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Abstract

Separation of Duty (SoD) is widely considered to be a fundaalgrinciple in computer security.
A Static SoD (SSoD) policy states that in order to have alhpgsions necessary to complete a sensitive
task, the cooperation of at least a certain number of useexjisred. In Role-Based Access Control
(RBAC), Statically Mutually Exclusive Roles (SMER) coraitits are used to enforce SSoD policies.
In this paper, we pose and answer fundamental questiongdeia the use of SMER constraints to
enforce SSoD policies. We show that directly enforcing Spolixies is intractabledoNP-complete),
while checking whether an RBAC state satisfies a set of SMERtcaints is efficient. Also, we show
that verifying whether a given set of SMER constraints erderan SSoD policy is intractableoNP-
complete) and discuss why this intractability result sdadt lead us to conclude that SMER constraints
are not an appropriate mechanism for enforcing SSoD peslidiée also show how to generate SMER
constraints that are as accurate as possible for enforoiggaDb policy.

1 Introduction

Separation of DutySoD) is widely considered to be a fundamental principle in computer se¢lyizy 12].
In its simplest form, the principle states that if two steps are needed to pesfeensitive task, then two
different users should each perform one of the two steps. Morergénevhenn steps are needed to
perform a sensitive task, an SoD policy requires the cooperation oastthdfor somek < n) different
users to complete the task.

Consider the following example of buying and paying for goods. The stapsrform such a task (taken
from [2]) are: (1) ordering the goods and recording the details of terp(2) recording the arrival of the
invoice and verifying that the details on the invoice match the details of the;qf@everifying that the
goods have been received, and the features of the goods match iteatetiae invoice; and (4) authorizing
the payment to the supplier against the invoice. We would want to ensuteéhzayment is not released on
an order that was never placed and that the received goods matcliniioserder and those in the invoice.
A policy that requires a different user to perform each step may be shaatere. It may be permissible, for
instance, that the user who places the order also records the afiilialiavoice. One may require that (a)
at least three users are required to perform all four steps, anddlitferent users are required to perform
steps (1) and (4) (i.e., no single user can order a good and authoyireptfor it).

An SaD policy may be enforced either statically or dynamically. In dynamicreefoent, the system
maintains a history of each task instance (e.g., a particular order). Theyhisttudes information on who



performed each step. Before a user performs a step on the instansgstbe checks to ensure that the
SoD policy is not violated. This is referred to as Dynamic SoD in the literatt8e1[@] In Dynamic SoD,

a user may be able to perform any particular step in a task instance; hrptievaser cannot also perform
other steps in that instance.

In static enforcement, Static SoD (SSoD) policies are used. Each SSoB gtalies that né — 1 users
together have all permissions to complete a sensitive task. Such an SSolxpalize enforced by carefully
assigning permissions to users, without maintaining a history for every tstsinge. It may seem that if an
SSoD policy is satisfied, then the corresponding SoD policy is also satisfmgever, care must be taken
to ensure this. Consider the example described above. Suppose that iaitialy Bob has the permission
to order goods. After placing an order, Bob’s order permission iskety@and then Bob is assigned to have
the permission to authorize payments. Now Bob can authorize a paymergtabeiorder he placed earlier.
The SoD policy is violated even though Bob never has the order permissibpayment permission at the
same time. Such situations can be avoided, for example, by requiring that & u®t participating in any
active task instance while being assigned a permission, or by treating skdhgstances specially (e.g., by
maintaining a history for them).

Separation of Duty has been studied extensively in Role-Based AcoeslORBAC) [6, 7, 14]. As
Ferraiolo et al. [6] state, “one of RBAC's great advantages is thati@t#3 can be implemented in a natural
and efficient way.” A purpose of this paper is to examine this statement iil.det&RBAC, permissions
are associated with roles, and users are granted membership in approples, thereby acquiring the
roles’ permissions. RBAC uses mutual exclusion constraints to implement &8adiep. The most common
kind of mutual exclusion constraint is Statically Mutually Exclusive Roles (8YIEFor example, a SMER
constraint could be “no user is allowed to be a member of betand r;”. More generally, a SMER
constraint requires that no user is a member @af more roles in a set of: roles{ry, ro, - ,rn}. SMER
constraints are used in most RBAC models, including the RBAC96 models lh8aat al. [14] and the
proposed NIST standard for RBAC [7]. Literature in RBAC also studigsadhic mutually exclusive roles
(DMER) constraints. With such a constraint, a user is prevented froma#inty mutually exclusive roles
simultaneously in a session. SMER and DMER constraints are the only typegasifaints included in the
proposed NIST standard for RBAC [7]. The rationale provided in tharkvis that such constraints are the
only ones prevalent in commercial RBAC products.

As we discuss in Section 2, DMER constraints are not suitable for enfp8m policies, either stat-
ically or dynamically. On the other hand, SMER constraints enforce SoDigslstatically. In this paper,
we examine the use of SMER constraints to enforce SoD policies.

SSoD policies arebjectivesthat need to be achieved. They exist independent of whether RBAC is
used to manage the access permissions. Each SSoD policy specifies the mmimber of users that can
perform a sensitive task. On the other hand, SMER constraintaechanismtroduced to achieve SSoD
policies. These constraints are specific to RBAC. Each constraint limits lfenemberships any user may
have.

In the literature, this distinction between objectives and mechanisms is sometinegarty made.
This is evident in the way these constraints are referred to in the literatll&RS onstraints are often
called Static SoD constraints, and DMER are called Dynamic SoD constraints.

When we make a clear distinction between objectives (SSoD policies) andamstts (SMER con-
straints), several interesting problems arise. For examplegttificationproblem is whether a set of SMER
constraints indeed enforces an SSoD policy, andjgmerationproblem is how do we generate a set of con-

!Nash and Poland [10] refer to this as object SoD and consider it asimhekDynamic SoD.



straints that is adequate to enforce an SSoD policy. Although the use oRUdiEStraints to support SoD
has been studied for over a decade, surprisingly these problemsdtdweem examined in the literature as
such, to the best of our knowledge.

1.1 Contributions and organization

Our contributions in this paper are as follows.

e We provide precise definitions for SSoD policies and SMER constraindsfaatthe verification and
generation problems.

e We show that directly enforcing SSoD policies in RBAC is intractabteP-complete), while en-
forcing SMER constraints is efficient.

¢ We show that the verification problem is intractaleIlNP-complete), even for a basic subcase of the
problem, but reduces naturally to the satisfiability problem (SAT) [3], foicivthere exist algorithms
that have been proven to work well in practice [3]. We discuss the implicatibthese results.

¢ We define what it means for a set of SMER constraints to precisely enéor&SSoD policy, charac-
terize the policies for which such constraints exist, and show how theyeaergted. For other SSoD
policies, we present an efficient algorithm that generates sets of SME&raints that minimally
enforce the policies.

The results reported here are fundamental to understand the effestsvef using SMER constraints
to enforce SoD in RBAC. The verification and generation algorithms areddlpoactical significance in
RBAC systems that use SMER constraints to enforce SSoD policies.

The remainder of the paper is organized as follows. We discuss relaté&dinvthe next section. In
Section 3, we give definitions of SSoD policies and SMER constraints, bhasvéhe computational com-
plexities for enforcing them. In Section 4, we study the verification problemSdction 5, we study the
generation problem. We conclude with Section 6. Proofs not included in threbody are in Appendix A.

2 Related Work

To our knowledge, in the literature the notion of SoD first appeared in SaiwkSchroeder [12] under the
name “separation of privilege.” They introduced this as one of the eiggigd principles for the protection
of information in computer systems. They credited Roger Needham with malarfgltbwing observation
in 1973: a protection mechanism that requires two keys to unlock it is moustrahd flexible than one that
requires only a single key. No single accident, deception, or breachstfisrsufficient to compromise the
protected information.

