CERIAS Tech Report 2004-12

DETECTION OF SETS OF EPISODES IN EVENT SEQUENCES:
ALGORITHMS, ANALYSIS AND EXPERIMENTS

by Robert Gwadera, Mikhail Atallah, Wojciech Szpankowski
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086

Detection of Sets of Episodes in Event Sequences:
Algorithms, Analysis and Experiments

*
Mikhail Atallah
Department of Computer
Sciences
Purdue University
West Lafayette, Indiana

mja@cs.purdue.edu

ABSTRACT

In our previous paper [12] the problem of the reliable detec-
tion of an “abnormal” episode was investigated, where by
episode we mean a particular ordered sequence occurring as
a subsequence of a large event stream within o window of
size w. Here we extend this work to the more difficult case
of many pattern sequences, including the important special
case of all permutations of the same sequence, which models
the situation where the order of events in an episode does
not matter, e.g., when it is unimportant whether buying
suspicious item X occurs before or after buying suspicious
item Y. The difficulties of carrying out a probabilistic anal-
ysis for an arbitrary set of patterns, stem from the possible
overlap of the respective windows within which the patterns
occur as subsequences, the fact that the different patterns
typically do have common symbols or common subsequences
or possibly common prefixes, and that they may have dif-
ferent lengths. We also report of extensive experimental
results, carried out on the Wal-Mart transactions database,
that 1show a remarkable agreement with our theoretical anal-
ysis ~.

Categories and Subject Descriptors

*Portions of this work were supported by Grants EIA-
9903545, I1IS-0325345, I1S-0219560, 1IS-0312357, and IIS-
0242421 from the National Science Foundation, Contract
N00014-02-1-0364 from the Office of Naval Research, by
sponsors of the Center for Education and Research in Infor-
mation Assurance and Security, and by Purdue Discovery
Park’s e-enterprise Center.

JrThe work of this author was supported by the NSF Grant
CCR-0208709

The work of this author was supported by the NSF Grant
CCR-0208709 and NIH R01 GM068959-01.

L A full version of this paper is available as http://www.cs.
purdue.edu/homes/spa/papers/

Robert Gwadera f
Department of Computer
Sciences
Purdue University
West Lafayette, Indiana

gwadera@cs.purdue.edu

Wojciech Szpankowski !
Department of Computer
Sciences
Purdue University
West Lafayette, Indiana

spa@cs.purdue.edu

H.2.8 [Information Systems|: Database Applications—
Data mining

General Terms
Algorithms

1. INTRODUCTION

Detecting subsequence patterns in event sequences is im-
portant in many applications, including intrusion detection,
monitoring for suspicious activities, and molecular biology
(e.g., see [1, 7, 11, 14]). Whether an observed pattern of ac-
tivity is significant or not (i.e., whether it should be a cause
for alarm) depends on how likely it is to occur fortuitously.
A long enough sequence of observed events will almost cer-
tainly contain any subsequence, and setting thresholds for
alarm is an important issue in a monitoring system that
seeks to avoid false alarms.

The basic question is then: when is a certain number of
occurrences of a particular subsequence unlikely to be gener-
ated by randomness (i.e., indicative of suspicious activity)?
A quantitative analysis of this question helps one to set a
threshold so that real “intrusions” are detected and false
alarms are avoided. Setting the threshold too low will lead
to too many false alarms, whereas setting the threshold too
high can result in failure to detect. By knowing the most
likely number of occurrences and the probability of deviat-
ing from it, we can set a threshold such that the probability
of missing real suspicious activities is small. Such a quanti-
tative analysis can also help to choose the size of the sliding
window of observation. Finally even in a court case one
cannot consider certain observed “bad” activity as a con-
vincing evidence against somebody if that activity is quite
likely to occur under given circumstances. Therefore it is
very important to quantify such probabilities and present a
universal and reliable framework for analyzing a variety of
event sources.

Let T be an ordered sequence of events (time-ordered events
in a computer system, transactions in a database, purchases
made, web sites visited, phone calls made, or combinations
of these). Systems designed to detect “bad things” in T
usually do not look at the whole of T, they usually involve
a sliding “window of observation” (of size, say, w) within
which the analysis is confined. This is done for two reasons:

(i) T is usually too long, and without a limited window
approach it would involve having to save too much state,
and (ii) T’ can be so long (e.g., in a continuously monitoring
system) that any subsequence (bad or good) would likely
occur within it. As an example of the need to confine the
analysis to such a limited sliding window, note that three
failed login attempts (with failure due to wrong password)
are significant if they occur in rapid succession, but quite
innocuous if they occur within a one-month interval. In this
study we do not use the notion of real calendar time such as
a “one month interval”, instead we use the number of events
as a proxy for time. This is why our interval length w is not
the difference between two time stamps, but rather the size
of a (contiguous) substring of T'.

In [6] Mannila et al. introduced the problem of finding fre-
quent episodes in event sequences, subject to observation-
window constraint, where an episode was defined as a par-
tially ordered collection of events, that can be represented
as a directed acyclic graph. In our paper [12] the problem
of the reliable detection of an “abnormal” episode was in-
vestigated, where by episode we mean a particular sequence
occurring as an ordered subsequence of a large event stream
within a window of a given fized size. This kind of occur-
rence is called a “serial episode” in the terminology of [6],
and we henceforth adopt this terminology. The event stream
was modeled as a memoryless source, the episode under con-
sideration was fixed, and had a length m that was substan-
tially smaller than the number of events n in the stream.
The assumption that the window of observation has a fixed
size w, m < w < n, is motivated by the fact that most prac-
tical event-monitoring systems have a “timeout” mechanism
where ancient events drop out of consideration, effectively
defining a window of observation. The memoryless assump-
tion turned out to not limit the practical usefulness of the
theory, as tested in [12] on sample data for which the memo-
ryless assumption was clearly violated (it was speculated in
[12] that this happy situation may have occurred because the
deviations from the model tended to cancel each other out,
as happens so often when, e.g., analysis carried out under
the assumption of independence end up being quite accurate
even when independence does not hold). The framework can
readily be extended to other models, such as the Markov
model of any order, however at a substantial practical cost
in terms of computational and space complexities.

