
CERIAS Tech Report 2004-32

TOWARDS IMPROVED FEDERATED IDENTITY AND PRIVILEGE MANAGEMENT IN OPEN
SYSTEMS

by Rafae Bhatti, Elisa Bertino, Arif Ghafoor

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Towards Improved Federated Identity and Privilege Management in Open Systems

Rafae Bhatti, Elisa Bertino, Arif Ghafoor

Federated identity and privilege management are the cornerstones of access management on the Web.
The increasing trend of business integration across enterprises and Web-based collaboration has led to
tremendous growth of the identity and privilege management research and products in the recent past.
However, despite the existence of available mechanisms, there are drawbacks in almost all well-known
schemes that make them inadequate for use in large scale open system. Additionally, the migration of
these mechanisms to the Web environment is happening at dissimilar pace, resulting in a wide gap in
integrating privilege management with existing federated identity mechanisms to provide a
comprehensive access management solution. In this paper, we discuss these issues in detail, namely the
shortcomings of federated identity mechanisms, and their integration with privilege management
mechanisms. In response, we provide an integrated approach to Web-based access management that
combines a decentralized federated identity mechanism with a privilege management framework. Our
solution allows name-binding to be avoided; doing so is essential to scalability and privacy in open
systems. The solution has been prototyped and preliminarily tested to determine its feasibility.

1. Introduction

The highly-networked enterprise environment is characterized by strategic partnerships to seize
better business opportunities on the Internet. The desire to capitalize on such opportunities has driven the
demand for mechanisms that allow web-based collaboration between enterprises. The access management
to enterprise resources in such collaborative environments is absolutely critical for their security. The
major industrial players in security also opine that “today’s collaborative and interconnected e-business
landscape requires a secure and effective way for enterprises to share trusted user identities”1 and
entitlements. However, if not done properly, imprecise access management could adversely affect the
level of un-interrupted interoperability needed to seamlessly integrate enterprise units and business
processes. The ability to federate identity across organizations while maintaining access rights and
privileges is thus a major challenge [1]. The solution is federated identity and privilege management,
which now stands as the key to seamless and secure enterprise integration and collaboration on the Web.
The federated identity and privilege management mechanisms of today are, however, not without their
shortcomings which need to be overcome in order to ensure that these mechanisms scale well. Among
them is the use of (i) a centralized approach to providing federated identity, and (ii) identity or capability-
based credentials. The centralized approach to federated identity has been subject to much scrutiny in
recent past, with specific references to the most widely used such scheme, Microsoft Passport [2], as shall
be shortly discussed. Similarly, the drawbacks of identity and capability-based credentials used in most
existing systems have also been reported in the literature, and are discussed in next section. In addition to
these shortcomings, there is another concern that needs to be alleviated. The development of Web-based
federated identity solutions has advanced at a much rapid pace as compared to the Web-based privilege
management mechanisms. The growth of the former may be attributed to advances in biometrics and
cryptographic tools that have quickly become marketable, whereas the commercial tools for the latter are
still primitive and advanced solutions are mostly in research phase. The research community has
recognized the fact that the interplay between identity and access management should be more carefully
evaluated, and present access control models need to be appropriately refined [1]. However as it stands
now, there is a wide gap in integrating privilege management with existing federated identity mechanisms
to provide a comprehensive access management solution. This disparity is quite alarming, and the
increasing trend of migrating enterprise operations to the Internet demands a significant evolution of the

1 Federated Identity white paper, RSA Secuirty Inc.

1/12

traditional access management mechanisms in order to secure the inherently dynamic Web-based
resources. Simply put, both federated identity and privilege management are cornerstones of an access
management framework; a weakness in any one component would render any such framework inadequate
for dynamic collaborative business environments. In this paper, we discuss these challenges, namely the
shortcomings of federated identity mechanisms, and their integration with privilege management
mechanisms. In response, we present an integrated approach to federated identity and privilege
management specifically designed for Web-based platforms.

At the very onset, we would outline the requirements that we believe an integrated federated
identity and privilege management mechanism should satisfy. The following sections would then build
the necessary motivation behind these requirements and discuss how our proposed framework satisfies
them.

(i) Single sign on (SSO): SSO is a fundamental component of federated identity, and allows for
privilege management across enterprises in a manner transparent to the end user. It essentially
implies persistence of user identity and entitlement across enterprise domains, and allows
users within and across enterprises to seamlessly transfer their authorizations across multiple
points of policy enforcement. Although many SSO solutions abound, the widening gap
between identity and privilege management leads to many challenges with regards to granting
single-sign-on access to collections of resources that might have contradictory access-
protection rules [1].

(ii) Effective access control: The privilege management component of the access management
solution relies on the strength of the access control model. A comprehensive access
management solution should support an effective access control model that allows flexible
and fine-grained access control to dynamically evolving enterprise resources. This
requirement is particularly challenging to meet in a Web-based environment.

(iii) Decentralized model: This implies that the system should not rely on a centralized or single
point for accessing user authentication and authorization information. Instead, this control
should be distributed. This requirement is motivated by the market demand for B2B
scenarios, where it is desired to have a decentralized model for federating user identities and
entitlements and thereby avoiding a scenario where “one enterprise essentially authenticates
the world population”2.

(iv) Authentication for strangers: In the widely distributed Internet environment, it is no longer a
workable business model for a service provider to assume advance knowledge of the
identities or capabilities of all users. The use of identity and capability-based credential in
most existing systems is a major bottleneck to achieving this objective.

(v) Trust, Anonymity and Privacy: Privacy protection is becoming an increasingly significant
issue, more so from social and legal perspective, and it is a challenge to provide sufficient
level of anonymity and privacy without compromising on security. The paradox here is clear:
while avoiding name-binding appears viable for preserving privacy, it complicates the
accountability in trust establishment.

(vi) Standardized Approach: With numerous schemes in several stages of adoption, it is only
prudent to take an incremental or “integrate”-able approach: design new solutions that
complement existing accepted standards. Standardization is a long, over-whelming process,
and a new standard effort every often would not contribute positively to the existing mix of
adopted and un-adopted specifications. We have therefore carefully evaluated the existing
technologies and attempted to address only the open issues; for other functionality, we
provide hooks within our specification where existing standards can be tied into.

