
CERIAS Tech Report 2003-46
Assuring privacy when big brother is watching

 by Christopher Clifton
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Assuring Privacy when Big Brother is Watching

Murat Kantarcıoĝlu Chris Clifton
Department of Computer Sciences

Purdue University
250 N University St

West Lafayette, IN 47907-2066

{kanmurat, clifton}@cs.purdue.edu

ABSTRACT
Homeland security measures are increasing the amount of
data collected, processed and mined. At the same time, own-
ers of the data raised legitimate concern about their privacy
and potential abuses of the data. Privacy-preserving data
mining techniques enable learning models without violating
privacy. This paper addresses a complementary problem:
What if we want to apply a model without revealing it?
This paper presents a method to apply classification rules
without revealing either the data or the rules. In addition,
the rules can be verified not to use “forbidden” criteria.

Keywords
Privacy, Security, Profiling

1. INTRODUCTION
The new U.S. government CAPPS II initiative plans to clas-
sify each airline passenger with a green, yellow or red risk
level. Passengers classified as green will be subject to only
normal checks, while yellow will get extra screening and red
won’t fly. [2] Although government agencies promise that
no discriminatory rules will be used in the classification and
that privacy of the data will be maintained, this does not
satisfy privacy advocates.

One solution is to have the government send the classifica-
tion rules to the owners of the data (e.g., credit reporting
agencies). The data owners would then verify that the rules
are not discriminatory, and return the classification for each
passenger. The problem with this approach is that reveal-
ing the classification rules gives an advantage to terrorists.
For example, knowing that there is a rule “A one-way ticket
paid in cash implies yellow risk”, no real terrorist will buy
one way tickets with cash.

This appears to give three conflicting privacy/security re-
quirements. The data must not be revealed, the classifier
must not be revealed, and the classifier must be checked for
validity. Although these seem contradictory, we show that
if such a system must exist, it can be done while achieving
significant levels of privacy. We prove that under reasonable
assumptions (i.e., the existence of one way functions, non-
colluding parties) it is possible to do classification similar
to the above example that provably satisfies the following
conditions:

• No one learns the classification result other than des-
ignated party.

• No information other than the classification result will
be revealed to designated party.

• Rules used for classification can be checked for the
presence of certain conditions without revealing the
rules.

While such a system still raises privacy issues (particularly
for anyone classified as red), the security risks are signif-
icantly reduced relative to a “give all information to the
government” (or anyone else) model.

2. RELATED WORK
This work has many similarities with privacy-preserving dis-
tributed data mining. This was first addressed for the con-
struction of decision trees[11]. This was based on the con-
cepts of secure multiparty computation (discussed below.)
There has since been work to address association rules in
horizontally partitioned data[6; 7], EM Clustering in Hori-
zontally Partitioned Data[10], association rules in vertically
partitioned data[13], and generalized approaches to reducing
the number of “on-line” parties required for computation[8].
However, the goal in this paper is not to learn a data mining
model, but to privately use a model. (The other approach
to privacy-preserving data mining, adding noise to data be-
fore the mining process(i.e [1]), doesn’t make sense when the
goal is to privately evaluate the results of the model on spe-
cific data items.) A good survey of privacy and data mining
can be found in [9].

2.1 Secure Multiparty Computation
In the late 1980’s, work in secure multiparty computation
demonstrated that a wide class of functions can be com-
puted securely under reasonable assumptions (see Theorem
2.1.) We give a brief overview of this work, concentrating on
material that is used later in the paper. For simplicity, we
concentrate on the two party case. Extending the definitions
to the multiparty case is straightforward.

Secure multiparty computation has generally concentrated
on two models of security. The semi-honest model assumes
each party follows the rules of the protocol, but is free to
later use what it sees during execution of the protocol to
compromise security. The malicious model assumes parties
can arbitrarily “cheat”, and such cheating will not compro-
mise either security or the results (i.e., the results from the

