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ABSTRACT

Gower, Jason Eric. Ph.D., Purdue University, December, 2004. Square Form Factor-
ization. Major Professor: Samuel S. Wagstaff, Jr.

We present a detailed analysis of SQUFOF, Daniel Shanks’ Square Form Fac-

torization algorithm. We give the expected running time and space requirement for

SQUFOF. We analyze the effect of multipliers, either used for a single factorization

or when racing the algorithm in parallel.
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1. Introduction

1.1 Integer Factorization

The problem of distinguishing prime numbers from composite numbers

and of resolving the latter into their prime factors is known to be one of the

most important and useful in arithmetic. It has engaged the industry and

wisdom of ancient and modern geometers to such an extent that it would

be superfluous to discuss the problem at length. Further, the dignity of

the science itself seems to require solution of a problem so elegant and so

celebrated.

Carl Friedrich Gauss Disquisitiones Arithmeticae [7]

The Fundamental Theorem of Arithmetic says that the factorization of any posi-

tive integer N into primes is unique apart from the order of the prime factors. Once

we are certain that such a factorization exists, the question then becomes how to find

the factorization. Of course, one can use trial division with primes up to
√
N , though

this will be very time consuming for large N . So the real question is how to factor

large N in a relatively short amount of time. Since factoring an integer is essentially

a recursive problem—if we can find p and q such that N = pq, then we continue the

process with either p or q, whichever is composite—we are really only interested in a

fast algorithm for finding a non-trivial divisor of N .

During the course of the last few hundred years, many people have spent time

looking for good factorization algorithms. As a result, today there are several algo-

rithms to choose from if one needs to factor large numbers. On the other hand, most

of these algorithms are designed to work quickly only with numbers of a specific type.
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For example, Pollard’s “p− 1” method is a very quick algorithm for factoring N , but
only if N has a factor p such that p− 1 is a product of relatively small primes.
For each size of integer, there is a fastest general purpose algorithm (among known

methods) to factor that size number. At present, the number field sieve (NFS) is best

for integers greater than 10120, say, and the quadratic sieve (QS) is best for numbers

between 1050 and 10120, etc. As new algorithms are discovered, these ranges change.

With present 32-bit computer architecture, Daniel Shanks’ Square Form Factorization

algorithm (SQUFOF) is the clear champion factoring algorithm for numbers between

1010 and 1018, and will likely remain so. The SQUFOF algorithm is extraordinarily

simple, beautiful and efficient. Further, it is used in most implementations of NFS

and QS to factor small auxiliary numbers arising in factoring large N .

1.2 SQUFOF Briefly

The historically first “sub-exponential” factorization algorithm was the continued

fraction algorithm (see [2]), CFRAC for short. Most modern factorization algorithms,

including CFRAC, look for a pair of integers x, y such that

x2 ≡ y2 mod N and x 6≡ y mod N .

If such a pair can be found, then gcd (x± y,N) will be a non-trivial factor of N .
The main difference between the modern algorithms such as CFRAC, the Quadratic

Sieve, and the Number Field Sieve is the way in which they go about finding the pair

x, y. CFRAC finds this pair by generating the sequences An, Bn, qn, Pn, and Qn for

n ≥ 0, where

√
N = q0 +

1

q1 +
1

q2 + · · ·
.

is the continued fraction expansion of
√
N , the quantity An+1/Bn+1 is n

th convergent

of the continued fraction, and the Pn, Qn arise in the computation of the n
th complete
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quotient of the continued fraction. For the purpose of using CFRAC to factor the

number N we need the fundamental equation

(−1)nQn = A2n − B2nN , (1.1)

or modulo N we have

(−1)nQn ≡ A2n mod N .

The strategy for finding a congruent pair of squares modulo N is then to find a set

of indices Λ such that there is an integer Q with

∏

n∈Λ

(−1)nQn = Q2 .

If we let

A =
∏

n∈Λ

An ,

then we have the congruence Q2 ≡ A2 mod N .

In order to factor N we also need Q 6≡ A mod N . This will be the case at

least half of the time for the following reason. If we assume the N is a square-free

product of k ≥ 2 primes, then there are only two ways to trivially split N into the
product (Q−A)(Q+A) out of 2k possible splittings. So the probability that we have
Q 6≡ A mod N is

2k − 2
2k

≥ 1
2
.

CFRAC can fail if either there is no such set Λ or if all such sets lead only to a

trivial factorization. It was during an investigation [19] of these failures of CFRAC

that Daniel Shanks observed that one could compute successive Qn until one finds

Qn = Q2 for the single index n. Furthermore, Shanks discovered that we really only

need to compute Pn, Qn and qn, which seems surprising in light of Equation (1.1).

Obviously we must expect to go further along the continued fraction if we are to

find such a square, but it may be worth the extra work since the Pn and Qn can be
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computed very quickly and remain bounded less than 2
√
N for all n, unlike the An

which grow exponentially. That all of this is possible and more importantly, leads

to an extremely fast algorithm, is seen once we switch to the language of binary

quadratic forms.

Since the Pn and Qn satisfy the equation

N = P 2n +Qn−1Qn for all n,

the quadratic form in the variables x and y,

(−1)n−1Qn−1x2 + 2Pnxy + (−1)nQny2 ,

which we will write as

Fn =
(

(−1)n−1Qn−1, 2Pn, (−1)nQn
)

,

has discriminant 4N , where the discriminant of the form (a, b, c) is defined to be

b2 − 4ac. Starting with the principal form of discriminant 4N ,
(

1, 2q0, q
2
0 −N

)

,

we proceed along the principal cycle of reduced forms of discriminant 4N by Fn+1 =

ρ (Fn), where ρ is the so-called standard reduction operator. Once we find an even

index n such that Fn = F is the square form (−Q, 2P, S2), we compute the inverse
square root

F−1/2 = G = (−S, 2P, SQ) ,

and iteratively use the reduction operator on this form to generate the sequence

Gm = ρ
m (G) =

(

(−1)n−1Sm−1, 2Rm, (−1)nSn
)

,

where the Rm and Sm are computed using the equations for Pn and Qn, respectively.

Eventually we will find two consecutive forms Gm and Gm+1 with Rm = Rm+1. The

form Gm must be ambiguous and yield a factor of 4N . Square forms that lead to a

non-trivial factorization of N are called proper square forms.



5

Shanks did publish works [16], [18] describing some of his other algorithms for fac-

toring integers, computing class numbers and regulators that are similar to SQUFOF.

Though he never published any papers about SQUFOF, he did lecture about its

virtues and he explained how it works to a few people. Today, there are a few pub-

lished descriptions of the algorithm, such as [4], [12], [3], and [20], but none contain

a detailed analysis. After Shanks’ death in 1996, Hugh Williams discovered some

of Shanks unpublished hand-written manuscripts [15], [14], [13]. These manuscripts

were subsequently typed by Stephen McMath and posted on the web by W. David

Joyner [1].

The manuscript [15] is the closest Shanks ever came to a full description and

analysis of SQUFOF. In [15], Shanks describes the algorithm and begins a heuristic

argument for the following statement. Let N be a product of k distinct odd primes

with N ≡ 3 mod 4. The expected number of forms that SQUFOF must examine
before find a proper square form is

3
(√
2 + 2

)

log 2

2 (2k − 2)
4
√
N .

The manuscript also contains a discussion of how to decide whether a square form is

proper or not, but there is no proof for why this decision is always correct. Shanks

also discusses the use of multipliers as a way to overcome a failure to factor N , and

the possibility of racing multipliers.

1.3 Contribution of the Thesis

It is the purpose of this thesis to give a detailed description and analysis of

SQUFOF. We complete the heuristic argument started by Shanks in [15] and ex-

tend the argument to the cases N ≡ 1, 2 mod 4. We further generalize this argument
to the case where multipliers are used to factor N . We give a detailed description

of the process for deciding which square forms are proper, show how to modify it

when multipliers are used, and prove that it works in all cases. The results of some

experiments provide evidence that our simplifying assumptions are reasonable.
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1.4 Outline of the Thesis

In Chapter 2 we provide a minimum background for the sequel. We describe the

algorithm in Chapter 3. Then in Chapter 4 we give the expected running time and

space requirements for the basic algorithm. Chapter 5 presents the running time

and space requirements when using multipliers. We present in Chapter 6 the results

of some experiments, which provide evidence that our simplifying assumptions are

reasonable. Finally, we conclude in Chapter 7 with some questions for future research.
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2. Background

2.1 Binary Quadratic Forms

We begin with a brief survey of binary quadratic forms. For a more detailed

account of the theory see [3] or [4].

2.1.1 Basic Definitions

Let f(x, y) = ax2 + bxy + cy2, a binary quadratic form in the variables x and y.

The constants a, b, and c will be taken in Z. The discriminant of f is defined to be

b2−4ac. A discriminant ∆ is called fundamental if either ∆ is odd and square-free or
∆ is even, ∆/4 is square-free, and ∆/4 ≡ 2 or 3 mod 4. The form f is called primitive

if gcd (a, b, c) = 1.

We will frequently write f = (a, b, c), or just (a, b, ∗), where c can be computed if
we know the discriminant of f . We shall also write f = (a, ∗, ∗) whenever b and c are
either unknown or irrelevant. Note that if ∆ is the discriminant of the form f , then

∆ ≡ 0 or 1 mod 4, and b ≡ ∆ mod 2.
The form f is said to represent m ∈ Z if there exists x0, y0 ∈ Z such that

f(x0, y0) = ax
2
0+ bx0y0+ cy

2
0 = m. The representation is primitive if gcd (x0, y0) = 1.

We say that two forms f1 and f2 are properly equivalent, or just equivalent, if we

can find α, β, γ, δ ∈ Z such that αδ − βγ = 1 and f1(x, y) = f2(αx + βy, γx + δy).

We write f1 ∼ f2 when f1 and f2 are equivalent. If αδ − βγ = −1, then we say that
f1 and f2 are improperly equivalent. Let Γ = SL2(Z) be the classical modular group

and define the action of Γ on the set of binary quadratic forms by





α β

γ δ



 · f(x, y) = f(αx+ βy, γx+ δy) .
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Then f1 ∼ f2 if and only if f1 and f2 are equivalent modulo the action of Γ. We make

special note of the equivalence: (a, b+ 2na, a+ nb+ c) ∼ (a, b, c) for any n ∈ Z, using

the matrix





1 n

0 1



.

The number of classes of forms of discriminant ∆ will be written h+(∆) or just

h+. It can be shown that h+(∆) is finite.

Forms with negative discriminant are called definite, while forms with positive

discriminant are called indefinite. We will be concerned only with indefinite forms.

Any form (k, kn, c) is called ambiguous. There exists an ambiguous form (k, kn, c)

of discriminant ∆ for each divisor k of ∆. We also refer to any form (a, b, a) as

ambiguous since it is equivalent to (b+ 2a, b+ 2a, a).

2.1.2 Indefinite Forms

Let ∆ be any non-square positive integer. Each class of indefinite forms of dis-

criminant ∆ contains a set of canonical representatives, called reduced forms. The

form f = (a, b, c) is called reduced if
∣

∣

∣

√
∆− 2|a|

∣

∣

∣
< b <

√
∆. It is not hard to see

that f is reduced if and only if
∣

∣

∣

√
∆− 2|c|

∣

∣

∣
< b <

√
∆, and that the number of

reduced forms of a given discriminant is finite. For any indefinite form f = (a, b, c)

with ac 6= 0 we define the standard reduction operator by

ρ(a, b, c) =

(

c, r(−b, c), r(−b, c)
2 −∆
4c

)

, (2.1)

where r(−b, c) is defined to be the unique integer r such that r + b ≡ 0 mod 2c and

−|c| < r ≤ |c| if
√
∆ < |c| ,

√
∆− 2|c| < r <

√
∆ if |c| <

√
∆ .

ρ(f) is called the reduction of f and the result of n applications of ρ is written ρn(f).

It will be convenient to define the inverse reduction operator by

ρ−1(a, b, c) =

(

r(−b, a)2 −∆
4a

, r(−b, a), a
)

,
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where r(−b, a) is defined as in the definition of ρ. Note that if the discriminant of f
is ∆, then the discriminants of both ρ(f) and ρ−1(f) are ∆.

If f is reduced, then both ρ(f) and ρ−1(f) are reduced. If f is not reduced, then

ρn(f) is reduced for some finite n. Similarly f can be reduced after a finite number

of applications of ρ−1. The identities ρ(ρ−1(f)) = ρ−1(ρ(f)) = f hold only when f is

reduced. The unique reduced form (1, b, c) is called the principal form.

We say that (a, b, c) and (c, b′, c′) are adjacent if b+ b′ ≡ 0 mod 2c. More specif-
ically, we say that (a, b, c) is adjacent to the left of (c, b′, c′) and (c, b′, c′) is adjacent

to the right of (a, b, c). It is easy to see that there is a unique reduced form adjacent

to the right and to the left of any given reduced form, these forms being ρ(a, b, c) and

ρ−1(a, b, c), respectively. We now see that within each equivalence class of forms of

discriminant ∆ > 0 there are cycles of reduced forms. The cycle that contains the

principal form is called the principal cycle. The number of reduced forms in any cycle

is always even.

The two forms (a, b, c) and (c, b, a) are said to be associated. If the form f1 and

its associate f2 are in different cycles, then this will be the case for all forms in either

cycle, and in this case the two cycles are said to be associated cycles. Furthermore,

any cycle which contains an ambiguous form (called an ambiguous cycle) contains

exactly two ambiguous forms and is its own associate. Conversely, a cycle which

is its own associate contains exactly two ambiguous forms. The principal cycle is

ambiguous since it contains the principal form (1, b, c).

If (a, b, c) is a form of discriminant ∆ which represents the integer r, then s2 ≡
∆ mod 4r has a solution. Conversely, if a solution to s2 ≡ ∆ mod 4r exists, then r is
represented by some form of discriminant ∆.

Let
(

r
s

)

be the Jacobi symbol and define the quadratic characters χ(r) =
(

−1
r

)

and ψ(r) =
(

2
r

)

. The generic characters of a discriminant ∆ are

(

r

p

)

for all odd primes p that divide ∆ ,

χ(r) if ∆ is even and ∆/4 ≡ 3, 4, 7 mod 8 ,
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ψ(r) if ∆ is even and ∆/4 ≡ 2 mod 8 ,

χ(r) · ψ(r) if ∆ is even and ∆/4 ≡ 6 mod 8 ,

χ(r) and ψ(r) if ∆ is even and ∆/4 ≡ 0 mod 8 .

These characters are multiplicative functions from Z to {±1}. Suppose the dis-
criminant ∆ has n generic characters. Then for some arbitrary ordering we have a

vector-valued function from Z to the n-tuples with ±1 entries. The n-tuple corre-
sponding to an integer r is called the assigned value of r. It can be shown that all

integers r which are representable by forms of a given equivalence class possess the

same assigned values of generic characters. The set of classes of forms possessing the

same assigned values of generic characters is called a genus of forms. The genus for

which the assigned value is (1, 1, . . . , 1) is called the principal genus. The principal

genus contains the principal form. An integer r is representable by some class of

forms of discriminant ∆ if and only if the assigned values of the generic characters of

r match the assigned values of characters of some genus of discriminant ∆. This is

true if and only if the congruence s2 ≡ ∆ mod 4r is solvable.
The number of ambiguous classes (including the principal class) is equal to one-

half the number of possible genera. If ∆ is a fundamental discriminant, then we know

that the product of the assigned values for the characters for any genus is +1 and

that exactly half of the possible genera exist.

2.1.3 Composition of Forms

We now define composition of forms. Let f1 = (a1, b1, c1) and f2 = (a2, b2, c2) be

two forms with the same discriminant. Let β = (b1 + b2) /2, m = gcd (a1, β), and

n = gcd (m, a2). Solve a1x+ βy = m for x and y and

mz/n ≡ x

(

b2 − b1
2

)

− c1y mod a2/n for z .

Then the composition of f1 and f2, written f1 ◦ f2 is
(

a1a2/n
2, b1 + 2a1z/n, ∗

)

,
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where the third coefficient may be determined by the discriminant formula. We note

that even if f1 and f2 are reduced, their composition need not be reduced. As a

special case, we present the formula for f 2 = f ◦ f as follows. Suppose f = (a, b, c),
n = gcd (a, b), and y is a solution for by/n ≡ 1 mod a/n. Then f 2 is equivalent to

(

a2/n2, b− 2acy/n, ∗
)

.

Note that if gcd (a, b) = 1, then

(a, b,−ac)2 ∼
(

a2, b,−c
)

.

Moreover, g is equivalent to an ambiguous form if and only if g ◦ g is equivalent to
the principal form. This implies that the square of g ◦ (a, b,−ac) is equivalent to
(a2, b,−c).
Also note that if f is a square form on the principal cycle, then f must have a

square root on the principal cycle. To see this, let f 1/2 be any square root of f . If

neither f 1/2 nor ρn
(

f 1/2
)

for all n > 0 is on the principal cycle, then f 1/2 must be

equivalent to some ambiguous form other than the principal form, say g. Then f 1/2◦g
is equivalent to the principal form, and its square is equivalent to f . Finally, we can

reduce this form to an equivalent form on the principal cycle.

Observe that

(1, b1, c1) ◦ (a2, b2, c2) ∼ (a2, b2, c2) ,

and that

(a, b, c) ◦ (a,−b, c) ∼ (a, b, c) ◦ (c, b, a) ∼ (ac, b, 1) .

In other words, under composition, the principal class is the identity and the as-

sociate is the inverse. Also composition is commutative and associative. Thus the

set of equivalence classes of forms of a given discriminant is an abelian group under

composition.
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2.2 Periodic Continued Fractions

Let N > 0 be a real quadratic irrational number. The simple continued fraction

expansion of
√
N is given by

√
N = q0 +

1

q1 +
1

q2 + · · ·
.

We will always abbreviate the expansion as [q0, q1, . . . ]. The expansion is ultimately

periodic, meaning that for some j > 0 we will have ai = ai+j for all i > 0, where j is

the period of the continued fraction. In this case, we will write
√
N = [q0, q1, . . . , qj ].

The qi are called the partial quotients of the continued fraction. The rational

number [q0, q1, . . . , qn] is called the n
th convergent of the continued fraction. Define

An =



























1 if n = 0 ,

q0 if n = 1 ,

qnAn−1 + An−2 if n ≥ 2 ,

and

Bn =



























0 if n = 0 ,

1 if n = 1 ,

qnBn−1 +Bn−2 if n ≥ 2 .

Then [q0, q1, . . . , qn] = An+1/Bn+1 for n ≥ 0.
We define the nth complete quotient by

xn =











√
N if n = 0 ,

1/ (xn−1 − qn−1) if n ≥ 1 .

