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Abstract

Today’s world of increasingly dynamic com-
puting environments naturally results in more
and more data being available as fast streams.
Applications such as stock market analysis,
environmental sensing, web clicks and intru-
sion detection are just a few of the examples
where valuable data is streamed to its con-
sumer. Often, streaming information is of-
fered on the basis of a non-exclusive, single-
use customer license. One major concern, es-
pecially given the digital nature of the valu-
able stream, is the ability to easily record and
potentially “re-play” parts of it in the future.
If there is value associated with such future
re-plays, it could constitute enough incentive
for a malicious customer (Mallory) to dupli-
cate segments of such recorded data, subse-
quently re-selling them for profit. Being able
to protect against such infringements becomes
a necessity.

In this paper we introduce the issue of rights
protection for streaming data through water-
marking. This is a novel problem with many
associated challenges including: the inabil-
ity to perform multiple-pass random accesses
to the entire data set, the requirement to
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be fast enough to keep up with the incom-
ing stream rate, to survive instances of ex-
treme sparse sampling and summarizations,
while at the same time keeping data alter-
ations within allowable bounds. We propose
a solution and analyze its resilience to various
types of attacks as well as some of the im-
portant expected domain-specific transforms,
such as sampling and summarization. We im-
plement a proof of concept software (wms.*)
for the proposed solution and perform exper-
iments on real sensor data from the NASA
Infrared Telescope Facility at the University
of Hawaii, to assess these resilience levels in
practice. Our method proves to be well suited
for this new domain. For example, we can re-
cover an over 97% confidence watermark from
a sampled (e.g. less than 8%) stream. Simi-
larly, our encoding ensures survival to stream
summarization (e.g. 20%) and random alter-
ation attacks with very high confidence levels,
often above 99%.

1 Introduction

Digital Watermarking aims to protect a certain con-
tent from unauthorized duplication and distribution
by enabling provable ownership over the content. It
has traditionally [8] [11] [17] relied upon the availabil-
ity of a large noise domain within which the (usually
multimedia) object can be altered while retaining its
essential properties. For example, the least significant
bit of image pixels can usually be arbitrarily altered
with little impact on the visual quality of the image (as
perceived by a human). In fact, much of the “band-
width” for inserting watermarks in multimedia objects
(such as in the least significant bits) is due to the in-
ability of the human sensory system (especially sight
and hearing) to detect minor changes.

Protecting rights over outsourced digital content be-
comes essential when considering areas where the data
is sensitive and valuable. One example is the outsourc-
ing of data for data mining. In this scenario data is



produced/collected by a data collector and then sold
to parties specialized in mining it. Given the nature
of most of the data, it is hard to resiliently associate
rights of the originator over it. Watermarking can be
used to solve this issue.

Watermarking, as a rights protection method,
works by inserting an indelible mark in the object such
that (i) the insertion of the mark does not destroy the
value of the object (i.e. the object is still useful for
the intended purpose); and (ii) it is difficult for an ad-
versary to remove or alter the mark beyond detection
without destroying the value of the object. Clearly,
the notion of value or utility of the object is central to
the watermarking process. This value is closely related
to the type of data and its intended use. For example,
in the case of software the value may be in ensuring
equivalent computation, and for text it may be in con-
veying the same meaning (e.g. synonym substitution
is acceptable).

A considerable amount of effort has been invested
in the problem of watermarking multimedia data (im-
ages, video and audio). More recently, the focus of
watermarking for digital rights protection is shifting
toward other data domains such as natural language
text [2], software, algorithms [7] [16] and relational
data [12] [20], [19]. Since these data domains often
have very well defined restrictive semantics (as com-
pared to those of images, video, or music) and may
be designed for machine ingestion, the identification
of the available “bandwidth” for watermarking is as
important a challenge as the algorithms for inserting
the watermarks themselves.

In this paper we introduce and study the problem of
watermarking streaming data, which to the best of our
knowledge, has not been addressed. Streaming data
sources represent an important class of emerging appli-
cations [3] [4]. These applications produce a virtually
endless stream of data that is too large to be stored
in a given system. Examples of streaming data in-
clude output from environmental sensors such as tem-
perature, pressure, and brightness readings, and stock
prices. Recent efforts in the broader area of streaming
data, deal with the database challenges of its manage-
ment [5] [9] [10] [14]. Existing work on discrete data
watermarking relies upon the availability of the entire
dataset during the watermarking process. While this
is generally a reasonable assumption, it does not hold
true for the case of streaming data [3]. Moreover, since
the streamed data is typically available as soon as it is
generated, it is desirable that the watermarking pro-
cess be applied immediately on subsets of the data.
Due to this limitation, earlier work on watermarking
relational databases is not applicable to streams.

But why is watermarking streaming data impor-
tant? Couldn’t we simply apply a watermarking tech-
nique on the data once it is stored? While this surely
would work and enable rights protection for the stored

result, it would not deter a mallicious customer (Mal-
lory), with direct stream access, to duplicate segments
of the stream and re-sell them or simply re-stream the
data for profit. Thus the main rights protection sce-
nario in this framework (see Figure 1) is to prevent
exactly such leaks from a licensed customer to a third
party.
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Figure 1: Sensor Streams Watermarking Scenario.

Our contributions include (i) the proposal and defi-
nition of the problem of watermarking sensor streams,
(ii) the discovery and analysis of new watermark em-
bedding channels for such data, (iii) the design of novel
associated encoding algorithms, (iv) a proof of con-
cept implementation of the algorithms and (v) their
experimental evaluation. The algorithms introduced
here prove to be resilient to important domain-specific
classes of attacks, including stream re-sampling, sum-
marization (replacing a stream portion by its average
value) and random changes. For example, sampling
the data stream down to less than 8% still yield a
court-time confidence of watermark embedding of over
97%. Summarization (20%) and random data alter-
ations are also survived very well, often with a false-
positive detection probability of under 1%.

The paper is structured as follows. Section 2 out-
lines the major challenges in this new domain. It pro-
poses an appropriate data and transform model, dis-
cusses associated attacks and overviews related work.
In Section 3 an initial solution is provided. Further
resilience-enhancing improvements and attack han-
dling capabilities are gradually introduced in Section
4. Section 5 analyzes court-time convince-ability of our
solution, discusses various aspects of the algorithms
and proposes improvements for particular scenarios.
Section 6 presents wms.*, a proof-of-concept java im-
plementation of our solution; our experimental setup
and results are introduced. Section 7 concludes.

2 Challenges

2.1 Model

For the purpose of simplicity let us define a simple data
stream as an (almost) infinite timed sequence of (x[t])
values “produced” by a set of data sources of a par-
ticular type (e.g. temperature sensors, stock market
data). We do not consider simultaneous types of data
sources here. x[t] is a notation for the value yielded



by our source(s) at time t. Unless specified otherwise,
lets denote a stream as (x[], ς) where ς is the number
of incoming data values per time unit, i.e. the stream
data rate.

Note: While a time-stamp t can be assigned nat-
urally to each and every data value when produced
by a data source, it often becomes irrelevant after
such domain-specific transformations as sampling and
summarization which destroy the exact association be-
tween the value x[t] and the time it was initially gen-
erated, t. Thus, the notation x[t] is merely used to
distinguish separate values in the stream and is not
intended for suggesting the preservation of the time-
stamp-value in the resulting stream which is ultimately
just a sequence of values.

Any stream processing performed is necessarily
both time and space bound. The time bounds de-
rive from the fact that the processing has to keep up
with incoming data. We are going to model the space
bound by the concept of a window of size $. At each
given point in time, no more than $ of the stream
(x[t]) values (or equivalent amounts of arbitrary data)
can be stored locally, at the processing point. Unless
specified otherwise, as more incoming data becomes
available, the default behavior of the window model
is to “push” older items out (i.e. to be transmitted
further, out of the processing facility) and “shift” the
entire window (e.g. to the right) to free up space for
new entries.

Note: For simplicity purposes, in this paper we are
considering streams with fixed data rates. Although,
intuitively, all the methods and approaches introduced
apply also in the variable data rates case, a validation
of this claim is to be subject to future research.

For the purpose of the current framework, we de-
fine the uniform random sampling of degree χ of a
stream (x[], ς) as another stream (x′[], ς ′) with ς ′ = ς

χ

such that for each sample data item x′[t], there ex-
ists a contiguous subset of (x[]), (x[t1], x[t2]) such that
x′[t] ∈ (x[t1], x[t2]), {x

′[t−1], x′[t+1]}
�

(x[t1], x[t2]),
and t is uniformly distributed in (t1, t2). In other
words, a uniform random sampling is constructed by
randomly choosing one value out of every χ values in
the original stream.