DMKD’03, June 13, 2003, San Diego, CA, USA. Copyright 2003 ACM 1-58113-763-x page 88

nonmalicious parties will be correct, or the malicious party
will be detected.)
We assume an intermediate model: preserving privacy with
non-colluding parties. A malicious party may corrupt the
results, but will not be able to learn the private data of
other parties without colluding with another party. This is
a realistic assumption for our problem: Both parties want to
get correct results (class of a passenger), and are unwilling
to compromise this goal through malicious behavior. The
real security issue is the potential for misuse of the data
or rules if accidentally released. The risk that a terrorist
would discover rules stored at an airline or credit agency is
much greater than the risk that they would alter the com-
plex software to defeat the system, particularly as altering
the protocol to maliciously learn the rules could be detected
by inserting passengers with known security classes as a con-
tinuous test of the system.
The formal definition of secure multiparty computation[5]
provides a methodology for proving the security of our ap-
proach. Informally, this definition states that a computation
is secure if the view of each party during the execution of
the protocol can be effectively simulated by the input and
the output of the party. This is not quite the same as saying
that private information is protected. For example, assume
two parties use a secure protocol to compare two positive
integers. If A has 2 as its integer and the comparison result
indicates that 2 is bigger than equal other site’s integer, A

can conclude that B has 1 as its input. Site A can deduce
this information by solely looking at its local input and the
final result - the disclosure is a fault of the problem being
solved and not the protocol used to solve it. To prove a pro-
tocol is secure, we have to show that anything seen is not
giving more information then seeing the final result.
Yao introduced secure multiparty computation with his mil-
lionaire’s problem (and solution). Two millionaires want
to know who is richer, without either disclosing their net
worth[14]. Goldreich extended this to show there is a secure
solution for any functionality[5]. The general secure two
party evaluation is based on expressing the function f(x, y)
as a circuit and encrypting the gates for secure evaluation.
This leads to the following theorem:

Theorem 2.1. [4] Suppose that trapdoor permutation ex-
ist. Then any circuit is privately computable (in the semi-
honest model).

Trapdoor permutations can be constructed under the in-
tractability of factoring assumption.
This works as follows. The function f to be computed is first
represented as a combinatorial circuit. Each party sends a
random bit to the other party for each input, and replaces
their input with the exclusive or of their input and the ran-
dom bit. This gives each party a share of each input, without
revealing anything about the input. The parties then run
a cryptographic protocol to learn their share of the result
of each gate in the circuit. At the end, the parties combine
their shares to obtain the final result. This protocol has
been proven to produce the desired result without disclos-
ing anything except that result.

3. PRIVATE CONTROLLED CLASSIFICA-
TION

We first formally define the problem of classifying items us-
ing decision rules, when no party is allowed to know both the
rules and the data, and the rules must be checked for “forbid-
den” tests. This problem could be solved using the generic
method described above. While we have a construction and
proof of such a circuit, it is omitted due to space constraints.
Instead, we present a comparatively efficient approach based
on the notion of an untrusted third party that processes
streams of data from the data and rule sources.

3.1 Problem Statement
Given an instance x from site Data with v attributes, we
want to classify x according to a rule set R provided by
site Government. Let us assume that each attribute of x

has n bits, and let xi denotes the ith attribute of x. We
assume that each given classification rule r ∈ R is of the
form (L1∧L2∧· · ·∧Lv) → C where C is the predicted class
if (L1 ∧ L2 ∧ · · · ∧ Lv) evaluates to true. Each Li is either
xi = a, or a don’t care (always true). (While the don’t
care clauses are redundant in the problem definition, they
will need to be included explicitly in the protocol to mask
the number of clauses in each rule. By using don’t cares,
G can define rules with an arbitrary number of clauses; the
other parties gain no information about the number of “real”
clauses in the rule.) We assume that for any given x only
one rule will be satisfied.

In addition, D has a set F of rules that are not allowed to be
used for classification. In other words, D requires F ∩R = ∅.
The goal is to find the class value of x according to R while
satisfying the following conditions:

• D will not be able to learn any rules in R,

• D will be convinced that F ∩ R = ∅ holds, and

• G will only learn the class value of x and what is im-
plied by the class value.

3.2 Untrusted Non-colluding Site
To achieve a solution that is both secure and efficient, we
make use of an untrusted, non-colluding site. Use of such
a site was first suggested in [3]. Application to privacy-
preserving data mining was discussed in [8]. The key to such
a site is that without active help from one of the other sites it
learns nothing, although by colluding with other sites it may
be able to obtain information that should not be revealed.
Thus, the only trust placed in the site is that it will not col-
lude with any of the other sites to violate privacy. Although
this seems like a strong assumption, it occurs often in real
life. For example, bidders or sellers on e-bay assume that
e-bay is not colluding with other bidders or sellers against
them. In our approach, the untrusted site learns only the
number of literals v, the number of rules |R|, and how many
literals of a given rule are satisfied. It does not learn what
those literals are, what the class is, how they relate to liter-
als satisfied by other rules or other data items, or anything
else except what is explicitly stated above.