Clark and Wilson’s commercial security policy for integrity [2] identified Sdbng with well-formed
transactions as two major mechanisms of fraud and error control. Thef wselldormed transactions
ensures that information within the computer system is internally consisterare8iem of duty ensures that
the objects in the physical world are consistent with the information abouw thigects in the computer
system.

Sandhu [13] presented a history-based mechanism for dynamicallscemgf&soD policies. Nash and
Poland [10] emphasized the difference between dynamic and static emfent of SoD policies. In the
former, a user may perform any step in a sensitive task provided thaséhneloes not also perform another
step on that data item. In the latter, users are constrained a-priori fndampéng certain steps.



In one of the earliest paper on RBAC, Ferraiolo and Kuhn [4] used thestS&tatic and Dynamic SoD
to refer to static and dynamic enforcement of SoD. In a subsequemnt, papraiolo et al. [5] defined Static
SoD as: “A user is authorized as a member of a role only if that role is not thuexalusive with any of
the other roles for which the user already possesses membershiptvOUsat this is the requirement of
SMER constraints. Similarly, Dynamic SoD was defined as forbidding a user dctivating roles that are
mutually exclusive. We call these DMER constraints. We believe that the teloginm [5] is confusing as
it blurs the distinction between objectives and mechanisms. The same termiielatgr used by several
authors and is adopted in the NIST proposed standard for RBAC [7].

DMER constraints are introduced in [5] under the name DSoD constraihisniay be because they are
the “dynamic” version of SMER constraints, which are referred to adSSmstraints in [5]. However, as
we now discuss, DMER constraints do not seem to enforce SoD policieMER constraint prevents a user
from simultaneously activating mutually exclusive roles in a session. In RBR&Ch session has only one
user. Thus, a sensitive task cannot be finished in one sessionedifi@ssions are required. Consider the
example discussed in Section 1. Suppose that the order permission aagithenp permission are assigned
to two roles that are mutually exclusive according to a DMER constraint. Bolstart a session, activating
the role having the order permission, create an order, end the segaib@n®ther session, activating the
role having the payment permission, and authorize a payment againstiéneThis violates the SoD policy.

Kuhn [9] discussed mutual exclusion of roles for separation of dutypmoposes a safety condition:
that no one user should possess the privilege to execute every stéasit ghereby being able to execute
the task. We observe that our definition for safety in Section 3.1 is a dezai@n of Kuhn’s definition [9]:
settingk to 2 gives us Kuhn'’s definition. Kuhn [9] did not discuss either the vetiiom problem or the
generation problem.

3 Static Separation of Duty and Mutually Exclusive Roles

In this section, we give precise definitions for Static Separation of Dutyips]ikRBAC, and SMER con-
straints.Users(often referred to asubjectdn the literature) anghermissionsare at the core of any access
control system. The state of the access control system specifies tHgeahissions each user has. In this
paper, we treat permissions as if they were opaque, i.e., we do not eotigdnternal structure of permis-
sions. We also assume that permissions are not related, e.g., the possEsamor more permissions does
not imply the possession of another permission.

3.1 Static Separation of Duty (SSoD) policies

Definition 1 (SSoD policies)A k-n SSoD -out-of-n Static Separation of Duty) policy is expressed as

ssod{({p1,...,pn},k)

where eaclp; is a permission and andk are integers such that< k£ < n. This policy means that there
should not exist a set of fewer tharusers that together have all these permissions. In other words, at least
k users are required to perform a task that requires all the permissi¢ps,in ., p,}.

Intuitively, the permissions in &-n SSoD policy are the permissions needed to carry out a sensitive task,
and the policy guarantees that at lefastsers are needed to successfully execute it. The specification of an
SSoD policy involves identifying a sensitive task, the permissions needexfrtplete it, and the minimum
number of collaborating users authorized to complete it.
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We assume a basic level of familiarity with RBAC; readers are referred, th4][for an introduction to
RBAC. We assume that there are three countably infinite &efthe set of all possible usersy, (the set of
all possible roles), an® (the set of all possible permissions).

Definition 2 (RBAC States) An RBAC statey is a 3-tuple(UA, PA, RH), in which the user assignment
relation UA C U xR associates users with roles, the permission assignment reftian’R x P associates
roles with permissions, and the role hierarchy relatitdf C R x R is a partial order among roles R.
When(rq,r2) € RH, we say that; is senior tory, which means that every user who is a member;dé
also a member afy, and every permission that is associated witlis also associated with .

An RBAC statey = (UA, PA, RH) determines the set of roles a user is a member of and the set of
permissions a user possesses. Formallyetermines two functionseles, : 4 — 2% andperms, : U —
27 where2” is the powerset oR. The two functions are defined as follows:

roles,fu] = {reR | Ir1 € R[(u,r1) € UA A (ri,r) € RH]}
perms,[u] = {p€P | Ir,ra € R[(u,71) € UA A (r1,72) € RH A (r2,p) € PA]}

Definition 3 (SSoD Safety and the SC-SSoD problemVe say that an RBAC statgis safewith respect
to an SSoD policgsod({p1,...,pn}, k) if in statey nok — 1 users together have all the permissions in the
policy. More precisely,

k—1
Yup---up_1 €U ((U permsv[ui}> 2 {p1,. . 7Pn}> .
i=1

An RBAC statey is safewith respect to a set’ of SSoD policies if it is safe with respect to every policy in
the set, and we write it asife (). SC-S®D (the Safety Checking problem for SSoD policies) is defined
as follows: Given an RBAC stateand a sef’ of SSoD policies, determine iffe () is true.

Observe that if nd — 1 users together have all the permissions in the policy, then no set of fearek th
users together have all the permissions.

Example 1 Consider the task of ordering and paying for goods discussed in Sdctide have a permis-
sion corresponding to each step in the task; these permissiops,a%e pinvoices Pgoods» ANAPpayment. We
have the following set of SSoD policies:

E; = {ei, ez}
€1 = 550d<{p0rder7 Dinvoices Pgoods s ppayment} 3 3>
€2 = 550d<{porder7ppayment} s 2>

Consider the following RBAC statg, = (UA;, PA;, RH 1), where
UA; = { (Alice, Warehouse), (Alice, Finance), (Bob, Accounting), (Bob, Quality) },

and PA; and RH are given in Figure 1. The statg is not safe with respect t@, a3-4 SSoD policy, as
the 2 userd\lice andBob together possess all 4 permissiongin

Given a setv of SSoD policies, suppose an RBAC system starts at a state that is safespécttar.
Each time one is about to make a change to the system that may affect the madethecks whether the
RBAC state resulted from the proposed change is safe and makes tlye dmynthen. Such a change may
be adding a new user-role assignmentid, adding a new role-permission assignmenPth or adding a
new pair toRH . This approach to ensuring that an RBAC system is safe requires s@@nr§ D, which
turns out to be intractable.
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RH, = { (Engineering, Employee), (Quality, Employee), (Warehouse, Employee),
(Accounting, Employee), (Finance, Employee) }.

PA; = { (Engineering7 porder); (Qua“t% porder)a (Warehouseapgoods);
(

Accounting, pim}oice)a (Finance, ppayment) }

Figure 1: A sample role hierarchy and permission assignment. Rokeslawn in solid boxes, and permissions in
dashed boxes. A line segment represents either a rolealal@inship, or the assignment of a permission to a role.

Theorem 1 SC-S®D is coNP-complete.