A subtle variation of uniform random sampling is
the case when x′[t] is not randomly chosen but rather
always the first element in it’s corresponding χ sized
subset (e.g. t = t1). We call this fixed random sam-
pling of degree χ.

We define the summarization of degree ν of a
stream (x[], ς) as another stream (x′[], ς ′) with ς ′ = ς

ν
such that for each two adjacent sample data items
x′1[t], x

′
2[t + ν], there exist two contiguous, adjacent,

non-overlapping ν-sized subsets of (x[]), (x[t − ν +
1], x[t − ν + 2], ..., x[t]), (x[t + 1], x[t + 2], ..., x[t + ν])

such that x′1[t] = � i∈(1,ν) x[t−ν+i]

ν
and x′2[t + ν] =

� i∈(1,ν) x[t+i]

ν
. In other words, for each continuous

chunk of ν elements from the original stream summa-
rization outputs its average.
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Figure 2: (a) A sample stream. If all the extremes are con-
sidered to be major, then the resulting label bits for K are
shown (for % = 2, Section 4.1) (b) δ-Radius characteristic
subset of extreme η.

We define an extreme η in a stream simply as ei-
ther a local minimum or local maximum value. If the
stream is considered normalized within the (-0.5,0.5)
interval, then we define the extreme’s characteristic
subset of radius δ, noted Ξ(η, δ) (see Figure 2 (b)), as
the subset of stream items forming complete “chunks”,
immediately adjacent to η and conforming to the fol-
lowing criteria: item i, with value vi ∈ Ξ(η, δ) iff
|η − vi| < δ and all the items “between” i and the
extreme η, also belong to Ξ(η, δ).

A major extreme of degree χ and radius δ is defined
as an extreme η such that at least one item in Ξ(η, δ)
can be found in any uniform random sampling of de-
gree χ of (x[]) (i.e. some items in Ξ(η, δ) “survive”
sampling of χ degree). For example, in Figure 2 (a),
intuitively, it seems likely that extremes such as F,I
and J are going to have less chance of surviving sam-
pling than C,E or G. This is so because of the temporal
shape of the stream’s evolution. C,E,G seem to yield
characteristic subsets much “fatter” than F,I,J.

Note: Intuitively, δ needs to be chosen such that
the characteristic subsets are going to be of an average
size greater than χ in order to guarantee survival to a
sampling of degree χ. Remember that in a sampling
of degree χ every χ elements in the original stream are
replaced by a single one in the result.

To model the “fluctuating” nature of a stream, we
define ε(χ, δ) as the average number of stream data
items encountered/read per major extreme (i.e. be-
fore encountering a major extreme) of degree χ and
radius δ. 1

ε(χ,δ) defines the average “frequency of ma-

jor extremes” in terms of the number of observed data
items.

By notation, for any value x let b(x) be the num-
ber of bits required for its accurate representation and
msb(x, b) its most significant b bits. If b(x) < b we
left-pad x with (b − b(x)) zeroes to form a b-bit re-
sult. Similarly, lsb(x, b) is used to denote the least
significant b bits of x. Let wm be a watermark to be
embedded, wm[i] the i-th bit of wm.

In our solution we leverage a special de-facto se-
cure construct, the one-way cryptographic hash. Let
crypto hash() be a cryptographic secure one-way hash.



Of interest are two properties of such a crypto-hash:
(i) it is computationally infeasible, for a given value
V ′ to find a V such that crypto hash(V ) = V ′; this
assumption of one-wayness lies at the heart of many
current security protocols, and (ii) changing even one
bit of the hash input causes random changes to the
output bits (i.e. roughly half of them change even if
one bit of the input is flipped). Examples of potential
candidates for crypto hash() are the MD5 (used in the
proof of concept implementation) or SHA hash. For
more details on cryptographic hashes consult [18]. By
notation, let H(V, k) = crypto hash(k; V ; k) (where
“;” denotes concatenation).

2.2 Attacks

As outlined above, the nature of most “fast” time-
series data applications imposes a set of strict require-
ments on any on-the-fly data processing method, such
as watermarking. For one, it has to be able to keep up
with the incoming data rate and, the fact that only a
finite window of memory (e.g. of size $) is available
for processing makes certain history-dependent com-
putations difficult or simply impossible. At the same
time, any quality preservation constraints can be for-
mulated only in terms of the current available data
window; including any history information will come
at the expense of being unable to store as much new
incoming data.

Moreover, the effectiveness of any rights protection
method is directly related to its ability to survive nor-
mal domain specific transformations as well as mali-
cious attacks. There are several transforms relevant
in a streaming scenario, including the following: (A1)
summarization, (A2) sampling, (A3) segmentation (we
would like to be able to recover a watermark from a
finite segment of data drawn from the stream), (A4)
linear changes (there might be value in actual data
trends, that Mallory 1 could still exploit, by scaling
the initial values), (A5) addition of stream values and
(A6) random alterations.

While we discuss most of these and other attacks
in the next sections, let us note here that a scaling at-
tack (A4) can be handled by an initial normalization
step, e.g. yielding values in the (−0.5, 0.5) interval.
If the data distribution is assumed to be known, nor-
malization can also be easily performed at detection
time. If data distribution is not known, then we pro-
pose an initial “discovery” run in which data is simply
read and a reference data distribution is constructed
and updated on the fly. This will yield a certain data-
dependent inaccuracy in the initial phases of detection
but will likely quickly converge as more data is read.
If detection is performed offline on a static segment
of data, normalization is eased by the ability to read
the data multiple times. In the following, unless spec-
ified otherwise, we consider this normalization step to

1The traditional name of the maliciously acting party.

have been performed, yielding a normalized version of
the stream, with values in the interval (−0.5, 0.5). To
survive sampling and other minor stream transforma-
tions, several improvements to the normalization pro-
cess are proposed in Section 3.2. With respect to (A5),
one observation to be made is that Mallory is bound
to add only a limited amount of data (in order to pre-
serve the value in the original stream) and these new
values are to be drawn from a similar data distribu-
tion, lest they become easy to identify in the detection
process as not conforming to the original, known, dis-
tribution. (A6) is naturally modeled by a combination
of (A2) and (A5).

Apparently, data re-sorting might be also of concern
as an attack. At closer inspection however, if value is
to be found in the stream, it is assumed to lie in two
aspects of it: the data values and their relative order-
ing. In other words, in most applications, a recorded
stream (even sampled) is only valuable if its re-play
is preserving the relative ordering of the values (with
exception of some extreme cases). Re-ordering the se-
quence of values in the stream is going to significantly
alter its core value. For example consider the case of
stock market data. If the evolution of a given stock
is modeled by a stream of values, a recording of it
is only valuable if the sequence ordering is preserved.
Also, significant on-the-fly data re-sorting, is simply
not possible given the finite processing window and
speed assumptions. In this paper we consider data re-
sorting to significantly alter the core value of the data
set, not a successful attack choice Mallory would con-
sider. Our method does however handle minor data
re-sorting gracefully.

2.3 Related Work

Could existing work in non-media data sets water-
marking such as relational data [12] [20] be adapted
to the new domain? The work by Sion et al in [20]
requires access to the entire data set in an almost ran-
dom access model, which is certainly not possible here
at embedding time. Also, both efforts seem to make
extensive use of the existence of a primary key, thus
rendering a direct adaptation impossible. Neverthe-
less it might be worth noting that, if a primary key
is assumed to exist, e.g. if there is a guarantee that
the time-stamp information for each stream value is
going to be preserved in the result, then the bit alter-
ation method proposed by Kiernan et al in [12] could
be adapted to work on a single attribute, namely the
stream value. The result would likely be resilient to
(time-stamp preserving) sampling, but not to any of
the other attacks.

But what about multimedia watermarking? Given
the “streaming” nature of our data, would it not be
possible to simply adapt an existing audio (or media)
watermarking algorithm [6] [8] [13] [17] [21] since au-
dio data is also an example of a data stream? In other



words, why is our problem different? While there seem
to be similarities between watermarking audio and sen-
sor data for example, at a closer inspection these sim-
ilarities prove to be just appearances. A multitude
of differences are to be found between the two frame-
works mainly deriving from different data models and
associated semantic scopes.

While, in theory, a sensor stream could be viewed
as an audio signal for example and processed as such,
for all practical purposes such an approach would not
suit reality and/or often yield undesired results. For
example, while in sensor data streams, summarization
and sampling are routinely expected natural opera-
tions, audio streams are not to be summarized, and
sampling in the audio domain entails an entirely dif-
ferent semantic. Data quality to be preserved in audio
streaming is usually related to the human auditory
system and its limitations. Any watermark-related
alteration can be induced as long as the stream still
“sounds” good 2. In the case of sensor streams (e.g.
temperature) on the other hand, many scenarios in-
volve widely different quality metrics, that often need
to also consider overall stream characteristics 3.