Our paper [12] laid out foundations, but did not consider
the case of detecting more than one episode, i.e., when k
sequences are being monitored for simultaneously in the ob-
served event stream (k > 1). This paper builds on [12] by
extending it to the case of many pattern sequences, including
the important special case of all permutations of the same se-
quence.This kind of occurrence is called a “parallel episode”
in the terminology of [6], and we henceforth adopt this ter-
minology. This case models a situation where the order of
events does not matter, e.g., when it is unimportant whether
buying suspicious item X occurs before or after buying sus-
picious item Y. To appreciate the difficulty of this exten-
sion, consider the much-simplified case when there are only
two pattern sequences and no symbol is common to both of
them: Even in this case, a considerable source of difficulty
for the probabilistic analysis is the possible overlap of the
respective windows within which the patterns occur as sub-

sequences. Add to this the fact that the different patterns
typically do have common symbols or common subsequences
or possibly common prefixes, that they may have different
lengths, and the problem becomes fraught with nasty in-
teractions that prevent any straightforward solution to the
k > 1 case from consisting of a simple combination or iter-
ation of the techniques developed in [12] for the case k = 1
(although without the techniques of [12] we could not have
carried out the present analysis of the case k > 1). Thus,
this paper provides a probabilistic analysis for the following
cases: (i) a parallel episode; (ii) an arbitrary set of serial
episodes. We can also distinguish a hybrid case where the
patterns are obtained from one particular sequence by ig-
noring the ordering for specific positions in that sequence,
i.e., they are partial, restricted permutations of the basic
sequence, as opposed to fully permuting the whole sequence
in case (i). This case can be easily reduced to case (ii).

More formally, consider an alphabet A of cardinality |A|,
an infinite event sequence T = tit2,... over A and a set
of episodes S over A in one of the following forms: ei-
ther a set of all distinct permutations of an episode S =
S[1]S72], ... S[m] of length m (parallel episode) or an arbi-
trary set of episodes S = {S1,S52,...,S|s} where every S;
is a serial episode for 1 < ¢ < |S|. The first case captures
situations where the ordering of the events within the win-
dow of observation does not matter, e.g., for the two events
“bought an unusual amount of fertilizer” and “bought an
assault rifle” it may not matter which one occurred first.
We use a positive integer w > m to represent the length of
the window of observation. We assume that S is given while
the event sequence is generated by a memoryless (Bernoulli)
or Markov source, however in this paper we focus on memo-
ryless sources. OQur interest is in finding Q7 (n, w) that rep-
resents the number of windows containing at least one oc-
currence of any element in S when sliding the window along
n consecutive events of T. Based on the observed value of
Q3 (n, w) our task is to decide whether a suspicious activity
took place or not.

The main thrust of our approach is based on the observa-
tion that when searching for unusual patterns (e.g., overrep-
resented or underrepresented patterns) we must assure, in
order to avoid too many false positives, that such patterns
are not generated by randomness itself. Therefore, as the
first step we study the probabilistic behavior of Q7 (n,w).
We compute the expected value of Q3 (n,w), its variance,
and then show that appropriately normalized Q7 (n, w) con-
verges in distribution to the standard normal distribution.
This allows us to set an upper thresholds 7, (w) (for over-
represented patterns). More precisely, for a given level 3,

we have P (W > Tu(w)) < B. That is, if one ob-

serves more than 7, (w) occurrences of windows with suspi-
cious subsequences, it is highly unlikely that such a number
is generated by randomness (i.e., its probability is smaller
than (). We also show how to select the window size w so
that suspicious subsequences do not occur almost surely in
a window. This is necessary to reliably set up the thresh-
old. In [6] Mannila defined the frequency fr(a,s,win) of
an episode « as the fraction of windows of length win in
which the episode occurs in an event sequence s. Given a
frequency threshold min_fr, [6] considered an episode to

be frequent if fr(a,s,win) > min_fr. In the that frame-
work of [6], our problem can be stated as follows. Given
an episode «, what window size win and what frequency
threshold min_fr should we choose to ensure that the dis-
covered frequent episodes are meaningful? Observe that for
an appropriately low frequency min_fr and large window
size win the episode will certainly occur in random data.

We applied our theoretical results by running an extensive
series of experiments on real data. We used a part of Wal-
Mart sales data for the years 1999 and 2000. We first show
that our formulas for the probability closely approximate
the experimental data. Then we insert randomly some se-
quences, defined as “suspicious”, and detect them through
our threshold mechanism Figure 12. For the purpose of ex-
periments we implemented algorithms for detecting sets of
episodes including the unordered case. For the case of de-
tecting ordered episodes we used a variant of the algorithm
developed in [6] where algorithms for recognizing both se-
rial and parallel episodes in event sequences, subject to the
observation-window constraint, were introduced. Further
discussion on algorithms for detecting serial episodes can
be found in [2, 4, 5, 8]. For detecting a parallel episode
we present an alternative, new on-line O(nlogm) detection
algorithm, that we used in experiments.