See Appendix A for the proof. (The proofs of all theorems and lemmagonoid in the main body
are in Appendix A.) The proof oéoINP-hardness is done by reducing the set covering problem to the
complement of SC-S@&D. In that reduction, each permission is assigned to one role and the rdechig
relation is empty; thus the problem remadeNP-complete even when we restrict to the case of flat RBAC
(i.e., RBAC without role hierarchy). The fact that SC-&3is intractable suggests that enforcing SSoD
policies directly can be computationally expensive.

With the following reasoning, we observe that even if we have to checkhehan SSoD policy is
violated only when adding a new user-to-role assignment, the check careffieient. Given an SSoD
policy e = ssod({p1,...,pn}, k) and an RBAC state that is safe with respect tq suppose we want to
check whether the statg resulted from adding a new user-role assignment) is safe with respect to
e. Leti = |perms.,[u] N {p1,...,pn}| be the number of permissions énthat« would have iny/, then
we are left with checking whethey is safe with respect to g —1)-(n—:) SSoD policy, which remains
coNP-complete by the above theorem.

Efficient algorithms for SC-S&D exist when all the SSoD policies il have smallk. For example,
when checking whethey is safe with respect to 2n SSoD policy, one only needs to compute the per-
missions of every single user and check whether it is a superset of timéspmns in the policy. This has
worst-case time complexit (N, (N, + N, + N,)), whereN,, is the number of users i, N, the number
of roles, andV,, the number of permissions.

3.2 Statically Mutually Exclusive Role (SMER) constraints

In RBAC, constraints such as mutually exclusive roles are introduceddocenSSoD policies. In the most
basic form, two roles may be declared to be mutually exclusive in the sens®thaer is allowed to be a
member of both roles. Below we present a generalized form of suclraots.



Definition 4 (SMER Constraints) A t-m SMER (-out-of+n Statically Mutually Exclusive Roles) con-
straint is expressed as

smer({ry,...,rm},t)
where eachr; is arole, andn andt are integers such that< ¢ < m. This constraint forbids any user from
being a member of or more roles in{ry, ..., 7, }.

A t-m SMER constraint is said to @nonicalof cardinality ¢ whent = m.

Definition 5 (Satisfying SMER constraints and the SC-SMER problem)We say that an RBAC state
satisfiesa SMER constrainimer({r1,..., 7} ,t) when

VuelU (|rolesy[ulN{ry,...,rm}|<t).

Otherwise, we say thatviolatesthe SMER constraint. An RBAC stasatisfiesa setC' of SMER constraints
if it satisfies every constraint in the set, and we write itsa&sfies(v). SC-SMER (the Satisfaction
Checking problem for SMER constraints) is defined as follows: GiveRBAC statey and a setC' of
SMER constraints, determine whethesatisfiesC'.

Observe that each SMER constraint restricts only the role membershapsrafleuser, in contrary to a
k-n SSoD policy, which restricts the permissions possessed by a ket dfusers. Because of this, there is
an efficient algorithm to check whether an RBAC statsatisfies a sek of SMER constraints.

Theorem 2 SC-SMERIs in P.

Proof. The algorithm is as follows. For ea¢hn SMER constraint irC' and for each user iy, one first
computes the set of all roles the user is a member of, then counts how manyjnrtiies set also appear in
the set of roles in the SMER constraint, and finally compare this number withis algorithm has a time
complexity ofO(NV,, N, M ), whereN is the number of users i, IV, the number of roles i, and)/ is the
number of constraints. [

Further observe that when a user-role assignment is about to be @dted one only needs to check
the role memberships of that user, which can be done in i€, M ).

4 The Enforcement Verification problem

The facts that SC-SSD is intractable and that an efficient algorithm exists for SC-SMER provijds-a
tification for using SMER constraints to enforce SSoD policies. This justificasimew to the best of our
knowledge, as the computational complexity of SCe®Swvas not studied in the literature.

When using SMER constraints to enforce SSoD policies, a natural quéstask is whether a set of
SMER constraints is adequate to enforce a set of SSoD policies. Clearlgnsiwer to this question also
depends on the permission assignmestand the role hierarchj®H. For instance, if all permissions in an
SSoD policy are assigned to one role, then no set of SMER constraioteesthat policy.

Definition 6 (Enforcement and theEV problem) GivenPA C P x R, RH C R x R, a setE’ of SSoD
policies, and a sef’ of SMER constraints. We say enforcesE (underPA and RH) when

VUA CU x R [satisfies((PA, RH, UA)) = safep((PA, RH, UA))]
EV (the Enforcement Verification problem) is defined as follows: Gikdn RH, a setE’ of SSoD policies,
and a setC of SMER constraints, determine whettiéeenforcest’ (underPA andRH).

7



Example 2 Continuing from Example 1, we consider the following set of SMER congsain

C1 = {a,c,c3}

c¢1 = smer({Warehouse, Accounting, Finance}, 2)
ca = smer({Engineering, Finance}, 2)
c3 = smer({Quality, Finance}, 2)

The constraint; ensures that three users are required to have role membersiVpsgeitouse, Accounting,
andFinance, which are needed to have the permissipnss, Pinvoice, ANAPpayment- This ensures safety
with respect to the SSoD poliay. The constraints, andcs together ensure the safety with respect4o
ThusC, enforcesE; underPA; andRH ;.

In Example 1, we observed that the staids not safe with respect tf; therefore, it does not satisfy
C1. In particular,y; violates the constraint because Alice is assigned to batfarehouse andAccounting.

We now establish an upper bound on the computational complexity of EV.

Lemma 3 EVisincoNP.

4.1 Simplifying the EV problem

We show that every set of SMER constraints can be equivalently b using a set of canonicai
SMER constraints.

Definition 7 (SMER Equivalence) Let C; andC, be two sets of SMER constraints. We say thatand
Cy areequivalentwhen for every RBAC state, y satisfies”; if and only if v satisfies.

Clearly, if C; andC, are equivalent, the®’; enforcesk underPA and RH if and only if Cy enforces
E underPA andRH; thus one can replaag, in an EV problem instance witf'; and vice versa.

Lemma 4 For everyt-m SMER constraint, there exists a s&t’ of canonical SMER constraints of cardi-
nality ¢ such thatC’ and{c} are equivalent.

Proof. Given at-m SMER constraint = ({r1,...,mn},t), wherem > t. LetC’ be

{smer(R,t) | RC{r1,....,rm} A|R| =t}

That is,C" is the set of all constraintsner(R, t) such thatR is a sizet subset of ry, ..., }. Itis easy to
see that violating any constraint@{ implies violating the constrairtand violating the constrairtimplies
violating some constraint i6”. ThereforeC’ and{c} are equivalent. [

It follows from Lemma 4 that for every s&t of SMER constraints, there exists a §&tof canonical
SMER constraints such thatandC’ are equivalent. Furthermore, given an instance of EV in which the set
E contains more than one SSoD policy, one can verify these policies oneeby\dthout loss of generality,
we assume thak' is a singleton set, i.ell = {e} consists of one policy. This enables us to limit our
attention to the following special case of EV.

Definition 8 CEV (the Canonical Enforcement Verification problem) is defined as fallo@iven PA,
RH, asingleton sefe} of SSoD policies and a sét of canonical SMER constraints, determine whetfier
enforces{e}.



