

CERIAS Tech Report 2004-14

AN APPROACH TO COOPERATIVE UPDATES OF XML DOCUMENTS IN
DISTRIBUTED SYSTEMS

by Elisa Bertino, Elena Ferrari, Giovanni Mella

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

An Approach to Cooperative Updates of XML

Documents in Distributed Systems∗

E. Bertino1, E. Ferrari2, G. Mella3

1CERIAS and CS Department
Purdue University
Recitation Building

656 Oval Drive
West Lafayette, IN 47907-2086
bertino@cerias.purdue.edu

2Dipartimento di Scienze Chimiche, Fisiche e Matematiche
Universita’ dell’Insubria

Via Valleggio, 11
22100 Como, Italy

elena.ferrari@uninsubria.it
3Dipartimento di Informatica e Comunicazione

Universita’ degli Studi di Milano
Via Comelico, 39/41
20135 Milano, Italy

mella@dico.unimi.it

Tel. +39-0250316346, Fax +39-0250316276
corresponding author

Abstract

Protection and secure exchange of Web documents is becoming a crucial need for many internet-
based applications. Securing Web documents entail addressing two main issues: confidentiality and
integrity. Ensuring document confidentiality means that document contents can only be disclosed
to subjects authorized according to specified security policies, whereas by document integrity we
mean that the document contents are correct with respect to a given application domain and that
the document contents are modified only by authorized subjects. Whereas the problem of document
confidentiality has been widely investigated in the literature, the problem of how to ensure that a
document, when moving among different parties, is modified only according to the stated policies
still lacks comprehensive solutions. In this paper we present a solution to this problem by proposing a
model for specifying update policies, and an infrastructure supporting the specification and enforce-
ment of these policies in a distributed and cooperative environment, in which subjects in different
organizational roles can modify possibly different portions of the same document. The key aspect
of our proposal is that, by using a combination of hash functions and digital signature techniques,
we create a distributed environment that enable subjects, in most cases, to verify, upon receiving
a document, whether the update operations performed on the document till that point are correct
with respect to the update policies, without interacting with the document server. Our approach
is particularly suited for environments, such as mobile systems, pervasive systems, decentralized
workflows, and peer-to-peer systems.

∗A preliminary version of this paper appeared in Proc. of the 16th Annual IFIP WG 11.3, Working Conference on
Data and Application Security, Cambridge, UK, July 2002, pp 211-227, with the title ”A Framework for Distributed and
Cooperative Updates of XML Documents”.

1

1 Introduction

The Internet has made possible a wide spectrum of distributed cooperative applications in several areas,
such as collaborative e-commerce [15], distance learning, telemedicine, e-government. A requirement
common to many cooperative application environments is the need for secure document exchange. By
secure exchange we mean that document confidentiality and integrity are ensured when documents flow
among different parties within an organization or within different organizations. Ensuring document
confidentiality means that document contents can only be disclosed to subjects authorized according
to access control policies agreed upon by the various parties. Ensuring document integrity means that
the document contents be correct with respect to a given application domain and that the document
contents be modified only by authorized subjects. It is a common case in many application environments
that not all parties be authorized to modify any document that is exchanged among these parties.
Rather, different parties can be given selective update privileges to different documents, or even different
components of the same document. Whereas the problem of documents confidentiality has been widely
investigated [8], the problem of how to ensure that a document, when exchanged among different parties,
is modified only according to the stated policies still lacks comprehensive solutions. We believe that
such a comprehensive solution requires:

1. A model and a high-level language for specifying update policies - such a model and language are
crucial whenever several parties need to state commonly agreed-upon policies according to which
documents can be modified by the involved parties.

2. An infrastructure supporting the specification and enforcement of such policies in a distributed
environment.

In this paper, we present such a comprehensive solution. We assume that documents to be protected are
encoded in XML [16]. We have chosen to cast our approach in the framework of XML documents because
of the widespread adoption of such a document standard in a large variety of application environments.
However, we believe that our approach can be easily extended to other document exchange formats.
The key ingredients of our approach can be summarized as follows. We provide an access control
model supporting, besides several document browsing privileges, various authoring privileges, such as
deleting and modifying document elements and attributes, or inserting new elements and attributes
into documents. These authorization privileges support a fine granularity level of control on document
modifications. An important aspect of our access control model is the use of subject credentials.
A credential is a set of properties concerning a subject that are relevant for security purposes (for
example, the position of the subject within the organization, projects a subject is working on, etc.).
Authorizations are then expressed by specifying the subjects receiving the authorizations in terms of
conditions against the subject credentials. Subject credentials thus represent a way to support access
control based on subject qualifications and profiles. In our model, both credentials and update policies
are encoded in XML. Therefore, not only we provide a high-level language for policy representations,
but we can also apply the protection mechanisms we provide for regular XML documents to credentials
and access control policies. Such a capability is crucial in an environment where credentials and access
control policies themselves need to be exchanged among the various parties, for purposes such as access
control policy negotiations.
Our access control model is complemented by an infrastructure supporting secure cooperative document
updates. The basic idea underlying our approach is that the server sends the document to be modified
to a given subject; this subject operates on the document and then forwards the document to a second
subject and so forth. Each subject1 upon receiving the document from the server or from the previous

1By subject we mean either a human user or a software application.

2

subject along the path must be able to modify all and only those portions of the document for which it
has a proper authorization according to the specified security policies. The main goal of our approach
is to enable a subject, upon receiving a document, to verify whether the updates performed on the
document till that point are correct with respect to the stated policies. Our approach is based on
the use of hash functions and digital signatures. The proposed document infrastructure is particularly
suited for decentralized environments, such as decentralized workflows, mobile systems, agent systems
and e-commerce. In such environments, it is not always practical or possible requiring frequent client
connections with document servers.
The work presented in this paper has been developed in the framework of the Author-X project [2].
Author-X is a Java-based system for access control and security policy design for XML documents. For
access control, Author-X supports credential-based policy specifications at varying granularity levels.
Additionally, Author-X supports push and pull distribution policies for document release. A number
of administration tools are also provided, to facilitate security administration according to the under-
lying security policies. What we describe in this paper are the techniques and protocols provided by
Author-X to enforce distributed document updates. This is a major extension since it requires, besides
an extension to the policy specification language, the development of an infrastructure and related
algorithms for supporting correct update operations in a distributed environment in which subjects can
autonomously verify the correctness of update operations without interacting, in most cases, with the
document server. These features were not supported by the previous versions of Author-X and, to the
best of our knowledge, they have not been proposed before.
The remainder of this paper is organized as follows. Section 2 compares our work with other propos-
als. Section 3 briefly summarizes basic concepts of XML and the access control model on which our
infrastructure for distributed update relies. Section 4 introduces the architecture for the management
of distributed updates, whereas Section 5 presents document encryption as a way to enforce access
control. Data structures required to support distributed updates and document dispatching are cov-
ered by Section 6, whereas Section 7 describes the protocols used by the subjects and the server to
check document integrity, and gives an illustrative example of our approach. Section 8 gives details
about the implementation of the document integrity verification protocols. Section 9 reports a com-
plexity analysis of the most relevant operations executed by the proposed protocols, whereas Section
10 discusses possible extensions to the proposed protocols. Section 11 concludes the paper and outlines
future research directions. Finally, Appendix A presents correctness results for the subject protocol.

2 Related work

Several research groups from both academia and industry are currently investigating problems related
to security and XML. Work in this field has mainly focused on the development of access control models
and encryption techniques for XML documents (an overview of research work and commercial products
related to XML security can be found in [8]). To the best of our knowledge, the work reported in this
paper is the first to address the problem of XML document distributed updates. Even though we are
not aware of other proposals to which our model can be directly compared, the access control model
on which our infrastructure relies has some relationships with access control models and mechanisms
developed for object-oriented DBMSs [7, 9], HTML documents [11] and, recently, XML documents [4].
Additional related work includes the XACML and SAML standards proposed by OASIS [6, 12]. For
this reason, in what follows we briefly review these proposals and compare them with our work.
The models proposed in [7, 9] are specifically tailored to an object-oriented DBMS storing conventional,
structured data. As such, great attention has been devoted to concepts such as versions and composite
objects, which are typical of an object-oriented context. Like our model, those models support the
concept of authorization propagation, even if our model has a larger variety of authorization propagation
options in that it supports three different options by which the Security Administrator (SA) can specify:

3

i) that an authorization defined at a given level in the XML document hierarchy propagates to all lower
levels; ii) that the propagation stops at the first level down in the hierarchy; or iii) that no propagation
has to be enforced. By contrast, ORION [9] has only one propagation policy, which is equivalent to the
first option.
An access control model for WWW documents has been proposed in [11]. In such a model, HTML
documents are organized as unstructured pages connected by links. Authorizations can be granted
either on the whole document or on selected document portions. Although we borrow from [11] the
idea of selectively granting access to a document (by authorizing a subject to see only some portions
and/or links in the document), our work substantially differs from this proposal. Differences are due
to the richer structure of XML documents with respect to HTML documents and to the possibility of
attaching a DTD/XMLSchema to an XML document, describing its structure. Such features require
the definition and enforcement of more sophisticated access control policies, than the ones devised for
HTML documents. The access control model proposed in [11] has great limitations deriving from the
fact that it is not based on a language able to semantically structuring the data, as in our model for
XML. As such, authorization administration is very difficult. In particular, if one wants to give access
to portions of a document, it has to manually split the page into different slots on which different
authorizations are given. This problem is completely overcome by our model because XML provides
semantic information for various document components. Authorizations can thus be based on this
semantic information.
An access control model for XML documents has been recently proposed [4]. Such model is very
similar to previous models for object-oriented databases and does not actually take into account some
peculiarities of XML. In particular, this model has two main shortcomings. The first is that it does not
consider the problem of a secure massive distribution of XML documents and thus considers only the
information pull mode for document distribution. Second, the model proposed in [4] does not provide
access control modes specific to XML documents. It only provides the read access mode. By contrast,
we provide a number of specialized access modes for browsing and authoring, which allow the SA to
authorize a subject to read the information in an element and/or to navigate through its links, or to
modify/delete the content of an element/attribute.
An extensible access control markup language (XACML) has been recently proposed as OASIS standard
[6]. There are two main differences between this language and the one on which our model relies.
XACML supports the concept of authorization propagation only for the request specification, but
it does not support this feature for policy specification. By contrast, our language supports several
authorization propagation options for policy specification as already mentioned. Moreover, XACML
supports the concept of subject’s role [10], whereas our model is based on the more general concept of
subject’s credentials.
Finally a security assertion markup language (SAML) has also been recently proposed as OASIS stan-
dard [12]. This language supports the specification of authorization requests and responses. SAML has
a very general notion of protection object in that a protection object is generically a resource, whereas
our model is specifically tailored for XML documents. As such SAML is not able to support several
features that are relevant to the protection of XML documents. Moreover SAML supports the following
types of actions to be exercised on a resource: Read, Write, Execute, Delete and Control; whereas our
model supports a greater and more specific set of privileges to be exercised on XML documents, allowing
a subject to modify both elements and attributes. Finally, our work includes not only the definition of a
language but also the development of a system, able among other things to support certified distributed
updates. Note, however, that our approach to enforce secure distributed updates to XML documents
can be used also when different document models and update authorization languages are adopted.

4

<Department monthly report date = ‘‘10/1/2003",
department = ‘‘R&D">

<overall description ID=‘‘1">
....

</overall description>
<balance sheet variations>

<item>
<name> hardware </name>
<balance> 10K </balance>

</item>
<item>

<name> software </name>
<balance> 5K </balance>

</item>
....

</balance sheet variations>
.....

<approval overall descr = ‘‘1">
.....

</approval>
</Department monthly report>

(a)

Department_monthly_report�

&1�

1� &3� &4�

date�

10/1/2003�

overall_description�

&5� &6�

item� item�

.....�

&7� &8� &9� &10�

name� name�balance� balance�

hardware� 10K� software� 5k�

balance_sheet_variations�

approval�

.....�

.....�.....�

 R&D�

department�

overall_�descr�

ID�

1�

content� content� content� content�

overall_�descr�

1�

(b)

Figure 1: (a) An example of XML document and (b) its graph representation

3 Preliminaries

In this section we first review the basic concepts of XML. We then summarize the basic characteristics
of the access control model that our system supports. More details on the model can be found in [2].

3.1 Basic Concepts of XML

Building blocks of XML documents [16] are nested, tagged elements. Each tagged element has zero
or more subelements, zero or more attributes, and may contain textual information (data content).
Elements can nested at any depth in the document structure. Attributes are of the form name =
attvalue, where name is a label and attvalue is a string delimited by quotes. Attributes can have
different types allowing one to specify the element identifier (attributes of type ID often called id),
additional information about the element (e.g., attributes of type CDATA containing textual information),
or links to other elements of the document (attributes of type IDREF/URI referring to a single target or
IDREF(s)/URI(s) referring to multiple targets). An example of XML document is given in Figure 1(a).
This document is a monthly report produced by a department, containing an overall description portion
that gives some general information, a balance sheet variation that specifies new values concerning some
items, and finally an approval portion containing some notes.
Based on this nested structure, an XML document can be represented as a graph, as illustrated in
Figure 1(b). In the graph representation, white nodes represent elements, whereas gray nodes represent
attributes. A node representing an element contains the element identifier (id). An element identifier
can be the ID attribute value associated with the element, or can be automatically generated by the
system, if no attribute of type ID is defined (system defined id are represented as &n, where n is a
natural number). A node representing an attribute contains its associated value. For simplicity, the data
content of an element is represented as a particular attribute whose name is content and whose value
is the element data content itself. The graph can contain edges representing the element-attribute and
the element-subelement relationships, and link edges, representing links between elements introduced
by IDREF/URI attributes. Edges are labeled with the tag of the destination node (i.e., an element or

5

<manager cid=“154”>
<name>

<Fname> Bob </Fname>
<lname > Watson </lname>

</name>
<age> 39 </age>
<department> R&D </department>
<salary> 8,000 </salary>
<category > Top Executive </category>

</manager>

<secretary cid=“104”, manager=“154”>
<name>

<Fname> Tom </Fname>
<lname > Moore </lname>

</name>
<age> 25 </age>
<department> R&D </department>
<salary> 2,000 </salary>
<level > third </level>
<duty > manager secretary </duty>

</secretary>

Figure 2: Examples of X -sec credentials

an attribute) and are represented by solid lines, whereas link edges are labeled with the name of the
corresponding IDREF/URI attribute and are represented by dashed lines.
A document type declaration can be attached to XML documents, specifying the syntactic rules that
XML documents must follow. These rules are collectively known as the Document Type Definition
(DTD) or XML Schema. An XML source is a set of XML documents and associated DTDs/XML
Schemas. Throughout the paper, we assume that an XML source S is given.