2 B. Pfitzmann, M. Waidner, “-Federated Identity Management Protocols-”, IBM Zurich Research Labs, To Appear.

2/12

The remainder of the paper is organized as follows. We begin with a brief overview of federated
identity and privilege management, and then provide a comprehensive survey of the research leading to
the current state-of-the-art in both these areas. The survey thereby highlights the issues related to
centralized nature and name-binding in existing schemes, motivates the need for meeting the above-listed
requirements, and emphasizes the design of an improved solution. The following two sections describe
the specification and software architecture of our proposed framework. Our specification is XML-based,
and is captured through a context-free grammar called X-Grammar introduced in [12], which follows the
same notion of terminals and non-terminals as in BNF, but supports the tagging notation of XML that
also allows expressing attributes within element tags. The paper concludes with discussion of our
prototype implementation and future work.

2. Background, Motivation and Related Work

In their current form, federated identity and privilege management solutions are an integral part
of the access management framework in a collaborative enterprise environment. Although they have
begun to gain popularity only recently, the concept behind them derives its motivation from the classical
authentication and authorization protocols, as we shall discuss in this section. We acknowledge the work
presented in [16, 17] as providing us a lead in some parts of this survey.

The various approaches presented in the literature have not always clearly separated
authentication step from authorization, and hence we shall discuss both schemes together in their order of
evolution. The initial approaches to distributed authorization relied on the distributed authentication
schemes used in conjunction with access control lists for local authorization. A seminal work in
authentication protocols based on symmetric-key cryptography has been presented in [3] and
implemented as Kerberos [4]. Kerberos allows mutual authentication and secure communication over the
network by the use of symmetric key encryption and authentication credentials issued by a centralized
Kerberos server. Kerberos authentication credentials are based on identity, and are suited for use in
identity-based authorization mechanisms such as access control lists. Such schemes have scalability
problems in distributed systems vis-à-vis management of user identities and access rights which
motivated our approach for decentralization and avoiding name-binding. Additionally, there emerge key
management issues in symmetric key cryptography in widely distributed environments. As opposed to
identity-based, capability-based approaches to access control have later been introduced in the context of
operating systems [5-7] wherein the authorization decision is taken based on the key holder’s stated
capability. Credentials extend the notion of the capabilities by using additional cryptographic information,
such as issuer-specific and principal-specific signatures, to ensure proper replication and selective
revocation of compromised credentials, respectively. Various schemes have emerged for distributed
authorization using credentials [8-10]. In [8], the X.509 certificate scheme for authentication is
introduced. It is based on the Public Key Infrastructure (PKI) and binds a public key to a global name. Its
later version introduces the X.509 Privilege Management Infrastructure (PMI) [11] which uses X.509
together with the notion of an access control credential called Attribute Certificate which binds a name to
a set of privileges. In contrast to name binding, the approach taken in SPKI/SDSI and KeyNote [9, 10] is
key-centric, i.e. the access control credential is directly bound to a public key with authorizations. In this
case, the public key effectively identifies the principal without using global names, and the access
decision is taken based on the access rights contained in the credential. The PKI-based approach to
distributed access control is traditionally known as Trust Management (TM). We shall henceforth refer to
the credentials used in TM schemes as TM credentials. In the schemes [8-10], the TM credentials used
have their drawbacks. X.509–based TM credential is identity-oriented, and its name binding tends to be
long-lived, making it ill-suited to expressing distributed authorizations. The use of key-centric TM
credentials removes the dependency on names, and introduces the concept of globally unique keys. It
hence achieves the goal of decentralization through delegation. However, the binding of access control
credential with the key blurs the distinction between authentication and authorization, thereby tightly
coupling the two. While an integrated approach to authentication and authorization may be desirable in

3/12

some situations, it is not always the most flexible and practical option. Such an approach limits the
expressiveness of the access control mechanism. This limitation arises due to two reasons. Firstly, not all
system-specific capabilities may be known in advance in a distributed environment and hence a
capability-based credential is not suitable to expressing authorizations. This is especially the case if SSO
is to be supported, because the intention there is to prevent having multiple authorization mechanisms for
access to multiple resources. Secondly, the use of an access control credential embedded within an
authentication scheme is not sufficient to meet the effective access control requirement outlined earlier.

The next generation of distributed authorization models has attempted to alleviate this drawback
by designing effective and more expressive access control schemes. Many recent models have employed
the Role Based Access Control (RBAC) as a solution to privilege management in large scale enterprise
systems. RBAC has already been shown to be effective for privilege management on the Web [18, 19,
21]. We now evaluate the merits of existing RBAC-based approaches with regards to our requirements.
The X.509 based PMI and its reference implementations such as PERMIS [20], is not suitable due to its
name-binding approach. A work that attempts to address this issue is presented in [21]. Although they do
not focus on authentication, their idea of using a “smart certificate” for role-based authorizations is
appealing and could possibly be used to provide SSO. Another prominent specification is the XML-Based
Access Control Markup Language (XACML) [22]. XACML has recently been adopted as a standard
specification. However, XACML in its present form does not support role-based access control, and
hence lacks the desirable features like simplified administration and privilege management in large scale
enterprises. It also has no explicit support for strong authentication. X-GTRBAC and OASIS [12, 13] are
similarly expressive models using RBAC to define dynamic fine-grained access control in an enterprise
environment. However, both these schemes also do not provide explicit support for strong authentication.
Additionally, they use either identity or capability-based credentials and are not scalable to the case of
role assignment for unknown users on the Internet. Two approaches for role assignment to unknown users
based on TM credentials have been presented in [14, 15]. The Trust Establishment Project (TEP) [14]
uses a Trust Policy Language (TPL) to map holders of public key certificates to roles based on attribute
contents thereof. A Role based Trust management (RT) framework is introduced in [15]. It merges
features from TM and RBAC and uses a more expressive policy language compared to TPL. The TM
credentials used in [14, 15] are examples of property-based credentials, as opposed to identity or
capability-based, because they allow user authentication and subsequent authorization (i.e. role
assignment) based on certain properties thereof. Referring back to our requirement related to
authentication for strangers, these are the type of credentials that we need to authenticate unknown users
into known roles, since pre-defined identities and capabilities cannot be assumed. Although they come
one step closer to meeting our requirements, both schemes, however, have their shortcomings. While TEP
and RT provide a TM credential-based mechanism to assist in distributed authorizations, they do not
support an elaborate access control scheme beyond the basic permission-to-role assignment mechanism in
RBAC. Additionally, TEP in its present implementation uses X.509-based PKI, and hence suffers from
the name-binding problems discussed above. Despite the shortcomings, the use of TM credentials in
RBAC setting is appealing for our purposes because it would allow us to integrate distributed
authentication support within a well-accepted authorization mechanism, and essentially combine the
features of the approaches [12-15].