An algorithm solving CEV can be used to solve EV, as any EV instance ctlamsated into a set of
CEV instances. However, the resulting CEV instance may have an exjaitdowup in size, as one needs
to generatg’’') SMER constraints for eachrn SMER constraint. On the other hand, if an RBAC system
uses only canonical constraints to start with, then such blowup doesamt Also, in the case that= 2,
we have a CEV instance the size of which is quadratiein

4.2 Algorithms and complexity for CEV

It is easier to think about the complement of CEV, denoted ®gV: If C does not enforce
{ssod{({p1, -+ ,pn}, k)}, then there exists a user-to-role assignmenkferl users such that all the SMER
constraints inC' are satisfied but thege— 1 users together possess all permissions - - - , p, }. It turns
out that this problem is closely related to SAT, the satisfiability problem ofgsitipnal formulas in con-
junctive normal form. See Appendix C for an introduction to SAT.

Theorem 5 CEV reduces taSAT.

This reduction means that we can use algorithms for SAT to solve CEV. Gi¥eHV instance, the
answer is yes if and only if the corresponding SAT instance is not satesfiab

We now show that CEV igoNP-hard by showing that a special case of icisNP-complete. The
special case we consider is whether a s&x-pfSMER constraints satisfies2an SSoD policy. Recall that
a 2-2 SMER constraint specifies two roles are mutually exclusive, i.e., no usebea member of both
roles. This is the most common kind of constraints considered in the literatuzen 8SoD specifies that
no single user is allowed to possess alhadiven permissions. This is the simplest and most common kind
of SSoD policy. This special case is thus arguably the simplest verificatidoegm.

Theorem 6 Determining whether a set @2 SMER constraints enforces2an SSoD policy iscoNP-
complete.

That this problem isoNP-hard is shown by reducing ®NOTONE3-2-SAT (which is shown to be
NP-complete in Theorem 20 in Appendix C) to the complement of this problem.

Corollary 7 EV andCEV are coNP-complete.

Proof. Follows directly from Lemma 3 and Theorem 6. |

4.3 Efficiency of verification in practice

The fact that even the most basic form of EV is intractable is surprisingse@b that enforcing SSoD
policies directly by solving SC-S&D is efficient for2-n SSoD policies. These results cast doubts on the
effectiveness of the approach of using SMER constraints to enf&oB $olicies, which has been adopted
in the literature without being questioned for years. However, complexisg ¢saonly part of the story, and
we now make some observations in favor of this approach.

When using SMER constraints to enforce SSoD policies, EV, which canreutationally expensive,
only needs to be performed when either a new role-role relationship isladdbe role hierarchy or a
permission in an SSoD policy is assigned to some role. When a user is asgigneale, only constraint
checking (SC-SMER) needs to be performed, which is quite efficient. ®ottrer hand, when enforcing



SSoD policies directly, the expensive safety checking (S©I33eeds to be performed every time a user
is assigned to a role of which the user was not already a member. Becaude-uiole assignment is the most
dynamic relation, enforcing SSoD policies directly is overall more experbkan using SMER constraints.

In the proof of Theorem 6, we use a reduction froroNMdOTONE-3-2-SAT toCEV. In the reduction we
generate &-n SSoD policy withn being unbounded. When a sensitive task involves only a small number
of permissions, then CEV can be done efficiently.

Even though CEV is intractable¢NP-complete), it means only that there exist difficult problem
instances that take exponential amount of time in the worst case using eslgijorghms. SAT has been
studied extensively for several decades (see e.g. [3]). Manyrcidgerithms exist that can answer most
instances efficiently. Many problems, including database, planning, demaided design, machine vision
and automated reasoning, are reduced to SAT and solved using SAIfhaigorThis often results in better
performance than solving those problems directly. The fact that CEVaigtoeduces to SAT means that
one can benefit from the extensive research on SAT to provide mbetitorcement checking.

The complexity of SC-S8D is calculated in the number of users plus the number of roles and the
complexity of CEV is calculated in the number of roles only. (In both casesnpeeds to consider only the
permissions in the SSoD policies, rather than all permissions in the RBAC staten tBat most RBAC
systems have many more users than roles, enforcement verification is likedymore efficient in practice.

Finally, although checking whether an arbitrary set of SMER constranfitsees a set of SSoD policies
may be expensive, SMER constraints may be generated from a setffeces and need not be verified.

5 Generating SMER Constraints

Section 4 considers verifying that SMER constraints in RBAC enforce ¢isgael SSoD policies. In this
section we study the problem of generating a set of SMER constraints¢hadl@guate for enforcing SSoD
policies. We examine the following questions: How do we define a notion afgioa in enforcing SSoD
policies, as there are often multiple sets of constraints that enforce the samfeSSoD policies? How
do we compare the “degree of restriction” of different sets of SMERstaimts? What kinds of SMER
constraints are needed in expressing SSoD policies, e.8-3@MER constraints add additional expressive
power over-2 SMER constraints?

5.1 Enforceability of SSoD policies

Definition 9 (Enforceable SSoD configurations)We define an SSoD configuratiorto be a 3-tuple
(PA,RH,E), whereE is a set of SSoD policies. An SSoD configuratioreifforceableif there exists
a setC of SMER constraints such that enforcest underPA andRH.

Lemma 8 An SSoD configuratiofiPA, RH , E) is not enforceable if and only if there exists an SSoD policy
ssod({p1,- - ,pn}, k) in E such thatt — 1 roles together have all the permissions{imy, - - - , p,, }.

Theorem 9 Determining whether an SSoD configuration is enforceabd®INP-complete.

Similar to SC-S®D, efficient algorithms exist when all the SSoD policies in the configurative ha
smallk.
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5.2 RSSoD requirements

As SMER constraints are about role memberships and SSoD policies artepaibmissions, the first step of
the generation process is to translate a policy on permissions to requiremeotses) using information in
PA andRH. We now define such role-level SSoD requirements.

Definition 10 (RSSoD requirements)A k-n RSSoD g-out-of-n Role-based Static Separation of Duty)
requirement is expressed as
rssod({ri,...,m}, k) 1)

where eachr; is a role andh andk are integers such that< £ < n. The meaning is that there should not
exist a set of fewer thah users that together have memberships in alkthieles in the requirement. We
also sayk users are required twverthe set ofn roles.

We say that an RBAC statgis safewith respect to the above RSSoD requirement when

k—1
Yup---up—1 €U ((U rolesﬂ,[ui]> 2A{ri,... ,rn}> :

i=1

An RBAC statey is safewith respect to a seb of RSSoD requirements if it is safe with respect to every
requirement inD, and we write it asafe (7).
Given an SSoD configuratiofPA, RH, ), we say that it isequivalentto a setD of RSSoD require-
ments if
VUA CU xR [safeg((UA, PA, RH)) < safep((UA, PA, RH))]

where< means logical equivalence.

Example 3 The SSoD configuration given in Figure 1 is equivalent to the following@EBSSoD require-

ments.
Dl - {d17d27d37d4}

di = rssod({ Engineering, Warehouse, Accounting, Finance}, 3)
dy = rssod({ Quality, Warehouse, Accounting, Finance}, 3)

d3 = rssod({ Engineering, Finance},2)

dy = rssod({ Quality, Finance},2)

In Appendix B we discuss the generation of RSSoD requirements thagairakent to SSoD configura-
tions. A special case is when we are given an SSoD configuraBdnRH , {e = ssod{{p1,...,pn},k)}),
and each permissign is assigned to exactly one ratgin PA andRH . Then the configuration is equivalent
to the singleton set of RSSoD requiremédt= ssod({ry,...,r,},k)}.

In the rest of this section, we discuss the generation of a set of SMESraonis to enforce one RSSoD
requirement.

5.3 Precise enforcement of RSSoD requirements

From the proof of Lemma 8, it is clear that any enforceable SSoD coafigarcan be enforced using only
2-2 SMER constraints. This shows the power2e? SMER constraints: they are sufficient to enforce any
enforceable SSoD policy. However this might be at a great cost in terftexdfility.