It can be shown that xn = (Pn +
√
N)/Qn for n ≥ 0, where

Pn =



























0 if n = 0 ,

q0 if n = 1 ,

qn−1Qn−1 − Pn−1 if n ≥ 2 ,

(2.2)
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and

Qn =



























1 if n = 0 ,

N − q20 if n = 1 ,

Qn−2 + (Pn−1 − Pn)qn−1 if n ≥ 1 .

(2.3)

If we do not have the qn, they can be computed using

qn =



























⌊√
N
⌋

if n = 0 ,

⌊

q0 + Pn
Qn

⌋

if n > 0 .

Some important facts that we shall need are as follows.

(−1)nQn = A2n − B2nN ,

An +Bn
√
N√

Qn
=
An−1 +Bn−1

√
N√

Qn−1
·
√
N + Pn√
Qn−1Qn

,

N = P 2n +QnQn−1 ,

0 ≤ Pn, Qn < 2
√
N .

See [12] for a proof of these facts.

2.3 Real Quadratic Number Fields

Let N 6= 1 be a square-free integer, and define

∆ =











4N if N ≡ 2, 3 mod 4 ,

N if N ≡ 1 mod 4 .

Any finite extension of Q is called a number field. The extension Q(
√
N)/Q is called

the quadratic number field of radicand N and discriminant ∆. We note in passing

that Q(
√
N) = Q(

√
∆).
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Let K be any number field. The ring of integers OK of K is the integral closure

of Z in K. When K = Q(
√
N) we have OK = Z[ω], where

ω =











√
N if N ≡ 2, 3 mod 4 ,
1 +
√
N

2
if N ≡ 1 mod 4 .

The odd rational primes of Z[ω] fall into three categories according to the value of

the Jacobi symbol

(

∆

p

)

=



























0 if p is a ramified prime ,

1 if p is a split prime ,

−1 if p is a inert prime .

When N ≡ 1 mod 4, the rational prime 2 is split whenever N ≡ 1 mod 8, and inert
whenever N ≡ 5 mod 8. The ramified primes are precisely those that divide ∆.
A consequence of the Chebotarev density theorem (see [10]) is that the density of

primes that split in Q[
√
∆] is 1/2. Since there are only finitely many ramified primes,

it follows that the density of inert primes is also 1/2.

A fractional ideal is a subset a of Q(
√
∆) such that

1. for any α, β ∈ a and any λ, µ ∈ Z[ω] we have λα + µβ ∈ a.

2. there exist a fixed ν ∈ Z[ω] such that for every α ∈ a we have να ∈ Z[ω].

Two fractional ideals a, b are said to be equivalent if there is some α ∈ Z[ω] such
that a = (α)b, and narrowly equivalent if there is some α ∈ Z[ω] with positive norm
such that a = (α)b. Both types of equivalences are indeed equivalence relations. The

first equivalence leads to the class group I/P , where I is the set of fractional ideals

and P is the set of principal ideals. Narrow equivalence leads to the narrow class

group I/P+, where P+ is the set of principal ideals with positive norm. The class

number of Q(
√
∆) is the order of I/P , while the narrow class number is the order

of I/P+, written h(∆) and h+(∆), respectively. It is no coincidence that we use the

same symbol to denote both the number of classes of forms of discriminant ∆ and
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the narrow class number of Q(
√
∆), as it can be shown (see [4]) that they are indeed

the same.

2.4 The Infrastructure of the Class Group

The theories of binary quadratic forms, continued fractions, and real quadratic

number fields are closely related (see [5] or [4].) First, there is a correspondence

between binary quadratic forms of discriminant N > 0 and the fractional ideals of

Q(
√
N) defined by

(a, b, c)←→
(

aZ+

(

−b+
√
N

2

)

Z

)

α ,

where α is any element of Q(
√
N)∗ such that N (α) = sign(a). We mention that under

this correspondence, composition of forms corresponds with ideal multiplication.

There is also a correspondence between binary quadratic forms and continued

fractions. The definitions for Pn and Qn in Section 2.2 satisfy

N = P 2n +Qn−1Qn for all n ,

and so the binary quadratic form

Fn =
(

(−1)n−1Qn−1, 2Pn, (−1)nQn
)

has discriminant 4N . In fact, the sequence of forms F0, F1, . . . constitutes the prin-

cipal cycle of forms of discriminant 4N , where F0 = (1, 2q0, q
2
0 −N).

Shanks defined the infrastructure of the class group [17] collectively as the inner

structure within each cycle of reduced forms determined by ρ, the standard reduction

operator. Originally, Shanks defined the infrastructure distance between the form Fn

and the principal form by the equation

dn = log
(

An +Bn
√
N
)

,
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but this metric did not have all the desirable properties that one would like it to have,

so he later [15] changed it to

dn = log

(

An +Bn
√
N√

Qn

)

.

In [9], Lenstra independently proposed this same metric in a slightly different form

as follows. Let f = (a, b, c) be a form of discriminant ∆. Then

d (f, ρ(f)) =
1

2
log

∣

∣

∣

∣

∣

b+
√
∆

b−
√
∆

∣

∣

∣

∣

∣

.

That these two definitions agree follows from the previously stated facts at the end

of Section 2.2.

Now by the laws of Khinchin, Gauss-Kuzmin, and Lévy [8], we can approximate

dn by

log

(

An +Bn
√
N√

Qn

)

.
=

π2

12 log 2
n , (2.4)

where the constant π2/ (12 log 2) is approximately 1.19.

More generally, one can define the infrastructure distance d(f, g) between two

quadratic forms by the following. Let a, b be the ideals corresponding to f, g respec-

tively. If f and g are narrowly equivalent, then we can find γ with N(γ) > 0 such

that a = γb. Define the infrastructure distance between f and g by

d(f, g) =
1

2
log

∣

∣

∣

∣

γ

σ(γ)

∣

∣

∣

∣

,

where σ is the automorphism of Q(
√
N) taking

√
N to −

√
N . With this definition,

we can see that the distance between f 2 and the principal form is twice the distance

between f and the principal form. To see this, let a be the fractional ideal corre-

sponding to f and let 1 denote the principal form. Write a = γ · 1, hence a2 = γ2 · 1.
Then

d(f 2, 1) =
1

2
log

∣

∣

∣

∣

γ2

σ(γ2)

∣

∣

∣

∣

=
1

2
log

∣

∣

∣

∣

γ

σ(γ)

∣

∣

∣

∣

2

= 2 d(f, 1) .
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More generally, let b1 = γ1a1 and b2 = γ2a2, so that b1b2 = γ1γ2a1a2. If fi, gi

corresponds to ai, bi, respectively, then we have

d (g1 ◦ g2, f1 ◦ f2) = d (g1, f1) + d (g2, f2) . (2.5)

Now suppose Fn is a square form on the principal cycle. Then we know that a

square root of Fn must also lie on the principal cycle at a distance dn/2 from the

principal period. But using the approximation (2.4), this form will be very close to

Fn/2. Also note that Equation (2.5) can be used to show that an inverse square root

of Fn is at a distance dn/2 in the reverse direction.

2.5 Asymptotics

We will be interested in finding the asymptotic behavior of many quantities, each

of which will ultimately depend on N , the number we are trying to factor. We will

say that f (N) is asymptotic to g (N), written f (N) ∼ g (N), if g(N) 6= 0 for N > 0

and

lim
N→∞

f(N)

g(N)
= 1 .

We will also make use of “Big Oh” notation. We say that f (N) is “Big Oh” of

g (N), written f (N) = O (g (N)), if there is a constant C such that

|f (N) | ≤ C|g (N) | for all N > 0 .

The following two basic lemmas will be useful.

Lemma 2.5.1. If f1 (N) ∼ g1 (N), f2 (N) ∼ g2 (N) and fi (N) , gi (N) 6= 0 for N > 0,

then

f1 (N) /f2 (N) ∼ g1 (N) /g2 (N) .

Proof.

lim
N→∞

f1(N)/f2(N)

g1(N)/g2(N)
= lim
N→∞

f1(N)

g1(N)
· g2(N)
f2(N)
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= lim
N→∞

f1(N)

g1(N)
·
[

lim
N→∞

f2(N)

g2(N)

]−1

= 1 · 1 = 1 .

Lemma 2.5.2. Suppose that 1 ≤ f(N), g(N) for all N > 0 and that g → ∞ as
N →∞. If f = g +O(1), then f ∼ g.

Proof. By assumption there exists a constant C such that |f − g| ≤ C for all N > 0.

Thus g − C ≤ f ≤ g + C for all N > 0. Hence

1 = lim
N→∞

g − C
g
≤ lim
N→∞

f

g
≤ lim
N→∞

g + C

g
= 1 ,

and therefore limN→∞ f/g = 1.
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3. The Description of the Algorithm

We now describe the algorithm in detail. We begin with a description of the fastest

and most practical version. A more general version is then described.

3.1 Continued Fractions Description

As usual, we assume that N is a square-free positive integer. In most implemen-

tations of SQUFOF, we work with binary quadratic forms of discriminant ∆ = 4N .

Unfortunately if N ≡ 1 mod 4, then ∆ is not a fundamental discriminant. Although
the algorithm works for non-fundamental discriminants, the analysis of SQUFOF pre-

sented in subsequent chapters will assume that ∆ is fundamental. Therefore, if N ≡
1 mod 4 then we replace N with 2N . We may now assume that N ≡ 2 or 3 mod 4
for the remainder of this section. Finally, take ∆ = 4N which is then always a

fundamental discriminant.

The principal form is F0 = (1, 2q0, N−q20). We compute the forms on the principal
cycle by

Fn = ρ
n(F0) =

(

(−1)n−1Qn−1, 2Pn, (−1)nQn
)

,

where Pn and Qn are calculated according to (2.2), (2.3), and (2.2). We seek a square

form (∗, ∗, c2), which can only occur when n is even. Suppose we have found a square
form Fn = (−Q, 2P, S2), where Q > 0. Define F−1/2 = (−S, 2P, SQ), an inverse
square root of Fn under composition of forms. This form may not be reduced so let

G0 = (−S−1, 2R0, S0) be its reduction, where

R0 = P + S

⌊

q0 − P
S

⌋

,

S−1 = S, S0 =
N −R20

S
.
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Using Rm = tm−1Sm−1−Rm−1, Sm = Sm−2+tm−1(Rm−1−Rm), and tm =
⌊

q0+Rm
Sm

⌋

,

for m ≥ 1, which are completely analogous to (2.2), (2.3), and (2.2), we generate a
new sequence of forms

Gm =
(

(−1)m−1Sm−1, 2Rm, (−1)mSm
)

.

Now suppose we find m such that Rm = Rm+1. We expect this to happen at

approximately m
.
= n/2 for reasons explained at the end of Section 2.4. At this m

we will have Rm = tmSm/2 and N = R
2
m + Sm−1Sm, which gives

N = Sm

(

Sm−1 + Sm
t2m
4

)

,

a possible factorization of N . We call the square form Fn improper if this factorization

is trivial. If a non-trivial factor of N is found, then Fn is a proper square form.

One should note that all computations other than those of F0 and G0 are with

numbers less than 2
√
N in magnitude. So if N is taken to be no larger than double

the word size of the computer, then all computations (except F0 and G0) will be with

single precision integers.

There are three main issues that arise at this point. First, we will need to test every

other form for squareness. This is not a major obstacle since there fast algorithms

to test for squareness. A more serious issue is the possibility of ending with the

trivial factorization. We could go back to the last square form Fn, but this is time

consuming. Instead, we will keep track of certain forms and use them in a test for

proper square forms. Finally, there may be no proper square forms at all on the

principal cycle. If this is the case, then we can try factoring mN , for some small m.

We shall see later that this is a reasonable thing to do.

3.2 Identifying Proper Square Forms

We begin with a few propositions about square roots of square forms.
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Proposition 3.2.1. Suppose that a is a positive odd integer, b is a positive inte-

ger, gcd (a, b) = 1, and that (a2, 2b,−c) is a square form on the principal cycle of
discriminant 4N with c > 0. Then (−a, 2b, ac)2 ∼ (a2, 2b,−c).

Proof. This follows directly from the definition of composition of forms, noting that

(a2, 2b,−c) is equivalent to any form (a2, 2β, ∗), where β ≡ b mod a2.

Let b =
⌊√

N
⌋

and 1 = (1, 2b, c) denote the principal form. Let b′ =
⌊√

N
⌋

or
⌊√

N
⌋

−1, whichever is odd, and let 2 denote the reduced ambiguous form (2, 2b′, c′).
By −1, −2 we mean the forms (−1, 2b,−c), (−2, 2b′,−c′), respectively. It is easy to
see that ±1 ◦ (α, 2β, γ) ∼ (±α, 2β,±γ) and that ±2 ◦ (α, 2β, ∗) ∼ (±2α, 2β, ∗), when
α is odd and ±2 ◦ (α, 2β, ∗) ∼ (±α/2, 2β, ∗), when α is even.

Proposition 3.2.2. Suppose that a is a positive odd integer, b is a positive integer,

gcd (a, b) = 1, and that Fn = (a
2, 2b,−c) is a square form on the principal cycle of

discriminant 4N , with c > 0. Some form (α, 2β, ∗) appears on the principal cycle at
position m < n with α ∈ {±a,±2a} and β ≡ b mod a if and only if (−a, 2b, ac) is
equivalent to one of the ambiguous forms ±1, ±2.

Proof. First suppose that the form (a, 2β, ∗) appears as form Fm on the principal cycle
with m < n. This form is equivalent to (a, 2b,−ac), and −1 ∼ (a, 2b,−ac) ◦ −1 ∼
(−a, 2b, ac), so we are done. Similarly, if Fm = (−a, 2β, ∗) ∼ (−a, 2b, ac), then
(−a, 2b, ac) ∼ 1.
Now suppose that the form (2a, 2β, ∗) appears as Fm. Then −2 ∼ (2a, 2β, ∗) ◦

−2 ∼ (−a, 2β, ∗) ∼ (−a, 2b, ac). Finally, if Fm = (−2a, 2β, ∗), then 2 ∼ (−2a, 2β, ∗)◦
2 ∼ (−a, 2β, ∗) ∼ (−a, 2b, ac).
Finally, suppose that there is no form (α, 2β, ∗) with α ∈ {±a,±2a} with β ≡

b mod a which appears on the principal cycle as a form Fm with m < n. The square

root f = (−a, 2b, ac) cannot be equivalent to 1, since if it is then we can find a
multiple of 2a that we can add to 2b to get an equivalent reduced form (a, 2β, ∗)
on the principal cycle with β ≡ b mod a. But then this form is a square root of Fn
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and hence must appear on the principal cycle before Fn, since d (f, 1) = d (Fn, 1) /2.

Therefore f cannot be equivalent to 1.

In fact, if f ∼ g with g ∈ {±1,±2}, then f ◦ g ∼ 1, and f ◦ g = (α, 2β ′, ∗)
for α ∈ {±a,±2a} and β ′ ≡ b mod a. But then f ◦ g is a square root of Fn, and
f ◦ g is equivalent to some reduced form (α, 2β, ∗) on the principal cycle with β ≡
β ′ ≡ b mod a. As before this form must appear on the principal cycle before Fn, a

contradiction. So it must be that f is not equivalent to any of the forms 1,±2.

We now describe Shanks’ method for determining when a square form is proper.

For each form Fm that is examined, we perform the following test. Define L =

2
√

2
√
N . If Qm is even and less than L, then put the pair

(

Qm/2, Pm
)

into a queue,

where Pm is the least positive residue of Pm modulo Qm/2. If Qm is odd and less than

L/2, then put the pair
(

Qm, Pm
)

into the queue, where Pm is the least positive residue

of Pm modulo Qm. If we come to the square form Fn = (−a, 2b, c2) ∼ (c2, 2b,−a)−1 ∼
(−c, 2b, ac)−2 ∼ (ac, 2b,−c)2, then we search the queue in the order that items are
put into the queue for the pair (c, 2b mod c), taking c > 0. Proposition 3.2.2 says

that if this pair is in the queue, then the form (ac, 2b,−c) is equivalent to one of
the forms ±1,±2, hence the square form is improper. If on the other hand the pair
(c, 2b mod c) is not in the queue, then Proposition 3.2.2 says that (ac, 2b,−c) is not
equivalent to one of the forms ±1,±2, hence the square form is proper.

Note that these quantities will be one-quarter the precision of N . Hence, the

queue entries will be relatively small and easy to work with. Also note that if we

have found a square form Fn = (−a, 2b, c2) and also the pair (c, 2b mod c) in the
queue, then we may delete this pair along with all other pairs that precede it in the

queue. This is possible since if we find another square form Fm with n < m, then any

of its square roots appearing on the principal cycle must appear after the discovered

square root for Fn because of the infrastructure explained in Section 2.4.
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3.3 The Algorithm

We now give the algorithm in pseudo-code.

1: Initialize. Read the positive integer N to be factored. If N ≡ 1 mod 4 then set
N ← 2N . In any case, set

L← 2
√

2
√
N ,

QA← 1 ,

S ←
⌊√

N
⌋

,

PB ← S ,

QB ← N − PB · PB .

If QB = 0, stop and output the factor PB of N .

2: Cycle forward to find a proper square form. Note that two iterations of ρ

are done in step 2.

2a: Set q ← ⌊(S + PB) /QB⌋ and PA← q ·QB − PB .

2b: If QB ≤ L, then:

If QB is even, put the pair (QB/2, PB mod QB/2) into the QUEUE;

otherwise, if QB ≤ L/2, then put the pair (QB,PB mod QB) into the

QUEUE.

2c: Set QA← QA+ q · (PB − PA). If QA is not the square of an integer, then
go to step 2d. Otherwise, set R← √QA, a positive integer. If there is no
pair (R, T ) in the QUEUE for which R divides PA − T , then go to Step
3. If R > 1 and there is a pair (R, T ) in the QUEUE for which R divides

PA − T , then remove all pairs from the beginning of the QUEUE up to
and including this pair and go to step 2d. If R = 1 and there is a pair

(1, T ) in the QUEUE, then the algorithm fails.

2d: Set q ← ⌊(S + PA) /QA⌋ and PB ← q ·QA− PA.
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2e: If QA ≤ L, then:

If QA is even, then put the pair (QA/2, PA mod QA/2) into the QUEUE;

otherwise, if QA ≤ L/2, then put the pair (QA,PA mod QA) into the

QUEUE.

2f: Set QB ← QB + q (PA− PB) and then go to step 2a.

3: Compute an inverse square root of the square form. Set

QA← R ,

PB ← PA+R · ⌊(S − PA) /R⌋ ,

QB ← (N − PB · PB) /QA (This division is exact.)

4: Cycle in the reverse direction to find a factor of N .

4a: Set q ← ⌊(S + PB) /QB⌋ and PA← q ·QB − PB.

4b: If PA = PB, then go to step 5a.