The problem of episode matching can be rephrased in terms
of pattern matching as the subsequence pattern matching or
hidden pattern matching [9]. In particular we consider the
windowed subsequence pattern matching where by an occur-

rence we mean a string of the following form s1g15292, ... gm—15m

where g1 ...gm—1 € A" such that the total length of
81915292 - - - gm—15m 1s at most w. Kumar and Spafford
[7] applied subsequence pattern matching to intrusion de-
tection. Flajolet et al. [9] presented a precise statistical
analysis of the subsequence problem. In [8] Boasson et al.
introduced the Window-Accumulated Subsequence Matching
Problem (WASP) as finding the number of size w windows
of text ¢t of length n which contain pattern p = pi...px
of length £ < w as a subsequence, where ¢ and p are from
an alphabet A. Pattern matching problems are extensively
discussed in [10, 13, 14].

Our current work builds on the presented research and pro-
vides the first probabilistic analysis that quantifies Q3 (n, w)
for an arbitrary set of episodes. The paper is organized as
follows. In section 2 we present our main results contain-
ing theoretical foundation. Section 3 contains experimental
results demonstrating applicability of the derived formulas.
Proofs were omitted for space limitation and are included in
the full version of the paper.

2. MAINRESULTS

Given an alphabet A = {a1,a2,...,a|4/} and a set of pat-
terns S = {Sl, 52, e S‘S|} where Sl = Sl[l]Slp] e Sl[ml]
and S;[j] € A for 1 < i < |S|, we are interested in occur-
rences of members of S as a subsequence within a window
of size w in another sequence known as the event sequence
T = T[1]T[2].... A valid occurrence of a single episode
S; in T corresponds to a set of integers ki, k2, ..., kmn, for
1 <4 < |S| such that the following conditions hold:

1. 1§k1<k2<...<kmi;

2. T[kl] = Si[].], T[kz] = Si[Z], . ,T[kmi] = Sl[ml],

3. i, — i1 < w.

The first two conditions above state that S; is a subsequence
of T', while the last condition guarantees that S; is a subse-
quence of T within a window of length w. In various applica-
tions, it is of interest to estimate the number of windows of
length w containing at least one occurrence of either mem-
ber of S when sliding the window along n consecutive events
in the event sequence T. We use Q7 (n,w,S,.A) to denote
this number, that can range from 0 to n.

Notation: Throughout the paper, because S and A are al-
ways implied, we simplify our notation by dropping S and A
from the notation Q7 (n,w, S, A) and denoting it as Q7 (n, w)
instead (S and A are understood). We use the same nota-
tional simplification for all other variables that depend on
S and A. We also occasionally use index m; — k to mean
“dropping the last k symbols of S;”, e.g., P?(w, m1 —k, m2)
implies a pattern that is the prefix of S; of length m; — k
and that the second pattern is all of S,.

Based on the observed value of Q7 (n, w) our task is to decide
whether a suspicious activity took place or not. In terms of
Q3 (n, w) we can define a threshold in two ways depending
on what we consider to be the unusual activity [12]. Thus,
for a given confidence level 3 (e.g., 3 = 107°) we define the
upper threshold T,(w), when S is overrepresented in T, as

follows
P (ngm) < B

Another interesting problem is the selection of monitoring
system parameters, in particular the size of the window so
one can properly design the system. We select w to avoid
elements in S being almost surely in every window for the
upper threshold 7, (w).

Throughout the paper we assume that the event sequence is
generated by a memoryless (Bernoulli) source, i.e., alphabet
symbols are generated independently of each others with
probability P(a;) for any a; € A,i=1,2,...,|A|.

We need to analyze Q7 (n,w) in order to find the threshold.
We will prove here that appropriately normalized 03 (n, w)
is normally distributed. We also find the mean and the vari-
ance of Q7 (n, w). In our windowing method we start moni-
toring T' by positioning the right end of the first window on
an event in T corresponding to position 1 and while sliding
the window m consecutive events to position n we update
Q3(n,w). By assuming that T is infinite, we mean that no
matter what window size w we select, there is enough past
events available for the initial w consecutive windows.

We start with computing the mean value E[Q? (n, w)]. Clearly,
it is equal to
B (n,0)] = nP(w)

where P3(w) is the probability that a window of size w
contains at least one occurrence of either episode in S as a

subsequence. Equivalently we use P?(w, m1, ma, ... m|4)) in
derivations where we need to refer to the lengths of patterns
in S. For the sake of the presentation we focus throughout
the paper on the case where either S = {S1,S2}, where
each S; being serial or S is the set of all permutations of
an episode S but our our derivations will easily be seen to
generalize to an arbitrary set of episodes S.

2.1 Analysisof P3(w)

Let W7 (w, m1, m2) be the set of all possible distinct win-
dows of length w containing S; or S» (or both) at least once
as a subsequence. P3 (w, m1, m2) is therefore equal to the

sum of the probabilities of all the elements of W3 (w, m1, m2):

Pa(w,ml,mg) = Z P(x)

zeEW3I(w,m1,ma)

For 1 < i < [W3(w,m1,m»)|, let W (w, m1, m2)[i] denote

the i-th lexicographically smallest element of W3 (w, m1, ms).

