds to one of the conflicting role sets Rcon. Let np
 be the pth

 column of R
k
SoD, and

Rcon_p be the corresponding conflicting role set, then for each r j Œ Rk.

_1, if
()

0, otherwise

p j con pr R
jn

ŒÊ
? Ë
Ì

U-SoD matrix: A U-SoD matrix, U
k
SoD_r, is a M · N matrix that defines user-specific

SoD constraints for a role r Œ Rk. M is the number user-specific SoD constraints defined

for the role r . N is the total number of users (N = |U|). Note that any role, r, in a given

domain can have multiple sets of conflicting users (or). The set Ur_con denotes the union

of all the conflicting user sets of role r, i.e., _

1
r

M
i

r con
i

U o
?

?I , where
r

io is the i th
 conflicting

user set of role r. Each row in the U-SoD matrix corresponds to one of the conflicting

user sets or. Let tq
 be the qth

 row of U
k
SoD_r and or

q
be the corresponding conflicting user

set for role r Œ Rk, then for each ui Œ U,

1, if
()

0, otherwise

q
q r
r

u
j

o
t

Ê Œ
? Ë
Ì

.

Definition 4.1: A state S is secure with respect to the role-assignment constraints of

domain k, if:

56

_(1) (1), where () and ij ij ij ur k ij ks a s S a Ar -? µ ? Œ Œ . Alternatively, state S is secure if

there does not exist any user ui Œ Uk who accesses a role r j Œ Rk in state S (sij = 1) and no

intra-domain access path exists from ui to r j. Formally:

_ 1

1 1 2 1 2

1

1 2 (1)

for any (S), 1 ,..., R such that

() (...) (...)
 (,)

(.. ...)

ij ur k ij j jn k

j j j j j n j j j j n j
I I I A A A

i j
j j jk j k jn j

A A I I I

s s r r

r r r r r r r r r r
u assign u r

r r r r r r

r

-

Œ ? µ & Œ

? ° ‡ ‡ ‡ ° ‡ ‡ ‡ °Ç ×
È Ù/ ®

‡ ‡ ‡ ‡ ‡È ÙÉ Ú

 (A)

Proposition 4.2: A state S is secure with respect to the role-assignment constraints

of domain k if and only if:

_

_

(S) (A)

i.e., (S), , where (A)

ur k ur k

ij ur k ij ij ij ur ks s a a

r r

r r

-

-

~

$ Œ ~ Œ

Proof: µ In the transitive closure matrix Ak
+
 of domain k, for a user ui and role r j, aij

= 1 if and only if there is an intra-domain access path for ui to r j. Formally:

1

1 1 2 1 2

1

1 2 (1)

for any a (A), 1 ,..., R such that

() (...) (...)
 (,)

(.. ...)

ij ur k ij j jn k

j j j j j n j j j j n j
I I I A A A

i j
j j jk j k jn j

A A I I I

a r r

r r r r r r r r r r
u assign u r

r r r r r r

r -

-

Œ ? ± & Œ

? ° ‡ ‡ ‡ ° ‡ ‡ ‡ °Ç ×
È Ù/ ®

‡ ‡ ‡ ‡ ‡È ÙÉ Ú

 (B)

(A) and (B) imply that _ (S) (A)ur k ur kr r -~ .

²If _for all (S), , where (A)ij ur k ij ij ij ur ks s a ar r -Œ ~ Œ , then condition (A) is satisfied

and by Definition 4.1, S is secure with respect to the role-assignment constraints of

domain k. ﾐ

Definition 4.3: A state S is secure with respect to the role-specific SoD constraints of

domain k, if no user ui Œ U exists who accesses two or more roles in the conflicting role

set 1{ ,..., | (,), where 1 , and }con n i jR r r conf role r r i j n i j? / ~ ~ ” . Formally:

for all U, 1
j con

i i j
r R

u s
Œ

Œ ~Â (C)

R-SoD matrix: A R-SoD matrix, R
k
SoD, is a M · N matrix that defines role-specific

SoD constraints of domain k. M is the number of roles in domain k (M = |Rk|) and N is the

number of role-specific SoD constraints defined in domain k. Note that a given domain

57

can have multiple conflicting role sets Rcon. Each column in the R-SoD matrix

corresponds to one of the conflicting role sets Rcon. Let np
 be the pth

 column of R
k
SoD, and

Rcon_p be the corresponding conflicting role set, then for each r j Œ Rk.

_1, if
()

0, otherwise

p j con pr R
jn

ŒÊ
? Ë
Ì

Proposition 4.4: A state S is secure with respect to the role-specific SoD constraints

of domain k if and only if:

_ _(S)r k SoD k kRr · ~ S (D)

Where, Sk is a matrix of dimension |U| · |Rk| with all elements equal to one.

Proof: µ immediate from Definition 4.3 when applied to all conflicting role sets

Rcon of domain k.

² Any user u Œ U in state S accesses at most one role from all the conflicting role

sets of domain k. Hence, by Definition 4.3, S is secure. ﾐ

Definition 4.5: A state S is secure with respect to the user-specific SoD constraints

of domain k, if for each role r Œ Rk which have a non-empty set (Ur_con) of conflicting

user sets, at most one user from each of the conflicting user sets (or Œ Ur_con) accesses

role r in sate S. Formally:

_R U , 1
j

i

j k r con ij
u

r s
o

o
Œ

Ã Ô
$ Œ $ Œ ~Ä Õ

Å Ö
Â (E)

U-SoD matrix: A U-SoD matrix, U
k
SoD_r, is a M · N matrix that defines user-specific

SoD constraints for a role r Œ Rk. M is the number user-specific SoD constraints defined

for the role r . N is the total number of users (N = |U|). Note that any role, r, in a given

domain can have multiple sets of conflicting users (or). The set Ur_con denotes the union

of all the conflicting user sets of role r, i.e., _

1
r

M
i

r con
i

U o
?

?I , where
r

io is the i th
 conflicting

user set of role r. Each row in the U-SoD matrix corresponds to one of the conflicting

user sets or. Let tq
 be the qth

 row of U
k
SoD_r and or

q
be the corresponding conflicting user

set for role r Œ Rk, then for each ui Œ U,

58

1, if
()

0, otherwise

q
q r
r

u
j

o
t

Ê Œ
? Ë
Ì

.

Proposition 4.6: A state S is secure with respect to the user-specific SoD constraints

of domain k, if and only if for all roles r j Œ Rk which have a non-empty set of conflicting

user sets _()
jr conU , the following condition holds:

_ j j

k
SoD r j rU s s· ~ (F)

Where, sj is the jth
column of the state matrix S and

jrs is a vector with all elements

equal to one. The length of
jrs is equal to the number of user-specific SoD constraints

defined for role r j.

Proof: µ immediate from Definition 4.5.

² For all roles r j with at least one conflicting set of users, _ j j

k
SoD r j rU s s· ~ implies

that at most one user from each of the conflicting set of users for role r j accesses role r j in

state S. Hence, by definition 6.5, S is secure with respect to the user-specific SoD

constraints of domain k. ﾐ

Having described the formal specification and conditions for the satisfaction of security

constraints, we now provide a formal proof that the multi-domain policy generated by the

policy integration mechanism, satisfies the security requirements of all collaborating

domains.