Space constraints prevent a more in depth compari-
son. In summary, while experiences in the multi-media
domain are valuable, due to the nature of this new ap-
plication domain, a solution for watermarking sensor
streams needs to be naturally suited to handle attacks
and transformations such as the ones outlined in Sec-
tion 2.2.

3 An Initial Solution

This Section outlines the main solution and then grad-
ually improves it to a more robust and resilient ver-
sion, by identifying potential flaws and their associated
fixes.

3.1 Overview

The first issue to be considered when watermarking
in such a framework are the data assumptions that
the detection process is expected to handle. More spe-
cific, are we concerned with (i) an on-the-fly streaming
detection process or (ii) the ability to detect a water-
mark offline, in a static “chunk” of data (with asso-
ciated multiple-pass, random access), likely a subset
of the original stream? These two different scenarios
apparently feature distinct challenges. Intuitively a
watermarking solution for (ii) could potentially yield
an increased detection accuracy (with respect to the
same amount of data), due to the ability to repeat-
edly iterate on the entire data set, without restrictive
time bounds. Because any on-the-fly solution can be

2Incidentally, these types of quality metrics are also well
suited for “window only” data processing.

3e.g. the total alteration introduced per data item should
not exceed a certain threshold.

directly applied to (ii), for the time being let us con-
sider a solution for (i). In Section 5.6 we analyze the
offline case.

At an overview level, watermark embedding pro-
ceeds as follows: (a) first a set of “major” extremes
(actual stream items) are identified in the data stream,
extremes that feature the property that they (or a ma-
jority thereof) can be recovered after a suite of consid-
ered alterations (possibly attacks) such as (random)
sampling and summarization. Next (b) a certain crite-
ria is used to select some of these extremes as recipients
for parts of the watermark. Finally (c), the selected
ones are used to define subsets of items considered for
1-bit watermark embedding of bits of the global water-
mark. The fact that these extremes can be recovered
ensures a consistent overlap (or even complete iden-
tity) between the recovered subsets and the original
ones (in the un-altered data). In the watermark de-
tection process (d) all the extremes in the stream are
identified and the selection criteria in step (b) above is
used once again to identify potential watermark recip-
ients. For each selected extreme, (e) its correspond-
ing 1-bit watermark is extracted and ultimately the
global watermark is gradually re-constructed, by pos-
sibly also using an error correction mechanism such as
majority voting.

Thus, one of the main ideas behind our solution
is the use of extreme values in the stream’s evolu-
tion as watermark bit-carriers. The intuition here lies
in the fact that much of the stream value lies in ex-
actly its fluctuating behavior and the associated ex-
tremes, more likely to be preserved in value-preserving,
domain-specific transforms.

3.2 Embedding

Using the notation in Section 2.1, let α, β ∈ � such
that α + β ≤ b(x[]), where b(x[]) is the bit-size of the
values in the considered stream (x[]). Let δ, χ ∈ (0, 1).
δ will be chosen such that all elements in any charac-
teristic subset Ξ(η, δ) have the same most significant
α bits (δ < 2(b(x[])−α)). α, β, δ, χ are secret. We use
the term “advance the window” to denote reading in
more new data items while discarding old ones from
the current data window.

wm embed(δ,α,β,wm,k1,φ)
while (true) do

η ← first major extreme in win[]
compute Ξ(η, δ)
i← H(msb(η, α), k1)modφ
if i ≤ b(wm) then

bit ← H(msb(η, α), k1)modβ
foreach v ∈ Ξ(η, δ) do

v[bit − 1]← false
v[bit]← wm[i]
v[bit + 1]← false

advance win[] past η

Figure 3: Initial Embedding Algorithm



In the initial step of our embedding algorithm we
first identify the first major extreme of degree χ and
radius δ in the current window. The assumption here
is that there exists a major extreme in the current
window. If this is not the case, we can simply advance
the window until we find one. The “majority” of an
extreme can be easily evaluated by comparing the size
of its characteristic subset Ξ(η, δ) with the sampling
degree χ. The characteristic subset containing at least
χ elements guarantees that in a random sampling of
degree χ, at least one of those elements is going to
survive. If no major extremes can be found for given δ
and χ values, one could consider instead extremes with
characteristic subsets smaller than χ that guarantee
an acceptable chance (e.g. 70%) of survival in case of
sampling (i.e. subset size

χ
> 70%?).

Note: δ and the desired values for χ can be adjusted
such that eventually (in the extreme) all characteristic
subsets feature enough elements to survive a sampling
of degree χ. We should not forget though that we
also aim to minimize the amount of change introduced.
Thus an ideal choice for δ would yield just enough ma-
jor extremes with characteristic subsets large enough
to survive the required level of sampling but no more.
This is a fine data dependent trade-off that needs to
be considered in practice.

Once a major extreme (η) is identified in the current
window, in the second step, a selection criterion is used
in determining weather η is going to be used in the em-
bedding process or not. If H(msb(η, α), k1) mod φ = i
and i ≤ b(wm), then η is considered for embedding bit
i of the watermark, wm[i]. φ ∈ (b(wm), b(wm) + k2)
(k2 > 0) is a secret unsigned integer fixed at embed-
ding time, ensuring that only a limited number (a ra-

tio of b(wm)
φ

) of these major extremes are going to be

selected for embedding. We used this “fitness” selec-
tion criteria also in [19]. It is a powerful tool, de-
riving strength from both the one-wayness and ran-
domness properties of the deployed one-way crypto-
graphic hash, forcing Mallory into a “guessing” po-
sition with respect to watermark encoding location.
The reason behind the use of the most significant bits
of η in the above formula, is resilience to minor al-
terations and errors due to sampling. As discussed
above, the assumption is that for any value x ∈ Ξ(η, δ),
msb(x, α) = msb(η, α).

If the previous step resulted in η being selected,
the next step embeds the wm[i] bit into Ξ(η). This
process is performed as follows. First, a certain bit
position bit = H(msb(η, α), k1) mod β. is selected for
embedding. Next, for each value v ∈ Ξ(η, δ) and in η
itself, that bit position is set to wm[i] and the adjacent
bits are set to false (to prevent overflow in case of
summarization). In other words v[bit − 1] = false,
v[bit] = wm[i] and v[bit + 1] = false. The reasoning
behind modifying an entire subset of items (Ξ(η, δ)) is
to survive summarizations. This is the case if the bit

encoding is such that the average of any combination
of (ν < |Ξ(η)| or less) items in Ξ(η, δ), would preserve
the embedded bit. It is easy to show that this is indeed
the case. Finally, the window is advanced past η and
the process re-starts.

3.3 Detection

For each bit wm[i] in the original watermark wm, let
wm[i]T and wm[i]F be “buckets” (unsigned integers)
which are incremented accordingly each time we re-
cover a corresponding true/false bit wmdet[i] from the
stream. In other words, if the detection process yields
at some point wmdet[i] = false, then the wm[i]F

value is incremented. Similarly, for wmdet[i] = true,
wm[i]T is incremented. At the end of the detec-
tion process, the actual wm[i] will be estimated by
the difference between wm[i]T and wm[i]F , i.e. if
wm[i]T − wm[i]F > υ then the estimated value for
this particular bit becomes wmest[i] = true and con-
versely if wm[i]F −wm[i]T > υ then wmest[i] = false,
where υ > 0. It is to be noted that if detection
would be applied on random, un-watermarked data,
the probability of detecting wmdet[i] = false would
equal the probability of wmdet[i] = true, thus yielding
virtually identical (υ is used to distinguish this ex-
act case) values for wm[i]T and wm[i]F . In this case,
wmest[i] would be un-defined, thus the data considered
un-watermarked. The watermark detection process ef-
fectively relies on discovering a statistical bias in the
true/false distribution for each detected watermark
bit.

wm detect(δ,α,β,wm,k1,φ)
while (true) do

η ← first extreme in win[]
i←H(msb(η, α), k1)modφ
if i ≤b(wm) then

bit ←H(msb(η, α), k1)modβ
if (η[bit]==true) then

wm[i]T ←wm[i]T + 1
else

wm[i]F ←wm[i]F + 1
advance win[] past η

wm construct(wm[]T ,wm[]F ,υ)
for (i ← 0;i < b(wm);i ← i + 1)

if (wm[i]T − wm[i]F > υ) then

wm[i]←true
else

if (wm[i]F − wm[i]T > υ) then

wm[i]←false
else

wm[i]←undefined
return wm[]

Figure 4: Initial Detection Algorithm

Detection starts by identifying the first extreme
η in the current window. The selection criteria de-
ployed in the embedding phase is tested on η. If
H(msb(η, α), k1) mod φ = i and i ≤ b(wm), then η
was likely used in embedding bit i of the watermark,
wm[i]. This bit is then extracted from bit-position
H(msb(η, α), k1) mod β and depending on its value,
the corresponding bucket wm[i]T or wm[i]F is incre-
mented. Finally, as in the embedding case, the window
is advanced past η and the process re-starts.

