
CERIAS Tech Report 2003-37

MONITORING AND CONTROLLING QOS NETWORK
DOMAINS: AN EDGE-TO-EDGE APPROACH

by Md Ahsan Habib

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

MONITORING AND CONTROLLING QOS NETWORK DOMAINS:

AN EDGE-TO-EDGE APPROACH

A Thesis

Submitted to the Faculty

of

Purdue University

by

Md Ahsan Habib

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2003

ii

To my parents

iii

ACKNOWLEDGMENTS

It is my privilege to work with my advisor, Prof. Bharat Bhargava. I would like to

express my sincere appreciation and gratitude to Prof. Bhargava for his guidance, support,

and encouragement during the time of this thesis’s work. Without his support, I would not

be able to overcome many difficulties in my research and this thesis would not have been

possible. He has provided an excellent working environment. I also thank him to let us

work as an independent researcher.

Special thanks to Prof. Sonia Fahmy for her time, ideas, and active involvement with

this research. I remember meeting her days after days to shape things up. Without her great

help, I would not be able to finish my thesis by this time.

I would like to thank Prof. David Yau, Prof. Samuel Wagstaff, and Prof. Wojciech

Szpankowski for serving as committee members, and providing insightful comments about

my research. Discussion with them about this research helps me to address many problems

from different angles.

I am very grateful to Mohamed Hefeeda for his constant encouragement and discussion

about my thesis work. He provided me great assistance in every step of the thesis work.

I want to thank Maleq Khan for his help to analyze many research problems with me.

Without his help, I would not be able to provide a solid analysis of overlay-based distributed

network monitoring. I want to thank Srinivas R. Avasarala and Venkatesh Prabhakar for

their idea to measure delay. Many thanks to Yi Lu, Yuhui Zhong, Weichow Wang, Leszek

Lillen, Florian Baumgartner, and Sarika Agarwal for their ideas and encouragement to

finish this thesis.

Finally, I owe special gratitude to my family for continuous and unconditional support.

Without their support and love for me, I would never achieve my current position.

This research is sponsored in part by the NSF grants ANI-0219110, CCR-001712, and

CCR-001788, CERIAS grants, and IBM SUR grant.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xvi

1 INTRODUCTION AND RESEARCH DIRECTION 1

1.1 Framework to Provide QoS . 1

1.2 Differentiated Services Architecture . 3

1.3 Components to Support QoS and Security 4

1.4 Proposed Research . 6

1.5 Contribution of This Thesis . 9

1.6 Organization of the Thesis . 10

2 NETWORK MONITORING TO DETECT SERVICE VIOLATIONS 12

2.1 Introduction . 13

2.1.1 Monitoring Techniques and Tools 13

2.1.2 DiffServ Framework and QoS Attacks 13

2.1.3 Proposed Monitoring Techniques 14

2.1.4 Our Contribution . 15

2.2 Related Work . 16

2.2.1 Network Security . 16

2.2.2 Network Monitoring . 16

2.2.3 Measurements . 17

2.2.4 Inference . 18

2.2.5 SLA Verification . 18

v

Page

2.3 Architecture for SLA Violation Detection 19

2.4 Core-assisted Monitoring . 21

2.4.1 Delay Measurements . 21

2.4.2 Loss Measurements . 22

2.4.3 Throughput Measurements . 25

2.4.4 Monitoring Algorithm . 25

2.4.5 Experiments: Delay, Loss, and Throughput Measurements 26

2.5 Stripe-based Monitoring . 30

2.5.1 Loss Inference . 31

2.5.2 Loss Inference for Active Queues 32

2.5.3 Monitoring Algorithm . 34

2.5.4 Experiments and Results . 36

2.5.5 Experiments: Detecting Attacks and SLA Violations 38

2.6 Overlay-based Monitoring . 40

2.6.1 Identifying Congested Links . 41

Simple Method . 43

Advanced Method . 50

2.6.2 Monitoring Algorithm . 54

2.6.3 General Network Topology . 55

Tree Conversion . 55

Impact on Performance . 56

2.6.4 Limitations of Overlay-based Monitoring 57

2.6.5 Experimental Results . 58

2.6.6 Local vs. Global Congestion 61

2.7 Detecting Violations and Attacks . 61

2.8 Flow Aggregation and Filtering . 63

2.9 Experiments: Detecting DoS Attacks 63

2.10 Advantages of Overlay-based Monitoring 64

vi

Page

2.11 Comparative Evaluation . 66

2.12 Conclusion . 66

3 DOS ATTACKS: DETECTION AND PREVENTION 69

3.1 Introduction . 69

3.2 Approaches to Defeat DoS Attacks . 71

3.2.1 DoS Attacks . 72

3.2.2 Detection Approaches . 74

ICMP Traceback . 74

Packet Marking . 75

3.2.3 Prevention Approaches . 76

Ingress Filtering . 77

Route-based Filtering . 77

3.3 Monitoring to Detect Service Violations and DoS Attacks 78

3.3.1 Core-assisted Monitoring . 79

3.3.2 Edge-based Monitoring . 79

3.3.3 Violation and DoS Detection 82

3.4 Comparative Evaluation . 83

3.4.1 Setup . 84

3.4.2 Overhead Calculation . 85

3.4.3 Results and Analysis . 89

3.4.4 Summary . 90

3.5 Conclusions . 91

4 TRAFFIC CONDITIONER FOR SLA ENFORCEMENT 92

4.1 Introduction . 92

4.2 Basics of a Conditioner . 93

4.3 Related Work . 95

4.4 Proposed Traffic Conditioner . 96

4.4.1 Marking Techniques . 96

vii

Page

4.4.2 Avoiding RTT-bias . 97

4.4.3 Developing Scalable Conditioner 100

4.5 Simulation Setup . 101

4.5.1 Topologies and Configuration Parameters 102

4.5.2 Performance Metrics . 102

4.6 Simulation Results . 103

4.6.1 Marking Techniques . 103

4.6.2 RTT-aware Traffic Conditioners 106

4.6.3 Adaptive Conditioner . 112

4.7 Conclusion . 116

5 FRAMEWORK OF CONGESTION CONTROL 118

5.1 Introduction . 118

5.2 Related Work . 120

5.3 Core-assisted Congestion Control (C3) Framework 121

5.3.1 Support from Core Router . 121

5.3.2 Support from Edge Routers . 122

5.4 Core-assisted Congestion Control (C3): Experimental Study 123

5.4.1 Simulation Setup . 123

5.4.2 Simulation Results . 126

5.4.3 Congestion Collapse . 127

5.4.4 Effect of RTT and Multiple Flows 129

5.4.5 Simulation with Cross Traffic 131

5.5 Tomography-based Congestion Control (TCC) 132

5.5.1 Network Tomography and Loss Inference 132

5.5.2 Congestion Detection . 133

Delay Measurements . 134

Loss Measurements . 135

Detection . 135

viii

Page

5.5.3 Congestion Control . 136

5.6 TCC: Experimental Study . 137

5.6.1 Setup . 137

5.6.2 Congestion Detection . 138

5.6.3 Congestion Control . 139

5.6.4 Overhead . 143

5.7 Summary . 143

6 CONCLUSIONS AND FUTURE WORK . 145

6.1 Conclusions . 145

6.2 Future Work . 146

6.2.1 Network Provisioning . 146

6.2.2 Monitoring Overlay and Sensor Networks 148

LIST OF REFERENCES . 149

VITA . 157

ix

LIST OF TABLES

Table Page

3.1 Symbols used in the comparison and their values. The parameters define a high
speed network domain, where thousands of flows are passing through it. . . . 84

3.2 Comparison among different schemes to detect and prevent DoS attacks. Some
techniques can detect service violation additionally. 90

4.1 Per Telnet packet delay (first three columns) and per session delay for Telnet
traffic. Number of Telnet sessions = 100. 109

4.2 Response time comparison among different conditioners for WWW traffic.
Number of concurrent sessions = 50 . 111

4.3 Performance for topology in Figure 4.12. Bandwidth (BW) shown is in Mbps.
State table size = 50 micro-flows. 114

4.4 Micro-flow statistics of aggregate flow n1-n8 with Telnet traffic. Number of
micro-flows = 200. 115

4.5 Response time of the Adaptive conditioner for WWW traffic. The response
time is compared with the maximum possible value. Number of concurrent
sessions = 50 . 115

5.1 Simulation parameters and their typical values for the C3 framework. 126

x

LIST OF FIGURES

Figure Page

1.1 Service differentiation using active queue management. RIO uses two in-
stances of RED queues with different parameter settings. 5

1.2 Monitoring, conditioning, and flow control components inside an edge router
to monitor and control a network domain. 7

2.1 A hybrid architecture for detecting SLA violations. This can be used for core-
assisted as well as edge-to-edge schemes. The SLAM gets feedback from core
routers in core-assisted scheme only. In both cases, SLAM sits on an edge router. 20

2.2 Algorithm to calculate the loss ratio for the core-assisted monitoring scheme.
The loss ratio is used to detect SLA violations. 24

2.3 Topology used to detect service violations. All edge routers are connected
to multiple domains, and each domain has multiple hosts to act as senders or
receivers. 27

2.4 Edge-to-edge link delay when links are idle and during an attack. (a) Delay
when the network is not under attack and most of the links are idle. (b) The
delay goes high in presence of attacks. 27

2.5 Cumulative distribution function (CDF) of edge-to-edge delay for link E1 →
E6. The delay changes with network traffic load. 28

2.6 (a) Link delay is slightly changed when more probes are introduced. (b) Prob-
ing at a low rate suffers loss when excess traffic is introduced by an attacker.
This can introduce incorrect experimental results. 29

2.7 Loss approximation with the core-assisted scheme. The approximated value
converges to the actual loss in 5 sec. 30

2.8 Throughput approximation using core-assisted monitoring scheme. The ap-
proximated values converge to the actual values within 10 seconds. 31

2.9 Binary tree to infer loss of each link. The probes are sent from the sender 0 to
both receivers R1 and R2. 32

2.10 RED Parameters for an active queue with three drop precedences. 33

xi

Figure Page

2.11 Obtaining complementary edge router, which is a receiver in the stripe based
monitoring. 36

2.12 Inferring loss using unicast stripe-based probing. 4-packet stripes do not add
significantly over the 3-packet stripes. 37

2.13 Inferring loss of link C4 → E6 using striped unicast probes. “freq” denotes
the number of stripes transmitted per second. 37

2.14 Loss of different color probe packets in presence of high excess traffic. Green
probes see high loss when a severe attack starts. Yellow and Red probes expe-
rience high drops as expected . 38

2.15 Observed delay at the time of an attack. “Attack 1” results in packet loss in
excess of 15-30%. “Attack 2” increases packet loss to more than 35% 39

2.16 Overall loss ratio during attack follows the same pattern as the delay. 39

2.17 (a) Tree topology transformed from a network domain. (b) All probing agents
at the edge routers form a virtual network with both neighbors in an ordered
sequence. (c) Direction of internal links for each probing. 40

2.18 Merging links that do not contribute during probing in the overlay-based mon-
itoring. 42

2.19 (a) Spanning tree of a simple network topology. (b) Each edge router probes
its neighbor edge router in counter-clockwise direction (c) Direction of internal
links for each probing. 43

2.20 Intersection of probe paths P and P ′. They meet at router R1 and then split out
at router R2. 45

2.21 Probability that the simple method determines the status of a link of any arbi-
trary topology. X-axis is the fraction of total links that are actually congested.
The simple method performs extremely well when less than 20% links of a
network are congested. If a network is more than 50% congested, the simple
method can not contribute much. 47

2.22 The solution of the simple method can not decide about some links. If those
links are considered as congested links, the solution of the simple method pro-
vides false positive by declaring some links as congested. The graph is shown
for two topologies; Topology 1 shown in Figure 2.17 and Topology 2 shown
in Figure 2.26(b). This figure does not compare the two topologies, instead, it
shows the false positive as a percentage of total links with respect to percentage
of links that are really congested. The solution does not have any false negative. 48

xii

Figure Page

2.23 Fraction of identified links by the simple method for all edge-to-edge con-
gested paths in the network. The X-axis shows all paths with a specific length.
The solutions for edge-to-edge congestion paths do not have any false positive.
Topology 2 does not have any path of length 3. 49

2.24 Advanced method to obtain probes that help to decide about the status of a
congestion variable. 51

2.25 Probability that the advanced method determines the status of a link of topol-
ogy shown in Figure 2.17a. The X-axis is the probability that a link to be
congested. The Y-axis is the probability that a good path (non-congested) ex-
ists for any link. The dotted graph shows the probability that a good path exists.
The solid graph shows the probability that a good and decided path (from the
first round) exists. These two curves provide lower and upper bound of the
performance respectively. 53

2.26 Preprocessing of a general tree topology to apply edge-to-edge probing. The
original topology is split into tree topologies. Then, the results are aggregated
to get overall picture of a network. 56

2.27 Topology used to detect service violations using distributed probing. All edge
routers are connected to one or multiple domains. All core to core router links
are 20 Mbps with 30 ms delay and core to edge router links are 10 Mbps with
20 ms delay. The probes are named with the subscripts of the edge routers. . . 58

2.28 Probe outcome both for counterclockwise and clockwise direction. Probe 46
in (a) and Probe 57 in (b) have high losses, which means that link C4 → E6 is
congested. 59

2.29 Probe outcome using 5-second averages for the same experiments shown in
Figure 2.28a. 59

2.30 Actual loss in link C4 → E6. Other links have low losses. This verifies that
our monitoring scheme detects the congestion properly. 60

2.31 Attack 1 causes link C4 → E5 congested. However, Attack 2 comes from
different edge routers to E4, which causes the traffic of Attack 1 to drop early.
As a result Probe 45 is not congested after 50 sec. 62

2.32 Cumulative distribution function of edge-to-edge delay for link E1 → E6.
High delay indicates presence of severe attack in the domain. 64

2.33 Congestion on multiple probe paths due to severe attack. It indicates multiple
links are having high losses. 65

xiii

Figure Page

2.34 Core-assisted, stripe-based, and edge-to-edge approaches: A quantitative study.
Negative values are used for data for which low index represents better perfor-
mance. For example, high overhead is not a desirable parameter. The core-
assisted monitoring has the highest communication overhead (highest index)
among the three schemes. 67

3.1 Classification of approaches to detect and prevent DoS attacks. 71

3.2 Different scenarios for DoS attacks. Attacker A1 launches an attack on the
victim V . A1 spoofs IP address of host H5 from domain D5. Another attacker
A3 uses host H3 as a reflector to attack V. 72

3.3 Inferring loss ratio from the source 0 to receivers R1 and R2. 80

3.4 Overlay-based distributed network monitoring. (a) Tree-like topology (b) The
overlay network formed by the edge routers. 81

3.5 The processing overhead per unit time for filters and probabilistic packet mark-
ing (PPM) schemes. Marking scheme has less processing overhead than filter-
ing scheme if the marking probability is not too high (e.g., p ≤ 0.07). 87

3.6 The processing and communication overhead for the monitoring schemes when
the percentage of misbehaving flows is increased. The Core scheme has less
communication overhead than Stripe scheme for θ < 20%. Both Stripe and
Overlay schemes have less communication overhead than Core unless θ is very
low. 88

3.7 The processing and communication overhead for the monitoring schemes when
the number of edge routers in a domain is increased. The Core scheme has
less processing overhead than both edge-based schemes when the number of
edge routers in the domain is increased. Edge-based schemes always impose
less communication overhead than the Core scheme. The Core might perform
better than Stripe for a large domain (e.g., M > 20) depending on the value of θ. 88

4.1 Components of a traffic conditioner to meter, mark, shape, and/or drop incom-
ing packets. 94

4.2 An RTT-RTO aware Traffic Conditioner with three drop precedences. 100

4.3 Algorithm for Adaptive Traffic Conditioner. Flow characteristics are used
when they are available. Otherwise, flow independent conditioning is con-
ducted. 101

4.4 Simple topology to evaluate the basic marking principles by simulation. . . . 102

4.5 Simulation topology with multiple domains. All links are 10 Mbps. 103

xiv

Figure Page

4.6 Throughput for standard traffic conditioner in over, under-provisioned, and ex-
tremely over-provisioned networks for 200 flows. 104

4.7 Throughput comparison of the standard traffic conditioner and various marking
techniques with 200 flows. 106

4.8 Throughput comparison of basic RTT, RTT-RTO (R-O), and RTT-SW based
conditioners. RTT of F1 is 20 ms and RTTs of F2 is shown on the X-axis. . . 107