3.3 Commutative Encryption
A key tool used in this protocol is commutative encryp-
tion. An encryption algorithm is commutative if the follow-
ing two equations hold for any given feasible encryption keys
K1, . . . , Kn ∈ K, any item to be encrypted m ∈ M , and any

DMKD03: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003 page 89

permutations of i, j: ∀m1, m2 ∈ M such that m1 6= m2

EKi1
(. . . EKin

(m) . . .) = EKj1
(. . . EKjn

(m) . . .) (1)

and for any given k, ε < 1
2k

Pr(EKi1
(. . . EKin

(m1) . . .) = EKj1
(. . . EKjn

(m2) . . .)) < ε

(2)

Commutative encryption is used to check if two items are
equal without revealing them. For example, assume that
party A has item iA and party B has item iB . To check if
the items are equal, each party encrypts its item and sends it
to the other party: Party A sends EKA(iA) to B and party B
sends EKB (iB) to A. Each party encrypts the received item
with its own key, giving party A EKA(EKB (iB)) and party
B EKB (EKA(iA)). At this point, they can compare the en-
crypted data. If the original items are the same, equation
1 ensures that they have the same encrypted value. If they
are different, equation 2 ensures that with high probability
the encrypted values are different. During this comparison,
each site sees only the other site’s encrypted value. Assum-
ing the security of the encryption, this simple scheme is a
secure way to check equality.

One example of a commutative encryption scheme is Pohlig-
Hellman [12], based on the assumption of the intractability
of the discrete logarithm problem. This or any other com-
mutative encryption scheme will work for our purposes.

3.4 Protocol for Private Controlled Classifica-
tion

We now show how to solve the problem presented in Section
3.1 between sites D, G, and an untrusted, non-colluding
site C, where C learns only the number of attributes v, the
number of rules |R|, and the number of literals satisfied by
each rule for a given instance x.

The basic idea behind the protcol is that sites D and G send
synchronized streams of encrypted data and rule clauses to
site C. The order of attributes are scrambled in a way known
to D and G, but not C. Each attribute is given two values,
one corresponding to don’t care, the other to its true value.
Each clause also has two values for each attribute. One is
simply an “invalid” value (masking the real value). The
other is the desired result, either the a (for a clause xj = a),
or the agreed upon “don’t care” value. C compares to see if
either the first or second values match, if so then either the
attribute is a match or the clause is a don’t care. If there is
a match for every clause in a rule, then the rule is true.
The key is that the don’t care, true, and invalid values are
encrypted differently for each data/rule pair in the stream,
in a way shared by D and G but unknown to C. The order
(is the first attribute the value, or the don’t care value) also
changes, again in a way known only to D and G. Since
all values are encrypted (again, with a key unknown to C),
the non-colluding site C learns nothing except which rule
matches. Since the rule identifier is also encrypted, this is
useless to C.
The protocol operates in three phases: encryption, predic-
tion, and verification. Three methods are used for encryp-
tion, a one-time pad based on a pseudo-random number gen-
erator shared by D and G, a standard encryption method E

to encrypt data sent to C, and a commutative method Ec

for checking for forbidden rules. To aid in understanding
the discussion, a summary of the functions / symbols used
is given in Table 1.

Table 1: Function and Symbol Descriptions
Symbol Description

EK Encryption with key K

EcK Commutative encryption with key K

Rg Common pseudo-random generator shared
by site D, G

x Data item to be evaluated, a vector of at-
tributes xj

A Rules × attributes matrix of encrypted in-
stances created by site D

R[i] Rule i, consisting of clauses corresponding
to attributes of x

B Rules × attributes matrix of encrypted
rules created by site G

nj , (nj + 1) Values outside the domain of jth attribute
i Index for rules
j Index for attributes
σ Index for “match” and “invalid” pairs

Protocol 1 Private classification: encryption phase

Require: D and G share a pseudo-random generator Rg,
G has a private generator Rpg. Rg(k) (Rpg(k)) represents
the kth number generated by the pseudo-random genera-
tors. Let n be a vector of elements where nj and nj + 1
are values out side the domain of xj .
cntd = cntg = cntgp = 0 ;