In order to provide a complete federated identity and privilege management solution, however,

we also need to satisfy the requirement of SSO. The most prominent Web-based SSO system in use today
is the Microsoft Passport [2]. Passport is based on a centralized server model, and is much like a Kerberos
counterpart for the Web. However, on an Internet scale, the centralized approach is not without its due
share of risks- amongst them are compromise of the central repository and subjugation to denial of service
attacks. A centralized model, in fact, is antithetical to the distributed nature of the Internet [23].
Therefore, the potential compromise of system security through the use of Passport as a SSO mechanism
is unacceptable, and calls for a better approach. We however emphasize that SSO is only as effective as

4/12

the underlying authentication and authorization protocols, and those need to be improved to provide a
more quality experience to the end user. This is where the motivation of our work lies; we address the
problem of providing improved identity and privilege management solution through an interoperable and
modular design of underlying authentication and authorization mechanisms. In particular, we integrate
strong authentication and decentralized SSO support within an authorization model, while also
cryptographically enhancing the latter with the support for issuing persistent authorization assertions to
make the SSO more efficient. In the following sections, we provide the design and grammar
specifications of our access management framework.

3. Proposed Solution

The emphasis of our proposed solution is to design and implement modular components to
interface with an existing authorization model so as to extend it with the capabilities for federated identity
and privilege management in open enterprise environments.

An initial requirement the authorization model need satisfy is suitability to Web-based

applications. Based on the original system requirements and the discussion in Section 2, we believe that
X-GTRBAC [12] is one candidate, and has therefore been adopted as the authorization model in our
system. For the benefit of the reader, we tabulate the salient features of the model in Table 1. The X-
Grammar specification is presented in Appendix A, whereas a detailed discussion of its access control
mechanism is found in [12]. The central idea is that the system uses credentials supplied by users to
assign them to roles (authentication) subject to any assignment constraints. The users can then access
resources according to their role memberships (authorization) subject to any dynamic access constraints.
Hence, X-GTRBAC supports fine-grained attribute-based access control with modular authentication and
authorization mechanism. However, the model in its present form lacks strong authentication and
persistence management. To provide this support, we outline the configuration shown in Figure 1. The
persistence management and authentication modules can be distinct components with well-defined
interfaces, and could possibly be published as Web services. This not only results in a scalable system,
but also provides the flexibility of managing the core functionality of these components independently of
each other. We emphasize that the modular architecture of the distributed authentication and authorization
system allows interoperable access management across heterogeneous domains, and could realize the
possibility of a decentralized SSO paradigm. This claim shall be supported with technical discussion in
this section.

The X-GTRBAC model through its XML-based specification enables effective Web-based access

control capabilities, which have been shown to be applicable in Web services [24] and enterprise systems
[12]. That together with its decentralized administration model [25] makes it a promising candidate for
access management in open systems. In addition, the initial framework presented in [19] leading to the X-
GTRBAC model has been cited by the Organization for Advancement of Structured Information
Standards (OASIS) in its announcement of the ratification of the ANSI RBAC security standard [26]. A
convenient feature of the X-GTRBAC is the XML-format which not only allows it to be integrated within

Authorization
Model

(X-GTRBAC)

Authentication

Module

Persistence

Management
Module

Figure 1: The design methodology for a unified distributed authentication and authorization system

5/12

Web-based applications but also makes the framework extensible. Therefore, plugging the new
components into the framework does not require revisiting the complete specification; in fact it can be
done in a modular fashion. In the remainder of this section, we discuss the X-Grammar specification for
the persistence management and authentication modules that interface with X-GTRBAC (as shown in
Figure 1) to extend it to provide support for federated identity and privilege management. The next
section explores the software architecture of the system, and Appendix B presents an execution scenario
of the prototype implementation of our model.

Table 1. Salient Features of X-GTRBAC

Element Type Element Name Purpose
XML User Sheet (XUS) Declares the users and their authorization credentials

XML Role Sheet (XRS) Declares the roles, their attributes, role hierarchy, and any
separation of duty and temporal constraints associated with roles

RBAC Element

XML Permission Sheet (XPS) Declares the available permissions

XML User-to-Role Assignment Sheet
(XURAS)

Defines the rules for assignment of users to roles; these
assignments may have associated temporal constraints

RBAC
Assignments

XML Permission-to-Role Assignment
Sheet (XPRAS)

Defines the rules for assignment of permissions to roles; these
assignments may have associated temporal constraints

RBAC Constraints XML Separation Of Duty Definition
Sheet (XSoDDef)

Defines the separation of duty constraints on roles

XML Temporal Constraint Definition
Sheet (XTempConstDef)

Defines the temporal constraints on role enabling and activation;
also defines temporal constraints for user-to-role and permission-
to-role assignments

GTRBAC
Constraints

XML Trigger Definition Sheet
(XTrigDef)

Defines context-based triggers for invocation of periodic events
subject to associated constraint evaluation

Authorization
Credentials

XML Credential Type Definition Sheet
(XCredTypeDef)

Defines the available credential types

As has been outlined as one of the requirements, attention has been paid during the interface

design to the fact that it should support, and not duplicate, the functionalities available in existing
standards. Although many specifications are in the works, one of them has recently been hailed by the
industrial community as the true enabling technology for SSO, namely the Security Assertion Markup
Language (SAML) [27]. SAML provides a message exchange protocol between autonomous business
entities, and is intended to be used to encode security “assertions”. The assertions are declarations of facts
about an individual or business entity, much like the Attribute Certificates of X.509 PMI. An assertion,
however, can also represent an authentication or authorization decision. SAML assertions can also be
digitally signed. In addition, SAML supports a query/response protocol to request and send assertions.
Despite all these properties, SAML is not a self-sufficient mechanism to ensure SSO as it does not
provide any authentication or authorization support; it does the important task of allowing the
communicating entities exchange security information in a decentralized manner but does not establish,
check or revoke any information on its own. Therefore, a mechanism is needed that SAML can tie in to.
Our specification provides one such mechanism, without replicating the functionality already provided by
SAML. It is designed so as to accept SAML-encoded assertions as an acceptable form of credential.