4.9 Congestion window size with and without small window protection with RTT-
based conditioners for a micro flow of Flow 1. 108

4.10 Throughput of RTT-aware traffic conditioners in a multiple domain topology
(Figure 4.5) for various number of micro-flows. F1, F2 are long RTT flows and
F3 has very short RTT. F4 is in the middle. 110

4.11 Achieved bandwidth by the standard conditioner and adaptive conditioner. Max
is the maximum bandwidth achievement by standard conditioner with all ex-
isting techniques and using per-flow information. a) state table size=20 micro-
flows b) State table size=50 micro-flows . 112

4.12 Complex multiple domain topology used for performance evaluation. 113

5.1 Shaping flows during congestion based on adjusted profile of unresponsive flows.124

5.2 Simulation topologies. All links are 10 Mbps except bottleneck links. (a)
Simple topology. The bottleneck link is E4 → n4. (b) Complex topology with
multiple domains. The bottleneck link is E7 → n9. 125

5.3 (a) Without flow control, TCP gets only 5 Mbps when bottleneck bandwidth is
1 Mbps. (b) With Flow control, TCP gets 8 Mbps. Both flows have the same
profile. 127

5.4 UDP sending rate is varied using rate fraction, Rf . UDP sends as high as 20
Mbps (Rf=4), bottleneck (E4 → n4) bandwidth is 1 Mbps. 128

5.5 Cumulative receiving rate at the destination. There is no sharp drop during
transmission. 129

5.6 Drop rate of packets for different flows. The TCP flows have very packets for
a short period of time because they adjust the sending rate according to the
network traffic. On the other hand CBR flows with three times sending rate
have very high drop rates. The drop rate changes with time, and follow a saw-
tooth like fashion. The background CBR does not have drops because it does
not experience congestion. 130

xv

Figure Page

5.7 RTTs and number of micro-flows per aggregate flow is varied for both TCP and
UDP. Flow control works well with varying RTT and with changing number of
micro flows per aggregate flow. 131

5.8 Dynamic adjustment of F2 flow works fine in presence of cross traffic. TCP
flow (F1) gets more bandwidth with flow control scheme. 132

5.9 Binary tree to infer loss of each link. The probes are sent from the sender 0 to
both receivers R1 and R2. 133

5.10 Simulation topology. Each edge router is connected with multiple domains.
C4 → E6 is the bottleneck link in the setup. Unresponsive flows take their
share from the shared link C3 → C4, and their packets are dropped in the
bottleneck link. 138

5.11 Delay pattern changes with excessive traffic. This high delay is an indication
that the edge-to-edge path is congested. The flow control mechanism alleviates
the congestion, and reduces the delay. 139

5.12 Inferring loss using unicast stripe-based probing. The actual loss is close to the
inferred loss. 140

5.13 Congestion collapse if there is no flow control. TCP gets the wasted bandwidth
by the UDP flows when flow control mechanism is used. 141

5.14 Congestion window of a TCP flow with or without flow control. The conges-
tion window is reset to one several times if there is no flow control. 141

5.15 Bandwidth gain by TCP and UDP flow with adaptive flow control. 142

5.16 Loss ratio with adaptive flow control. Initially the loss decays exponentially,
and the loss converges with time to a low value. 143

5.17 Bandwidth achieved by TCP and UDP flows with varying number of micro
flows. 144

xvi

ABSTRACT

Habib, Md Ahsan. Ph.D., Purdue University, August, 2003. Monitoring and Controlling
QoS Network Domains: An Edge-to-Edge Approach. Major Professor: Bharat Bhargava.

This research studies and designs techniques for coordinated network monitoring, traf-

fic conditioning, and flow control as integral components of the edge routers in a network

domain. The enhanced edge routers yield secure network domains, and achieve better per-

formance in terms of high data throughput, low delay, and low loss rates. The potential

performance gain from the proposed techniques is critical for the current and emerging

network services such as multimedia applications. Using simulation, we evaluate the edge

router for data intensive applications such as FTP and delay sensitive applications such as

Telnet and Web. The contributions of this thesis can be summarized as follows:

• Network Monitoring. Continuous monitoring of network activity is required to main-

tain confidence in the security of networks with quality of service (QoS) support.

The flows are monitored for possible service level agreement violations and band-

width theft attacks. We design and evaluate tomography-based and overlay-based

network monitoring methodologies for efficient and scalable network monitoring.

These schemes infer the internal characteristics of a network domain without involv-

ing the core routers. Our results show that we can monitor a network domain with

O(n) probes, where n is the number of edge routers. Monitoring mechanism can be

used to detect denial of service (DoS) attacks at an early stage. A quantitative com-

parison among schemes to defeat DoS attacks is conducted, in which, we highlight

the merits of each scheme and estimate the processing and communication overhead

introduced by it. The comparison provides guidelines for selecting the appropriate

scheme based on the requirements and how much overhead can be tolerated.

• Policy Enforcement. To improve the QoS, we enforce policy on the incoming flows

and focus on congestion and unfairness in network resource allocation problems.

We design an adaptive conditioner that considers congestion window size, round trip

xvii

time (RTT), retransmission time-out, and explicit congestion notification information

to mark and shape a flow. The conditioner also improves the fairness among long and

short-RTT flows.

• Flow Control. We use the differentiated services framework and network tomogra-

phy to detect the unresponsive flows. The flow detection mechanism is scalable, and

it requires very low overhead. An adaptive congestion control framework is designed

that follows TCP-like congestion control algorithm and regulates the unresponsive

flows to alleviate the congestion.

1

1. INTRODUCTION AND RESEARCH DIRECTION

Continuous monitoring of network activity is required to maintain confidence in the secu-

rity of networks with quality of service (QoS) support. Moreover, the growth of multimedia

applications and high speed networks increases the demand for QoS and congestion con-

trol in the Internet. Poor network performance by excessive delays and losses experienced

by the users’ applications, and/or lack of security is not acceptable. To ensure that a net-

work domain is not experiencing attacks or service violations, we devise low overhead

network monitoring schemes. To improve the QoS, we focus on congestion and unfairness

in network resource allocation problem. Proper traffic conditioning (marking, shaping)

with unresponsive flow control can solve the congestion and unfairness problem. All these

solutions have to be scalable otherwise they will not be deployable in the heterogeneous

Internet.

One solution to provide QoS is to increase the available bandwidth to avoid congestion.

However, It does not provide proper resource utilization. This over-provisioning solution

has been effective in its support of applications like FTP, HTTP, and e-mail. The problem

is more than a bandwidth issue. The problem is that the traffic has also changed in na-

ture. There are many new types of applications, and they have very different operational

requirements. Internet has moved into the global communication, and so is their appli-

cations. The Internet is driving the convergence of the telephone and Internet industries.

Internet telephony (Voice over IP) and other multimedia applications require service guar-

antees, and have timing requirements. These applications require network services beyond

the “best-effort” service that is delivered by IP networks.

1.1 Framework to Provide QoS

The Internet Engineering Task Force (IETF) [1] has proposed many service models and

mechanisms to meet the demand for QoS. A survey of the proposed frameworks is provided

2

in [2]. Notably among them are the Integrated Services (IntServ) or RSVP model [3,4], the

Differentiated Services (DiffServ) model [5, 6], and MPLS [7].

The IntServ model [3] provides guaranteed service in addition to the Best Effort (BE)

service. The RSVP was proposed as a signaling protocol for applications to reserve re-

sources [4]. The applications first set up paths and reserve resources before data are trans-

mitted. The difficulty with the IntServ architecture is that the amount of state information

depends on the number of flows. This places a huge storage and processing overhead on

the routers. Therefore, this architecture does not scale well in the Internet core. In addition,

all routers must implement RSVP, admission control, packet classification, and scheduling

for the framework come into reality. Stoica et al. [8] show that guaranteed services can be

provided without per flow state information at the core. This work uses dynamic packet

state to convey reservation information from routers to routers.

Because of the difficulty in implementing and deploying IntServ and RSVP, the Diff-

Serv is introduced in early 1998. In DiffServ framework, packets are marked differently

to provide different services. Priorities are set on incoming traffic in the TOS byte of the

IP header to indicate that a special service is required such as low delay, high throughput,

or low loss rate. The edge routers at the boundary of a network domain is responsible for

bandwidth reservations. In order to receive differentiated services from its Internet Service

Provider (ISP), the users must have a Service Level Agreement (SLA) with its ISP. A SLA

specifies the service classes supported and the amount of traffic allowed in each class. The

core routers provide a forwarding mechanism based on the traffic class to achieve the ser-

vice differentiation. The amount of state information stored at the core is proportional to

the number of classes rather than the number of flows. Differentiated service is therefore

more scalable. Packet classification, marking, policing and shaping operations are only

needed at the edge routers. The ISP core routers need only to implement simple forward-

ing mechanism. Therefore, it is easier to implement and deploy differentiated services.

The DiffServ framework needs signaling mechanism and IntServ framework can serve the

purpose. The interoperability of DiffServ and IntServ is studied in [9].

The motivation for MPLS is to use a fixed length label to decide packet handling. The

MPLS is a forwarding scheme, and a useful tool for traffic engineering [10, 11]. Each

MPLS packet has a header, which is encapsulated between the link layer header and the

network layer header [7]. A MPLS capable router, termed as Label Switched Router (LSR),

examines only the label in forwarding the packet. The network protocol can be IP or others.

3

This is why it is called Multi-Protocol Label Switching. Compared to other tunneling

mechanisms, the MPLS is unique because it can control the complete path of a packet

without explicitly specifying the intermediate routers. The MPLS provides faster packet

classification and forwarding and efficient tunneling mechanism.

We prefer to use the DiffServ framework in our research because this framework is

scalable. Most of our solutions assume the presence of edge routers to conduct traffic

conditioning, monitoring, and flow control. The core routers only forward the packets.

1.2 Differentiated Services Architecture

In DiffServ architecture, all complexities are pushed to the boundary routers of a net-

work domain to keep the core routers simple and scalable [5, 6]. The DiffServ model uses

edge routers at the boundary of an administrative domain to shape, mark, and drop the traf-

fic if necessary. The operations are based on Service Level Agreements (SLAs) between

adjacent domains [12, 13]. The traffic enters into a DiffServ domain through an ingress

routers and leaves a domain at an egress router. An ingress router is responsible for ensur-

ing that the traffic entering into the domain conforms to any SLA between it and the other

domain to which the ingress node is connected. Egress routers may perform traffic condi-

tioning functions on traffic forwarded to a directly connected peering domain, depending

on the details of the SLA between the two domains. The framework to setup policy and

controlling incoming traffic in the domain is studied in [14].

Edge Routers. The edge routers conduct admission control to regulate the incoming

flows. It may re-mark a traffic stream, shape, or drop packets to alter the temporal char-

acteristics of the stream and bring it into compliance with a traffic profile specified by the

network administrator. A Marker distributes the excess bandwidth using a predefined algo-

rithm to improve the QoS [15,16]. The marker puts a tag on each packet based on the target

rate from the SLA and the current flow rate. An incoming packet is marked as IN profile

(low probability to drop) if the corresponding flow does not reach the target rate otherwise

the packet is marked to a higher drop precedence. The shaping reduces the traffic variation

and makes it smooth. It provides an upper bound for the rate at which the flow traffic is

admitted into the network. Droppers drop some or all of the packets in a traffic stream in

order to bring the stream into compliance with the traffic profile. This process is know as

policing the stream.

4

Core Routers. In the core of the network, Per Hop Behaviors (PHBs) achieve service

differentiation using a differential drop algorithm. The current DiffServ model defines two

forwarding mechanisms: Expedited Forwarding [17] and Assured Forwarding (AF) [18].

The AF PHB is studied with token bucket marker by Ibanez and Nichols [19] and sug-

gested the factors to determine throughput of flows. The AF provides four classes (queues)

of delivery for IP packets and three levels of drop precedence (DP0, DP1, and DP2) per

class. Three drop precedences are proven to be useful [20, 21] to improve QoS for AF

traffic in DiffServ networks. The DP0 has the lowest precedence to drop packet during

congestion, and the DP2 has the highest precedence. The Differentiated Services Code

Point (DSCP) [22], contained in the IP header DSFIELD/ToS, is set to mark the prece-

dence. When congestion occurs, packets marked with higher precedence must be dropped

first. The AF PHBs at core routers use an active queue management technique such as

Random Early Detection (RED) [23]. The are several variations of RED [24–26] to make

the queue management scheme stable and fair to all flows. Braden et al. recommend queue

managements technique to avoid congestion in the Internet.

To provide service differentiation, Clark and Fang introduced RED for IN and OUT

of profile (RIO) packets [27]. The RIO algorithm (Figure 1.1) distinguishes between two

types of packets, IN and OUT of profile, using two RED instances. Each RED instance

is configured withminth, maxth, and Pmax. Suppose the parameters for the IN profile

packets are minin, maxin, and Pmax in, and for the OUT of profile packets areminout,

maxout, and Pmax out. To drop OUT packets earlier than IN packets, minout is chosen

smaller than minin. The router drops OUT packets more aggressively by setting Pmax out

higher than Pmax in. To realize three drop precedences, three REDs can be used.

1.3 Components to Support QoS and Security

The QoS networks support real-time data, bulk data, and statistically multiplexed data,

which make the traffic management in the network hard. The necessary traffic management

components to support QoS are:

• Admission control. The admission control component takes into account resource

reservation requests and the available capacity to determine whether to accept a

new request with its QoS requirements. Dynamic admission control with statisti-

cal bounds on each SLA parameter is an ongoing research issue. Admission control

5

P (drop IN) P (drop OUT)

P

P

1 1

max_in

max_out

AvgMin MaxAvgMaxMin

RIO

out outoutininin

RED

P (drop)

P

AvgMaxMin

1

max

Fig. 1.1. Service differentiation using active queue management. RIO uses two
instances of RED queues with different parameter settings.

needs to be done at the boundary of a network. It can be a part of an edge router or

can be an individual entity in a network domain.

• Monitoring. The purpose of monitoring a network is to assess the network capacity

for new users and observe the network for any unusual behavior. Misbehavior from

flow(s) may change the internal characteristics of the network. It is necessary to

monitor a network domain for its proper operation. Existing monitoring schemes

involve core routers to collect statistics. We need to devise an edge-to-edge, low

overhead, and scalable monitoring scheme.

• Policing/Shaping. Users might send traffic at a rate higher than the agreement.

Policing is necessary to monitor these situations, and shaping makes the traffic smooth

and reduces its variations over time. Policing and shaping are done at the edge

routers.

• Congestion control. Congestion control is required to avoid from happening any-

thing bad inside a network domain. Some applications may not follow the standard

protocol description and try to steal resources, thereby deteriorating the QoS of other

applications. Mechanisms are needed to recover from congestion and control flows

accordingly.

• Resource management. QoS can be provided using over-provisioning of a network,

which increases the cost incurred by the provider. Efficient resource management is

6

a cost-effective solution for the provider, and it ensures that applications will get the

specified QoS during the course of its execution.

• Scheduling. The scheduling component provides QoS by allocating resources de-

pending on the service requirements. This requires mapping the user-defined QoS

requirement to resource allocations for providing the service. An efficient and scal-

able scheduling mechanism is necessary at all routers to realize the QoS requirements

into reality.

1.4 Proposed Research

In this research, we focus on components of an edge router to provide QoS and make

a network domain safe to operate. The primary responsibility of an edge router is to me-

ter, mark, and shape traffic. The edge router may control unresponsive flows, monitor

the network for possible attack, and work as an bandwidth broker (BB) to sell bandwidth

by dynamic provisioning. All components are necessary for a QoS-enable network do-

main. Some components can work as an individual entity. Scalable Edge-Based QoS for

Intra-Domain Networks (SEQUIN) [28] is an ongoing project in Bell-Labs. The SEQUIN

continuously measures the network and synthesizes this information to obtain actual edge-

to-edge QoS. According to [28], these measurements provide a real-time view of network

resource utilization. The edge-to-edge traffic metrics can be used for provisioning, ser-

vice differentiation, SLA verification, and billing. Currently this project does not provide

information about how to measure all edge-to-edge traffic metrics or the procedure of pro-

visioning or SLA verification. We propose to design several components of scalable edge

routers to secure a network domain. The router will monitor the network for service vio-

lation and bandwidth theft for security reason. The router improves the application level

QoS and network resources utilization. The components of an edge router, the flow of traf-

fic inside the router, and the flow of control packets are shown in Figure 1.2. Scalability

poses a big challenge in the design of these components for the edge router. To achieve

scalability, We propose not to put any overhead on the core routers to monitor the network

and control flows. We ensure edge routers do not store per-flow information for all flows

to provide QoS. The proposed components of an edge router ensure that:

7

Flow
Control

Control

Feedback to

unresponsive

upstream domains

domain

Traffic
Conditioning

Meter

Monitoring

parameters to

Violation

Check SLA

detect violations

Take action accordingly

flows

Mark

Drop

Enter

Drop

(marked) data packets

Drop

data packets

data packets

Network

Shape/

Fig. 1.2. Monitoring, conditioning, and flow control components inside an
edge router to monitor and control a network domain.