Ideally, one would like to generate SMER constraints that “precisely cglptine restrictions inherent
to the RSSoD requirements. We now seek to formalize this.

11



Definition 11 Let D be a set of RSSoD requirements afide a set of SMER constraints, we say that
enforcesD when
vV RBAC statey [satisfies(v) = safep(y)]

We say that” is necessary to enford@ when
vV RBAC statey [safep(y) A livep(y) = satisfies ()]

wherelive p () means that for every robleappearing inD, there exists a user who is a member- of
We sayC precisely enforce® if C' enforcesD and is necessary to enforée Sometimes we abuse the
terminology slightly to say a constraiatenforces an RSSoD requiremeht

We now give two cases where precise enforcement can be achieved.

Lemma 10 Given a k-k RSSoD requirememt = rssod({ry, - - ,ri}, k), the constraintc =
smer({ry,--- ,ri},2) precisely enforces.

Lemma 11 Given a 2-n RSSoD requirememt = rssod({ry,---,m,},2), the constraintc =
smer({r1,---,r,},n) precisely enforces the configuration.

In fact, as we prove in Lemma 19 (in Section 5.5 after results needed fordbEhave been developed),
for everyk andn such thaR < k& < n, there exists no set of SMER constraints that precisely enforkes a
RSSoD requirement. That is, the two special cases in Lemmas 10 and 1& ardtitases where precise
enforcement can be achieved. As precise enforcement is not dolei@anany cases, we give methods to
generate “good” sets of SMER constraints that are as precise aslpossib

5.4 Expressive power of differentt-m SMER constraints

Before discussing the generation of “good” sets of SMER constrairgdpok at the expressive power of
t-m SMER constraints using different valuestaindm. We would like to answer questions such as: Does
an RBAC system that suppords3 SMER constraints have more expressive power than an RBAC system
that supports onlg-2 SMER constraints? Answers to such questions will help developers oCRBstems

to decide which kinds of constraints to support.

From Lemma 4 we know thatm SMER constraints, wherer > ¢, can be equivalently represented
usingt-t SMER constraints; thus non-canonical constraints do not add addiérpedssive power in terms
of enforcing SSoD policies. From Lemma 8, we know th@tSMER constraints are sufficient for enforcing
(albeit not precisely) any enforceable SSoD configuration. We now shat2-2 SMER constraints (02-n
SMER constraints which can be equivalently expressed usi¢MER constraints) are required in the
sense that they cannot be replaced with otherSMER (wherek > 3) constraints.

Lemma 12 There exist RSSoD requirements that cannot be enforced without21gil8MER constraints.

Proof. A t-t RSSoD requirement can be enforced only by u€ingSMER constraints, as these are the only
type of constraints that prevent two roles from being assigned to a sisgte u [ |

Although 2-2 SMER constraints are sufficient to enforce all enforceable SSoDgroations, other
constraints are needed to enforce some SSoD configurations morejytecis
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Lemma 13 For anyn > 2, there exists an RSSoD requirement that can be precisely enforcegl aisin
canonical constraint of cardinality but cannot be precisely enforced using any sét:@fSMER constraints
with ¢ < n.

This lemma suggests that if one wants to enforce an arbitrary RSSoD maguiras precisely as possi-
ble, then one needs to suppart: SMER constraints for arbitrany.

5.5 Generating “good” sets of SMER constraints

As we show in this section (Lemma 19), SSoD policies cannot always bé&ehkeenforced. Thus it is
desirable to compare different sets of SMER constraints and determinke sdtitmore precisely” enforces
a set of SSoD policies.

Definition 12 Let Cy and(C be two sets of SMER constraints. We say thatis at least as restrictive as
C5 (denoted byCy > (5) if

V RBAC statey [ satisfiesq, (v) = satisfiesc, () | -

The™ relation among all sets of SMER constraints is a partial order. When Cs but notCs > C4, we
say thatC; is more restrictive tharC', (denoted byC; > C5). Observe that by definitior;; andC, are
equivalent(Definition 7) if and only ifC; > Cy andCy > (.

When neithelC; &> C5 nor Cs &> (', we sayCy; andCs areincomparable

When bothC' andC’ enforce a seD of RSSoD requirements, there are four cases: A C’; (2)
C' > C (3); C and(’ are equivalent; and (4) andC’ are incomparable. In case (1)) is preferable to
C for enforcingD as it is less restrictive (and thus more precise). Similarly, in cas& (&5 preferable to
C’. In case (3), eithef’ or C’ can be used; the choice does not matter. In case (4), the decision gechoo
overC’ (or C’" overC) depends on other policy considerations.

Our philosophy for dealing with the generation problem is to generate aletseo§ SMER constraints
that are minimal for enforcind (for any such set, no other set is more preferable than it) and leave the
decision to choose which one to use to the system administrator.

Definition 13 Given a setD of RSSoD requirements, we say that aGetf SMER constraints isninimal
for enforcingD if C enforcesD and there does not exist a different 68tof SMER constraints such that
C’ also enforced andC > C’ (C is more restrictive than").

Lemma 14 If a setC of SMER constraints precisely enforces a Betf RSSoD requirement, then for any
(' that also enforce®, C' > C, i.e.,C’ is at least as restrictive a§.

Lemma 15 LetC be a set of SMER constraints that precisely enforces &#s#tRSSoD requirement! is
minimal for enforcingD. Furthermore, ifC'; is also minimal for enforcind?, thenC' andC', are equivalent.

Proof. Given anyC” that also enforce®, it follows from Lemma 14 tha€”’ > C, thus it cannot b&' > C’
(which implies that-(C’ &> ).

Given any( that is also minimal for enforcing, it follows from Lemma 14 tha€’, > C. By Defini-
tion 13, it cannot be that; > C; thusC;, andC must be equivalent. ]
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Lemma 16 Given a setD of RSSoD requirements, if bofly and C, are minimal for enforcingD and C;
andC, are incomparable, then there exists no 6edf SMER constraints that precisely enfordes

Proof. By Contradiction. If a se€’ that precisely enforce® exists, then from Lemma 18/ is equivalent
to C7 and toC,. This contradicts the fact that; andCs are incomparable. ]

We now present a simple algorithm to generate all singleton sets of SMERaiatsthat are minimal
for enforcing one RSSoD requirement.

The SMER-Gen Algorithm

Input: RSSoD requi renent rssod(R, k)
Output: a set S of mninmal SMER constraints
llet n = |R, S =0

2if &k = 2

3 output smer(R, n)

4 el se

5 for all j from2to {Z—:H+1

6 let m=(k-1)(G—-1)+1

7 for each size-m subset R of R
8 out put smer(R’, j)

9 end

Example 4 The above algorithm, when takimgsod ({Engineering, Warehouse, Accounting, Finance}, 3)
as input, generates the following sets of SMER constraints.

Co = {cs,c5,¢6,c7}

¢y = smer({Warehouse, Accounting, Finance}, 2)

c¢s = smer({Engineering, Accounting, Finance}, 2)

c¢s = smer({Engineering, Warehouse, Finance}, 2)

c¢; = smer({Engineering, Warehouse, Accounting}, 2)

Any SMER constraint fronCs is sufficient to satisfy the RSSoD requirement. The constraints are all
minimal and incomparable. Each of them left a different role unconstraifiede’s internal policy is that
Warehouse may be left unconstrained, then one maydgiek the desirable constraint to use.

The correctness of this algorithm is justified by the following two lemmas.

Lemma 17 Given an RSSoD requiremehteach SMER constraint generated®yYER- Gen(d) is minimal
for enforcingd.

Lemma 18 Given an RSSoD requiremesiteach SMER constraint that is minimal for enforcifgs gen-
erated bySMER- Gen(d).