Then the above equation can be equivalently written as:

W3 (w,m1,ma)|

Pw = 3

In order to enumerate all the elements in Wa(w,ml,mz)
we define a recursion to describe the structure of this set.
Because in the memoryless model P(W?3(w, m;, ms)[d]) is a
product of individual probabilities of symbols, to any recur-
sive formula for W7 (w, m1, m2) there corresponds a similar
formula for P2 (w,m1, m2) (and vice-versa). We now show
that P?(w,m1,ms) for the set A = {S1,S} satisfies the
following recurrence

(if Sl[ml] 75 Sz[mQ] then

P (w,m1,m») =

P(Sl[ml])PE'(w — 1,m1 — 1,m2)+
P(SQ[MQ])PH(H) —1,mi,my — 1)+

(1 - P(Sl [ml]) - P(SQ[MQ]))PB(H) - l,ml, MQ)
for w>0,my,m2 >0

POW3(w, m1, ma)[i]).

if 51 [ml] = Sz[mQ] then
Pa(w,ml,mz) =

P(Si[mi)PP (w —1,m1 — 1,ms — 1)+
(1= P(Si[m1)))P?(w — 1,m1, ms)

for w > 0,mi,ma >0
P3(w,0,0) =1 for w >0
PH(O,ml,mz):O for mi,msa >0
P3(1,m1,0) =1 for mi1>0
P3(1,0,m2) =1 for ma > 0

L P3(0,0,0) =

Indeed, consider a window of size w containing Si or S> as a
subsequence. Then depending on whether the last symbols
of S1 and S» are equal or not there are two cases. If S1[m1] #
Sa[ma2] then there are three cases: either Si[m1] is the last
symbol in the window giving the term P(Si[m1])P?(w —
1,m1 — 1,m2), or Sz[m2] is the last symbol in the win-
dow giving the term P(S2[ma])P?(w — 1,m1,m2 — 1), or
none of the above which leads to the term (1 — P(S1[m1]) —
P(Sz[mZ]))PH(w — 1,m1,m2). If Sl[ml] = Sz[mQ] then
there are two cases depending on whether the last sym-
bol of the window is equal to Si[mi] or not. From the

above discussion it is clear that the shape of the “recur-
sion graph” is determined by interactions between symbols
in S1 and S», i.e., whether their symbols at pairs of posi-
tions are equal or not. Therefore in order to find a solution
to P?(w, m1,m2) we have to enumerate all pairs of indices
(4,7) such that P?(k, i, j) appears in the recursion tree (not
all such pairs of indices qualify). This recursion graph is now
described more formally (as stated earlier, in addition to de-
picting the recurrence, the graph also describes all elements
of W (w, m1, m»)).

G(S) = (V, E) is the edge-labeled graph defined as follows.
The vertex set V' is a subset of all the pairs (i,5), 0 < i <
mi, 0 < j < my. That subset, as well as E, are defined
inductively as follows.

(0,0) isin V.

e If (4,5) isin V, ¢ < my, and Si[i + 1] # S2[j + 1] then
(4 1,7) is also in V, and an edge from from (i, j) to
(141, j) labeled Si[i + 1] exists in E.

o If (i,7) isin V, j < ma, and Si[i + 1] # Sa[j + 1] then
(¢,j+1) is also in V', and an edge from (¢, 7) to (i,7+1)
labeled Sa[j + 1] exists in E.

o If (4,j) isin V, i < my and j < ma, and Si[i + 1] =
Sa[j + 1] then (+ 1,5+ 1) is also in V, and an edge
from (z,7) to (i+1,5+1) labeled Si[i+1] (= Sa2[j+1])
exists in E.

e A self-loop from vertex (i,5) to itself exists and has
label equal to (i) A if i = my or j = ma, (ii) A—Si[i +
1]—52[]+1] ifi <mi andj < ma.

The following observations, in which we do not count self-
loops towards the in-degree and out-degree of a vertex, fol-
low from the above definition of G(S).

e The in-degree of vertex (0,0) is zero.

e The in-degree and out-degree of every vertex (i,7) is
at most three; if S consisted of |S| > 2 serial episodes
then the in-degree and out-degree of any vertex would
be at most [S| + 1.

e [V] =O0(mim2) and |E| = O(|S|mim>).

Let E(path) and V (path) denote the sequence of consecutive
edges and (respectively) vertices in any path, except that
V (path) does not include the last vertex on path (why this
is so will become apparent below). In what follows, if vertex
(4,7) is in V(path), then we use n;j(path) to denote the
number of times the self-loop at (i,7) is used; if path is
understood and there is no ambiguity, then we simply use
n;,; rather than n;;(path). Let an end-verter be a vertex
whose out-degree is zero. Let R be the set of all distinct
simple paths (i.e., witout self-loops) from the start-vertex to
any end-vertex. Let P(E(path)) = [L.cgpan) P(label(e))
be the product of probabilities of the edge labels in path €
R. Now let £, be the set of all distinct paths of length w,
including self-loops, from the start-vertex to all end-vertices

(that is, self-loops do count towards path length). Then we

have
W3 (w,m1,ms) = {E(path): path € L.,}.

Examples of G(S) are shown in Figure 1 and in Figure 2.

Figure 1: a) G(S) for S = {ab, cd} represented by trie
b)

a) A"2,1
(A=b—c)"L:1

(A —a)"0.0

Figure 2: a) G(S) for S = {ab, ac} represented by trie
b)

THEOREM 1. Consider a memoryless source with P(S;[k])
being the probability of generating the k-th symbol of S; €
S = {S1,S2}. Let also

PE@ath) =]

edge€ E (path)

P(label(edge)).

Then for mi,m2 and w > m; we have

w—|E(path)|
El
P (w,m1,m2) = Z P(E(path)) Z Z
pathe€R g=0 - ni, j(path)=g

[T = P{Sli+ 1} U{Salj + 1]}))md P,

(i,j)EV (path)

In our experiments, we implemented an efficient dynamic
programming algorithm based on Theorem 2.1. In section
3.1.2 we present evidence how Theorem 2.1 works well on
real data by comparing it to the estimate P2 (w) = W
given the actual Q3 (n,w). We also solved P3(w) for an
important special case when S consist of all permutations

of one pattern S, which is the case of a parallel episode.
Using Theorem directly to design an algorithm in such an
unordered case would be inefficient because we would then
need to consider a graph having a disastrous |V| = O(m™").