• The provider protects the network from service violations, bandwidth theft, and de-

nial of service (DoS) attacks. This is done by monitoring the flows that violate the

SLA and cause other flows to suffer.

• The users applications receive specified throughput, delay, and loss requirements for

each flow according to the service level agreement with the provider.

• Better utilization of resources by proper conditioning, controlling unresponsive flows,

and sending feedback to the upstream routers to enforce policy and save wastage of

resources by undelivered packets at the downstream routers.

We describe each component and the research questions associated with these compo-

nents as follows:

SLA Monitoring. We need to monitor a network domain because some users may

inject excessive traffic through several entry points even though at each entry point the

traffic does not violate the service profile. This causes distributed denial of service at-

tacks. Some users may inject traffic with a higher class than the appropriate one. This may

cause other users to have low throughput, high delay, and high packet loss. We propose

8

to monitor the network to observe any incidence of high loss or delay based on the QoS

parameters. The SLA monitoring component will perform service violation detection and

bandwidth theft attacks. Monitoring network without the help of the core routers is a real

challenge because measuring the loss ratio using edge-to-edge approach while keeping the

communication overhead low is hard. We use the loss inference mechanism [29], network

tomography [30, 31], and overlay networks to develop edge-to-edge network monitoring

and SLA violation detection scheme.

Traffic Conditioner. The conditioner marks incoming traffic based on the current

rate and the target rate of a flow. Marking provides a mechanism so that all flows can get

their share. We study the behavior of transport protocols and use TCP characteristics to

develop an adaptive and scalable conditioner. This adaptive design overcomes scalability

problems arising from maintaining excessive per flow state. The edge router reduces the

RTT-sensitivitiness on gaining bandwidth for TCP flows. The challenge related with traffic

conditioner is to utilize flow characteristics to provide better QoS without using the per-

flow information. This is necessary to achieve scalability.

Flow Control. Unresponsive flows do not react to congestion and continue sending

packets with the same rate. The edge routers can be used to control the unresponsive flows

and reduce the flow rate at the time of congestion. Congestion collapse can be mitigated

using improved packet scheduling or active queue management [25,32]. To solve the prob-

lem, we need a mechanism to ensure that the rate at which packets are entering into a

network domain should be the same as the rate packets are leaving the domain. Dropping

highest priority packets of each class exhibits that the network is congested [33]. We pro-

pose to use the DiffServ architecture and network tomography to address this issue. This

congestion drop will be sent to the ingress routers to regulate unresponsive flows. The

drops due to shaping at the ingress routers are propagated to egress routers of previous

domain to regulate an unresponsive flow at the upstream path. We focus on exploring an

alternative way to detect unresponsive flows without any help of core routers. We will use

the flow aggregation characteristics with the control mechanism to cope with burstiness.

We provide analytic analysis of the proposed problems and conduct a series of exper-

iments to show the behavior of the framework. Using simulation, we evaluate our edge

router. Simulations are done to show that this router improves throughput of data extensive

applications such as large FTP transfers, and achieves low packet delays and response times

for Telnet and WWW traffic. We simulate DoS attacks and show that the proposed moni-

9

toring scheme can detect the attack with significantly low communication and processing

overhead.

1.5 Contribution of This Thesis

We design and implement the components of an edge router to monitor a network do-

main for any SLA violation and bandwidth theft attack. The network monitoring schemes

involve only edge routers. The conditioner and flow control components alleviate the con-

gestion and unfairness in the resources allocation problem. The edge routers share the

congestion information with upstream routers to save resources wastage in the downstream

domains. Designing a scalable edge router is a challenging research task because all of

the components of an edge router should not use excessive per-flow information and can

not involve core routers. This principle is followed in designing the components to achieve

scalability. We solve the following research problems and evaluate the solutions using

analytical models as well as a series of experiments.

• We define and employ throughput, delay, packet loss, and security as QoS parameters

for the design of an edge-to-edge SLA monitoring scheme to detect service violations

and attacks. Our contribution of this work is tomography-based and overlay-based

network monitoring methodologies for efficient and scalable network monitoring.

Both schemes use edge-to-edge measurements to infer the internal characteristics of

a network domain. We provide probabilistic analysis about the performance of the

monitoring algorithm. Our results show that we can monitor a network domain with

O(N) probes, where N is the number of edge routers. The monitoring mechanism

can be used to detect denial of service (DoS) attacks at an early stage. A quantita-

tive comparison among schemes to defeat DoS attacks is conducted, in which, we

highlight the merits of each scheme and estimate the processing and communica-

tion overhead introduced by it. The comparison provides guidelines for selecting

the appropriate scheme based on the requirements and how much overhead can be

tolerated.

• The traffic conditioners at the edge routers should intelligently mark and shape pack-

ets differentially based on the class parameters and network states. Our conditioner

uses flow characteristics to provide better resource utilization and improve the appli-

cation level QoS. We have designed an adaptive conditioner that considers congestion

10

window size, round trip time (RTT), retransmission time-out, and explicit congestion

notification information to mark and shape a flow. Our results show that the condi-

tioner improves throughput for data intensive applications and reduces the response

time for delay sensitive applications. The conditioner improves the fairness among

long and short-RTT flows.

• It is necessary to detect and regulate unresponsive flows that cause poor performance

for adaptive flows, which retreats during congestion. We use the differentiated ser-

vices framework and network tomography to detect the unresponsive flows. The

flow detection mechanism is scalable and requires very low overhead. An adap-

tive congestion control framework is designed that follows TCP congestion control

like algorithm and regulates the unresponsive flows to alleviate the congestion. The

ingress (entry) edge routers propagate the congestion information to the egress (exit)

routers of previous upstream network domain to reduce the resource wastage at the

downstream network due to undelivered packets.

1.6 Organization of the Thesis

Chapter 2 discusses detecting service violation and bandwidth theft. This chapter in-

troduces different monitoring techniques, and proposes edge-to-edge measurement-based

distributed monitoring schemes. We provide the performance of each technique and the

key differences among them.

Chapter 3 discusses different techniques to detect and prevent DoS attacks. Using an

Internet-like collection of domains, techniques to defeat DoS attacks are investigated with

their merits and demerits. Each technique is analyzed for its processing overhead and

communication overhead. This comparison gives an insight and guidelines to choose a

scheme based on the network size and the requirements.

Chapter 4 discusses traffic conditioner. The conditioner marks, shapes, and drops in-

coming traffic. However, an intelligent conditioning improves the resource utilization. In

this chapter, an adaptive traffic conditioner is designed and implemented . The conditioner

uses the flow characteristics to improve the QoS of a flow and ensures the fairness among

different types of flows.

Chapter 5 discusses framework of controlling unresponsive flows. Two different flow

control schemes are developed in this chapter. One technique takes the advantage of the

11

DiffServ framework with a small amount of feedback from the core routers. The other

technique does not involve the core routers, and use network tomography to detect the un-

responsive flows. An adaptive control mechanism is developed to control the misbehaving

flows.

Chapter 6 concludes the thesis with a summary and future work.

12

2. NETWORK MONITORING TO DETECT SERVICE
VIOLATIONS

Continuous monitoring of a network domain poses several challenges. First, routers of a

network domain need to be polled periodically to collect statistics about monitoring param-

eters such as delay, loss, and throughput. Second, this huge amount of data has to be mined

to obtain useful monitoring information. Polling increases the overhead for high speed core

routers, and restricts the monitoring process from scaling to a large number of flows. To

achieve scalability, polling and measurements that involve core routers should be avoided.

Monitoring schemes that observe the drop history at the core routers are referred to as

core-assisted schemes in our work. The core-assisted approach is powerful because it can

detect any attack and give precise information about which flows are misbehaving. The

drop history at the core can help to detect flows that may launch a denial of service (DoS)

attack in the downstream domain. Edge-to-edge measurement is, however, easier to deploy.

We use network tomography to develop stripe-based and overlay-based distributed

monitoring schemes that use only edge-to-edge measurements, and scales to large net-

work domains. The stripe-based monitoring scheme uses a series of back-to-back packets

(referred to as a “stripe”) to infer delay and loss of the internal links of a network domain.

The link loss of each individual link can be calculated probing from any edge router to

all other pair of edge routers. We extend stripe-based inference approaches to cope with

different drop precedences in a QoS network. The overlay-based scheme further reduces

the communication overhead. In this scheme, the edge routers form an overlay network

with their neighboring edge routers. The overlay network is probed intelligently to identify

the congested links with high losses in a domain. These links are used to identify the flows

that are causing this high loss.

We compare the core-assisted scheme with the proposed edge-to-edge schemes. Sim-

ulation results indicate that the proposed monitoring schemes detect attacks and are useful

for response and damage control in both QoS-enabled and best effort network domains.

13

2.1 Introduction

Monitoring of a network domain is necessary to ensure proper operation of the net-

work by detecting possible service violations and attacks. Monitoring network activity is

required to maintain confidence in the security and QoS of networks, from both the user

(ensuring the service level paid for is indeed obtained) and provider (ensuring no unusual

activity or attacks take place) perspectives. In this section, we describe existing and pro-

posed monitoring techniques and tools.

2.1.1 Monitoring Techniques and Tools

A large variety of network monitoring tools can be found in [34]. Many tools use

SNMP [35], RMON [36], or NetFlow [37], which are built-in functionality for most routers.

Using these mechanisms, a centralized or decentralized model can be built to monitor a

network. The centralized approach to monitor network latency, jitter, loss, throughput,

or other QoS parameters suffers from scalability. One way to achieve scalability is to

use a hierarchical architecture [38, 39]. Subramanyan et al. [39] design a SNMP-based

distributed network monitoring system that organizes monitoring agents and managers in

a hierarchical fashion. Both centralized or decentralized models obtain monitoring data

by polling each router of a network domain, which limits the ability of a system to scale

for a large number of flows. The alternative way of polling is to use an event reporting

mechanism that sends useful information typically in a summarized format only when the

status of a monitored element changes. A more flexible way of network monitoring is by

using mobile agents [40] or programmable architecture [41]. However, periodic polling or

deploying agents in high speed core routers put non-trivial overhead on them. Our goal is

to design a low overhead and scalable monitoring scheme.

2.1.2 DiffServ Framework and QoS Attacks

We use the differentiated services (DiffServ) QoS framework as an underlying network,

though our system is not specific to DiffServ. Packets entering into a DiffServ domain are

classified and the DS field in the IP header is marked with three drop precedences (e.g.,

green, yellow and red) at the edge router. Typically, a user has a service level agreement

with a provider that describes the expected service, user traffic profile, and charging models.

14

Differences in charging models of the service classes can attract attacks that inject

marked packets to steal bandwidth and other network resources. Such attacks make use

of known vulnerabilities in firewall filter rules to inject traffic or spoof the identity of valid

users with high QoS levels. Since the DiffServ framework is based on aggregation of flows

into service classes, valid user traffic may experience degraded QoS as a result of the in-

jected traffic. Taken to an extreme, the attacks may result in denial of service. This creates

a need for developing an effective defense mechanism that can automate the detection and

reaction to attacks on the QoS-provisioned DiffServ network domain.

2.1.3 Proposed Monitoring Techniques

To detect attacks and service violations, we propose low overhead monitoring schemes

that do not involve core routers for any kind of measurements. Our assumption is that if a

network domain is properly provisioned and no user is misbehaving, the flows traversing

through the domain should not experience high delay or high loss. An excessive traffic due

to attacks changes the internal characteristics of a network domain. This change of internal

characteristics is a key point to monitor a network domain. We employ agents on the edge

routers of the DiffServ domain to efficiently measure packet delays, loss, and throughput.

The SLA parameters such as delay, packet loss, and throughput are measured to ensure

all users are getting their target share. The delay is an edge-to-edge latency measurement;

packet loss is the ratio of total number of packets dropped from a flow to the total packets

of the same flow entered into the domain; and throughput is the total bandwidth consumed

by a flow inside a domain. A flow can be a micro flow with five tuples (two addresses, two

ports, and protocol) or an aggregate one that is combined with several micro flows. Delay

and loss are important parameters to monitor a network domain because these parameters

mostly reflect the QoS of user applications. High delay and loss can be used as an indication

of service violations. Although, jitter (delay variation) is another important SLA parameter,

it is flow-specific and therefore, is not suitable to use in network monitoring.

Measurements are communicated to an SLA Monitor (SLAM). The SLAM analyzes

measurements and automatically detects potential attacks and violations of negotiated SLAs,

as well as flag the need to re-provision the network by increasing capacity or limiting users.

Although measurement of path characteristics [42, 43] and network monitoring [44–46]

have been extensively investigated, few studies of user SLA validation have been per-

formed [47]. Inspired by recent results on network tomography [48–50], we infer internal

15

characteristics of a network domain using edge-to-edge probes, and design a distributed

monitoring system to detect service violations and bandwidth theft in a network domain.

2.1.4 Our Contribution

In this chapter, we analyze core-assisted network monitoring scheme and develop ef-

ficient edge-to-edge measurement approaches for automatic detection of SLA violations,

bandwidth theft, and denial of service attacks. We propose stripe-based and overlay-based

monitoring schemes. In the stripe-based scheme, a series of probes are sent from one edge

router to all other edge routers pairs. The congestion experience by successive packets in a

stripe is assumed to be correlated. The packets have similar experience along the path on

their journey to the destination. This correlation is used to infer the loss of each internal

links using only edge-to-edge measurements. We extend stripe-based loss measurement

approaches [29] to cope with different drop precedences in a QoS network. Throughput

measurements are only performed when a delay or loss violation is reported.

We propose an overlay-based monitoring scheme that forms an overlay network using

all edge routers on top of the physical network. The probing does not calculate loss ratio

for each individual link, instead, the congested links due to high losses are identified using

edge-to-edge loss measurements. Our solution consists of two methods: simple method and

advanced method. In the simple method, all edge routers probe their neighbors in clockwise

and counter-clockwise direction. This method requires only O(n) probing, where n is the

number of edge routers. Through extensive analysis, both analytical and experimental, we

show that the simple method is very powerful to identify the congested links to a close

approximation. If necessary, we use the advanced method to refine the solution of the

simple method. The advanced method searches the topology tree intelligently for probes

that can be used to identify the status of the undecided links from the simple method.

When the network is less than 20% congested the advanced method requires O(n) probes.

If the congestion is high, it requires more probes, however, it does not exceed O(n2).

The congested links are used as a basis to identify edge routers through which traffic are

entering into and exiting from the domain. From exiting edge routers, we identify the

flows that are violating any SLA agreement. If the SLA is violated for delay and loss, the

network is probed to detect whether any user is stealing bandwidth. The service violations

can indicate a possible attack on the same domain, or on a downstream domain.

16

Using simulation, we conduct a series of experiments to evaluate the proposed monitor-

ing scheme. We conclude that the distributed monitoring scheme shows a promise for an

efficient and scalable monitoring of a domain. This scheme can detect service violations,

bandwidth theft attacks, and tell when many flows are aggregating towards a downstream

domain for a possible DoS attack. The scheme requires low monitoring overhead, and

detects service violations in both directions of any link in a network domain. We com-

pare the core-assisted monitoring scheme with the proposed edge-to-edge schemes. The

comparison can help network providers decide which technique best serves their needs.

2.2 Related Work

A number of studies have investigated differentiated services security, network moni-

toring, measurements of QoS parameters, loss inference, and SLA verification, as discussed

next.

2.2.1 Network Security

A security analysis of Internet and of the DiffServ framework is provided in [51]

and [52] respectively. The QoS attacks are classified into two kinds: attacking the net-

work provisioning process and attacking the data forwarding process. Network provision-

ing involves configuration of DiffServ nodes by policy distribution points in the network,

called Bandwidth Brokers (BBs). This is done through automatic signaling protocols such

as RSVP [4] or SNMP [35,53]. This process can be attacked by injecting bogus configura-

tion messages, modifying the content of real configuration messages, delaying or dropping

such messages. Networks can be secured against such attacks by employing encryption

of the configuration messages of the signaling protocols. Attacks on the data forwarding

process are of a more serious nature and can involve injecting traffic into the network with

an intent to steal bandwidth or to cause QoS degradation by causing other customer flows

to experience longer delays, higher loss rates, and lower throughput.