Theorem 4.7: Let K1, …..,Kn, n ‡ 2, be collaborating domains such that the security

policy of each Ki be consistent. Let G be the multi-domain RBAC graph obtained from

K1, …..,Kn by applying the conflict resolution algorithm ConfRes. Any state S reachable

from G is secure with respect to the role-assignment, role-specific SoD, and user-specific

SoD constraints of all collaborating domains.

 Proof of Theorem 4.7 is given in Appendix

59

5 CONCLUSION

5.1 Summary of Current Work

Our current research focuses on the problem of integrating the access control policies

of heterogeneous and autonomous domains to allow inter-domain information and

resource sharing in a secure manner. The policy integration mechanism, discussed in this

proposal, is a two step process including composition of a global multi-domain policy

from the access control policies of collaborating domains and removing conflicts from

the global policy in an optimal manner without compromising the security of constituent

domains. Another key requirement of policy integration is to maintain the autonomy of

all collaborating domains. There is a trade-off between seeking interoperability and

preserving autonomy. Violation of a collaborating domain’s security policy in general is

not permissible. However, some domains may tolerate a compromise in their autonomy

for establishing more interoperability. We have formulated the problem of secure

interoperation as an optimization problem with an objective of maximizing

interoperability with minimum autonomy losses and without causing any security

violation of collaborating domains. The multi-domain policy obtained from the proposed

policy integration framework is conflict-free and satisfies the security requirements of the

collaborating domains. However, the resulting policy may not yield the desired autonomy

level. Various heuristics can be used to obtain a sub-optimal solution from the given

optimal solution to attain the desired autonomy level. One such heuristic is to try all

possible combinations of cross-domain links obtained from the optimal solution and then

selecting a solution which meets the desired autonomy loss with maximum

interoperability. The multi-domain policy produced by this heuristic is also secure and

conflict free.

60

5.2 Future Work

Following are four research problems related to policy management that we intend to

address during the course of this research.

1. Verification of RBAC policy specification using state-space analysis techniques.

2. Reconfiguration of interoperation policy because of changes in domains’ access

control policies.

3. Evaluation of domains’ autonomy in the collaborative environment.

4. Semantic partitioning of a single access control policy into multiple independent

and autonomous policies. Partitioning of a policy is required when an

organization or a business alliance breaks up into multiple organizations or

alliances

A description of these problems and a possible strategy is given below.

5.2.1 Verification of RBAC policy specification

The consistency of the multi-domain policy generated by the proposed policy

integration framework depends on the consistency of the access control policies of the

collaborating domains. If the access control policy of any one of the collaborating domain

is conflicting then the resulting multi-domain policy will be inconsistent. Therefore, the

access control policies of domains need to be verified before interoperation is established.

The verification of security policies of individual domains must precede the policy

integration step.

Security policy verification in general is an undecidable problem [Har76]. However,

much work has been done to determine reasonable models and limitations under which

safety is decidable and tractable [Amm91, Amm92, Amm94, Sny97, Jae01 Koc02].

Verification of a domain’s access control policy entails various challenges, including: i)

specifying policy using a formal model, ii) identifying the safety requirements, and iii)

determining if a given policy yields unauthorized accesses. The policy specification

model should be generic and flexible enough to express a wide range of security and

access control policies. Generally the safety requirements are specified in the form of

security constraints. The security constraints can be a part of the policy specification

61

model or can be expressed separately. In both cases the positive authorizations implied by

the model and the negative authorizations defined by the constraints may conflict,

making the policy inconsistent.

 In some application domains, it may not be possible to transform all the safety

requirements into formal constraints which can derive the underlying access control

policy specification. For instance, in state-event based applications with huge state space,

it may not be possible to define security constraints on all the states that may lead to

insecure or unsafe states. In this case state space partitioning [Jae03] can be used to check

the consistency of an access control policy. Accordingly, the entire state space can be

partitioned into the following two state spaces: prohibited space consisting of

authorizations precluded in the safety policy specification; and specified space consists of

authorizations/permissions implied by the access control policy under current

configuration. However, finding the prohibited space and specified space is not an easy

task. In order to explore state spaces a state generating machine is needed that can be

driven by the underlying policies under any arbitrary configuration. Petri-nets and its

variants have been widely used as a specification and modeling tool for most event driven

applications, including: multi-media documents, workflow applications, and business

transaction procession systems [Lit93, Atl97, Atl98]. The structural properties of Petri-

nets together with the use of predicates can be used to model a wide range of constraints

in access control, including: hierarchy, SoD, and cardinality constraints. Moreover, the

state-event semantics of the Petri-nets can be exploited to capture the event-based

constraints of access control policies that cannot be modeled by simple graph-based

models. In our earlier work on interoperation in a multi-domain environment, we

concentrated on the role assignment, SoD and cardinality constraints and did not

extensively address the event-based constraints. To some extent the activation hierarchy

captures the event based semantics of RBAC, however, it does not fully characterize the

wide range of dynamic constraints needed in trigger based systems such as active

databases and workflow systems. We plan to combine the event-based approach taken in

GTRBAC [Jos03] with the Petri-net based model to develop a framework for modeling

and analysis of non-temporal RBAC policies. This will allow us to perform state-based

62

analysis for policy verification and also facilitate in developing an event-based execution

model of an RBAC system in order to ensure safety. Furthermore, several formal tools

and techniques are available for Petri-nets that can be used to carry out relevant analysis

for correctness verification.

 Deciding the correctness of an access control policy is one aspect of the

verification problem. In some cases, it may not be possible completely eliminate conflicts

from a given policy. Therefore, some conflict resolution strategy is needed to resolve

conflicting authorizations from a given policy. Policy conflicts can be broadly classified

into two classes: i) conflicts that are independent of the system state or configuration and

can be captured in the policy specification, ii) conflicts that depend on the state or

configuration of the system. State independent conflicts can be identified using offline

analysis techniques and can be removed by modifying the policy specification. There

may be several policy readjustment options available to resolve a given conflict, and each

option may yield a different set of constraints and accesses. However, one would desire

an option that resolves the conflicts in an optimal manner. There can be several

optimality measures such as maximizing accessibility, minimizing new constraint

additions, and maximizing active constraint set. We believe that the Integer Programming

based approach discussed in the context of policy integration can be used to resolve state-

independent conflicts present in a domain’s security policy in an optimal manner.

However, the underlying treatment of constraints would be different. In the multi-domain

policy integration problem, the security of collaborating domains is given utmost

importance in establishing interoperation. However, in a single domain, policy conflicts

are caused by the security constraints. Conflict resolution in this case involves dropping

some security constraints. Question is how much compromise in security is acceptable?

We believe that the policy designing framework must have the capability to infer relative

importance of the security constraints specified in the given policy. In the context of

RBAC, such inference can be made by analyzing the role attributes, permissions

assignment, and credentials of users assigned to the roles. The policy designers can also

provide their input by prioritizing different security constraints.

