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Abstract. Identifying interesting changes from a sequence of overhead imagery—as opposed to clutter, light-
ing/seasonal changes, etc.—has been a problem for some time. Recent advances in data mining have greatly
increased the size of datasets that can be attacked with pattern discovery methods. This paper presents a technique
for using predictive modeling to identify unusual changes in images. Neural networks are trained to predict “before”
and “after” pixel values for a sequence of images. These networks are then used to predict expected values for the
same images used in training. Substantial differences between the expected and actual values represent an unusual
change. Results are presented on both multispectral and panchromatic imagery.
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1. Introduction

Detecting changes based on a sequence of overhead
imagery has been studied for some time. As early as
1972, work was done on pixel-by-pixel image differ-
encing [1]. This early approach used intensity scaling,
followed by differencing, to identify changes. How-
ever, such a simple approach is useful only when no
uninteresting changes occur; in wide area overhead im-
agery, this is not the case. Two pictures of the same lo-
cation taken at different times of the year will be quite
different, but most of the changes are a result of natural
effects (e.g., falling leaves). Advances have been made
in change detection, most recently it has been shown to
have promise in such diverse applications as treaty ver-
ification [2] and assessment of environmental impact
[3].

The goal of the research presented in this paper is to
identify unusual changes, without a pre-defined notion
of what is usual or unusual. Instead, neural networks
are used to determine what is an expected change, and
highlight the changes that do not meet these expecta-
tions. The goal is not to understand the change, but to
highlight areas deserving further analysis. Change de-
tection thus serves as a “first pass” in image analysis,
weeding out significant visual differences that are not
likely to be of interest.

An example of the types of changes detected is given
in Fig. 1. The center circle encloses a new road, the left
appears to be a new parking lot, and the right encloses
a ship. They represent changes actually identified by
using the process described in this paper on these im-
ages. There is a bias toward detection of small scale
changes such as the appearance or disappearance of
a feature. Large-scale changes such as a large area of
clear-cut logging are deemed “normal”, in fact trees left
standing are tagged as changes. While not appropriate
for all types of image analysis, tagging small areas of
change for further analysis is useful in a wide class of
problems.

Recently, data mining has given commercial impe-
tus to solving computational issues of pattern discovery
in large data sets. This opens up new possibilities for
applying advanced pattern discovery techniques to im-
age analysis problems. The basic approach of the work
presented in this paper is to use neural networks to
model the expected new value of a pixel based on the
old value. Each point in a region is treated as a vec-
tor of one or more old values and one or more new
values. The or more can come from different views of
the point, different spectral bands of multispectral im-
agery, or even widely different types of imagery such as
visual and radar. The images are thus represented as a
set of point vectors; an artificial neural network (ANN)



216 Clifton

Figure 1. Two images with unusual changes circled.

is then trained to predict the new values from the old
values. The ANN is then used to predict the new values
on the same images; points where the prediction is sig-
nificantly in error are deemed unusual changes. Note
that there is no “training data” as such, the training is
done against the actual test data. It is the ability of neu-
ral networks to generalize, rather than their ability to
learn against a manually-tagged corpus, that is key.

This is a brief overview. Before going into details, a
discussion of prior research will show where this tech-
nique falls in the spectrum of related work. Section 3
gives an example showing specific data requirements
and results. The black box of the process is opened in
Section 4. A discussion of the use of this process (and
the effect of various parameters) is provided along with
more results in Section 5.

2. Background

The imagery and vision communities have a long his-
tory of work on change detection. A survey can be
found in [4], and recent work in [5, 6]. Please refer
to those papers for a full survey, only a quick break-
down of prior work is given here. Change detection
work falls into two categories: Change vector analysis,
and pixel-level comparison. Change vector analysis re-
quires developing a model of what should be in an im-
age (e.g., a vector diagram of buildings and roads). The
actual (new) image is then compared with the diagram,
and differences are highlighted [7, 8]. The necessity
of constructing a vector diagram of what should be
found in a region appears to pose a high overhead, and
would limit this technique to a few locations important
enough to justify constructing a diagram. However, this
presumes that diagram definition is manual. An alter-
native is to develop the diagram automatically [9] (per-
haps independently for the before and after images),
then compare.