The detection process does not consider only “ma-
jor” extremes but rather any and all extremes that
can be identified in the stream. The reason behind
this is the fact that the stream could have been sub-
jected to sampling (A2) and/or summarization (A1)



in the meantime. Considering “major” extremes only
and their corresponding characteristic subsets in the
embedding phase was a means to ensure survival to
exactly such transformations. Nevertheless, the detec-
tion process apparently suffers now from the fact that
it also considers extremes that were potentially not
watermarked in the first place, possibly yielding false
watermark readings. At a deeper insight, it becomes
clear that this does not constitute a problem. As the
watermark reconstruction problem relies on a statisti-
cal bias and as this bias is zero in the case of random
data (as discussed above), introducing new, random,
un-watermarked data points into the detection does
not affect the watermark-induced bias at all. This is
yet another reason why this embedding will prove re-
silience to data addition (A5).

4 Improvements

We now discuss improvements to the initial solution,
aimed at boosting its resilience level.

4.1 De-correlation

One particular issue of concern in the above solution
is the fact that because there exists a correlation be-
tween the watermarking alteration (the wm[i] bit) and
its actual location (determined by H(msb(η, α), k1))),
Mallory can mount a special attack with the undesir-
able result of revealing the mark embedding locations.
The attack proceeds by first realizing that, despite the
one-wayness of the deployed hash function H(), in fact,
η is the only variable that determines both the bit em-
bedding location as well as its value. If Mallory would
be able to check for this correlation for each encoun-
tered extreme, it would quickly lead to exposing each
one carrying a watermark bit. But how does he check
for the correlation? Mallory can simply build a set of
“hash buckets” for each separate value of msb(η, α) (if
α is secret the job becomes harder but not impossible)
and count, for each extreme η encountered, which of
the lower β bits of η is set (resp. reset) more often.
For each η for which a bias in one bit position is de-
termined, that particular bit position is considered as
carrying a watermark. Mallory can then simply ran-
domize that position throughout the considered set of
extremes, effectively erasing the global watermark.

Thus, the problem lies here in the correlation be-
tween the actual bit location and the bit value, cor-
relation induced by the fact that a single variable (η)
determines both of these. A fix would ideally rely on a
separate source of information to determine for exam-
ple the location of the embedded bit, independently of
the bit value. Also, this source of information would
need to be consistently recoverable at detection time.
For example, if time-stamp information would be as-
sumed available, i.e. if all the processing and the at-
tacks on the data stream could be assumed to preserve
the time-stamp to value association then the actual

time-stamp would present an ideal candidate, effec-
tively labeling each and every stream extreme uniquely
while at the same time not being correlated (directly)
to these extremes. This unique label could then be
used in computing the bit position for watermark em-
bedding. In the selection of the bit embedding loca-
tion, instead of using bit = H(msb(η, α), k1) mod β
which yields a result correlated to the actual embed-
ded bit value (wm[i], where i = H(msb(η, α), k1) mod
φ) we propose to use bit = H(msb(label(η), α), k1)
mod β where label(η) is the (virtually) unique label
of extreme η. A labeling scheme like this would make
“bucket counting” attacks impossible. In our model
however, timestamps are not assumed to be preserved.
Can we maybe envision a different labeling scheme (at
least) for extremes, that would survive the attacks and
transformations outlined in Section 2.2? We propose
to build it from scratch.

Because the data can be subject to both sampling
and summarization and we would like to enable water-
mark detection also from a finite segment of the data
(see Section 2.2), this task becomes especially challeng-
ing. Sampling and summarization are already survived
(by design) by the extremes selected using the “major-
ity” criteria in Section 2.1. We could maybe make use
of this fact in the labeling scheme. The more chal-
lenging aspect becomes clear when one considers data
segmentation. To support segmentation, the labeling
scheme needs to function based solely on information
available close (in terms of stream location) to the con-
sidered to-be-labeled extreme. Also, labels computed
at detection time from potential segments of sampled
and/or summarized data, need to (at least) converge
to the original ones, as more and more watermarked
data is available.

Let λ be the bit length of the labels resulting in
our labeling scheme. Let % > 1 be an unsigned in-
teger. λ and % are to be secrets, fixed at embedding
time. We propose the following labeling scheme for ex-
tremes. For each extreme i (denoted by its index in the
set of extremes seen so far), let msb(abs(val(i)), α) be
the α most significant bits of that extreme’s absolute
(normalized) data value. Given two extremes i and a
subsequent i + %, we define label bit(i, i + %) = true
iff msb(abs(val(i)), α) < msb(abs(val(i + %)), α) and
false otherwise. Then the label for extreme i + λ,
label(val(i+ λ)) is defined by the bit string composed
of the concatenation of ”1” (binary true) followed by
each and every label bit(j, j + %) in ascending order
of j ∈ (i, i + λ). In other words, an extreme is la-
beled by a certain differential interpretation of some of
the preceding extremes’ values. For example, in Fig-
ure 2 (a), the label for extreme K becomes “110100”
(% = 2). The main role of %’s secrecy is to hide the
actual labeling scheme locations from a potential at-
tacker, making a random-alteration attack necessarily
more damaging to the value of the data, thus increas-



ingly un-successful. To illustrate this, consider for ex-
ample the case where Mallory knows that % = 2. Now
all it needs to do is alter any and only two successive
extremes (in any continuous chunk of 2λ extremes),
just enough to flip one label bit. But now, if % is se-
cret, Mallory has to alter a larger, arbitrary number
of successive extremes. Further improvements are dis-
cussed in Section 5.7.

Before going any further, let us analyze what hap-
pens if an important extreme is “lost”. In other
words, if one extreme i is altered so much that its
α most significant bits flip the msb(abs(val(i)), α) <
msb(abs(val(i + %)), α) inequality, corrupting its cor-
responding label bit. What happens is in fact not too
damaging. The labels that were constructed consid-
ering this particular extreme will be corrupted, until
the detection process encounters again a continuous
sequence of extremes not altered beyond recognition.
We have to realize that Mallory cannot afford altering
extremes to such extents, and the fact that % is secret
makes a random alteration attack the only choice.

In summary, the main purpose of such a labeling
scheme is to ensure that Mallory cannot mount the
“bucket counting” type of statistical analysis attack as
outlined above. Different labels for adjacent extremes
together with the use of one-way hashing completely
defeat such an attack. The labeling scheme provides
an independent, un-correlated source of information
for determining the bit position to be altered. Re-
member that our ability to survive “bucket counting”
type of attacks was dependent on the labels being un-
correlated with respect to the actual extreme values,
while at the same time being virtually unique for each
extreme.

4.2 Repeating Labels

But the finite nature of the considered bit size of the
label poses a certain problem in this respect by nec-
essarily allowing for duplicates (e.g. in the optimal
case only due to “wrap-around” of the λ-sized space)
if the considered data segment is small. For example if
λ = 10 and we label 2000 extremes, on average, if we
are lucky we will have each label repeated only roughly
twice. A more complex analysis needs to also include
data-time behavior, e.g. what is the likelihood of low
to high vs. high to low transitions, given the consid-
ered %? If there is a bias in this data behavior then
the resulting labels are going to contain possibly more
one-bits than zeroes etc. Nevertheless, in summary
our problem is now that, because some labels might
repeat themselves, an unfortunate circumstance could
make it such that enough data for a particular label
becomes available for Mallory to mount yet again a
“bucket counting” attack.

There are two fixes for the above issue. First (i)
the selected size of the considered labels could be kept
secret, within a certain range (e.g. λ ∈ (10, 20)).

There is a trade-off here between the ability to con-
verge in case of data loss and a higher λ value, but
for λ = 20 and % = 3 for example, roughly 3 million
extremes need to pass by before a label is going to
be repeated. Second (ii) once the un-correlated na-
ture of the labels has been established by their in-
dependent information source, we can re-consider the
use of the most significant bits of the extreme values.
If we redefine the labels as a concatenation between
the initial label bit(j, j + 1)-derived labels bit string
and msb(abs(val(i)), α) we (arguably) significantly de-
crease the probability of duplicates.