63

For the state dependent conflicts, several dynamic conflict resolution policies can be

defined depending on the domain [Ber03, Fer00]. Examples of dynamic conflict

resolution policies are denials take precedence, most specific authorization take

precedence, and permission takes precedence. Note that dynamic conflict resolution does

not make the underlying security policy consistent. It only provides an exceptional

handling mechanism, which may also lead to an inconsistent state. This again motivates

for the state-space based policy verification approach discussed above.

5.2.2 Policy Evolution

 In a multi-domain collaborative environment, the local access control policy of

the collaborating domains may evolve with time. The security policy of the multi-domain

system itself may change. System administer(s) responsible for the global interoperation

policy may define new rules or constraints for cross-domain accesses. Consequently, the

interoperation policy needs to be redefined to incorporate the new security and access

control requirements. Defining a new interoperation policy by reintegrating the access

control policies is a time consuming process and may not be viable in environments

where domain policies change frequently. Therefore, a policy adjustment mechanism is

needed that upon sensing any policy changes, reconfigures the existing interoperation

policy in a timely manner. The readjusted policy may not yield an optimal level of

interoperation, but it must preserve the security and autonomy of collaborating domains.

5.2.3 Autonomy and interoperability trade-off

 We plan to investigate the relationship between interoperability and autonomy in

a distributed collaborative environment. The autonomy and interoperability trade-off

discussed in Chapter 4 of this proposal, is based on the worst-case analysis in which it is

assumed that a user by assuming a local roles also acquires the permissions of related

cross-domain roles. This is a very conservative assumption and may unnecessarily restrict

interoperability because of the possibility of autonomy losses. Moreover, in presence of

temporal and event-based constraints, assumption of a local role may not enable

acquisition of cross-domain permissions all the time. The event-based constraints may

64

even restrict the time during which the local roles can be acquired. This motivates for

reassessing the affect of interoperability on domains’ autonomy and vice versa. We

believe that stochastic estimates will help in determining the access patterns of users for

both cross-domain and local accesses. This probabilistic analysis can then be used in

determining the autonomy losses at a given interoperability level.

5.2.4 Policy partitioning for enterprise splitting

 Our major focus until now has been on the integration of access control policies

for facilitating interoperation and business collaboration. However, in a ever-changing

business world, collaborations and business alliances keep evolving, big companies get

split, merge and sometimes displaced by entirely new companies. Splitting of companies

is not a new phenomenon. Giant companies sometimes split into multiple independent

units for various reasons. In the event of an organization split-up, the information

infrastructure owned by the parent organization is also divided among the newly formed

organizations. Consequently, policies governing access to the inherited information

resources need to be defined for the new setup. The organizational hierarchy of the newly

formed organizations may not differ drastically from the organizational hierarchy of the

parent organization. This implies that the access control policy of the parent organization

can be used to derive the policies of new organizations. Therefore, a policy generation

framework is needed that can compose access control policies for organizational units

formed as a result of a company split-up. Input provided to this framework may consist of

the access control policy of the parent organization, scope and business requirement,

potential organizational hierarchy, and a list of information resources and assets inherited

by the new organizational unit. In an abstract sense, this problem can be considered as a

partitioning of a policy based on the scope and business requirement of new organization.

Since we have considered a graph based formalism for access control policy

specification, we plan to explore different graph transformation and partitioning

techniques to solve the policy partitioning problem.

65

6 REFERENCES

[Ahn00] G. Ahn, R. Sandhu, “Role-Based Authorization Constraints Specification,”
ACM Transactions on Information and System Security, 3(4), November

2000.

[Amm91] P. Amman and R. Sandhu, “Safety Analysis for the Extended Schematic

Protection Model,” in proc. of the IEEE Symposium on Research in Security
and Privacy, 1991

[Amm92] P. Amman and R. Sandhu, “The Extended schematic Protection Model,” J.
Computer Security, 1992

[Amm94] P. Amman and R. Sandhu, “One-Representative safety Analysis in the Non-

Monotonic Transform Model,” in proc. of the 7th IEEE Computer security
Foundations Workshop, pp. 138 – 149, 1994.

[Atl97] V. Atluri and W-K. Huang, “An Extended Petri Net Model for Supporting

Workflow in a Multilevel Secure Environment,” In Proceedings of the Tenth
Annual IFIP TC11/WG11.3 International Conference on Database pp.240-

258, January 1997, Como, Italy.

[Atl98] V. Atluri, W-K. Huang and E. Bertino, ``A Semantic Based Redesigning of

Distributed Workflows,'' 9th International Conference on Management of
Data, December 1998.

 [Bat86] C. Batini, M. Lenzerini, and S. Navathe, “A Comparative Analysis of

Methodologies for Database Schema Integration,” ACM Computing Survey,

Vol. 18, No. 4, pp. 323 – 364, December 1986.

[Ber99] E. Bertino, E. Ferrari, and V. Atluri, “The Specification and Enforcement of

Authorization Constraints in Workflow Management Systems,” ACM
Transactions on Information and System Security, 2(1):65-104, 1999.

[Ber99b] E. Bertino, E. Ferrari, V. Atluri, “The Specification and Enforcement of

Authorization Constraints in Workflow Management Systems,” ACM
Transactions on Information and System Security, 2(1), February 1999, pages

65-104.

66

[Ber03] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca, “A Logical Framwork for

Reasoning About Access Control Models,” ACM TISSEC, Vol. 6, No. 1, pp.

71 – 127, February 2003.

[Bel73] D. Bell and L. Lapadula, “Secure Computer Systems: Mathematical

Foundations,” Technical Report MTR-2547, Vol. 1, MITRE Corporation,

March 1973.

[Bew89] D. F.C. Bewer, M. J. Nash, “The Chinese Wall Security Policy,” In
Proceedings of the Symposium on Security and Privacy, IEEE Computer

Society, May 1989, pages 206-214.

[Bib77] K. Biba, “Integrity Considerations for Secure Computer Systems,” Technical

Report MTR-3153, Vol. 1, MITRE Corporation, April 1977.

[Bon96] P.A. Bonatti, M. L. Sapino, V.S. Subrahmanian, “Merging Heterogeneous

Security Orderings,” ESORICS 1996, pp. 183-197

[Coh02] E. Cohen, R. K. Thomas, W. Winsborough, and D. Shands “Models for

Coalition-based Access Control,” Seventh ACM Symposium on Access Control
Models and Technologies, pp. 97 – 106, June 2002.

[Elm01] A. K. Elmagarmid and W. J. Mciver Jr., “The Ongoing March Toward Digital

Government,” IEEE Computer, Vol. 34, No. 2, pp. 32 – 38, February 2001.

[Fer93] D. F. Ferraiolo, D. M. Gilbert, N. Lynch, “An Examination of Federal and

Commercial Access Control Policy Needs,” In Proceedings of NISTNCSC
National Computer Security Conference, Baltimore, MD, September 20-23,

1993, pages 107-116.

[Fer00] E. Ferrari and B. Thuraisingham, “Secure Database System,” In Advanced
Databases: Technology and Design, O. Diaz and M. Piattini, Eds, Artech

House, London.