3.2 An Access Control Model for XML Documents

In this section we briefly review the access control model on which the proposed infrastructure relies.
We first characterize how subjects are qualified in access control policies. Then, we introduce the
concept of protection object, and the access privileges supported by the model. Finally, we introduce
propagation options and we show how all the above-mentioned components are used in the specification
of access control policies.

Subject. To better take into account subject profiles in the formulation of access control policies,
subjects are qualified by means of credentials. A credential is a set of attributes concerning a subject
that are relevant for security purposes. The use of credentials allows the SA to directly express relevant
access control policies in terms that are closer to the organizational structure of the enterprise. For
instance, by using credentials, one can simply formulate policies such as “Only programmers that are
permanent staff can access documents related to the internals of the system”. Each subject has one or
more associated credentials that are assigned when a subject subscribes to the system. To make the
task of credential specification easier, credentials with similar structures are grouped into credential
types. Both credentials and credential types are encoded in an XML-based language called X -sec [1].
Figures 2 gives examples of X -sec credentials for the document in Figure 1.
Access control policies specify conditions on credentials and credential properties. These conditions
(which are expressed by means of an XPath-based language [18]) implicitly identify the set of subjects
to which a policy applies. Examples of conditions are: All top executive managers, or All secretaries
working at the R&D Department.

Protection objects. By protection object we mean the entities to which an access control policy
applies. The model provides a wide range of protection objects, in that it is possible to specify policies
that apply to: i) all the instances of a DTD/XML Schema; ii) collections of documents; and iii)
selected portions within a document(s) (i.e., an element (or a set of elements), an attribute (or a set
of attributes), a link (or a set of links)). This wide range of protection objects is complemented by
content-dependent access control, that is, the possibility of specifying access control policies based on
document content in addition to document structure.

Privileges. Access control policies can be categorized into two groups: authoring policies, that allow

6

Table 1: Access privileges and their semantics

Type Privilege Meaning

Browsing view To read the values of all the attributes in a protection object, apart from attributes
of type IDREF(s)/URI(s). The view privilege can also be given on selected attributes
within an element

navigate To see all the links implied by attributes of type IDREF(s)/URI(s) contained in a
protection object. The navigate privilege can also be given on selected attributes
within an element. The view the subject has on the referred elements depends
on the authorizations the subject has on them

Authoring delete attr To remove an attribute from an element
insert attr To add an attribute to an element
update attr To modify an attribute value
insert elemt To insert new elements that are direct subelements of the element on which

the insert elemt privilege is specified
delete elemt To remove the subtree rooted at the element on which the delete elemt privilege is

specified

a subject to modify a protection object, and browsing policies, that allow a subject to access the
information contained into a protection object. Two browsing privileges are supported: view and
navigate, that allow subjects to read the information in a protection object and/or to see the relations
occurring among protection objects (defined through IDREF(s)/URI(s) attributes).
Authoring privileges allow subjects to modify/delete or insert protection objects. We support five au-
thoring privileges: three at the attribute level – delete attr, insert attr, and update attr and two
at the document/element level – insert elemt and delete elemt. The semantics of access privileges
is given in Table 1.

Propagation options. A further distinguishing feature of our access control model is that a set of
propagation options can be exploited in the specification of access control policies. Propagation options
specify whether and how a policy specified on a given protection object o propagates to protection
objects that are related to o by some sort of relationship. Propagation options are therefore a means
to concisely express a set of security requirements. Two different types of propagation are provided:
implicit and explicit propagation. Implicit propagation is always applied by default and is based on
the following principles: 1) policies specified on a DTD/XML Schema automatically propagate to all
DTD/XML Schema instances; 2) policies specified on a given element automatically propagate to all
the attributes of the element.
In addition to implicit propagation, the SA can state, whether and how a policy specified on a given
protection object propagates to lower level protection objects (wrt the document/DTD/XML Schema
hierarchy). Three different options are provided for explicit propagation by means of which the SA
can specify that: i) no propagation is enacted (no prop option), that is, the policy only applies to the
protection objects which appear in its specification; ii) the policy propagates to all direct subelements
of the elements in the specification (first level option); iii) the policy propagates to all the direct
and indirect subelements of the elements in the policy specification (cascade option).
Like credentials, access control policies are encoded using X -sec. We denote with the term Policy Base
(PB) the XML file encoding access control policies of the source S.2

Example 1 Figure 3 shows a policy base referring to the XML document in Figure 1. According to
the policies in Figure 3 secretaries, managers and accountants working in the R&D department are
entitled to see, respectively, the information contained in the monthly report of their department, apart

2We assume that each policy is uniquely identified by an identifier, generated by the system when the policy is specified.

7

<policy base>
<policy spec pid="P1" cred expr="//manager[@department="R&D"]" target="Department montly report.xml"
path="//Department monthly report[@Department="R&D"]" priv="view" prop="CASCADE"/ >

<policy spec pid="P2" cred expr="//secretary[@department= "R&D"]" target="Department monthly report.xml"
path="//Department monthly report[@Department="R&D"]" priv="view" prop="NO PROP"/ >

<policy spec pid="P3" cred expr="//secretary[@department="R&D"]" target="Department monthly report.xml"
path="//Department monthly report[@Department="R&D"]/overall description"
priv="view" prop="CASCADE"/ >

<policy spec pid="P4" cred expr="//secretary[@department="R&D"]" target="Department monthly report.xml"
path="//Department monthly report[@Department="R&D"]/approval"
priv="view" prop="CASCADE"/ >

<policy spec pid="P5" cred expr="//accountant[@department="R&D"]" target="Department monthly report.xml"
path="//Department monthly report[@Department="R&D"]/balance sheet variations"
priv="view" prop="CASCADE"/ >

<policy spec pid="P6" cred expr="//secretary[@department="R&D"]" target="Department monthly report.xml"
path="//Department monthly report[department="R&D"]/overall description"
priv="update attr" prop="NO PROP"/ >

<policy spec pid="P7" cred expr="//accountant[@department="R&D"]" target="Department monthly report.xml"
path="Department monthly report[@Department="R&D"]/balance sheet variations"
priv="update attr" prop="CASCADE"/ >

<policy spec pid="P8" cred expr="//accountant[@department="R&D"]" target="Department monthly report.xml"
path="Department monthly report[@Department="R&D"]/balance sheet variations"
priv="insert elemt" prop="NO PROP"/ >

<policy spec pid="P9" cred expr="//accountant[@department="R&D"]" target="Department monthly report.xml"
path="Department monthly report[@Department="R&D"]/balance sheet variations"
priv="delete elemt" prop="FIRST LEVEL"/ >

<policy spec pid="P10" cred expr="//company management director" target="Department monthly report.dtd"
path="" priv="view" prop="CASCADE"/ >

<policy spec pid="P11" cred expr="//manager[@department="R&D"]" target="Department monthly report.xml"
path="Department monthly report[@Department="R&D"]/approval"
priv="update attr" prop="NO PROP"/ >

</policy base>

Figure 3: An example of Policy Base

from balance sheet variations, all information in the monthly report of their department, and only the
balance sheet variations. Moreover, secretaries can also modify the overall description part, managers
are entitled to update the approval part, and accountants can modify, insert new sub-elements and delete
the balance sheet variations element, and delete one of its items. Finally, the company management
director can see the monthly reports of all the company departments. ©

4 Distributed Updates of XML Documents

Updates to XML documents can be made according to two different modes. Under the first, which
is more traditional, a subject wishing to modify an XML document sends a request to the XML
document server which, on the basis of the specified authoring policies, decides whether the operation
can be authorized (partially or totally) or should be denied. However, there can be cases in which
this traditional approach is not adequate or it can be inefficient (since it requires an interaction with
the server for each document modification). For these reasons, in this paper we propose an alternative
approach to document updates which relies on encryption and digital signature techniques and supports
a distributed approach to document updates. The idea is motivated by the fact that often, within an
organization, XML documents are subject to pre-defined cooperative update processes (which usually
take place at specific periods of times) according to which different organizational roles must modify
possibly different portions of the same document. Each subject receiving the document must be able
to modify all and only those portions of the document for which it has a proper authorization and
then it has to pass the document to another subject for additional operations. The idea is to develop
a framework supporting this update mode, able to minimize the interactions with the document server
and, at the same time, guaranteeing the correct enforcement of access and authoring privileges on the
document. In the following, we first give an overview of the proposed framework. Then we discuss the

8

XML� document�
 server�

 doc package�
updated doc�
 package�

checks &�
updates�

checks &�
updates�

checks &�
updates�

checks &�
updates�

checks &�
updates�

updated doc�
 package�

updated doc�
 package�

updated doc�
 package�

updated doc�
 package�

Figure 4: Overview of the update approach

assumptions on which it relies.

4.1 Overview of the update approach

The framework we have developed relies on the use of encryption techniques and consists of using
different keys for encrypting different portions of the same document according to the specified access
control policies. Each portion is encrypted with one and only one key. The same (encrypted) copy of
the document is then sent to a subject belonging to a collaborative group, where by collaborative group
we mean a set of subjects that may receive the document for updating or reading it. The document
before returning to the server must be seen and/or modified by subjects in the collaborative group,
according to a specified set of conditions, called here and in what follows path conditions - for example a
manager must be the last subject that receives the document. Each subject in the collaborative group
only receives the key(s) for the portion(s) it is enabled to see and/or modify (see Figure 4 for a general
overview of the approach) and the path conditions. Such conditions together with other criteria are
used by the subject in order to determine the next receiver of the document from the set of subjects in
the collaborative group. The approach we propose is distributed in the sense that each subject, under
specific assumptions, once receiving the encrypted document, is able to verify, without interacting with
the server, whether the operations performed till that point on the document are correct (that is,
they do not violate the access control policies of the source). This goal is obtained by attaching to
the encrypted document additional control information, with the purpose of making a subject able to
verify the correctness of the updates performed so far on the document, without the need of interacting
with the document server. The encrypted document and the control information form the document
package.
To support this update schema, we propose the architecture shown in Figure 5 which consists of five
main components. The document is first processed by a Parser which, on the basis of the specified
policies, analyses the document structure and groups document portions according to the policies that

9

XML� document�

Encryption�
Module�

Policy Base�

incomplete�
key_info�

....�

....�

Control�
Information�
Generator�

Dispatcher�

subjects�
decryption keys�

Recovery�
Manager�

corrupted�
document�
package�

correct�
document�
package�

 Parser�

package�
structure� ��completed�

package�

completed�
key_info�

....�

....�

���
���

package containing�
encrypted document�

and control�
information structure�

���
���package containing�

encrypted document�
and completed control�
information structure�

Figure 5: Distributed document updates: overall schema

apply to them. The result is the package structure, containing the document content already grouped
according to the above-mentioned strategy together with the control information structure, that is
incrementally updated during the package generation process. Such structure contains some control
information , that are needed by subjects to verify update correctness. Additionally, it generates a
table, named Key Info, which contains information on the generated groups and their corresponding
portions. Both the package structure and the Key Info table are received as input by the Encryption
Module, that generates a symmetric key for each group, and stores it in the Key Info table. Then, it
encrypts all the document portions with the corresponding keys. The result is the package containing
both the encrypted document and the control information structure, and the updated Key Info table.
The package is received as input by the Control Information Generator that generates a set of additional
control information which are stored in the control information structure. The Dispatcher is in charge
of generating the completed document package, containing both the encrypted version of the document
and the control information, and of sending it to the first chosen subject belonging to the collaborative
group.
By contrast, symmetric encryption keys are separately sent to each subject. Finally, the Recovery
Manager receives recovery requests from subjects and sends back to the subjects, at the end of a recovery
procedure, the last correct version of the package. In Section 5 we describe the main components of
the proposed architecture.

4.2 Assumptions

It is important to note that our approach relies on a set of assumptions that we discuss in what follows.
We assume that each time a subject detects that a portion of the package is inconsistent (that is, a
previous subject has operated on that portion violating the policies in PB) the subject sends a recovery
request to the document server (Ds) to obtain the last correct version of the package. This implies that
we assume no collusion among the subjects and that, whenever a subject sbj updates a document portion

10

(with proper authorizations and after the execution of the document content integrity check protocol),
sbj is sure of the integrity of that portion. Moreover, we assume that a subject sends the package to
only one subject in the collaborative group, that is, we do not allow a subject to simultaneously send
a package to more than one subject. Additionally, to prevent a subject from inserting old versions of
document portions into a package we assume that if the receiver sr of the package has already received
the package the sender, instead of sending the package to subject sr, sends it to Ds that updates some
control information and then sends the package to subject sr. This is done to prevent the closure of a
cycle in the path followed by the document d, which would allow subject sr to insert some portions of
old versions of d in the package, without being detected by any other subject. Finally, we assume that
each subject knows the public key of all the subjects belonging to the collaborative group.

5 Document Encryption

A trivial solution for generating the encryption of a document d, denoted in the following as de, able
to support our approach is to encrypt the document at the finest granularity level, that is, to encrypt
each attribute and element of the document with a different key. This solution, although very easy
to implement, may require the generation and distribution of a very large number of keys. To limit
the number of keys that need to be generated, we have adopted an alternative approach in which the
portions of a document to which the same policies apply are encrypted with the same key. This ensures
that it is always possible to deliver to each subject all and only the keys corresponding to the portions of
the documents for which it has an authorization, minimizing at the same time the number of encryption
keys to be generated. Here we do not go into the details of the techniques developed to support this
strategy and we only give the intuition behind them. We refer the interested reader to [3] for further
details.
The encryption of a document consists of two main phases: the first, called marking phase, marks each
protection object in the source with the identifiers of the applicable policies, whereas in the second
phase the document is encrypted based on the results of the first phase. Marking can apply not only
to whole protection objects (i.e., attributes and/or elements), but also to the start and end tags of an
element only. This possibility allows one to correctly encrypt elements containing attributes to which
different policies apply. As an example consider an element e containing two attributes a1 and a2, and
suppose that policies acp1 and acp2 apply to a1, whereas acp3 applies to a2. Thus, the view to be
returned to a subject to which both policy acp1 and acp2 apply is equal to element e from which all the
attributes different from a1 have been removed, whereas the view to be returned to a subject to which
only acp3 applies is the element obtained from e by removing all attributes different from a2. Thus,
in the document encryption attributes a1 and a2 must be encrypted with different keys, since different
policies apply to them. Additionally, another key must be used to encrypt the start and end tags of
e that are to be returned to all the subjects entitled to access an attribute of element e. This leads
to the definition of atomic element, which denotes the basic portions of an XML document to which
encryption can be applied.