4c: Set

QA← QA+ q · (PB − PA) ,

q ← ⌊(S + PA) /QA⌋ ,

PB ← q ·QA− PA .

4d: If PA = PB, then go to step 5b.

4e: Set QB ← QB + q (PA− PB) and then go to step 4a.

5: Print the factor of N .

5a: Set QA← QB.

5b: If QA is even, set QA← QA/2. In any case, print QA, a factor of N .

Some remarks are in order.

1. The algorithm terminates in step 1 if and only if N is a perfect square.
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2. We have not discussed the queue structure in depth, but the algorithm will

terminate if the QUEUE overflows. For virtually all successful factorizations, a

QUEUE size of 50 is adequate.

3. The algorithm always fails if N is of the form m2+1. In this case, we compute

QA = QB = 1 and PA = PB = m. In step 2b, the pair (1, m) is placed in

the QUEUE. Then R = 1 and the algorithm fails in step 2c. Such N are rare,

and in any case very little time is wasted so we do not make a special test for

QB = 1 in step 1.

4. If the algorithm fails in step 2c, then we have gone through the entire principal

period of quadratic forms of discriminant 4N without finding a proper square

form.

5. The arithmetic of steps 2, 4, and 5 involves only positive integers less than

2
√
N . Numbers as large as N only occur in steps 1 and 3. The odd numbered

steps are executed only once.

6. If N is a prime number, then SQUFOF will fail when the QUEUE overflows.

Hence, before running SQUFOF one should be certain that N is composite.

7. Step 4 will be executed approximately half as many times as step 2.

8. In steps 2b and 2c, it almost always happens that QB and QA exceed L. Also,

QA is almost never a square in step 2c. Thus, the time spent inserting pairs

into the QUEUE and searching for them in it is negligible compared to the total

running time for step 2.

9. Once step 3 is reached, the algorithm cannot fail.

3.4 Sufficient List

Some implementations of SQUFOF do not use the previously described queue

structure. Instead, when a form (∗, ∗, c) is discovered with |c| < L when c is even, or
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with |c| < L/2 when c is odd, then |c| is put into an ordered list. Then any square
form (∗, ∗, c2) is skipped if |c| is found to be in the list. This “sufficient list” is simpler,
though some proper square forms may be skipped. For the running time analysis we

will assume that the queue, and not the list, is used.

3.5 Binary Quadratic Forms Description

In [4], Cohen presents another version of SQUFOF entirely in the language of

binary quadratic forms. It reduces to the continued fraction version of SQUFOF

whenever N ≡ 2 or 3 mod 4. Whenever N ≡ 1 mod 4 the algorithm defines ∆ = N

and works with this fundamental discriminant of binary quadratic forms. Although

it is slower than the previous algorithm when N ≡ 1 mod 4, because each iteration of
ρ requires several divisions, the methods that we use to analyze the complexity apply.
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4. SQUFOF Running Time Complexity

As we have seen, once SQUFOF finds a square form Fn, it will find an ambiguous

form at about n/2 forms away from F
−1/2
n . So we take the number of forms examined

before finding a proper square form to be a fair measure of the running time.

We have seen in Chapter 3 that SQUFOF generates several sequences depending

on N . It looks for numbers with certain properties (proper squares). The complex-

ity analysis is a heuristic argument based on several assumptions. Most of these

assumptions say that these sequences of integers behave like random sequences of

numbers of the same approximate size. Our first assumption, however, is not of this

type. It simplifies the analysis by permitting the use of theorems about fundamental

discriminants. It almost certainly holds in the most common uses of SQUFOF.

Assumption 4.0.1. We assume that N is a square-free positive integer with k dis-

tinct large odd prime divisors.

Assuming that N is square-free implies that ∆ defined by

∆ =











N if N ≡ 1 mod 4,

4N if N ≡ 2 or 3 mod 4,

is a fundamental discriminant. This allows us to use many results from the theory

of binary quadratic forms. Recall that if we use the continued fraction version of

SQUFOF described in Sections 3.1 and 3.3, then any N ≡ 1 mod 4 will be multiplied
by 2 at once. The N ≡ 1 mod 4 case here implies that we are using Cohen’s version
of Section 3.5. We will consider non-square-free N in future work.

In any case, SQUFOF is used mainly as an auxiliary algorithm in larger factor-

ization algorithms and hence, SQUFOF will typically be used to factor integers of

modest size with no small prime factors. Such integers are typically the product of a

small number of distinct primes.
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4.1 Counting Reduced Forms

There is an obvious correspondence between forms of discriminant ∆ and solutions

to the congruence

b2 ≡ ∆ mod 4c . (4.1)

Given an integer c, we will need to know the expected number of reduced forms

(∗, ∗, c). It is clear that there will be no such forms if c is divisible by any inert prime,
or if c is divisible by the square of a ramified prime. So we may assume that c is

divisible by no inert primes and by ramified primes to at most the first power. Under

these restrictions, the following three lemmas calculate the number of solutions to

(4.1) from which the number of reduced forms will follow.

Lemma 4.1.1. Let 0 < c <
√
∆/2 and suppose c is divisible by no inert primes,

by ramified primes to at most the first power, and by exactly l distinct split primes.

Then there are 2l reduced forms (∗, ∗, c) of discriminant ∆.

Proof. Suppose c = qe11 · · · qell r1 · · · rt, where the ri are ramified primes and the qj are
split primes. For each odd ri, the congruence b

2 ≡ ∆ mod ri has only the trivial
solution. For each odd qj , the congruence b

2 ≡ ∆ mod qj has exactly two solutions.
Since these two solutions are both nonsingular, they each lift to a unique solution of

b2 ≡ ∆ mod qejj .
If c is odd, then we must count the number of solutions to b2 ≡ ∆ mod 4. Since

∆ ≡ 0 or 1 mod 4, in either case we have two solutions. Finally, the Chinese Remain-
der Theorem gives 2l+1 solutions to (4.1).

Now suppose c is even. Either 2 is ramified (hence 2 exactly divides c) or 2 is

split. If 2 is ramified then we must count the number of solutions to b2 ≡ ∆ mod 8.
Since N ≡ 2 or 3 mod 4, we see that ∆ ≡ 0 or 4 mod 8. There are two solutions to
b2 ≡ 0 mod 8 and two solutions to b2 ≡ 4 mod 8, so once again the Chinese Remainder
Theorem gives 2l+1 solutions to (4.1).

Finally, suppose 2 is a split prime and 2e exactly divides c, where e ≥ 1. We
must count the number of solutions to b2 ≡ ∆ mod 2e+2. In this case N ≡ 1 mod 8.
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The congruence b2 ≡ 1 mod 8 has four solutions. It is not hard to show that these
four solutions lift to exactly four solutions of b2 ≡ ∆ mod 2e+2 for any e ≥ 1 (c.f
Theorem 2.24 of [11].) For any of the other l − 1 odd split primes, we will have two
solutions to b2 ≡ ∆ mod qejj as before. Again, the Chinese Remainder Theorem gives
4 · 2l−1 = 2l+1 solutions to (4.1).

Recall that a form (a, b, c) is reduced iff
∣

∣

∣

√
∆− 2|c|

∣

∣

∣
< b <

√
∆. By hypothesis

0 < c <
√
∆/2, hence

∣

∣

∣

√
∆− 2|c|

∣

∣

∣
=
√
∆ − 2c. The condition

√
∆ − 2c < b <

√
∆

defines an interval of length 2c. Now suppose 0 < b1, b2, . . . , b2l+1 < 4c are the 2
l+1

solutions of (4.1) in the interval (0, 4c). Note that half of these solutions must be

in (0, 2c) and half must be in (2c, 4c). By translating these solutions to the interval

(
√
∆ − 4c,

√
∆), we see that the 2l solutions in (

√
∆ − 2c,

√
∆) lead to 2l reduced

forms (∗, ∗, c) of discriminant ∆. Finally, if (a, b, c) is a reduced form of discriminant
∆, then clearly b must be one of the translated bi. This finishes the proof of the

lemma.

Lemma 4.1.2. Let
√
∆ < c. There are no reduced forms (∗, ∗, c) of discriminant ∆.

Proof. A form (a, b, c) is reduced iff
∣

∣

∣

√
∆− 2|c|

∣

∣

∣ < b <
√
∆. No b can satisfy this

condition since
√
∆ < c implies that

√
∆ < 2c−

√
∆ =

∣

∣

∣

√
∆− 2|c|

∣

∣

∣
.

The previous two lemmas give us the exact number of reduced forms (∗, ∗, c)
of discriminant ∆ whenever 0 < c <

√
∆/2 or

√
∆ < c. We must settle for a

probabilistic answer whenever
√
∆/2 < c <

√
∆. To this end, we make the following

assumption regarding the distribution of quadratic residues in a complete system of

residues modulo 4c.

Assumption 4.1.3. For each c such that
√
∆/2 < c <

√
∆, we assume that the 2l

solutions b to (4.1) in each half of the interval (0, 4c) are randomly distributed.
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Lemma 4.1.4. Let
√
∆/2 < c <

√
∆ and suppose c is divisible by no inert primes,

by ramified primes to at most the first power, and by exactly l distinct split primes.

Then the expected number of reduced forms (∗, ∗, c) of discriminant ∆ is

2l
(√
∆− c

)

c
.

Proof. Since
√
∆/2 < c <

√
∆, the condition

∣

∣

∣

√
∆− 2|c|

∣

∣

∣
< b <

√
∆ is equivalent to

2c−
√
∆ < b <

√
∆. This defines the interval (2c−

√
∆,
√
∆) of length 2

(√
∆− c

)

.

We translate the 2l+1 solutions of the congruence (4.1) in (0, 4c) to the interval (2c−
√
∆, 6c −

√
∆). Half of these solutions will be in the interval (2c −

√
∆, 4c −

√
∆).

By Assumption 4.1.3, the probability that a given solution in (2c −
√
∆, 4c −

√
∆)

is actually in (2c −
√
∆,
√
∆) is assumed to be 2(

√
∆ − c)/2c = (

√
∆ − c)/c. Thus

the expected number of solutions that lie in (2c −
√
∆,
√
∆) is 2l

(√
∆− c

)

/c. As

before, the number of reduced forms (∗, ∗, c) of discriminant ∆ is equal to the number
of solutions b to the congruence (4.1) such that

∣

∣

∣

√
∆− 2c

∣

∣

∣
< b <

√
∆, and the lemma

is proved.

Note that if (a, b, c) is a reduced form of discriminant ∆, then so is (−a, b,−c),
so the previous three lemmas tell us how many forms (∗, ∗,−c) to expect for c > 0.
For c > 0 we let Yc be the number of forms (a

′, b′, c′) of discriminant ∆ with |c′| = c.
We will not compute this quantity for every possible value of c. Instead we compute

E[Yc], the expected value of Yc. The previous three lemmas can be used to compute

this quantity once we make the following assumption.

Assumption 4.1.5. Let p be a prime that is not ramified and suppose that p|c for
some 0 < c <

√
∆. Then probability that p is split is 1/2.

This assumption is reasonable in light of the fact that the density of split primes

is 1/2 by the Chebotarev Density Theorem.



31

Lemma 4.1.6. Suppose c > 0 is an integer divisible by ramified primes to at most

the first power, and let Yc be the number of reduced forms (∗, ∗, c′) of discriminant ∆
with |c′| = c. Then

E[Yc] =



























2 if 0 < c <
√
∆/2 ,

2(
√
∆−c)
c

if
√
∆/2 < c <

√
∆ ,

0 if
√
∆ < c .

(4.2)

Proof. First suppose 0 < c <
√
∆/2 and that c is divisible by l non-ramified primes.

By assumption we take the probability that c is divisible by no inert prime to be

2−l. Lemma 4.1.1 says that if c is divisible by no inert primes, by ramified primes to

at most the first power, and by exactly l split primes, then there will be 2l reduced

forms (∗, ∗, c) of discriminant ∆. So we have

E[Yc] = 2
(

2−l · 2l + (1− 2−l) · 0
)

= 2 ,

where we multiply by two since (a, b, c) is a reduced form of discriminant ∆ iff

(−a, b,−c) is a reduced form of discriminant ∆.
Now suppose that

√
∆/2 < c <

√
∆, and that c is divisible by l non-ramified

primes. Again, the probability that no inert prime divides c is taken to be 2−l.

Lemma 4.1.4 implies that if c is divisible by no inert primes, by ramified primes to

at most the first power, and by exactly l split primes, then we expect 2l(
√
∆ − c)/c

reduced forms (∗, ∗, c) of discriminant ∆. So we have

E[Yc] = 2



2−l ·
2l
(√
∆− c

)

c
+ (1− 2−l) · 0



 =
2
(√
∆− c

)

c
.

Finally, suppose
√
∆ < c. Lemma 4.1.2 implies that there are no reduced forms

(∗, ∗, c) of discriminant ∆, hence E[Yc] = 0.

4.2 Successive Square Forms

We now use the results of the previous section to compute the expected index-

difference between successive square forms. Using similar techniques, we will count
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both the expected number of reduced forms and reduced square forms on the principal

cycle. Thinking of SQUFOF’s search for a square form as a random walk on the

principal cycle, the probability that SQUFOF finds a square at any given step is the

ratio of these two counts. Finally, the expected number of steps between successive

square forms is the reciprocal of this ratio.

Let C be the group of equivalence classes of binary quadratic forms of discriminant

∆. Recall that this group is isomorphic to the narrow class group of Q(
√
∆), hence

|C| = h+, the narrow class number of Q(
√
∆). Let G be the group of genera of forms

of discriminant ∆. There is a surjective group homomorphism φ : C → G taking an

equivalence class to its genus, which we identify with its corresponding assigned value.

The kernel of this homomorphism is the set of classes in the principal genus. The

first group isomorphism theorem implies that C/ kerφ ∼= G, hence | kerφ| = h+/|G|.
It remains to compute the value of |G|.

When N ≡ 1 mod 4, ∆ = N has k generic characters, one for each prime dividing
N . If N ≡ 2 or 3 mod 4, then ∆ = 4N and there are k + 1 generic characters. Let
κ be the number of generic characters associated with the discriminant ∆. Since

the number of genera is equal to one half the possible assigned values, we see that

|G| = 2κ−1. Finally we see that the number of classes in the principal genus is
h+/2κ−1.

4.2.1 Number of Reduced Forms on the Principal Cycle

Let c > 0, Xc be the number of reduced forms (∗, ∗, c′) of discriminant ∆ with
|c′| = c on the principal cycle, and X be the total number of reduced forms with

discriminant ∆ on the principal cycle. Then X =
∑

0<cXc. We have seen (Lemma

4.1.2) that if (∗, ∗, c) is a reduced form, then 0 < |c| <
√
∆, so

X =

√
∆
∑

c=1

Xc . (4.3)
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We will compute E[X], the expected number of reduced forms on the principal cycle,

E[X] =

√
∆
∑

c=1

E[Xc] . (4.4)

We must now make a few observations about the distribution of forms among the

the h+ cycles. First observe that since the principal cycle is ambiguous, a reduced

form (a, b, c) (non-ambiguous) will be on the principal cycle iff its associate (c, b, a)

is on the principal cycle. But this means that (a, b, c) is on the principal cycle iff

ρ−1(c, b, a) = (a′, b′, c) is on the principal cycle. Existence of the reduced forms

(a, b, c), (a′, b′, c) implies the existence of the reduced forms (−a, b,−c), (−a′, b′,−c).
These four forms will be collectively referred to as the quartet of forms associated

with the form (a, b, c).

Suppose that one of the κ generic characters χ associated to ∆ is such that

χ(−1) = −1. Then the forms (a, b, c), (a′, b′, c) are on the principal cycle iff the
forms (−a, b,−c), (−a′, b′,−c) are not on the principal cycle. This means that for a
given c > 0, at most two forms from each quartet can be on the principal cycle. This

leads us to make the following assumption.

Assumption 4.2.1. Suppose that there is some generic character χ associated with

∆ such that χ(−1) = −1. For each quartet of forms (∗, ∗, c′) with |c′| = c, at most

two forms may be on the principal cycle, and we assume that the probability that these

two forms are on the principal cycle is 1/h+.

Let Z be the random variable defined by

Z =











1 with probability 1
h+

,

0 with probability 1− 1
h+

.

(4.5)

Then we have

Xc =

Yc/4
∑

i=1

2Z . (4.6)
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Note that whether or not a given reduced form (∗, ∗, c) of discriminant ∆ is on the
principal cycle is independent of the number of forms (∗, ∗, c) of discriminant ∆.
Hence Wald’s equation (see [6]) implies that

E[Xc] = E





Yc/4
∑

i=1

2Z



 = E[Yc/4]E[2Z] = E[Yc]/2h
+ . (4.7)

Since Lemma 4.1.6 gives us an expression for E[Yc] when 0 < c <
√
∆, we can now

compute E[X].

Now suppose that χ(−1) = 1 for all generic characters χ associated to ∆. Then
(a, b, c) is on the principal cycle iff its entire quartet is on the principal cycle. We now

make the following assumption.

Assumption 4.2.2. Suppose that χ(−1) = 1 for all generic characters χ associated
with ∆. Then either the quartet associated with (a, b, c) is on the principal cycle or

not, and we assume that the quartet is on the principal cycle with probability 1/h+.

In this case we have

Xc =

Yc/4
∑

i=1

4Z , (4.8)

and Wald’s equation implies that

E[Xc] = E





Yc/4
∑

i=1

4Z



 = E[Yc/4]E[4Z] = E[Yc]/h
+ .

In summary E[Xc] = νE[Yc]/h
+, where

ν =











1
2
if χ(−1) = −1 for some χ ,

1 if χ(−1) = 1 for all χ .
(4.9)

If N ≡ 1 or 2 mod 4 then we cannot know which value to use for ν, so we make the
following assumption and calculate the expected value of ν.

Assumption 4.2.3. Let χ be any generic character associated with ∆. We assume

that χ(−1) = 1 with probability 1/2.
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Since there are κ generic characters, the probability that all take the value 1 at

−1 is 2−κ. Hence

E[ν] =
1

2

(

1− 2−κ
)

+ 2−κ =
2κ + 1

2κ+1
, (4.10)

In this case we take E[Xc] to be

E[Xc] = E[ν]E[Yc]/h
+ =

(2κ + 1)E[Yc]

2κ+1h+
. (4.11)

If N ≡ 3 mod 4, then some prime dividing N must be congruent to 3 modulo 4. In
this case we take ν = 1/2 and so

E[Xc] = E[Yc]/2h
+. (4.12)

In any case, we can now calculate E[X].

Proposition 4.2.4. The expected number of reduced forms of discriminant ∆ on the

principal cycle is

E[X] ∼



























































(

2k + 1
)√

N log 2

2kh+
if N ≡ 1 mod 4 ,

3
(

2k+1 + 1
)√

N log 2

2k+2h+
if N ≡ 2 mod 4 ,

3
√
N log 2

2h+
if N ≡ 3 mod 4 .