4.3 Reconstructing Labels

In the initial algorithm, the detection process relied
entirely on proving a certain statistical bias in the un-
derlying data. Labeling, while providing a defense for
the correlation attack, introduces the requirement to
be able to identify major extremes at detection times,
possibly in a summarized and/or sampled stream.
This becomes a challenge as the definition of “major”
does not make sense anymore in the context of a sam-
pled version of the original stream.

We propose the following solution. In a first stage,
the degree of the transformation performed is deter-
mined. In a second stage, the definition of majority
of an extreme is updated to reflect the fact that the
considered stream is already transformed. A major ex-
treme of degree χ and radius δ in the original stream
(x[], ς), becomes a major extreme of degree χ

γ
and ra-

dius δ in the transformed stream (x′[], ς
γ
), where γ is

the degree of the transformation (e.g. summarization,
sampling) applied to (x[], ς). Once we know γ iden-
tifying major extremes in the transformed stream is
simply a matter of considering this updated definition.

But how do we determine γ, the degree of the trans-
formation applied to the stream? In a dynamic stream,
with consistent stream data rates, γ can be determined
by simply dividing the original stream rate to the cur-
rent (transformed) stream rate, γ = ς

ς′
. The more

challenging scenario is to determine the value of γ cor-
responding to a stream for which only a segment is
available. In other words, given a certain segment of a
transformed stream (x′[], ς ′), corresponding to an orig-
inal stream (x[], ς), how do we determine the degree of
the transform(s) applied to (x[], ς) ?

A reasonable assumption that can be made is that
the transform was applied uniformly to the entire
stream, in other words, the entire segment is consis-
tently transformed throughout (with respect to the
original stream data). In this case, one solution would
start by preserving some information about the ini-
tial stream, namely the average size of the charac-
teristic subsets of extremes, for a given δ. Then, in
the transformed segment, extremes are identified and
their average characteristic subset size for the same δ
is computed. It is to be expected (arguably) that in



a transformed (sampled and/or summarized) stream
these sizes would shrink according to the actual trans-
form degree. Dividing the original average character-
istic subset size by the sampled stream average would
thus yield an estimate of the transform degree γ. In
our proof of concept implementation this method is
used successfully. Space considerations prevent fur-
ther elaboration.

4.4 Hysteresis

The labeling features yet another interesting challenge.
While %’s secrecy indeed makes it more difficult on
Mallory to precisely alter extremes so as to flip label
bits, what is to stop him from still altering a large
number of consecutive extremes with the same pur-
pose? This attack is likely not of much concern as the
assumption is that Mallory cannot afford such modi-
fications throughout the data as the required modifi-
cations to flip several consecutive bits are likely quite
significant. Unfavorable data distribution and data se-
mantics preservation are further arguments that Mal-
lory would not be able to deploy such an attack.

Nevertheless, a solution is available and we propose
its use. It proceeds by changing the labeling scheme
as follows: given two extremes i and i + %, we de-
fine label bit(i, i + %) = true iff (msb(abs(val(i))) −
msb(abs(val(i+%)))) < ι− < 0 and label bit(i, i+%) =
false iff 0 < ι+ < (msb(abs(val(i)))−msb(abs(val(i+
%)))). As can be seen, these new formulas induce a hys-
teresis (defined by (ι−, ι+)). Now Mallory is not only
presented with the dilemma of which extremes to al-
ter but also unable to determine what the minimum
change is that would flip the label’s corresponding bit.

4.5 Detecting Bias

But what prevents Mallory from identifying all the
major extremes for which there exists a majority of
(possibly all) items in the characteristic subset with
a certain bit position set to the same identical value?
These extremes would then be (rightfully so) consid-
ered watermark carrying and Mallory could mount a
simple attack of randomizing those bit positions. This
is a serious attack and threatens the validity of the
entire watermarking scheme.

How can we fix this while surviving summariza-
tion? Remember that the main reason behind em-
bedding the same bit multiple times at the same po-
sition in different items in the characteristic subset
was directly mandated by the requirement to survive
summarization. We propose a new approach that sur-
vives summarization and results in alterations effec-
tively appearing random to the eyes of an attacker.
Let Ξ(η, δ) = {x1, x2, ..., xa}. For each i ≤ j ∈ [1, a],

let mij = � u∈[i,j] xu

|j−i+1| . Then we define the characteris-

tic subset bit encoding convention as follows: (i) we say
that a bit value of “true” is embedded in Ξ(η, δ) iff ∀j, i

we have lsb(H(lsb(mij , β), label(η)), ζ) = 2ζ − 1; sim-
ilarly, (ii) we say that “false” is embedded iff ∀j, i we
have lsb(H(lsb(mij , β), label(η)), ζ) = 0, where ζ > 0
is a secret fixed at embedding time. The embedding
method simply alters the least significant β bits in the
values in Ξ(η, δ) until the criteria is satisfied for the
desired to-be-embedded wm[i] bit value. It is to be
noted that these alterations should aim to minimize
the Euclidean distance (or possibly any other desired
distance metric) from the starting point defined by
{x1, x2, ..., xa}. We call this a “multi-hash encoding”.

The use of mij ensures survival to summarization,
while the cryptographic hash provides the appearance
of randomness. But is it feasible to assume that one
could find such a point in the a-dimensional space de-
fined by the items in Ξ(η, δ)? How many computations

are required to at least find one? There are a(a+1)
2

possible mij averages (including all mii = xi values).
For each we consider the last ζ bits of its hash, thus

we effectively have an output space of ζ a(a+1)
2 bits.

The probability that a desired pattern occurs in this

space is then 2−ζ
a(a+1)

2 . Thus, on average, the ex-
pected number of configurations in the input space
that would need to be tested in an exhaustive search
before yielding one that results in the desired output,

is 2ζ
a(a+1)

2 . For example if ζ = 1 and a = 5 we have
215, that is, approx. 32,000 computations would need
to be performed (for each considered major extreme in
the window).

If enough computation power is available with re-
spect to the incoming stream data rate, larger values
for ζ and a could be handled, resulting in an increased
level of court-time persuasiveness. Nevertheless, given
the exponential nature of the increase in required com-
putations for an increasing number of items in the
characteristic subset, it is probably not likely to be
able to exhaustively handle subsets with more than
8 − 10 items efficiently. While out of the scope of the
current paper, the design and use of efficient pruned-
space algorithms would be required to significantly re-
duce these requirements. Alternately, we could deploy
a computation-reducing technique that limits the num-
ber of mij averages for which (i) or (ii) needs to hold
in the subset bit encoding convention above. In other
words, the search process (in the {x1, x2, ..., xa} space)
will be stopped once a certain number of the mij av-
erages feature the desired encoding convention ((i) or
(ii)). We call these mij values “active”. The resulting
decrease in required computation time comes at the
expense of decreased resilience to transforms. More
specifically, the fact that the bit-embedding can only
be “seen” through a limited number of “good” mij ’s
(which feature the appropriate subset bit encoding)
makes it such that detecting the corresponding water-
mark bit in a transformed stream will fail if the stream
does not contain at least one of the “good” mij values.

Note: If such a reducing technique is applied, a de-



sired property would be the ability to survive to as
many levels of summarization as possible. Thus, after
ensuring the subset bit encoding convention for every
mii (original items, so as to survive also sampling), we
propose to “divide” the remaining computing cycles
so as to enable a non-zero probability of bit detec-
tion for any degree of summarization. This would be
achieved, if for any considered summarization degree ν
to be survived, there would exist at least one mij with
|j − i| = ν (ensuring a non-zero probability of this
average to appear in a ν-degree summarized stream)
that allows the extraction of the associated watermark
bit.

5 Discussion

5.1 Analysis

In this Section we are exploring a theoretical analysis
of the vulnerability of our scheme under the following
attack model: Mallory starts to modify randomly ev-
ery a1-th (a1 > 1) extreme (η) in such a way as to
alter a ratio of a2 ∈ (0, 1) of the items in the extreme’s
characteristic subset of radius a3, Ξ(η, a3). (Thus, on
average, Mallory alters only one in every a′1 = a1φ
bit-carrying extremes).

The assumption here is that these alterations do
not impact the asociated labeling scheme, in other
words, they don’t change the “greater than” relation-
ship between extremes used in the labeling process.
An extension considering this case is out of the cur-
rent limited-space scope. Due to space constraints we
are only going to focus on a more “informed” Mallory,
aware of the characteristic subset radius used at en-
coding time. This will strengthen our derived bounds.
In other words, we assume that a3 = δ is known to
Mallory, see Section 3.2.