2.2.2 Network Monitoring

An Internet service provider needs to monitor its network domain to ensure the net-

work is operating well. One obvious way of monitoring is to log packets at various points

17

throughout the network and then extract information to discover the path of any packet [54].

This scheme is useful to trace an attack long after the attack has been accomplished. The

effectiveness of logging is limited by the huge storage requirements especially for high

speed networks. Stone [55] suggested to create a virtual overlay network connecting all

edge routers of a provider to reroute interesting flows through tunnels to central tracking

routers. After examination, suspicious packets are dropped. This approach also requires a

great amount of logging capacity.

Many proposals for network monitoring [44, 45] give designs to manage the network

and ensure that the system is operating within desirable parameters. In efficient reactive

monitoring [45], the authors discuss ways to monitor communication overhead in IP net-

works. Their idea is to combine global polling with local event driven reporting. Our

core-assisted scheme depends on local event driven reporting to detect SLA violation and

performs global polling only when it is absolutely necessary. Breitbart et al. [44] identify

effective techniques to monitor bandwidth and latency in IP networks. The authors present

probing-based techniques, where path latencies are measured by transmitting probes from

a single point of control. The paper describes algorithms to compute an optimal set of

probes to measure latency of paths in a network, whereas we focus on measuring parame-

ters without the involvements of the core routers.

2.2.3 Measurements

A large body of research has focused on measuring delay, loss, and throughput in the

Internet. Shared Passive Network Performance Discovery (SPAND) [56] is a tool that

communicates with distant Internet hosts and reports to a performance server in the same

domain. The clients query the server about the performance to a distant network site and

obtain the history of average throughput of a TCP connection or the download time for a

particular web page. The idea of measuring performance and sharing history to improve

future measurement was proven useful. Savage et al. [57] propose Detour routers as edge

devices in the Internet clouds that will tunnel traffic and improve the Internet performance.

These edge routers exchange bandwidth, latency, drop rate among themselves. We also use

intelligent routers at key access points that interchange information to improve the behav-

ior of traffic management inside a network domain. Resilient Overlay Network (RON) [58]

is an architecture to detect and recover from path outages and periods of degraded perfor-

mance. The RON nodes monitor the quality of Internet paths among themselves and use

18

this information to route packets, optimizing application-specific routing metrics. RON

uses three different routing metrics: latency, loss and throughput. The latency is an Expo-

nential Weighted Moving Average (EWMA) with 10% weight for the most recent sample.

The loss is an average of 100 probe samples. Measurement techniques in SPAND, Detour,

and RON have been proven to be useful, which are utilized in our work.

2.2.4 Inference

Duffieldet al. [59] propose trajectory sampling to infer traffic flows through a domain.

In this process, each link samples packets based on a hash function computed over the

content of the packets. Then, the trajectory of a packet is reconstructed using the same

sample set of packets. This provides a neat way of monitoring a network domain, which

does not depend on the network status information. However, all routers (edge and core)

participate in sampling that might put large overhead on the high speed core routers. Our

goal is to devise a low overhead scheme that does not involve the core routers for any

measurement.

Duffieldet al. [29] use packet “stripes” (back-to-back probe packets) to infer link loss

and delay by computing the correlation of packet loss and delay within a stripe at the des-

tinations. Using end-to-end unicast probing, the authors demonstrate how to infer loss

characteristics of the links in the network interior. This work is an extension of loss in-

ference for multicast traffic described in [48, 50]. To detect SLA violations, we need to

compare monitored flow parameters to the SLA parameters. Therefore, we must monitor

all flows of a user and calculate loss information of all links the user flows traverse. We

develop an efficient and low overhead method to detect delay, loss and throughput on a per

user basis.

2.2.5 SLA Verification

In [47], a histogram-based aggregation algorithm is used to detect SLA violations.

The algorithm measures network characteristics on a hop-by-hop basis and uses them to

compute end-to-end measurements and validate end-to-end SLA requirements. In a large

networks, efficient collection of management data is a challenge. While exhaustive data

collection yields a complete picture, there is an added overhead. The authors propose an

aggregation and refinement based monitoring approach. The approach assumes that the

routes used by SLA flows are known, citing VPN and MPLS [7] provisioning. Though

19

routes are known for double ended SLAs that specify both ingress and egress points in the

network, they are unknown in cases where the scope of the service is not limited to a fixed

egress point. As with RONs [58], we check violations using average values in a recent time

frame. This reduces constraints on the network setup and need for knowledge of the flows

traversing through each router.

2.3 Architecture for SLA Violation Detection

The DiffServ architecture [60] achieves scalability by pushing complexity to boundary

devices, which process lower volumes of traffic and smaller numbers of flows. Ingress

routers perform complex traffic conditioning that consists of traffic classification based

on multiple fields in the packet header, traffic metering to ensure conformance to a pro-

file, DSCP marking, and dropping, shaping or remarking of out-of-profile traffic. Core

routers perform simple forwarding based on the DSCP. SLAs between the customer and

provider networks are used to derive filter rules for traffic classification at the ingress

routers. Therefore, ingress routers with appropriate configuration of filter rules should

prevent non-conforming traffic from entering a DiffServ domain.

Though ingress routers serve as a good first line of defense, attackers can still succeed

in injecting non-conforming traffic into a DiffServ domain in a variety of ways, e.g.:

1. Attackers can impersonate a legitimate customer by spoofing flow identity(IP ad-

dresses, protocol and port numbers). Network filtering [61] at routers in the customer

network can detect such spoofing if the attacker and the impersonated customer are

on different subnets, but the attacks proceed unnoticed otherwise.

2. Attackers can devise mechanisms to bypass the ingress routers by exploiting some

well known vulnerabilities in the firewall filters. Thus, they can inject traffic with

their own identity and a desired destination.

Such intelligent attacks escape detection at the ingress router and succeed in injecting

traffic into the DiffServ domain. They require co-ordination between boundary routers or

the support of core routers for detection. Changes that can be observed due to the attack

traffic in the network include longer per-packet delays, higher average buffer occupancy,

and higher packet drop rates. We use these characteristics, specifically delays, loss ratios,

and bandwidth achieved by flows after aggregation within the domain to detect bandwidth

theft attacks and violations.

20

Customer Egress

Core Router

Provider Egress

Provider Ingress

Customer Egress

Customer Domain

Customer Domain

Provider Ingress

Domain

SLA Monitor (Egress or BB)

Delay/Loss/Rate/ECN Measurements

Optional Loss Rate Measurements

Fig. 2.1. A hybrid architecture for detecting SLA violations. This can be used
for core-assisted as well as edge-to-edge schemes. The SLAM gets feedback
from core routers in core-assisted scheme only. In both cases, SLAM sits on
an edge router.

Figure 2.1 shows a hybrid architecture for detecting SLA violations. We use an SLAM

to monitor the DiffServ domain. The SLAM gets feedback about delay, loss, and other

parameters from edge and core routers depending on the monitoring scheme we use. The

core routers send information to the SLAM only in core-assisted scheme. In this figure, the

SLAM is shown as a separate entity. However, any edge router can take this responsibility

as long as it has sufficient resources and computing capabilities. A service provider can

also use a dedicated host as a SLAM.

The SLAM maintains a table storing delay and loss information of misbehaving flows

only. The table is updated on receipt of new values from the egress and core routers. In

addition, the SLAM maintains the SLA parameters for each customer for a certain domain.

By comparing the delay and loss measurements against the specific customer SLA, the

violations are identified. In the core-assisted scheme, egress and core routers send delay

and loss measurements respectively to the SLAM. Upon request, the ingress routers send

21

the number of packets entering a domain per flow to calculate loss ratio. The packet loss is

computed as the ratio of the packet drop inside a domain to the total packets entering the

domain. The loss ratio of a flow is a better metric than loss rate or number of drops per

second. Another alternative is to measure delay, loss or throughput using only edge routers.

The main difference between the edge-to-edge and the core-assisted approaches from an

architectural point of view is that both use edge routers but core-assisted measurement use

core routers as well.

2.4 Core-assisted Monitoring

The core-assisted monitoring estimates the SLA parameters with the involvement of the

core routers in a network domain. These measurements are similar to the literature [42,43]

on measuring delay, loss, and throughput in the Internet. However, we follow different

strategies to measure each parameter to make it more suitable for the monitoring process. In

this section, we discuss the measurement of SLA parameters and how these measurements

are used to monitor a network domain.

2.4.1 Delay Measurements

Delay bound guarantees made by a provider network to customer traffic flows are for

the delays experienced by the flows between the ingress and egress edges of the providers

domain. Delay measurements can be done using either real customer traffic or artificially

injected traffic. The first is anintrusive approach and is difficult to implement because

encoding timestamps into the data packets would require changing the packets at the ingress

and rewriting the original content at the egress after appropriate measurements. The second

approach is non-intrusive. Probe packets are injected with desired control information to

enable an egress router to recognize such probes, perform measurements, and delete the

probes from the traffic stream. We adopt the second approach in our design. For each

packet traversing an ingress router, with a certain pre-configured probability pprobe, the

ingress copies the packet IP header into a new probe packet. A timestamp tingress is encoded

into the payload, and an identifier field is marked with a new value in the probe packet. The

egress router removes probes from the traffic stream, and computes delay for a packet of

flow i as:

22

delayi = tiegress − tiingress. (2.1)

The egress forwards the packet details and the measured delay information to the

SLAM. The encoded timestamp must follow a well-known format such as the Coordi-

nated Universal Time (UTC), or a standard protocol such as Network Time Protocol (NTP)

to obtain the timestamp value at the edge routers. The clock synchronization problem can

also be overcome by rerouting the same probe packet from egress to ingress router using

strict source routing in the opposite direction. The ingress router then computes the ap-

proximate latency from the elapsed time between sending and receiving the probe. At time

t, the SLAM classifies the packet as belonging to flow i of customer j, and updates the

average packet delay of the customer traffic as an exponential weighted moving average

(EWMA):

avg delayj(t) = α× avg delayj(t− 1) + (1 − α) × delay
j
i (t), (2.2)

where α is a small fraction to emphasize the delay history more than the current sample.

If this average packet delay exceeds the delay guarantee in the SLA, we conclude that an

SLA violation has occurred. If the network is properly provisioned and all flows do not

misbehave, delay for customer j should not exceed its delay guarantee.

Determining the probability with which we should inject probe packets is not an easy

task. If there are M edge routers in a network domain, N i flows (on the average) passing

through an edge router i, and pijprobe is the probability that an edge router i and flow j will

be selected to probe for latency, then MN ip
ij
probe is the average number of control/probe

packets injected into the network domain. To keep the volume of these control messages

low, we must select a low probability. However, if the probability is too low, the chance of

undetected SLA violations is higher. Therefore, we choose a variable pprobe that changes

dynamically over time at each edge router. The change in this probability is performed at

all edge routers autonomously making sure the edges do not use the same random number

generator sequence or seed.

2.4.2 Loss Measurements

Packet loss guarantees made by a provider network to a customer are for the packet

losses experienced by its conforming traffic inside the provider domain. Since packet

23

losses in the domain are mainly due to packet drops at core routers, the buffer manage-

ment schemes at the core router queues are used to detect such losses. This can detect

the number of packets dropped more easily than the loss ratio, though, loss ratio is more

meaningful in SLAs than the number of packet drops or the loss rate. For loss ratio, we

need the number of packet drops, as well as the number of packets traversing through the

core routers.

In the core-assisted loss measurement, packet drops are recorded for every flow over a

time interval ∆t at the core routers. The time interval is usually small enough to store count

information in an integer variable without overflow. The measured values are reported to

the SLAM. At time t, the SLAM then calculates an EWMA using

Li(t) = α× Li(t− 1) + (1 − α) × drop(t); 0.1 ≤ α ≤ 0.2, (2.3)

where drop(t) is the total packet drop at core router i over time interval ∆t. We typically

give a low weight to the recent sample. The weighted average solves the wrap-around

problem of total packets count during the life time of a flow.

To obtain the loss ratio, we must measure the number of packets dropped and the total

number of flow packets traversing each core router. Measuring the total number of in-

coming packets at core routers and periodically reporting them to the SLAM is expensive.

Incoming packet count information is obtained from the edge routers because they monitor

all flows for profile checking, marking, shaping, and/or dropping. This ensures that cores

do not need to transmit information to the SLAM unless there are sufficient packet drops to

indicate attacks or violations. We synchronize the intervals by adopting a standard protocol

such as NTP for time. The algorithm to compute the loss ratio, executed every ∆t, is shown

in Figure 2.2.

Proposition 2.4.1 Algorithm CalcLossRatio (Figure 2.2) computes a close approximation

of the loss ratio in a network domain.

Proof This is because at time t, the SLAM receives drop D
j
i from core i. The SLAM

computes total drop Dj for flow j over a time interval W seconds. If it takes ∆t1 seconds

for drop information to reach to the SLAM from the core, then Dj reflects drop within

t−∆t1 time. The SLAM queries edge routers for incoming packet count of user j, Bj . In a

differentiated services network, the ingress routers calculate the average incoming rate over

a time interval for the purposes of marking and shaping. Edge routers easily reply to the

24

Algorithm: CalcLossRatio()

1. Core i reports to the SLAM whenever packet drop of flow j, Dj
i , exceeds the local

threshold T ij
l .

2. The SLAM computes the total drop during time interval ∆t, Dj =
∑Nc

i=1D
i
j , where Nc

is number of core routers.

3. If total drops exceed a global threshold, Dj > T j ,

a. The SLAM sends a query to all edge routers requesting their current throughput,

Bj for flow j

b. The SLAM calculates total incoming rate for flow j, Bj =
∑Ne

i=1B
ij , where Ne is

number of edges.

c. The SLAM computes the loss ratio LRj = Dj

Bj
. Note that both Bj and Dj are

measured over the same time interval.

d. if LRj > LR
j
SLA, an SLA violation is reported.

Fig. 2.2. Algorithm to calculate the loss ratio for the core-assisted monitoring
scheme. The loss ratio is used to detect SLA violations.

SLAM query. Assume it takes ∆t2 seconds to send the query from the SLAM to the edges.

The actual loss ratio is LRj = Dj

Bj−∆Bj
, and the approximate loss ratio is LRj

approx = Dj

Bj
,

where ∆Bj is the number of packets arriving during ∆t2. If the SLAM and edge routers

use the same time interval W to calculate drop and if ∆t ¿ W , then ∆Bj ¿ Bj , i.e.,

LRj ≈ LRj
approx.

Selecting the local threshold value at each core router is difficult since the core router

does not have any information about the user SLAs. The thresholds must be set on per-

class basis. For each AF class k, the router needs a local loss threshold T k
l . May et al. [62]

compute the loss probability for an AF class k as follows:

LRk = 1 −
B
∑

n=0

αk(n)π(n), (2.4)

where B is the buffer size of the queue, αk(n) represents the probability that a class-k

packet is accepted given that n packets are in the queue, and π(n) is the stationary distribu-

25

tion of the buffer content. The local threshold at each core for class-k packets can thus be

set to T k
l = (LRk + ∆)λj , and LRk

SLA = (LRk + ∆)H, where λj is the expected arrival

rate of user j and H is the maximum number of hops a packet travels through the network

domain.

The local threshold limits the state maintenance at the core to a subset of the total

number of flows experiencing the highest loss ratio, since we are only interested in flows

that result in the aggregate traffic experiencing high loss ratio. If a flow exhibits a high loss

ratio, this does not mean that this particular flow is violating its profile. This drop may be

caused by other misbehaving flows. Comparing aggregate throughput to the allowed rates

of users can detect such attacks.

2.4.3 Throughput Measurements

The objective of throughput measurement is to ensure no user is consuming extra band-

width (beyond its profile) after aggregation within a domain. This cannot be detected by

an ingress router if the user sends at a lower rate than its profile through multiple ingress

routers. The service provider allows the user to consume extra bandwidth if no other flow

suffers degraded performance as a result, so throughput measurement is only performed if

a violation has been reported.

The SLAM measures throughput by probing egress routers following a loss or delay

violation report. The egress measures the rate at which user traffic is leaving a network

domain. This is an average value over a time duration and it represents the per-domain

throughput for a flow. When the SLAM measures throughput of flows at egress routers, it

computes the aggregate throughput for user j as: Bj =
∑Ne

i=1B
ij . If Bj > SLA

j
bw then an

SLA violation is reported.