Definition 5.1 (Atomic Element). Let d be an XML document in S. The set AE(d) of atomic
elements of d is defined as follows: 1) for each element identifier e id in d, and for each attribute a in
e id: e id.a3 ∈ AE(d); 2) for each element identifier e id in d, e id.tags ∈ AE(d). �

While an attribute corresponds to a single portion of a document d (the attribute name and its value, or
only the value for data content), elements consist of two or three non-contiguous components depending
on the type of the element. Empty-elements, that is, elements of the form (<tag-name ... />) consist of
two components: the first part of the tag name (“<tag-name”) and its end (“/>”). All other elements

3Here and in what follows we use the dot notation to denote a component of a given structure.

11

consist of three components: the first part of the start-tag (“<tag-name”), its end (“>”), and the
end-tag (“</tag-name>”). This information is important because for each atomic element ae it is
necessary to define where ae’s components are located in the original document.

Example 2 Example of atomic elements in the XML document in Figure 1 are:
a) &1.Date corresponding to: “Date = “10/1/2002””;
b) &8.content corresponding to: “10K”;
c) &5.tags corresponding to: “< item” “ >” “< /item >” ©

A marking for a document d is thus a set of pairs (ae,P), where ae ∈ AE(d), and P is a set of access
control policy identifiers. The encryption algorithm groups atomic elements with the same marking and
generates a different encryption key for each distinct group, which is used to encrypt all the members
of the group. To limit as much as possible the size of the information that circulates among subjects,
the encrypted document de, delivered to the various subjects, consists only of the encryption of the
marked atomic elements and does not contain non marked components of the document, since these
components are not accessible by any subject. The set of atomic elements which are encrypted with
the same key is called a region. We assume that each region is uniquely identified by an identifier. In
the following, given an XML document d we denote with R(d) the set of identifiers of the regions of d
implied by the policies in PB. Key information are stored into table Key info which records, for each
region in a document, the set of atomic elements that compose the region, the identifiers of policies
that apply to that region, and the corresponding encryption key.

Example 3 Table 2 shows the content of table Key info associated with the document in Figure 1,
according to the policies in Figure 3. ©

Table 2: Table Key info for the document in Figure 1

Region Key Policies Atomic elements

R1 K1 {P1, P2, P10} {&1.tags, &1.Date, &1.Department}
R2 K2 {P1, P4, P10, P11} {&4.tags, &4.content, &4.overall description}
R3 K3 {P1, P3, P6, P10} {1.tags, 1.content, 1.ID}
R4 K4 {P1, P5, P7, P8, P9, P10} {&3.tags}
R5 K5 {P1, P5, P7, P9, P10} {&5.tags, &7.tags, &7.content, &8.tags, &8.content, &6.tags,

&9.tags, &9.content, &10.tags, &10.content}

Our system supports several methods for key delivery [2] and the SA can select the most appropriate one
depending on the characteristics of the document and of the receiving subjects. Key delivery strategies
supported by our system can be classified into two main categories: online and offline. In the online
mode both the keys and the package are sent to the subjects by Ds (together or separately), whereas
in the offline mode keys are stored in an LDAP directory [13] at Ds and subjects retrieve the necessary
keys by querying the directory.

6 Generation of Control Information

After the XML document has been encrypted, the next step is to generate the control information, to be
used during the document flow for verifying the correctness of the updates performed on the document.
The Control Information Generator module (see Figure 5) generates this information for each region
of the document and corresponding atomic elements. The generated information differs depending
on the access control privileges that can be exercised on a region. For this reason we distinguish

12

between modifiable and non-modifiable regions. Modifiable regions are those whose contents can be
modified according to the policies in PB. A region r is thus modifiable if, among the policies that apply
to r, there exists at least a policy whose access control mode is either delete attr, delete elemt or
update attr. By contrast, a non-modifiable region is a region whose original contents cannot be changed
according to the policies in PB. Thus, a region is non-modifiable if the access control modes of all the
policies that apply to that region belongs to the set: {view, navigate, insert attr, insert elemt}.
Note that operations corresponding to insert attr and insert elemt privileges alter the document
content by inserting a new element and/or attribute; however, unlike the operations corresponding to
the delete attr, delete elemt, and update attr privileges, they do not modify the original region,
but they can add one or more new regions to the document. Because of this characteristic, they have
been inserted among the privileges related to non-modifiable regions. The sets of the identifiers of non-
modifiable and modifiable regions of a document d are denoted by NMR(d) and MR(d), respectively.
To enable a subject to verify the integrity of a document content we need different control data structures
for non-modifiable and modifiable regions. In particular, the content of the structures for non-modifiable
regions is statically defined by the document server when the document is delivered to the first subject
in the collaborative group and it is not altered by subjects during document transmission. By contrast,
the content of structures for modifiable regions changes dynamically according to the updates made on
the atomic elements belonging to those regions. In what follows, we refer to policies whose access control
modes are in the set Authoring-privileges = {update attr, delete attr, delete elemt, insert attr,
insert elemt} as authoring access control policies.
In the remainder of this section we describe in details the control information associated with document
regions. Before, presenting this information, we need to introduce the notion of authoring certificate,
which plays an important role when dealing with modifiable regions.

6.1 Authoring Certificates

Authoring certificates are used by a subject, that has modified a document portion, to prove its right
to modify that document portion to the subsequent receivers of the document. Therefore, whenever a
subject modifies a document (or a document portion), it has to add the proper authoring certificates
to the document control structures. Certificates are generated by the sever according to the access
control policies in PB. An authoring certificate consists of: an authoring privilege p, the id of a subject
that can exercise p, and the set of atomic elements on which the subject can exercise p. Authoring
certificates are formally defined as follows.

Definition 6.1 (Authoring Certificate). Let d be an XML document in S, and let Auth P (d) be
the set of authoring access control policies that apply to document d. Let Sbj be the set of identifiers
of subjects authorized to access documents in S. An authoring certificate ac is a tuple (priv, sbj id,
prot obj), digitally signed by the document server, where: priv ∈ Authoring-privileges; sbj id ∈ Sbj;
prot obj is a pair (r id, at el), such that r id ∈ R(d)4, and at el is a set of atomic element identifiers
belonging to r id. �

In the following, we denote with the term valid certificate an authoring certificate generated according
to the policies in PB. More precisely, an authoring certificate ac=(priv, sbj id, prot obj) is valid if
subject sbj is authorized to exercise privilege priv over the set of atomic elements identified by prot obj
according to the policies in PB. Moreover, given a subject s, we denote with Cert(s) the set of valid
certificates of subject s, for the documents in S wrt the policies in PB. The document server takes care
of sending the certificates to the subjects according to one of the following modes: on-line; partially
on-line; off-line. The on-line mode is based on an on-demand method for the certificates generation
and distribution.

4We recall that R(d) denotes the set of region identifiers of document d.

13

Table 3: Control data structures for non-modifiable regions

Name Notation Structure Semantics

Control structure for NMRd set of TNMR, one for each Information used by a subject to verify
non-modifiable regions non-modifiable region of d integrity of non-modifiable regions of d
Control tuple for TNMR (r id, Hr id, NMAEd) Information corresponding to a specific
non-modifiable regions non-modifiable region r id of d
Control structure for NMAEd set of TNMAE , one for each Control information associated with
atomic elements non-modifiable atomic element of d the atomic elements belonging to a

non-modifiable region r id of d
Control tuple for TNMAE (ae id, position, encrypted-content) Information corresponding to a specific
atomic elements atomic element ae belonging to

a non-modifiable region r id of a
document d

This mode implies the generation of a certificate and its delivery only when it is strictly needed. However
this mode has the drawback that the document server can become a bottle-neck. The partially on-
line mode provides the generation of the authoring certificates needed by the first subject and by all
the other subjects that must receive the package as specified in the path conditions generated by the
document server. Also in this case the document server can become a bottle-neck, even if the number
of certificate requests addressed to the server is lower. The last mode, the off-line one, provides the
preventive generation and distribution of all authoring certificates. Though this strategy could be
expensive, it can be executed during the periods in which the working load for the server is lower (e.g.
during the night), preventing the server from becoming a bottle-neck.
The mode is chosen taking into account the average number of simultaneously active processes, because
a high number of processes active at the same time can cause the server to become a bottle-neck.

Example 4 Consider three users Ann (sbj id=“s10”), Bob (sbj id=“s154”), and Tom (sbj id=“s104”)
with credentials company management director, manager, and secretary, respectively. Suppose more-
over that Bob and Tom work in the R&D Department. Consider moreover the policies in Figure 3
and information in Table 2. Then: (update attr, s10, (R1, {&1.Date, &1.Department})) is not a valid
certificate, since Ann is not authorized to update attributes of region R1, but only to view their con-
tent. By contrast, (update attr, s104, (R3, {1.content, 1.ID})) and (update attr, s54, (R2, {&4.content,
&4.overall descr})) are examples of valid certificates since Tom and Bob are authorized to update the
content of node 1 and &4, respectively. ©

6.2 Control data structures for document regions

The Control Information Generator module generates different data structures for non-modifiable and
modifiable regions. Since non-modifiable regions cannot be altered during the document flow, the
control data structure for non-modifiable regions simply contains a hash value for each non-modifiable
region. This value is computed by the server before sending the package to the first subject. The idea
is that, when a subject wishes to verify the integrity of a non-modifiable region it locally computes the
hash value and compares it with the one stored in the data structure. If the two hash values differ, then
the region has been modified by a non-authorized subject and thus the document is corrupted. The
control data structure for non-modifiable regions also contains the encryption of the content and the
control information associated with the atomic elements belonging to non-modifiable regions. Table
3 presents the control data structures for non-modifiable regions of a generic document d in terms of
their notation, structure and semantics, whereas Table 4 explains the semantics of the components of
the control data structures introduced in Table 3.

14

Table 4: Components of the control data structures for non-modifiable regions

Component Semantics

r id identifier of a non-modifiable region of a document d
Hr id hash value computed over the encrypted (with the key of the region) atomic elements

belonging to r id
ae id identifier of the atomic element ae
position it specifies where ae’s components are located in the original document d and it is computed

by counting, for each component of ae, the components that precede it in d. This is done by
executing a pre-order depth-first left-to-right tree traversal of the graph representation of the
document d and assigning a progressive integer number to each atomic element component
considered during the traversal. It is important to note that when an element e has some
attributes and some children elements the tree traversal assigns, an integer number to the
first part of the start-tag of e, one to each attribute of e, one to the end part of the start-tag
of e, one to all the atomic element components contained in the children elements, and one to
the end-tag of e.

encrypted-content it contains the encryption of the content associate with the atomic element identified by ae id

Control information for modifiable regions is more complex than the one for non-modifiable regions
because modifiable regions may change dynamically during document flow. Therefore it is not possible
to compute only once the hash value for integrity verification. Such a hash value must be recomputed
each time the document is modified to allow a subject to verify the correctness of the modifications
performed so far on the document. By correctness of the modification we mean that if a subject has
modified the document, then it must have the proper authorization. Thus the control information for
modifiable regions changes dynamically during the package flow from one subject to another to reflect
the operations performed on the document. To make possible the integrity verification of a region the
protocol must record information about the last two subjects that have received the package and have
an authoring or browsing privilege on that region. More precisely, the control data structure contains,
for each region, information on the last two subjects that have confirmed or modified the region, denoted
in the following as slast and slast−1, respectively. We say that a subject s confirms a modifiable region
when it verifies the integrity of the region, without modifying it, and a subject slast, different from s,
has modified that region. In particular if a subject s performs a confirmation operation, it establishes
that the updates executed by subject slast are correct wrt to the policies in PB. By contrast, a subject
s modifies a modifiable region, when it exercises some authoring privileges over it. Maintaining infor-
mation concerning the last two subjects is necessary because a subject s, before exercising a privilege
over a modifiable region, must be able to verify its integrity. To perform this control subject s must
know the state of the region when slast−1 has sent the package to the next subject, the set of elements
belonging to the region that slast has modified, grouped by the privilege exercised on them, and infor-
mation about the authorizations of slast over that region. All these information are contained in the
data structure for modifiable regions.
Before introducing the data structures for modifiable regions, we must introduce an additional infor-
mation, called cycle path, that the Control Information Generator inserts into the document package.
This information is used by the document server when the package returns to the server for recovery.
It denotes the number of cycles that the package has traversed, till that point. A cycle occurs when
a package reaches a subject that has already received it before. Cycle path is used to avoid that a
subject, upon receiving a document, inserts in the received version of the document an old version of
a document portion.
The control data structures for modifiable regions also contain the encryption of the content and the
control information associated with the atomic elements belonging to modifiable regions.
The control data structures for modifiable regions of a generic document d is introduced in Table 5,

15

Table 5: Control data structures for modifiable regions

Name Notation Structure Semantics

Control structure for MRd set of TMR, one for each Information used by a subject to verify
modifiable regions modifiable region of d correctness and integrity of modifiable

regions
Control tuple for TMR (r id, MAEd, h c slast−1, Information corresponding to a specified
modifiable regions h c slast−1 dig − sig, slast−1, modifiable region r id

h c slast, h c slast dig − sig,
slast, h servlast−1, h servlast)