In order to simplify the graph G(S) that would result from
all permutations, and bring its number of vertices down to a
manageable size (quantified below), we exploit the structure
of a set of all permutations to design a different graph. No-
tice that, for a parallel episode, every path in R is a permuta-
tion of symbols in S. In addition, the out-degree of a vertex
is at most m if all symbols of S are different. Furthermore
a transition from from P7(k,4,4,...) to P?(k+1,7,5,...)
takes place for any symbol of S not seen so far since the order
of symbols does not matter. This observations allow us to
introduce a variant of G(S) called G(S!), which enumerates
W3 (w, m1, m2) for the unordered case.

Let Gsi(V, E) be a directed graph with the following struc-
ture.

e V is the set of all possible subsets of symbols of S of
size i = 0,1,2, m. Each vertex is of the form
v({i1,42,...,9m}) where i; = 1 if the vertex contains
tj-th symbol in its subset or ¢; = 0 otherwise. E is the
set of symbols in S corresponding to an increase by
one of the cardinality of subsets of symbols in adjacent
vertices.

e The in-degree din(v({i1,%2,...,im})) < m+ 1 for all
vertices except for the start-vertex where
din(v({0,0,...,0})) =0.

e The out-degree dout(v(Z,7)) < m + 1 for all vertices
except for the end-vertex where dow:(v({1,1,...1})) =
0 Notice, that vertex v({1,1,...1}) is the only end-
vertex.

e Each vertex has a self-loop corresponding to lack of
progress to the next vertex. There are no other cycles
in the graph.

V] =O0(Z, (7)) and [E| = O(|S|™).

i

Let R be the set of all distinct permutations of S, corre-
sponding to all distinct paths from the start-vertex the end-
vertex excluding self-loops and the end-vertex. Let £ be the
set of all distinct paths, including the self-loops, from the
start-vertex to the end-vertex of length w in Gsi(V, E) then
as in the case of Gs(V, E) the union of such paths enumer-
ates W7 (w, m1,m2). Examples of Gs:(V, E) are shown in
Figure 3 and in Figure 4. The next theorem is an adoption
of Theorem 2.1 to the unordered case.

THEOREM 2. Consider a memoryless source with P(Sk)
being the probability of generating the k-th symbol of S where
S is a parallel episode with

(A—-b—c)"1

(A=)2

(A—a-—

Figure 3: Gsi(V,E) for S =abc and A = {a,b,c,d}

(A—c)"1 (A-c)™2

Figure 4: Gs(V,E) for S = acc and A = {a,b,c,d}

then for all m and w > m we have

Piw)=) P(5) >

patheR g=0

II 1-P

v(i1,i2,...,im)EV (path) ;=1

In our experiments we implemented an efficient dynamic
programming algorithm based on Theorem 2 for computing
P?(w). In order to verify the applicability of Theorem 2 for
the Wal-Mart data we also designed an efficient O(nlog(m))
tree based algorithm for discovering occurrences of a paral-
lel episode in an event sequence. In section 3.1.1 we pre-
sented how 2 works well on real where the formula for P (w)
agrees with the Wal-Mart transactions. The details of the
O(nlog(m)) parallel episode detection algorithm are pro-
vided in section 2.2. When establishing the above formulas
for P7(w) we also solved a related combinatorial problem
on strings that is of independent interest. Namely, given A,
w and S: Find the cardinality of W7 (w,m1, m2) that we
denote Ca(w,ml,mz). The formula for C? (w, m1,m2) has
the following form.

THEOREM 3. The number of distinct windows of size w
containing at least one occurrence of either member of set

S = {51, 52} is equal to

welV@athl
Clumomy= 3 T35 (M),

patheR k=0

k
H |A| _ |A|w7\V(path)\fk.

v(i,j)EV (path)

> 1

S1[i+1]USa[j+1]

for m; = |S1| and ma = |S2|. Proofs of all theorems pre-
sented in this section are included in the full version of the

paper.

2.2 Efficient algorithm for detection of a par-
allel episode

-
= & = & o = S Q) = &
8 =N 0 =N =N

= Y 3
Figure 5: Data structure for finding occurrences of
an unordered episode S -

Let S = S[1]S[2] ... S[m] be the input episode for the algo-
rithm. Let S’ = {s], s5,...5s,,/} be a set of cardinality m' of
all different symbols of pattern S. Let ¢; for i = 0,1...m’
be the number of times an alphabet symbol s; occurs in S.
We build a binary tree over symbols in S’ as leaves. Figure
5 shows the tree.

Each node in the tree contains the usual tree pointers: parent,
left, right and search key interval [Smin, Smaz| Where smin
is the smallest key in the subtree and s,,q- is the largest key
in the subtree. In addition, depending on the type a node
keeps the following specific information:

e root: t event counter, counts the number of elapsed
(scanned) events.

e internal node:

— tmin the minimum time of the arrival for the sub-
tree rooted at this node

e leaf node:

— search key value s;

— dlist: doubly linked list containing one element
for each symbol a; in the pattern S. The purpose
of the list is to keep track of the most recent oc-
currences of the symbol a; sorted by arrival times.
So the size of the list is one unless S contains more
than one symbol a;. Let t4,[1],ta;[2] ... ta;[ci] for
i = 0,1...m' be the times of the occurrence of
symbol a; from the left to the right in the list then
they must satisfy the condition t4;[j] < ta;[j + 1]

for j =1,...c¢;. So the leftmost element of the list
contains the oldest occurrence of a; and the right-
most element contains the most recent occurrence
of a;.