Change vector analysis is dependent on the diagram
capturing the types of changes of interest. It requires

that pre-defining what is, and is not, important. An
alternative is to directly compare the images. Earlier
research in direct image comparison suffered from
an inability to filter uninteresting changes. A simple
differencing can be foiled by changes in lighting in-
tensity. Better threshold formulation [10] and scaling
[11, 12] techniques have been developed, but these
still face problems with environmental changes (imag-
ine two pictures of a farming area, before and after
a snowfall—the highly reflective snow versus a dark
plowed field gives a huge difference in intensity, but
not an interesting one).

One approach is to model the expected spectral val-
ues for certain known “interesting items” (such as
buildings and roads) [13], or explicitly model back-
ground noise [14]. Artificial neural networks have been
applied to the change detection problem [3, 15], specif-
ically using images and land use category “training
data” to identify changes in land cover. These tech-
niques still require considerable manual effort to de-
fine what is or is not interesting. In addition, this leaves
the possibility that a pre-conceived notion of what is
interesting may be wrong.

The approach presented here is similar in that a
model is built to describe the expected differences be-
tween images. However, the key difference is that the
model is based solely on what actually appears in the
image. The “expected change” is based on what is com-
mon; an unusual change is simply one that occurs in-
frequently. Therefore a building appearing in the mid-
dle of a farm may show up as unusual, however if
the entire farm is cleared and built over, the change
would be classified as normal. Using the method pre-
sented here, even a non-change can show up as inter-
esting: If an image of grassland in the spring is com-
pared with the same snow-covered grassland the next
winter, but one spot remains green (perhaps due to
heat from an underground structure), the unchanged
spot will be identified. This is because the model
expects based on the images that green (grassland)
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will become white (snow), so a lack of change is
flagged.

Similar techniques have been tried. Morisette and
Khorram [16] make use of generalized linear mod-
els to determine when intensity values between im-
ages are significant enough to constitute a change.
They make use of tagged “training data” with signifi-
cant changes identified, and develop a model based on
those changes. However, limitations of linear models,
and the potential differences between available train-
ing data and the real data of interest, limit applicability
of their technique. Bruzzone and Prieto [17] employ
Bayesian decision theory to set thresholds for change,
helping to overcome limitations of a linear model. The
method presented in this paper shares a similarity with
theirs that both use change of neighboring pixels to
determine if a change is significant, and appears more
applicable to detecting small-size, localized changes.
Schaum and Stocker [18] utilize a sequence of images
to determine expected changes, then identify inserted
man-made objects as deviations from the expected
changes. Their technique is able to detect sub-pixel
changes (as low as 1.6% of a pixel). However, it also
requires extremely high-quality image registration.
Their technique is more applicable to detecting small
items (e.g., a vehicle), rather than wide-area, long-term
changes.

Data mining technology has been previously applied
to other imagery problems. The SKICAT [19] applied
data mining technology to the classification of astro-
nomical objects, discovering new types in the process.
JARtool [20] looked for specific features in overhead
images; a specific application was identifying volca-
noes on Venus. Birch [21] used data mining technology
to study foliage. A closer application to the one pre-
sented here was Quakefinder [22], which looked for a
specific type of change (earth movements) in overhead
imagery. One aspect of Quakefinder that is particularly
relevant to this paper is the ability to accurately register
different images; this is discussed in Section 3.1.

3. Data Requirements

The change detection process presented in this paper
finds locations with unusual spectral intensity changes.
A location is modeled as a real-valued vector of n be-
fore values and m after values. An image is a collec-
tion of these vectors. The values of n and m are de-
termined by the imagery available. For example, given
two Landsat-TM images of the same location, taken at

different times, then m = n = 7, corresponding to the
7 spectral bands of Landsat-TM imagery.

The corresponding case for panchromatic imagery
(a single before and after image), gives m = n = 1.
Using a single before and after value to represent a
location is insufficient for the method presented here.
However, the process presented here is not limited to
multi-spectral imagery; additional information on a lo-
cation can come from multiple images (either at dif-
ferent times, or from different views) for both before
and after shots. It is also possible to use imagery of
different types, such as a Landsat-TM before image
(m = 7) and two panchromatic views as an after image
(n = 2).