[Fer01] D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, R. Chandramouli, “The NIST

Model for Role-Based Access Control: Towards a Unified Standard,” ACM
Transactions on Information and System Security, Vol. 4, Issue 3, August 2001,

pp. 224-274.

[Gav98] S. I. Gavrila , J. F. Barkley, “Formal Specification for Role Based Access

Control User/role and Role/role Relationship Management,” Proceedings of the

67

third ACM workshop on Role-based access control, Fairfax, Virginia, United

States, pp. 81-90, October 1998.

[Giu95] L. Giuri, “A New Model for Role-based Access Control,” In Proceedings of
11th Annual Computer Security Application Conference, New Orleans, LA,

December 11-15 1995, pages 249-255.

[Giu97] L. Giuri. Role-based Access Control: A natural approach. In Proceedings of
the 1st ACM Workshop on Role-Based Access Control. ACM, 1997.

[Gon96] L. Gong and X. Qian, “Computational Issues in Secure Interoperation”, IEEE
Transaction on Software and Engineering, Vol. 22, No. 1, January 1996.

[Gua02] G. Yan, W. K. Ng, E. Lim, “Product Schema Integration for Electronic

Commerce - A Synonym Comparison Approach,” IEEE TKDE Vol. 14, No. 3

pp. 583-598, June 2002.

[Har76] M. Harrisson, W. Ruzzo, and J. Ullman, “Protection in Operating Systems,”

Communications of the ACM, Vol. 19, No. 2, August 1976, pp. 461-471.

[Hos91] H. Hosmer, “Metapolicies I,” ACM SIGSAC Review, 1992, pp. 18-43.

[IJIS] “Integrated Justice Information System,” The Department of Justice Initiative,

available at http://www.ojp.usdoj.gov.

[Jae01] T. Jaegar and J. Tidswell, “Practical Safety in Flexible Access Control Models,”

ACM TISSEC, Vol. 4 No. 2, pp. 158 – 190, May 2001.

[Jae03] T. Jaegar and X. Zhang, “Policy Management Using Access Control Spaces,”

ACM TISSEC, Vol. 6 No. 3, pp. 327 – 364, August 2003.

[Jos01a] J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H. Spafford, “Security Models for

Web-based Applications,” Communications of the ACM, Vol. 44, No. 2, Feb.

2001, pages 38-72.

[Jos01b] J. B. D. Joshi, A. Ghafoor, W. Aref, E. H. Spafford, “Digital Government

Security Infrastructure Design Challenges”, IEEE Computer, Vol. 34, No. 2,

February 2001, pages 66-72.

68

[Jos02] J. B. D. Joshi, E. Bertino, A. Ghafoor, “Temporal Hierarchies and Inheritance

Semantics for GTRBAC,” Seventh ACM Symposium on Access Control Models
and Technologies, pp. 74-83, June 2002.

[Jos03] J. B. D. Joshi, “A Generalized Temporal Role Based Access Control Model

for Developing Secure Systems,” Ph.D. Thesis, School of Electrical and

Computer Engineering, Purdue University, 2003.

[Ker02] A. Kern, “Advanced Features for Enterprise-Wide Role-Based Access

Control,” Annual Computer Security Applications Conference, 2002

[Koc02] M. Koch, L.V. Mancini and F. P. Presicce, “A Graph-Based Formalism for

RBAC,” ACM Transactions on Information and System Security, Vol. 5, No. 3,

pp. 332-365, August 2002.

[Kun99] D. R. Kuhn, “Mutual Exclusion of Roles as a Means of Implementing

Separation of Duties in a Role-based Access Control System,” ACM
Transactions on Information and System Security, 2(2), 1999, pages 177-228.

[Li94] W. S. Li and C. Clifton, “Semantic Integration in Heterogeneous Databases

Using Neural Networks,” VLDB 1994.

[Lit93] T. D. C. Little and A. Ghafoor, “Interval-Based Conceptual Models for Time-

Dependent Multimedia Data,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 5, No. 4 , pp. 551 -563, August 1993.

[Osb00] S. L. Osborn, R. Sandhu, Q. Munawer, “Configuring Role-Based Access

Control to Enforce Mandatory and Discretionary Access Control Policies,”
ACM Transactions on Information and System Security, Vol. 3, No. 2, February

2000, pp. 85-106.

[Osb02] S. L. Osborn, “Integrating Role Graphs: A Tool for Security Integration,” Data

and Knowledge Engineering, Vol. 43 No. 3, pp. 317-333, 2002.

[Pot03] R. Pottinger and P. A. Bernstein, “Merging Models Based on Given

Correspondences,” VLDB 2003, pp. 826-873.

[Pow00] R. Power, “"Tangled Web": Tales of Digital Crime from the Shadows of

Cyberspace,” Que/Macmillan Publishing, Aug. 31, 2000.

69

[Nya93] M. Nyanchama, S. L. Osborn, “Role-Based Security, Object-Oriented

Databases and Separation of Duty”, SIGMOD Rec. 22, 4, December 1993,

pages 45-51.

[Nya99] M. Nyanchama and S. Osborn. The Role Graph Model and Conflict of

Interest. ACM Transactions on Information and System Security, 2(1), 1999,

pages 3-33.

[San91] R. Sandhu, “Separation of Duties in Computerized Information Systems”, In

Database Security IV: Status and Prospects. Elsevier North-Holland, Inc.,

New York, 1991, pages 179-189.

[San95] R. Sandhu, editor. Proc. of the First ACM Workshop on Role-Based Access
Control, Fairfax (VA), 1995.

[San96] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, “Role-Based Access

Control Models,” IEEE Computer 29(2), IEEE Press, 1996, pages 38-47.

[San97] R. Sandhu, editor. Proc. of the 2nd ACM Workshop on Role-Based Access
Control, Fairfax (VA), 1997.

[San98a] R. Sandhu editor. Proc. of the 3rd ACM Workshop on Role-Based Access
Control, Fairfax (VA), 1998.

[San98b] R. Sandhu, “Role-based Access Control,” Advances in Computers, vol. 46,

Academic Press, 1998.

[San98c] R. Sandhu, “Role Activation Hierarchies,” In Proceedings of the third ACM
workshop on Role-based access control, pp.33-40, October 22-23, 1998.

[She90] A. P. Sheth and J. A. Larson, “Federated Database Systems for Managing

Distributed, Heterogeneous, and Autonomous Databases,” ACM Computing
Survey, Vol. 22, No. 3, pp. 183 – 236, September1990.

[Sim97] R. Simon, M.E. Zurko, “Separation of Duty in Role-based Environments,” In

Proc. 10th IEEE Computer Security Foundations Workshop, June 1997.

[Sny97] L. Snyder, “On the Synthesis and Analysis of Protection Systems,” In

Proceedings of the 6th ACM Symposium on Operating System Principles, pp.

141 – 150, 1997

[Tar97] Z. Tari, S. Chan, “A Role-Based Access Control for Intranet Security,” IEEE,
Internet Computing, Sept-Oct, 1997, pages 24-34.

70

[Tid98] J. Tidswell, J. Potter. A Dynamically Typed Access Control Model. In
Proceedings of the Third Australasian Conference on Information Security
and Privacy, July 1998.