Control structure for MAEd set of TMAE , one for each Information used to find portions of
atomic elements atomic element belonging to a a modifiable region r id and to check

modifiable region of d their integrity
Control tuple for TMAE (ae id, position, Information corresponding to a specific
atomic elements encrypted-content atomic element ae belonging to

h ae, full) a modifiable region r id of d

whereas in Table 6 we explain the semantics of the components of the control data structures introduced
in Table 5.
Among the control information associated with a modifiable region, certificates represents a relevant
component. This component contains information about exercised privileges and involved atomic el-
ements. More precisely, component certificates contains the set of authoring certificates belonging
to the subject that has modified the content of the modifiable region, and the set of atomic elements
in the considered region actually modified. In particular this component is updated according to the
following strategy. When a subject s wishes to exercise the delete elemt privilege it has to insert into
certificates, for each region that has some atomic elements belonging to the subtree to be deleted, its
own certificate for the delete elemt privilege on the subtree to be deleted. Moreover if there exists
at least one atomic element already deleted by a previous subject in that region, it has to insert in
that component the set of atomic elements, belonging to the subtree to be deleted, that have not been
yet deleted. This is necessary because, during the execution of the subject protocol, the set of atomic
elements that have been deleted by the last subject that has modified a region needs to be exactly
determined. When a subject s exercises an authoring privilege operation different from delete elemt
over a modifiable region r id, it has to insert in the component certificates of the tuple relative to r id
its own certificate for that privilege and the set of atomic elements actually modified.
Other relevant control information are represented by control hash values computed over a given re-
gion. This information includes the components: prev r h, prev r dig h, last r h, last r dig h. Those
information are particularly relevant for the integrity verification process and are updated during a
confirmation or a modification operation. A confirmation is executed by a subject s by replac-
ing information in components associated with slast−1 with those in components associated with slast

and by inserting in components associated with slast information about itself, by setting component
certificates to null, and by leaving unmodified the control hash values. There is a control hash value
for each atomic element ae belonging to a modifiable region of d calculated over the encryption of ae′s
content and recorded in a component denoted as h ae. During a confirmation the subject that confirms
a modifiable region has to re-compute the hash values, contained in components h ae, corresponding to
atomic elements that were modified by subject slast, to reflect the new values of the atomic elements.
By contrast, a modification requires a proper update of the control information by subject s. In par-
ticular, if subject s was the last subject that has previously confirmed or modified that region5, then
it executes a modification by inserting in the components associated with slast information regarding

5We recall that a document can flow back to a subject several times.

16

Table 6: Components of the control data structures for modifiable regions

Component Sub-component Semantics

r id - identifier of a modifiable region of a document d
h c slast−1 prev r h hash value computed over the encrypted atomic elements belonging to

r id in the document version created by subject slast−1

prev r dig h hash value computed over hash values (h ae) corresponding to atomic
elements in the document version created by subject slast−1 and
belonging to r id

certificates if subject slast−1 has modified region r id, it contains authoring
certificates and sets of atomic elements, it is null otherwise

cycle pathlast−1 value of cycle path when slast−1 has operated over r id
h c slast−1 dig − sig - hash value signed by slast−1, calculated over h c slast−1 and r id,

used to validate h c slast−1

slast−1 - subject that verified and/or operated over r id just
before slast

h c slast last r h same meaning of prev r h, but referred to subject slast

last r dig h same meaning of prev r dig h, but referred to subject slast

certificates same meaning as above, but referred to subject slast

cycle pathlast same meaning of cycle pathlast−1, but referred to subject slast

h c slast dig − sig - same meaning of h c slast−1 dig − sig, but referred to subject slast

slast - the last subject that verified and/or operated over r id
h servlast−1 - hash value signed by the document server calculated over

((h c slast−1 / {cycle pathlast−1})∪ {cycle path, r id}) used to validate
h c slast−1 after the update of the value of cycle path

h servlast - similar to the component previously illustrated
ae id - identifier of the atomic element ae
position - it specifies where ae’s components are located in the original

document d
encrypted-content - it contains the encryption of the content associate with the atomic

element identified by ae id
h ae - hash value computed over the encrypted content of the atomic

element ae
full - hash value computed over ae id and cycle path and signed by the

document server (if its value is null it means that the atomic
element was erased by a previous subject)

the exercised privileges and involved atomic elements (component certificates) and by updating the
control hash values; otherwise, it has to replace information in components associated with slast−1 with
those in components associated with slast, insert in components associated with slast information about
itself, the exercised privileges and involved atomic elements (component certificates), and the updated
control hash values. In this case the values contained in components h ae corresponding to the updated
atomic elements are not modified by subject s.
Figure 6 illustrates a possible path followed by a document d and in particular the value of the most
relevant components of the control data structure MRd corresponding to the region with identifier r n.
Subject SX modifies region r n by copying information on the document server (Ds) into the components
associated with slast−1 and by inserting in the components associated with slast its identifier and its
valid certificates. Subject SY has no access to that region and thus it does not modify it. Subject SZ ,
after having verified the integrity of the region, modifies it by executing the same procedure performed
by subject SX . Finally ST verifies the region content and confirms it, by copying the information in
components corresponding to slast into those corresponding to slast−1, and by inserting its identifier in
component slast.

17

Document Server�

S�X�

� ...�

r�_�n�
...�

s�last� =�D�s�

certificates =� null�
...�

...�

MR�d�

doc package� ��
doc package�

...�

r�_�n�
s�last�-1�=�D�s�

certificates =� null�
s�last� =� S�X�

valid� cert�. of� S�X�

...�

...�

MR�d�

S�Y�

S�Z�

��

doc package�

...�

r�_�n�
s�last�-1�=�D�s�

certificates =� null�
s�last� =� S�X�

valid� cert�. of� S�X�

...�

...�

MR�d�

S�T�

...�

r�_�n�
s�last�-1�=�S�X�

valid� cert�. of� S�X�

s�last� =� S�Z�

valid� cert�. of� S�Z�

...�

...�

MR�d�

��
doc package�

...�

r�_�n�
s�last�-1�=�S�Z�

valid� cert�. of� S�Z�

s�last� = S�T�

certificates =� null�
...�

...�

MR�d�

�
doc package�

Figure 6: Modification of the structure MRd along an hypothetical document-path

6.3 Generalized control information

The Generalized control information consists of some information, called path of document d and con-
tained in the package, listing the set of subjects that have received the package, and of an hash value,
denoted as HNMI , computed over a set of information called non-modifiable information and signed
by the document server with its private key. This non-modifiable information can be modified only by
the document server and corresponds to: cycle path, all control information over non-modifiable re-
gions and atomic elements, the components (ae id, position, r id) in all tuples in the control structure
for modifiable atomic elements, and the component r id in all the tuples in the control structure for
modifiable regions.
The path of document d is used to rebuild as much as possible the path followed by the package, when
an error is detected, whereas the hash value is used to check the integrity of the information that are
modifiable only by the document server.
The path of document d is incrementally updated as the package flows from one subject to another.
When a subject receives the package, it inserts in the structure a tuple containing its identifier, a
counter which keeps track of how many subjects have already received the package, and the identifier
of the subject to which it delivers the package. Moreover, the tuple contains an hash value, signed by
the subject with its private key, computed over all the tuples in the structure.

Definition 6.2 (Path of document d). Let d be an XML document. The Path of document d
(Pathd) is a set of tuples (s id c, prog, s id next, hcontrol), such that: s id c is the identifier of a
subject, prog is the position of subject s id c in the path followed by the document, and s id next

18

H�NMI� Cycle_path� Path�d�

 NMR�d�

 MR�d�

Package Signature�

NMAE�d�

MAE�d�

Figure 7: Graphic representation of a package

is the identifier of the subject to which s id c sends the package. Component hcontrol is an hash
value, signed by s id c, computed over: {(t.s id c, t.s id next, t.prog)|t ∈ Pathd ∧ t.prog ≤ prog} ∪
{cycle path, d id}, where d id is the identifier of d. �

Once the Control Information Generator has initialized the above control data structures for an en-
crypted document de, the Dispatcher module generates the package to be sent to the first subject.
Figure 7 provides a graphic representation of a package Pd.
After the creation of the package Pd, the Dispatcher, first of all, locally stores a copy of the package to
be used during recovery operations, then signs the package with the private key of Ds and sends it to
the first subject, using the SSL protocol [14].

7 Subject and Server Protocols

In this section we present the protocols executed by a subject and by the server during a distributed
and collaborative update process for an XML document. In particular Section 7.1 describes how a
subject performs the correctness check for a received package, how it exercises its update rights over
the received document and which steps it must follow to send a package to another subject. Section 7.1
also shows an example of the subject protocol execution. Section 7.2 describes how the server manages
a recovery request raised by a subject.

7.1 Subject Protocol

A subject sbj, according to the chosen key delivery strategy and certificate dissemination mode, obtains
from Ds a set of keys, and a set of corresponding region identifiers, enabling it to decrypt the portions
of the document d it is able to access. Additionally, sbj receives from Ds the set of its authoring cer-
tificates, generated according to the access control policies in PB, from which it can determine which
privileges can be exercised and on which atomic elements of d.
The subject protocol consists of three main steps: 1) verification of the package integrity and authen-
tication, 2) package update, and 3) package delivery to the next subject. Section 7.1.1 presents an
algorithm for performing step 1, whereas Section 7.1.2 summarizes the strategies we have devised for
steps 2 and 3. Finally Section 7.1.3 presents a possible update scenario.

7.1.1 Package integrity and authentication

A subject sbj, upon receiving a package, verifies its authenticity and the integrity of the corresponding
control information and of the document content it is authorized to access. If no errors occur during
this phase, sbj decrypts all the portions of d it is able to access with the received decryption keys.

19

Algorithm 1 An algorithm for verifying package integrity and authenticity

INPUT: The package Pd coming from a subject sn

The receiver subject sbj
OUTPUT: A package Pd containing both correct control structures and correct document content
METHOD:

1. Extract from Pd the Package Signature Ssn(Pd)

2. Let HPd be an hash value calculated by sbj over Pd

3. If (DKUsn
[Ssn(Pd)] �= HPd): reject the package

else: (a)Let h nmi be the hash value calculated by sbj over non-modifiable information in the package Pd

Check the structure Pathd

If (h nmi �= DKUDs
[HNMI] ∨ error in Pathd):

Send a recovery request to Ds

Receive from Ds another package in which the generalized control information are correct
endif
error := 0

(b)Let Reg = {r1, . . . , rn} be the set of region identifiers belonging to NMR(d) for which sbj has an
authorization
For each r ∈ Reg:

Let h reg be the hash value calculated by sbj over r’s atomic elements
Let NMRd[r].Hr id be the Hr id component of the tuple belonging to NMRd, with r id = r
If (h reg �= NMRd[r].Hr id)

error := 1
Send a recovery request to Ds

Receive from Ds another package containing correct control structures and
correct document content
break

(c) If (¬ error):
Let RM = {r1, . . . , rm} be the set of region identifiers belonging to MR(d) for which sbj has
an authorization
For each rm ∈ RM:

(d) If (MRd[rm].h c slast dig-sig.certificates = null): Control instructions for confirmed regions
(e) else Control instructions for modified regions

endif

Figure 8: An algorithm for verifying package integrity and authenticity

Then, it can exercise over the decrypted portions all the privileges derived by its authoring certificates.
By contrast, if an error is detected, sbj sends a recovery request to Ds to obtain the last correct version
of the package. The steps executed to verify package integrity are presented in the algorithm in Figure
8, whereas Figure 9 gives a graphic representation of the main steps of the algorithm.
The overall strategy of the algorithm is to verify the authenticity and the integrity of the received
package and of the associated data structures by locally calculating some hash values over the package,
by decrypting the hash values contained in the document package Pd with the public key of the sub-
jects that have already received the package and by verifying the correspondence between the locally
calculated hash values and the decrypted ones. If these values are different, the package is considered
incorrect and thus is not accepted. A recovery request is raised by the protocol to obtain another
package containing the last correct version of the portions detected as corrupted.
The algorithm starts (step 3) with the integrity verification of the package by extracting the package
signature and comparing it with an hash value locally computed over the same elements. If the two
values are different the algorithm requests the sender subject to send the package again. Otherwise, the
algorithm verifies the correctness of the content of non-modifiable information through the comparison of

20

Check the integrity�
and the authenticity�

of the whole package P�d�
received by subject� sbj�
to detect the possible�

corruption of� P�d�
during the transmission�

Check the integrity�
of non-modifiable�

information�
and of�Path�d�

reject the package�

Check the integrity�
of the content of each�
non-modifiable region�

sbj� is authorized to�
access�

Check the integrity�
of the content�

of each modifiable region�
for which� sbj� has an�

authorization�

Send a recovery�
request to�D�s�and�

receive from the� D�s�
a package with�

correct generalized�
control information�

Send a recovery�
request to�D�s�and�

receive from the� D�s�
a package with�

both correct control�
structures and�

correct document�
content�

return the package�
with both correct control�
structures and correct�

document content�

[corrupted]�

[not corrupted]�

[corrupted]�

[not corrupted]�

[corrupted]�

[not corrupted]�

[corrupted]�

[not corrupted]�

Figure 9: Main steps of the package integrity and authenticity algorithm

an hash value (h nmi) computed over these information with the one stored in the package (step 3.a).6

The check operated over Pathd (step 3.a) consists of the verification of the correct correspondence
between the subject identifier in a tuple (s id next) and the corresponding one (s id c) in the next
tuple in the structure. Moreover, all hash values contained in the tuples must be correct, that is, each
component hcontrol, decrypted using the public key of the subject specified in the component s id c,
must be equal to that calculated by the algorithm over the information specified in Definition 6.2.
Finally, the last subject specified in Pathd must be equal to the sender of the received package, to
prevent a subject from intentionally not inserting itself in Pathd, with the purpose of inserting old
versions of document portions when it receives again the package. The correctness of this structure
is important during the execution of the recovery operations, because it is used to rebuild as much
as possible the path followed by package Pd (for more details see Section 7.2). If an error occurs the
algorithm sends a recovery request to Ds to receive a correct version of the package.
Then, the algorithm verifies the integrity of the atomic elements belonging to non-modifiable regions for

6We denote with D and E the operations of decryption and encryption of the object in square brackets, respectively.
Moreover, with KUs and KRs we denote the public and the private key of a subject s, respectively.