2.4.4 Monitoring Algorithm

LetE be the set of all edge routers, both egress and ingress. One of these routers can act

as a SLA Monitor (SLAM), or a separate entity can be used to act as SLAM. The algorithm

proceeds as follows:

1. Each ingress router copies the header of user packets with probability pprobe to probe

the network for delay measurement.

26

2. When an egress router receives these probes, the egress stamps its identity on the

packet and resends them back to the source (ingress). The egress replies the delay

probe to the ingress because by this way the monitor determines the receiver egress

routers for the probing.

3. The monitor computes the average edge-to-edge delay and updates the average delay

of the user using equation 2.2.

4. During congestion, the SLAM receives packet drop information from different core

routers. Then, it polls the egress routers to obtain the packet count, which is required

to calculate the loss ratio. The loss ratio is calculated using algorithm shown in

Figure 2.2.

5. The SLAM probes the network for throughput approximation when the loss is higher

than the pre-configured threshold.

6. For users with higher delay, loss, and bandwidth consumption, the monitor decides

about possible SLA violation. The monitor knows the existing traffic classes and the

acceptable SLA parameters per class. If there is any loss at the core for the EF traffic

class and if the AF loss ratio exceeds a certain level, an SLA violation is flagged.

DoS attack is checked by comparing the total bandwidth achieved of a user with it

SLAbw. For each violation, it takes proper action, such as throttling the particular

user traffic using flow control mechanism.

2.4.5 Experiments: Delay, Loss, and Throughput Measurements

Setup. The performance of our monitoring mechanism is evaluated using simulation.

A series of experiments are conducted to investigate the delay, loss, and throughput ap-

proximation methods described in this section. We use a similar network topology that is

used in [29] to evaluate our monitoring schemes. The topology is shown in Figure 2.3.

Multiple domains are connected to all edges routers through which flows enter into the

network domain. The flows are created from domains attached to E1, E2, E3 and destined

to the domains connected to edge router E6 so that the link C4 → E6 is congested. An

attack is simulated on C4 → E6 to show that the edge routers can detect service violations

and attacks due to flow aggregation towards a downstream domain. Many other flows are

created to ensure all links carry a significant number of flows.

27

C2

C1

C4

E1

E5

C3

E3
E4

E6

E7
C5

E2

Core Router

Edge Router

20 Mbps, 30 ms

10 Mbps, 20 ms

Fig. 2.3. Topology used to detect service violations. All edge routers are
connected to multiple domains, and each domain has multiple hosts to act as
senders or receivers.

20
40
60
80

100
120
140
160
180
200

5 10 15 20 25 30

A
ve

ra
ge

 d
el

ay
 (m

s)

Time (sec)

E1-E6
E1-E6 (idle)

E1-E7
E5-E4

(a) No Attack

20
40
60
80

100
120
140
160
180
200

5 10 15 20 25 30

A
ve

ra
ge

 d
el

ay
 (m

s)

Time (sec)

E1-E6
E1-E6 (idle)

E1-E7
E5-E4

(b) With high excess traffic

Fig. 2.4. Edge-to-edge link delay when links are idle and during an attack. (a)
Delay when the network is not under attack and most of the links are idle. (b)
The delay goes high in presence of attacks.

Delay measurements. We measure delay when the network is properly provisioned

or over-provisioned (and thus experiences little loss). An attack is simulated through links

C3 → C4 and C4 → E6 to show how delay gets changed on these links during attacks.

This scenario is illustrated in Figure 2.4. When idle, the end-to-end delay of E1 → E6

link is 100 ms; E1 → E7 delay is 100 ms; and E5 → E4 delay is 160 ms. With the attack

28

traffic, the average delay of theE1 → E6 link is increased to as high as 180 ms (Figure

2.4(b)). Since all the core router → core router links have a higher capacity than others,

C4 → E6 becomes the most congested link and increases the delay for all traffic traversing

to E6. The delay of the E5 → E4 link is not increased significantly because this path is

not under attack.

0

20

40

60

80

100

100 120 140 160 180 200

%
 o

f t
ra

ff
ic

delay (ms)

light load
medium load

mild attack
severe attack

Fig. 2.5. Cumulative distribution function (CDF) of edge-to-edge delay for
link E1 → E6. The delay changes with network traffic load.

Figure 2.5 shows the cumulative distribution function (CDF) of edge-to-edge delay for

the link E1 → E6 under various traffic loads and in presence of attacks. When there

is no attack, the end-to-end delay is close to the link transmission delay. If the network

path E1 → E6 is lightly loaded, for example with a 30% load, the delay does not go

significantly higher than the link transmission delay. Even when the path is 60% loaded

(medium load in Figure 2.5), the edge-to-edge delay of link E1 → E6 is increased by less

than 30%. Some instantaneous values of delay go as high as 50% of the link transmission

delay but the average value does not fluctuate a lot. In both cases, the network is properly

provisioned, i.e., the flows do not violate the SLAs. On the other hand, an excess traffic

introduced by an attacker increases the edge-to-edge delay and most of the packets of attack

traffic experience a delay 40-70% higher (Figure 2.5) than the link transmission delay.

29

Delay measurement is thus a good indication of the presence of excess traffic inside a

network domain.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

%
 o

f t
ra

ff
ic

delay (ms)

10 probes/sec
20 probes/sec

(a) Delay introduced by probes

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

%
 p

ro
be

 lo
ss

Time (sec)

No Attack (5 probes/s)
Attack (5 probes/s)

No Attack(10 probes/s)
Attack 2 (10 probes/s)

(b) Probe loss ratio

Fig. 2.6. (a) Link delay is slightly changed when more probes are introduced.
(b) Probing at a low rate suffers loss when excess traffic is introduced by an
attacker. This can introduce incorrect experimental results.

Figure 2.6(a) shows that introducing more delay probes may increase the delay of actual

traffic. The graph of delay probe loss ratio in Figure 2.6 (b) shows that sending only 5

probes per second can be dangerous because as high as 80% of the probes are lost in this

experiment. We find that sending probes at a rate 10-15 per second is a good choice in this

experiment.

Loss measurements. Figure 2.7 shows loss approximation using the core-assisted

scheme. As the scheme uses an EWMA of the drop values and the number of incom-

ing packets traversing edge routers, the initial approximated values deviate from the actual

value. Thus, initial data should be discarded. After the initial periods, the approximated

value is very close to the actual one. The approximated loss ratio is reasonably converges

to the actual loss ratio within 5 seconds. According to the simulation setup, link C4 → E6

sees a large number of losses, resulting in an increased loss ratio for the E1 → E6 as

shown in Figure 2.7.

Throughput measurements. Figure 2.8 shows the throughput approximation that

computes the average bytes at the egress routers of different flows traversing the network

domain. There are several aggregate flows going through the domain. We measure through-

30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20 25 30

L
os

s
R

at
io

Time (sec)

actualLR(E3-E6)
approxLR(E3-E6)
actualLR(E1-E6)

approxLR(E1-E6)
actualLR(E5-E4)

approxLR(E5-E4)

Fig. 2.7. Loss approximation with the core-assisted scheme. The approximated
value converges to the actual loss in 5 sec.

put for flow F1, which follows the path E3 → E6, flow F2 which follows path E1 → E6,

flow F3 which follows path E2 → E6, and flow F4 which follows path E5 → E4.

Other aggregate flows follow paths E1 → E7 and E3 → E7. Figure 2.8 shows an initial

fluctuation between actual and approximated throughput measurements due to the average

calculation. After a few seconds, the values are close together. As the approximation is

close with a small error, it is possible to sum up user throughput and compare it with the

overall SLA profile to detect violations.

2.5 Stripe-based Monitoring

This scheme uses the same mechanism to measure delay and throughput as it is de-

scribed in the core-assisted monitoring scheme. The main difference between the two lies

in measuring loss. The stripe-based monitoring scheme probes a network domain to in-

fer loss characteristics of each individual links. The loss inference makes the stripe-based

monitoring scalable.

The real challenge of this work is to determine an algorithm that monitors the network

in real time nature. We need to determine how often the stripes should be sent and to

which receivers to monitor all links. As this mechanism involves only edge routers, the

monitoring scheme will be scalable.

31

2

2.5

3

3.5

4

4.5

5

5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

BW F2
BW F2 (Approx)

BW F1
BW F1(Approx)

BW F4
BW F4(Approx)

Fig. 2.8. Throughput approximation using core-assisted monitoring scheme.
The approximated values converge to the actual values within 10 seconds.

2.5.1 Loss Inference

We show how to infer loss ratios for unicast traffic as explained in [29]. This scheme

sends a series of probe packets with no delay between the transmission of successive pack-

ets, or what is known as a “stripe.” The scheme is designed as an end-to-end scheme, which

can be adapted to the edge-to-edge scenario. We refer to this strategy as the stripe-based

loss measurement scheme.

To simplify the discussion, consider a two-leaf binary tree spanning nodes 0, k, R1, R2,

as shown in Figure 2.9. We have used the same figure as it is shown in [29] to explain

their idea. The loss ratio of the link k → R1, for instance, can be estimated by sending

stripes from the root 0 to the leaves R1 and R2. The first packet of a 3-packet stripe is sent

to R1, while the last two are sent to R2. If a packet reaches to any receiver, we can infer

that the packet must have reached the branching point k. Further, if R2 gets the last two

packets of a stripe, it is likely that R1 receives the first packet of that stripe. The packet

loss probability is calculated based on whether all packets sent to R1 and R2 reach their

destination. Similarly, the loss ratio of the link k → R2 is inferred using a complementary

stripe, in which the first packet is sent toR2 and the last two are sent to R1. The loss ratio

of the common path from 0 → k from the transmission probability as shown below:

32

0

k

R R21

Fig. 2.9. Binary tree to infer loss of each link. The probes are sent from the
sender 0 to both receivers R1 and R2.

Ak =
ZR1

ZR2

ZR1∪R2

, (2.5)

where Z represents the empirical mean of a binary variable which takes 1 when all packets

sent to R1 reach their destination and 0 otherwise. The mean is taken over n identical

stripes. By combining estimates of stripes down each such tree, the characteristics of the

common path from 0 → k is estimated.

This inference technique extends to general trees. Consider an arbitrary tree where for

each node k, R(k) denotes the subset of leaves descended from k. Let Q(k) denote the set

of ordered pairs of nodes in R(k) descended from k. For each (R1, R2) ∈ Q(k), a stripe

should be sent from the root to the receivers R1 and R2.

2.5.2 Loss Inference for Active Queues

The unicast probing scheme is extended for routers with active queue management,

e.g., 3-color RED [23]. This queue has different drop precedences. We have to adjust the

loss inference to cope with the drop precedences. The new scheme will be used to monitor

loss inside a QoS network domain.

Figure 2.10 shows the drop probabilities of a three drop precedence active queues. The

red traffic has higher probability to drop than yellow and green traffic. The packets are

33

1

dropP

redP

Rmin Rmax Ymin

yellowP

Ymax Gmin Gmax
Avg queue length

Pgreen

Fig. 2.10. RED Parameters for an active queue with three drop precedences.

dropped with these probabilities when the queue length falls in between minimum and max-

imum threshold. Below minimum threshold there is no drop, and after maximum threshold

there is absolute drop. Let, αG(n) be the probability that an incoming green packet will

be accepted by the queue given that n packets are in the queue. αY (n) and αR(n) have

the same meaning for yellow and red traffic respectively. We write equations ofαs shown

below:

αG(n) = 1, if n < Gmin

αG(n) = 0, if n > Gmax

αG(n) = 1 − Pgreen
n−Gmin

Gmax −Gmin

, otherwise. (2.6)

The equations are similar for yellow and red traffic. These equations help to understand

the behavior of active queues. Based on this information, we need to change the loss

inference mechanism. The Assured Forwarding (AF) mechanism is realized using four

queues where each queue has three drop precedences referred to as green, yellow, and red.

The red traffic is dropped with a probabilityPred when the average queue size lies between

two thresholds Rmin and Rmax. All incoming red packets are dropped when the average

queue length is ≥ Rmax. Let Pred be the percentage of packet drops due to the behavior of

active queue management for red packets, and let Pyellow and Pgreen be defined similarly.

These percentages can be computed as:

Pred =
Rmax − Rmin

Rmax

× Pred +
Gmax −Rmax

B
× 100, (2.7)

34

Pyellow =
Ymax − Ymin

Ymax
× Pyellow +

Gmax − Ymax

B
× 100, (2.8)

Pgreen =
Gmax −Gmin

Gmax

× Pgreen, (2.9)

where B is the buffer (queue) size in the router.

Let, P ′red = 1 − Pred, be the percentage of red packets accepted by the active queue.

We can define percentages for yellow and green traffic similarly using equations (2.8) and

(2.9). Link loss can be inferred by subtracting of transmission probability of equation (2.5)

from 1 i.e. 1 − Ak. Therefore, if Lg, Ly, and Lr are the inferred losses of green, yellow

and red traffic, respectively, the overall loss of a class is expressed as shown in equation

(2.10), where ni is number of samples taken from i types of traffic. To put equal weight to

all traffic, we can usen = ni,∀i. However, when loss of green traffic is zero, we average

yellow and red losses. When the loss of yellow traffic is zero, we report only loss of red

probes.

Lclass =
ngP ′greenLg + nyP ′yellowLy + nrP ′redLr

ng + ny + nr
. (2.10)

Our goal is to detect SLA violations with minimal communication and implementation

overhead. To achieve that, we propose to eliminate unnecessary probing when there is no

traffic or when there are no misbehaving flows.

The essence of the proposed approach is to detect which egress and ingress routers are

active at a certain time. This can be done using delay probes, which are anyway periodically

transmitted. If many edge routers are idle or many links are under-utilized, the SLAM does

not probe the whole network for loss information. This reduces the set of edge routers used

as receivers in the stripe-based probing.

2.5.3 Monitoring Algorithm

LetE be the set of all edge routers, both egress and ingress. One of these routers can act

as a SLA Monitor (SLAM), or a separate entity can be used to act as SLAM. The algorithm

proceeds as follows:

1. Each ingress router copies the header of user packets with probability pprobe to probe

the network for delay measurement.

35

2. The monitor computes the average edge-to-edge delay updates the average delay of

the user using equation 2.2. If the delay exceeds a certain threshold, the monitor

needs to probe the network for loss.

3. The SLAM maintains a set of edge routers E ′ to send stripes to in order to infer loss,

where E ′ ⊆ E. The SLAM maintains a spanning tree of the network topology and

the minimum set of edges S that needs to be probed to infer loss on active links. A

set of edge routers, Si, which we refer to as complementary edges, is associated with

each edge i. At time t, the SLAM computes the set E ′ as:

E ′t =
⋃

i

Sit . (2.11)

Since E ′ ⊆ E, the communication overhead will be no more than that of the regular

probing to all edge routers.

4. The SLAM probes the network for throughput approximation when the loss is higher

than the pre-configured threshold.

5. For users with higher delay, loss, and bandwidth consumption, the monitor decides

about possible SLA violation. The monitor knows the existing traffic classes and the

acceptable SLA parameters per class. If there is any loss at the core for the EF traffic

class and if the AF loss ratio exceeds a certain level, an SLA violation is flagged.

The DoS attack is checked by comparing the total bandwidth achieved by a user with

it SLAbw. For each violation, it takes proper action, such as throttling the particular

user traffic using flow control mechanism.

Complementary Edges. In the stripe-based unicast probing methodology, the source

needs to send certain packets of a stripe to one receiver and the rest of the packets of the

stripe to a different receiver. Based on which link loss needs to be inferred, the order of

these two receivers is different. We refer to each receiver as a complementary edge to the

other receiver of an ordered pair of receivers. For a given node V, usually a leaf sibling

of V can be a complementary node of V. We describe an algorithm (Figure 2.11) to find

complementary edges for each edge router of a given tree. These complementary edges

will be used to infer link loss from the root to all links up to the closest common ancestor

or least common ancestor (LCA) of both receivers, and from the LCA to both end receivers.

36

Union of the complementary edges of two edge routers will give all edge routers to use as

receivers in the stripe-based methodology to infer loss of required links.

This algorithm needs to run initially when the network is setup and when it is recon-

figured with additional routers/links. Then the result is stored in the SLAM. Since the

algorithm is not run often, it does not impose excessive overhead.