The vectors represent locations, not pixels. The sim-
plest approach is to use a pixel as a location. However,
better results are achieved when the resolution used
is relative to the size of an “interesting feature”. For
example, if the goal is to find changes in permanent
structures (e.g., roads, buildings), a typical feature is
roughly 10 meters in the smallest dimension. If a ve-
hicle in an unusual place, say, the middle of a field, is
considered interesting, feature size would be roughly
2 meters. The change detection process presented here
works best when the size of a location is roughly one
third to one half the smallest dimension of a feature.
(This agrees with the findings of Roy [23].) In many
cases, it is okay to use a coarser resolution than the
pixels of the raw imagery.

3.1. Image Registration

The primary difficulty with the approach presented here
is the need for image registration. To build a vector
for a location, that location must be identified on all
of the images. This will generally require warping the
images to a common standard orthorectification. Al-
though techniques for automatic image registration are
known [22, 24, 25], it is non-trivial to achieve pixel-
level matching (although this is improving, see [26]).
However, as discussed in the preceding paragraph and
shown in the example in Section 5.2, pixel-level reso-
lution is not usually necessary. Therefore registration is
only needed to within a few pixels, based on the size of
a “location” or feature. The ability to work with poorer
than pixel-level registration is significant, as previous
studies have shown accuracy losses of 50% with less
than one pixel misregistration [27, 28].

In the experiments presented here, images were
manually orthorectified. The Landsat-TM images
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Figure 2. Overview of the change detection using neural networks process.

required only a slight vertical and horizontal transla-
tion. The panchromatic images of Section 5.2 were
taken from a variety of angles, orthorectification was
done using ERDAS IMAGINE [29]. This required se-
lecting several pairs of points in two images that cor-
respond to the same actual locations. IMAGINE then
scales the images so that these points correspond to
the same pixels, stretching intermediate points appro-
priately. The automated techniques referenced above
use similar scaling, but automatically match “features”
(such as lines) instead of relying on manual selection
of points.

3.2. Data Preparation Process

Some of the key issues involved in preparing data have
been outlined above. The specific steps involved are:

1. Select the imagery to be used for before and after,
where the goal is to identify unusual changes hap-
pening between the time ranges represented by the
set of before and set of after images.

2. Select a resolution based on the type of analy-
sis being conducted, i.e., the minimum size of an
interesting feature. The resolution should be one
third to one half of the minimum dimension of a
feature.

3. Orthorectify the imagery to within the chosen reso-
lution (e.g., if the resolution is 10 pixels, orthorec-
tification to within 5 pixels is adequate).

4. Build the vectors representing each location. For
each image, and each spectral band within the im-
age, construct a value by averaging the pixel values
nearest that location (i.e., for a 10 pixel goal res-

olution, average the surrounding 10 × 10 region to
get the value) in that band/image. Note that the dif-
ference between the target resolution and the actual
resolution can be different for different components
of the vector.

The result is a set of vectors, with each vector corre-
sponding to a location in the underlying imagery. An
overview is included in Fig. 2.

Note that the set of vectors is not “training data” in
the usual sense—no definition of what is an interesting
feature or unusual change has been provided. The next
section shows how the data serves as both training and
test data.

4. Process

The meaning of change is subjective, making the meth-
ods for change detection difficult to define and eval-
uate. For purposes of this work, change is defined
as follows: Given a set of component details D =
{d1, . . . , dn}, di ⊆ � and a set of location identifiers
L ⊆ �, an image is a set of vectors (l, c1, . . . , cn) where
l ∈ L and ci ∈ di . Given two images A and B, a vector
pair is the vector (l, (cA1, . . . , cAn), (cB1, . . . , cBn))
where (l, cA1, . . . , cAn) ∈ A and (l, cB1, . . . , cBn) ∈
B. An unusually changed location lu is a location
where the vector (cA1, . . . , cAn) is similar to the cor-
responding cA vector in other vector pairs, but the
(cB1, . . . , cBn) vector is significantly different (or vice-
versa). The notion of “similar”, “significantly dif-
ferent”, or even “location” is open to considerable
interpretation—it is variations in these that lead to dif-
ferences in what is considered an interesting change.
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The change detection process consists of several
steps. A high level outline of the process is given first,
before proceeding to the details of each step. Figure 2
gives a block diagram of the entire process, including
the data preparation of the previous section.