6/12

However, that alone is not sufficient for our purposes- SAML assertions are inherently subject to the
same name-binding problem that exists in the protocols it is designed to work with, such as Kerberos and
X.509. Therefore, to satisfy the requirement of authentication for strangers, and that of anonymity and
privacy, we have designed a specification that works with property-based TM credentials, as alluded to in
Section 2. This requires a translation from SAML encoding to X-GTRBAC format, and vice versa, using
XSLT.

 We now discuss the design features of the persistence management and authentication modules in
our framework. For the sake of space spacing, we do not reproduce the X-Grammar for the corresponding
elements included in Appendix A. In the following, we elaborate on the noteworthy features w.r.t. to our
present work on the enhanced X-GTRBAC model.

Table 2: Credential Configuration in Enhanced X-GTRBAC

Credential

Type
X-GTRBAC Instance Meaning Applicable Scenar io

1
.

Identity-
based

<User user_id =“john” >
 <UserName>John D</UserName>
 <CredType cred_type_id =
“login” type_name = “Login” >
 <Header>… </Header>
 <CredExpr mode = ‘identity’ >
 <passwd>temppass</passwd>
 </CredExpr>
 </CredType>
</User>

The user with user_id john
has the Login credential.
The use of user_id in this
credential is mandatory. The
id is derived from the key; the
key information is contained
in the Header element and is
used to authenticate the user
together with the password.

This is an example of strong
authentication with a key and
password used by most
enterprises; the user is
identified using a login id
(mapped to a key) and a
password. All users
presenting a valid credential
MUST exist in the target
system and are authenticated
into an appropriate role.

2
.

Capability-
based

<User user_id =“any” >
 <UserName/>
 <CredType cred_type_id =
“SysEngr” type_name =
“SystemEngineer” >
 <Header>… </Header>
 <CredExpr mode =
‘capability’ >
 <Domain>Engg</Domain>
 <IP>128.10.*.*</IP>
 <System>UNIX</System>
 </CredExpr>
 </CredType>
</User>

Any user may have the
credential
SystemEngineer . The
user_id “any” is a
RESERVED word. The user
authentication is based on the
key information in the Header
together with the attributes in
the credential expression
reflecting the capabilities.
This credential may also be
delegated as it is not bound to
a user identity.

This is an example of inter-
enterprise privilege
management where
authorization decisions can be
based on capabilities of the
user, and delegation of
credentials may also be
frequently required between
different enterprises. The
capabilities expressed in the
credential MUST exist on the
target system.

3
.

Property-
based

<User user_id =“any” >
 <UserName/>
 <CredType cred_type_id =
“cust” type_name =
“Customer” >
 <Header>… </Header>
 <CredExpr mode = ‘property’ >
 <SSN>111-22-3333</SSN>
 <DLN>0991-09-0991</DLN>
 <DOB>05-21-78</DOB>
 </CredExpr>
 </CredType>
</User>

Any user may have the
credential Customer . The
user_id “any” is a
RESERVED word. The user
authentication is based on the
key information in the Header
together with the attributes in
the credential expression
reflecting the properties. This
credential may also be
delegated as it is not bound to
a user identity.

This is an example of Web-
based privilege management
in open systems where
authorization decisions can be
based on properties of
unknown users without
regards to specific
capabilities on the target
system; delegation of
credentials is also an essential
feature in this environment.
NO PRIOR KNOWLEDGE
of user identities or
capabilities is assumed.

7/12

(i) TM Credential Configuration : Of particular interest is the configuration of TM credentials in different

modes, namely identity-, capability-, or property-based, depending on the requirements of the
application. All these modes are defined using the <!-- Credential Type Definition>. The Credential Expression sub-
element has an attribute “mode” that allows one to specify the mode of credential configuration. The
Header sub-element provides support for strong authentication, and the Attribute List sub-element can
comprise of generic attributes defining identity, capability or property of the credential holder. This
feature is particularly useful for backward compatibility with existing technologies. We give examples
of TM credential configuration in these three modes in Table 2, along with suitable application
scenarios involving the use of these credential types. We note that the credential configuration in
capability or property-based modes allows authentication for unknown users since identity is not
assumed to be known. If a user name is not provided in the credential, the key information in the Header
element is used during role assignment. In the case of property-based credentials, the system also
supports trust establishment while maintaining anonymity and privacy by requesting on-demand
credentials until sufficient privilege level is determined according to the security policy. The sufficient
privilege level in our context means that all role assignment conditions are satisfied in terms of
possession of the desired properties. Integration with mechanisms such as SAML allows this on-
demand credential collection to seamlessly occur, whereby the desired properties of the credential
holder are verified by the respective issuers. The key difference in the capability and property-based
credential types is that the attributes in the credential expression for the former are all specific to a
particular enterprise environment, and comprise a set of capabilities known to exist in the system. On
the other hand, the attributes in the credential expression for the latter type are not all assumed to be
known in advance, and attributes can be acquired and supplied on demand to establish trust level of
strangers in unknown environments using generic properties thereof, such as social security number or
driver’s license number. This decentralized control also results in a directory-less solution whereby no
name-based directory lookup is needed. 3

Table 3: Constraint Specification in Enhanced X-GTRBAC*

Constraint

type
X-GTRBAC Instance Meaning Applicable Scenar io

1
.

Role
Delegation

<XRS xrs_id="xrsCust">
 <Role role_id="rCust"
role_name="Customer ">
 <Junior>Guest </Junior>
 <DelegationConstraint>
 <DelegationCondition
d_expr_id="OneWeek"/>
 </DelegationConstraint>
 </Role>
</XRS>

The role Customer can only
be delegated if the delegation
constraint is satisfied. The
delegation condition on the
role refers to a duration
expression which imposes a
restriction on the time period
of the delegation.