Lemma 19 Given ak-n RSSoD requirement whe2e< k < n, there exists no set of SMER constraints that
precisely enforces it.

Our algorithm does not generate all sets of SMER constraints that are mitiraaforce an RSSoD
requirement. Constraint sets of cardinality greater than 1 may exist thamiahnmal for enforcing the
requirement. Our algorithm generates all possible minimal singletons in theofdrim SMER constraints.
It is up to the system administrator to choose the most appropriate constoaintfose candidates.

14



6 Conclusions and Future Work

We have posed and answered several fundamental questions reldtedus® of SMER constraints to en-
force SSoD policies, while making a clear distinction between objectives aodanisms. We have shown
that directly enforcing SSoD policies is intractabt®INP-complete), while enforcing SMER constraints
is efficient. We have also shown that verifying whether a set of SMERttaints enforces a set of SSoD
policies is intractabledoNP-complete), even for a basic subcase of the problem, but reducesliyainra
the satisfiability problem (SAT), for which there exist algorithms that hawenh@oven to work well in
practice [3]. We have discussed why these intractability results shouléamus to conclude that SMER
constraints are not an appropriate mechanism for enforcing SSoD pgolicie

We have defined minimal and precise enforcement. We have also charedttee kinds of policies for
which precise enforcement is achievable and shown what constraguisgly enforce such policies. We
have also presented an algorithm that generates all singleton SMERanoinséts that minimally enforce
an RSSoD requirement.

An interesting problem that remains is whether the generation algorithm camplbeved to consider
preexisting SMER constraints and to consider a set of SSoD policies asla wether than individually.
Other constraints have also been proposed for RBAC, e.g., cardinafisgramts and constraints on per-
mission assignment [14]. It would be interesting to examine using SMER eimtsttogether with these
constraints to enforce SSoD policies.
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A Proofs

Proof of Theorem 1.

Proof. Consider the complement of SC-8IS, denoted bySC-S$D. If an RBAC statey is not safe
wrt. E, then there exists B-n SSoD policy inE andk — 1 users such that iy thesek — 1 users together
have then permissions in the SSoD policy. It suffices to show {B&t-S D is NP-complete.

We first show thaSC-S®D is in NP. If one correctly guesses thien SSoD policy being violated
and thek — 1 users that together have all thgpermissions in the policy, verifying that the guess is correct
can be done in polynomial time: compute the union ofithe 1 users’ permissions and check whether it is
a superset of the set of permissions in the SSoD policy.

We now show thaBEC-S$D is NP-hard by reducing the set covering problem (page 201 of [11]) to
it. In the set covering problem, the inputs are a finiteset family F = {51, ..., S} of subsets o8, and
a budgetB. The goal is to determine whether there exissets inf’ whose union isS. This problem is
NP-complete [8, 11].

The reduction is straightforward. Giveh F', andB, construct an SSoD poliayas follows: Let each
elementinS map to a permission in the policy, lebe B+ 1 and letn be the size of. We have constructed
ak-n SSoD policy. Construct an RBAC stateas follows. For each corresponding permissioss jicreate
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a role to which the permission is assigned. For each different sSbget< i < ¢) in F', create a usei; to
which all roles inS; are assigned. The resulting RBAC states not safe with respect toe} if and only if
B sets inF coversS. [

Proof of Lemma 3

Proof. Consider the complement of EV, denotedBY, it suffices to show thaEV is in NP. To show
this, we need to show that givePd, RH, C, E, if C does not enforc&’ under PA and RH, then a short
(polynomial in the input size) evidence exists such that it can be verifiedlympmial time.

If a setC' of t-m SMER constraints does not enforce a Batf k-n SSoD policies undePA andRH,
then there exists a counter-example, i.e., a user-role assigriiaestich thatsatisfies((UA, PA, RH))
is true butsafe ;((UA, PA, RH)) is false. That is, there existskan SSoD policy inE that is violated by
k — 1 users. If such arUA exists, then a subset of tHéA that consists of just thé — 1 users is also
a counter-example. Thus, the smallest counter-example has size linearsizdha the input. Once the
counter-example is guessed, its correctness can be verified in time polynoth&size of the input. This
shows thaEV is in NP. n

Proof of Theorem 5

Proof. An instance of theCEV problem is given byPA, RH, a setC' of canonical constraints, andkan
SSoD policye. We need to map such an instance to a SAT instance such that the SAT instsaiisfiable
if and only if C does not enforcge}. In other words, if the SAT instance is satisfiable, then we can find a
user assignment relatiofid such that the constraints @ are satisfied but the sta{é/A, PA, RH) is not
safe with respect te.

We first give such a mapping for a subcas€&V wheree is a2-n SSoD policy, i.e., no single user has
all n permissions ire. When constructing a SAT instance from sucBRV instance, our goal is to find a
user-to-role assignment for one single user such that this user hasralspions ire without violating any
constraint inC'.

The SAT instance is constructed as follows. For eachr@ppearing inPA, RH, C, create a propo-
sitional variablev,.. Intuitively, if v, is true, then the user is a member of the rgle Construct the set of
clauses for the SAT instance as follows.

e For each permissiopin e, letr), r5, - - - , 7, be all the roles that are associated with the permigsion
add the clause
Uyt V A \VAARERY] UTZ
This clause means that, to have the permisgidhe user must be a member of one of the roles that
are associated with the permissian

e For each constraint € C, letc = ssod({r1,72,--- ,7},t); for eachi from 1 to k£ — 1, add to the
instance the following clause
Wy V Uy VoV g,

This clause means that, to satisfy the constraint, there must be at leasteome{rq, 5, -- ,r;} of
which the user is not a member.

e For each role hierarchy relationship,, 72) € RH, add to the instance the following clause

Wy V Upy
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This clause means that if a user is a member pthen it must also be a memberof

If the SAT instance is satisfiable, [Ebe a truth assignment that makes the instance true, then assign the user
to be a member of every rolesuch that, is true in/. The user has all permissionsdmwithout violating
any constraint irC'; therefore C' does not enforce. On the other hand, if’ does not enforce, then there
exists aUA such that in the RBAC state€lUA, PA, RH) there exists a user who has all permissions, in
then the role memberships of the user in this state give rise to a truth assignatenake the SAT instance
true.

We now give the mapping for any instance®EV. Given ak-n SSoD policye wherek > 2, we need
to consider role memberships of- 1 different users at the same time. Our goal is to find a user assignment
relation such thakt — 1 together have all permissions ényet none of thé: — 1 user’s role memberships
violate constraints i

Given PA, RH, let C' be a set of canonical constraints antde ak-n SSoD policy. Construct a SAT
instance as follows. For each role appearing’ih RH, C, createk — 1 proposition variables. The propo-
sitional variables created for a rotds denoted!, v2, - - -, v*L. Intuitively, v? is true when theé*® user is

ry ¥ro »Hr

a member of the role. Then construct the set of clauses for the SAT instance as follows.

e For each permissiopin e, letr), r5, - - - , 7, be all the roles that are associated with the permigsion
add the clause

1 k-1

vl VevaeR v ol v veR vy gl vy R
1 1 2 T3 T )

To have the permission at least one of thé — 1 users must be a member of one of these roles.

e For each constraint € C, let ¢ = ssod({ry,r2,--- ,7:},t); for eachi from 1 to £ — 1, add the
following clause ‘ ‘ ‘
., Voo, Vo Voo

To satisfy the constraint, for every user, there must exist a rolejinrs, - - - , .} of which the user is
not a member.
e For each role hierarchy relationship,, 72) € RH, and for eachi from 1 to k£ — 1, add the following
clause
i 7
Uy, V Uy,

This clause means that if a user is a member pthen it must also be a membersof

The SAT instance is satisfiable if and onlyGifdoes not enforcée}. |

Proof of Theorem 6.