1. Build several models to predict the “after” vectors
based on the “before” vectors. The models are Arti-
ficial Neural Networks, trained on the location vec-
tors constructed in Section 3.2. A more complete
description is given in Section 4.1.

2. Feed the “before” vectors into the models built in
step 1 to obtain predicted after vectors.

3. Use the predictions from step 2 for each location to
construct a range of expected values for each com-
ponent of the “after” image at that location, as will
be described in Section 4.2.

The above steps are then repeated, switching the “be-
fore” and “after” vectors (i.e., get an expected range
for the before values based on the after values).

4. Compare the actual values (both before and after)
with the range of expected values for each location.
If a significant number of the values (discussed in
Section 4.2) are outside the range of expected val-
ues, the location is marked as a potential change.

5. For each potential change, look for potential
changes in the surrounding locations. If a signif-
icant number of potential changes are found, the
location is marked as a change.

To support scaling, the image is divided into several
overlapping regions, such that each location appears in
four regions. The above steps can be performed on each
region in parallel. A location is flagged as an unusual
change only if it marked a change in two of the four
regions, as will be discussed in Section 4.3.

The remainder of this section discusses the above
steps in more detail.

4.1. Expected Change Prediction

The changed detection process presented in this paper
makes use of a quickprop-trained neural network as
a predictor. Studying the use of other predictive data
mining techniques is an area for further research; de-
cision tree approaches have not proven successful, but
there are other possibilities.

First, a neural network is trained on one half of the
data, using the other half as an evaluation holdout set.
The minimum error achieved on the holdout set is used
as a target error. A model is then trained on the entire
set until the target error is reached. Specifically:

Determine Target Training Error

1. Randomly divide the data into equal-sized training
and holdout sets.

2. Construct a three-layer sigmoidal neural network,
with the number of input nodes equal to the size of
the “before” vector for a location, and output nodes
corresponding to the “after” vector. The appropriate
number of hidden nodes grows as the size of the data
set increases, 11 works well for a 10,000 location
set. Seed the initial weights in the network with
random values. A sample network for Landsat-TM
data (as used in Fig. 1) is given in Fig. 3.

3. Train the network (using QuickProp [30]) until a
minimum on the holdout set is found:

(a) Run a training pass across the training set.
(b) Input the “before” vectors of the holdout set

to the network (feed-forward), and compute
the root-mean-squared error between the out-
put and the “after” vectors.

The above process continues for 2n training epochs,
where n is the epoch where the minimum error on
the holdout set was found. This allows the algorithm
to train past local minima.

4. Save the minimum error found.

The above process is repeated three times. The saved
minimum errors are averaged to obtain a target training
error.

Train Final Network. Construct and train a network
as above, but train on the entire data set. Training con-
tinues until the error (on the entire data set) equals the
target training error determined above.

The training technique described above is a stan-
dard technique to avoid over-specificity and obtain a
final network that can be expected to generalize. Over-
training would in theory result in a network capable
of predicting every value in the training set, thus giv-
ing no unusual changes; training to get a network that
could be expected to generalize to imagery with similar
characteristics alleviates that problem.

ANNs give a single set of output values (predictions)
for each set of input values. However, some features are



220 Clifton

Figure 3. Example neural network for landsat-TM data.

more varied in their changes than others—a deciduous
forest may go from green in the summer to red and
yellow in the fall, while a farm field goes from uni-
form green to uniform brown. To capture the variation,
a range of expected output values (predictions) is ob-
tained by training multiple neural networks. The above
process is repeated, using different random values to
seed the network each time, to give several predictions
for each location. For spectral values corresponding to
terrain where the changes are consistent, such as water
or pavement, the predictions from the networks will
be close to each other. However, for spectral values
corresponding to difficult to predict terrain (such as
plowed fields, that may have different types of crops
in later pictures), the predictions from the separate net-
works are likely to be farther apart. Since each network
starts with a different set of random weights, and stops
at a local minima, for difficult to predict spectral val-
ues the networks may not reach the same local min-
ima. The range of predictions is used to automatically
vary the threshold for declaring an unusual change
based on terrain type, without any preconceived notion
of terrain type. Training five networks was sufficient to
get a good range of predictions for the tests shown in
Section 5. The use of these five predictions to determine
unusual changes is described in the next section.