This is an example of requiring
the use of restrictions in
privilege delegation. The
restricted delegation applies to
all junior roles of this role, and
is enforced through the role
hierarchy.

2
.

Role
Assignment

<URA ura_id="uraCust"
role_name="Customer ">
 <AssignUser user_id="any">
 <AssignConstraint>
 <AssignCondition
cred_type="Customer ">
 </AssignConstraint>
 </AssignUser>
</URA>

The role Customer can only
be assigned to a user who
possesses the credential
Customer . This refers to
the property-based credential
(#3) in Table 2.

This is an example of requiring
the use of property-based
credential for assignment of
unknown users to an
appropriate role.

33* This represents only a subset of access constraints in X-GTRBAC. For complete specification, see [12].

8/12

 (ii) Delegation: Also of interest is the mechanism that enables delegation of authority to achieve the

decentralization support in our framework. This requirement is captured naturally and elegantly through
the use of role hierarchy in our RBAC mechanism: a senior role can set the delegation rights for its
junior roles in its role definition by specifying an optional Delegation Constraint sub-element within <!-- Role

Definition>. The delegation constraint may be used to restrict the interval, period or duration of the
delegation using the periodic time expression of X-GTRBAC (See Table 1). The absence of a
delegation constraint means unrestricted delegation rights; otherwise, the provided conditions need be
satisfied in order for delegation to occur. These conditions are evaluated and enforced using the same
predicate-based mechanism already in place for handling access constraints in X-GTRBAC. We
illustrate the use of this constraint specification mechanism in Table 3 by listing an instance each of
delegation and assignment constraint using the credential type from Table 2.

 While using role-hierarchy is a particularly neat mechanism for handling organizational

delegation, it is sometimes also desirable to support inter-organization delegation, for e.g., delegating
one’s privileges to a Web service for using them on one’s behalf. Such delegation is possible by
assigning the service an appropriate external role outside of the role hierarchy. The delegation can then
occur from the given role to the external role by maintaining a mapping, for which we use the Linked Role
sub-element which links to the role definition of the corresponding external role. The “type” attribute
indicates the direction of delegation. Note that resolving a delegation chain would require a reverse
lookup of key information corresponding to each instance of a linked role.

(iii) Digital Signatures: An effective SSO solution depends on the persistence of the authentication and

authorization assertions across enterprise domains. Toward this end, the Header element also includes
support for digital signatures. The support for digital signatures in SAML allows signed assertions to be
exchanged between all SAML-compliant entities.

4. Software Architecture

In this section, we present the software architecture of our federated identity and privilege
management solution. It is depicted in Figure 2.

Authentication

Module

XML Encryption/
Digital Signature

Persistence

Management
Module

XML Encryption/
Digital Signature

XKMS
Web service

SAML
Request

X-GTRBAC
Authorization

Model

4’

1

2

3

B

4

SAML
Authorization
Assertion

SAML
Authentication
Assertion

5 6

SAML
Response

A

Figure 2: The software architecture for a federated identity and privilege management solution

9/12

Because of our motivation for integration with open standards, we support SAML encoding for
representing authentication and authorization credentials. In the discussion henceforth, we shall refer to a
signed credential as a “token”, much like a Kerberos ticket, allowing the credential holder to reuse it
without subsequent revalidation. Additionally, SAML encoding is also supported for the query/response
protocol for credential collection. As discussed above, this particular feature allows trust establishment
between strangers and also preserves anonymity and privacy by controlling disclosure of sensitive
credentials according to the security policy. We outsource the certificate management to the well-known
XML Key Management Specification (XKMS) [28]. XKMS is a Web-based service that can be invoked
from a client application, and supports PKI-based key generation (at either client or server), registration,
revocation, and verification. SOAP binding is used for message exchange. XML Encryption and XML
Digital Signature standards are used to provide message confidentiality and authenticity, respectively. The
end-to-end communication is assumed to be secured using mechanisms such as SSL/TLS.

The following scenario highlights the salient features of the system architecture (the step numbers
correspond to the numbered arrows in Figure 2):

Step 1: User enters his login id and requests access to a resource. The login id may either be the user’s
public key or an identifier that uniquely maps to the public key. Such an identifier may be generated and
mapping maintained by a dedicated software routine, or it may also be done through the use of hardware
(such as smart cards). This arrangement is nevertheless desirable as users cannot be expected to enter
difficult-to-remember public key values at the login console. The access request along with the login
information is sent to the authentication module as a SAML request with an embedded authentication
query.

Step 2: The authentication module evaluates the information in the SAML request (using either XKMS
or the local server) and appropriately issues a SAML authentication assertion. In our research prototype,
the authentication module itself acts as a proxy for the XKMS Web service for issuing SAML-compliant
authentication assertion. The authentication assertion is appended to the security header in the SOAP
message. Attribute assertions may similarly be obtained. In case the request goes to XKMS, the
authentication module and XKMS can also communicate using SAML.

Step 3: Based on SAML authentication and attribute assertions, the X-GTRBAC module assigns a role
membership to the requestor according to the available information. This step requires a translation from
the SAML assertions into X-GTRBAC credential format which is used for user-to-role mapping. The
authorizations of the user are then determined based on the corresponding role-permission mapping.
Additional attribute assertions may also be obtained during this process if anonymity and privacy
considerations do not allow all attributes to be declared upfront in step 2. This can be achieved by using
trust negotiation mechanisms [29] to allow gradual disclosure of sensitive attributes. Once sufficient level
of trust has been established, the authorization decision is captured as an X-GTRBAC credential with the
holder (identified by the public key) as the role name and the attributes as the role permissions.

Step 4: To enable SSO, the X-GTRBAC module communicates the authorization credential to the
persistence management module, which digitally signs it and returns an authorization token in the form of
a SAML assertion. This token can subsequently be used by the requestor to access resource without going
through an authentication process (step 4’).