21

Update of control data structures according to the operations�
executed over the document and to the used certificates�

(following the criteria explained in Section 6.2)�

Encryption of the new version of document�
d� and insertion of it in the package to be sent�

to the next subject�

Insertion in the updated package of a new�
tuple� in the structure� Path�d� with the information�

regarding the sender subject�

Signature of the package by the sender subject;�
delivery of the package to the next subject;�

 and storage of the package in the local source of the sender�

Figure 10: Update and delivery processes

which sbj has an authorization (step 3.b) using the same strategy presented above. If an error occurs
the algorithm sends a recovery request to Ds. If no error is detected, the algorithm verifies the integrity
of atomic elements belonging to modifiable regions (step 3.c) by verifying, for each modifiable region r
such that sbj has an authorization on it, the authenticity and the integrity of the information inserted
by the last two subjects slast−1 and slast. If the region is confirmed (step 3.d), its content must be correct
with respect to the hash value stored in component last r h and with respect to that in component
prev r h. Moreover the hash values in components h ae, referring to the atomic elements belonging to
that region, must be correct with respect to the hash values stored in last r dig h and prev r dig h. If
a region is modified (step 3.e), then by using the hash value in component prev r dig h and the one in
the components h ae of the atomic elements belonging to that region, the algorithm can build the state
of the region before the modification and then verify that the operations performed over it are correct
with respect to that state. This is executed by checking that the atomic elements which have not
been declared as modified (in the component certificates) have maintained their previous values and
verifying that the updated atomic elements were modified according to the declared privileges (those
contained in the certificates inserted in component certificates).
In each of the above cases if an error is detected, a recovery request is sent to Ds to obtain a correct
package. Finally, Algorithm 1 returns a package Pd, containing both correct control structures and
correct document content. A copy of this package is stored for recovery purposes (together with the
id of the sender subject, the corresponding value of prog component in Pathd and the current value of
cycle path) by the receiver in its local store.

7.1.2 Package update and delivery

After a subject s has executed Algorithm 1 on a document package Pd, it can read or modify the
regions of document d for which it has some authorizations. Then s must update the data structures to
keep track of the operations it has performed on document d and send the updated package to the next
subject in the collaborative group that satisfies the received path conditions. The operations performed
in these steps are graphically summarized in Figure 10.
A subject can locally exercise all privileges, authorized by its certificates, apart from privileges
insert attr and insert elemt. These privileges must be executed by Ds, because the correspond-
ing operations could generate new regions. In this case a subject s must send the package, and new

22

R�1�

MAE�d�

1� h_�ae�(1) = H(1)� . . .�

3� h_�ae�(3) = H(3)� . . .�

8� h_�ae�(8) = H(8)� . . .�

h_�c�_�s�last�-1� h_�c�_�s�last�

prev�_�r�_h = null� last_�r�_h = H(1,3,8)�

prev�_�r�_dig_h =null� last_�r�_dig_h = H(h_�ae�(1), h_�ae�(3), h_�ae�(8))�

s�last�-1� = null� s�last� =�D�s�

certificates = null� certificates = null�

R�2�
MAE�d�

2� h_�ae�(2) = H(2)� . . .�

4� h_�ae�(4) = H(4)� . . .�

6� h_�ae�(6) = H(6)� . . .�

7� h_�ae�(7) = H(7)� . . .�

. . .�

R�3�

MAE�d�
5� h_�ae�(5) = H(5)� . . .�

9� h_�ae�(9) = H(9)� . . .�

. . .�

. . .�

MR�d�

other�
information�

document package�

. . .�
S�M�

S�M� has the certificates:�
ac1� = (update_�attr�,�S�M�, (�R�1�, {1,3,8}))�
ac2� = (delete_� attr�,�S�M�, (�R�1�, {1,3,8}))�

S�M� checks integrity of� R�1�:�
it locally computes:�
h1 = H(1,3,8)�
h2 =�H(h_�ae�(1), h_�ae�(3), h_�ae�(8))�

IF h1 = last_� r�_h AND�
 h2 = last_�r�_dig_h�
THEN the check is successfully completed�
ELSE error�
(in this case there are no errors)�

S�M� executes:�
update of atomic element 1�
delete of atomic element 8�

Document Server�

Figure 11: Update flow of a modifiable region (Step 1)

portions it wishes to insert into the document d to Ds, that takes care of executing these operations
and sending the updated package to the specified receiver. In particular, new inserted atomic elements
are marked according to the policies in PB by Ds and then inserted in the corresponding new or old
region according to their marking. For each newly created region a new entry in the table Key info is
inserted, whereas control information corresponding to each old region to which new atomic elements
have been added is updated to reflect the new content of the region.
If the receiver sr of the package is already present in the structure Pathd, the sender instead of sending
the package to subject sr, sends it to the Ds that updates the value of cycle path and of the other
involved structures, appends the content of the structure Pathd in a local store, re-initializes the Pathd

structure and then sends the package to subject sr. We do such steps to prevent the closure of a cycle
in the path of document d. Such an event would allow subject sr to replace some portions of d in the
package with old ones, without being detected by any other subject.

7.1.3 An Illustrative Example

In this section we discuss the example reported in Figures 11, 12, and 13. We focus on the operations
executed by some subjects over the atomic elements and control data structures belonging to region R1.
In particular that region is composed by three atomic elements with identifiers 1, 3, and 8, respectively.
At the beginning of the process the region is covered only by the hash values computed by Ds, therefore
the components in the MRd control data structure associated with slast−1 are empty (value null). When
SM receives the package, region R1 was never modified. This subject possesses two certificates for that
region: one containing the update attr privilege and the other containing the delete attr privilege.
First of all the subject checks the integrity of that region by computing two hash values, one over the
encrypted contents of the atomic elements belonging to region R1 (h1), and the other over the h ae

23

. . .�

S�P�

S�P� has only a view privilege over� R�1�

S�P� checks the integrity of� R�1�:�
it checks the integrity and authenticity�
of the inserted certificates (� ac1�,�ac2�)�
it locally computes :�
h1 =�H(h_�ae�(1), h_�ae�(3), h_�ae�(8))�
h2 = H(3)�
h3 = H(�1m�,3)�
h4 = H(�1m�)�
h5 = H(h4, h_�ae�(3))�
updated-�ae� = {1}�
deleted-�ae� = {8}�

IF h1 =� prev�_�r�_dig_h AND�
 h2 = h_�ae�(3) AND�
 {1}� included in� ac1.prot�_�obj.at�_el AND�
 {8}� included in� ac2.prot�_�obj.at�_el AND�

ac1.prot�_�obj.r�_id =� R�1� AND�
ac2.prot�_�obj.r�_id =� R�1� AND�

 every� ae� in deleted-� ae� = null AND�
 h3 = last_�r�_h AND�
 h5 = last_�r�_dig_h�
THEN the check is successfully completed�
ELSE error�
(in this case there are no errors)�

S�P� confirms� R�1�

S�M�

R�1�

MAE�d�

1m� h_�ae�(1) = H(1)� . . .�

3� h_�ae�(3) = H(3)� . . .�

8d� h_�ae�(8) = H(8)� . . .�

h_�c�_�s�last�-1� h_�c�_�s�last�

prev�_�r�_h = last_�r�_h(�pvd�)� last_�r�_h = H(�1m�, 3)�

prev�_�r�_dig_h = last_� r�_dig_h(�pvd�)� last_�r�_dig_h = H(H(�1m�), h_�ae�(3))�

s�last�-1� =�D�s� s�last� =�S�M�

certificates = null� certificates = {(�ac1�,{1}), (�ac2�,{8})}�

R�2�
MAE�d�

2� h_�ae�(2) = H(2)� . . .�

4� h_�ae�(4) = H(4)� . . .�

6� h_�ae�(6) = H(6)� . . .�

7� h_�ae�(7) = H(7)� . . .�

. . .�

R�3�

MAE�d�
5� h_�ae�(5) = H(5)� . . .�

9� h_�ae�(9) = H(9)� . . .�

. . .�

. . .�

MR�d�

other�
information�

document package�

Figure 12: Update flow of a modifiable region (Step 2)

components associated with those atomic elements (h2), and then checks that h1 and h2 match the hash
values, last r h and last r dig h, associated with R1 and stored in the MRd control data structure.
Finally, SM updates the atomic element 1, deletes the atomic element 8, updates the corresponding
control information in MRd and sends the updated package to another subject. After a certain number
of subjects the package reaches SP , that can only view the content of region R1. SP checks the integrity
of R1 by executing the following steps:

• It checks the integrity and authenticity of the inserted certificates (ac1, ac2). Then it deter-
mines the set of updated atomic elements belonging to region R1, corresponding to 1 and the
set of deleted atomic elements belonging to R1 corresponding to 8. Such sets of atomic elements
are obtained by using the information contained in the component certificates of the tuple
associated with region R1 belonging to the MRd control data structure. Obviously if a certifi-
cate with privilege different from update attr, delete attr or delete elemt is found in the
certificates component, an error is raised.

• It locally computes some hash values. Hash value h1 is computed over the h ae components
associated with the atomic elements belonging to R1 not yet deleted or declared as deleted in

24

. . .�

S�Current�

S�Curren�t� checks the integrity of� R�1�:�
it locally computes:�
h1= H(�1m�, 3)�
h2 =�H(h_�ae�(1), h_�ae�(3))�

IF h1 =� prev�_�r�_h AND�
 h2 =� prev�_�r�_dig_h AND�

prev�_�r�_h = last_�r�_h AND�
prev�_�r�_dig_h = last_� r�_dig_h�

THEN the check is successfully completed�
ELSE error�
(in this case there are no errors)�

S�P�

LEGEND�

ae�: atomic element�
H(x)�: hash function computed over argument x�
h_�ae�(�y�)�: component h_�ae� associated with the� ae�whose� ae�_id =�y�
component(�pvd�)�: value of the data structure "component" in the previous�
version of document d�

X� a�e with�ae�_id = X�

Xm� modified� ae� with�ae�_id = X�

Xd� deleted� ae� with�ae�_id = X�

encrypted� ae� of�R�1�

 encrypted� ae� of�R�2�

encrypted� ae� of�R�3�

R�1�

MAE�d�

1m� h_�ae�(1) = H(�1m�)� . . .�

3� h_�ae�(3) = H(3)� . . .�

8d� h_�ae�(8) = null� . . .�

h_�c�_�s�last�-1� h_�c�_�s�last�

prev�_�r�_h = last_�r�_h(�pvd�)� last_�r�_h = last_�r�_h(�pvd�)�

prev�_�r�_dig_h = last_�r�_dig_h(�pvd�)� last_�r�_dig_h = last_� r�_dig_h(�pvd�)�

s�last�-1� =�S�M� s�last� =�S�P�

certificates = {(� ac1�,{1}), (�ac2�,{8})}� certificates = null�

R�2�
MAE�d�

2� h_�ae�(2) = H(2)� . . .�

4� h_�ae�(4) = H(4)� . . .�

6� h_�ae�(6) = H(6)� . . .�

7� h_�ae�(7) = H(7)� . . .�

. . .�

R�3�

MAE�d�
5� h_�ae�(5) = H(5)� . . .�

9� h_�ae�(9) = H(9)� . . .�

. . .�

. . .�

MR�d�

other�
information�

document package�

Figure 13: Update flow of a modifiable region (Step 3)

component certificates associated with slast; h2 is computed over the encrypted content of
the atomic element 3, because it has not yet been deleted and it is not declared as modified
in component certificates associated with slast; h3 is computed over the encrypted content
of all the atomic elements of R1 not yet deleted; h4 is computed over the encrypted content of
the updated atomic element 1; h5 is computed over the component h ae associated with atomic
element 3 and h4, that are the hash values computed over the atomic elements of R1 not yet
deleted.

• It compares hash value h1 with the component prev r dig h in MRd. The correspondence between
these two assures that no subject has modified the values associated with the h ae components.

• It compares hash value h2 with the component h ae associated with the atomic element 3. Their
correspondence and the satisfaction of the previous check assure that the content of the atomic

25

element 3 was not modified.

• It checks that the atomic elements declared as updated or deleted belong to the set of atomic
elements contained in the inserted certificates (ac1, ac2), and that the region specified in those
certificates is R1, and finally that each atomic element declared as deleted has a null value in
its encrypted-content component. These conditions assure that SM possesses the proper rights to
update and delete atomic elements 1 and 8, respectively, and that atomic element 8 was really
deleted.

• It compares hash value h3 with the component last r h in MRd. The correspondence between
them assures that no subject had modified the content associated with the atomic elements of R1
not yet deleted, after the modification executed by SM .

• It compares hash value h5 with the component last r dig h in MRd. The correspondence between
them assures that components last r dig h and last r h cover the same content associated with
the atomic elements of R1 not yet deleted, in an indirect mode, the former one, and in a direct
mode, the latter one.

Before sending the package to the next subject, SP confirms region R1 by: updating the value of
the components h ae corresponding to its modified atomic elements 1 and 8; moving the information
associated with the components in MRd associated with slast into those associated with slast−1; and
inserting into the components associated with slast the hash values that cover directly (last r h) and
indirectly (last r dig h) the current content of the atomic elements, together with the identifier of SP .
Finally, subject SCurrent receives the package and checks its integrity. Since region R1 is a confirmed
one, SCurrent must locally compute a hash value (h1) over the encrypted content of the atomic elements
of R1 not yet deleted and another one over the corresponding h ae components. Then, SCurrent checks
that those hash values match both the ones stored in the components associated with slast in the MRd

control data structure and the other ones stored in the components associated with slast−1. These
conditions assure that no subject after SP has modified the region content and also that SP itself did
not modify the content of the region.