We propose two ways to analyse the vulnerability
of the proposed solution: (i) looking at how much
an attack “weakens” the encoding, i.e. how many of
the active mij values are actually destroyed divided
by the total number of active ones (making it thus
proportionally harder to detect a watermark in court)
and (ii) what is the probability that all of the active
ones are obliterated ? It can be proven that, for a
given extreme η, for which Ξ(η, a3) = {x1, x2, ..., xa}
the number of corresponding mij values altered is
cm = 1

2aa2(2a − aa2 + 1).
Now, for (i) the “weakening” of the encoding can

be defined as cm × 2
a(a+1) , the ratio of mij values

that are altered from the total number of potential
active ones for each altered extreme. Because one
in every a′1 = a1φ bit-carrying extremes gets im-
pacted, the overall “weakening” factor can be defined
as a1 × cm × 2

a(a+1) . To answer (ii) we first model

this scenario by a sampling experiment without re-
placement. In this experiment, x + t, t > 0 balls are
randomly removed from a bowl with a total of y balls.

The question answered is: if the bowl contained ex-
actly x balls what is the probability that the x + t
removals emptied the bowl of all y black balls. It can

be shown that this is P (x + t, x, y) =
(y−x
t )

(y
x+t)

. In our

model (x + t) = cm, y = a(a + 1) 1
2 and if x = a4y

(only a ratio of a4 of the a(a + 1) 1
2 mij values are ac-

tive) we can compute the probability that all of them
are altered.

Thus, for each attacked extreme we have a non-
zero probability of altering all active mij values and
removing the corresponding watermark bit. Next we
ask, how do these alterations impact our ability to
convince in court and detect a watermark bias in the
resulting data? Because the alteration is necessarily
random (the randomness of the one-way hashes in the
encoding in Section 4.5 guarantee this) we can model
the attack as essentially a random noise addition at-
tack. Evaluating the resilience of any watermark bias
becomes now a matter of asking how many of the em-
beddings actually survive until detection time. Are
there enough of them to actually convincingly recon-
struct the multi-bit watermark after error correction?
In Section 5.3 we look at how the watermark bias be-
comes more convincing in time (and seen data). Loos-
ing a fraction of the mark bit encoding extremes can
be in fact seen as a reduction of the φ value (see Sec-
tion 3.2). If for each of the a′1 = a1φ bit carrying
extremes that are altered by Mallory, the attack suc-
cess probability is given by P (x + t, x, y) , we can
perform a similar reasoning (Section 5.3) with a new
φ′ = φ + a′1 × P (x + t, x, y). What now happens is
that the persuasiveness (court-time convince-ability)
converges proportionally slower. In other words, we
need to see a1 × P (x + t, x, y) more stream data to be
able to provide an equally convincing proof in court.

For example, for a1 = 5, a = 6, a4 = 50%, a2 = 50%
we get the average probability P (15, 10, 21) ≈ 0.85%
of a complete alteration of all the active mij values at
each extreme. This effectively translates in the need
to see only an average of a1 × P (x + t, x, y) ≈ 4.25%
more data to be equally convincing at detection time.

5.2 Surviving Transforms

By construction the method introduced above cer-
tainly survives sampling (A2) up to a degree of χmax =
|Ξ(η, δ)|. Indeed this is so if at least one element in the
characteristic subset of η is to be found in a sampling
of degree χmax. This element can be used in the detec-
tion process to recover the corresponding watermark
bit for η. Higher degrees of sampling are also quite
likely to be survived as there is a non-zero probabil-
ity of elements in Ξ(η, δ) to be in the sampled stream
even for χ > χmax. Due to space constraints we do not
elaborate further. The phenomenon is experimentally
illustrated in Section 6.

Summarization (A1) up to a degree of νmax =



|Ξ(η, δ)| is also handled well by design, for example
due to the use of mij in the bit-encoding procedure
illustrated in Section 4.5. Any summarization of a de-
gree ν ≤ νmax naturally results in at least one of the
mij averages being in the summarized stream. Even in
the initial algorithm, the bit encoding pattern used on
the elements in the characteristic subset ensured sur-
vival of the pattern in the process of averaging (thus
surviving summarization) within the subset. Summa-
rization is experimentally analyzed in Section 6.

How well is segmentation (A3) survived by our so-
lution? More specifically, what is the minimum size of
a stream segment from which we are able to recover
the watermark? For simplicity let us assume a one-
bit watermark, i.e. b(wm) = 1. In the following we
are trying to determine the minimum required size of
a contiguous watermarked stream segment that would
enable a proof more “convincing” than a coin-flip stat-
ing that a watermark is embedded in the data. This
proof would be obtained if we can correctly detect at
least two consistent bits (equal to wm[0]) from two
different extremes found in the segment. In that case,
the probability of a false-positive becomes lower than
a random coin-flip.

But what is the minimum amount of data we need
to see to be able to decode two bits? In the best
case, the two extremes are adjacent and we need to see
enough data to build correct labels for those two ex-
tremes. To build the labels correctly, we need to have
seen all the previous λ% major extremes correctly. Fur-
ther qualitative analysis must be data dependent, for
example if the fluctuating nature of the stream features
a major extreme of degree χ and radius δ for every
ε(χ, δ) data items, then the minimum required size of
a segment enabling watermark detection is ε(χ, δ)λ%.

5.3 Persuasiveness

In this section we analyze the ability of our method to
convince in court. This can be naturally expressed as
follows: given a one bit (e.g. true) watermark, what
is the probability of false positives (Pfp) for the wa-
termark encoding? In other words, we ask: What is
the probability of a one-bit (true) watermark to be de-
tected in a random data stream? If this probability
is low enough, then a positive detection would consti-
tute a strong proof of rights, with a “confidence” of
1 − Pfp. Here we define confidence as the probability
that a given detected watermark was indeed purpose-
fully embedded in the data by the rights owner.

Using the notation in Section 4.5, for each consid-
ered extreme η, the occurrence probability of a “good”
corresponding mij (i.e. encoding “true” with respect
to the bit encoding convention) in a random stream is
naturally 1

2 , because of the cryptographic hash used in

the encoding. There are a(a+1)
2 possible mij averages

(including all mii = xi values). Because for each we
consider the last ζ bits of its hash, we effectively have

an output space of ζ a(a+1)
2 bits. Thus the probability

of the bit “true” being encoded consistently by all of

these becomes 2−ζ
a(a+1)

2 (per extreme). Now, for each
ε(χ, δ) items there is a potential major extreme recip-
ient of a one-bit encoding. Out of these how many are
actually selected for encoding ? As discussed in Sec-
tion 3.2 only a fraction of 1

φ
(because now b(wm)=1)

of them are actually selected for embedding. Thus if
ς is the stream data rate, we can determine the re-
lationship between the time elapsed since we started
reading the incoming stream (t) and the reached level
of persuasiveness, as follows.

If ε(χ, δ) models the average number of items that
need to be read before a major extreme is encoun-

tered, then ε(χ,δ)
ς

represents the average time-interval

“between” major extremes. But only 1
φ

of the major

extremes are selected for embedding, and so the time-
interval between two major extremes that encode the

watermark is φε(χ,δ)
ς

. In a time interval of t we are

thus likely to see tς
φε(χ,δ) extremes.

As discussed above, each major extreme has an as-

sociated probability of false positives of 2−ζ
a(a+1)

2 , thus
if we discover a consistent pattern of embedding in
a time interval t, the probability of a false-positive

becomes Pfp(t) = (2−ζ
a(a+1)

2 )
tς

φε(χ,δ) . For example if
ζ = 1, a = 5, ς = 100Hz, φ = 20%, ε(χ, δ) = 50,
after detecting a bit “true” for only t = 2 seconds we
have Pfp(2) = (2−15)20 ≈ 0 and an associated proof
of rights, with a confidence of close to 100%. Even,
at the limit, when due to transforms such as sampling
and summarization, for each extreme, only one single
mij average survives and the probability of false posi-
tives for each extreme becomes only 1

2 , Pfp(2) becomes
roughly only “one in a million”.

Thus, the method persuasiveness proves to quickly
converge in time to a comfortable level. Space con-
straints do not allow for a more extensive quantitative
analysis. In Section 6 we provide experimental results
for watermark resilience to various transforms, includ-
ing random attacks.