The tree supports the following operations:

e update(s): when a new symbol s arrives the time ¢
is incremented by one and the search tree structure is
used to find the proper leaf. If the search finds leaf
s; then the leftmost element of the doubly linked list
with time ¢,[1] is removed and a new element with the
current time ¢ is attached to the right end of the list.
Once the new value is attached to the list the value of
the leftmost element, as the oldest one, is propagated
upward as long as it is smaller then ¢,,;, of the internal
node on the path to the root. This operation takes
log(m) time.

e exists: if t — t;in + 1 < w at the root node then at
least one permutation of S occurs as a subsequence
withing the window. This operation takes O(1).

The time complexity for finding Q7 (n,w) is O(nlog m), be-
cause we perform n slides of the window each requiring
O(log m). The presented tree structure can also handle a
problem when instead of a window of size w we associate a
time to live ¢¢tl with each symbol of the pattern S. In such
a case each leaf stores the expiration time expt = t +ttl and
the each internal node stores the minimum expiration time
erptmin in its subtree. The update(s) operation remains
the same and exists returns true if exptmin > t at the root
node.

2.3 Computation of threshold r, (w)
Now we derive variance and normal limiting distribution of
Q7 (n,w). Observe that

Q(n,w) =) I}
=1

1 if any member of S occurs at least once as a
I? = subsequence in the window ending at position
0 otherwise,

where i is the relative position with respect to the first po-
sition (¢ =1). Thus, we easily have

E[I]] = P(w),
Var[I7] = P?(w)— (P (w))’.
In order to compute variance of Q7 (n, w) we need P(3 (w, k),

13n13)
defined as the probability that two overlapping windovirs at
respective position ¢ and j for |¢ — j| < w have I; =1 and
I; = 1. The variance can be expressed as follows
Var[Q? (n, w)] = nVar[I7] + 2 Yl<ici<n Cov[I},I}]
= nVar[I{]+
2n —w+1) VL [P(Elliamlja)(w’ k) — (Pa(w))ﬂ +

20w - 2) [S1) LT [Phans) (w,h) - (PPw))?]]

The two terms involving P(all?m]?) (w, k) in the above formula

represent correlation between windows (with 2(w —1) neigh-
borhood), where k = w — |i — j| represents the length of the

overlap between windows at position i and j. P(E}i; mj_g)(w, k)

can be computed by an enumerative algorithm. One con-
cludes, however, that Var[Q?(n,w)] ~ no for some o > 0.
In view of the above, and using the fact that Q3 (n, w) is the
so called w — 1-dependent sequence (i.e., Q7 (n,w) depends
on the last w — 1 windows), we may apply Theorem 27.5 of
[3] to establish the central limit theorem for Q3 (n, w).

THEOREM 4. The random variable Q7 (n, w) obeys the Cen-
tral Limit Theorem in the sense that its distribution is asymp-
totically normal. More precisely, for a,b = O(1) we have

. Q% (n, w) — BIQ? (n, w)] I Y A
nhféop{“ = VB w)] b} - \/ﬁ/ e di

Using the above findings and the definition of E[Q7(n,w)]
we establishing the reliable threshold 7, (w) as follows.

P{Z00 5 rw)} = y(boo)

Tu (W) = P(w)+ b/ Var[0Z (n,w)] Var[ila(n,w)]
.2

y(a,b) = ﬁf:e%dt

Thus, for a given 3 we can compute 7, (w) by selecting either
bo such that 8 = y(bo, 00). Observe that when a b are large
(say order of 10) the above probability is small enough to be
qualified as a moderate large deviations. This captures the
nature of unusual episodes, as needed.

3. EXPERIMENTS

The purpose of our experiments was to test applicability
of the analytical results for real sources subject of a pos-
sible monitoring systems. Therefore we selected Wal-Mart
data available on the departmental Oracle server in the De-
partment of Computer Sciences, Purdue University. The
database contains part of Wal-Mart sales data for the years
1999 and 2000 in 135 stores. We selected one of the stores,
one category of items of cardinality 35 and extracted 9.66
million records from the table Item_Scan, sorted by scan

in T';time, where each record has the following form

Table walmart.Item_Scan

Visit_Nbr Integer
Item_Nbr Integer
Item_Quantity Decimal(9,2)
Total_Scan_Amount Decimal(9,2)
transaction_Date Date Format
Unit_Cost_Amount Decimal(9,4)
Unit_Retail_Amount Decimal(9,2)
Tax_Collect_Code Char (1)

Primary Index (Visit_Nbr);

Thus the alphabet size |A| = 35. We divided our sources
into training sets and testing sets. Training sets are data
sets, which we consider to constitute normal behavior for
the environment from which the data were drawn. Omnce

the training data has been characterized, i.e. the probabil-
ity model has been built, we can start monitoring unknown
data called testing data. During the monitoring process the
testing data are compared to expectations generated by the
training data. In section 3.1 we tested how well the formulas
for P2 (w) worked on the Wal-Mart data. To accomplish this
we estimated the actual probability of existence based on

the actual number of windows Q7 (n, w) as P2 (w) = w

and compared its value to the computed P (w) for different
values of w. We used the following error metric d

1w |Pea(wi) — Pa(wi)|
d = —E 100%
T P2 (w;) 007%

where w; < ws < ...w, are the tested window sizes. In sec-
tion 3.2 we tested the detection properties of the threshold
7u(w) as a function of the window length w. As a testing
source for computing the probabilities of symbols in |.A4]| for
all experiments we used the first 9.56 million records leaving
the last 100 thousand records for testing. All our algorithms
have been implemented in C++ and run under Linux oper-
ating system.

3.1 Estimation of P?(w) and E[Q3(n, w)]
In all experiments in this section we used the same testing
source of length n = 10° events.