At site D:
Kr = Rg(cntd + +);
for i = 1; i ≤ |R|; i + + do

for each attribute xj of x do

σ = (Rg(cntd + +) mod 2)
A[i][j][σ] = EKr (xj ⊕ Rg(cntd + +)) ;
A[i][j][(1 − σ) mod 2] = EKr (nj ⊕ Rg(cntd + +)) ;

end for

end for

send A to site C

At site G:
randomly permute rules in R;
Kr = Rg(cntg + +);
let R[i][j] is ith rule’s jth literal;
let R[i][v + 1] is the predicted class for ith rule;
for i = 1; i ≤ |R|; i + + do

for j = 1; j ≤ v; j + + do

σ = (Rg(cntg + +) mod 2)
if R[i][j] is of the form Xj = aj then

B[i][j][σ] = EKr (aj ⊕ Rg(cntg + +)) ;
B[i][j][(1 −σ) mod 2] = EKr ((nj + 1)⊕Rg(cntg +
+)) ;

else

B[i][j][σ] = EKr ((nj + 1) ⊕ Rg(cntg + +)) ;
B[i][j][(1 − σ) mod 2] = EKr (nj ⊕Rg(cntg + +)) ;

end if

end for

rc = Rpg(cntpg + +);
B̄[i] = (rc, Ekr (rc) ⊕ R[i][v + 1]);

end for

send B, B̄ to site C;

DMKD03: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003 page 90

In the encryption phase, site D first encrypts every attribute
of x using xor with a random number. The xor with random
is effectively a one-time pad to prevent revealing anything
to site C. An additional attribute is added corresponding to
the don’t care condition using the “illegal” value nj not in
the domain of xj . Site G creates encrypted values for each
literal based on whether it must match or is a don’t care.
For the don’t care B[i][j][(1−σ) mod 2] will be the same as
A[i][j][(1−σ) mod 2] (nj xored with the same random num-
ber). G applies a slightly different cryptographic scheme for
class values (again padding with a newly generated random
each time), ensuring C doesn’t see that different rules may
have the same class value. This is necessary to ensure C

doesn’t learn about class distribution of different instances
over multiple runs of the protocol. This is repeated for ev-
ery rule (giving multiple encryptions of the same x, but with
different encryption each time.) The encryption phase is de-
scribe in detail in Protocol 1.

Protocol 2 Private classification: prediction phase

Require: A, B, B̄ be generated and sent to site C.
At site C:
for i = 1; i ≤ |R|; i + + do

if ∀j, 1 ≤ j ≤ v, (A[i][j][0] == B[i][j][0]∨A[i][j][1] ==
B[i][j][1]) then

(rs, cs) = B̄[i];
break;

end if

end for

randomly generate rf

send (rs, cs ⊕ rf) to D and send rf to G;

At site D:
receive (rd, cd) from site C;
send cd ⊕ Ekr (rd) to site G

At site G:
receive r from site C and c from site D

output c ⊕ r as the classification result

Site C compares the vectors to find which rule is satisfied in
its entirety. However, it cannot directly send the prediction
result to site G as this would reveal which rule is satisfied,
since this is the encrypted (and distinct for each rule) value
rather than the actual class. C instead sends the result xored
with a random number to site D. D decrypts this to get
the class, but the true class value is masked by the random
generated by C. Finally G can combine the information it
gets from site C and site D to learn the classification. This
process is fully described in Protocol 2.

3.5 Checking for Forbidden Rules
Protocols 1 and 2 generate the correct classification without
revealing rules or data. Protocol 3 shows how C and D can
test if F ∩ R = ∅ (presumably before D returns the masked
result to G in Protocol 2.)

The main idea of Protocol 3 is that equality can be checked
without revealing the items using commutative encryption.
Since site D knows which random numbers are used by site
G, it can mask F in the same way using those random num-
bers and encrypt with EKr . Site D also gets the masked
R after encryption by site C, encrypts those, and returns
them to C. C now has the double encrypted version of the

Protocol 3 Private classification: verification phase

Require: Let B̄ be the rule set received from G in Protocol 1,
Ec be a commutative encryption method.
At site C:

K = { create 2 ∗ |F | ∗ v random keys }
for i = 1; i ≤ |F |; i + + do

for j = 1; j ≤ v; j + + do
En[i][j][0] = EcK[i][j][0](B[rf][j][0])

En[i][j][1] = EcK[i][j][1](B[rf][j][1])
end for

end for

send En to site D.