The experiments discussed here used the NevProp4
package [31] (based on the QuickProp algorithm [30]).
However, the process described could be optimized us-
ing a custom-designed package (computing the target
error once, and reusing it to construct each of the five
final networks, for example).

4.2. Deciding When to Deem Changes Unusual

The neural networks give a range of values for each
vector component of each location. Next, a “prediction
error” is calculated for each component of each loca-
tion as the difference between the actual value and the
average prediction divided by the difference between
the high and low predictions. For each component, the
average and standard deviation of the prediction error
is taken over all locations.

A bad prediction is defined as a location component
where the prediction error is greater than the average
error + k ∗ standard deviation of error for that compo-
nent. Note that the value k can be adjusted; k = 4 works
well and is used for all the results presented in this pa-
per. The results are not too sensitive to this parameter,
however adjustment can be made to give best results for
the type of imagery and analysis being used. Increasing
k results in only more extreme changes being flagged
as unusual.

The next step is to look for corroborating evidence
to get potential changes. The first form of corrobora-
tion is multiple vector components for each location;
the requirement that one third of the components for
a location give a bad prediction is used in the exam-
ples presented in Section 5. Again, the value can be
adjusted to fit the needs of the particular analysis. Note
that the multiple vector components includes both pre-
dictions for each component of the after values based on
the before values, and before values based on the after
values. The meaning of this parameter is most depen-
dent on type of imagery. For example, in multispectral
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imagery a low value would be more effective at detect-
ing camouflaged changes; the camouflage may prevent
detection in most but not all spectral values.

Finally, corroborating evidence in the form of nearby
potential changes is tested. Here the requirement is that
at least two thirds of the locations in a 3 × 3 region to
be potential changes for the center point to be consid-
ered a change. Again, this is an adjustable parameter.
Adjustments here affect primarily the size of unusually
changed features that will be discovered—a 3 × 3 re-
gion finds features of size at least six pixels. For the
man-made features that have been the focus of this
work, using small regions and decreasing resolution
(increasing pixel size) gives better results and faster
computation than using a large region at full image
resolution. A larger region might be appropriate for
changes that are spread across a region, e.g., scattered
damaged or diseased plants in a field where the entire
field is the “feature”.

The three parameters used to determine unusual
change based on the neural network predictions are
summarized in Table 1. The default parameters were
chosen based on empirical study using imagery other
than that presented in Section 5. The effectiveness
on the widely different types of imagery presented in
Section 5 (panchromatic and multispectral imagery of
vastly different resolutions) suggests that the defaults
are good choices. Figures 6–8 and 16–18 in Section 5
show the effect of varying these parameters. A key point

Table 1. Parameters for determining unusual change.

Value Calculation Default parameter

Bad prediction Distance between pre- k = 4
diction and value for
a particular component.
Distance must be greater
than average error + k ∗
standard deviation of
error, where average
and standard deviation
are based on errors for
that component in the
image pair.

Component Number of components 1/3 of components
agreement that must have bad pre-

dictions to consider a
location bad

Surrounding Number of surrounding 5 the 8 immediate
changes locations that must be neighbors

bad to consider a loca-
tion an unusual change

is that these parameters are used after the computa-
tionally intensive part of the process, and thus could be
adjusted interactively by a user to obtain results appro-
priate to that user’s particular task.

4.3. Overlapping Regions

Scaling the method presented in this paper poses some
difficulties. As the image grows, so does the num-
ber of “training instances” for the neural network (the
dominating computational factor). Perhaps more im-
portant, larger regions increase the diversity of training
instances, substantially increasing the difficulty of de-
veloping a good model relating the “before” and “after”
images. In addition to the increased training time, di-
versity can pose a logical problem. Two features may
have the same “before” values, but different “after”
values. An example would be an ocean, and a seasonal
lake. By itself, the ocean is highly predictable: It will
remain water. Likewise, a seasonal lake will go from
water (in the wet season) to relatively uniform dirt (in
the dry season). Depending on the relative sizes of the
regions, such differences in normal change can pose
two problems:

1. The “smaller” feature may be dominated by the
larger, and deemed an unusual change; or

2. The two features may be deemed “unpredictable”
(some of the neural networks predict one, some the
other, giving a wide range of possible values). The
result is to miss truly unusual features (e.g., a build-
ing appearing in the middle of a lake).