[Vet98] V. Vet and N. Mars “Bottom-Up Construction of Ontologies,” IEEE TKDE, Vol.

 10, No. 4, pp. 513-526, August 1998.

[Wol98] L. A. Wolsey, Integer Programming, John Wiley, New York, 1998.

71

7 APPENDIX

Proof of Lemma 3.1: The split function, given in Figure 3.5, first creates a new role

r j and makes it junior to rs. Note that until line number 2 of the split function, role r

before splitting and rs have same directly assigned permissions and all the roles that are

related to r are also related to rs in the same manner.

Lines 3 - 4 in the split function algorithm make sure that all the permissions that are

removed from rs are assigned to r j. Since s j
I

r r‡ , therefore these permissions are still

included in the permission set of rs, i.e., pset(rs) Æ psetassign(r j).

Lines 6 -8 ensures that the inheritance relationship is maintained between rs and all

the roles that were junior to the unsplit role in the I-hierarchy semantics. Since psetassign(r)

= psetassign(rs) ̌ psetassign(r j) and all the roles that can be reached from the unsplit role r

through an I-path can also be reached from rs through an I-path; therefore, pset(r) =

pset(rs)

It can be noted that splitting a role does not change the activation hierarchy and the

user to role assignment. That is, all the users that were assigned to unsplit role r remain

assigned to role rs and all the roles that are related to r by an A-edge are also related to rs

by an A-edge. This implies that the uniquely activable set of role rs is same as that of the

unsplit role r. ﾐ

Proof of Lemma 3.3: The algorithm remove-role ensures that the inheritance

relationship between all the roles rp such that p d
I

r r‡ and all roles rc such that d c
I

r r‡ is

maintained, that is, p c
I

r r‡ holds after role rd is removed. Since rd is a redundant role, no

user is assigned to rd nor is any permission assigned to it. Hence, the user set and the

72

permission set is unaffected by the removal of the redundant role rd. Since all the user-to-

role assignment relations, role-to-permission-assignment relations and hierarchy relations

among roles other than rd are preserved, properties 1, 3, and 4 hold. Moreover, the

algorithm remove-role does not remove any role other than rd from the conflicting role

set of any role, implying that 3 and 5 hold. ﾐ

Proof of Lemma 3.4

PIR 1 Element preservation: RBAC-integrate does not remove any element except

the newly created redundant roles. Since these roles are not a part of any of the input

RBAC graphs, RBAC-integrate satisfies element preservation requirement.

PIR 2 Relationship preservation: In RBAC-Integrate, relationship between the

elements of input RBAC graph is altered when a newly created redundant role is removed

or when a role is split. Lemma 3.3 states that removing a newly created redundant role

does not change the relationship that exists between the elements of input RBAC graphs.

When a role is split some of the relations involving the split roles are removed and some

new relations are added. This modification may alter some of the explicit relationships

specified in the input RBAC graphs, however, the original relations are implied in the

final graph G as stated in Lemma 3.1.

PIR 3 User authorization preservation: In RBAC-integrate no user to role

assignment is removed and all the hierarchical relationship between roles is maintained

(PIR 2). Furthermore, equivalent roles have same permission assignment and inheritance.

Therefore, the permission authorization set of users is preserved by RBAC-integrate.

PIR 4 Minimum overhead: The algorithm RBAC-integrate may create new roles

during the process of policy integration. These roles are not present in the original RBAC

policies of component domains and are created as a result of role splitting. These

additional roles are considered as an overhead associated with the integration process. It

is therefore important to minimize any additional number of roles created during the

integration step. However, some of these newly created roles are essential for allowing

cross-domain accesses in a secure manner. Some of newly created roles are redundant

and do not have any permissions associated with them. Lemma 3.3 states that the removal

73

of redundant roles does not affect any intra and inter-domain accesses in the multi-

domain environment, hence all the newly created redundant roles are removed by RBAC-

integrate.

Splitting roles unnecessarily may also introduce considerable overhead. However,

RBAC-integrate maintains the minimal splitting property defined below. This property

ensures that cross-domain equivalent roles are not split unless there is a third role from

some other collaborating domain, which has some permission(s) in common with the

permissions associated with the cross-domain equivalent roles.

Minimal splitting: When integrating RBAC policies of two domains A and B, no

roles r i Œ A and r j Œ B exist for which all the following conditions hold:

(a) _ (,)i jeq role r r

(b) , : (_ (,))is js is js is i js j is js
I I

r r r A r B r r r r eq role r r& Œ ® Œ ® ‡ ® ‡ ® _ (,)i jeq role r r

(c) ri, r j, r iS, and r jS are not present in the original RBAC policies of A and B and are

created during the process of integration.

We assume that duplicate permission assignment to two or more roles belonging to

the same domain is not permitted in the input RBAC graph, that is. two or more roles

belonging to same domain cannot have same permissions assigned to them. Also, in

RBAC-integrate two cross-domain roles are compared only once. Consequently, when

integrating the RBAC graphs of two domains, say A and B, the permission set of any

newly created role rA in A does not include any permissions assigned to any role r’ in B

except for one role rB in B for which eq_role(rA, rB) is true. This means that during the

process of integrating the RBAC graphs of domains A and B, a newly created role cannot

split.

RBAC-integrate maintains non-redundancy (all redundant roles are removed from

the integrated policy) and minimal splitting. Removing any role from a multi-domain

RBAC graph that maintains minimal splitting property may either violate the element

preservation property (PIR 1) or reduces the level of interoperation. This implies that the

multi-domain RBAC policy output by RBAC-integrate has minimum overhead. ﾐ

74

Proof of Theorem 3.5: We first show that the morphism ‘l’ is onto. (i.e., for all y Œ

Y, there exists x Œ X such that l(x) = y).

 is onto: The elements in X and Y can be divided into two types: (i) elements which

are present in GA, GB, and GC, (ii) elements that are created in the process of integration

of local graphs. As stated in the above theorem that RBAC-integrate satisfies the element

preservation property, therefore all the elements of type (i) are present in both X and Y.

Type (ii) elements include those roles that are not present in GA, GB, and GC and are

created during the process of policy integration. These roles are created by the role split

function in the RBAC-integrate algorithm. Note that type (ii) elements do not include any

redundant role as the redundant roles that are created in the policy integration step are

eliminated from X and Y. To complete the proof that l is onto, we need to show that for

all type (ii) roles r Œ Y, there exists r’ Œ X such that l(r’) = r and for all p such that pŒ

psetassign(r) µ p Œ psetassign(r’)

In the following we use the terminology r Œ dom(X) if r Œ GX or r is created by

splitting a role rs Œ dom(X). Without loss of generality, assume that there exists a role rA

Œ GA such that pset(rA) Æ pset(r). Also r is created by splitting role rA i.e., r Œ dom(A).

Since r is created in the process of integration, therefore one of the following three

conditions holds for r.