(4.13)

Proof. We assume that the odd prime divisors pi of N (all of which are ramified) are

so large that the probability that c is divisible by p2i is negligibly small. This means

that we shall use the results of Lemma 4.1.6 for all values of c, except when 2 is

ramified (N ≡ 2 or 3 mod 4.) When 2 is ramified, we will use E[Xc] = 0 for any c
divisible by 4.

Note that to get the result in the case of N ≡ 2 mod 4, we may multiply the
result in the case of N ≡ 3 mod 4 by (2κ + 1) /2κ =

(

2k+1 + 1
)

/2k+1, since the only

difference is that we replace 1/2 with E[ν].
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Case 1: (N ≡ 1 mod 4) In this case ∆ = N .

E[X] =

√
∆
∑

c=1

E[Xc]

=

√
N
∑

c=1

(

2k + 1
)

E[Yc]

2k+1h+

(using Equation (4.11))

=
2k + 1

2k+1h+

√
N
∑

c=1

E[Yc]

=
2k + 1

2k+1h+





√
N/2
∑

c=1

2 +

√
N
∑

c=
√
N/2

2
(√

N − c
)

c





(by Lemma 4.1.6)

=

(

2k + 1
)√

N

2kh+

√
N
∑

c=
√
N/2

1

c

=

(

2k + 1
)√

N

2kh+

[

log
√
N − log

(√
N/2

)]

+ O(1/h+)

(using Lemma 5.1.2)

=

(

2k + 1
)√

N log 2

2kh+
+ O(1) ,

hence

E[X] ∼
(

2k + 1
)√

N log 2

2kh+
.

Case 2: (N ≡ 3 mod 4) In this case ∆ = 4N , and 2 is a ramified prime.

E[X] =

√
∆
∑

c=1

E[Xc]

=
2
√
N

∑

c=1

E[Yc]/2h
+ −

√
N/2
∑

c=1

E[Y4c]/2h
+

(using Equation (4.7))
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=
1

2h+





2
√
N

∑

c=1

E[Yc] −
√
N/2
∑

c=1

E[Y4c]





=
1

2h+





√
N
∑

c=1

2 +
2
√
N

∑

c=
√
N

2
(

2
√
N − c

)

c

−
√
N/4
∑

c=1

2 −
√
N/2
∑

c=
√
N/4

2
(

2
√
N − 4c

)

4c





(by Lemma 4.1.6)

=
1

2h+



4
√
N

2
√
N

∑

c=
√
N

1

c
−
√
N

√
N/2
∑

c=
√
N/4

1

c





=

√
N

2h+

[

4
(

log 2
√
N − log

√
N
)

−
(

log
(√

N/2
)

− log
(√

N/4
))]

+ O(1/h+)

(using Lemma 5.1.2)

=
3
√
N log 2

2h+
+ O(1) ,

hence

E[X] ∼ 3
√
N log 2

2h+
.

4.2.2 Number of Square Forms on the Principal Cycle

We can use the same methods used in the previous section to count Xsq, the

number of reduced square forms (∗, ∗, c2) on the principal cycle. As before, we will
actually compute E[Xsq], the expected number of reduced square forms on the prin-

cipal cycle. Here we begin with Xsq =
∑

Xc2/2, where we divide by two since square
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forms must have a positive right-end coefficient and exactly half of the Xc2 forms will

satisfy this condition. Lemma 4.1.2 implies that

Xsq =

∆1/4
∑

c=1

Xc2/2 , (4.14)

hence,

E[Xsq] =

∆1/4
∑

c=1

E[Xc2 ]/2 . (4.15)

As before, for a given c > 0 there are Yc2 reduced forms (a, b, c
′) of discriminant

∆ with |c′| = c2. Also, for each non-ambiguous form (a, b, c2) we have the associated
quartet of forms: (a, b, c2), ρ−1(c2, b, a) = (a′, b′, c2), (−a, b,−c2), and (−a′, b′,−c2).
Let Zsq be the random variable defined by

Zsq =











1 with probability 2
κ−1

h+
,

0 with probability 1− 2κ−1

h+
,

(4.16)

where κ is the number of generic characters of ∆. We make the following assumption.

Assumption 4.2.5. We assume that a square form lies on the principal cycle (one

of the h+/2κ−1 cycles in the principal genus) with probability 2κ−1/h+.

Replacing c with c2 and Z with Zsq in the calculation of E[Xc] gives us the

calculation for E[Xc2 ].

E[Xc2 ] =



























2κ + 1

4h+
E[Yc2] if N ≡ 1 or 2 mod 4,

2κ−2

h+
E[Yc2] if N ≡ 3 mod 4.

Since Lemma 4.1.6 gives us an expression for E[Yc2] when 0 < c < ∆1/4, we can now

compute E[Xsq].
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Proposition 4.2.6. The expected number of reduced square forms of discriminant ∆

on the principal cycle is

E[Xsq] ∼



























































(

2k + 1
) (√
2− 1

)

4
√
N

2h+
if N ≡ 1 mod 4 ,

(

2k+1 + 1
) (

2−
√
2
)

4
√
N

4h+
if N ≡ 2 mod 4 ,

2k
(

2−
√
2
)

4
√
N

2h+
if N ≡ 3 mod 4 .

(4.17)

Proof. As in the proof of Proposition 4.2.4, we assume that the odd prime divisors pi

of N are so large that the probability that c2 is divisible by p2i is negligibly small. So

we shall once again use the results of Lemma 4.1.6 for all values of c2, except when 2

is ramified. When 2 is ramified, 2|c2 implies that 4|c2, and hence E[Xc2] = 0. Also we
can easily obtain the result for N ≡ 2 mod 4 once we have the result for N ≡ 3 mod 4
as in Proposition 4.2.4.

Case 1: (N ≡ 1 mod 4) In this case ∆ = N .

E[Xsq] =

4
√
∆
∑

c=1

E[Xc2]/2

=

4
√
N
∑

c=1

(2κ + 1)E[Yc2]

8h+

(by Equation 4.2.2)

=
2κ + 1

8h+

4
√
N
∑

c=1

E[Yc2]

=
2κ + 1

8h+





4
√
N/
√
2

∑

c=1

2 +

4
√
N
∑

c= 4
√
N/
√
2

2
(√

N − c2
)

c2





(by Lemma 4.1.6)

=
2κ + 1

4h+





(√
2− 1

)

4
√
N +

√
N

4
√
N
∑

c= 4
√
N/
√
2

1

c2




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∼ 2
κ + 1

4h+

[(√
2− 1

)

4
√
N

+
√
N

( √
2

4
√
N
− 1

4
√
N

)]

(by Lemma (5.1.3))

=
(2κ + 1)

(√
2− 1

)

4
√
N

2h+

When N ≡ 1 mod 4, we have κ = k generic characters, one for each prime

divisor of N . Thus

E[Xsq] ∼
(

2k + 1
) (√
2− 1

)

4
√
N

2h+
. (4.18)

Case 2: (N ≡ 3 mod 4) In this case ∆ = 4N .

E[Xsq] =

4
√
∆
∑

c=1

E[Xc2]/2

=

√
2
4
√
N

∑

c=1

2κ−2E[Yc2]

2h+

−
4
√
N/
√
2

∑

c=1

2κ−2E[Y4c2]

2h+

(by Equation 4.2.2)

=
2κ

8h+





√
2 4
√
N

∑

c=1

E[Yc2 ] −
4
√
N/
√
2

∑

c=1

E[Y4c2]





=
2κ

8h+





4
√
N
∑

c=1

2 +

√
2 4
√
N

∑

c=
4
√
N

2
(

2
√
N − c2

)

c2

−
4
√
N/2
∑

c=1

2 −
4
√
N/
√
2

∑

c= 4
√
N/2

2
(

2
√
N − 4c2

)

4c2





(by Lemma 4.1.6)

=
2κ

4h+





(

2−
√
2
)

4
√
N + 2

√
N

√
2 4
√
N

∑

c=N1/4

1

c2
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− 2−
√
2

2
4
√
N −

√
N

2

4
√
N/
√
2

∑

c= 4
√
N/2

1

c2





∼ 2κ

4h+

[

2−
√
2

2
4
√
N

+ 2
√
N

(

1
4
√
N
− 1√
2 4
√
N

)

−
√
N

2

(

2
4
√
N
−
√
2

4
√
N

)]

(by Lemma 5.1.3)

=
2κ
(

2−
√
2
)

4
√
N

4h+

In this case κ = k + 1, thus

E[Xsq] ∼
2k
(

2−
√
2
)

4
√
N

2h+
. (4.19)

4.2.3 Expected Index-Difference between Successive Square Forms

We can use Propositions 4.2.4 and 4.2.6 to derived a formula for the expected

index-difference between successive square forms if we make the following assump-

tions.

Assumption 4.2.7. We model SQUFOF’s search for a square form on the principal

cycle as a random walk between the non-square forms and square forms of the principal

cycle.

We must now calculate the probability that a given form on the principal cycle

is actually a square form. There are Xsq square forms among the X forms on the

principal cycle, so we would like to compute E[Xsq/X]. To do this, we make the

following assumption.

Assumption 4.2.8. The probability that a given form on the principal cycle is a

square form is taken to be E[Xsq]/E[X].
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Thus E[X]/E[Xsq] is the expected number of forms between any two successive

square forms. The following Corollary gives the asymptotic behavior of E[D].

Corollary 4.2.9. Let D be the index-difference between successive square forms on

the principal cycle. Then

E[D] ∼



























(√
2 + 1

)

4
√
N log 2

2k−1
if N ≡ 1 mod 4 ,

3
(√
2 + 2

)

4
√
N log 2

2k+1
if N ≡ 2 or 3 mod 4 .

(4.20)

Proof. We prove the case N ≡ 1 mod 4. The cases N ≡ 2 and 3 mod 4 are proved in
the same way.

Case 1: (N ≡ 1 mod 4) Proposition 4.2.4 implies that

E[X] ∼
(

2k + 1
)√

N log 2

2kh+
,

and Proposition 4.2.6 implies that

E[Xsq] ∼
(

2k + 1
) (√
2− 1

)

4
√
N

2h+
.

Thus

E[D] ∼

(

(

2k + 1
)√

N log 2
)/

2kh+

(

(2k + 1)
(√
2− 1

)

4
√
N
)/

2h+
=

(√
2 + 1

)

4
√
N log 2

2k−1
.

4.3 Proper Square Forms

In this section we will derive the probability that a square form is a proper square

form. The reciprocal of this probability gives the expected number of square forms

we must examine before we successfully factor N . Recall that an proper square form

is one that leads to an ambiguous form, which in turn leads to a nontrivial divisor of

N . We make the following assumption about the appearance of proper squares.
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Assumption 4.3.1. Suppose SQUFOF has found a square form and let (a, ab, c) be

one of the 2κ reduced ambiguous forms of discriminant ∆. The square form will lead

to (a, ab, c) with probability 2−κ.

Proposition 4.3.2. The probability that a square form is a proper square form is

2k − 2
2k

. (4.21)

Proof. As we have seen, a square form leads to an ambiguous from (a, ab, c), hence a

factor of ∆. There are as many ambiguous classes as there are genera, and this latter

quantity is known to be 2κ−1. There are two ambiguous forms per ambiguous class,

hence there are 2κ ambiguous forms. These forms are in bijective correspondence

with the square-free divisors d of ∆ with |d| <
√
∆.

Now suppose ∆ has n small ramified primes (primes which we already know divide

∆) and k large ramified primes. Then κ = k + n and there will be 2n+1 improper

squares (one for each of the possible 2n+1 square-free divisors d of ∆ divisible only by

the small ramified primes and |d| <
√
∆.) Thus the probability that a given square

for is proper is

2n+k − 2n+1
2n+k

=
2k − 2
2k

.

Corollary 4.3.3. The expected number of square forms that SQUFOF must examine

before finding a proper square form is

2k

2k − 2 . (4.22)

4.4 The Running Time Complexity of SQUFOF

We now have everything we need to compute the asymptotic behavior of the

expected number of forms SQUFOF must examine before finding a proper square

form.
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k E[W ]/ 4
√
N, N ≡ 1 mod 4 E[W ]/ 4

√
N, N ≡ 2 or 3 mod 4

2 1.6734 1.7749

3 0.5578 0.5916

4 0.2391 0.2536

Table 4.1
Estimates of E[W ]/ 4

√
N for k = 2, 3, 4.

Proposition 4.4.1. Let W be the number of forms that SQUFOF must examine

before finding a proper square form. Then

E[W ] ∼































2
(√
2 + 1

)

4
√
N log 2

2k − 2 if N ≡ 1 mod 4 ,

3
(√
2 + 2

)

4
√
N log 2

2 (2k − 2) if N ≡ 2 or 3 mod 4 .

(4.23)

Proof. This is simply the product of (4.20) and (4.22).

Table 4.1 lists the predicted values for E[W ]/ 4
√
N when N is a product of two,

three, and four primes.

4.5 Expected Queue Size

Now that we have the expected number of forms that SQUFOF will examine

before finding a proper square form, it is a simple matter to calculate the expected

queue size. If N ≡ 1 mod 4, then (∗, ∗, c) will be enqueued if |c| < 4
√
∆. There are

2 4
√
∆ integers c such that |c| < 4

√
∆, of which only 3 4

√
∆/2 are such that 4 ∤ c. There

are 3
√
∆/2 integers c such that |c| <

√
∆. Thus the probability is 1/ 4

√
∆ that an

integer c not divisible by 4 in (−
√
∆,
√
∆) such that c is in (− 4

√
∆, 4
√
∆).

Now assume that N ≡ 2 or 3 mod 4. If a form (∗, ∗, c) is such that |c| < 4
√
∆

when c is odd, or |c/2| < 4
√
∆ when c is even, then SQUFOF will enqueue this
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form, increasing the size of the queue by one. There are 2 4
√
∆ integers c such that

|c| < 4
√
∆, and only 3 4

√
∆/2 such that 4 ∤ c as well. Of this latter quantity, 4

√
∆ of

these c are odd, and so 2c satisfies |c| = |2c/2| < 4
√
∆. So there are 5 4

√
∆/2 integers

c such that |c| < 4
√
∆ when c is odd, and |c/2| < 4

√
∆ when c is even. Finally,

there are 3
√
∆/2 integers c with |c| <

√
∆ and 4 ∤ c. Thus the probability that an

integer c not divisible by 4 in (−
√
∆,
√
∆) such that c or c/2 is in (− 4

√
∆, 4
√
∆) is

(

5 4
√
∆/2

)

/
(

3
√
∆/2

)

= 5/
(

3 4
√
∆
)

. This leads us to the following assumption.

Assumption 4.5.1. Suppose that the form (∗, ∗, c) is examined at the nth step of
SQUFOF’s search for a proper square form. The probability that the form is enqueued

is either 1/ 4
√
∆ or 5/

(

3 4
√
∆
)

, depending on whether N ≡ 1 mod 4 or N ≡ 2 or 3 mod
4, respectively.

Proposition 4.5.2. Let Q be the number of forms enqueued during the factorization

of N . Then

E[Q] ∼































2
(√
2 + 1

)

log 2

2k − 2 if N ≡ 1 mod 4 ,

5
(√
2 + 1

)

log 2

2 (2k − 2) if N ≡ 2 or 3 mod 4 ,

(4.24)

Proof. Case 1: (N ≡ 1 mod 4.) Since ∆ = N , we have

E[Q] = E[W ]/
4
√
N

=

(

2
(√
2 + 1

)

4
√
N log 2

2k − 2

)

/

4
√
N

=
2
(√
2 + 1

)

log 2

2k − 2 .

Case 2: (N ≡ 2 or 3 mod 4.) Since ∆ = 4N , we have

E[Q] = (5E[W ]) / (3
4
√
4N)

=

(

5 · 3
(√
2 + 2

)

4
√
N log 2

2 (2k − 2)

)

/(

3
4
√
4N
)

=
5
(√
2 + 1

)

log 2

2 (2k − 2)
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k E[Q], N ≡ 1 mod 4 E[Q], N ≡ 2 or 3 mod 4
2 1.6734 2.0918

3 0.5578 0.6973

4 0.2391 0.2988

Table 4.2
Estimates of E[Q] for k = 2, 3, 4.

Table 4.2 lists the predicted values for E[Q] when N is a product of two, three,

and four primes.
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5. The Effect of Multipliers

We now consider how multiplying N by small odd primes changes the running time

of SQUFOF and the queue length. Our strategy will be similar to that of Chapter

4 in that we will compute E[X] and E[Xsq] for p1p2 · · · pnN for distinct small odd
primes pi.

5.1 Helpful Lemmas

The following three lemmas will be helpful in computing E[X] and E[Xsq]. The

notation a≪ b will mean that b is much larger than a.

Lemma 5.1.1. Let 0 ≪ ∆ be a positive integer and suppose p1, . . . , pn, for n ≥ 0,
are distinct small primes with pi ≪ ∆. Then for e ≥ 1 we have

√
∆
∑

c=1
pei ∤c, i=1,...,n

1 ∼
√
∆

n
∏

i=1

pei − 1
pei

.

Proof. When n = 0 the claim obviously holds. If n = 1 then

√
∆
∑

c=1
pe
1
∤c

1 =

√
∆
∑

c=1

1 −
√
∆/pe

1
∑

c=1

1

=
√
∆ −

√
∆

pe1

=
√
∆

1
∏

i=1

pei − 1
pei

.

Now suppose the claim holds for n− 1 primes p1, . . . , pn−1 and consider
√
∆
∑

c=1
pei ∤c, i=1,...,n

1 =

√
∆
∑

c=1
pei ∤c, i=1,...,n−1

1 −
√
∆/pen
∑

c=1
pei ∤c, i=1,...,n−1

1
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∼
√
∆
n−1
∏

i=1

pei − 1
pei

−
√
∆

pen

n−1
∏

i=1

pei − 1
pei

=
√
∆

n
∏

i=1

pei − 1
pei

.

Thus the claim hold for all n ≥ 0.

Lemma 5.1.2. Let 0 ≪ ∆ be a positive integer and suppose p1, . . . , pn, for n ≥ 0,
are distinct small primes with pi ≪ ∆. Then

√
∆
∑

c=
√
∆/2

p2i ∤c, i=1,...,n

1

c
∼ log 2

n
∏

i=1

p2i − 1
p2i

.

Proof. We prove the lemma by induction on n. First suppose that n = 0. Then

√
∆
∑

c=
√
∆/2

1

c
= H√∆ −H√∆/2 ∼ log 2 .