Note that both of these are instances of this pro-
cess working as expected, it is just the scale that is
off. The human definition of interesting can vary as
well. A source of water disappearing, e.g., a swamp
being drained in preparation for construction, would
probably be of interest. However, a naturally occurring
seasonal lake would not be.

The solution to this problem is to look for changes
relative to a small region. An image is partitioned into
small regions, based on an assumption that a region
is relatively homogeneous: even if something is un-
usual on a global scale, if it is usual in a region it
should be ignored. Other techniques have made the
expectation that changes are most significant relative
to the neighborhood; [32] used multifractal techniques
to inject locality considerations. The choice of region
size is important, however on the test data presented
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Figure 4. Changes detected in Landsat-TM images: Greater Portsmouth, New Hampshire on July 27, 1989.

in Section 5 little difference within the range of 1000–
50000 hectares.

The primary problem is when a feature is unusual
in one region, but common in a neighboring region.
Such locality problems are handled by looking at over-
lapping regions (each location is part of four regions).
Based on experiments a change is deemed to be un-
usual if it is identified as a change in at least two of the
four regions.

Over several tests, the partitioning approach ob-
tained the same results as training a single network on
an entire image. However, the total computational time
was decreased (even though each point is being used
four times). In addition, each region could be processed
independently, allowing the method to be parallelized
across loosely-coupled machines (e.g., a network of
workstations).

5. Sample Results

A pictorial overview of results on two different tests
are presented. The first uses two Landsat-TM (mul-

tispectral) images taken four years apart. The second
uses multiple panchromatic aerial photography images
taken two days apart. These examples demonstrate ap-
plicability to two very different types of imagery.

The formulas used to determine settings for parame-
ters were derived through experimentation on different
images; the parameters presented here were computed
prior to testing on these images.

Rather than marking the locations where unusual
changes were detected (which would obscure the origi-
nal image), the images have been overlaid with “bound-
ing boxes” for the detected unusual changes, shown in
white. These are intended only to support visual evalu-
ation of results, and the method for constructing them
was based on ease/convenience rather than technical
correctness. A production system would use a more so-
phisticated method, such as constructing convex hulls
around high-density regions of changed locations.

However, for completeness the method used is de-
scribed here:

1. Compute all such bounding box regions where at
least 50% of the contained locations are deemed
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Figure 5. Changes detected in Landsat-TM images: Greater Portsmouth, New Hampshire on July 14, 1993.

changed. This creates a bounding box for every lo-
cation, as well as larger boxes containing at least a
50% density of changed locations.

2. Where bounding boxes, replace them with the
smallest rectangle completely containing the over-
lapping boxes.

3. Draw a white line on the image two pixels “outside”
each box generated by the preceding step to avoid
covering the interesting parts. (The resulting lines
may overlap as a result.)

Step 2 has the potential to reduce the density of lo-
cations in a box (especially if the unusual changes
occur on a diagonal), but this did not occur in
the imagery presented—the boxes shown reflect ar-
eas with a reasonably high density of detected
changes.

In addition to a pictorial overview using the
“default” parameter values, statistics on the num-
ber of changes found and on the effect of the
various post-neural-network filtering parameters are
presented.

5.1. Multispectral Imagery

Landsat-TM images consist of six spectral bands cap-
turing light from 0.45 to 2.35 micrometers wavelength
at a 30 meter pixel resolution, and an infrared band
at 120 meter resolution. A detailed description can
be found at [33]. The images used are of Portsmouth,
New Hampshire and the surrounding region. The first
image was taken on July 27, 1989; the second on
July 14, 1993. Figures 4 and 5 show the results on
these images. (Marked changes are duplicated on both
figures for ease of reference.) Many of the changes
near the upper left are obvious to the naked eye. The
lower right change is the new circular road of Fig. 1.
(The other changes detected on the small region of
Fig. 1 were viewed as “common” with respect to the
larger image, and were not shown as unusual.) Of
particular note is the number of visually significant
changes that were not marked. In the lower lower
left corner, there are numerous fields that are green
in the 1989 image, but brown (i.e., plowed) in the
1993 image. The “green to brown” transition was
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Figure 6. Number of unusual changes versus number of standard deviations beyond average error required to declare a bad prediction:
multispectral imagery.