Algorithm: ComplementaryEdges (Tree T , Edge V)

/* The tree is traversed backwards starting from V . */

C ′ ← ∅, P = parent(V)

while P <> root

Add leaf X to C ′, where lca(V,X) = P

P ← parent(P)

return C ′

Fig. 2.11. Obtaining complementary edge router, which is a receiver in the
stripe based monitoring.

2.5.4 Experiments and Results

Setup. The simulation setup is same as it is described in Section 2.4.5.

Loss inference. First, we depict the inferred loss using striped unicast probes. Fig-

ure 2.12 shows loss inference for the topology (Figure 2.3) for 3-packet stripes and 4-packet

stripes. Exp 1 has fewer number of flows to cause packet drops inside the network domain.

Exp 2 and Exp 3 have enough flows to cause huge packets drops in the network. The fig-

ure shows loss inference is close to the actual loss in most of the cases. In few cases, it

over-estimates or under-estimates the loss. We can reduce this effect by increasing the time

interval to measure probe loss. 4-packet stripe has little advantage over 3-packet stripe in

our experiment.

Figure 2.13 shows the inferred loss of the link C4 → E6 with different rates at which

probes are sent. The objective of this experiment is to determine how often a stripe should

be sent to infer loss accurately, i.e., the stripe transmission frequency. The figure shows

that at least 20 stripes per second are required to infer a loss ratio close to the actual value.

37

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

In
fe

rr
ed

 L
os

s

Actual Loss

Exp 1
Exp 2
Exp 3

y=x

(a) 3-packet Stripe

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

In
fe

rr
ed

 L
os

s

Actual Loss

Exp 1
Exp 2
Exp 3

y=x

(b) 4-packet Stripe

Fig. 2.12. Inferring loss using unicast stripe-based probing. 4-packet stripes
do not add significantly over the 3-packet stripes.

The figure also demonstrates that a longer time is required for convergence in the striped-

based scheme than in the core-assisted scheme. It takes at least 10 seconds to converge the

inferred loss ratio reasonably to the actual loss ratio.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 5 10 15 20 25 30

L
os

s
R

at
io

Time (sec)

Actual loss
freq=10
freq=20
freq=25
freq=30

Fig. 2.13. Inferring loss of link C4 → E6 using striped unicast probes. “freq”
denotes the number of stripes transmitted per second.

38

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

L
os

s
R

at
io

Time (sec)

red
green

yellow

Fig. 2.14. Loss of different color probe packets in presence of high excess
traffic. Green probes see high loss when a severe attack starts. Yellow and Red
probes experience high drops as expected

One important note is that stripe-based loss inference (as proposed in [29]) works well

if core routers do not employ active queue management [23] or service differentiation.

In assured forwarding, packets marked as red have a high drop probability while green

packets have low drop probability. We send stripes of different colors to infer loss in this

case. Figure 2.14 shows the loss of probes with different drop precedences.

2.5.5 Experiments: Detecting Attacks and SLA Violations

We demonstrate the detection of three scenarios: No attack, Attack1, Attack 2. “No

attack” means no significant traffic in excess of capacity. This scenario has little loss inside

the network domain. This is the normal case of proper network provisioning and enforcing

traffic conditioning at the edge routers. Attacks 1 and 2 inject more traffic into the network

domain from different ingress points. At each ingress point, the flows do not violate the

profiles but overall they do. The intensity of the attack is increased duringt=15 seconds to

t=45 seconds. The attack causes packet drops of 15 to 30% in case of Attack 1 and more

than 35% with Attack 2.

39

100

110

120

130

140

150

160

170

180

0 10 20 30 40 50 60

de
la

y
(m

s)

Time (sec)

<------- severe attack -------->

No Attack
Attack 1
Attack 2

Fig. 2.15. Observed delay at the time of an attack. “Attack 1” results in packet
loss in excess of 15-30%. “Attack 2” increases packet loss to more than 35%

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

lo
ss

 ra
tio

Time (sec)

<------- severe attack -------->

No Attack
Attack 1
Attack 2

Fig. 2.16. Overall loss ratio during attack follows the same pattern as the delay.

Figure 2.15 shows that the increase of edge-to-edge link delay during the attack. The

loss is inferred when a high delay is experienced inside the network domain. We use

40

equation (2.10) to compute overall loss for each class in a QoS network. This loss is shown

in Figure 2.16. This loss follows the same pattern as the delay increment during the attack.

This loss fluctuates with time. We measure the loss over short time duration so that it

converges to the real loss in the network.

2.6 Overlay-based Monitoring

Overlay-based monitoring uses an interesting observation: service violation can be de-

tected without exact loss value of each internal link. It only requires to check whether a link

has loss higher than the specified threshold. Like [58, 63], we measure loss using average

values in a recent time frame. The link with a high loss is referred to as a congested link

(see Definition 2.6.1). The similar congestion measure is used in [64]. This congestion

model is simple, and enables us to provide an in-depth analysis of the system. In future,

we plan to use the model that considers loss correlation [65] among successive packets.

We devise a new approach to detect congested links by edge-to-edge measurements.

These links are used to detect flows that pose threats to other flows by consuming extra

resources.

E1

C1

E5

C4

E6

Core RouterEdge Router

E2

E7E4

E3 C5

C2C3

(a)

Edge Router

E3

E4 E5

E2

E7E6

E1

(b)

C1

E1

C4

Edge Router Core Router

C3 C2

E3

E6

C5

E2

E5E7E4

(c)

Fig. 2.17. (a) Tree topology transformed from a network domain. (b) All
probing agents at the edge routers form a virtual network with both neighbors
in an ordered sequence. (c) Direction of internal links for each probing.

41

2.6.1 Identifying Congested Links

To apply the overlay-based distributed probing, a network topology needs to be con-

verted into a tree structure. This converting process is discussed later in this section. The

tree contains core routers as internal nodes and edge routers as leaf nodes. Monitoring

agents are deployed in the leaves to collect statistics from other edge routers to check SLA

violations. The probing agents sit only at the edge routers and know their neighbors. The

neighbors are determined by visiting the tree using depth first search algorithm starting

from any edge router, and putting all edge routers in an ordered sequence. All probing

agents form a virtual network on top of the physical network. The probes follow edge-to-

edge path in the virtual network. A typical spanning tree of the topology, the corresponding

overlay network, direction of all internal links for each probe are shown in Figure 2.17.

The following definitions and observations are used to describe the properties of the

overlay network, and to identify congested links in the proposed simple and advanced

method.

Definition 2.6.1 Congested link. A link is congested if all loss measurement samples in a

given time frame exceed a specified loss threshold.

Definition 2.6.2 Overlay Network. To connect all edge routers with their neighbors in a

network domain, we build a virtual network and define as an overlay network. We equiva-

lently refer the tree topology or the virtual network to an overlay network.

Definition 2.6.3 Terminal core router. A core router, which is connected to only one other

core router in an overlay network is called a terminal core router. In Figure 2.17, the core

routers C4 and C5 are the terminal core routers.

Definition 2.6.4 Probe path. A probe path P is a sequence of routers (either core or edge)

〈E1, C1, C2, . . . , Cn, En〉 where a router exists in the sequence only once. A probe packet

originates at the edge router E1, passes through the core routers C1, C2, . . . , Cn−1, and

Cn, in the given order, and terminates at the edge router En. We also represent the probe

path P by the set of links, 〈E1 → C1, C1 → C2, . . . , Cn → En〉.

Definition 2.6.5 Link direction. A link u → v, we say link from node u to v, is in inward

direction (IN) with respect to node v. Similarly, the same link is in outward (OUT) direction

with respect to node u.

42

Lemma 2.6.1 If a core router C is connected to two routers (core or edge)R1 andR2 only,

the duplex path R1 ↔ C ↔ R2 can be replaced with the duplex link R1 ↔ R2, and both

links are functionally equivalent in the overlay-based probing scheme.

2

1

2

1

1

R

R

R

C

R

Fig. 2.18. Merging links that do not contribute during probing in the overlay-
based monitoring.

Proof Let the core router c is connected to only two other routers R1 and R2. No probe

path can be constructed that either includes the link R1 → C and does not include C → R2

or vice versa; or includes R2 → C and does not include C → R1 or vice versa. The

traffic that passes through the linkR1 → C also passes through C → R2. The traffic

that passes through the link R2 → C also passes through C → R1. Therefore, for the

purpose of probing, a logically equivalent overlay network can be constructed by replacing

R1 ↔ C ↔ R2 with R1 ↔ R2. We say that the link R1 → R2 is congested if and only if at

least one of the links R1 → C and C → R2 is congested, i.e. the bandwidth of R1 → R2

is the minimum of the bandwidths of R1 → C and C → R2. Similarly, the bandwidth of

R2 → R1 is the minimum of the bandwidths of R2 → C and C → R1.

Lemma 2.6.2 In an overlay network, every core router is connected to at least three other

routers.

Proof If a core router C is connected to two routers only, C together with its two connect-

ing links can be replaced by a single link (Lemma 2.6.1). If C is a terminal core router and

43

C is not connected to any edge router, that is, C is connected to only one other router, C

can never be included in a probe path and can be simply removed. Hence, all core routers

are connected to at least three other routers.

Lemma 2.6.3 An overlay network can be constructed in such a way that every terminal

core router is connected to at least two edge routers.

Proof Since a terminal core router C is connected to only one other core router (Defini-

tion 2.6.3), if C is not connected to at least two edge routers, C can be removed from the

network (Lemma 2.6.1).

Core Router

X

X

X
X

X

12 X

23

32
24

42

21

3

2

1 1

3

1

2

3 444

Edge Router

Fig. 2.19. (a) Spanning tree of a simple network topology. (b) Each edge router
probes its neighbor edge router in counter-clockwise direction (c) Direction of
internal links for each probing.

Simple Method

Our solution contains two methods: Simple method and Advanced method. We conduct

total two rounds of probing in the Simple method. One in the counter-clockwise direction,

and in the clock-wise direction starting from any edge router. The former one is referred

to as first roundof probing, and the latter one is referred to as second round of probing. In

each round, probing is done in parallel.

We describe the loss monitoring scheme with a simple network topology. In this exam-

ple, Figure 2.19b, edge router 1 probes the path 1 → 3, router 3 probes the path 3 → 4,

44

and 4 probes the path 4 → 1. Let Pi,j be a boolean variable that represents the outcome of

a probe between edge routers i to j. Pi,j takes on value 1 if the measured loss exceeds the

threshold in any link within the probe path, and 0 otherwise. Notice that Pi,j = 0,∀ij, i = j.

We express the outcome of a probe in terms of combination of all link status. Let Xi,j be a

boolean variable to represent the congestion status of an internal link i → j. We refer X to

a congestion variable. From Figure 2.19c, we can write equations as follows:

X1,2 +X2,3 = P1,3 X3,2 +X2,4 = P3,4 X4,2 +X2,1 = P4,1, (2.12)

where (+) represents a boolean “OR” operation. We express status of internal links of any

probe path of a network topology in terms of probe outcomes.

Note that loss in path 1 → 3 might not be same as loss in path 3 → 1. This path

asymmetry phenomenon is shown in [66]. In general, Xi,j is independent ofXj,i,∀ij, i 6= j.

The second round of probing, Figure 2.19(a), is done from 1 → 4, 4 → 3, and 3 → 1.

We express the outcome of this round of probing in terms of internal links as follows:

X1,2 +X2,4 = P1,4 X4,2 +X2,3 = P4,3 X3,2 +X2,1 = P3,1. (2.13)

For an arbitrary topology,

Xi,k +
n=l−1
∑

n=k

Xn,n+1 +Xl,j = Pi,j. (2.14)

The sets of equations (2.12 and 2.13) are used to detect congested link in the network.

For example, if the outcome of the probing shows P1,3 = 1, P1,4 = 1, and rest are 0, we get

the following:

X1,2 +X2,3 = 1 X1,2 +X2,4 = 1. (2.15)

All other probes do not see congestion on its path, i.e., X3,2 = X2,4 = X4,2 = X2,1 =

X2,3 = 0. Thus, the equation set (2.15) reduces to X1,2 = 1. Similarly, if any of the single

link is congested, we can isolate the congested link. Suppose, two of the links, X1,2 and

X2,3, are congested. The outcome of probing will be P1,3 = 1, P1,4 = 1, and P4,3 = 1,

which makes X3,2 = X2,4 = X4,2 = X2,1 = 0. This leaves the solution as shown in

equation(2.16). Thus, the overlay-based scheme can isolate links with high loss in this

topology.

45

X1,2 +X2,3 = 1 X1,2 = 1 X2,3 = 1. (2.16)

Analysis of Simple Method. The strength of simple method comes from the fact that

congestion variables in one equation of any round of probing is distributed over several

equations in the other round of probing. If n variables appear in one equation in the first

round of probing, no two (out of the n) variables appear in the same equation in the second

round of probing (Lemma 2.6.4) or vice versa. This property helps to solve the equa-

tion sets efficiently. Theorem 2.6.1 shows that if any single probe path is congested with

arbitrary number of links, the simple method can identify all the congested links. In The-

orem 2.6.2, we show that the simple method determines the status of a link with very high

probability when the congestion is low.

Lemma 2.6.4 If P and P ′ are any probe paths in the first and the second round of probing

respectively, |P ∩ P ′| ≤ 1.

P

P’

3R

4R

2R1R

Fig. 2.20. Intersection of probe paths P and P ′. They meet at router R1 and
then split out at router R2.

Proof Let the link R1 → R2 (Figure 2.20) appears in path P in the first round of probing

and path P ′ in the second round of probing. If R2 is a core router, it is connected to at least

two other routers, say R3 and R4 (Lemma 2.6.2). P passes through the link R2 → R4 and

P ′ passes through the link R2 → R3. Since the tree does not have any cycle, P and P ′

never meet again. IfR2 is an edge router, both P and P ′ terminates atR2. Therefore, P and

P ′ can not have any common link in their paths after node R2. Similarly, it can be shown

that P and P ′ can not have common links before they meet at node R1. That is |P ∩ P ′| ≤
1.

46

Lemma 2.6.5 For any arbitrary overlay network, the average length of the probe paths in

the Simple Method is ≤ 4.

Proof In an overlay network, the number of links are 2(e+ c− 1) considering both direc-

tions of a link. The edge routers are the leaves of the topology tree whereas the core routers

are the internal nodes of the tree. The number of leaf nodes is greater than the number of

internal nodes. Thus, the number of links is ≤ 2(e + e − 1) = 4e. Number of the probe

paths in first (or second) round of probing ise, and every link appears exactly once in each

round. Hence, the average length of a path ≤ 4e
e

= 4.

Theorem 2.6.1 If only one probe path P is shown to be congested in the first round of

probing, the simple method identifies each congestion link inP .

Proof Let, the congested probe path be P = 〈l1, l2, . . . , lk〉 and Xi is the congestion

variable for link li, 1 ≤ i ≤ k. Xi appears once in the equations for each round of probing.

Let, Xm is in equation Xm + f(S) = 1 in the second round of probing, where S is a set of

congestion variables excluding Xm that appear in the equation. The expression f(S) does

not contain any of the variables Xi for 1 ≤ i ≤ k, i 6= m (Lemma 2.6.4). From the first

round of probing, we obtain f(S) = 0, because the outcome of all probe paths except P is

zero in this round. Thus, we can determine Xm, which is 1, hence the status of the link lm,

for any 1 ≤ m ≤ k.

Theorem 2.6.2 Let p be the probability of a link being congested in any arbitrary over-

lay network. The simple method determines the status of any link of the topology with

probability 2(1 − p)4 − (1 − p)7 + 2p(1 − p)12 − p(1 − p)24.

Proof Let a particular link l appears in probe paths P1 and P2 in the first and second round

of probing. The status of a link can be either non-congested or congested. We consider both

cases separately and then combine the results.

When l is non-congested. The status of l can be determined if the rest of the links in

either P1 or P2 are non congested. Let the length of probe paths P1 and P2 are i and

k respectively. The probabilities that the other links in P1 and P2 are non-congested are

(1 − p)i−1 and (1 − p)k−1 respectively. Since, only common link between paths P1 and

P2 is l (Lemma 2.6.4), the following two events are independent: Event1=all other links

in P1 are non-congested and Event2=all other links in P2 are non-congested. Thus, for a

47

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of acutal congested links

D
et

ec
tio

n
P

ro
ba

bi
lit

y

Fig. 2.21. Probability that the simple method determines the status of a link
of any arbitrary topology. X-axis is the fraction of total links that are actually
congested. The simple method performs extremely well when less than 20%
links of a network are congested. If a network is more than 50% congested,
the simple method can not contribute much.

non-congested link,

Pr{status of l be determined} = (1 − p)i−1 + (1 − p)k−1 − (1 − p)i−1(1 − p)k−1

= (1 − p)i−1 + (1 − p)k−1 − (1 − p)i+k−2

Using the average length for the probe paths (Lemma 2.6.5), i.e., i = k = 4.