At site D:

receive En;
Kd = { create 2 ∗ |F | ∗ v random keys }
for i = 1; i ≤ |F |; i + + do

for j = 1; j ≤ v; j + + do

Ēn[i][j][0] = EcKd[i][j][0](En[i][j][0])

Ēn[i][j][1] = EcKd[i][j][1](En[i][j][1])
end for

end for

Generate Fe, the matrix of encrypted forbidden rules, from F
using the method used by G to generate B from R in Protocol
1.
for i = 1; i ≤ |F |; i++ do

for j = 1; j ≤ v; j + + do

Ef [i][j][0] = EcKd[i][j][0](Fe[i][j][0])

Ef [i][j][1] = EcKd[i][j][1](Fe[i][j][1])
end for

end for

send Ef ,Ēn to site C

At site C:

receive Ef , Ēn;
for i = 1; i ≤ |F |; i + + do

for j = 1; j ≤ v; j + + do

Ez[i][j][0] = EcK[i][j][0](Ef [i][j][0])

Ez[i][j][1] = EcK[i][j][1](Ef [i][j][1])
end for

end for
for i = 1; i ≤ |F |; i + + do

if ∀j, 1 ≤ j ≤ v, (Ēn[i][j][0] == Ez[i][j][0]∨ Ēn[i][j][1] ==
Ez[i][j][1]) then

output that F ∩ R = ∅ does not hold.
end if

end for

DMKD03: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003 page 91

classification rule set R. It now encrypts F . The items can
be compared since Eck1

(Eck2
(A)) = Eck2

(Eck1
(A)).

3.6 Security of the Protocol
To prove that this protocol reveals nothing but the number
of matching literals, we use the secure multiparty computa-
tion paradigm of defining a simulator whose output is com-
putationally indistinguishable from the view seen by each
party during execution of the protocol. This reduces to
showing that the received messages can be simulated; the
algorithm itself generates the rest of the view. During the
encryption phase, D and G receive no messages. Assuming
encryption is secure, output of the encryption is compu-
tationally indistinguishable from a randomly chosen string
over the domain of the encryption output. We can define
the simulator as follows: The simulator randomly generates
numbers and assigns them to As. For Bs, first a number
of locations corresponding to the number of matching liter-
als are chosen at random. For these locations, A[i][j][σ] is
used for B[i][j][σ]. For other locations, random values are
generated.
Assume that the output of the simulator’s As, Bs is not

computationally indistinguishable from the A, B seen dur-
ing the protocol. Let M be the distinguisher. Then M must
be able to distinguish between some A[i][j][σ] and As[i][j][σ].
This means M can distinguish between a random number
and EKr (X ⊕ R), contradicting our secure encryption as-
sumption. For B̄ a similar argument applies.

For the classification phase site D only sees r, d. Since both
of them are random numbers, a simple random number gen-
erator can be used for the simulator. The message G receives
can be simulated using a random number generator (simu-
lating the message from C) and the actual result (result⊕r).
For the verification phase note that what each party sees is
an item encrypted by a random key for each field. Assume
that the places of the literals that are equal is the part of the
final result (changing the order of literals at each execution
prevents this from revealing any real information.) Site C

can use the same simulator given for the encryption phase.
Therefore we can conclude that the method is secure under
the stated assumptions.

In practice the site C would operate in a stream mode, with
D sending each new instance x and G re-encrypting the rules
R. To C these would appear to be continuous streams – the
repetition in R is masked by the random pad. This avoids
C learning anything based on results over multiple instances
(e.g., giving C a single encrypted rule set for all instances
would enable C to learn what rule was most common, even
if it didn’t know what that rule was.)

One interesting advantage to this method over the generic
method is that by colluding (e.g., under a court order), any
two sites could reveal what the third site has. For example
if G does use a forbidden rule, C and D can collaborate
to expose what that rule is. This is not directly possible
with generic circuit evaluation, since a malfeasant G could
delete the keys used in the protocol to permanently hide the
forbidden rule.

4. COST ANALYSIS
Privacy is not free. Keeping the necessary information pri-
vate requires many encryptions for each classification. Given
v literals in each rule both sites G and D perform O(|R| · v)

encryptions in the encryption phase. The prediction phase
requires a single encryption. Verification requires O(|F | ·
v) encryptions. The total number of encryptions is then
O((|R| + |F |) · v).
The communication cost of the protocol is similar. Assume
the size of each encrypted value is t bits. The encryption
phase sends O(|R| ·v · t) bits, and the prediction phase sends
3t bits. In the verification phase the set F is transmitted in
encrypted form, O(|F | · v · t) bits. The total communication
cost is O((|R| + |F |) · v · t) bits.

While the communication cost may seem high, particularly
since this is the cost per instance to be evaluated, it is likely
to work well in practice. Bandwidth is growing rapidly, it
is generally latency that limits performance. This protocol
adapts well to streaming - the small number of messages,
and the fact that each site sends only one per phase, means
a continuous stream of instances could be fed through the
system. The throughput of the system could approach the
bandwidth of the communication network.