5.4 On-the-fly Quality Assessment

In any watermarking framework, it is important to
preserve structural and semantic properties of the wa-
termarked data. Because by its very nature, water-
marking alters its input, one has to provide a mech-
anism ensuring that these alterations do not degrade
the data beyond usability. Preserving data quality also
requires the ability to express and enforce data con-
straints. Sometimes it is undesirable or even impossi-
ble to directly map higher level semantic constraints
into low level (combined) change tolerances for indi-
vidual data items. The practically infinite set of se-
mantic constraints that can be desired of a given data
set makes it such that a versatile “data goodness” (i.e.



semantically) assessment method is required. Sion et.
al. in [20] introduced this concept in the relational
data watermarking framework. We also propose to
extend our marking algorithm with semantic data con-
straints awareness. Each data property that needs to
be preserved is written as a constraint on the allow-
able change to the dataset, the watermarking process
is then applied with these constraints as input and re-
evaluates them continuously for each alteration. An
“undo” log (quite like the “rollback” log in [20]) is kept
to allow undo operations in case certain constraints are
violated by the current watermarking step (see Figure
5).

The new challenges in this framework are related
to the fact that now, due to storage limitations, any
data quality preservation constraints can only be for-
mulated in terms of the current available data window.
Likely only few window slots can be used to store data
aggregates, possibly including some history informa-
tion to be used in the quality evaluation process but
this will all come at the expense of being unable to
store and process as much new incoming data. Space
considerations prevent us to elaborate further.

5.5 Speed and Finite Window

The proposed watermarking solution is highly adap-
tive to both speed and space constraints. By far the
most computationally intensive operation is the one-
bit encoding operation which alters the characteristic
subset data to conform to the bit encoding convention
defined in Section 4.5. At the expense of embedding re-
silience, this operation can be sped up significantly by
both pruning of the search space or, more importantly,
deployment of a computation-reducing technique as
described in Section 4.5. Depending on the actual
stream rate, these speed-ups can be gradually deployed
to be able to keep up with the incoming data. Alter-
nately, in Section 5.9 we present a (likely faster) en-
coding convention. Additionally, the average amount
of computation to be performed per window-load of
data is defined also by the actual fraction of extremes
“selected” to be bit-carriers. This fraction is deter-
mined by b(wm)

φ
. If the incoming data rate is too high,

φ can be increased to reduce the workload. In Section
5.5 we analyse this issue also from an experimental
point of view.

With respect to space constraints, we believe the
solution is an ideal fit for an on-the-fly finite-window
processing model. The only requirements are: (i) to
be able to detect at least one major extreme at a time
for each window, (ii) to be able to fit its characteristic
subset (or parts thereof) within the same window and
(iii) to have enough remaining space to store some in-
significant amounts of information such as the past %λ
encountered major extremes. Even if the stream be-
havior is such that entire characteristic subsets (if it is
just one of them, we can simply ignore it, we are con-

cerned here with a majority of the extremes) cannot
fit in the current window, the embedding gracefully
handles subsets with fewer elements. Yet another so-
lution would be to adjust δ so as to result in smaller
characteristic subsets. Nevertheless, we believe this is
(arguably) not a concern as most likely the window
would contain severals extremes.

5.6 Offline Detection

As outlined above, the detection process is designed
to function on-the-fly, in one pass over the data and
compute the statistical bias for the embedded water-
mark bits. Time and storage space permitting, would
a offline detection process possibly yield more accu-
racy? In other words, could there be any advantages
to having more memory (e.g. 2 × $) and unlimited
amounts of time in the detection process? The answer
is no. The only improvement that could be achieved
would be in the normalization process. If the actual
data distribution is not known, on-the-fly normaliza-
tion (as discussed in Section 2.2) suffers from the need
to perform an initial (non-detection) “discovery” run
in which (hopefully) enough data is seen so as to con-
struct a reasonable accurate reference data distribu-
tion. Some of the data read in this process would be
lost for detection purposes due to storage space limita-
tions. In the offline detection scenario, if multiple-pass
access is assumed, this data can be used in detection,
effectively enforcing the overall watermark.

5.7 Labeling Made Safer

The safety of the labeling process with respect to an
attack in which Mallory purposefully alters previous
extreme values adjacent to a considered extreme (in
the hope of flipping one bit in the corresponding la-
bel), could be improved as follows. Instead of using %
as a sequential “step” factor in selecting some previ-
ous extremes to construct the current extreme’s (η) la-
bel bits, we could use H(msb(η, α), k1) as a bit-mask,
to select a subset of the past extremes to define the
label. For example out of the past 20 extremes we
select 10 to be used in the 10-bit label computation,
selection based on the last 20 bits of H(msb(η, α), k1)
(if a bit in the bit-mask is “true”, the corresponding
past extreme value is used in the label computation).
This process yields both the benefits of shorter labels
(more resilient overall, see Section 6) and forcing Mal-
lory to consider all 20 bits (instead of 10) in his alter-
ation attack, likely significantly more damaging to the
data. For example, in Figure 2 (a), if the last 5 bits of
H(msb(val(K), α), k1) = “01101” then the 4-bit label
of extreme K would be “1010”.

Yet another resilience enhancing idea for labeling
would be the use of multiple labels instead of just one,
labels constructed using several different subsets of
previously seen extremes. Then embedding/detection



proceed by enforcing the bit encoding convention con-
sidering both labels.

5.8 Summarization Revisited

Massive summarization is often used in scenarios in-
volving storage and processing of streaming data.
Summarization can be viewed as a normalized inte-
gration process. High summarization degrees (ν) are
likely destroying much of the high frequency domain in
the original stream. Often there exists a trade-off be-
tween preserving data of high-granularity in the recent
past and of increasingly lower granularity in the dis-
tant past. The watermarking solution introduced here
survives summarization very well up to high degrees.
However, naturally, distant past data, if summarized
to a higher degree would yield a more degraded ver-
sion of the watermark than recent data. One solution
to this issue would be to embed multiple layers of wa-
termarks for different ν values, e.g. one layer for the
low frequency domain (i.e. small ν values) and an-
other layer for the high frequency domain (i.e. higher
ν values). This would ensure an increasing accuracy
on detection for both higher and lower degree summa-
rizations.

5.9 Alternative Bit Encoding

An (arguably) fast(er) encoding than the use of cryp-
tographic hashes in Section 4.5 could be adapted from
[1]. The method works by altering the β least signif-
icant bits until every one of the longest k pre-fixes of
the whole value (most significant bits included), when
treated as an integer, becomes a quadratic residue
modulo a secret large prime, for embedding a “true”
value and a quadratic non-residue modulo the secret
prime for embedding a “false” value.

6 Experimental Results

We implemented wms.* a Java proof-of-concept of
the watermarking solution. Our experimental setup
included one 1.8GHz CPU Linux box with Sun JDK
1.4 and 384MB RAM.
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Figure 5: Overview of proof of concept implementation.

We implemented also a temperature sensor syn-
thetic data stream generator with controllable param-
eters, including the ability to adjust the data stream

distribution, fluctuating behavior (e.g. ε(χ, δ)) and
rate (ς). This sensor was used in the initial design
phase of some of our experiments because of the abil-
ity to produce various fine-tuned data inputs impact-
ing specific strengths of the encoding.

We explored extensive experiment scenarios, mod-
eling both the behavior of sub-systems such as the
on-the-fly labeling module as well as the overall wa-
termark resilience. Synthetic (temperature sensor
model) and real-world data was used in evaluating our
method.

Because, as discussed in Section 3.3, watermark en-
coding relies on altering a certain secret statistical bias
within the data, when we present resilience results we
refer to the ability to detect and reconstruct this bias
as an overall measure of encoding performance. In
this case, the notion of a “watermark bias” refers to
the number of instances of extremes for which statisti-
cally, the characteristic subset bit encoding convention
(see Section 4.5), yields a positive true-bit embedding
bias. For example, a detected watermark bias of 10
yields a false-positive probability of 1

210 , and an as-
sociated proof of rights with a confidence of roughly
99.9%, as discussed in Section 5.3.

Unless specified otherwise, the experimental re-
sults presented here refer to an underlying normalized
stream with values distributed normally with a mean
of 0 and a standard deviation of 0.5. The fluctuating
behavior of the stream was determined by an average
ε(χ, δ) = 100 (100 items per each major extreme) and
ς = 100Hz (100 items per second). Other parameters
include: φ = 3, α = 16, β = 16, υ = 2, k1 was cho-
sen by a random number generator. Whenever exact
quantitative results are shown, they refer to a data
set drawn from about 50 seconds of stream data (i.e.
roughly 5000 data values).

Additionally, when experiments were performed on
real-life test data this is specified in the figure captions.
The real life data sets [15] were obtained from the en-
vironmental monitors of the NASA Infrared Telescope
on the summit of Mauna Kea, at the University of
Hawaii. They represent multiple sets of once-every-
two-minutes environmental sensor (i.e. temperature)
readings at various telescope site locations. The refer-
ence data set used is referring to 30 days worth of data
from the month of September 2003, totalling a num-
ber of 21630 temperature readings (with values on the
Celsius scale roughly between 0 and 35 degrees).