For n = 1 we have

√
∆
∑

c=
√
∆/2

p2
1
∤c

1

c
=

√
∆
∑

c=
√
∆/2

1

c
−

√
∆/p2

1
∑

c=
√
∆/2p2

1

1

p21

∼ log 2− 1
p21

√
∆/p2

1
∑

√
∆/2p2

1

1

c

∼ log 2− 1
p21
log 2

= log 2
1
∏

i=1

p2i − 1
p2i

.

Now suppose the claim holds for n− 1 primes p1, . . . , pn−1 and consider
√
∆
∑

c=
√
∆/2

p2i ∤c, i=1,...,n

1

c
=

√
∆
∑

c=
√
∆/2

p2i ∤c, i=1,...,n−1

1

c
−

√
∆/p2n
∑

c=
√
∆/2p2n

p2i ∤c, i=1,...,n−1

1

p2nc
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∼ log 2
n−1
∏

i=1

p2i − 1
p2i

− 1

p2n

√
∆/p2n
∑

c=
√
∆/2p2n

p2i ∤c, i=1,...,n−1

1

c

∼ log 2
n−1
∏

i=1

p2i − 1
p2i

− 1

p2n
log 2

n−1
∏

i=1

p2i − 1
p2i

= log 2

n
∏

i=1

p2i − 1
p2i

.

Thus the claim hold for all n ≥ 0.

Lemma 5.1.3. Let 0 ≪ ∆ be a positive integer and suppose p1, . . . , pn, for n ≥ 0,
are distinct small primes with pi ≪ ∆. Then

4
√
∆
∑

c= 4
√
∆/
√
2

pi∤c, i=1,...,n

1

c2
∼

√
2− 1
4
√
∆

n
∏

i=1

pi − 1
pi

.

Proof. We prove the lemma by induction on n. First suppose that n = 0. Then
4
√
∆
∑

c=
4
√
∆/
√
2

1

c2
∼
√
2

4
√
∆
− 1

4
√
∆
=

√
2− 1
4
√
∆

.

For n = 1 we have
4
√
∆
∑

c= 4
√
∆/
√
2

p1∤c

1

c2
=

4
√
∆
∑

c= 4
√
∆/
√
2

1

c2
−

4
√
∆/p1
∑

c= 4
√
∆/p1

√
2

1

p21c
2

∼
√
2− 1
4
√
∆

− 1
p21

4
√
∆/p1
∑

c= 4
√
∆/p1

√
2

1

c2

∼
√
2− 1
4
√
∆

− 1
p21

( √
2

4
√
∆/p1

− 1
4
√
∆/p1

)

=

√
2− 1
4
√
∆

− 1
p1

√
2− 1
4
√
∆

=

√
2− 1
4
√
∆

1
∏

i=1

pi − 1
pi

.

Now suppose the claim holds for n− 1 primes p1, . . . , pn−1 and consider
4
√
∆
∑

c= 4
√
∆/
√
2

pi∤c, i=1,...,n

1

c2
=

4
√
∆
∑

c= 4
√
∆/
√
2

pi∤c, i=1,...,n−1

1

c2
−

4
√
∆/pn
∑

c= 4
√
∆/pn

√
2

pi∤c, i=1,...,n−1

1

p2nc
2
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∼
√
2− 1
4
√
∆

n−1
∏

i=1

pi − 1
pi

− 1

p2n

4
√
∆/pn
∑

c= 4
√
∆/pn

√
2

pi∤c, i=1,...,n−1

1

c2

∼
√
2− 1
4
√
∆

n−1
∏

i=1

pi − 1
pi

− 1

p2n

√
2− 1

4
√
∆/pn

n−1
∏

i=1

pi − 1
pi

=

√
2− 1
4
√
∆

n
∏

i=1

pi − 1
pi

.

Thus the claim holds for all n ≥ 0.

Lemma 5.1.4. Let 0 ≪ ∆ be a positive integer and suppose p1, . . . , pn, for n ≥ 0,
are distinct small primes with pi ≪ ∆. Then

4
√
∆/
√
2

∑

c=1
pi∤c, i=1,...,n

1 −
4
√
∆
∑

c= 4
√
∆/
√
2

pi∤c, i=1,...,n

1 ∼ 4
√
∆
(√
2− 1

)

n
∏

i=1

pi − 1
pi

.

Proof. We prove the lemma by induction on n. First suppose that n = 0. Then

4
√
∆/
√
2

∑

c=1

1−
4
√
∆
∑

4
√
∆/
√
2

1 =
4
√
∆√
2
−
(

4
√
∆−

4
√
∆√
2

)

=
4
√
∆
(√
2− 1

)

.

For n = 1 we have
4
√
∆/
√
2

∑

c=1
p1∤c

1 −
4
√
∆
∑

c= 4
√
∆/
√
2

p1∤c

1 =





4
√
∆/
√
2

∑

c=1

1 −
4
√
∆/p1

√
2

∑

c=1

1



−





4
√
∆
∑

4
√
∆/
√
2

1 −
4
√
∆/p1
∑

4
√
∆/p1

√
2

1





=





4
√
∆/
√
2

∑

c=1

1 −
4
√
∆
∑

4
√
∆/
√
2

1



−





4
√
∆/p1

√
2

∑

c=1

1 −
4
√
∆/p1
∑

4
√
∆/p1

√
2

1





=
4
√
∆
(√
2− 1

)

−
[

4
√
∆

p1
√
2
−
(

4
√
∆

p1
−

4
√
∆

p1
√
2

)]

=
4
√
∆
(√
2− 1

)

1
∏

i=1

p1 − 1
p1

.

Now suppose the claim holds for n− 1 primes p1, . . . , pn−1 and consider
4
√
∆/
√
2

∑

c=1
pi∤c, i=1,...,n

1 −
4
√
∆
∑

c= 4
√
∆/
√
2

pi∤c, i=1,...,n

1
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=







4
√
∆/
√
2

∑

c=1
pi∤c, i=1,...,n−1

1 −
4
√
∆/pn

√
2

∑

c=1
pi∤c, i=1,...,n−1

1






−











4
√
∆
∑

c= 4
√
∆/
√
2

pi∤c, i=1,...,n−1

1 −
4
√
∆/pn
∑

c= 4
√
∆/pn

√
2

pi∤c, i=1,...,n−1

1











=











4
√
∆/
√
2

∑

c=1
pi∤c, i=1,...,n−1

1 −
4
√
∆
∑

c= 4
√
∆/
√
2

pi∤c, i=1,...,n−1

1











−











4
√
∆/pn

√
2

∑

c=1
pi∤c, i=1,...,n−1

1 −
4
√
∆/pn
∑

c= 4
√
∆/pn

√
2

pi∤c, i=1,...,n−1

1











∼
[

4
√
∆
(√
2− 1

)

n−1
∏

i=1

pi − 1
pi

]

−
[

4
√
∆

pn

(√
2− 1

)

n−1
∏

i=1

pi − 1
pi

]

=
4
√
∆
(√
2− 1

)

n
∏

i=1

pi − 1
pi

.

Thus the claim holds for all n ≥ 0.

5.2 The Running Time with Multipliers

Proposition 5.2.1. Let N be a square-free positive integer with k distinct large odd

prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi ∤ N
for all i. Define ∆ by

∆ =











p1 · · · pnN if p1 · · · pnN ≡ 1 mod 4 ,

4p1 · · ·pnN if p1 · · · pnN ≡ 2 or 3 mod 4 .
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If X is the number of reduced forms on the principal cycle of discriminant ∆ then

E[X] ∼



































































































(

2k+n + 1
)√

N log 2

2k+nh+
∏n
i=1

p2i − 1
p
3/2
i

if ∆ ≡ 1 mod 4 and

pi ≡ 1 mod 4 ∀i ,√
N log 2

h+
∏n
i=1

p2i − 1
p
3/2
i

if ∆ ≡ 1 mod 4 and

∃ pi ≡ 3 mod 4 ,
3
(

2k+n+1 + 1
)√

N log 2

2k+n+2h+
∏n
i=1

p2i − 1
p
3/2
i

if N ≡ 2 mod 4 and

pi ≡ 1 mod 4 ∀i ,
3
√
N log 2

2h+
∏n
i=1

p2i − 1
p
3/2
i

otherwise.

Proof. The proof of each case is similar to the corresponding proof in Proposition

4.2.4. The main difference is that we will need Lemma 5.1.2 to handle several small

ramified primes.

Case 1: (∆ and pi ≡ 1 mod 4 for i = 1, 2, . . . , n.) Here ∆ = p1 · · · pnN and so the
small ramified primes are p1, . . . , pn.

E[X] =

√
∆
∑

c=1
p2i ∤c

E[Xc]

=

√
∆
∑

c=1
p2i ∤c

(2κ + 1)E[Yc]

2κ+1h+

=
2κ + 1

2κ+1h+

√
∆
∑

c=1
p2i ∤c

E[Yc]

=
2κ + 1

2κ+1h+











√
∆/2
∑

c=1
p2i ∤c

2 +

√
∆
∑

c=
√
∆/2

p2i ∤c

2
(√
∆− c

)

c











=
(2κ + 1)

√
∆

2κh+

√
∆
∑

c=
√
∆/2

p2i ∤c

1

c
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∼ (2
κ + 1)

√
∆ log 2

2κh+

n
∏

i=1

p2i − 1
p2i

.

Now κ = k + n and ∆ = p1 · · ·pnN , hence

E[X] ∼
(

2k+n + 1
)√

N log 2

2k+nh+

n
∏

i=1

p2i − 1
p
3/2
i

.

Case 2: (∆ ≡ 1 mod 4, ∃pi ≡ 3 mod 4.) In this case we multiply the result for the
previous case by 2κ/ (2κ + 1), since we know that some prime equivalent to

3 mod 4 divides ∆. As in the previous case, ∆ = p1 · · · pn and κ = k + n so

E[X] ∼
(

(

2k+n + 1
)√

N log 2

2k+nh+

n
∏

i=1

p2i − 1
p
3/2
i

)

(

2k+n

2k+n + 1

)

=

√
N log 2

h+

n
∏

i=1

p2i − 1
p
3/2
i

.

Case 3: (N ≡ 2 mod 4, p1 ≡ 1 mod 4 for i = 1, 2, . . . , n.) Here ∆ = 4p1 · · · pnN and
κ = k + n+ 1. So the small ramified primes are 2, p1, . . . , pn.

E[X] =

√
∆
∑

c=1
4,p2i ∤c

E[Xc]

=

√
∆
∑

c=1
4,p2i ∤c

(2κ + 1)E[Yc]

2κ+1h+

=
2κ + 1

2κ+1h+

√
∆
∑

c=1
4,p2i ∤c

E[Yc]

=
2κ + 1

2κ+1h+











√
∆/2
∑

c=1
4,p2i ∤c

2 +

√
∆
∑

c=
√
∆/2

p2i ∤c

2
(√
∆− c

)

c











=
(2κ + 1)

√
∆

2κh+

√
∆
∑

c=
√
∆/2

4,p2i ∤c

1

c

∼ (2
κ + 1)

√
∆ log 2

2κh+

(

22 − 1
22

) n
∏

i=1

p2i − 1
p2i



54

=
3
(

2k+n+1 + 1
)√

N log 2

2k+n+2h+

n
∏

i=1

p2i − 1
p
3/2
i

.

Case 4: In all other cases ∆ = 4p1 · · · pnN and κ = k + n + 1. We can obtain

the result in this case by multiplying the result for Case 3 by 2κ/ (2κ + 1) =

2k+n+1/
(

2k+n+1 + 1
)

, which gives the desired result.

Proposition 5.2.2. Let N be a square-free positive integer with k distinct large odd

prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi ∤ N
for all i. Define ∆ as in Proposition 5.2.1. If Xsq is the number of reduced square

forms on the principal cycle of discriminant ∆ then

E[Xsq] =







































































































(

2k+n + 1
) (√
2− 1

)

4
√
N

2h+
∏n
i=1

pi − 1
p
3/4
i

if ∆ ≡ 1 mod 4 and

pi ≡ 1 mod 4 ∀i ,
2k+n

(√
2− 1

)

4
√
N

2h+
∏n
i=1

pi − 1
p
3/4
i

if ∆ ≡ 1 mod 4 and

∃pi ≡ 3 mod 4 ,
(

2k+n+1 + 1
) (

2−
√
2
)

4
√
N

4h+
∏n
i=1

pi − 1
p
3/4
i

if N ≡ 2 mod 4 and

pi ≡ 1 mod 4 ∀i ,
2k+n

(

2−
√
2
)

4
√
N

2h+
∏n
i=1

pi − 1
p
3/4
i

otherwise.

Proof. The proof of each case is similar to the corresponding proof in Proposition

4.2.6. The main difference is that we will need Lemmas 5.1.3 and 5.1.4 to handle

several small ramified primes.

Case 1: (∆ and pi ≡ 1 mod 4 for i = 1, 2, . . . , n.) Here ∆ = p1 · · · pnN and so the
small ramified primes are p1, . . . , pn.

E[Xsq] =

4
√
∆
∑

c=1
pi∤c

E[Xc2]/2
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=

4
√
∆
∑

c=1
pi∤c

(2κ + 1)E[Yc2]

8h+

=
2κ + 1

8h+

4
√
∆
∑

c=1
pi∤c

E[Yc2]

=
2κ + 1

8h+











4
√
∆/
√
2

∑

c=1
pi∤c

2 +

4
√
∆
∑

c= 4
√
∆/
√
2

pi∤c

2
(√
∆− c2

)

c2











=
2κ + 1

4h+





















4
√
∆/
√
2

∑

c=1
pi∤c

1 −
4
√
∆
∑

c= 4
√
∆/
√
2

pi∤c

1











+
√
∆

4
√
∆
∑

c= 4
√
∆/
√
2

pi∤c

1

c2











∼ 2
κ + 1

4h+

[

4
√
∆
(√
2− 1

)

n
∏

i=1

pi − 1
pi

+
√
∆

(√
2− 1
4
√
∆

)

n
∏

i=1

pi − 1
pi

]

=
(2κ + 1)

(√
2− 1

)

4
√
∆

2h+

n
∏

i=1

pi − 1
pi

.

Now κ = k + n, hence

E[Xsq] ∼
(

2k+n + 1
) (√
2− 1

)

4
√
N

2h+

n
∏

i=1

pi − 1
p
3/4
i

.

Case 2: (∆ ≡ 1 mod 4, ∃pi ≡ 3 mod 4.) In this case we multiply the result for the
previous case by 2κ/ (2κ + 1), since we know that some prime equivalent to

3 mod 4 divides ∆. As in the previous case, ∆ = p1 · · · pnN and κ = k + n so

E[X] ∼
(

(

2k+n + 1
) (√
2− 1

)

4
√
N

2h+

n
∏

i=1

pi − 1
p
3/4
i

)

(

2k+n

2k+n + 1

)

=
2k+n

(√
2− 1

)

4
√
N

2h+

n
∏

i=1

pi − 1
p
3/4
i

.

Case 3: (N ≡ 2 mod 4, p1 ≡ 1 mod 4 for i = 1, 2, . . . , n.) Here ∆ = 4p1 · · · pnN and
κ = k + n+ 1. So the small ramified primes are 2, p1, . . . , pn.

E[Xsq] =

4
√
∆
∑

c=1
2,pi∤c

E[Xc2]/2
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=

4
√
∆
∑

c=1
2,pi∤c

(2κ + 1)E[Yc2]

8h+

=
2κ + 1

8h+

4
√
∆
∑

c=1
2,pi∤c

E[Yc2]

=
2κ + 1

8h+











4
√
∆/
√
2

∑

c=1
2,pi∤c

2 −
4
√
∆
∑

c= 4
√
∆/
√
2

2,pi∤c

2
(√
∆− c2

)

c2











=
2κ + 1

4h+





















4
√
∆/
√
2

∑

c=1
2,pi∤c

1 −
4
√
∆
∑

c= 4
√
∆/
√
2

2,pi∤c

1











+
√
∆

4
√
∆
∑

c= 4
√
∆/
√
2

2,pi∤c

1

c2











∼ 2
κ + 1

4h+

[

4
√
∆
(√
2− 1

)

(

2− 1
2

) n
∏

i=1

pi − 1
pi

+
√
∆

(√
2− 1
4
√
∆

)

(

2− 1
2

) n
∏

i=1

pi − 1
pi

]

=
(2κ + 1)

(√
2− 1

)

4
√
∆

4h+

n
∏

i=1

pi − 1
pi

=

(

2k+n+1 + 1
) (

2−
√
2
)

4
√
N

4h+

n
∏

i=1

pi − 1
p
3/4
i

.

Case 4: In all other cases ∆ = 4p1 · · · pnN and κ = k + n + 1. We can obtain

the result in this case by multiplying the result for Case 3 by 2κ/ (2κ + 1) =

2k+n+1/
(

2k+n+1 + 1
)

, which gives the desired result.

Corollary 5.2.3. Let N be a square-free positive integer with k distinct large odd

prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi ∤ N
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for all i. Define ∆ as in Proposition 5.2.1. If D is the index-difference between

successive square forms on the principal cycle, then

E[D] =



































(√
2 + 1

)

4
√
N log 2

2k−1
∏n
i=1

pi + 1

2p
3/4
i

if ∆ ≡ 1 mod 4 ,

3
(√
2 + 2

)

4
√
N log 2

2k+1
∏n
i=1

pi + 1

2p
3/4
i

if ∆ ≡ 0 mod 4 .

Proof. Just as with the proof of Corollary 4.2.9, we obtain the result by computing

E[X]/E[Xsq].

Proposition 5.2.4. Let N be a square-free positive integer with k distinct large odd

prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi ∤ N for
all i. Define ∆ as in Proposition 5.2.1. If W is the number of forms that SQUFOF

must examine before finding a proper square form, then

E[W ] =



































2
(√
2 + 1

)

4
√
N log 2

2k − 2
∏n
i=1

pi + 1

2p
3/4
i

if ∆ ≡ 1 mod 4 ,

3
(√
2 + 2

)

4
√
N log 2

2 (2k − 2)
∏n
i=1

pi + 1

2p
3/4
i

if ∆ ≡ 0 mod 4 .

Proof. As in the proof of Proposition 4.4.1, this is the product of the results from

Corollaries 4.3.3 and 5.2.3.

5.3 Using the Queue with Multipliers

We begin with Propositions analogous to Propositions 3.2.1 and 3.2.2.

Proposition 5.3.1. Let N be a square-free positive integer with k distinct large odd

prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi ∤ N
for all i. Define ∆ as in Proposition 5.2.1. Suppose that a is a positive odd integer,

b is a positive integer, gcd (a, b) = 1, and that (a2, b,−c) is a square form on the
principal cycle of discriminant ∆ with c > 0. Then (−a, b, ac)2 ∼ (a2, b,−c).
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Proof. This follows directly from the definition of composition.