(a) & rBA Œ dom(B): eq_role(r,rBA) ® ¬& rCA Œ dom(C): eq_role(r,rCA)

(b) & rCA Œ dom(C): eq_role(r,rCA) ® ¬& rBA Œ dom(B): eq_role(r,rBA)

(c) & rBA Œ dom(B), rCA Œ dom(C) : eq_role(r,rBA) ® eq_role(r,rCA)

Case a: & rBA Œ dom(B): eq_role(r,rBA) ® ¬& rCA Œ GC: eq_role(r,rCA)

The above implies that there is no role in GC whose permission set overlaps with that of

r or rBA. Role r does not exist in Q; however, rBA may or may not exist in Q.

If rBA exists in Q then rBA Œ GB and the following is true in Y:

(i) () () ()A A BA BA A
I

r r r contains r r contains r‡ ® ® ¬

If rBA does not exists in Q, then there exists a role rB Œ GB such that that pset(rB) ̨

pset(rA) = pset(rBA), and the following hold in Y:

75

(ii) () ()A A B
I

r r r overlaps r‡ ®

Since eq_role(r,rBA) holds, therefore psetassign(rBA) = psetassign(r) and pset (rBA) = pset (r)

For the case rBA Œ GB and rA Œ GA, since rA contains rBA, when integrating GA and GB,

a role r’ junior to rA is created and is assigned the permission in the set psetassign(rBA) ̨

psetassign(rA). This means that there exists a role r’ in P with psetassign(r’) = psetassign(rBA) ̨

psetassign(rA) = psetassign (rBA) = psetassign (r). Also, when integrating P with GC role r’ is not

split nor the permission in the set psetassign(r’) gets redistributed as there is no role in GC

whose permission set overlaps with that of r’ .

For the case rBA º GB, rA Œ GA and rB Œ GB, since rA overlaps rB, when integrating GA

and GB, role r’ junior to rA, and rBA junior to rB are created with psetassign(r’) =

psetassign(rB) = psetassign(rBA) ̨ psetassign(rA). This means that there exists a role r’ in P with

psetassign(r’) = psetassign (rBA) = psetassign (r). Also, when integrating P with GC role r’ is not

split nor the permission in the set psetassign(r’) gets redistributed as there is no role in GC

whose permission set overlaps with that of r’ .

Therefore for a type (ii) role r Œ Y, for which case a holds, there exists a role r’ Œ X

such that psetassign(r’) = psetassign(r), i.e., l(r’) = r. In a similar manner, we can prove the

above for case b and c as well. Hence, for all type (ii) roles r Œ Y, there exists a role r’ Œ

X such that psetassign(r’) = psetassign(r), i.e., l(r’) = r.

Now, we need to show that for all roles r Œ Y, there exists a role r’ Œ X such that

psetassign(r’) = psetassign(r). We have proved this for type (ii) roles, now we need to prove it

for type (i) roles. Type (i) role can be further classified into two types: (a) roles which

remain unsplit during policy integration; (b) roles which split in the policy integration

step. Note that the permissions assigned to a role are removed from that role only if it

gets split in the process of integration. Consider an unsplit role r in Y and with out loss of

generality assume that r Œ GA. Since r is an unsplit role therefore, there does not exist

any role r’’ Œ {GB, GC} such that psetassign(r) Ł psetassign(r’’). This and the element

preservation property implies that there exists a role r’ Œ X, such that psetassign(r’) =

psetassign(r).

76

We need to prove the above for the type (i) roles that get split. Consider a role r Œ Y

that got split in the process of policy integration to produce a junior role r j. We already

proved that there exists a role r j’ Œ X such that psetassign(r j’) = psetassign(r j).Without loss of

generality suppose that r Œ GA. Note that r j º {GA, GB, GC}, which also implies that r j’ º

{GA, GB, GC}. Therefore there exists a role r’ that produce r j’ after splitting. We maintain

that psetassign(r’) = psetassign(r). Suppose this is not the case and psetassign(r’) ” psetassign(r) .

Both r j and r j’ Œ dom(A), which implies that r’ Œ dom(A). Suppose that psetassign(r’) ̶

psetassign(r). Note that permissions are removed from a role only if the role gets split and

the removed permissions are assigned to the newly created role that is made junior to the

role being split. Before splitting, r’ and r have same permission assignment. However,

after splitting we assume that psetassign(r’) 伊̶psetassign(r), implying that either psetassign(r j’)

Ł psetassign(r j) which is not possible, or r has at least one more newly created junior role

r j2 which acquires some of the permissions that were earlier assigned to r. If this is the

case then r j2 must be equivalent to some role r j2' Œ X with psetassign(r j2') = psetassign(r j2).

Nevertheless, r j2' resulted from the split of role r’ . This implies that all the permissions in

the psetassign(r’)\ psetassign(r) are removed from r’ and are assigned to r j2'. Therefore,

psetassign(r) ª psetassign(r’)

If we assume psetassign(r’) Ł psetassign(r) then, either psetassign(r j’) ̶ psetassign(r j) which is

not possible; or there exists at least one more newly created child role r j2’ (r j2’ ” r j’) of

role r’ . In this case psetassign(r j2’) = psetassign(r) \ psetassign(r’). Note that r j2’ Œ dom(A) and

therefore there exists a role r” Œ {GB, GC} such that either r’ contains r” or r’ overlaps

r”. The element preservation property of RBAC-integrate ensures that r” also exists in Q.

When integration between GA and Q is performed role r is compared with r” and role r is

split to produce a child role r j2 with psetassign(r j2) = psetassign(r) ̨ psetassign(r”) =

psetassign(r j2’). This proves that psetassign(r’) ª psetassign(r) provided r is split once or twice.

Using induction we can prove that psetassign(r’) ª psetassign(r) is independent of the

number of times role r is split. The above implies that for a type (i) split role r Œ Y, there

exists a role r’ Œ X such that psetassign(r’) = psetassign(r), hence l(r’) = r.

77

The final step in proving that l is onto is to show that all the elements in X map to at

least one element in Y. The element preservation property of RBAC-integrate maintains

that all the user, permissions and type (i) roles that are present in X are also present in Y.

So, all the users, permissions and type (i) roles in X can be mapped to at least one

element in Y. Since we disallow non-redundant roles and addition of new permissions

and users during the process of integration therefore both X and Y have same number of

type (ii) roles. We already proved that for every type (ii) role in Y there exists a type (ii)

role in X with the same permission assignment. Since the cardinality of type (ii) roles in

both X and Y is same, therefore there exists a 1:1 correspondence between the type two

roles in X and Y.

This concludes the proof that l is onto.

 is 1:1 (for all e1, e2 Œ X, l(e1) = l(e2) › e1 = e2)

The element preservation property of the integration algorithm implies that all the

elements in the input graphs GA, GB, GC are present in X and Y. Moreover, RBAC-

integrate does not add any new user, permission and type (i) roles, i.e., the cardinality of

user set, permission set, and type (i) role set is same in both X and Y. We already proved

that l is onto. Since we disallow non-redundant roles and duplicate permission

assignment during the process of integration therefore both X and Y have same number

of type (ii) roles. This implies that there is 1:1 correspondence between the user,

permission and role elements between X and Y. Hence, l is 1:1.