Pr{Status of l be determined} ≈ 2(1 − p)3 − (1 − p)6.

When l is congested. If l is a congested link, its status can be determined when all other

links that appear on the probe path of l are non-congested and their status are determined.

Let link l appears on a path in the first round of probing withl1, l2, and l3 (considering the

average path length is 4). The probability that l1 (l2 or l3) is non-congested and determined

is (1 − p)4. The probability to determine the status of these three links is (1 − p)12. This

is true for the equations set in the second round, where l appears with variables other than

l1, l2, and l3. Thus, Pr{Status of l be determined} = 2(1 − p)12 − (1 − p)24. For any link

l (congested or non-congested),

48

Pr{Status of l be determined} = (1− p)[2(1− p)3 − (1− p)6] + p[2(1− p)12 − (1− p)24]

= 2(1 − p)4 − (1 − p)7 + 2p(1 − p)12 − p(1 − p)24.

Figure 2.21 shows the probability to determine the status of a link when certain fraction

of the links are actually congested. This figure shows that the simple method determines

status of a link with probability close to 0.90 when 10% links of a network are congested.

For 20% and 30% congestion, the probabilities are 0.64 and 0.40 respectively. This result

is validated with the simulation result for two different topologies. The simple method does

not help much when 50% or more links are congested. In that case, we use the advanced

method to find probes that can decide the status of undecided links in the simple method.

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3

Fa
ls

e
po

si
tiv

e
(f

ra
ct

io
n

of
 li

nk
s)

Fraction of actual congested links

Topology 1
Topology 2

Fig. 2.22. The solution of the simple method can not decide about some links.
If those links are considered as congested links, the solution of the simple
method provides false positive by declaring some links as congested. The
graph is shown for two topologies; Topology 1 shown in Figure 2.17 and
Topology 2 shown in Figure 2.26(b). This figure does not compare the two
topologies, instead, it shows the false positive as a percentage of total links
with respect to percentage of links that are really congested. The solution does
not have any false negative.

Having congestion on links that affect multiple probe paths might eventually lead to

some boolean equations that do not have unique solutions. Thus, the solution of the sim-

ple method usually have some links undecided. If we report these undecided links as con-

49

gested, they will be referred to as false positive if some non-congested links will be reported

as congested. The false positive is calculated as a ratio of undecided links labelled as con-

gested to the total number links in the network. Figure 2.22 shows false positive for two

topologies; Topology 1 shown in Figure 3.4(b) and Topology 2 shown in Figure 2.26(b).

The false positive is a small percentage of all links of a domain. The number of links that

are marked as false positive is very close to the number of actually congested links. The

reason we get false positive is that some good (non-congested) links sit on the same probes

of congested links, and the simple method does not have enough probes to isolate them.

Notice that the solution does not have any false negative.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

Fr
ac

tio
n

of
 id

en
tif

ie
d

lin
ks

Edge-to-edge path length

Topology 1
Topology 2

Fig. 2.23. Fraction of identified links by the simple method for all edge-to-edge
congested paths in the network. The X-axis shows all paths with a specific
length. The solutions for edge-to-edge congestion paths do not have any false
positive. Topology 2 does not have any path of length 3.

We further analyze the simple method when a network has congestion that spreads all

the links from one edge router to any other edge routers. In real network, numerous flows

come from different edge routers and make a series of links to be congested. In this case,

the simple method performs very well. We observe that for an edge-to-edge congested path,

the simple method performs well. It does not have any false positive. We plot this behavior

for Topology 1 and Topology 2 with all possible edge-to-edge paths in Figure 2.23. On

50

the average, the simple method can isolate more than 50% of the congested links for the

edge-to-edge congestion scenarios. Rest of the cases, the solutions have some equations

with more than one variable. We can apply advanced method to be sure about the status

of these links. The percentage of identified links is little high for the path length=6 in case

of Topology 1, Figure 2.23. Because this path has more shared links comparing to other

paths.

Advanced Method

The advanced method is used to identify the status of the undecided variables in the

simple method. Therefore, the output of the simple method is used as the input of the

advanced method. We traverse the topology tree to find probes that can help to decide

about the values for each undecided variable.

The algorithm of the advanced method is shown in Figure 2.24. First, we conduct the

simple method. Let the set of equations with undecided variables be E. For each variable

in equation set E, we need to find two nodes that can be used to probe the network. Each

probe requires one start node and one end node. The algorithm uses the same function to

find start and end node of a probe. Link direction (Definition 2.6.5) plays an important role

to find these probes. For example, in Figure 3.4, if linkC1 → C3 is congested, the start

probe node can be E2, E5, or E7. On the other hand, if link C3 → C1 is congested, the

start probing node can be E3, E4, or E5.

For an undecided link vi → vj , the function FindNode looks for leaves descended

from node vi and vj . First, the algorithm searches for a node in IN direction on a subtree

descended from vi and then in OUT direction on a subtree descended from vj . For any

node v, the DecidePath explores all siblings of v to choose a path in a specified direction.

The function avoids previously visited path and known congested path. It marks already

visited path so that the same path will not be repeated in exploration of an alternate path.

If the network is congested in a way that no solution is possible, the AdvancedMethod

can not add anything to the simple method. If there is a solution, the AdvancedMethod can

obtain probes because this is an exhaustive search on the topology tree to find edge-to-edge

paths that are not already congested.

Analysis of Advanced Method. The number of probes required in the advanced

method depends on the number of congested links existing in a network. The advanced

method starts with the undecided links. When the network is sparely congested or densely

51

Algorithm: AdvancedMethod()
begin

Conduct the simple method. Outcome is an unsolved equation set E.
for Each undecided variable Xij of E do

node1 = FindNode(Tree T, vi, IN) /*See Definition 2.6.5 for description of IN and OUT
direction.*/
node2 = FindNode(Tree T, vj , OUT)
if node1 6= NULL AND Node2 6= NULL then

Probe(Node1, Node2). Update equation set E.
end if
Stop if no more probe exists

end for
end

FindNode(Tree T, Node vi, dir)
begin

if vi is leaf then
return vi

end if
vk = DecidePath(vi)
if vk = NULL then

return NULL
else

node = FindEndNode(T, vk, dir)
end if

end

DecidePath(Node vi, integer dir)
begin
V← siblings(vi)
for Each v of V do

if (dir=IN AND good(v → vi)) OR (dir=OUT AND good(vi → v)) then
return v /*good(L) ⇔ L is neither congested nor visited.*/

end if
end for
return NULL

end

Fig. 2.24. Advanced method to obtain probes that help to decide about the
status of a congestion variable.

congested, the algorithm exit with fewer run and the number of trial for each congestion

variable is low. To obtain how many trials we need to identify the status of each link, we

52

need the average length of a probe path d and on how many paths b a link lies on. For an

arbitrary overlay network, we calculate the approximated value of d and b in Lemma 2.6.7

and Lemma 2.6.6 respectively. Using these two values we show that, Theorem 2.6.3, the

advanced method identifies the status of a link inO(n) probing with a very high probability

when the network is 20% congested or less.

Lemma 2.6.6 For an arbitrary overlay network with e edge routers, on the average a link

lies on e(3e−2)
8 ln e

edge-to-edge paths.

Proof To determine the average number of paths a link l lies on, we split the overlay

network into two subtrees: T1 and T2. The link l lies on an edge-to-edge path whose one

end belongs to T1 and another end belongs to T2. Let the number of edge routers in T1

and T2 be i and e − i respectively. The total possible paths through l is i(e − i). We

observe that the probability that T1 contains i edge routers is, qi ∝ 1
i
, (approximately, if the

tree is not heavily skewed). i.e. qi = k
i
. The average number of paths the link l lies on,

b =
∑e/2

i=1 qi.i.(e− i).

Now,
∑e/2

i=1 qi =
∑e/2

i=1
k
i

= 1 ,i.e. k = 1
ln e

2

.

Therefor, b =
∑e/2

i=1 k(e− i) = e(3e−2)
8 ln e

2

= e(3e−2)
8 ln e−8 ln 2

≈ e(3e−2)
8 ln e

.

Lemma 2.6.7 For an arbitrary overlay network with e edge routers, the average length of

all edge-to-edge paths is 3e
2 ln e

.

Proof There are e(e− 1) edge-to-edge paths exist for the advanced method. The number

of links in a topology is ≈ 4e (see the proof of Lemma 2.6.5). The average length of

a path d = b × 4e
e(e−1)

, where b = e(3e−2)
8 ln e

is the average number of paths a link lies on

(Lemma 2.6.6).

Now, d = e(3e−2)
8 ln e

× 4e
e(e−1)

= 3e−2
2 ln e

× e
e−1

≈ 3e
2 ln e

(for large e).

Theorem 2.6.3 Let p be the probability of a link being congested. The advanced method

detects the status of a link with probability 1 − (1 − (1 − p)d)b, where d = 3e
2 ln e

is the

average path length and b = e(3e−2)
8 ln e

is the average number of paths a link lies on.

Proof The probability that a path of length d is non-congested (1 − p)d. The probability

of having all b paths congested is (1 − (1 − p)d)b. Thus, the probability that at least one

non-congested path exists is 1 − (1 − (1 − p)d)b.

53

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of actual congested links

D
et

ec
tio

n
pr

ob
ab

ili
ty

lower bound
upper bound

Fig. 2.25. Probability that the advanced method determines the status of a link
of topology shown in Figure 2.17a. The X-axis is the probability that a link to
be congested. The Y-axis is the probability that a good path (non-congested)
exists for any link. The dotted graph shows the probability that a good path
exists. The solid graph shows the probability that a good and decided path
(from the first round) exists. These two curves provide lower and upper bound
of the performance respectively.

The detection probability in the advanced method (Theorem 2.6.3) is plot in Figure 2.25

for Topology 1. This figure shows the probability that a good (non-congested) path exists

for any link. The congestion status of the network is varied on the X-axis. Two graphs

are shown: one shows the probability that a good path exists. It provides the upper bound

because the solution can not be better than this limit. If no path exists, the advanced method

can not do anything. The other graph shows the probability that a good as well as decided

path exists. This provides the lower bound because it uses the decided links from the simple

method and the solution can not be worst than this. The advanced method needs only one

probe on the average to identify the status of the link when the network is less than 20%

congested. In this case, the total required probes is O(n). Some links might need more than

one, which is not high because a good and decided path exists. If the network is 20-50%

54

congested, the advanced method might need multiple probes to decide the status of one

unknown variable in E. If the network is more than 50% congested, the advanced method

can not find a good path easily because the path does not exist, and the advanced method

terminates quickly. When the network is highly congested, we need to check almost all the

flows any way. Thus, we can go to the detection phase instead of wasting time to rule out

very few good links.

The performance of the advanced method is not significant when the network is heavily

congested. It raises the question whether it is worth to use the advanced method when the

network is highly congested. Instead, we can apply only the simple method, and go to the

second phase of monitoring directly after that. Thus, we should go to the advanced method

if the congestion is below a certain level. The congestion level is determined using the

graph of the simple method shown Figure 2.21. For example, Figure 2.21 shows that the

detection probability is 12% when the network is 50% congested. Therefore, if the simple

method can identify the status of 12% links, we know that the network is 50% congested,

and skip the advanced method. Thus, the algorithm to auto select simple and advanced

method as follows: We conduct the simple method. The level of congestion is determined

from Figure 2.21. If congestion level is less than a specified threshold (50%), only then we

go to the advanced method. We proceed to the second phase (Section 2.7) of monitoring

with this outcome.

2.6.2 Monitoring Algorithm

LetE be the set of all edge routers, both egress and ingress. One of these routers can act

as a SLA Monitor (SLAM), or a separate entity can be used to act as SLAM. The algorithm

proceeds as follows:

1. Each ingress router copies the header of user packets with probability pprobe to probe

the network for delay measurement.

2. The monitor computes the average edge-to-edge delay updates the average delay of

the user using equation 2.2.

3. The SLAM signals the appropriate edge routers (based on delay probes) to conduct

probing for loss. This time each edge router probes its neighbor in clockwise and

counterclockwise direction.

55

4. The SLAM analyze the outcome of the two rounds of probing. If necessary, it tra-

verses the tree to look for probes for the advanced probing. In this case, the edge

routers are informed who will be the receiver of this probing.

5. The edge routers feedback the outcome of the advanced probing to the SLAM. The

SLAM continues the process until it gets a feasible solution.

6. The SLAM probes the network for throughput approximation when the loss is higher

than the pre-configured threshold.

7. For users with higher delay, loss, and bandwidth consumption, the monitor decides

about possible SLA violation. The monitor knows the existing traffic classes and the

acceptable SLA parameters per class. If there is any loss at the core for the EF traffic

class and if the AF loss ratio exceeds a certain level, an SLA violation is flagged.

DoS attack is checked by comparing the total bandwidth achieved of a user with it

SLAbw. For each violation, it takes proper action, such as throttling the particular

user traffic using flow control mechanism.

2.6.3 General Network Topology

Tree Conversion

The simple and the advanced methods are applicable to a network topology with a tree

structure only. If there is any loop in the topology or multiple paths from one edge router

to another edge router, we need to preprocess the topology before applying the algorithm.

A related work for multicasting can be found in [49], which can be plugged in to our work.

In this section, we describe a simple approach to solve this problem.

We split the topology into a spanning tree, and a set of subtrees. The monitoring al-

gorithm is applied to all trees to identify the congested links. We might have multiple

probe paths from one edge router to another. In this case, source routing is used for probe

packets to follow the specified route. Some of the subtrees may not be connected to edge

routers, i.e., some parts of subtrees may consist of only core routers. To probe those links,

non-congested links (determined by previous probing) are chosen to connect them to the

edge routers. When all subtrees are done with probing, they are combined to obtain the

final outcome. As probing any path does not affect other paths, applying our scheme on

56

split tree will not affect each other. We obtain the union of all congested links from each

topology as a final set of congested links for the whole topology.

Edge Router Core Router

(a) Original Topology

Edge Router Core Router

(b) Converted tree topology

Edge Router Core Router

(c) Rest of the topology

Fig. 2.26. Preprocessing of a general tree topology to apply edge-to-edge prob-
ing. The original topology is split into tree topologies. Then, the results are
aggregated to get overall picture of a network.

In Figure 2.26, the general topology (Figure 2.26a) is split into two trees. The first one

(Figure 2.26b) is a spanning tree of the general topology. The other one (Figure 2.26c) is

a tree, where two core routers are not connected to any edge router. We need to add links

to these core routers so that we can access this link from edge routers. When the spanning

tree is done with probing, we select some good links to connect these core routers with the

edge routers. At the end, all results can be combined together to reflect the overall status

of the topology. The topology preprocessing is done infrequently only when a network is

setup, and when any link or router is added.

We note that Figure 2.26a follows a similar pattern of the Sprint topology reported by

Spring et al. [67]. For simplicity, we use this one instead of the actual backbone topology

of Sprint. However, we can convert any arbitrary topology into tree structure to apply our

monitoring algorithm.

Impact on Performance

The shape of the tree does not affect the monitoring mechanism. The probing scheme

is applicable to any tree as long as it complies with the definitions we provide in this sec-

57

tion. However, the shape of the tree does have impact on the performance of the analytical

analysis.

The analysis of the simple method uses Lemma 2.6.5 to calculate the average probe

path length. It provides a upper bound of the length of probe paths. If number of edge

routers is much higher than the number of core routers (e À c in Lemma 2.6.5), the actual

length will be lower than 4. The performance of the probing scheme will be better than the

performance of the analytical analysis.

The analysis of the advanced method assumes the tree is not heavily skewed. To de-

termine on how many paths a link lies on, Lemma 2.6.6 assumes that the probability with

which a tree contains i edge routers after the tree is split into two subtrees is inversely pro-

portional to the i. This is true when the tree is not heavily skewed. If it is, we can not use

Lemma 2.6.6 and Lemma 2.6.7 to calculate d and b respectively for Theorem 2.6.3. If the

d and b parameters can be calculated for any specialized tree, Theorem 2.6.3 will hold for

the parameters. We note that the ISP topologies reported in [67] does not have this pattern.