7.2 Server Protocol

When a subject detects that a package is compromised, it requires from the server a correct version of
the document package. In particular, there are two types of recovery requests that a subject may send
to the document server.
The first type of recovery request is sent when an error to the generalized control information has
been detected. In this case the server protocol checks the structure Pathd, in the received package
attached to the request, and saves the portion of it that is correct. Then, it sends each subject in the
collaborative group a message by which it requires the structure Pathd of the package (if any) they
have stored, having the value of cycle path equal to the current value stored by the server. By checking
(following the criteria explained in Section 7.1.1) the received structures Pathd, and by matching them
with the correct portion of that one in the corrupted package, the server rebuilds as much as possible the
path (denoted in the following as rebuilt-path) followed by the package. This is executed by considering
the structures Pathd, obtained from the subjects, in ascending order with respect to the number of
subjects they contain. The path saved by the server is matched with the first structure Pathd. Every
match generates a partially rebuilt-path which is used in the subsequent matches. Such path consists
of the subjects which appear in both paths and of the subjects contained in the path with the highest
number of subjects. The rebuilding process terminates when there are no more paths to evaluate or
when two paths have, in a tuple, equal value for component prog and different values in one of the
other components. Now it is possible to find the last correct version of the package by requiring the

26

Server Extension�

X-Access�

X-�Admin� X-Update�
X-Pull� X-Push�

Author-X�

XML�-reader�

DS� CS�KS�

CB� PB� EDMIB� XML�-Source� ACB�

Internet�

XQL� X-Path�XML� Parser�
Excelon� File System�

Excelon� Server�
Web Server�

Figure 14: Author-X architecture

subjects listed in the rebuilt-path (beginning from the one with the highest value in the component prog
and stopping the requesting process when a correct version is found) their last sent and stored package
having the value of cycle path equal to that one stored by the server.
Finally, the server appends the rebuilt-path to the path (denoted as global-path) already saved in a local
store, re-initialize the Pathd structure, updates the value of cycle path as well as the data structures of
the received package and sends this updated package to the subject that has required the recovery.
The second type of recovery request is sent when an error in the content of a region is discovered.
In this case if the error affects only non-modifiable regions, the server can directly solve the problem
without the help of other subjects, because it has stored the original value of this information in its
local repository. It can thus replace the corrupted information with the saved ones. Otherwise, if the
Pathd structure has been compromised the server rebuilds the last portion of the path followed by the
package, by using the strategies explained above. In any case the server, by using the information in
table Key Info, selects the subjects from which it requires a package containing the last correct version
of the corrupted modifiable regions. The request process is executed starting from the selected subject
with the highest value in component prog in the global-path obtained appending the rebuilt-path to the
one already saved and stopping the process when a correct version of the region is found or the selected
subject has a value in component prog less than the one of the subject that has received the last correct
version of the region found and saved by the server during a previous recovery session. If a correct
version of the region is not found through this process the initial version of the region is inserted into
the package. Finally, the server re-initialize the Pathd structure, updates the value of cycle path as well
as the data structures of the received package and sends this updated package to the subject that has
required the recovery.

8 System Implementation

The protocols described in the previous sections are currently being implemented in the framework of
the Author-X system [2]. Author-X is a java-based system supporting selective, secure and distributed
dissemination of XML documents. Its architecture, presented in Figure 14, is based on the client-server
paradigm. The server system, built on top of the eXcelon XML data server [5], manages all information
required for controlling access to documents. In particular the server database is organized in terms of

27

five repositories: the Policy Base (PB), the Credential Base (CB), the Encrypted Document and Man-
agement Information Base (EDMIB), the XML Source, and the Authoring Certificate Base (ACB).
In addition to the database, the server includes the following main components: X -Admin, X -Access,
and X -Update. We briefly describe the first two, and then focus on the last one which implements the
protocols defined in this paper. The X -Admin component provides functions supporting administrative
operations, such as for instance specifying or modifying policies, or updating credentials. The X -Access
component consists of two subcomponents: X -Pull and X -Push. The former component supports the
selective distribution of the XML documents, stored in the XML Source repository according to the
policies in PB using the traditional user-on-demand paradigm. By contrast, the latter component is
in charge of supporting document broadcast to user groups. As such, it supports a push-based distri-
bution of the XML documents stored at the server site. In order to support group distribution of the
same document and yet to enforce selective access to different components of the document, document
components are encrypted by using different keys that are generated according to the stated access
control policies. Each subject in the group then receives only the keys for decrypting the document
components it can access. The last component of the Author-X server is X -Update, that manages
the collaborative and distributed update process described in this paper. It generates and updates
all control information associated with an XML document. It also generates all certificates associated
with a document according to the policies in PB, and performs the initial steps for the creation and
delivery of packages. A package contains the encrypted7 version of an XML document and the associ-
ated control information. Finally, the X -Update module manages the recovery process. In particular,
X -Update uses different XML encodings for modifiable and non-modifiable atomic elements of the doc-
ument, generating an XML structure called MAE, for modifiable atomic elements, and another XML
structure called NMAE for non modifiable ones. Figure 15 shows an example of how X -Update encodes
some atomic elements of the XML document reported in Figure 1, before and after the encryption and
control information generation processes, according to the specification of the structures TNMAE and
TMAE presented in Tables 3 and 5, respectively.
The information, common to both structures and visible in the unencrypted encoding in Figure 15(a)
are: 1) an atomic element identifier (corresponding to ae id), that univocally identifies a specific mod-
ifiable/non modifiable atomic element within the document; 2) a position information (corresponding
to position) that, in the case of an attribute indicates the position of that attribute within the docu-
ment (P1), whereas in the case of an element indicates the position of its start-tag (P1), of the end of
the start-tag (P2), and of the end-tag (P3); 3) the atomic element itself (corresponding to the atomic
element content in the original XML document), that is, the tag associated with an element or the
name and the corresponding value associated with an attribute. The MAE structure also contains
two additional information: h ae and full, denoting respectively an hash value and a digital signature
(cfr. Table 6). In particular note that the position information and the atomic element content are
separately encrypted. The reason is that different hash values are computed over these information.
The position information, that can never be modified, must be always covered by the HNMI hash value,
whereas the atomic element content is covered by the hash value (stored in component Hr id, if it is
non-modifiable, or in prev r h and last r h, if it is modifiable) computed over all the atomic elements
of its region and also by the h ae hash value, only if it is modifiable. It is important to note that the
encrypted atomic element content (corresponding to the encrypted-content component) is contained
within a MAE/NMAE XML structure, together with its corresponding control information, since this
makes easier building the correct view at the client side, as explained in what follows. Figure 16 shows
an example of authoring certificate, encoded in XML and compliant with the W3C recommendation
for the generation of digital signatures [19].
In the first portion of the certificate there is the authentication information, whereas the Object element

7Encryption is compliant with W3C recommendation [17].

28

<NMR Id=”1”>
<NMAE Id=”2”>

<Position>
<P1>2</P1>
<P2>0</P2>
<P3>0</P3>

</Position>
<AtomicElement>

Date=”10/1/2002”
</AtomicElement>

</NMAE>
...

</NMR>
...
<MR Id=”3”>

<MAE Id=”4”>
<Position>

<P1>5</P1>
<P2>6</P2>
<P3>8</P3>

</Position>
<AtomicElement>

Overall Description
</AtomicElement>
<h ae></h ae>
<full></full>

</MAE>
...

</MR>

(a)

<NMR Id=”1”>
<NMAE Id=”2”>

<ENCRYPTEDDATA
xmlns=”http://www.w3.org/2001/04/xmlenc#”
Type=”http://www.w3.org/2001/04/xmlenc#Element”>

<CIPHERDATA>
<CIPHERVALUE>J3RuT3kabQ50pHFY7RKukh9Yiy/chgmRvi

FIIRqTPe/TI6kuEIBulOkmEAA9Aa1tUI1IsnZnSUQ=
</CIPHERVALUE>

</CIPHERDATA>
</ENCRYPTEDDATA>
<ENCRYPTEDDATA

xmlns=”http://www.w3.org/2001/04/xmlenc#”
Type=”http://www.w3.org/2001/04/xmlenc#Element”>

<CIPHERDATA>
<CIPHERVALUE>38qCoozeS/iUv1rVqfa6MKXbZJbCqXJWBG

/+9Hq+Wkq9+9JrnEEOYS876d5896VwuAF+Cii1XpU=
</CIPHERVALUE>

</CIPHERDATA>
</ENCRYPTEDDATA>

</NMAE>
...

</NMR>
...
<MR Id=”3”>

<MAE Id=”4”>
<ENCRYPTEDDATA

xmlns=”http://www.w3.org/2001/04/xmlenc#”
Type=”http://www.w3.org/2001/04/xmlenc#Element”>

<CIPHERDATA>
<CIPHERVALUE>rL32CT5iwuADIj70hyzH1IaClsjB1H9ok4pLx

SYc8OX3kOJbLKY1hJh8DJOocJ86zo08yihdfvk=
</CIPHERVALUE>

</CIPHERDATA>
</ENCRYPTEDDATA>
<ENCRYPTEDDATA

xmlns=”http://www.w3.org/2001/04/xmlenc#”
Type=”http://www.w3.org/2001/04/xmlenc#Element”>

<CIPHERDATA>
<CIPHERVALUE>X+Z/nUfOjv7MTvX/OpFIngRw2Kk49kcFU

Pnyb9ueKl20yhREkNI55btaRZc4GvxPZ34DCpCVAD0=
</CIPHERVALUE>

</CIPHERDATA>
</ENCRYPTEDDATA>
<h ae>n/3PViUrj91DwsI5lQGi4hMDL3s=</h ae>
<full>Wmh0cyoIAZ3npZ77Jzw5+JsvLfI=</full>

</MAE>
...

</MR>

(b)

Figure 15: Structures MAE and NMAE (a) before and (b) after the encryption and control information
generation processes

29

<Signature IdDoc=”1” IdSig=”1”>
<SignedInfo>

<CanonicalizationMethod Algorithm=”http://www.w3.org/TR/2001/REC-xml-c14n-20010315”/>
<SignatureMethod Algorithm=”http://www.w3.org/2000/09/xmldsig#dsa-sha1”/>
<Reference>

<DigestMethod Algorithm=”http://www.w3.org/2000/09/xmldsig#sha1”/>
<DigestValue>iie89RrlwmQ6Q/JiOIWduLvoovQ=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>LD1MKic3GHah2CXKzBguBOIKMiCnJmu2jK+7/gXMmHLMBeQxTlUYzZJuHRGyBNc+LtSqdW

dMHrHia5kdbLofL0EcNXM4uVqd2OwzD1jy3nvel9fF/0+aM3p8ZHz8tfmdu1ToMXj9EoORuz84aB5
pXypNqbja2tQayO1aE6sH3qg=

</SignatureValue>
<Object>

<Privilege>update attr</Privilge>
<Subject>104</Subject>
<ProtObj>

<Region>3</Region>
<AtomicElements>

<AE>5</AE>
<AE>6</AE>

</AtomicElements>
</ProtObj>

</Object>
</Signature>

Figure 16: An XML authoring certificate

contains all the required components of the certificate, according to Definition 6.1.
The Author-X client side, called XML-reader, supports several functions for issuing queries and receiv-
ing query replies, and for the enforcement of the subject protocol presented in this paper. We discuss
the last function in more details, since it is more relevant for the discussion in the present paper, by
describing how the XML-reader generates the correct view of a received XML document using some
information stored in its repositories. As shown in Figure 14, the XML-reader manages three reposito-
ries: DocumentStore (DS), KeyStore (KS), and CertificateStore (CS). The first one records the XML
document views obtained as answer to a pull request, or during a server push dissemination of XML
documents, or in case of a collaborative and distributed update process. The second repository contains
all keys used to decrypt the portions of the XML documents for which the subject has the proper rights.
Each key has associated a document and a region identifier to identify which portions of a document
can be decrypted using that key. The third repository stores all authoring certificates received from the
server. To generate the correct view of an encrypted document de, received by the server or by another
subject, the XML-reader retrieves in KS the keys associated with de and using the region identifier
associated with each key decrypts all the atomic elements in de belonging to the corresponding region.
Finally, to generate a well-formed view of de, according to the structure of the original document, the
XML-reader uses the position information associated with each decrypted atomic element. In particu-
lar, that information is used to determine the correct place in the generated view, where to insert each
decrypted atomic element.

9 Complexity Analysis of the Proposed Approach

In this section we present a complexity/cost analysis for the most relevant operations executed by the
protocols on which our approach relies and we compare them with the equivalent operations executed
in a conventional centralized system. In particular we evaluate the following complexity/cost measures:

1. communication cost;

30

2. size of exchanged information;

3. number of certificates generated for a document d;

4. execution time of the integrity check protocol and distributed view generation/decryption vs
execution time of the centralized view generation/encryption and distributed decryption.

The complexity/cost is expressed in terms of several parameters that are reported in Table 7. Ac-
cording to the context such parameters will be interpreted as sets of elements or as the cardinalities
corresponding to these sets of elements.

Table 7: Parameters involved in the complexity/cost analysis

Parameter Semantics

P the set of policies that apply to a specified XML document d
AE(d) the set of atomic elements associated with d
R(d) the set of regions associated with d
CG the collaborative group
Pathd the path of document d
Ni number of interactions, that is, the number of sessions per document

opened by the subjects in a centralized approach (a subject can open
more than one non-simultaneous session per document)
or the number of subjects reached by the package in a distributed
and cooperative approach (a subject reached more than one time by
the same package is counted exactly as many times as it is reached)

Before evaluating the above-mentioned complexity/cost measures we believe that an explanation of
what a conventional centralized system means is required to better understand the comparison between
our distributed approach and a centralized one.
A conventional centralized system, that manages collaborative updates of an XML document, has to
generate the document view for each subject involved in the collaborative process, encrypt this view
with a session key (different for each subject involved) before sending the view to the proper subject
s, execute the access requests received by s and decrypt the updated portions attached to the access
requests (in case of update access requests). Note that access requests can be fully/partially executed
or also denied, according to the identity of the requester and to the access control policies in PB.
A centralized collaborative update process is realized as follows: the document server generates the
view for the first chosen subject s1 and a session key used to encrypt that view. Then, the system
sends this encrypted information to s1. s1 uses the attached simmetric key to decrypt the received
encrypted information and then sends some access requests to the system to update the view content.
The system evaluates each received access request and only when the access request is evaluated as
correct wrt the identity of s1 and the policies in PB, the system updates the document content and
sends s1 a positive response. A negative response is sent back otherwise. A subject can send more than
one access request to the system that individually evaluates them. Subject s1 at the end of its job,
chooses the next subject to be involved in the collaborative update process and sends the identifier of
that subject to the document server. The document server repeats the same steps followed for the first
receiver, and so on.

9.1 Communication cost

The communication cost is estimated in term of the number of messages exchanged among the server
and the various subjects. We estimate such cost for both a conventional centralized system and our
distributed approach. We are thus able to compare those two approaches.