Proof. That this problem is ikoNP follows from Lemma 3.

We prove that this problem isoNP-hard by reducing MNOTONE3-2-SAT to the complement of
this problem. We define INOTONE3-2-SAT as being a special case of monotone-CNF-SAT where each
negative clause is only composed of two literals. We show in Appendix C tltadAONE3-2-SAT is
NP-complete.

Given a MONOTONE-3-2-SAT problem composed of positive clauses of the férm v v, V v;,),

1 < i < n, and negative claus€gsw;, V —wj,), 1 < j < m, we do the following reduction: (1) Each
propositional variable is mapped to a role(v). (2) Each positive claus@y;, V v, V v;,) is mapped to a
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permissiorp; assigned to the three rolegv;, ), 7(vs, ), andr(v;,). (3) Each negative claugew;, vV —wj,)
is mapped to &-2 SMER constraingmer({7(v;, ), r(vj,)}, 2).

As can be seen, the &®™NOTONE 3-2-SAT instance is satisfiable if and only if tRBen SSoD policy
ssod({p1,p2, ..., Pn},2)) can be violated while satisfying all tftee2 SMER constraints. |

Proof of Lemma 8

Proof. If such a situation exists, then no matter what set of SMER constraintseyens can always assign

k — 1 different users to thé — 1 roles without violating any SMER constraint, resulting in an unsafe state.
On the other hand, if such a situation does not exist, one caB-2seMER constraints to declare every
pair of roles inPA and RH to be mutually exclusive, this forbids any user from being assigned to ti&s.ro
Clearly, any state satisfying these constraints is safe. |

Proof of Theorem 9

Proof. We consider the complement of the problem, that is, to determine whetherodh ®&figuration
is not enforceable. This problem is clearly NP: from Lemma 8 given a solution set & — 1 roles
we compute the set of permissions assigned to those roles, and checlemihé&ha superset of the set
of permissions in the SSoD policy. We show that the probledNE-hard by reducing the set covering
problem, which iSNP-complete, to it. In the set covering problem, the inputs are a finit& satfamily
F ={51,...,S,} of subsets o, and a budgeB. The goal is to determine whether there exi8tsets in
F whose union isS.

Given an instance of the set covering problef).F', and B, construct an SSoD policy as follows.
Let each element is map to a permission in the policy, Iétbe B + 1, and letn be the size ofS. We
have constructed A&n SSoD policy. For each different subsgt(1 < ¢ < /) in F, create a role;; and
assign to it all permissions corresponding to the elements.ii sets inF’' coverS if and only if the SSoD
configuration is not enforceable. [

Proof of Lemma 10

Proof. The requirement means thak users are required to cover &lroles. The constraint means that

no user is allowed to be a memberDdfoles in the set. We first show thatenforcesd. If no user is a
member of2 roles from the set of roles, then clearly: users are needed to cover theles. We then show
thatc is necessary. Given an RBAC statehat violatesc, we show thative 4y (v) andsafe 4, () cannot
both be true. Asy violatesc, there exists a user who has membershigsrioles from the set of roles. If
livegqy () is true, then for every role other than theoles there exists a user who is a member of it. Thus
k — 1 users cover thé roles, andsafe 4y (7) is false. |

Proof of Lemma 11

Proof. The requirement means tha® users are required to cover allroles. The constraint means that
no user is allowed to be a member of all the roles in the set. We first show émibrcese. If no user is a
member of all. roles from the set, then clearly, at le@sisers are required to cover all theoles. We then
show thatc is necessary. Given an RBAC stat¢hat violates:, there is one user who has all roles from the
set ofn roles. Thussafe 4y () must be false. |
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Proof of Lemma 13

Proof. Consider the-n RSSoD requirement = rssod({r1,--- ,7,},2) (at least2 users are required to
cover then roles). Then-n SMER constraint = smer({ry,--- ,7,},n) (no single user is allowed to a
member of alln roles) precisely enforces the configuration, as was shown in lemma 10.

We now show that no set of SMER constraints with n precisely enforced. Assume, for the sake of
contradiction, that there exists such a set. Then there existgaafatanonical constraints of cardinalities
less tham that also precisely enforces At least one constraint, in C' must be such that all roles in
the constraint are igry,--- ,r,}; otherwise, one could assign one user to have all roldsin--- ,r,}
without violating any constraint i’. Because: is a canonical constraint of cardinality< n, the setS of
roles inc is a strict subset ofry,--- , 7, }. This constraint is not necessary for implementing the SSoD
configuration, as an RBAC state in which a user is assigned to be a memberadésin S is safe with
respect to the requiremeidt as long as the member is not a member of some rofejin-- ,r,} —S. 1

Proof of Lemma 14

Proof. We need to show that: (A) for every RBAC statesatisfies () implies satisfies (). We show
that this is equivalent to proving (B) for every RBAC statesuch thatiive p(v'), satisfiesq(v'") implies
satisfies(7'). (A) clearly implies the (B). We now show that (B) implies (A). Suppose,tfa sake of
contradiction, that (B) is true but (A) is not, then there exists a stataech thatsatisfies () is true, but
satisfies~(7y) is not. If such a state exists, then there exists a statesuch that the role hierarchy relation
in v, is empty, andsatisfies (1) is true, butsatisfies (1) is false. The statg; can be constructed by
computing all role memberships inand assign these role memberships udiig We now construct a
statey, by adding tovy; the following user-to-role assignments: for each molmentioned inD assigns a
new user (one who is not a member of any roleyij to be a member of. (Different users are used for
different roles, so each new user is a member of exactly one role.) Véteditre resulting statg,. Clearly,
live p(7y2) is true. Furthermoresatisfies () if and only if satisfies - (v2), andsatisfies(7) if and only
if satisfies(2). Thereforesatisfiesq/(72) is true butsatisfies(72) is not. This is in contradiction with
(B) is true.

If C’ enforcesD, then for everyy such thatlivep(7) is true, satisfies () implies safe (), which
further impliessatisfies (7). ThusC’ is at least as restrictive &s. |

Proof of Lemma 17

Proof. Given aj-m SMER constraint generated by the algorithm for & RSSoD requirement, let R,
be the set of roles in, and R4 be the set of roles in.

By Lemma 4 we know that can be equivalently expressed as agef j-; SMER constraints. Assume,
for the sake of contradiction, that the solution is not minimal. Then there exsst€’4 of SMER constraints
that also enforced andC’ is less restrictive tha@, i.e.,(C' > C') A =(C' &> C).

Because-(C’ > (), there exists a statesuch thatsatisfies () is true butsatisfies () is not. This
means that at least orjej SMER constraint,, € C'is violated byy. Let R, be the set of roles inc,; there
exists a user inr who is a member of th¢ roles inR,,. As~ satisfiesC’, having one user being a member
of all roles inR,, does not violat&"’.

We now construct another statesuch thatsatisfies(7') is true, butsafe4, (1) is not. This contra-
dicts thatC’ enforcesi.

In order to construci’, we first construct another state as follows:
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e Usek — 2 users to cover the roles iR, — R,, with each user being a member of at mgst 1 roles
in R. — R,. This is possible for the following reasons. Firgk. — R,| = m — j. Second, from
the algorithm,m = (kK — 1)(j — 1) + 1. Thusk — 2 users can covefk — 2)(j — 1) roles, where
(k=2)(G—-1)=m—j.

e Assign one of thé& — 2 users to be a member of all rolesity — R..