3.1.1 Thecaseaparallel episode s
In this experiment we set
S = {itemo, itema, items, items, itemg, itemao, item17}

Then for w = 10, 15,20, ...180 we ran the tree based detec-

tion algorithm presented in section 2.2 to find Q7 (n, w)(10°, w)

(the actual number of occurrences of S in the stream of

length 10°). Then we computed P, (w) for each Q7 (n, w)(10°, w)

and compared P, (w) to the analytically computed P?(w) us-
ing our algorithm based on Theorem 2. The result is shown
in Figure 6, which indicated an exceptionally close fit be-
tween P?(w) and P2 (w) with the difference d of order 2%.
One of the two reasons of such a surprising closeness may be
the fact that in a case of a parallel episode we neglect some
correlations between consecutive symbols of S. Another rea-
son may be a closeness of the time ordered purchases of the
item category considered in experiments to the ideal Markov
source. We also plotted the actual Q7 (n,w) and the com-
puted E[Q¥(n,w)] in Figure 7.

3.1.2 The case of a set of two serial episodes s =
{51, 82}

In this experiment we set

Si1 = {itemo, itemy, items, items, itemo, itemio, itemi7 }

So = {itemo,items, items, itemy, itemio, itemo, itemi7 }

where S> is a permuted version of S1. This case reflects a sit-
uation when a pattern of interest is only partially restricted
and the serial case is too restrictive but the parallel case too
relaxed. Once we created the set S we ran an algorithm
for finding Q(10°%,w) for the set. Then we computed P.(w)
for each Q(10°,w) and compared P.(w) to the analytically
computed P?(w) using our algorithm based on Theorem 2.1.
The result is shown in Figure 8, which indicated a very close

o
o
T

o P:(w) (estimated)

|- Pr(w) (computed)

probability of existance: PD(W)
o o
ES 15
T T

=}
w
T

=}
N
T

0.1

U] L L I I I
0 20 40 60 80 100 120 140 160 180
window size: w

Figure 6: P2(w) = w and P?(w) for a parallel
episode S, using Wal-Mart data

fit between P?(w) and P2(w) with d of order 13% but not
so close as in the case parallel (d = 2%). The reason may
be the fact in this partially restricted case some correlations
between the symbols come into play and the two sets Si and
S> do not represent all of the serial correlations between the
symbols in S1US>. We also plotted the actual Q7 (n, w) and
the computed E[Q7(n, w)] in Figure 9.

3.1.3 Comparison of the three cases. 5, paralld,

{81, 82} serial and s, serial

In this experiment we investigate the relationship between
the formulas for P(w) and the experimental P.(w) for the
episode S in the three cases: parallel, partially ordered (S5 is
a permutation of S1) and serial in [12]. For the first two cases
we use the results obtained in the previous experiments. For
the third case we ran an algorithm for discovering a serial
episode in the event sequence for w = 10,15,20,...180 as
in the previous experiment to create Q7 (n,w)(10%,w) at the
same points. For computing P?(w) we used the algorithm
we designed for sets since the single serial episode is just a
singleton set and we know that the Theorem 2.1 generalizes
to an arbitrary set of episodes. The results for P¥(w) are
shown in Figures 10 and the corresponding estimates are
shown in Figure 11. The figures clearly indicate that the
serial and parallel cases of an episode S establish the lower
and upper bound on the probability of existence of S in
window of size w. Based on our paper [12] we can prove
that P7(w) =1 — 6(p®) for w large and p < 1.

3.2 Threshold 7, (w)

This experiment demonstrates the application of the upper
threshold 7, (w) in for a a parallel episode S. It also shows
the relationship between 7, (w) and w in detecting an un-
usual behavior. We set

S = {items,itema, item14, item1s, itemag, itemao, itemae }

and consider the parallel case of S. We selected a part of
the scans of length n = 50000 as the test source. In order

x 10° 93(105 w) and E[QD(lo5 w)] for a parallel eplsode S

10

: - Qu(los,w) (actual)
-0~ E[QY10%, w)] (computed)

number of windows: 03(105, w)

I I I I I I I
0 20 40 60 80 100 120 140 160 180
window size: w

Figure 7: Q7(n,w) and E[Q7(n,w)] for a parallel
episode S, using Wal-Mart data

44/ Var[03 (n,w)]

to establish the threshold 7, (w) = P?(w) + —

we estimated \//z;'[ﬂa(n, w)] using the sample variance esti-
mator defined below of the scans.

Var[Q3 n,w)

\/z L(Q3(n, w); — B[Q3 (n, w))?
— .

In order to use the estimator we selected 10 fragments of
length 50000 in the source sequence as the training sets.
We repeated the threshold computation for three values of
w = 40,30,25 for the same episode S. We simulated an
attack by inserting the episode S as a string into the testing
source until we exceeded the threshold. We normalized the
number of insertion by n. Figure 12 presents results. We
conclude that the if w decreases then the number of attacks
causing w to rise above the 7,(w) decreases as well
making the monitoring system more sensitive to attacks.
From the monitoring system point of view this means that
P3(w) should be selected “as small as possible” because as
P3(w) grows than it is harder and harder to draw a line
between a normal and unusual behavior. Also the growth of
7u(w) is exponential as w increases, which is cause by the
exponential growth of P?(w) in the formula for 7, (w).

4. CONCLUSIONSAND EXTENSIONS

We presented the exact formulas for the probability of exis-
tence P3(w), for an arbitrary set of serial episodes and the
case of a parallel episode S. For the purpose of our exper-
iments we implemented the formulas by efficient dynamic
programming algorithms, proving the formulas are appli-
cable in practice. We did not present those algorithms for
space limitation. We also designed a O(nlog(m)) tree based
algorithms for discovering a parallel episode S of length m
in an event sequence T of length n. In experiments on
Wal-Mart transactions we showed that the formulas exactly
approximated the real life data. We also showed that as
the window size grows w sensitivity of a monitoring system
drops requiring more attacks to exceed the threshold.