31

1. In a conventional centralized system the number of messages sent by the document server and the
subjects is equal to two times the average number of access requests (ARavg) multiplied by the
number of interactions, that in this case corresponds to the number of sessions opened to issue
access control requests. The resulting communication cost is thus: 2N i·ARavg.

2. In our distributed approach the number of messages sent by the document server or by the subjects
involved in the collaborative update process, is as follows:

#sent-messages = (N i + 1) + 2(RR + PR) + 2PR(CG − 2) + 2SRM(RR, min{PR, (N i − 2)})

where:

(a) RR, with 0≤ RR ≤ (N i − 1), is the number of region recovery requests. The upper bound
for this parameter is (N i − 1), because the first subject receiving the package from the server
does not certainly need a recovery.

(b) PR, with 0≤ PR ≤ (N i − 1), is the number of path recovery requests. Also in this case the
upper bound for this parameter is (N i − 1), because the first subject receiving the package
from the server does not certainly need a path recovery.

(c) (N i + 1) is the number of messages, containing the package, needed to reach, one or more
times, all the interacting subjects and to return to the document server.

(d) 2(RR + PR) is the global number of recovery requests and answers

(e) 2PR(CG − 2) is the total number of path recovery requests and answers sent to/by the
subjects during a collaborative update process. Whenever a path recovery request reaches
the document server, the server sends all the subjects in the collaborative group, apart
the path recovery request sender and the subject from which that subject has received the
corrupted path, a request to obtain the last path they have received within the package.

(f) 2SRM(RR, min{PR, (N i − 2)}) is the number of sent recovery messages needed to manage
RR region recovery requests, given PR path recovery requests. In particular, we consider
the worst case in which both the region recovery requests and the path recovery requests
are respectively sent by the last RR and PR subjects in the path. Function SRM(x, y) is
defined as follows:

SRM(x, y) =
∑Ni−2

i=Ni−2−(x−1) min{i,Ni − 2 − y, CG}, y ≤ Ni − 2

Note that values for variable y must be less or equal than Ni − 2, because when the number
of path recovery requests is equal to Ni − 1 the recovery protocol does not send any region
recovery message, thus the behavior followed is the same of when y = Ni − 2. Moreover, for
each region recovery request the server sends a number of messages, to obtain the correct
version of one or more regions, equal to the number of subjects that precede the last one in
the Pathd,8 and however at most CG messages.

Proposition 9.1 (Communication cost). Let rr and pr be rational numbers such that rr = RR
Ni

and
pr = PR

Ni
. Our distributed approach has a lower communication cost than a conventional centralized

system when ARavg ≥ (1 + pr + rr + pr · CG + rr · CG). �

Proof: According to the analysis given above we have that in general the number of sent messages
in a conventional centralized system is equal to 2N i·ARavg , whereas in our distributed approach is
estimated as follows:

8Note that also in this case we consider the worst case in which all the considered subjects are distinct.

32

#sent-messages ≤ (N i + 1) + 2(RR + PR) + 2PR· CG + 2RR· CG
≤ (N i + 1) + 2(rr · N i + pr · N i) + 2pr·N i· CG + 2rr· N i· CG

< 2N i(1 + pr + rr + pr· CG + rr· CG)

It is now clear that when the hypothesis is true the number of sent messages in our distributed approach
is less than the number of sent messages required in a conventional centralized system. �

According to the above results it is clear that whether our approach is more efficient than a centralized
one depends on the frequency of recovery. Based on this observation we plan to extend our system with
an adaptive behaviour for recovery management. The adaptive behaviour will allow the system to use
a centralized or distributed protocol according to an estimated average number of access requests and
the regions/path recovery rates.

9.2 Size of exchanged information

Here we are interested in the amount of data exchanged in each step of a collaborative update process
in both a conventional centralized system and in our distributed approach. Tables 8 and 9 contains
data useful for such estimation in both the approaches. More precisely, in Table 8 we specify the size
of the building blocks that compose a package for the centralized approach, the distributed one, and
for an access request.

Table 8: Size of the building blocks of a package/acces request

Building Block Size Semantics

id S(id) size of a region/atomic element/subject identifier
hash S(hash) size of an hash value
digital signature S(digital signature) size of a digital signature
de S(de) size of the encrypted document
ar S(ar) size of the access request declaration

given in terms of atomic elements to be updated
ac S(ac) size of an authoring certificate
upae S(upae) size of the updated portion (up), sent

to replace the old portions of an atomic element (ae),
with old size S(ae), contained in the document.

By contrast, in Table 9 we show the size of three basic package structures that compose a package for
the distributed approach: a modifiable atomic element, a modifiable region, and a path specification, in
terms of the size of their building blocks.

1. In a conventional centralized system the worst case occurs when the view to be generated for
the next receiver is equal to the whole XML document d. Indeed the system has to generate
a simmetric session key and encrypt the whole XML document before sending it to the next
receiver.9 The system also computes a signature over the generated view and then attaches this
signature to the view itself, forming a package to be sent to the designated receiver. Moreover,
during a step of a centralized collaborative update process a subject s in the worst case, that is
when a different access control policy applies to each atomic element and all these policies apply
to s, sends a number of access requests, and corresponding updated portions, equal to AE(d),
the number of atomic elements that compose d. We can estimate the amount of data exchanged

9Here we do not consider the generation and distribution of the corresponding authoring certificates, that will be
treated in Section 9.3

33

Table 9: Size of the basic package structures

Structure Size Component Semantics

modifiable atomic element S(modifiable atomic element) 4S(id) size of the atomic element
and three position identifiers

S(hash) size of the component h ae
S(digital signature) size of the component full

modifiable region S(modifiable region) 5S(id) size of one region,
two subjects,
cycle pathlast−1

cycle pathlast identifiers
4S(hash) size of the components

prev r h, prev r dig h,
last r h and last r dig h

4S(digital signature) size of the digital signatures
stored in the components
h c slast−1 dig-sig, h servlast−1

h c slast dig-sig and h servlast

2S(ac) size of the components certificates
each containing one certificate

path specification S(path specification) 3S(id) size of components s id c, prog
and s id next

S(digital signature) size of the component hcontrol

between the centralized system and a subject during a step of the centralized collaborative update
process as follows.

Proposition 9.2 (Size of exchanged information for the centralized approach). Let d
be an XML document, CPd be the generated corresponding package for the centralized approach,
S(CPd) be the size of CPd, and S(AR) be the size of AR, where AR is the set of access requests
sent by a subject s during a step of a centralized collaborative update process. In the worst case:
S(CPd) + S(AR) ≤ c·AE(d), c ∈ �. �

Proof: The size of a package for the centralized approach and the size of the set of access requests
sent by a subject during a step of a centralized collaborative update process are as follows:

1) S(CPd) = S(de) + S(digital signature).
2) S(AR) = AE(d)·S(ar) +

∑
ae∈AE(d) S(upae)

By considering that: a) ∃ ĉ ∈ �: S(de) ≤ ĉ·AE(d), because the size of the encrypted document
is linear in the number of atomic elements that compose the original document; b) S(digital sig-
nature), S(ar) are constant values; c) ∃ c̃ ∈ � ∀ ae ∈ AE(d): S(upae) ≤ c̃·S(ae); and d) ∃ c̄ ∈ �:∑

ae∈AE(d) S(ae) ≤ c̄AE(d), it is clear that exists a natural number c such that:
S(CPd) + S(AR)
≤ AE(d)·[ĉ + S(ar)] + c̃

∑
ae∈AE(d) S(ae) + S(digital signature)

≤ AE(d)·[ĉ + S(ar) + c̃·c̄] + S(digital signature)
≤ c·AE(d). �

2. In our distributed approach the worst case occurs when the following conditions hold: 1) the
number of regions associated with d, R(d), is equal to the number of atomic elements of d, AE(d);
2) all the regions are modifiable ones; and 3) the current subject updates all the atomic elements.
The size of the information exchanged during a step of a distributed collaborative update process

34

is equal to the size of the package sent by the current subject to the next chosen receiver. The
size of such a package is defined as follows.

Proposition 9.3 (Size of a package for the distributed approach). Let d be an XML
document, DPd be the generated corresponding package for the distributed approach, and S(DPd)
be the size of DPd. In the worst case: S(DPd) ≤ c·AE(d), c ∈ � . �

Proof: The size of a package for the distributed approach is as follows:
S(DPd) = S(de) + 2S(digital signature) + S(id) + R(d)· S(modifiable region) + AE(d)· S(modifiable
atomic element) + Pathd· S(path specification) = S(de) + S(id)· [5R(d) + 4AE(d) + 3Pathd + 1]
+ S(digital signature)· [4R(d) + AE(d) + Pathd + 2] + S(hash)· [4R(d) + AE(d)] + 2S(ac)·R(d).
By considering that: a) ∃ ĉ ∈ �: S(de) ≤ ĉ·AE(d), because the size of the encrypted document is
linear in the number of atomic elements that compose the original document; b) S(id), S(digital
signature), S(hash) and S(ac) are constant values; c) the assumption that R(d) in the worst case
has the same cardinality of AE(d); d) the fact that a package contains: 2 digital signatures (one
computed over the entire package, and another over the HNMI control information), and one
identifier (component cycle path); and e) cardinality of Pathd 	 AE(d); it is clear that exists a
natural number c such that S(DPd) ≤ c ·AE(d). �

According to the above results, it is clear that the size of exchanged information in both approaches
linearly grows wrt the number of atomic elements that compose the original document, thus our dis-
tributed approach can offer a bandwidth cost similar to the one for the centralized approach. The
major benefit of our approach wrt the centralized one remains the reduced number of messages sent
during the collaborative update process, thus the communication cost is still the effective parameter of
choice between the distributed approach and the centralized one.

9.3 Number of certificates generated for a document d

The worst case occurs when the graph representation of the document d is a list of nodes and all the
policies that apply to this document contain the delete elemt privilege with propagation option equal
to CASCADE. In particular, the policies apply to the document as follows: the first policy applies
to the root of the document, the second policy applies to the child (second node in the list) of the
document and so forth. According to this scenario the number of certificates that must be generated is
equal to [

∑P−1
i=0 Si+1 · (AE(d) − i)], where Sj is the set of subjects satisfying the jth policy (1≤j≤P).

The number of certificates is always less than or equal to max{Sj | 1≤j≤P} · P · (AE(d) − P−1
2). In

the worst case P is equal to AE(d) and thus the number of certificates has an upper bound equal to
max{Sj | 1≤j≤P} · AE(d)2

2 .
Only the distributed approach presents this cost associated with the generation and dissemination of the
certificates. Moreover, the possible update and/or revocation of subject credentials and access control
policies add a further cost due to the generation of new certificates and the revocation of those ones no
more valid. Since our distributed approach postpones these events at the end of a collaborative update
process, this last cost can be managed off-line without weighing on the process itself. According to the
result above to make our approach better than the centralized one we propose an adaptive system that
evaluates the number of certificates to be generated before starting a collaborative process to choose
the best strategy of generation and dissemination of certificates among those presented in Section 6.1.

35

9.4 Execution time of the integrity check protocol and distributed view genera-
tion/decryption vs execution time of the centralized view generation/encryption
and distributed decryption

In this section we analyze and then we compare the time cost required to enable the next receiver to view
document portions for which it possesses a privilege, and to modify the document content according to
its modification rights stated in the policies belonging to the PB. In a conventional centralized system
this time is spent by the centralized system to generate and encrypt the receiver document view and
by the receiver to decrypt such a view, whereas in our distributed approach this time concerning the
execution of the integrity check protocol, and the generation/decryption of the receiver view.

1. In a conventional centralized system the worst case occurs when a different access control policy
applies to each atomic element of the document and also all these policies apply to the next
receiver, implying that the view to be generated and encrypted by the centralized system and
decrypted by the receiver consists of the whole document. The time required to accomplish the
task of generating and encrypting the next receiver document view by the centralized system and
to decrypt that view by the receiver can be evaluated as follows.

Proposition 9.4 (Centralized view generation/encryption and distributed view de-
cryption time) . Let d be an XML document, P be the set of access control policies that apply
to d, nr be the next receiver, and T(view) be the time required by the centralized system to
generate and encrypt the nr’s document view and by nr to decrypt that view. In the worst case:
∃ c ∈ �: T(view) ≤ c·[AE(d)]2. �

Proof: The time required to generate the receiver document view, takes also into account the
time required for parsing the document and searching policies that apply to each parsed element.
Thus in the above-mentioned worst case: a) the number of policies that apply to the document
is equal to AE(d); b) the process used to find out the policy p that applies to a particular atomic
element ae, implies a sequential search in the set P that stops when p is found; and c) the en-
cryption/decryption phases have a cost in time, respectively denoted as T(view enc) and T(view
dec), that is proportional to the size of the document, that is ∃ c̄ ∈ � : T(view enc) ≤ c̄·AE(d)
and ∃ c̃ ∈ � : T(view dec) ≤ c̃·AE(d); it is clear that there exists a natural number c such that:
T(view) =

∑AE(d)
i=1 i + T(view enc) + T(view dec) ≤ AE(d)·[AE(d)+1]

2 + AE(d)[c̄ + c̃] ≤ c·[AE(d)]2 �

2. In our distributed approach the worst case occurs when: the number of regions R(d) is equal to
the number of the atomic elements AE(d) that compose the document d; and there is at least
a policy with privilege update attr that applies to each region. This is the case in which the
protocol requires the highest number of operations to perform the region integrity check and the
number of regions that requires such a set of operations is maximum. Moreover the receiver view
to be generated and decrypted consists of the whole document. In this case the integrity check
of an updatable region r requires the following steps:

(a) Integrity check of the information inserted by the last but one subject (slast−1) in the region r,
that requires the local computation of an hash value and the decryption of a digital signature
(component h c slast−1 dig-sig).

(b) Integrity check of the components h ae associated with the atomic elements belonging to r,
that requires the local computation of an hash value and its comparison with the component
prev r dig h.

36

(c) Local computation of an hash value, one for each atomic element belonging to r, over the
encrypted content of an atomic element.

(d) Integrity check of the information inserted by the last subject (slast) in the region r, that
requires the local computation of an hash value and the decryption of a digital signature
(component h c slast dig-sig).