Figure 7. Number of unusual changes versus number of bad predictions required declare a potential change: multispectral imagery.
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Figure 8. Number of unusual changes versus percent of potential changes in adjacent locations required to declare a change: multispectral
imagery.

Figure 9. Number of bad predictions for each Landsat-TM spectral band. Left values are using the before image to predict the after image;
right values are using the after image to predict the before image.
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Figure 10. Reduced resolution display of upper quarter of Fig. 11.

Figure 11. Changes detected in Panchromatic images: Overhead view taken 16:43:05 on 10/25/1993.

automatically factored out as an expected/predictable
change.

There were a total of 79 unusually changed locations
discovered in this test, divided among the 13 regions
shown in Figs. 4 and 5. Figures 6–8 show the effect
(in terms of number of changes discovered) of varying
the parameters for declaring an unusual change. Each
graph varies one parameter, the others are fixed at the

default values of:

Standard deviations 4
beyond average error

Bad predictions 5 (1/3 of 14 predictions, 2 predic-
tions per component)

Percent of adjacent 60%
locations with
potential changes
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Figure 12. Changes detected in Panchromatic images: Oblique view taken 21:15:32 on 10/27/1993.

There was some variation in the value of specific
spectral bands for predicting unusual changes. The
number of “bad” predictions for each band, raw single-
location predictions out of range before filtering based
on the requirement for nearby potential changes, is
given in Fig. 9. More differences between predicted
and actual show up in the lower wavelengths. Also in-
teresting is that the wavelengths that show the most
“bad” predictions are similar even if the after (chrono-
logically) image is used as the input, producing a net-
work to predict the corresponding pixels in the before
image.

Carrying the “before vs. after” comparison through
the filtering process gives 548 unusual changes found
using the old image to predict values in the new im-
age, and 49 using the new to predict the old (versus

79 using both in combination). Note that in the “one-
way” cases, there are only seven predictions, so three
bad predictions were needed to reach the one third
cutoff.

5.2. Panchromatic Imagery

The second example uses panchromatic (grayscale) im-
agery from aerial photographs. The images are much
higher resolution than Landsat (the highest resolution
images are approximately 0.3 meter pixels), but gives
substantially less information for each location. To han-
dle the “too little information” problem, three views
taken on October 25 and two taken on October 27 are
used. This gives multiple datapoints for both the before
and after images.
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Figure 13. Changes detected in Panchromatic images, full resolution: Overhead view taken 16:43:15 on 10/25/1993.

A full description of the image collection can be
found at [34]. The images were manually orthorectified
as described in Section 3.1. The images are not used at
full resolution; each “location” for the change detec-
tion process is composed of the average of a 3 × 3 pixel
square. Figure 10 gives an example of what the image
looks like at the resolution used; compare with the full
resolution image in Fig. 11. Reducing the resolution
discounted “changes” less than approximately 2 meters
across.

All five images used are shown, however changes
from different variations on the process are shown on
the latter three. Except as otherwise noted, the process
used is the full process with default parameters as
described in Section 4, run on the lowered resolution
images.

Figures 11 and 12 give the clearest view of the before
and after images, and highlight the discovered changes.
Note there were only two changed regions. The one in
the upper left doesn’t reflect anything “real”, just an
unusual change in shadowing. The change identified
at the lower left, the arrival of several trucks, is more
interesting.

Note that the cars/parking spaces were not identified
as changes. This is not just a result of the decreased
resolution, even running at full resolution the majority
of the car/parking space changes were ignored (the ex-
ception seemed to be cars parked on some unusually
dark oil spots.) As a comparison, Fig. 13 shows the
changes identified running at full resolution.