PLKW) for a set of two serial episodes 51' 82

-

o EH

<
©
T

o
©
T

o
3
T

o
o
T

o P ;kw) (estimated)

- Pj(w) (computed)

probability of existance: PD(W)
1) o
S v
T T

0.3

o8 L Il Il Il Il
0 20 40 60 80 100 120 140 160 180
window size: w

Figure 8: P2(w) = w and P?(w) for a set S =
{S1, 52} of serial episodes, using Wal-Mart data

An obvious extension of this work is to use the graphs Gs(V, E),
Gsi(V, E), whose paths from the start-vertices to end-vertices
of length w correspond to the set W (w). Let W3 (w)[é][5] be
the j-th symbol in W (w)[i] where j = 1,2,...,w. Then for
the first order Markov source the probability that a window
of length w contains at least one occurrence of a pattern S
of length m is equal to:

W3 (w)|
Pi(w) =
=1

POV (w)[i][w] W (w)[i][w ~ 1])

where W3 (w)][i][l] is the I-the symbol of the i-th member of
W3 (w) in lexicographic order and P(W? (w)[i][2]|W? (w)[4][1])
is the conditional probability. However the realization of the
Markov model involves a substantial computational cost.

5. REFERENCES
[1] M. D. A. Wespi, H. Debar and M. Nassehi. Fixed vs.
variable-length patterns for detecting suspicious
process behavior. Computer Security, 2000.

[2] A. Apostolico and M. Atallah. Compact recognizers of
episode sequences. Information and Computation, 174.

[3] P. Billingsley. Probability and measure. John Wiley,
New York, 1986.

[4] L. G. D. G. G. Das, R. Fleischer and J. Karkkéinen.
Episode matching. In Lecture Notes in Computer
Science, 1997.

[6] M. R. G. Kucherov. Matching a set of strings with
variable length don’t cares. Theoretical Computer
Science, 1997.

[6] H. T. H. Mannila and A. Verkamo. Discovery of
frequent episodes in event sequences. Data Mining and
Knowledge Discovery, 1997.

POV (w)EI) POV (w) 20V (w)[E[1]) - .

4 ﬂu(los, w) and E[Q‘klos, w)] for a set of two serial episodes 51’ S2

10)(10
ol
sl
PL(W) for three cases: S parallel, S1v S2 serial, S serial
1 &
f’ T o EE'E'*;’
a% 6 oor b
G
: sk 08t 1
%
g 4k EOJ* a
£ Y
2 4l g 0.6 ; 8
5 o, = P:Ew) (S parallel)
g 05k / - P(w) (Sl' 52 serial) i
2r 5 P + Pw) (S serial)
2
A Foar Ao 1
o e | 1 1 | I I I o3 m/ + |
0 20 40 60 8.0 . 100 120 140 160 180 /g
window size: w 02l @ i
/¥
o
Figure 9: Q7(n,w) and E[Q?(n,w)] for a set S = o1 o 1
{S1,S2} of serial episodes, using Wal-Mart data J ‘ ‘ ‘ ‘ ‘ ‘ ‘
00 20 40 60 80 100 120 140 160 180
window size: w
[7] S. Kumar and E. Spafford. A pattern-matching model . 5
for intrusion detection. In Proceedings of the National Figure 10: P (w) for t.hree cases: S parallel, {51, 52}
Computer Security Conference, 1994. serial and S serial, using Wal-Mart data
[8] I. G. L. Boasson, P. Cegielski and Y. Matiyasevich.
Window-accumulated subsequence matching problem
is linear. In PODS, 1999.
[9] W. S. P. Flajolet, Y. Guivarc’h and B. Vallée. Hidden
pattern statistics. In ICALP 2001, 2001.
[10] B. S. P. Nicodéme and P. Flajolet. Motif statistics.
Lecture Notes in Computer Science, 1999.
[11] P. Pevzner. Computational Molecular Biology: An P_(w) for three cases: S parallel, S, S, serial, S serial
Algorithmic Approach. MIT Press, 2000. [S s jifsizs-n:a-0:4
[12] W. S. R. Gwadera, M. Atallah. Reliable detection of o |
episodes in event sequences. In JCDM, 2003. 08]
[13] M. Régnier and W. Szpankowski. On pattern %0_7, J
frequency occurrences in a markovian sequence. 8
Algorithmica, 1998. Bosf 1
§ _o PL(w) (S parallel)
[14] W. Szpankowski. Average Case Analysis of Algorithms 20'5’ L f EE(X glsjfa;enal) 1
on Sequence. John Wiley, 2001. 2.0 gt |
5 +
E 0.3 /D + u
3 ooy
02+ o]
o +
0.1 —
00 i 20 4‘0 6‘0 8‘0 1‘00 12‘0 11‘10 1(‘50 180

window size: w

Figure 11: P2 (w) = w for three cases: S parallel,
{S1,S2} serial and S serial, using Wal-Mart data

Simulated attacks by a parallel episode S for thresholds 1(40), 1(30), 1(25)
T T T T T T

0.025 , :
T(40)
I p==)
0.02 =
o
i
o
- a7
8 A
=1 -
8 o015t : -0 ‘
B e)
g a7 - P§(3D)
8 -
S B . P25
L2 =]
[¢] L B
G oo s
o Pi=g
T(30)
0005 i mim i el e
7(25)
0(/&(/*—’7/ ‘ | | | | | |
0 2 4 6 8 10 12 14 16 18

20

(number of inserted episodes) x 1/50000

Figure 12: The upper threshold 7,(w) as a function
of w for a parallel episode S, using the Wal-Mart
database