(e) Check that the value contained in component last r dig h is equal to the hash value locally
computed over the hash values computed over the atomic elements belonging to r.

(f) Check that the value contained in component last r h is equal to the hash value locally
computed over the atomic elements belonging to r.

(g) Integrity check of the certificate inserted in the component certificates by the last subject
(slast), that requires the local computation of an hash value and the decryption of a digital
signature, only if the region contains an atomic element that is an attribute, since only in
this case a certificate is inserted and a correct update over that attribute can be performed
by the last subject.

Table 10 shows the time required to perform some basic operations, whereas Table 11 shows the
time required to perform the integrity check protocol operations.

Table 10: Time required to perform the basic integrity check protocol operations

Basic operation Time Semantics

hash T(hash) time required to compute an hash value
digital signature T(digital signature) time required to decrypt a digital signature using

the corresponding public key

Table 11: Time required to perform the integrity check protocol operations

Operation Time Notation Time expression

package signature check T(package signature check) T(hash) + T(digital signature)
HNMI check T(HNMI check) T(hash) + T(digital signature)
Pathd check T(Pathd check) Pathd · [T(hash) + T(digital signature)]
step a T(step a) T(hash) + T(digital signature)
step b T(step b) T(hash)
step c T(step c) T(hash)
step d T(step d) T(hash) + T(digital signature)
step e T(step e) T(hash)
step f T(step f) T(hash)
step g T(step g) T(hash) + T(digital signature)

Furthermore given the set of regions accessible by the receiver, denoted as AccReg, the view
generation process requires a sequential research in the package to find out each accessible region
and their atomic elements.

Proposition 9.5 (Integrity check protocol and distributed view generation/decrption
time). Let d be an XML document, Pd be the corresponding document package, nr be the next
receiver, and T(view) be the time spent to check the package integrity and to generate/decrypt
the nr’s document view. In the worst case: ∃ c ∈ �: T(view) ≤ c·[AE(d)]2. �

37

Proof: The time required to execute the integrity check protocol applied to Pd, denoted as T(Pd),
can be estimated as follows:
T(Pd) = T(package signature check) + T(HNMI check) + T(Pathd check) + R(d) · [T(step a) +
T(step b) + T(step c) + T(step d) + T(step e) + T(step f) + T(step g)] = T(hash)·[2 + Pathd

+ 7R(d)] + T(digital signature)·[2 + Pathd + 3R(d)]. Since in the worst case: a) the number of
regions R(d) is considered equal to the number of the atomic elements AE(d), b) T(hash) and
T(digital signature) can be considered as constants, c) cardinality of Pathd 	 AE(d), d) the
decryption time, denoted as T(view dec), is proportional to the document size, that is ∃ c̄ ∈ �:
T(view dec) ≤ c̄·AE(d), e) cardinality of AccReg is equal to AE(d), it is clear that exists a natural
number c such that:
T(view) = T(Pd) +

∑AE(d)
i=1 i + T(view dec) ≤ c·[AE(d)]2 �

The above results shows that both approaches require a similar time cost to enable a receiver to have
access to its document view. The communication and generation/dissemination costs are the parameters
according to which it is possible to choose the best approach.

10 Parallel Document Updates

In our current approach we assume that each subject can send the package to only one subsequent
subject; therefore we disallow parallel updates to the same document. Relaxing such an assumption,
and thus supporting parallel updates to documents would be however an important improvement to our
protocol. Here we briefly discuss two alternative approaches referred to as restricted parallel update and
fully parallel update. These approaches differ in that the first only allows parallel updates on disjoint
portions of the same document, whereas the second does not impose such a restriction.
The first approach can be supported by inserting some additional information in the Pathd structure
in order to manage the case in which a subject receives more than one package containing the same
document. In particular such information, specified by the subject that sends the same package to a
set of subjects, should contain for each next receiver the set of regions that could be modified by that
receiver and all the subsequent receivers belonging to that new parallel path. A partition of the set
R(d) of all document regions is therefore generated and a first receiver is associated with each subset
of R(d) belonging to the generated partition. Moreover, all the chosen first receivers must be distinct.
Whenever a subject receives more than one package, it merges all the documents obtaining a new
document containing the regions modified by the subjects of the first parallel path, those modified by
the subjects of the second parallel path and so forth. The structure Pathd will thus contain all the
parallel paths belonging to merged packages. In this scenario each time the information cycle path is
updated by the server the structure Pathd is not re-initialized and the portion of it that must be checked
to detect a new cycle will be that following the server identifier inserted by the server itself in the Pathd

structure during the recovery procedure. Obviously, this check will have to be performed over all the
parallel paths stored into Pathd structure. It is also necessary to store in the merged package all the
values of the component cycle path contained in the received packages.
The second approach can be supported by storing in the package all the versions concerning the same
region, that is, by keeping track of all modifications occurred to a region by giving to a set of pre-defined
subjects the possibility of selecting that one that they consider the ”best version”. The other subjects
can only add their updates to the region generating a new additional version of it. Whenever a subject
receives more than one package it merges them by collecting from the received packages all the stored
versions grouped by region.

38

11 Concluding Remarks

In this paper, we have proposed an approach for secure and selective document updates in a distributed
environment. In particular, we have specified all protocols required by our approach and we have
provided complexity results for the proposed approach.
We plan to extend this work in several directions. A first direction concerns the extension of our ap-
proach to peer-to-peer architectures. A second direction concerns the extension of our protocols to relax
the assumptions introduced in Section 4.2. To reach this goal the idea is that of recording the modifica-
tion history of a document. According to this strategy, all the modifications executed by the subjects on
a document are stored in the associated package and broadcasted to other subjects in the collaborative
group. In this way other subjects are able to know which subjects have received that document and
which privileges they have exercised on it. This approach however requires sending a higher number of
messages and introducing additional control information in the package. We thus plan to offer as part
of our system a suite of distributed collaborative update protocols and letting the subjects choosing the
protocol to be used for a specific document, according to the trade-off they want to make between secu-
rity and efficiency. A third direction deals with introducing authorizations related to the modification
of document flow paths. This feature is relevant in particular in decentralized workflow management
systems where decisions about routing and re-routing of documents must be taken during the workflow
execution. In this respect, it is important to state authorizations specifying which subjects can modify
the document flow path and under which circumstances. A fourth direction deals with revocation and
updates of keys and certificates. More precisely whenever credentials associated with subjects or access
control policies in PB are deleted or updated a change in the document marking and in the set of rights
possessed by a subject occurs. The obvious consequence is the update of the keys used to encrypt the
document portions associated with a changed marking and the re-encryption of those portions using
new keys. By contrast the change in the set of rights possessed by a subject cause the revocation of
the certificates that granted the rights no more available, inserting them in a Revocation List accessible
by every subject involved in collaborative update processes, and the generation/dissemination of new
certificates enabling that subject to exercise the new obtained rights.

A Correctness of the Subject Protocol

In this section we present correctness results for the subject protocol. The main property that this
protocol assures is that a subject is not able to exercise an authoring privilege for which it does not
possess the proper authorization. In particular, we show that the protocol can detect whether the
document content or the control data structures have been tampered. In what follows we focus on
some tampering cases, and we show how the protocol detects those incorrect modifications. Tampering
cases on which we focus are the following:

1. modification of non-modifiable information;

2. modification of the document content associated with a non-modifiable region;

3. modifiable region tampering:

(a) use of an authoring privilege for which a subject does not possess the proper authorization;

(b) removal of the control information associated with a modifiable region;

(c) substitution of a modifiable region content and the corresponding control information with
those of a previous version;

39

1) Modification of non-modifiable information.
This type of tampering cannot arise because a modification to non-modifiable information implies a
corresponding modification of the HNMI hash value, that can be modified only by the Ds, since this
hash value is signed with the Ds private key.
2) Modification of the document content associated with a non-modifiable region.
In this case a modification of the content of a non-modifiable region r id implies a corresponding modi-
fication of the Hr id hash value stored in the tuple of the NMRd control data structure associated with
that region. A modification to a Hr id hash value implies a corresponding modification of the HNMI

hash value. Based on the same reasonsing we have used in item 1, we can conclude that this type of
tampering cannot arise.
3.a) Use of an authoring privilege for which a subject does not possess the proper autho-
rization.
In this case a subject illegally modifies the content of a modifiable region r id without inserting at least
one authoring certificate in the component certificates associated with r id or inserting in this compo-
nent one or more proper and improper authoring certificates or only improper authoring certificates.
In the former type of tampering the protocol detects the illegal modification to the content of that
region, because at least one of the two hash values stored in components last r h and prev r h does not
match the one locally computed over the content of r id. This is due to the fact that the malicious
subject cannot modify both these control hash values according to the new illegal content of the region,
because they are signed by two different subjects as required by the protocol.
In the latter type of tampering the protocol detects the illegal modification of the content of that region,
because at least one of the following checks raises an error. First of all the protocol checks the integrity
of the inserted certificates to detect a possible modification of their contents. Then, the protocol checks:
1) whether the subject specified in the authoring certificates matches the one declared in component
slast, to detect the case in which a subject uses an authoring certificate of another subject to validate
its modification; 2) whether the region specified in the authoring certificates matches r id; 3) whether
the atomic elements not yet deleted and not declared as modified have kept their previous content and
that the other ones declared as modified have been modified according to the privileges contained in
the inserted certificates;
3.b) Removal of the control information associated with a modifiable region.
This tampering cannot arise because a modification of a modifiable region identifier implies a corre-
sponding modification of the HNMI hash value, that cannot be modified by a subject, as stated in item
1 above. Therefore it is not possible for the subject to delete a whole tuple in MRd. Moreover also
assuming that the region content in de is empty, there must still be two hash values, i.e. last r h and
prev r h, signed by two different subjects, which state that the region was correctly deleted.
3.c) Substitution of a modifiable region content and the corresponding control information
with those of a previous version.
In this case a malicious subject s inserts in de and in MRd of its current package version the content
associated with the atomic elements belonging to a modifiable region r id and the corresponding values
for the components associated with r id in MRd, all stored in a previous version of the package. Since,
according to the assumptions given in Section 7.1.2, the value of cycle path and of all involved control
data structures are updated whenever a subject finds in the structure Pathd its next chosen receiver, s
cannot perform such a substitution, because the control information belonging to a previous version of
a package, stored in the local repository of s, was necessarily generated on a value of cycle path that is
different by the current one stored in the current package received by s and moreover the current value
of cycle path is not modifiable, as stated in item 1 above.
A type of illegal substitution is however possible, if the following conditions are all satisfied:

1. s keeps a version of the package (pvp) that precedes the current one (cvp) that s receives;

40

2. among the subjects that received the package after s only one of them (sbj) modified a modifiable
region r id, exercising only the update attr privilege over some its atomic elements;

3. the modifiable region r id results not yet confirmed in cvp.

According to the previous conditions s is able to copy in cvp the portion of pvp associated with the
atomic elements belonging to r id, delete the information inserted by sbj in the tuple associated with
r id in MRd of cvp and confirm the new content of r id. At this point the region has a previous content
and the successor subjects are not able to detect this illegal substitution.
We are however developing an approach able to address this last case, at the price however of an
increased communication and storage complexity. We have outlined such an approach in the concluding
section.

References

[1] E. Bertino, S. Castano, E. Ferrari. On Specifying Security Policies for Web Documents with an XML-based
Language. Proc. of SACMAT’2001, ACM Symposium on Access Control Models and Technologies, Fairfax,
VA, May 2001.

[2] E. Bertino, S. Castano, E. Ferrari. Author-X : a Comprehensive System for Securing XML Documents,
IEEE Internet Computing, 5(3):21–31, May/June 2001.

[3] E. Bertino, and E. Ferrari. Secure and Selective Dissemination of XML Documents. ACM Transactions on
Information and Systems Security, 5(3): 290-331 (2002).

[4] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Securing XML Documents. In
Proc. 6th International Conference on Extending Database Technology, Konstanz, Germany, March 2000,
pages 121-135.

[5] The Excelon Home Page. http://www.exceloncorp.com

[6] eXtensible Access Control Markup Language TC. XACML 1.0 Specification Set (18 Feb. 2003):
OASIS Standard. Available at:
http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml

[7] E. Fernandez, E. Gudes, and H. Song. A Model for Evaluation and Administration of Security in Object-
Oriented Databases. IEEE Transactions on Knowledge and Data Engineering, 6:275–292, April 1994.

[8] C. Geuer Pollmann. The XML Security Page. http://www.nue.et-inf.uni-siegen.de/g̃euer-
pollmann/xml security.html

[9] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A Model of Authorization for Next-Generation Database
Systems. ACM Trans. on Database Systems, 16(1):88–131, March 1991.

[10] R. Sandhu et al. Role-based Access Control Models. IEEE Computer, pages 38-47, 1996.

[11] P. Samarati, E. Bertino, and S. Jajodia. An Authorization Model for a Distributed Hypertext System. IEEE
Transactions on Knowledge and Data Engineering, 8(4):555–562, 1996.

[12] Security Assertion Markup Language, SAML v1.1 Standard Specification set (2 September 2003):
OASIS Standard. Available at:
http://www.oasis-open.org/committees/tc home.php?wg abbrev=security

[13] D. Srivastava. Directories: Managing Data for Networked Applications. Tutorial presented at the 16th IEEE
International Conference on Database Engineering (ICDE’00), San Diego (CA), March 2000.

[14] SSL Protocol (Secure Socket Layer) Available at:
http://developer.netscape.com/docs/manuals/security/sslin/.

[15] B.Thuraisingham, A. Gupta, E.Bertino, E.Ferrari. Collaborative Commerce and Knowledge Management
Across Borders, Knowledge and Process Management, Vol.9, No. 1, pp. 43-53, January 2002.

41

[16] World Wide Web Consortium. Extensible Markup Language (XML) 1.0, (Third Edition) 2004. Available
at http://www.w3.org/TR/2004/REC-xml-20040204

[17] World Wide Web Consortium. XML Encryption Syntax and Processing, 2002. Available at:
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/.

[18] World Wide Web Consortium. XML Path Language (Xpath), 1.0, 1999. Available at:
http://www.w3.org/TR/1999/REC-xpath-19991116

[19] World Wide Web Consortium. XML Signature Syntax and Processing, 2002. Available at:
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

42