The steps A and B in Figure 2 represent the communication between the system modules and the

XKMS Web service, and may be invoked as necessary during the communication. For instance, step A
could be carried out by the authentication module before the start of the communication to generate and
register keys, and later on to verify the same. Similarly, step B could be carried out by the persistence
management module to verify the digital signatures of an authorization assertion received by the X-

10/12

GTRBAC system. Additionally, there is the option to return the SAML response to a SAML request back
to the requestor (step 6). This is needed in situations when the request is initiated from an intermediary
wishing to obtain assertions about the end user. Appendix B illustrates an execution scenario during
prototype testing of this architecture using the policy instances from Tables 2 and 3 in the previous
section.

Conclusion

This paper presented a federated identity and privilege management solution for open systems.
Among the primary motivations of this work was to overcome the shortcomings of traditional distributed
authentication and authorization schemes, and to develop an access management framework enabling
decentralized SSO functionality across multiple enterprise domains. Our framework employs X-
GTRBAC as the authorization model, and hence supports fine-grained attribute-based access control. An
authentication module is integrated into X-GTRBAC for strong authentication. SSO is achieved through a
privilege management mechanism integrated into X-GTRBAC for issuing signed authorization assertions.
The use of property-based credentials presents a scalable alternative to name-based and capability-based
approaches. It not only allows SSO to be decentralized, but also help with anonymity and privacy since it
allows incremental trust establishment to occur. A particularly convenient feature of our approach is its
integration with SAML, a current standard aimed at enabling SSO. To the best of our knowledge, ours is
the first approach integrating two security standards, namely RBAC and SAML, toward designing an
access management framework for open systems. Overall, our grammar specification provides support for
federated identity and privilege management while meeting the requirements outlined in the paper.
However, we believe that this set of requirements is not exhaustive. We have only presented an improved
mechanism; it is not necessarily ideal yet. Among some challenges we see presently are integration with
existing directory schemes to support property-based credentials, maintaining some state information for
anonymous users to ensure proper accountability, and handling delegation in the presence of autonomous
linked roles such as Web services, which requires ontology-mediated resolution of external roles along a
delegation chain. A prototype system of our current model has been implemented and preliminarily
tested. We intend to report detailed implementation experiences in some future work. We also plan to
integrate our system with a trust negotiation system like Trust-X [29] and to extend it with privacy
enhancing techniques [30].

References
[1] D. Buell, R. Sandhu, “Guest Editors' Introduction: Identity Management”, IEEE Internet Computing,

Nov/Dec2003.
[2] Microsoft .NET Passport http://www.passport.net/Consumer/Default.asp?lc=1033
[3] R. M. Needham and M. D. Schroeder, “Using encryption for authentication in large networks of

computers," Communications of the ACM, vol. 21, no. 12, pp. 993{999, 1978.
[4] Kerberos: The Network Authentication Protocol, http://web.mit.edu/kerberos/www/
[5] R. M. Needham and A. H. Herbert, “The Cambridge Distributed Computing System”. Addison Wesley,

Jan. 1982. ISBN 0-20114-092-6.
[6] A. Wulf, E. S. Cohen, W. M. Corwin, A. K. Jones, R. Levin, C. Pierson, and F. J. Pollack, “HYDRA: The

kernel of a multiprocessor operating system," Communications of the ACM, vol. 17, pp. 337-345, June
1974.

[7] S. J. Mullender, C. van Rossum, A. S. Tanenbaum, R. van Renesse, and H. van Stavern, “Amoeba: a
distributed operating system for the 1990s.," IEEE Computer, vol. 23, pp. 44-53, May 1990.

[8] M. Myers, C. Adams, D. Solo, and D. Kemp, “Internet X.509 certi_cate request message format," RFC
2511, Internet Engineering Task Force, Mar. 1999. See http://www.ietf.org/rfc/rfc2511.txt.

[9] C. M. Ellison, “SPKI requirements," RFC 2692, Internet Engineering Task Force Draft IETF, Sept. 1999.
See http://www.ietf.org/rfc/rfc2692.txt.

[10] M. Blaze, J. Feigenbaum, and A. D. Keromytis, “KeyNote: Trust management for public-key
infrastructures," in Security Protocols International Workshop, Springer LNCS, no. 1550, pp. 59-63, 1998.

11/12

http://www.passport.net/Consumer/Default.asp?lc=1033
http://web.mit.edu/kerberos/www/

[11] ITU-T (Telecommunication Standardization Sector, International Telecommunication Union), Geneva,
Switzerland, ITU-T Recommendation X.509: The Directory: Public-Key and Attribute Certificate
Frameworks, 2000.

[12] R. Bhatti, "X-GTRBAC: An XML-based Policy Specification Framework and Architecture for Enterprise-
Wide Access Control”, Masters thesis, Purdue University, May 2003. Available as CERIAS tech. report
2003-27.

[13] J. Bacon, K. Moody, and W. Yao, “Access control and trust in the use of widely distributed services”, In
Middleware 2001, volume LNCS 2218, pages 300{315. Springer-Verlag, November 2001.

[14] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid, “Access control meets public key infrastructure,
or: Assigning roles to strangers”, In Proceedings of the 2000 IEEE Symposium on Security and Privacy,
pp. 2–14, 2000. IEEE Press.

[15] Ninghui Li, John C. Mitchell, and William H. Winsborough, “Design of a role-based trust management
framework”, In Proceedings of the 2002 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2002.

[16] W. Yao, “Trust Management for Widely Distributed Systems”, PhD Thesis, University of Cambridge.
[17] Gombás Gábor, “Evaluation of Distributed Authentication, Authorization and Directory

Services”,http://www.caesar.elte.hu/eltenet/projects/demogrid/demogrid-report-1/dg-rep-1-sec-eval.pdf
[18] J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H. Spafford, “Security Models for Web-based Applications”,
 Communications of the ACM, 44, 2 (Feb. 2001), pages 38-72.
[19] R. Bhatti, J. B. D. Joshi, E. Bertino, A. Ghafoor, “XML based Specification for Web- Services Document Security”,

IEEE Computer, April 2004.
[20] D. Chadwick, A. Otenko, “The PERMIS X.509 role based privilege management infrastructure”, In

Proceedings of the Seventh ACM Symposium on Access Control Models and Technologies, June 2002.
[21] J. Park, R. Sandhu, “RBAC on the Web by smart certificates”, In Proceedings of the Fourth ACM