There are 2κ reduced ambiguous forms of discriminant ∆. The forms (±d, ∗, ∗),
where d is a square-free divisor of ∆ relatively prime to N with |d| <

√
∆, lead to

trivial factorizations of N . Let ±d denote the reduced ambiguous form (±d, ∗, ∗).

Proposition 5.3.2. Let N be a square-free positive integer with k distinct large odd

prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi ∤ N
for all i. Define ∆ as in Proposition 5.2.1. Suppose that a is a positive odd integer,

b is a positive integer, gcd (a, b) = 1, and that Fn = (a
2, b,−c) is a square form on

the principal cycle of discriminant ∆, with c > 0. Some form (α, β, ∗) appears on the
principal cycle at position m < n with α ∈ {±da}, where d is a square-free divisor
of ∆ that is relatively prime to N with |d| <

√
∆, and β ≡ b mod a if and only if

(−a, b, ac) is equivalent to one of the ambiguous forms ±d.

Proof. Suppose some form (α, β, ∗) appears on the principal cycle at position m < n

with α = da, where d is a square-free divisor of ∆ that is relatively prime to N with

|d| <
√
∆, and β ≡ b mod a. Then we can write the form as (α, β, ∗) ∼ (da, β, ∗). It

is easy to see that −d ∼ (da, β, ∗) ◦ −d ∼ (−a, β, ∗) ∼ (−a, b, ac).
Conversely, suppose there is no form (α, β, ∗) appearing on the principal cycle

before Fn with α ∈ {±da} and β ≡ b mod a. Let f = (−a, b, ac). If f is equivalent
to some g ∈ {±d}, then f ◦ g ∼ 1 and f ◦ g is equivalent to some form (α, β ′, ∗)
with α ∈ {±da} and β ′ ≡ b mod a. But this square root is equivalent to a reduced

square root (α, β, ∗), with α ∈ {±da} and β ≡ β ′ ≡ b mod a, that must be on the

principal cycle. But then this reduced square root must appear before the form Fn, a

contradiction. Therefore, f is not equivalent to any of the ambiguous forms ±d.

Proposition 5.3.2 says that when we have several small ramified primes, the test

for whether a form is enqueued or not is the following. First suppose N ≡ 1 mod 4.
If a form (∗, b, c) is found such that |c′| < 4

√
∆, where c′ = c/ gcd (c, p1 · · · pn), then

SQUFOF will enqueue the pair (c′, b mod c′). IfN ≡ 2 or 3 mod 4, then the additional
ramified prime 2 means that we should take c′ = c/ gcd (c, 2p1 · · ·pn). We now turn
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to the task of computing the expected number of forms enqueued in terms of N and

pi.

Proposition 5.3.3. Let 0 ≪ ∆ be a positive integer and suppose p1, . . . , pn, for

n ≥ 0, are distinct small primes with pi ≪ ∆. Let S be the set of integers c such that

1. p2i ∤ c for i = 1, 2, . . . , n, and

2. |c| < 4
√
∆, or

3. if |c| > 4
√
∆, then |c′| < 4

√
∆, where c′ = c/ gcd (p1 · · · pn, c).

Then

|S| ∼ |T|
n
∏

i=1

2pi + 1

pi + 1
,

where

|T| ∼ 2 4
√
∆

n
∏

i=1

p2i + 1

p2i
,

and T is the set of integers satisfying only 1. and 2. above.

Proof. The asymptotics behavior of the cardinality of the set T is clear, as is the

behavior of the cardinality of the set S when n = 0. We prove the asymptotic

behavior of the cardinality of the set S for n > 0 by induction on n.

Suppose n = 1. Of the integers in T, the subset of integers c divisible by p1 (given

that c is not divisible by p21) has size |T|/ (p1 + 1), using the fundamental equation
for conditional probabilities. None of these numbers can also appear as a c′ for some

c > 4
√
∆. The rest of the integers in the set T are not divisible by p1, so if we multiply

each of these by p1, we get a new set of integers that must satisfy 1. and 3. Thus

|S| ∼ |T| 1

p1 + 1
+ 2 |T| p1

p1 + 1
= |T|

1
∏

i=1

2pi + 1

pi + 1
.

Now suppose that the claim holds for any choice of n− 1 primes and consider the
case of n primes p1, . . . , pn. Again, it is easy to see that

|T| ∼ 2 4
√
∆

n
∏

i=1

p2i + 1

p2i
.
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The subset of these numbers divisible by pn has cardinality |T|/ (pn + 1). Each of
these can be multiplied by some square-free product (perhaps trivial) of only the

p1, . . . , pn−1. By the induction hypothesis, this subset leads to

|T| 1

pn + 1

n−1
∏

i=1

2pi + 1

pi + 1

integers that satisfy either 1. and 2., or 1. and 3. The rest of the integers in T are

not divisible by pn. Again, by the induction hypothesis, this subset leads to

2 |T| pn
pn + 1

n−1
∏

i=1

2pi + 1

pi + 1
,

where we first count those numbers that we get by multiplying by some square-free

product (perhaps trivial) of the p1, . . . , pn−1, then we double our count since for each

of these we may multiply by either 1 or pn. Finally, |S|, the total number of integers
that satisfy either 1. and 2., or 1. and 3. is

|S| ∼ |T| 1

pn + 1

n−1
∏

i=1

2pi + 1

pi + 1
+ 2 |T| pn

pn + 1

n−1
∏

i=1

2pi + 1

pi + 1

= |T|
n
∏

i=1

2pi + 1

pi + 1
.

Thus the claim holds for all n ≥ 0.

Proposition 5.3.4. Let N be a square-free positive integer with k distinct large odd

prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi ∤ N
for all i. Define ∆ as in Proposition 5.2.1. If Q is the number of forms that SQUFOF

enqueues before finding a proper square form, then

E[Q] =































2
(√
2 + 1

)

log 2

2k − 2
∏n
i=1

2pi + 1

2pi
if ∆ ≡ 1 mod 4 ,

5
(√
2 + 1

)

log 2

2 (2k − 2)
∏n
i=1

2pi + 1

2pi
if ∆ ≡ 0 mod 4 .

Proof. Proposition 5.3.3 counts the number of end coefficients that will lead to a

form being enqueued, where we must include the small prime 2 if it is ramified. The
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number of end coefficients c with |c| <
√
∆ and c not divisible by the square of any

ramified prime is given by |T| of Proposition 5.3.3, where again we include the small
prime 2 whenever it is ramified, and we replace 4

√
∆ with

√
∆. We take the ratio of

these two numbers to be the probability that a form will be enqueued. Finally, we

take the product of this number with E[W ] to get E[Q], as in the proof of Proposition

4.5.2.

5.4 Optimal Multipliers for SQUFOF

When SQUFOF is implemented using the continued fraction description, the case

of p1 · · · pnN ≡ 1 mod 4 is never encountered, since we assume multiplication of such
numbers by 8 before a factorization is attempted. So we will choose the pi so as to

minimize the quantity

E[W ] =
3
(√
2 + 2

)

4
√
N log 2

2 (2k − 2)

n
∏

i=1

pi + 1

2p
3/4
i

,

which is the factor by which factorization of p1 · · · pnN is faster or slower than that
of N .

Proposition 5.4.1. Let Ω be the set of all finite sets of odd primes and define the

mapping F : Ω→ Z by F (∅) = 1 and

F ({p1, . . . , pn}) =
n
∏

i=1

pi + 1

2p
3/4
i

.

Then F is minimized at the set {3, 5, 7, 11} and

F ({3, 5, 7, 11}) .= 0.7268 .

Proof. It is easy to check that F ({3, 5, 7, 11}) .= 0.7268. We will show that for any
other finite set of odd primes {p1, . . . , pn}, we will have

F ({p1, . . . , pn}) > F ({3, 5, 7, 11}) ,
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which will prove the claim. So suppose by way of contradiction that there exists

a finite set of odd primes {p1, . . . , pn} such that F ({p1, . . . , pn}) < F ({3, 5, 7, 11}).
Since F (∅) = 1, F is not minimized at ∅ and so n > 0.

It is easy to check that the function f(x) = (x+ 1) /2x3/4 is strictly increas-

ing on [3,∞) and so for a given n, among all sets of n primes, F is minimized at
{3, 5, 7, . . . , pn}, where pn is the nth odd prime. Straightforward computation shows
that for sets of n primes with n = 1, 2, 3, 4, F is minimized at {3, 5, 7, 11}. Finally, one
easily sees that (x+ 1) /2x3/4 > 1 for x ≥ 13. This means that adding any additional
primes to the set {3, 5, 7, 11} will increase the value of F at this new set. Therefore,
F is minimized at the set {3, 5, 7, 11}.

Proposition 5.4.1 shows that the optimal multiplier is 3 · 5 · 7 · 11 = 1155, and
that in fact we can expect SQUFOF to find a non-trivial factor of N using 1155N

in about 73% of the time that it would take using N . However, for practical reasons

associated with the size of single precision numbers, SQUFOF may actually run faster

for smaller multipliers.

Let F be defined as in Proposition 5.4.1 and let G ({p1, . . . , pn) =
∏n
i=1

2pi+1
2pi
be

the factor by which the number of forms enqueued is larger when factoring p1 · · · pnN
than when factoring N . Table 5.1 lists some good candidate multipliers, along with

the associated values of F and G. Note that for the values of p1 · · ·pn considered in
Table 5.1, the value of G is no larger than 1.5. In other words, at worst we can expect

a 50% increase in the number of forms enqueued when using one of these multipliers.

However, the number of forms enqueued without using a multiplier is very small—

about 2.1 forms. So even though the rules for enqueuing a form are more complicated

(hence more time consuming) when using multipliers, this expected running time cost

is negligible compared with the expected running time savings.
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p1 · · · pn F ({p1, . . . , pn}) G ({p1, . . . , pn})
3 0.8774 1.1667

5 0.8972 1.1000

7 0.9295 1.0714

11 0.9934 1.0455

3 · 5 0.7872 1.2833

3 · 7 0.8155 1.2500

3 · 11 0.8716 1.2197

5 · 7 0.8339 1.1786

5 · 11 0.8913 1.1500

7 · 11 0.9233 1.1201

3 · 5 · 7 0.7317 1.3750

3 · 5 · 11 0.7820 1.3417

3 · 7 · 11 0.8101 1.3068

5 · 7 · 11 0.8284 1.2321

3 · 5 · 7 · 11 0.7268 1.4375

Table 5.1
Good candidate multipliers for N ≡ 2 or 3 mod 4.
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5.5 Racing SQUFOF with multipliers

Originally, the main reason for using multipliers was to exploit the great variation

inW , the actual number of forms that SQUFOF must examine before finding a proper

square form. Racing several multipliers succeeds when the first proper square form

is found, which is very likely to be where we expect for at least one of the multiples

of N . The results of the previous section suggest that if we choose the multipliers

wisely, we can expect the proper square form to come even sooner.
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6. Experimental Results

6.1 Factoring with and without Multipliers

In this section we describe our experiments with factoring integers with two, three,

or four large prime divisors, with and without the use of multipliers. We present the

results of these experiments and compare them with the expected running time and

expected number of forms enqueued for p1 · · · pnN ≡ 2 or 3 mod 4.

6.1.1 Factoring Products of Two Primes

We began by generating 40, 000 values for N by taking N to be the product of

two primes p and q where 30011 ≤ p ≤ 32099 and 36097 ≤ q ≤ 38239. Whenever
pq ≡ 1 mod 4 we take N = 2pq, otherwise N = pq. SQUFOF then attempted to

factor each of these 10-digit numbers, failing to find a non-trivial factor only when

the principal period contains no proper square forms, or if there was a queue overflow.

We found the failure rate to be no more than 2% for a maximum queue length of 55.

We repeated the factorization for each value of N and each multiplier m from Table

5.1.

Let FWRD be the number of forms of discriminant ∆ that SQUFOF examines

before finding a proper square form divided by the fourth root of N . Let QUEUE be

the number of forms that SQUFOF enqueues during the search for a proper square

form. We computed FWRD and QUEUE for each successful factorization. We then

computed the average values FWRD and QUEUE, along with the standard deviations

σ (FWRD) and σ (QUEUE). We also the computed the maximum and minimum value

for FWRD and QUEUE, which gives the inequalities: 0.0053 ≤ FWRD ≤ 32.8856
and 0 ≤ QUEUE ≤ 78. Table 6.1 gives a comparison between the predicted and
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calculated values for FWRD and QUEUE. Note that we have not given the multipliers

in their factored form due to space constraints.

6.1.2 Factoring Products of Three Primes

Next we generated 10, 000 products of three primes by choosing 50 primes p con-

gruent to 1 modulo 4 with 30013 ≤ p ≤ 30941, 50 primes q congruent to 3 modulo 4
with 32971 ≤ q ≤ 33923, and a third prime r ∈ {9803, 9871, 9923, 9973}. As before,
if pqr ≡ 1 mod 4, then we take N = 2pqr, otherwise N = pqr. SQUFOF then at-

tempted to factor each of these 12-13 digit numbers. We repeated the factorization

for each value of N and each multiplier m from Table 5.1. The ranges for FWRD

and QUEUE are 0.0006 ≤ FWRD ≤ 7.6516 and 0 ≤ QUEUE ≤ 21. Table 6.2 gives
a summary of the results.

6.1.3 Factoring Products of Four Primes

We then generated 10, 000 products of four primes by choosing 50 primes p

congruent to 1 modulo 4 with 30013 ≤ p ≤ 30941, 50 primes q congruent to
3 modulo 4 with 32971 ≤ q ≤ 33923, and a third and fourth prime by taking
rs ∈ {109 · 1423, 109 · 1429, 127 · 1423, 127 · 1429}. As before, if pqrs ≡ 1 mod 4,
then we take N = 2pqrs, otherwise N = pqrs. SQUFOF then attempted to fac-

tor each of these 14 digit numbers. We repeated the factorization for each value of

N and each multiplier m from Table 5.1. The ranges for FWRD and QUEUE are

0.0003 ≤ FWRD ≤ 2.6333 and 0 ≤ QUEUE ≤ 12. Table 6.3 gives a summary of the
results.

6.2 Racing with Multipliers

In this section we describe our experiments with racing multipliers to factor in-

tegers with two, three, or four large prime divisors. As in the previous section, we
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worked only with integers p1 · · · pnN ≡ 2 or 3 mod 4. We used multipliers m1, m2
taken from Table 5.1, where m1 < m2.

6.2.1 Factoring Products of Two Primes by Racing Two Multipliers

We began the racing experiments by generating 10, 000 values for N by choosing

100 primes p congruent to 1 modulo 4 with 30013 ≤ p ≤ 32089 and 100 primes q
congruent to 3 modulo 4 with 34123 ≤ q ≤ 36067, then taking N = 2pq whenever
pq ≡ 1 mod 4 and otherwise N = pq. For each pair m1, m2 with m1 < m2 SQUFOF

attempted to factor each of these 10-digit numbers by racing the factorizations of

m1N and m2N .

Let FWRD be the total number of forms that SQUFOF examines during the race

before finding a proper square form divided by the fourth root of N . Let QUEUE

be the total number of forms that SQUFOF enqueues during the race. We computed

FWRD and QUEUE for each successful factorization. We then computed the av-

erage values FWRD and QUEUE, along with the standard deviations σ (FWRD)

and σ (QUEUE). We also the computed the maximum and minimum value for

FWRD and QUEUE, which gives the inequalities: 0.0109 ≤ FWRD ≤ 32.3333 and
0 ≤ QUEUE ≤ 115. Tables A.1 - A.15 in Appendix A give a summary of our findings.

6.2.2 Factoring Products of Three Primes by Racing Two Multipliers

Next we generated 10, 000 products of three primes by choosing 50 primes p con-

gruent to 1 modulo 4 with 30013 ≤ p ≤ 30941, 50 primes q congruent to 3 modulo
4 with 32971 ≤ q ≤ 33923, and a third prime r ∈ {101, 103, 107, 109}. As before, if
pqr ≡ 1 mod 4, then we take N = 2pqr, otherwise N = pqr. For each pair m1, m2

with m1 < m2 SQUFOF attempted to factor each of these 10-11 digit numbers by

racing the factorizations of m1N and m2N . The ranges for FWRD and QUEUE are

0.0034 ≤ FWRD ≤ 9.4782 and 0 ≤ QUEUE ≤ 97. Tables A.16 - A.30 in Appendix
A give a summary of our findings.
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6.2.3 Factoring Products of Four Primes by Racing Two Multipliers

We then generated 10, 000 products of four primes by choosing 50 primes p

congruent to 1 modulo 4 with 30013 ≤ p ≤ 30941, 50 primes q congruent to
3 modulo 4 with 32971 ≤ q ≤ 33923, and a third and fourth prime by taking
rs ∈ {109 · 1423, 109 · 1429, 127 · 1423, 127 · 1429}. As before, if pqrs ≡ 1 mod 4,
then we take N = 2pqrs, otherwise N = pqrs. SQUFOF attempted to factor each of

these 14 digit numbers by racing the factorizations of m1N and m2N . The ranges for

FWRD and QUEUE are 0.0005 ≤ FWRD ≤ 12.6129 and 0 ≤ QUEUE ≤ 82. Tables
A.31 - A.45 in Appendix A give a summary of our findings.
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m E[W ]
4
√
N

FWRD σ (FWRD) E[Q] QUEUE σ (QUEUE) failures

1 1.7749 1.6917 1.6895 2.0918 2.2934 2.9424 366

3 1.5573 1.4858 1.4576 2.4404 2.2791 2.8100 543

5 1.5925 1.5089 1.5070 2.3009 2.2690 2.8437 411

7 1.6497 1.6021 1.5822 2.2412 2.3414 2.9434 319

11 1.7631 1.6361 1.7075 2.1868 2.2358 2.8973 269

15 1.3972 1.3285 1.3097 2.6844 2.2763 2.7559 362

21 1.4474 1.3463 1.3523 2.6147 2.2288 2.7165 399

33 1.5469 1.4800 1.4530 2.5513 2.2827 2.7500 411

35 1.4802 1.4248 1.4154 2.4653 2.3204 2.8353 235

55 1.5819 1.5134 1.4945 2.4055 2.2922 2.7989 344

77 1.6388 1.5763 1.5819 2.3430 2.3108 2.8277 245

105 1.2987 1.2336 1.2134 2.8762 2.2807 2.7106 349

165 1.3879 1.3299 1.3133 2.8064 2.2988 2.7525 240

231 1.4378 1.3706 1.3696 2.7335 2.2969 2.7777 170

385 1.4703 1.4052 1.4068 2.5773 2.3008 2.8204 224

1155 1.2900 1.2192 1.2012 3.0069 2.2260 2.6422 750

Table 6.1
Two-prime statistics for FWRD and QUEUE.
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m E[W ]
4
√
N