Note that the generic circuit evaluation is likely to be signif-
icantly more expensive. We have a circuit construction that
solves the problem with O((|R| + |F |) · v · n)) encryptions
where n is the number of bits to represent a literal. The cir-
cuit size is O(|R| · |F | · v · n) gates, giving a bit transmission
cost of O(|R| · |F | · v · n · t). Due to the necessity of repre-
senting all possible input in the construction of the circuit, a
significantly more efficient approach based on generic circuit
evaluation is unlikely.

5. CONCLUSIONS
As the usage of data mining results for homeland security
and other potentially intrusive purposes increases, privately
using these results will become more important. We have
shown that it is possible to ensure privacy without compro-
mising the ultimate goal.

The protocol presented here is a first cut at addressing this
problem. Developing a practical solution requires additional
work. One example is negative clauses. We have a method
to easily extend this protocol to handle clauses with nega-
tion, however it reveals at least an upper bound on the
number clauses with negation. Developing a more secure
approach, and proving that secure, is an open topic. Other
issues include non-boolean rules (e.g., best match), allow-
ing multiple rule matches, supporting less structured data
formats (e.g., text), and demonstrating practical efficiency.

Continued research in privacy preserving data mining must
take into account not just generating the results, but ef-
ficiently and privately using them. Another research direc-
tion is lower bounds on computation and the communication
cost. We would like to explore the trades off between cost
and privacy. We believe that research can develop methods
to increase security in our lives while sacrificing less privacy
than generally assumed.

6. REFERENCES

[1] R. Agrawal and R. Srikant. Privacy-preserving data
mining. In Proceedings of the 2000 ACM SIGMOD
Conference on Management of Data, pages 439–450,
Dallas, TX, May 14-19 2000. ACM.

[2] Computer assisted passenger pre-screening II program.

DMKD03: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003 page 92

http://www.fcw.com/fcw/articles/2003/0310/news-
tsa-03-10-03.asp.

[3] U. Feige, J. Kilian, and M. Naor. A minimal model for
secure computation. In 26th ACM Symposium on the
Theory of Computing (STOC), pages 554–563, 1994.

[4] O. Goldreich. Secure multi-party computation, Sept.
1998. (working draft).

[5] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game - a completeness theorem for protocols
with honest majority. In 19th ACM Symposium on the
Theory of Computing, pages 218–229, 1987.

[6] M. Kantarcioglu and C. Clifton. Privacy-preserving dis-
tributed mining of association rules on horizontally par-
titioned data. In The ACM SIGMOD Workshop on Re-
search Issues on Data Mining and Knowledge Discovery
(DMKD’02), pages 24–31, Madison, Wisconsin, June 2
2002.

[7] M. Kantarcıoĝlu and C. Clifton. Privacy-preserving dis-
tributed mining of association rules on horizontally par-
titioned data. IEEE-TKDE, submitted.

[8] M. Kantarcioglu and J. Vaidya. An architecture for
privacy-preserving mining of client information. In
C. Clifton and V. Estivill-Castro, editors, IEEE In-
ternational Conference on Data Mining Workshop on
Privacy, Security, and Data Mining, volume 14, pages
37–42, Maebashi City, Japan, Dec. 9 2002. Australian
Computer Society.

[9] Special section on privacy and security. SIGKDD Ex-
plorations, 4(2):i–48, Jan. 2003.

[10] X. Lin and C. Clifton. Privacy preserving clustering
with distributed EM mixture modeling. Knowledge and
Information Systems, Submitted.

[11] Y. Lindell and B. Pinkas. Privacy preserving data min-
ing. In Advances in Cryptology – CRYPTO 2000, pages
36–54. Springer-Verlag, Aug. 20-24 2000.

[12] S. C. Pohlig and M. E. Hellman. An improved algorithm
for computing logarithms over GF(p) and its crypto-
graphic significance. IEEE Transactions on Informa-
tion Theory, IT-24:106–110, 1978.

[13] J. Vaidya and C. Clifton. Privacy preserving association
rule mining in vertically partitioned data. In The Eighth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 639–644, Edmonton,
Alberta, Canada, July 23-26 2002.

[14] A. C. Yao. How to generate and exchange secrets. In
Proceedings of the 27th IEEE Symposium on Founda-
tions of Computer Science, pages 162–167. IEEE, 1986.

DMKD03: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003 page 93