Relationship Preservation: To conclude the proof that l is isomorphic, we need to

show that any relation R(U) Œ RX if and only if R(l(U)) Œ RY. The relationship

preservation property of RBAC-integrate guarantees that each relation R (except the P-

assign) in the input RBAC graph has a corresponding relationship R’ in the integrated

RBAC graph. We already proved that for any role r’ in X, there exists exactly one role r

in Y such that that psetassign(r) = psetassign(l(r)). Moreover, l is a 1:1 morphism. This

implies that for any permission p P-assign(r,p) Œ RX if and only P-assign(l(r),p) Œ RY.

This concludes the proof that l is isomorphic, implying that the operator RBAC-

integrate is associative. ﾐ

78

Proof of Theorem 4.7: We prove this theorem separately for role assignment, role-

specific SoD, and user-specific SoD constraints.

Any state S reachable from G is secure with respect to the role-assignment

constraint of all collaborating domains. Suppose this is not true. This means that in

some state S reachable from G there exists a user ui Œ Uk who accesses a role r j Œ Rk (sij =

1, sij Œ rur_k(S)), while aij = 0, where, aij Œ rur(Ak
+
), i.e., there is no intra-domain access

path from ui to r j. The above implies that in the multi-domain RBAC graph G, there is a

path from ui to r j that consists of at least two cross-domain edges. Without loss of

generality, assume that these cross-domain edges are (r l, rm) and (rn, rp), where, r l, rp Œ Rk

and rm, rn º Rk; and * + * + * +* *
1

lir m n m n p j p j
I I

u r r r r r r r r? ® ‡ ° ? ® ‡ ° ? .

Since there is no intra-domain access path from ui to r j, 0
jiru ? is specified as one of

the constraint to the IP problem (constraint transformation rule 1). Therefore, in any

feasible solution 0 and 0
j pir iru u? ? .There are two possibilities for the variable

niru in any

feasible (optimal feasible) solution:

1
niru ? . If this is an optimal feasible solution to the IP problem, then step 7 of the

algorithm ConfRes removes the edge (rn, rp).

0
niru ? . If this yields an optimal solution then step 7 of the algorithm ConfRes

removes the edge (r l, rm) if 0
miru ? , otherwise it removes the edge (rn, rp).

In either case, any cross-domain edge leading ui to r j through rn is dropped. If there

are multiple such paths through other cross-domain roles, then in a similar manner those

paths will be eliminated by ConfRes. Hence in the resulting graph G there is no cross-

domain path from ui to r j, implying that sij = 0. This contradicts our initial assumption.

Any state S reachable from G is secure with respect to the role-specific SoD

constraint of all collaborating domains. We prove this statement by considering all

possible role-specific SoD violations that might occur as a result of interoperation. The

79

following cases capture all the role-specific SoD violations in the multi-domain

environment:

Case 1: In this case, a local user ul accesses two conflicting roles r i and r j Œ Rk.

There are following sub-cases corresponding to case 1:

Sub-case 1(a): The security policy of domain k does not allow ul to access any of the

roles r i and r j. If we assume that in some state S, ul is able to access r i and r j through

some cross-domain role (see Figure 7.1(a)), then this will be a violation of role-

assignment constraint of domain k. However, all the reachable states from the multi-

domain RBAC graph obtained after applying conflict resolution algorithm, ConfRes, are

secure with respect to the role-assignment constraints of all collaborating domains

(proved above). Hence in this sub-case, ul cannot access r i and r j simultaneously.

Sub-case 1(b): RBAC policy of domain k allows ul to access r i but not r j as depicted

in Figure 7.1(b). Since the multi-domain policy is secure with respect to the role-

assignment constraints of domain k (proved above), therefore, ul cannot access r j through

a cross-domain path, implying that SoD violation between r i and r j never occurs in this

case.

Sub-case 1(c): Suppose ul is assigned to rs and
*

s i
A

r r‡ ,
*

s j
A

r r‡ . Moreover, r i and r j are

conflicting roles as shown in Figure 7.1(c). A role-specific SoD violation occurs if ul

activates one of the conflicting roles, say r i, and inherits the other one, say r j, through r t

such that * +* *

s t s t t j
A I

r r r r r r‡ ° ? ® ‡ . For a hierarchically consistent RBAC policy, the

conflicting role set of a junior role must be contained in the conflicting role set of the

senior role.
*

() ()t j t j
I

r r conf rset r conf rset r‡ µ / Æ / . This means that r i Œ conf-rset(r t). If

there is no inter-domain path from ul to r t then user ul cannot access r t and r i

simultaneously implying that ul cannot access r i and r j simultaneously. If there exists an

inter-domain path from ul to r t, then by using induction we can show that there exist a

role ru Œ Rk such that * + * +* *
(,)s u s u u t u i

A I
r r r r r r conf role r r‡ ° ? ® ‡ ® / and there does not

exists a cross-domain role ro º Rk such that
* *

s o u
I I

r r r‡ ‡ . If rs = ru then this leads to sub-

80

case 1(d) discussed next. If not then this means that ul cannot access ru and r i

simultaneously implying that ul cannot access r t and r i simultaneously, which in turns

imply that ul cannot access r j and r i simultaneously.

rs

ul

ri
rj

SoD

rm

rn

rl

rp
rq

K

rs

ul

ri
rj

SoD

rm

rn

rl

rp

K

rt

ul

ri
rj

SoD

rm

rn

rl

rp

K

rs

ul

ri

rm

rn

rl

rp

S
o

D K

rs

ul

rqrp

rnrm

rjri
SoD

K

rs

ul

rqrp

rnrm

rjri
SoD

K

Induced

SoD

rs

ul

rqrp

rnrm

rjri
SoD

KIn
d

u
ce

d

S
o
D

(a) (b) (c) (d)

(e) (f) (g)

rs

In
d

u
ce

d
S

o
D

Fig. 7.1. Cases of role-specific SoD violations involving cross-domain paths

Sub-case 1(d): Suppose ul is assigned to rs and
*

s i
A

r r‡ . Moreover, rs and r i are

activation time conflicting roles as shown in Figure 7.1(d). If security policy of domain k

is consistent then there is no intra-domain path from rs to r i consisting of only I-edges.

Suppose that there is a cross-domain path from rs to r i. Such a path must have at least two

cross-domain edges. Without loss of generality, assume that these cross-domain edges are

(r l, rm) and (rn, rp), where, r l, rp Œ Rk and rm, rn º Rk;

and * + * + * +* * *

s l s l m n m n p i p i
I I I

r r r r r r r r r r r r‡ ° ? ® ‡ ° ? ® ‡ ° ? . This cross-domain path

enables any user to access permissions of r i by accessing role rs, which is a violation of

SoD constraint between rs and r i. At least one user activates role rs (Step 1 of the ConfRes

algorithm and transformation rules 3 and 4 ensures that each role in the multi-domain

graph is accessed by at least one user). Let the user be ul. Since rs and r i are conflicting

roles, therefore 1~-
is lrlr uu is one of the constraint of the IP problem formulated in the

81

step 4 of conflict resolution algorithm Confres. Since 1?
slru , therefore in any feasible

solution 0?lriu and 0?lrpu . There are two possibilities for the variable
nlru in any

feasible (optimal feasible) solution:

1?
nlru . If this is an optimal feasible solution to the IP problem, then step 7 of the

algorithm Confres removes the edge (rn, rp).