FWRD σ (FWRD) E[Q] QUEUE σ (QUEUE) failures

1 0.5916 0.5821 0.5771 0.6973 0.7710 1.1989 0

3 0.5191 0.5209 0.5176 0.8135 0.7940 1.2030 7

5 0.5308 0.5129 0.5076 0.7670 0.7726 1.1940 44

7 0.5499 0.5360 0.5356 0.7471 0.7719 1.1904 6

11 0.5877 0.5666 0.5607 0.7289 0.7864 1.1961 2

15 0.4657 0.4544 0.4534 0.8948 0.7678 1.1705 4

21 0.4825 0.4798 0.4757 0.8716 0.8073 1.2363 5

33 0.5157 0.5156 0.5120 0.8504 0.8085 1.2300 2

35 0.4934 0.4923 0.4915 0.8218 0.8073 1.2363 2

55 0.5273 0.5158 0.5041 0.8018 0.7872 1.1722 2

77 0.5463 0.5472 0.5434 0.7810 0.8168 1.2270 2

105 0.4329 0.4274 0.4285 0.9587 0.8044 1.2303 4

165 0.4627 0.4592 0.4552 0.9355 0.8173 1.2156 0

231 0.4793 0.4768 0.4773 0.9112 0.7833 1.1851 5

385 0.4901 0.4946 0.4918 0.8591 0.7875 1.1697 3

1155 0.4300 0.4283 0.4271 1.0023 0.7881 1.1901 3

Table 6.2
Three-prime statistics for FWRD and QUEUE.
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m E[W ]
4
√
N

FWRD σ (FWRD) E[Q] QUEUE σ (QUEUE) failures

1 0.2536 0.2539 0.2554 0.2988 0.3403 0.6958 1

3 0.2225 0.2189 0.2232 0.3486 0.3347 0.6762 2

5 0.2275 0.2323 0.2297 0.3287 0.3398 0.6787 1

7 0.2357 0.2367 0.2324 0.3202 0.3368 0.6766 3

11 0.2519 0.2522 0.2477 0.3124 0.3321 0.6818 0

15 0.1996 0.2012 0.2011 0.3835 0.3444 0.6954 1

21 0.2068 0.2072 0.2049 0.3735 0.3328 0.6667 2

33 0.2210 0.2195 0.2158 0.3645 0.3406 0.6589 0

35 0.2114 0.2121 0.2095 0.3522 0.3298 0.6646 2

55 0.2260 0.2283 0.2300 0.3436 0.3432 0.6857 1

77 0.2341 0.2343 0.2340 0.3347 0.3409 0.6764 0

105 0.1855 0.1847 0.1806 0.4109 0.3215 0.6565 0

165 0.1983 0.2006 0.1978 0.4009 0.3430 0.6747 0

231 0.2054 0.2046 0.2045 0.3905 0.3449 0.6772 1

385 0.2100 0.2100 0.2120 0.3682 0.3465 0.6821 2

1155 0.1843 0.1858 0.1850 0.4296 0.3540 0.6964 1

Table 6.3
Four-prime statistics for FWRD and QUEUE.
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7. Conclusions and Further Work

We end this thesis with a conclusion and some questions for future work.

7.1 Conclusions

We have shown that given a square-free positive integer N , SQUFOF can be

expected to examine

E[W ] ∼































2
√
2 + 1 4

√
N log 2

2k − 2 if N ≡ 1 mod 4 ,

3
√
2 + 2 4

√
N log 2

2 (2k − 2) if N ≡ 2 or 3 mod 4 ,

reduced forms on the principal cycle of discriminant ∆ before finding a proper square

form, where ∆ is defined by

∆ =











N if N ≡ 1 mod 4 ,

4N if N ≡ 2 or 3 mod 4 .

Since a proper square form quickly leads to a proper factorization of N , this gives a

good measure of the running time. Regarding the space requirement for SQUFOF,

we have shown that we can expect SQUFOF to enqueue

E[Q] ∼































2
√
2 + 1 log 2

2k − 2 if N ≡ 1 mod 4 ,

5
√
2 + 1 log 2

2 (2k − 2) if N ≡ 3 mod 4 ,

reduced forms on the principal cycle of discriminant ∆ before finding a proper square

form.
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If we use the multiplier p1 · · · pn to factor N , where the pi are distinct small odd
primes, then we can expect SQUFOF to examine

E[W ]

n
∏

i=1

pi + 1

2p
3/4
i

reduced forms on the principal cycle of discriminant ∆ before finding a proper square

form, where now ∆ is defined by

∆ =











p1 · · · pnN if p1 · · · pnN ≡ 1 mod 4 ,

4p1 · · · pnN if p1 · · · pnN ≡ 2 or 3 mod 4 .

Furthermore, we can expect SQUFOF to enqueue

E[Q]
n
∏

i=1

2pi + 1

2pi

reduced forms on the principal cycle of discriminant ∆ before finding a proper square

form. We performed many experiments to test our claims. We believe that the results

of our experiments indicate that our simplifying assumptions are reasonable and that

these expectations are useful.

7.2 Future Work

Some questions for further study:

1.) Non-square-free N : SQUFOF will work for non-fundamental discriminants ∆,

and we believe that a similar analysis to that contained in this thesis will yield

the running time and expected number of forms enqueued for such ∆. Towards

this end, in future work we will re-examine the points where we assume ∆ to

be a fundamental discriminant.

2.) SQUFOF Failures: From our experiments, we have seen that SQUFOF does

not fail whenever N is a product of two primes, each of which is congruent

to 3 modulo 4. It would be interesting to prove why this is so. Also, we will
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investigate why there are so many more failures when N is a product of two

primes than when N is a product of three or four primes, and when racing with

the multipliers 5 · 7 · 11 or 3 · 5 · 7 · 11.

3.) Distributions of E[W ] and E[Q]: Our experiments suggest that E[W ] may be

closely approximated by an exponentially distributed random variable, since

we find the mean and variance to be approximately the same. In future work,

we will investigate this possibility, along with the implications it holds for the

distribution of E[Q].

4.) Racing Multipliers: First, we would like to find results analogous to E[W ]

and E[Q] for the case of racing multipliers. If we can prove that the E[W ]

are approximately exponentially distributed, then we will be able to give a

good estimate for E[Wr], the expected number of forms examined during a race

between several multiples of N . We also hope to discover the distribution of

E[Qr], the expected number of forms enqueued during a race between several

multiples of N . Also, given that there are several multipliers m such that we

can expect to factor mN faster than we can expect to factor N , it may be

worthwhile to race several multiples of N .
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A. Racing with Multipliers Data

We present the data for racing multipliers m1, m2 from Table 5.1, for N a product of

two, three, and four primes. Each table summarizes the result for racing a fixed m1

against each multiplier m2 with m1 < m2.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 1.6507 1.6425 2.4674 3.1937 3

5 1.6773 1.6584 2.4698 3.2857 5

7 1.6814 1.6673 2.3961 3.0491 1

11 1.7735 1.7637 2.5019 3.3211 0

3 · 5 1.5558 1.5462 2.5187 3.4828 4

3 · 7 1.5858 1.5787 2.4410 3.3558 1

3 · 11 1.6198 1.6637 2.4077 3.2573 4

5 · 7 1.5891 1.5405 2.4164 3.0042 1

5 · 11 1.6287 1.6242 2.4059 3.0370 2

7 · 11 1.6815 1.6626 2.4511 3.2944 2

3 · 5 · 7 1.4871 1.4730 2.5010 3.5409 3

3 · 5 · 11 1.5439 1.5412 2.4272 3.0739 4

3 · 7 · 11 1.5549 1.5324 2.4275 3.0720 1

5 · 7 · 11 1.5881 1.6041 2.4175 3.1048 9

3 · 5 · 7 · 11 1.4635 1.4453 2.3796 3.0285 104

Table A.1
Two-prime racing statistics for FWRD and QUEUE, m1 = 1.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

5 1.5446 1.5351 2.4633 3.6090 1

7 1.5807 1.5689 2.4275 3.1903 2

11 1.6205 1.5936 2.4466 3.2071 2

3 · 5 1.4717 1.4960 2.5115 3.5144 3

3 · 7 1.4782 1.4863 2.4345 3.3837 6

3 · 11 1.4999 1.5229 2.3940 3.2385 6

5 · 7 1.4905 1.4621 2.4330 3.2702 1

5 · 11 1.5160 1.5134 2.4035 3.4065 3

7 · 11 1.5710 1.5605 2.4188 3.0889 3

3 · 5 · 7 1.3906 1.3792 2.4768 3.4607 5

3 · 5 · 11 1.4347 1.4256 2.4320 3.4426 2

3 · 7 · 11 1.4791 1.5024 2.4591 3.3089 1

5 · 7 · 11 1.4778 1.5349 2.4436 3.6460 11

3 · 5 · 7 · 11 1.3768 1.3479 2.3769 3.0663 115

Table A.2
Two-prime racing statistics for FWRD and QUEUE, m1 = 3.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

7 1.5885 1.5664 2.4000 3.1011 2

11 1.6501 1.6411 2.4290 3.0286 1

3 · 5 1.4686 1.4587 2.4817 3.2797 2

3 · 7 1.4846 1.4707 2.3919 3.1280 1

3 · 11 1.5415 1.5767 2.4106 3.4158 1

5 · 7 1.5082 1.4641 2.4310 3.2208 0

5 · 11 1.5576 1.5618 2.4499 3.3855 0

7 · 11 1.5791 1.5521 2.4106 3.2454 2

3 · 5 · 7 1.3969 1.3643 2.4423 3.2732 5

3 · 5 · 11 1.4574 1.4493 2.4147 3.2079 1

3 · 7 · 11 1.4852 1.4766 2.4212 3.0642 2

5 · 7 · 11 1.4803 1.5067 2.3691 3.0737 12

3 · 5 · 7 · 11 1.4032 1.3848 2.3968 3.2105 112

Table A.3
Two-prime racing statistics for FWRD and QUEUE, m1 = 5.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

11 1.6750 1.6476 2.3905 2.9841 0

3 · 5 1.5024 1.5194 2.4632 3.4718 2

3 · 7 1.5308 1.5413 2.3837 3.0183 3

3 · 11 1.5617 1.5928 2.3936 3.3862 3

5 · 7 1.5386 1.5235 2.3910 2.9911 2

5 · 11 1.5766 1.6233 2.3957 3.1254 0

7 · 11 1.6267 1.6443 2.4294 3.3299 0

3 · 5 · 7 1.4268 1.4449 2.4324 3.3131 5

3 · 5 · 11 1.4758 1.4785 2.3814 3.1792 0

3 · 7 · 11 1.4985 1.5039 2.3912 3.0388 1

5 · 7 · 11 1.5130 1.5739 2.3688 3.2185 9

3 · 5 · 7 · 11 1.4215 1.4371 2.3672 3.1334 106

Table A.4
Two-prime racing statistics for FWRD and QUEUE, m1 = 7.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 5 1.5373 1.5369 2.4641 3.3038 4

3 · 7 1.5635 1.5687 2.4049 3.2795 1

3 · 11 1.5883 1.6120 2.3527 3.2305 2

5 · 7 1.5975 1.5757 2.4138 3.0327 0

5 · 11 1.6260 1.6432 2.4310 3.4626 0

7 · 11 1.6598 1.6392 2.4035 3.0978 1

3 · 5 · 7 1.4687 1.4690 2.4526 3.3900 5

3 · 5 · 11 1.5211 1.5115 2.3940 2.9792 1

3 · 7 · 11 1.5470 1.5380 2.4049 3.1102 0

5 · 7 · 11 1.5443 1.5558 2.3350 2.9135 11

3 · 5 · 7 · 11 1.4510 1.4508 2.3379 2.9284 105

Table A.5
Two-prime racing statistics for FWRD and QUEUE, m1 = 11.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 7 1.3924 1.3797 2.3977 3.0994 7

3 · 11 1.4221 1.4320 2.4048 3.3277 0

5 · 7 1.4203 1.4256 2.4940 3.6652 0

5 · 11 1.4618 1.4996 2.4505 3.3353 2

7 · 11 1.4860 1.4929 2.4653 3.2708 0

3 · 5 · 7 1.3416 1.3572 2.4954 3.5007 5

3 · 5 · 11 1.3701 1.3783 2.4378 3.2650 1

3 · 7 · 11 1.3938 1.4082 2.4573 3.2494 2

5 · 7 · 11 1.3915 1.4280 2.4247 3.4237 13

3 · 5 · 7 · 11 1.3148 1.3103 2.4008 3.1489 91

Table A.6
Two-prime racing statistics for FWRD and QUEUE, m1 = 3 · 5.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 11 1.4419 1.4453 2.3497 3.2228 3

5 · 7 1.4298 1.4046 2.3791 3.0752 2

5 · 11 1.4678 1.4694 2.3733 3.1562 4

7 · 11 1.5031 1.4912 2.3530 2.9123 5

3 · 5 · 7 1.3373 1.3174 2.4230 3.3711 4

3 · 5 · 11 1.3891 1.3758 2.3912 3.1544 2

3 · 7 · 11 1.4029 1.3874 2.3691 2.9938 1

5 · 7 · 11 1.4167 1.4262 2.3515 2.9957 9

3 · 5 · 7 · 11 1.3343 1.3055 2.3404 2.8637 99

Table A.7
Two-prime racing statistics for FWRD and QUEUE, m1 = 3 · 7.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

5 · 7 1.4724 1.4671 2.3793 3.2583 2

5 · 11 1.4983 1.5308 2.3535 3.1854 4

7 · 11 1.5561 1.6212 2.4155 3.5726 3

3 · 5 · 7 1.3582 1.4059 2.4055 3.6592 8

3 · 5 · 11 1.4051 1.4479 2.3475 3.2072 6

3 · 7 · 11 1.4503 1.4812 2.4099 3.2776 1

5 · 7 · 11 1.4353 1.4891 2.3371 3.1884 13

3 · 5 · 7 · 11 1.3503 1.3626 2.3287 3.0222 91

Table A.8
Two-prime racing statistics for FWRD and QUEUE, m1 = 3 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

5 · 11 1.4778 1.4519 2.3791 3.1818 1

7 · 11 1.5323 1.5488 2.4064 3.1386 1

3 · 5 · 7 1.3694 1.3858 2.4501 3.2297 3

3 · 5 · 11 1.4182 1.4100 2.4068 3.0855 1

3 · 7 · 11 1.4477 1.4484 2.4552 3.2765 1

5 · 7 · 11 1.4417 1.4658 2.3822 3.0932 11

3 · 5 · 7 · 11 1.3501 1.3460 2.3581 2.9290 96

Table A.9
Two-prime racing statistics for FWRD and QUEUE, m1 = 5 · 7.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

7 · 11 1.5656 1.5896 2.4069 3.2974 3

3 · 5 · 7 1.3793 1.3812 2.4169 3.2944 4

3 · 5 · 11 1.4316 1.4426 2.3933 3.2371 5

3 · 7 · 11 1.4538 1.4741 2.3935 3.0984 4

5 · 7 · 11 1.4472 1.5032 2.3075 3.0246 12

3 · 5 · 7 · 11 1.3822 1.3934 2.3694 3.1920 100

Table A.10
Two-prime racing statistics for FWRD and QUEUE, m1 = 5 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 5 · 7 1.4215 1.4218 2.4441 3.3959 3

3 · 5 · 11 1.4636 1.4673 2.3988 3.2373 4

3 · 7 · 11 1.4947 1.5099 2.4230 3.2435 4

5 · 7 · 11 1.4993 1.5289 2.3737 3.1859 11

3 · 5 · 7 · 11 1.3887 1.3594 2.3450 2.9337 102

Table A.11
Two-prime racing statistics for FWRD and QUEUE, m1 = 7 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 5 · 11 1.3108 1.3185 2.4280 3.3120 3

3 · 7 · 11 1.3274 1.3304 2.4325 3.3615 3

5 · 7 · 11 1.3381 1.3403 2.3951 3.1983 9

3 · 5 · 7 · 11 1.2664 1.2633 2.4249 3.5217 100

Table A.12
Two-prime racing statistics for FWRD and QUEUE, m1 = 3 · 5 · 7.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 7 · 11 1.3274 1.3304 2.4266 3.2476 3

5 · 7 · 11 1.3381 1.3403 2.3638 2.8799 9

3 · 5 · 7 · 11 1.2664 1.2633 2.3395 3.1553 100

Table A.13
Two-prime racing statistics for FWRD and QUEUE, m1 = 3 · 5 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

5 · 7 · 11 1.3992 1.4263 2.3838 3.1727 10

3 · 5 · 7 · 11 1.3139 1.3006 2.3449 2.9594 96

Table A.14
Two-prime racing statistics for FWRD and QUEUE, m1 = 3 · 7 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 5 · 7 · 11 1.3170 1.3531 2.3011 2.9217 108

Table A.15
Two-prime racing statistics for FWRD and QUEUE, m1 = 5 · 7 · 11.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 0.5707 0.5569 0.8139 1.2288 0

5 0.5723 0.5562 0.8038 1.2441 0

7 0.5770 0.5630 0.8122 1.2200 0

11 0.6001 0.5943 0.7805 1.2042 0

3 · 5 0.5344 0.5328 0.8032 1.2106 0

3 · 7 0.5374 0.5169 0.7992 1.1927 0

3 · 11 0.5518 0.5514 0.7851 1.3589 0

5 · 7 0.5439 0.5320 0.7804 1.1790 0

5 · 11 0.5764 0.5659 0.8054 1.2074 0

7 · 11 0.5793 0.5606 0.7868 1.1814 0

3 · 5 · 7 0.5041 0.4921 0.7934 1.2004 1

3 · 5 · 11 0.5288 0.5302 0.7951 1.2533 0

3 · 7 · 11 0.5417 0.5346 0.7888 1.1905 0

5 · 7 · 11 0.5474 0.5367 0.8114 1.2266 0

3 · 5 · 7 · 11 0.5071 0.5010 0.7860 1.1897 0

Table A.16
Three-prime racing statistics for FWRD and QUEUE, m1 = 1.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

5 0.5373 0.5161 0.8319 1.2832 0

7 0.5361 0.5156 0.8071 1.1811 0

11 0.5526 0.5276 0.7999 1.1933 0

3 · 5 0.4969 0.4851 0.8063 1.2397 0

3 · 7 0.5056 0.4855 0.8119 1.2310 0

3 · 11 0.5200 0.5069 0.8113 1.2959 0

5 · 7 0.5124 0.4954 0.8033 1.2086 0

5 · 11 0.5358 0.5209 0.8106 1.2109 0

7 · 11 0.5432 0.5322 0.7985 1.1944 0

3 · 5 · 7 0.4773 0.4662 0.8165 1.2189 0

3 · 5 · 11 0.4958 0.4866 0.8091 1.2103 0

3 · 7 · 11 0.5015 0.4846 0.7966 1.1739 0

5 · 7 · 11 0.5118 0.4991 0.8283 1.2242 0

3 · 5 · 7 · 11 0.4753 0.4592 0.8070 1.1908 0

Table A.17
Three-prime racing statistics for FWRD and QUEUE, m1 = 3.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