Some of the figures presented in this Section feature
a “spikey” behavior. This is a result of the adaptive
data-dependent nature of the encoding. Different in-
put data sets react differently to sampling for example,
yielding slightly varying behavior at distinct points.
Averaging over multiple inputs would provide a solu-
tion for this issue. Nevertheless, we believe that, while
it might soften the spikes it would also (arguably) tone
down distinct features for a given data set, features



that inter-relate figures. Instead of focusing on local
variations, the figures should be interpreted as quali-
tative samples of global governing trends.

6.1 Random Alterations

In [20] Sion et al defined the epsilon-attack in the rela-
tional data framework, a transformation that modifies
a percentage τ of the input data values within certain
bounds defined by two variables ε (amplitude of alter-
ation) and µ (mean of alteration). Epsilon-attacks can
model any uninformed, random alteration – often the
only available attack alternative. A uniform altering
epsilon-attack (as defined in [20]) modifies τ percent
of the input tuples by multiplication with a uniformly
distributed value in the (1 − ε + µ, 1 + ε + µ) inter-
val. We believe this attack closely resembles (A6), a
very likely combination of (A5) and (A2). In Figures
6 and 7 (µ = 0) we analyze the sensitivity of both
our labeling module and overall watermarking scheme
to such randomly occurring changes, as direct mea-
sures for encoding resilience. In Figure 6 (a), label
alteration increases with an increasing degree of data
change. Smaller label bit sizes seem to better survive
such an attack. In Figure 6 (b), as the percentage of
altered data items increases, the labeling scheme nat-
urally degrades.
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Figure 6: Label alteration for increasingly aggressive uni-
form altering epsilon attacks. (a) Different label bit sizes
shown. A smaller label size seems to survive better. (b)
Different altered data percentages shown. Naturally, al-
tering a larger amount of data results in increasing label
alterations.

In Figure 7, an embedded watermark (bias) is de-
tected in a randomly altered stream. Naturally, an
increasing distortion results in a decreasing bias de-
tection. Nevertheless, it is to be noted that the en-
coding scheme proves to be quite resilient by design,
for example for τ = 50% of the data altered within
ε = 10% (Figure 7 (b)), the detected bias is still above
25, yielding a false-positive rate of less than “one in
thirty million”.

6.2 Sampling and Summarization

The ability to survive summarization (A1) and sam-
pling (A2) is of extreme importance as both are ex-
pected common domain-specific transformations oc-
curring for example in the process of data storage.
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Figure 7: Watermark survival to epsilon-attacks. (a) Nat-
urally, increasing τ and ε values result in a decreasing wa-
termark bias. (b) Same phenomena shown for ε = 10%.
(real data)

In Figure 8 the labeling algorithm is evaluated with
respect to (a) sampling and (b) summarization. Intu-
itively, a higher label bit-size results in an increased
fragility to sampling. Summarization seems to be nat-
urally survived by our design. For example, a summa-
rization of the data down to 5% (ν = 20) still preserves
over 20% of the original label values, thus conferring
a strong back-bone to the watermark embedding pro-
cess.
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Figure 8: (a) Label resilience under sampling conditions.
A higher label bit-size naturally yields an increased fragility
to sampling. (b) Label alteration for summarization of
increasing degree.

The behavior of the watermark encoding algorithm
to sampling and summarization is outlined in Figure
9. Both transformations are survived extremely well,
likely due to the design of the characteristic subset bit
encoding which handles them naturally.
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Figure 9: (a) Watermark survival to summarization. An
increasing summarization degree results in a decreasing de-
tected watermark bias. (b) Watermark survival to sam-
pling. An increasing sampling degree results in less water-
mark bias, still enough to convince in court (e.g. a bias of
10 ensures a true-positive probability of 99.999%)



6.3 Segmentation. Combinations

In Section 5.2 we theoretically assessed the ability of
our scheme to survive segmentation (A3), by answer-
ing the question: what is the minimum size of a stream
segment from which we are able to recover the wa-
termark? In Figure 10 (a) we analyze the impact of
actual recovered segment size on the detected water-
mark bias. From a segment of only 2000 stream values
we can detect a watermark bias of 10, corresponding
to a very convincing low false positive rate of roughly
0.001.
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Figure 10: (a) Watermark survival to segmentation. With
decreasing segment size, the detected watermark bias is
degraded. Nevertheless, for example, a bias of 50 ensures a
virtually zero false positive rate (2−50), thus being entirely
convincing in court. (b) Watermark survival to combined
sampling and summarization (real data).

In Figure 10 (b) we outline the impact of a combined
transformation (sampling and summarization) on the
watermark embedding. Because of the nature of both
transformations and of the resilience featured in each
case, the combination seems to be survived equally
well. For example, a 25% sampling, followed by a 25%
summarization process still yields a watermark bias of
up to 20, corresponding to a low false-positive rate of
“one in a million”.

6.4 Overhead and Impact on Data Quality

As mentioned in Section 5.5 our solution is naturally
designed for stream processing. It is of importance
to assess this ability also in practice. We performed
experiments aimed at evaluating the introduced water-
marking computation overhead. Unless specified oth-
erwise, we used the multi-hash encoding discussed in
Section 4.5 and parameters set such that the resulting
watermark survives 100% any combined sampling and
summarization up to a degree of 6.

First, we compared the computing times required
by the watermarking process with the times spent in a
simple read and copy model in which each stream item
is read and copied to an output port (with fixed writ-
ing time-cost). We obtained consistent value classes
clearly identifying each of the separate encoding meth-
ods presented. It became clear that, as expected, the
majority of time is spent in the actual bit encoding
convention routine (and not as much in the labeling

module). Not surprising, the encoding convention in-
troduced in Section 3.2 performed fastest with an av-
erage of only 5.7% increase in processing times per
stream item. The poorest performer was the more
complex multi-hash routine in Section 4.5 with an av-
erage increase of over 1000%, as expected decreasing
almost perfectly exponential with the decrease of the
guaranteed resilience (see Figure 11 (a)).

There are two lessons to be learned here. First, dif-
ferent encodings should be used for different scenarios
with associated value models. For example for a tem-
perature stream with a likely average reading rate of
under 1Hz, deploying the multi-hash encoding routine
for high resilience would be best suited whereas in a
very fast streaming scenario the encoding in Section
3.2 would perform much better. Additionally, subject
to future research is the issue of better pruning algo-
rithms as discussed in Section 4.5.
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Figure 11: (a) Computation overhead (iterations) in
multi-hash encoding increases with increasing guaranteed
resilience (e.g. sampling degree) levels (logarithmic scale).
(b) Decreasing the number of considered bit-encoding ex-
tremes (increasing φ) decreases the impact on mean and
standard deviation in the watermarked data.

We also performed experiments evaluating the im-
pact of our encoding on data quality. More specifically
we analysed the alterations incurred by the mean and
standard deviation of the stream data. For the above
parameter settings, over a large number (12000+) of
runs over the real (and synthetic) data sets, the value
of the mean of the watermarked stream varied less than
a mere 0.21% average from the original. The alteration
to the standard deviation also maintained itself nicely
within 0.27% of the original data. There exists a cer-
tain tunable trade-off between attack/transformation
resilience and the incurred alterations. A lower level
of resilience would definitely yield less required mod-
ifications to the data and an associated lower impact
in the global statistics. In Figure 11 (b) we show how
decreasing the number of considered bit-encoding ma-
jor extremes decreases the impact on the average and
standard deviation in the resulting stream.

Due to the random nature (with respect to the
stream data values) of the encoding specifics we ex-
pected a virtually zero impact on such statistics over
the longer term. While we observed a certain conver-
gence to zero, it had not as fast a pace as expected;
we were actually not able to actually reach the zero-



impact point. We suspect this is due to a bias in-
troduced by the MD5 hash implementation used in
our proof of concept, although the complex nature of
the multi-hash embedding used (see Section 4.5) might
also hold some of the answers. We are further inves-
tigating this. Space constraints do not allow for more
details.

7 Conclusions.

In the present paper we introduced the issue of rights
protection for sensor streams. We proposed a water-
marking solution, based on novel ideas such as on-the-
fly labeling and watermark encoding, resilient to im-
portant domain-specific transforms. We implemented
a proof of concept of the proposed solution and eval-
uated it experimentally on real data. The method
proves to be extremely resilient to all considered trans-
forms, including sampling, summarization, random al-
terations and combined transforms. In upcoming re-
search we propose to analyze streams of categorical
data, to investigate other aggregates (instead of aver-
ages) in the summarization process (e.g. min, max,
most likely value) and to experiment with alternative
resilient and fast(er) bit-encodings.
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