Symposium on Access Control Models and Technologies, October 1999.
[22] Extensible Access Control Markup Language (XACML) http://xml.coverpages.org/xacml.html
[23] David P. Kormann and Aviel D. Rubin, “Risks of the Passport Single Signon Protocol”, Computer

Networks, Elsevier Science Press, volume 33, pages 51-58, 2000.
[24] R. Bhatti, E. Bertino, A. Ghafoor, “A Trust based Context-Aware Access Control Model for Web Services”, In

proceedings of The Third International Conference on Web Services, San Diego, July 6-9, 2004.
[25] R. Bhatti, J. B. D. Joshi, E. Bertino, A. Ghafoor, "X-GTRBAC Admin: A Decentralized Administration

Model for Enterprise Wide Access Control”, In proceedings of 9th ACM Symposium on Access Control Models
and Technologies (SACMAT04), 2-4 June 2004

[26] Role Based Access Control (RBAC): ANSI Security Standard
http://xml.coverpages.org/ni2004-04-05-a.html

[27] Security Assertion Markup Language (SAML) http://xml.coverpages.org/saml.html
[28] XML Key Management Specification http://www.w3.org/TR/xkms/
[29] E.Bertino, E.Ferrari, A.C. Squcciarini, “A Peer-to-Peer Framework for Trust Establishment”, To appear in

IEEE Transactions on Knowledge and Data Engineering, 2004.
[30] Proceedings of Fourth Workshop on Privacy Enhancing Technologies (PET 2004), Toronto (Canada), May

26-28, 2004.

12/12

http://www.caesar.elte.hu/eltenet/projects/demogrid/demogrid-report-1/dg-rep-1-sec-eval.pdf
http://xml.coverpages.org/xacml.html
http://xml.coverpages.org/ni2004-04-05-a.html
http://xml.coverpages.org/saml.html
http://www.w3.org/TR/xkms/

APPENDIX A

X-GTRBAC Grammar
[Basic Definitions]
<!-- Policy Definition> ::=<Policy policy_id =(id)>
 <PolicyName> (name) </PolicyName>
 <!-- XML User Sheet>
 <!-- XML Role Sheet>
 <!-- XML Permission Sheet>
 <!-- XML User-Role Assignment>
 <!-- XML Permission-Role Assignment>
 [<!-- Local Policy Definitions>]
 [<!-- Policy Relationship Definitions>]
</Policy>
<!-- XML User Sheet> ::=<XUS [xus_id = (id)]>
 [<!-- Definitions of Credential Types>]
 <!-- User Definitions>
</XUS>
<!-- Definitions of Credential Types>
 ::= <XCredType [xctd_id = (id)] >
 [<!-- Credential Type Definition>]+
</XCredType>
<!-- Credential Type Definition>
::= <CredType cred_type_id = (id)
type_name= (type name) >

 <!-- Attribute List>
</CredType >
<!-- Attribute List> ::= <AttributeList>
 [<!-- Attribute Definition>]+
</AttributeList>
<!-- Attribute Definition> :: <Attribute>
 <AttributeName usage = “mand | opt”
 type = (type)> (name) </AttributeName >
</Attribute>
<!-- User Definitions > ::=<Users>
 [<!-- User Definition>]+
</Users>
<!-- User Definition> ::= <User user_id = (id)>
 <UserName>[(name)]</UserName>
 <!—CredType>
 <MaxRoles> (number)</MaxRoles>
 </User>
<!—CredType > ::= <CredType cred_type_id = (id)
 type_name= (type name) >
 [<!—Header>]
 <!-- Credential Expression>
</CredType>
<!-- Credential Expression > ::= <CredExpr mode=
(identity | capability | property)>
 <!-- AttributeValuePairs>
 <!-- DomainSet>
</CredExpr>
<!-- AttributeValuePairs> ::= [<(attribute name)> (attribute
value) </(attribute name)>] +
<!-- XML Role Sheet> ::=<XRS [xrs_id = (id)] >
 [<!-- Role Definition>]+
</XRS>
<!-- Role Definition> ::=<Role role_id = (id)
 role_name = (role name)>

[<!-- Attributes>]
<!-- DomainSet>

 [<!—(En|Dis)abling Constraint>]
 [<!—[De]Activation Constraint>]
 (<SSDRoleSetID> (id) </SSDRoleSetID>)*
 (<DSDRoleSetID> (id) </DSDRoleSetID>)*

 [<Junior> (name) </Junior>]
 [<Senior> (name) </Senior>]
 [<LinkedRole type=(delegator |
delegatee)> (name)</LinkedRole>]
 [<!—Delegation Constraint>]
 [<Cardinality> (number) </Cardinality>]
</Role>
<!-- Attributes> ::= <Attributes>
<!-- AttributeValuePairs>
<!-- Separation of Duty Definitions>
::= <XSoDDef [xsod_id = (id)]>
 [<!—SSDRoleSets>]
 [<!—DSDRoleSets>]
 </XSoDDef>
<!-- SSDRoleSets > ::= <SSDRoleSets>
 [<!—SSDRoleSet>]+
 </SSDRoleSets>
<!—SSDRoleSet> ::= <SSDRoleSet>
 [<SSDRole ssd_role_set_id = (id)
 ssd_cardinality = (number)>
 (role name)
 </SSDRole>]+
 </SSDRoleSet>
<!-- DomainSet> ::= <DomainSet>
 [<!—DomainID>]+
 </DomainSet>
<!-- DomainID>::= <DomainID> (id)</DomainID>
<!-- DSDRoleSets > ::= <DSDRoleSets>
 [<!—DSDRoleSet>]+
 </DSDRoleSets>
<!—DSDRoleSet>::= <DSDRoleSet>
 [<DSDRole dsd_role_set_id = (id)
 dsd_cardinality = (number)>
 (role name)
 </DSDRole>]+
 </DSDRoleSet>
<!-- XML Permission Sheet>::=<XPS [xps_id = (id)]>
 [<!-- Permission Definition>]+
</XPS>
<!-- Permission Definition> ::=
<Permission perm_id = id [prop= (prop op)] >
<Object type= (type name) id= (id)/>
<Operation> (access op) </Operation>
<!-- DomainSet>
</Permission>
<!-- XML User-Role Assignment Sheet>::=
<XURAS [xuras_id = (id)]>
 [<!-- User-role Assignment>]+
</XURAS>
<!-- User-role Assignment>::=
<URA ura_id=(id) role_name=(name)>
 <AssignUsers>
 [< !—Assign User>]+
 </AssignUsers>
</URA>
<!—[De]Assign User > ::=
 <[De]AssignUser user_id=(id)>
 <!—[De]Assign Constraint >
 </[De]AssignUser>
<!-- XML Permission-Role Assignment Sheet>::=
<XPRAS [xpras_id = (id)]>
 [<!-- Permission-Role Assignment>]+
</XPRAS>