Observe thakatisfies(71) is true, asy; satisfiesc. This is because does not place any restriction on
role memberships in roles iR; — R. and each user in; has at mosj — 1 roles inR.. Because&” > C’,
satisfiesc (1) is also true.

We now construct’ by adding toy; a new user and assigning the user to be a member of all roles in
R,. The statey’ hask — 1 users; together they have memberships in all roleBjn ThUSSafe{d}(’y/) is
false. The state’ also satisfie€", as the role memberships of the- 2 users iny; do not violateC’ and
neither does the new user who is a member of all rold3,in [ |

Proof of Lemma 18

Proof. Given ank-n RSSoD requirement, we show that any’-m’ SMER ¢ that is not generated by the
algorithm is not minimal in enforcing. We show this using case-by-case analysis.

Case 15’ > LZ—:}J + 1. Thenj’ > LZ%}J + 2. By assigning td: — 1 usersj’ — 1 roles each, we are

able to cover(k — 1)(j' — 1) roles. Observe that for every pair of positive integers, L%J > y=(@=1)

- €T

Thus,(k—1)(j' = 1) > (k —1)( L};—jj +1) > (k- 1)(%2 + 1) = n. Therefore does not enforce.

k—1
d. Consider the SMER constraidt= smer(j’, R. N R,). Clearly,c > ¢/, and¢’ enforcesd if and only if ¢
enforcesi. Thereforec is not minimal.
Case 3;j' < Z—j +1, R. € Ry, andm’ = m, wherem = (k — 1)(j' — 1) + 1. This is not possible,
as such a constraintwill be generated by the algorithm.
Case 4y’ < {”—AJ +1, R. € Ry, andm’ > m. As the algorithm generatesjam SMER constraint

Case 25’ < {”‘1J + 1andR. € Ry, whereR, is the set of roles im and Ry is the set of roles in

E—1
for each sizen subset ofR,, there exist a constrainat generated by the algorithm with a set of rolgs
such that?’ C R.. This impliesc’ > ¢, thereforer’ is not minimal.

Case 5:5' < [Z%}J + 1, R. C Ry, andm’ < m. We have’ < (k — 1)(5/ — 1). By assigning to
k — 1 users at most’ — 1 roles each, we are able to coverall roles inc without violatingc. By further
assigning to one user to be a member of all roleRjn— R., the state is not safe with respectdavhile

satisfyinge. Thusc does not enforce. |

Proof of Lemma 19

Proof. It suffices to prove that wheh < k < n, the algorithm generates at least two SMER constraints, as
then, we know that each such constraint is minimal (Lemma 17) and theth&eeexists no set of SMER
constraints that precisely enforces the RSSoD requirement (Lemma 16).

To show that the algorithm generates at least two SMER constraints vkeh < n, we observe that

either (1) L%J > 1, 0or (2) L%J = 1. If () is true, then; takes on at least the two values 2 and 3 in
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the outer loop, and therefore the inner loop (lines 7-8) is executed atwaas for different values ofj,
thereby generating two different SMER constraints.

If (2) is true, then the outer loop (line 5) is executed only once. For thedwgion of the outer loop,
m = k < n. Thus there exist more than one sizesubsets ofR. Therefore, the inner loop (lines 7—
8) executes at least twice for two different sizesubsetsk’ of R, thereby giving two different SMER
constraints. |

B Generating RSSoD Requirements

As we mention in Section 5.2, there is an intermediate step between defining $8cBspand designing
SMER constraints that implement them. The step is the mapping of SSoD policieStiR8quirements.
SSoD policies are expressed in terms of permissions; a set of RSSolteregnts expresses an SSoD
policy in terms of roles. Definition 10 defines an RSSoD requirement. In tloisose we discuss the
problem of generating a set of RSSoD requirements from an SSoD politplaserve that the algorithm
can be inefficient for arbitrary policies, but should be efficient foidgpSSoD policies.

Following is our algorithm to generate a set of RSSoD requirements fronsab $olicy. In line 10,
the algorithm returns an error if the SSoD policy cannot be satisfied fagitiea role structure.

Input: SSoD policy ssod(P,k)
Output: set S of RSSoD requirenments or error

1 let n = [P, S =R =1

2 for each p, ¢ P

3 let R, = set of roles for which p;, is authorized

4 for each 1 ¢ R;

5 add r; to R

6 for each o € Ry

7 i f T’QQRaddTgtOR

8 for each r, € R,

9 if r, € Radd r, to R

10 if |[Rl < k return error: SSoD cannot be satisfied
11 el se

12 copy R to R

13 add rssod(R', k) to S

14 if r, was added to R at this |level of nesting
15 renove r, fromaR

16 if ro was added to R at this level of nesting

17 remove ro fromR

18 renove r; fromR

19 return S

In line 3, the algorithm adds t®; the roles to which the permissign is directly assigned and the roles
that inheritp; from R;. Therefore, the lines 2—3 run with worst-case time-compleXity V,.), whereN,. is
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the number of roles in the role-hierarc®# andn is the number of permissions in the SSoD policy. The
entire algorithm runs with worst-case time-complexityN,."). Thus, if SSoD policies contain only small
sets of permissions, then the algorithm is reasonably efficientcén be any number of permissions, then
the algorithm is exponential in the size of the state.

The algorithm is efficient for “shallow” role-hierarchies. For instarité&e role-hierarchy is flat, that
is, for any two roles, o € R, we have(ry, ) ¢ RH, and if a permission is assigned to at most one role,
then the lines 2—3 dominate the lines 4-16 in running time, and the algorithm runsvaristrcase time
complexityO(nN,.).

C SAT

A boolean literal or variable is one that can take on a value ffom }. A boolean expression is one of
the following: (a) a boolean variable, (b, (C) ¢1 V @2, or (d) 91 A ¢2, Whereg, ¢1 andgp, are boolean
expressions. (c) is called a disjunction, and (d) is called a conjunctionutA &ssignment to a boolean
expression is the assignment of either 0 or 1 to each variable in the d@rpressboolean expression is
in Conjunctive Normal Form (CNF), if it can be written A5 , C; wheren > 1 and eachC; is called a
clause, a clause is either a literal or a disjunction of literals, and a literal ig eitheolean variable or its
complement. A boolean expression is satisfiable if there exists a truth assigortesuch that it evaluates
to 1. The SAT problem is the problem of determining whether an expressiGiNiis satisfiable. The
complement of the satisfiability problem is the validity problem: whether for arth tagsignment, the
expression evaluates to 1.

The 3-SAT problem is SAT with each clause has exa8tliterals. It is well-known that SAT and
MONOTONESAT areNP-complete, and their complements adNP-complete.

Monotone 3-2-SAT isNP-complete

MONOTONE3-SAT is 3-SAT with each clause containing either only positive literals dy aegative
literals; it is known to beéNP-complete [8]. We use MNOTONE-3-2-SAT to denote SAT with each clause
containing either 3 positive literals or 2 negative literals.

Theorem 20 MONOTONE3-2-SATis NP-complete.

Proof. MONOTONE-3-2-SAT is clearly inNP. We show that it iSNP-hard by reducing 3-SAT to
MONOTONE-3-2-SAT.

Let (¢1 vV {2V ¢3) be a clause. Case (1): all three literals are positive. No change neeslstade. Case
(2): one is negative. Wlog, assume tligis negative. This clause can be equivalently represented using a
positive clausé/; Vv ¢; V w) and a negative claugew V ¢3), wherew is a newly introduced propositional
variable. This technique turns one literal from negative to positive by datrimg a new propositional
variable and a new length-2 negative clause. Case (3): two are reegapiply the above technique twice.
Case (4): three are negative. Apply the above technique three times.

|
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