7 0.5465 0.5267 0.8246 1.3735 0

11 0.5648 0.5553 0.8124 1.3185 0

3 · 5 0.5034 0.4881 0.8174 1.2577 0

3 · 7 0.5135 0.4911 0.8087 1.4319 0

3 · 11 0.5276 0.5222 0.7947 1.2798 1

5 · 7 0.5208 0.5082 0.8167 1.2874 0

5 · 11 0.5438 0.5315 0.8206 1.5030 0

7 · 11 0.5577 0.5479 0.8131 1.2858 0

3 · 5 · 7 0.4867 0.4755 0.8196 1.3004 0

3 · 5 · 11 0.4987 0.4868 0.8088 1.2633 0

3 · 7 · 11 0.5114 0.4990 0.8095 1.3043 0

5 · 7 · 11 0.5213 0.5085 0.8309 1.2895 0

3 · 5 · 7 · 11 0.4861 0.4789 0.8119 1.2213 0

Table A.18
Three-prime racing statistics for FWRD and QUEUE, m1 = 5.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

11 0.5704 0.5678 0.8162 1.2430 0

3 · 5 0.5033 0.4890 0.8127 1.2416 0

3 · 7 0.5163 0.4977 0.8214 1.2826 0

3 · 11 0.5261 0.5211 0.8044 1.3011 0

5 · 7 0.5196 0.5092 0.8004 1.2220 0

5 · 11 0.5451 0.5322 0.8192 1.2054 0

7 · 11 0.5578 0.5514 0.8138 1.2369 0

3 · 5 · 7 0.4855 0.4699 0.8269 1.2797 0

3 · 5 · 11 0.4974 0.4847 0.7950 1.2071 0

3 · 7 · 11 0.5159 0.5124 0.8147 1.2260 0

5 · 7 · 11 0.5221 0.5105 0.8268 1.2377 0

3 · 5 · 7 · 11 0.4863 0.4748 0.7984 1.1863 0

Table A.19
Three-prime racing statistics for FWRD and QUEUE, m1 = 7.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 5 0.5162 0.5008 0.7919 1.2020 0

3 · 7 0.5329 0.5225 0.7983 1.2251 0

3 · 11 0.5403 0.5410 0.7668 1.1827 1

5 · 7 0.5432 0.5409 0.7899 1.1956 0

5 · 11 0.5629 0.5536 0.7974 1.2233 0

7 · 11 0.5699 0.5615 0.7824 1.2047 0

3 · 5 · 7 0.4983 0.4992 0.7964 1.2345 0

3 · 5 · 11 0.5172 0.5165 0.7900 1.2194 0

3 · 7 · 11 0.5234 0.5162 0.7831 1.2003 0

5 · 7 · 11 0.5366 0.5335 0.8104 1.2332 0

3 · 5 · 7 · 11 0.4974 0.4891 0.7848 1.1875 0

Table A.20
Three-prime racing statistics for FWRD and QUEUE, m1 = 11.



94

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 7 0.4793 0.4697 0.7973 1.2128 0

3 · 11 0.4838 0.4715 0.7879 1.4110 0

5 · 7 0.4763 0.4639 0.7883 1.2130 0

5 · 11 0.5030 0.4866 0.8074 1.1953 0

7 · 11 0.5080 0.4985 0.7948 1.2165 0

3 · 5 · 7 0.4516 0.4526 0.8172 1.2650 0

3 · 5 · 11 0.4605 0.4502 0.7878 1.2211 0

3 · 7 · 11 0.4707 0.4662 0.8001 1.2658 0

5 · 7 · 11 0.4834 0.4741 0.8200 1.2242 0

3 · 5 · 7 · 11 0.4511 0.4399 0.7923 1.1842 0

Table A.21
Three-prime racing statistics for FWRD and QUEUE, m1 = 3 · 5.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 11 0.4939 0.4892 0.7864 1.2395 1

5 · 7 0.4934 0.4845 0.7914 1.2238 0

5 · 11 0.5074 0.4927 0.7911 1.2167 0

7 · 11 0.5164 0.4931 0.7901 1.2710 0

3 · 5 · 7 0.4577 0.4441 0.8046 1.2552 0

3 · 5 · 11 0.4733 0.4604 0.8038 1.2362 0

3 · 7 · 11 0.4829 0.4709 0.7987 1.2223 0

5 · 7 · 11 0.4927 0.4754 0.8161 1.2270 0

3 · 5 · 7 · 11 0.4594 0.4397 0.7939 1.1975 0

Table A.22
Three-prime racing statistics for FWRD and QUEUE, m1 = 3 · 7.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

5 · 7 0.5010 0.5042 0.7772 1.2082 1

5 · 11 0.5277 0.5259 0.7885 1.1978 1

7 · 11 0.5291 0.5259 0.7868 1.3127 0

3 · 5 · 7 0.4624 0.4620 0.7793 1.2879 0

3 · 5 · 11 0.4834 0.4857 0.7823 1.2668 0

3 · 7 · 11 0.4944 0.4862 0.7787 1.2314 0

5 · 7 · 11 0.5043 0.5004 0.7969 1.2328 0

3 · 5 · 7 · 11 0.4659 0.4635 0.7808 1.1674 0

Table A.23
Three-prime racing statistics for FWRD and QUEUE, m1 = 3 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

5 · 11 0.5129 0.4933 0.7847 1.1976 0

7 · 11 0.5224 0.5193 0.7822 1.2329 0

3 · 5 · 7 0.4586 0.4474 0.8017 1.6729 0

3 · 5 · 11 0.4776 0.4754 0.7823 1.3303 0

3 · 7 · 11 0.4833 0.4770 0.7883 1.3527 0

5 · 7 · 11 0.4938 0.4841 0.7999 1.2082 0

3 · 5 · 7 · 11 0.4647 0.4585 0.7882 1.1796 0

Table A.24
Three-prime racing statistics for FWRD and QUEUE, m1 = 5 · 7.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

7 · 11 0.5451 0.5333 0.7972 1.2139 0

3 · 5 · 7 0.4821 0.4786 0.8118 1.2195 0

3 · 5 · 11 0.4972 0.4848 0.7902 1.2017 0

3 · 7 · 11 0.5054 0.4926 0.8010 1.2023 0

5 · 7 · 11 0.5228 0.5132 0.8227 1.2247 0

3 · 5 · 7 · 11 0.4761 0.4554 0.7808 1.1628 0

Table A.25
Three-prime racing statistics for FWRD and QUEUE, m1 = 5 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 5 · 7 0.4850 0.4782 0.7948 1.2361 0

3 · 5 · 11 0.5020 0.4901 0.7848 1.2108 0

3 · 7 · 11 0.5108 0.5001 0.7929 1.2224 0

5 · 7 · 11 0.5275 0.5202 0.8270 1.2497 0

3 · 5 · 7 · 11 0.4926 0.4893 0.7907 1.1836 0

Table A.26
Three-prime racing statistics for FWRD and QUEUE, m1 = 7 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 5 · 11 0.4441 0.4349 0.7981 1.1935 0

3 · 7 · 11 0.4505 0.4516 0.7886 1.2196 0

5 · 7 · 11 0.4558 0.4426 0.8139 1.3828 0

3 · 5 · 7 · 11 0.4354 0.4300 0.8009 1.989 0

Table A.27
Three-prime racing statistics for FWRD and QUEUE, m1 = 3 · 5 · 7.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 7 · 11 0.4609 0.4489 0.7763 1.1799 0

5 · 7 · 11 0.4792 0.4674 0.8109 1.2388 0

3 · 5 · 7 · 11 0.4470 0.4405 0.7864 1.2571 0

Table A.28
Three-prime racing statistics for FWRD and QUEUE, m1 = 3 · 5 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

5 · 7 · 11 0.4871 0.4812 0.8016 1.2017 0

3 · 5 · 7 · 11 0.4543 0.4471 0.7926 1.1936 0

Table A.29
Three-prime racing statistics for FWRD and QUEUE, m1 = 3 · 7 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 5 · 7 · 11 0.4626 0.4602 0.8066 1.1922 0

Table A.30
Three-prime racing statistics for FWRD and QUEUE, m1 = 5 · 7 · 11.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 0.2520 0.4363 0.5667 1.2000 0

5 0.2524 0.4654 0.5769 1.2700 0

7 0.2472 0.4271 0.5569 1.1945 0

11 0.2664 0.4929 0.5661 1.2731 0

3 · 5 0.2394 0.4106 0.5828 1.2310 0

3 · 7 0.2447 0.4087 0.5793 1.2262 1

3 · 11 0.2539 0.4332 0.5968 1.2875 0

5 · 7 0.2387 0.4169 0.5626 1.1983 0

5 · 11 0.2526 0.4465 0.5733 1.2229 0

7 · 11 0.2589 0.4547 0.5772 1.2353 0

3 · 5 · 7 0.2372 0.4009 0.5990 1.2655 0

3 · 5 · 11 0.2417 0.4245 0.5942 1.2577 0

3 · 7 · 11 0.2444 0.4214 0.5882 1.2241 0

5 · 7 · 11 0.2463 0.4251 0.5864 1.2578 0

3 · 5 · 7 · 11 0.2372 0.4045 0.6038 1.2900 0

Table A.31
Four-prime racing statistics for FWRD and QUEUE, m1 = 1.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

5 0.2378 0.4208 0.5718 1.2298 0

7 0.2398 0.4010 0.5735 1.3844 0

11 0.2535 0.4368 0.5749 1.2436 0

3 · 5 0.2327 0.3887 0.5941 1.2236 0

3 · 7 0.2397 0.4059 0.6002 1.2382 1

3 · 11 0.2489 0.4243 0.6032 1.2376 0

5 · 7 0.2340 0.4085 0.5801 1.2387 0

5 · 11 0.2396 0.4039 0.5759 1.1971 0

7 · 11 0.2493 0.4378 0.5913 1.2535 0

3 · 5 · 7 0.2307 0.3854 0.6128 1.2405 0

3 · 5 · 11 0.2336 0.3886 0.5965 1.2048 0

3 · 7 · 11 0.2397 0.4092 0.6077 1.2527 0

5 · 7 · 11 0.2339 0.3845 0.5872 1.2111 0

3 · 5 · 7 · 11 0.2309 0.3878 0.6133 1.2776 0

Table A.32
Four-prime racing statistics for FWRD and QUEUE, m1 = 3.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

7 0.2375 0.4175 0.5612 1.2389 0

11 0.2533 0.4634 0.5776 1.3061 0

3 · 5 0.2307 0.4007 0.5928 1.2594 0

3 · 7 0.2331 0.4022 0.5925 1.3859 0

3 · 11 0.2422 0.4106 0.5922 1.2252 0

5 · 7 0.2326 0.4091 0.5800 1.2274 0

5 · 11 0.2407 0.4165 0.5801 1.2164 0

7 · 11 0.2446 0.4282 0.5845 1.2377 0

3 · 5 · 7 0.2279 0.3871 0.7105 1.2593 0

3 · 5 · 11 0.2318 0.3947 0.6029 1.2472 0

3 · 7 · 11 0.2336 0.3942 0.5855 1.2039 0

5 · 7 · 11 0.2346 0.3983 0.5904 1.2568 0

3 · 5 · 7 · 11 0.2277 0.3907 0.6142 1.2923 0

Table A.33
Four-prime racing statistics for FWRD and QUEUE, m1 = 5.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

11 0.2493 0.4290 0.5603 1.2321 0

3 · 5 0.2302 0.3685 0.5728 1.2226 0

3 · 7 0.2367 0.3951 0.5885 1.2467 1

3 · 11 0.2471 0.4280 0.5928 1.2753 0

5 · 7 0.2350 0.4041 0.5869 1.3980 0

5 · 11 0.2375 0.4047 0.5552 1.1867 0

7 · 11 0.2444 0.4221 0.5763 1.2276 0

3 · 5 · 7 0.2307 0.3956 0.5962 1.2729 0

3 · 5 · 11 0.2316 0.3863 0.5964 1.2411 0

3 · 7 · 11 0.2354 0.3904 0.5834 1.2261 0

5 · 7 · 11 0.2323 0.3813 0.5728 1.2135 0

3 · 5 · 7 · 11 0.2307 0.3791 0.6086 1.3035 0

Table A.34
Four-prime racing statistics for FWRD and QUEUE, m1 = 7.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 5 0.2434 0.4250 0.5852 1.2471 0

3 · 7 0.2428 0.4084 0.5911 1.3410 0

3 · 11 0.2605 0.4569 0.6058 1.3307 0

5 · 7 0.2415 0.4293 0.5765 1.2687 0

5 · 11 0.2501 0.4225 0.5655 1.1931 0

7 · 11 0.2556 0.4541 0.5793 1.2608 0

3 · 5 · 7 0.2389 0.4132 0.6054 1.3088 0

3 · 5 · 11 0.2446 0.4294 0.6068 1.3324 0

3 · 7 · 11 0.2446 0.4199 0.5778 1.1838 0

5 · 7 · 11 0.2454 0.4240 0.5880 1.2803 0

3 · 5 · 7 · 11 0.2400 0.4003 0.6054 1.2820 0

Table A.35
Four-prime racing statistics for FWRD and QUEUE, m1 = 11.



103

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 7 0.2272 0.3781 0.6028 1.2680 0

3 · 11 0.2330 0.3882 0.6070 1.2359 0

5 · 7 0.2213 0.3713 0.5993 1.3066 0

5 · 11 0.2323 0.3898 0.5832 1.2033 0

7 · 11 0.2329 0.3896 0.5943 1.2201 0

3 · 5 · 7 0.2209 0.3712 0.6117 1.2850 0

3 · 5 · 11 0.2259 0.3719 0.6195 1.2504 0

3 · 7 · 11 0.2255 0.3698 0.6065 1.2281 0

5 · 7 · 11 0.2233 0.3626 0.5892 1.1999 0

3 · 5 · 7 · 11 0.2224 0.3757 0.6302 1.3231 0

Table A.36
Four-prime racing statistics for FWRD and QUEUE, m1 = 3 · 5.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 11 0.2444 0.4076 0.6316 1.3292 0

5 · 7 0.2269 0.3856 0.5973 1.3452 0

5 · 11 0.2374 0.4098 0.6072 1.4808 0

7 · 11 0.2388 0.3919 0.5925 1.2243 0

3 · 5 · 7 0.2255 0.3821 0.6245 1.3341 0

3 · 5 · 11 0.2319 0.3930 0.6247 1.3161 0

3 · 7 · 11 0.2316 0.3769 0.6030 1.2222 1

5 · 7 · 11 0.2265 0.3595 0.6038 1.4640 0

3 · 5 · 7 · 11 0.2244 0.3659 0.6143 1.2476 1

Table A.37
Four-prime racing statistics for FWRD and QUEUE, m1 = 3 · 7.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

5 · 7 0.2352 0.3985 0.5989 1.2269 0

5 · 11 0.2476 0.4362 0.5985 1.2896 0

7 · 11 0.2500 0.4318 0.6100 1.2941 0

3 · 5 · 7 0.2361 0.3953 0.6418 1.3236 0

3 · 5 · 11 0.2386 0.4023 0.6238 1.2812 0

3 · 7 · 11 0.2384 0.3874 0.6164 1.2385 0

5 · 7 · 11 0.2384 0.4057 0.6065 1.2826 0

3 · 5 · 7 · 11 0.2351 0.3921 0.6367 1.2372 0

Table A.38
Four-prime racing statistics for FWRD and QUEUE, m1 = 3 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

5 · 11 0.2321 0.3959 0.5891 1.2966 0

7 · 11 0.2370 0.4073 0.5917 1.2489 0

3 · 5 · 7 0.2246 0.3856 0.6281 1.3534 0

3 · 5 · 11 0.2269 0.3949 0.6122 1.2929 0

3 · 7 · 11 0.2311 0.3962 0.6036 1.2525 0

5 · 7 · 11 0.2243 0.3483 0.5920 1.2051 0

3 · 5 · 7 · 11 0.2222 0.3798 0.6172 1.3426 0

Table A.39
Four-prime racing statistics for FWRD and QUEUE, m1 = 5 · 7.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

7 · 11 0.2492 0.4289 0.5889 1.2201 0

3 · 5 · 7 0.2291 0.3876 0.6146 1.2864 0

3 · 5 · 11 0.2299 0.3787 0.5900 1.1940 0

3 · 7 · 11 0.2364 0.3924 0.5945 1.2073 0

5 · 7 · 11 0.2323 0.3922 0.5824 1.2107 0

3 · 5 · 7 · 11 0.2268 0.3711 0.5983 1.2405 0

Table A.40
Four-prime racing statistics for FWRD and QUEUE, m1 = 5 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 5 · 7 0.2336 0.3917 0.6186 1.2809 0

3 · 5 · 11 0.2378 0.4068 0.6072 1.2495 0

3 · 7 · 11 0.2388 0.4000 0.5940 1.2137 0

5 · 7 · 11 0.2400 0.4042 0.6004 1.2272 0

3 · 5 · 7 · 11 0.2311 0.3854 0.6165 1.3009 0

Table A.41
Four-prime racing statistics for FWRD and QUEUE, m1 = 7 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 5 · 11 0.2218 0.3692 0.6292 1.2641 0

3 · 7 · 11 0.2287 0.3870 0.6388 1.3220 0

5 · 7 · 11 0.2243 0.3684 0.6251 1.2701 0

3 · 5 · 7 · 11 0.2192 0.3591 0.6487 1.3105 0

Table A.42
Four-prime racing statistics for FWRD and QUEUE, m1 = 3 · 5 · 7.
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m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 7 · 11 0.2269 0.3681 0.6183 1.2112 0

5 · 7 · 11 0.2276 0.3777 0.6213 1.2869 0

3 · 5 · 7 · 11 0.2218 0.3599 0.6304 1.2532 0

Table A.43
Four-prime racing statistics for FWRD and QUEUE, m1 = 3 · 5 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

5 · 7 · 11 0.2270 0.3665 0.6003 1.1796 0

3 · 5 · 7 · 11 0.2281 0.3770 0.6348 1.2778 0

Table A.44
Four-prime racing statistics for FWRD and QUEUE, m1 = 3 · 7 · 11.

m2 FWRD σ (FWRD) QUEUE σ (QUEUE) failures

3 · 5 · 7 · 11 0.2238 0.3685 0.6247 1.3068 0

Table A.45
Four-prime racing statistics for FWRD and QUEUE, m1 = 5 · 7 · 11.
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