0?
nlru . If this yields an optimal solution then step 7 of the algorithm ConfRes

removes the edge (r l, rm) if 0?
mlru , otherwise it removes the edge (rn, rp).

In either case, any cross-domain edge leading ul to r j through rn is dropped. If there

are multiple such paths through other cross-domain roles, then in a similar manner those

paths will be eliminated by ConfRes. Hence in the resulting graph G there is no cross-

domain path from rs to r i, implying that ul cannot access role rs and r i simultaneously.

Case 2: In this case, a foreign user ul º Uk accesses two conflicting roles r i and r j Œ

Rk. There are three sub-cases corresponding to case 2. Figures 7.1(e), 7.1(f) and 7.1(g)

depicts these sub-cases.

Sub-case 2(a): Suppose ul is assigned to rs and there is a cross-domain path from rs to

r i and from rs to r j as shown in Figure 7.1(e). For the cross-domain path from rs to r i the

following hold:

* + * + * +* * *

s p p s p m m i m i
I I I

r r r r r r r r r r‡ ° ? ® ‡ ® ‡ ° ?

Similarly, for the cross-domain path from rs to r j the following hold:

* + * + * +* * *

s q s q q n n j n j
I I I

r r r r r r r r r r‡ ° ? ® ‡ ® ‡ ° ?

Since r i and r j are conflicting roles and a user ul assigned to rs have an access path to

both r i and r j, therefore 1~-
ji lrlr uu is one of the constraint of the IP problem formulated

in the step 4 of conflict resolution algorithm Confres. At least one user activates role rs

(Step 1 of the ConfRes algorithm and transformation rules 3 and 4 ensures that each role

in the multi-domain graph is accessed by at least one user). Let the user be ul, i.e.,

82

1?
slru , which also implies that 1?

plru and 1?
qlru . There are three possibilities for the

variables
ji lrlr uu and in any feasible solution.

0?
ilru and 0?

jlru , implying that 0?
mlru and 0?

nlru . If this is an optimal solution

then step 7 of ConfRes removes the edges (rp, rm) and (rq, rn).

0?
ilru and 1?

jlru , implying that 0?
mlru . If this is an optimal solution then step 7

of ConfRes removes the edge (rp, rm).

1?
ilru and 0?

jlru , implying that 0?
nlru . If this is an optimal solution then step 7 of

ConfRes removes the edge (rq, rn).

In any of the above cases, at least one of the cross-domain paths from rs to r i or r j is

removed in the process of conflict resolution. Hence, ul cannot access both r i and r j

simultaneously in the resulting RBAC graph G.

Sub-case 2(b): Suppose ul is assigned to rs and
* *

s p s q
A A

r r r r‡ ® ‡ . Let there be a cross-

domain path from rp to r i and a cross-domain path from rq to r j. This is depicted Figure

7.1(f). These cross-domain relationship
*

p i
I

r r‡ and
*

q j
I

r r‡ induces an SoD constraint

between rp and rq as shown in Figure 7.1(e). This implies that user ul cannot activate rp

and rq concurrently, and therefore cannot access the cross-domain roles r i and r j

simultaneously.

Sub-case 2(c): Suppose ul is assigned to rs and * +* *

s p s q s q
A I

r r r r r r‡ ® ‡ ° ? . Let there be

a cross-domain path from rp to r i and a cross-domain path from rq to r j. The

relation
*

q j
I

r r‡ implies
*

s j
I

r r‡ . This is depicted Figure 7.1(g). These cross-domain

relationship i
t

I
p rr ‡ and j

t

I
s rr ‡ induces an SoD constraint between rp and rs as shown in

Figure 7.1(e). This implies that user ul cannot activate rs and rp concurrently, and

therefore cannot access the cross-domain roles r i and r j simultaneously.

Any of the role-specific SoD constraint can be reduced to one of the above cases. In

all of the above cases, we have proved that SoD violation between conflicting roles can

83

never happen. Hence, any state S reachable from the multi-domain RBAC graph G

obtained after applying conflict resolution algorithm, ConfRes, is secure with respect to

the role-specific SoD constraints of all collaborating domains.

Any state S reachable from G is secure with respect to the user-specific SoD

constraint of all collaborating domains. A user-specific SoD violation of role rt occurs

when a user ui belonging to the conflicting user set(s) of rt accesses rt through multiple

paths and at least one of such path includes cross-domain edges. This is shown in Figure

7.2, in which users u1, u2,.., um conflict with user udt for role rt. The following relationship

exists among the roles depicted in Figure 7.2.

* + * + * + * + * + * +* * * * * * *

s t s t s l s l s l l m m n n p p t p t
A I A I I I I

r r r r r r r r r r r r r r r r r r r r‡ ° ? ® ‡ ° ‡ ° ? ® ‡ ® ‡ ® ‡ ® ‡ ° ?

Where, rs, r l, rp, and r t Œ Rk; and rm and rn º Rk, otherwise, domain k’s RBAC policy

becomes inconsistent. The case when rs and r t are not distinct is trivial and does not

involve any cross-domain path for SoD violation. The following discussion considers the

case when rs and r t are distinct roles.

In Figure 7.2, a user specific SoD is violated when udt activates role r t and any of the

users conflicting with udt for role r t accesses role r l. By accessing role r l, a user, say u1,

accesses the permissions of r t through the cross-domain path.

After step 3 of the conflict resolution algorithm, ConfRes, all the user specific SoD

constraints in the multi-domain RBAC graph G can be reduced to the case shown in

Figure 7.2. Since users u1, u2,.., um conflict with user udt for role r t, therefore the

following is included as one of the constraints to the IP problem formulated in step 4 of

ConfRes.

1
1

~-Â
?

m

i
dtrir tt

uu , Also
tdtru is set to one in step 3 of the algorithm Confres. This

implies that in any feasible solution the the IP problem, 0?
tiru for all i Œ {1,2,..,m}.

There are two possibilities for the variable
niru in any feasible (optimal feasible)

solution:

84

1
niru ? . If this is an optimal feasible solution to the IP problem, then step 7 of the

algorithm ConfRes removes the edge (rn, rp).

0
niru ? . If this yields an optimal solution then step 7 of the algorithm ConfRes

removes the edge (r l, rm) if 0
miru ? , otherwise it removes the edge (rn, rp).

In either case, any cross-domain edge leading ui to r t through rn, is dropped. If there

are multiple such paths through other cross-domain roles, then in a similar manner those

paths will be eliminated by ConfRes. This implies that no user ui belonging to the

conflicting user set(s) of r t can access r t through a cross-domain path.

Hence, any state S reachable from the multi-domain RBAC graph G obtained after

applying conflict resolution algorithm, ConfRes, is secure with respect to the user-

specific SoD constraints of all collaborating domains provided their access control

policies are consistent.

rs

u1

u2

un

rt
un

rt

rt

rt r l

rp

rm

rn

K

Fig. 7.2. User-specific SoD violation through a cross-domain path

This concludes the proof of Theorem 4.7. ﾐ