The use of “predicting” the before state from the
after state, as well as after from before, cuts false
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Figure 14. Changes detected in Panchromatic images, using only “before” to predict “after”: Oblique view taken 17:19:56 on
10/25/1993.

alarms significantly. Figure 14 demonstrates the results
only using the new images to predict values from the
old. Note the additional “false alarms” in the upper
right, and along the walkway near the top (although
limiting the features in this way does get both the large
and small trucks).

The added information of multiple views isn’t al-
ways necessary. Figure 15 shows the results using just
the images from Figs. 11 and 15, instead of three before
and two after.

There were a total of 108 unusually changed loca-
tions found in these images. Figures 16–18 show the
effect (in terms of number of unusual changes discov-
ered) of varying the parameters for declaring an unusual
change. Each graph varies one parameter, the others are

fixed at the default values of:

Standard deviations 4
beyond average error

Bad predictions 2 (1/3 of the
components)

Percent of adjacent 60%
locations with
potential changes

6. Conclusions and Future Work

This paper has presented a method for identify-
ing unusual changes using overhead imagery. The
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Figure 15. Changes detected in Panchromatic images, only two images used: Oblique view taken 21:19:49 on 10/27/1993.

method presented uses neural networks to model ex-
pected/unexpected change, without prior knowledge
of what is expected/unusual. This provides signifi-
cant benefits relative to model-based methods, as hu-
man effort is only needed to evaluate the identified
changes.

There are disadvantages to the approach presented
here. The types of changes identified are harder to con-
trol. Unusual changes are not always interesting, and
sometimes the items of interest are not unusual. An
example would be a forest that has been cleared—the
method presented here would show trees left stand-
ing as the interesting change, not the area cleared. The
method is probably best used in conjunction with man-
ual analysis or other types of automated analysis, e.g.,
for:

– Prioritizing workload. If the data exceeds the human
resources to process it, looking first at the unusual
changes should provide the best cost/benefit.

– Identifying areas for further processing. Computa-
tionally intensive technologies, such as Automated
Target Recognition (ATR) [35, 36], are best applied
to small images likely to contain such a target. Pass-
ing changes to an ATR system can give these systems
a more focused (and likely of interest) image “chip”
to work on, and speed the search for new targets.

Although further testing is necessary to validate the
method presented here, the success on two widely dif-
ferent types of imagery (low-resolution multispectral,
high-resolution panchromatic) using the same parame-
ters gives confidence that it will work in a wide variety
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Figure 16. Number of unusual changes versus number of standard deviations beyond average error required to declare a bad prediction:
Panchromatic imagery.

Figure 17. Number of unusual changes versus number of bad predictions required to declare a potential change: Panchromatic imagery.
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Figure 18. Number of unusual changes versus percent of potentially changed adjacent locations required to declare a change: Panchromatic
imagery.

of conditions. One type of imagery that would be in-
teresting for further tests would be Synthetic Aperture
Radar (SAR) imagery modeled as a length two vector
(real and imaginary parts of the complex value). There
has been research specifically looking at SAR, and in
many ways parallels visual imagery work (including
model-based methods [37] and differencing [38, 39].)
In addition to direct application to SAR, the approach
presented here could be used to combine SAR and other
types of imagery.

6.1. Further Work

The performance of the method presented here is cru-
cial to its applicability. The primary issue is the neural
network training time; all other steps are O(n) (where
n is the number of pixels). Training time on a 62712
pixel Landsat-TM image varied from 23150 to 50557
CPU seconds on an SGI 10K, averaging 35542 sec-
onds. Training time per epoch/cycle is roughly linear
in the number of pixels, but as the number of pixels
increase, the number of cycles needed to converge in-
creases. Tests of Thinking Machine Corporation’s (now
Oracle Corporation’s) Darwin R© [40] on a smaller im-
age, resulted in substantial improvement (roughly 550

seconds, versus 33000 on comparable ULTRASparc
hardware).

Another possible use would be on sequences of im-
ages. The goal would not be to identify individual
changes between times, but areas undergoing constant
change. Precisely what areas of constant change would
mean, and how to identify them, remains to be deter-
mined.

One possible means of testing is to use synthetically-
generated imagery, enabling a more thorough analysis
of the limitations of this change detection method.
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