 <!—Interval Expression> ::=
<!-- Permission-Role Assignment>::=
 <PRA pra_id =(id) role_name =(name)>

<IntervalExpr i_expr_id = (id)>
<begin> (date)</begin>

 <AssignPermissions> <end> (date)</end>
 [<!—Assign Permission>]+
</AssignPermissions>

</IntervalExpr>
<!-- Start Time Expression> ::= <StartTimeExpr
[pt_id_ref = (pt_id)]> </PRA>

< !—[De]Assign Permission> ::=
<[De]AssignPermission perm_id= (id)>
<!—[De]Assign Constraint >

 [<Year>(all|odd|even) /<Year>]
 [<!--MonthSet>]
 [<!--WeekSet>]

</[De]AssignPermission> [<!--DaySet>]
<!—[De]Assign Constraint> ::=
 <[De]AssignConstraint[op = AND|OR|NOT|XOR)]>

</StartTimeExpr>
<!--MonthSet> ::=<MonthSet>

 // opcode defaults to AND if none specified (<Month>(1|..|12)</Month>)1-12
 [<!—[De] Assign Condition>]+ (represents # of months from the start of current Year)
</[De]AssignConstraint> </MonthSet >
<!—[De]Assign Condition> ::=
<[De]AssignCondition cred_type=”type_name”

<!--WeekSet> ::= <WeekSet>
 (<Week>(1|..|4)</Week>)1-4

 [pt_expr_id= (id) | d_expr_id= (id)] > (represents # of weeks from the start of current Month)
 [<!-- Logical Expression>]
</[De]AssignCondition>

</WeekSet >
<!--DaySet> ::= <DaySet>

<!—(En|Dis)abling Constraint> ::=
 <(En|Dis)abConstraint[op = (AND|OR|NOT)]>

 (<Day>(1|..|7)</Day>)1-7

 (represents # of days from the start of current Week)
 // opcode defaults to AND if none specified </DaySet >
 [<!-- (En|Dis)abling Condition>]+
 </(En|Dis)abConstraint>

<!-- Duration Expression> ::=
<DurationExpr d_expr_id = (id)>

<!—(En|Dis)abling Condition> ::=
 <(En|Dis)abCondition [pt_expr_id= (id) |
 d_expr_id= (id)] >

 <cal>(Years|Months|Weeks|Days)</cal>
 <len> (number)</len>
</DurationExpr>

 [<!-- Logical Expression>]
 </(En|Dis)abCondition>

[TM Credential Definitions]

<!—[De]Activation Constraint> ::=

 <[De] ActivConstraint[op = (AND|OR|NOT)]>
<!--Header> ::= <Header>

 // opcode defaults to AND if none specified
 <!-- Principal > [<!—[De]ActivationCondition>]+

 </[De]ActivConstraint> <!-- Issuer >
 <!-- Validity> <!—[De]Activation Condition> ::=

 <[De]ActivCondition [d_expr_id= (id)]>
 [<!-- Digital Signature >]

 <!-- Logical Expression>]
 </[De]ActivCondition >

 </Header>
<!-- Issuer> ::= <Issuer >
 <!-- Principal> <!-- Logical Expression> ::=
 </Issuer>

<LogicalExpr [op = (AND|OR|NOT)]>
<!-- Principal>::= <Principal short_name = (ID)>
 {<PublicKey>(Hash ID)</PublicKey> |
 <NameToken>(String)</NameToken>}

 // opcode defaults to AND if none specified
 [<!-- Predicate>]+
</LogicalExpr>

</Principal> <!-- Predicate> ::= <Predicate>
<!-- Validity> ::= <Validity>
 <IssueTime>(xs:dateTime)</IssueTime>
 [<NotBefore>(xs:dateTime)</NotBefore>]

 { <Operator> (gt|lt|eq|neq) </Operator>
 <NameParam> (name)</NameParam>
 <ValueParam> (value)</ValueParam> }

 [<NotAfter>(xs:dateTime)</NotAfter>]
 | < !--LogicalExpression>

 </Validity>
</Predicate>

<!-- Digital Signature > ::= <DSig>
 (ds:Signature) </DSig> [Temporal Definitions]
<!-- Hash ID > ::= xs:base64Binary
<!—Delegation Constraint> ::= <!-- Definitions of Temporal Constraints>::=

 <XTempConstDef [xtcd_id = (id)]> <DelegationConstraint [op = (AND|OR|NOT)]>
 // opcode defaults to AND if none specified [<!—Interval Expression>]
[<!-- Delegation Condition>]+ [<!-- Periodic Time Expression>]
<!—Delegation Condition> ::=
 <DelegationCondition [pt_expr_id=(id) |

 [<!-- Duration Expression>]
</XTempConstDef>
<!-- Periodic Time Expression> ::=
 <PeriodicTimeExpr pt_expr_id = (id)

 d_expr_id= (id)] >
 [<!-- Logical Expression>]
</DelegationCondition> <!-- Start Time Expression>

 </PeriodicTimeExpr>

APPENDIX B

Prototype Implementation
[An Execution Scenario]

Figure B.1: Policy display of the XML Role Sheet
showing the Customer role information

Figure B.2: Policy display of the XML User Sheet
showing attributes for a Customer credential.

Figure B.3: Policy display of the role assignments for
the “any ” user. Note that the user has been authenticated
into the Customer role based on the Customer
credential of Figure B.2.

Figure B.4: Screen capture showing the initiation of a
user session for the “any ” user. The user can select from
the assigned roles in the list and obtain the
corresponding authorizations.