2.6.4 Limitations of Overlay-based Monitoring

There are some limitations for the overlay-based distributed monitoring approach. For

example, in Figure 2.19a, if both X2,3 and X2,4 are congested, we can not decide about

X1,2. Because we need at least one non-congested outgoing link from core router 2 to

decide about the link X1,2. The argument is the same for X2,1 when both X3,2 and X4,2 are

congested. If all links have the same bandwidth, we can report all three links as congested.

Even if X1,2 (X2,1) has the combined capacity of the two outgoing (incoming) links, the

argument is still valid. Each terminal core has at least two edge routers (Lemma 2.6.3).

As long as any non-congested core → edge link exists, our method can provide partial

solution. If not, the algorithm will report one non-congested link as congested, which is a

close approximation of the actual result.

When all edge → core or core → edge links are congested in a network domain, the

outcome of all probes will be congested. The final solution of the simple and advanced

method is all links are congested. This solution is still useful because it is very likely that

the whole network is congested. Thus, we can also go to the detection phase considering

the whole network is congested. If some combinations of edge → core or core → edge

are not congested, we can use them to provide a partial solution for the network.

58

C4

E1

E5

E6

C1

C3

E3

E4

C5C2
E7

E2

Edge Router Core Router

Probe 13

Probe 34
Probe 46

Probe 67

Probe 75Probe 52

Probe 21

(a) Topology 1

E3

E2

E1

C1

Probe 45

Probe 34

Probe 12

E5
E4

Core RouterEdge Router

C7
C6

C5

E8

E7

E6

C4

C3

C2

(b) Topology 2

Fig. 2.27. Topology used to detect service violations using distributed probing.
All edge routers are connected to one or multiple domains. All core to core
router links are 20 Mbps with 30 ms delay and core to edge router links are 10
Mbps with 20 ms delay. The probes are named with the subscripts of the edge
routers.

2.6.5 Experimental Results

Setup. The performance of the overlay-based monitoring scheme is evaluated using

simulation. Attacks are simulated to show that the edge routers can detect service violations

and attacks due to flow aggregation towards a downstream domain.

We use a network topology shown in Figure 2.27a, which is similar to the one used

in [29] to evaluate stripe-based loss ratio approximations. Figure 2.27b is a more complex

topology, which is used to show what happens when multiple attacks occur simultane-

ously, and one changes the behavior of the others. Multiple domains (not shown in the

Figure 2.27) are connected to the edge routers for both topologies to create flows along all

links in the domain. In Topology 1, flows coming through E1, E2, E3 are destined to edge

router E6 to make the link C4 → E6 congested. Many other flows are created to ensure

that all links carry a significant number of flows. In Topology 2, multiple links are made

congested.

Inferring congested links. We demonstrate how the distributed probing to detect con-

gested links in a network domain. Some of the hosts that are connected to domains at-

59

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

lo
ss

 ra
tio

Time (sec)

Probe 13
Probe 34
Probe 46
Probe 67
Probe 75
Probe 52
Probe 21

(a) Counterclockwise probing.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

lo
ss

 ra
tio

Time (sec)

Probe 12
Probe 25
Probe 57
Probe 76
Probe 64
Probe 43
Probe 31

(b) Clockwise probing.

Fig. 2.28. Probe outcome both for counterclockwise and clockwise direction.
Probe 46 in (a) and Probe 57 in (b) have high losses, which means that link
C4 → E6 is congested.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60

lo
ss

 ra
tio

Time (sec)

Probe 13
Probe 34
Probe 46
Probe 67
Probe 75
Probe 52
Probe 21

Fig. 2.29. Probe outcome using 5-second averages for the same experiments
shown in Figure 2.28a.

tached with the edge routers violate SLAs. They inject more traffic through multiple ingress

routers to conduct an attack on the link C4 → E6. The intensity of the attack is increased

during the interval from t=15 seconds to t=45 seconds. The attack causes around 35% of

packet drops except an initial jump at 15 sec.

60

To identify the congested links, the edge routers probe to their neighbors. Figure 2.28

shows that Probe 46 in counterclockwise direction and probe 57 in clockwise direction

experience high losses. Other probes do not face high losses, that is, most of the internal

links are not congested. It is important to note that Probe 46 experiences high loss but

Probe 64, which is in the opposite direction to Probe 46, faces very small amount of packet

loss. This verifies that link loss in both directions of a link can be very different, based on

the traffic load on each direction. We detect that linkC4 → E6 is the only congested link

in the domain.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

lo
ss

 ra
tio

Time (sec)

link C4-E6

Fig. 2.30. Actual loss in link C4 → E6. Other links have low losses. This
verifies that our monitoring scheme detects the congestion properly.

All points in the Figure 2.28 are calculated by taking averages of samples over one

second time period. If we take the average over a longer time period, we can avoid the high

fluctuations of loss. Figure 2.29 shows the same graph as it is shown in Figure 2.28 with a

5-second average of each sample point. We observe that taking averages over a longer time

period helps more in reducing the fluctuations than in increasing the number of probes per

second. The actual loss for this congested link is very high, which is shown in Figure 2.30.

It verifies that the distributed probing is able to detect links with high losses.

61

2.6.6 Local vs. Global Congestion

We address the question what happens if the congestion status is changed during the

probing. To show an example, we use the Topology 2 (Figure 2.27b). This topology

is more complex, and we simulate congestion in such a way that congestion in one area

might affect the congestion of another area. Two attacks are simulated in this case. The

first attack (Attack 1) is due to excessive flows coming from different edge routers to make

the link C4 → E5 congested. All of the probes in the first round are good except “Probe

45”. This attack continues up to time T = 50 second (Figure 2.31). At this time, we have

another attack (Attack 2), which is more severe than Attack 1. This attack causes several

links on “Probe 34” path congested. It is interesting to note that Attack 2 actually causes

Attack 1 to be disappeared. Because most of the traffic that causes Attack 1 on the link

C4 → E5 are now dropped earlier in their path due to Attack 2 (Figure 2.31).

This experiment shows that a local congestion might disappear due to a global and

severe congestion. The main objective of our work is to pin point a congestion. However,

if the congestion is changed while an experiment is being conducted, it catches the latest

congestion. The simple method can complete two rounds of probing within 10−20 seconds.

If both rounds of probing are done in parallel, it takes only 10 seconds. If a congestion does

not last for 20 seconds, we believe that no action is necessary to alleviate it.

2.7 Detecting Violations and Attacks

Violation detection is the second phase of our monitoring process. When delay, loss,

and bandwidth consumption exceed the pre-defined thresholds, the monitor decides whether

the network experiences a possible SLA violation. The monitor knows the existing traffic

classes and the acceptable SLA parameters per class. For each service class, we obtain

bounds on each SLA parameter that will be used as a threshold. A high delay is an indica-

tion of abnormal behavior inside a network domain. If there is any loss for the guaranteed

traffic class, and if the loss ratios for other traffic classes exceed certain levels, an SLA

violation is flagged. This loss can be caused by some flows consuming bandwidths above

their SLAbw. Bandwidth theft is checked by comparing the total bandwidth obtained by a

user against the user’s SLAbw. The misbehaving flows are controlled at the ingress routers.

To detect DoS attacks, set of links L with high loss are identified. For each congested

link, l(vi, vj) ∈ L, the tree is divided into two subtrees: one formed by leaves descendant

62

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100

lo
ss

 ra
tio

Time (sec)

<-------- Attack 1 -->

<------------ Attack 2 ------>

Probe 45
Probe 34

Fig. 2.31. Attack 1 causes linkC4 → E5 congested. However, Attack 2 comes
from different edge routers to E4, which causes the traffic of Attack 1 to drop
early. As a result Probe 45 is not congested after 50 sec.

from vi and the other from the leaves descendant from vj . The former subtree has egress

routers as leaves through which high aggregate bandwidth flows are leaving. If many exit-

ing flows have the same destination IP prefix, either this is a DoS attack or they are going

to a popular site [68]. Decision is taken by consulting the destination entity. Jung et al.

analyze the characteristics of flash crowd and DoS attacks in [69], which reveals several

distinguishable features between these two. For example, the client distribution of a flash

crowd event follows popular distribution among ISPs and networks, however, this is not

true for a DoS attack. The other distinguishable features are per client request rate, over-

lap of clusters a site sees before and after the event, and popularity distribution of the file

accessed by the clients. Using these characteristics, the monitor can decide whether it is a

DoS attack or a flash crowd. In case of an attack, we control it by triggering filters at the

ingress routers, which are leaves of the subtree descendant from vi and feeding flows to the

congested link. For each violation, the monitor takes action such as throttling a particular

user’s traffic using a flow control mechanism.

A scenario of detecting and controlling DoS attack is now illustrated using Figure 2.27a.

Suppose, the victim’s domain D is connected to the edge router E6. The monitor observes

63

that links C3 → C4 and link C4 → E6 are congested for a specified time duration∆t sec.

From both congested links, we obtain the egress router E6 through which most of these

flows are leaving. The destination IP prefix matching at E6 reveals that an excess amount

of traffic is heading towards the domainD. To control the attack, the monitor needs to

identify the ingress routers through which the suspected flows are entering into the domain.

The procedure to identify these ingress routers is discussed next.

2.8 Flow Aggregation and Filtering

An important question is how to identify ingress routers through which the flows are

entering into the domain. To identify the flow aggregation, we use delay probes, and assign

an ID to each router. An ingress router puts its ID on the delay probe packet. The egress

router knows from which ingress routers the packets are coming. For example, in Figure

2.27a, say egress router E6 is receiving flows from E1, E2, E3, and E5. These flows

aggregate during their trip to E6, and makes the link C4 → E6 congested. We traverse

the path backwards from the egress router to the ingress routers through the congested link

to obtain the entry points of the flows that are causing attacks. In this example, all edge

routers can feed the congested links and they all will be candidates for activating filters.

Knowing the ingress routers and congested links, we figure out the ingress routers for the

flows that are causing the attacks.

2.9 Experiments: Detecting DoS Attacks

A major advantage of using the SLA monitor is that it is able to detect denial of ser-

vice (DoS) and Distributed DoS (DDoS) attacks in a network domain. The egress routers

measure the outgoing rate of each flow. Using these rates, the monitor computes the to-

tal bandwidth consumption by any particular user. This bandwidth obtained by an user is

compared to the SLAbw of that user. If any flow gets very high bandwidth than it should,

a DDoS attack is flagged. A DoS attack in a downstream domain can be detected by iden-

tifying the congested links, and the egress routers connected to the congested links. Using

destination IP address prefix matching [68], we check whether many flows are aggregating

towards a specific network or host. Consulting with the destination object, we control these

flows at the ingress routers, if necessary.

64

We demonstrate the detection of no attack and DoS attack. “No attack” means no sig-

nificant traffic in excess of the capacity. This scenario has little loss inside the network

domain. This is the normal case of proper network provisioning and enforcing traffic con-

ditioning at the edge routers. A DoS attack injects excessive traffic into the network domain

from different ingress points. At each ingress point, the flows do not violate the profiles

but overall they do. The intensity of the attack is increased during t=15 seconds to t=45

seconds. This attack causes packet drops of more than 35%. Figure 2.32 shows that the

edge-to-edge delay is increased more than 100% in presence of the attack. The outcome

of one round of loss probing is shown in Figure 2.33. The overlay-based schemes detect

high losses in links E2 → C2, C1 → C3, C3 → C4, and C4 → E6. The link C4 → E6

has a high loss for a short period of time. Since, some TCP flows adjusted their rates, and

it causes the link to be non-congested one again. The egress router for the exiting flows is

E6, and ingress routers through which flows enter into the domain are E1, E2, E3, E4,

and E5. No traffic came fromE7.

0

20

40

60

80

100

0 50 100 150 200 250 300

%
 o

f t
ra

ff
ic

Time (sec)

DoS attack

Fig. 2.32. Cumulative distribution function of edge-to-edge delay for link
E1 → E6. High delay indicates presence of severe attack in the domain.

2.10 Advantages of Overlay-based Monitoring

The advantages of using overlay-based monitoring are as follows:

65

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

lo
ss

 ra
tio

Time (sec)

Probe 13
Probe 34
Probe 46
Probe 67
Probe 75
Probe 52
Probe 21

Fig. 2.33. Congestion on multiple probe paths due to severe attack. It indicates
multiple links are having high losses.

1. The simple method of the overlay-based probing requires O(n) probes to identify

links with a high loss whereas the stripe-based scheme requires O(n2), where n is

the number of edge routers in the domain. When the congestion is low, the advanced

method requires O(n) probes with a probability at least 0.97. If the congestion is

high, more probes are required, however, it does not exceed O(n).

2. The overlay scheme is able to detect violations in both directions for any link in a

domain, whereas the stripe-based method can detect any violation only if the flow

direction of the misbehaving traffic is the same as the probing direction from the

root. To achieve the same result, the stripe-based method needs to probe the whole

tree from all edge routers requiring O(n3) probes.

3. The overlay-based scheme can use TCP-based loss measurements (e.g. Sting [66])

to detect losses in both directions in one probe cycle.

4. In the stripe based scheme, two leaves/receivers are probed at a time. It takes a long

time to complete probing the whole tree. If all leaves are probed simultaneously, in

our example, E1 → C1 link will face huge amount of traffic at that time. On the

other hand, the overlay scheme can do parallel probing quite naturally.

66

2.11 Comparative Evaluation

Based on our experiments, we present a quantitative measure of performance to com-

pare the core-assisted, stripe-based and overlay-based approaches. We use the topology

shown in Figure 2.27a. We compare accuracy, convergence time, deployment overhead,

and flexibility.

The communication and computation overhead calculation for all monitoring schemes

are discussed in Chapter 3. In this comparative study, we show the communication over-

head among them. Moore et al. [70] show that 50% of the attacks last for 10 minutes, 30%

last for 30 minutes, 17% last for 60 minutes, 2% last for 5 hours and 1% last for 10 hours

or more. Based on this study, we use a similar scenario to compute the communication

overhead for the core-assisted approach.

Accuracy is computed using the deviations of approximating the loss ratio from the

actual loss ratio value. We calculate accuracy based on our experimental results, with

f = 20 as the probing frequency for the edge-to-edge approach. The convergence time is

related to accuracy, i.e., time to sample the result to make it close to the actual value.

Deployment overhead considers which components of the network must be modified.

The edge-to-edge approach needs to modify only edge routers, while the core-assisted ap-

proach requires change to both edge and core routers. The edge-to-edge scheme is thus

considered more flexible since it is easier to deploy. However, the core-assisted approach

gives more insight of the network domain. The packet drop history can be used to detect

flow aggregation with IP prefix matching to detect DoS attacks.

Figure 2.34 depicts a quantitative comparison of the three approaches. Note that we

use a high percentage of misbehaving flows as in [70]. For a large domain with millions

of flows per second, the core-assisted approach will exhibit high communication overhead.

The overlay has the lowest communication overhead, whereas the core-assisted has the

highest. The core and overlay have better accuracy and less convergence time. The core-

assisted in not flexible because it has high deployment overhead.

2.12 Conclusion

We have investigated methods to detect service level agreement violations in QoS net-

works. These methods are useful for network re-dimensioning, as well as for detection of

denial of service and bandwidth theft attacks. The core-assisted loss measurement method

67

-40

-20

0

20

40

60

80

100

comm overheads
(1 sec)

Accuracy
(at 5 sec)

Converge Time
(sec)

Deployment
overheads

in
de

x

Stripe
Overlay

Core

Fig. 2.34. Core-assisted, stripe-based, and edge-to-edge approaches: A quan-
titative study. Negative values are used for data for which low index represents
better performance. For example, high overhead is not a desirable parameter.
The core-assisted monitoring has the highest communication overhead (high-
est index) among the three schemes.

is powerful but difficult to deploy. An alternative edge-to-edge stripe-based loss inference

scheme for different drop precedences was thus proposed. In the edge-to-edge probing ap-

proach, a low network probing rate has been shown to give incorrect results due to the loss

of probes in case of excess traffic caused by an attack. A large number of probes, however,

increases actual traffic delay and loss. We have shown that using probes with different

drop precedences is necessary to infer loss in a QoS network. Our proposed stripe-based

monitoring technique can aid in detecting attacks such as malicious traffic remarking or

injection, without excessive overhead.

We have developed an overlay-based distributed network monitoring scheme to keep a

domain safe from service violations and bandwidth theft attacks. We do not measure actual

loss of all internal links, instead, we identify all congested links with high losses using

network tomography and overlay networks. Our analytic analysis (verified by simulation)

shows that even if 20% links of a network are congested, the status of each link can be iden-

tified with probability≥ .98. If the network is 40% congested, this probability is still high

(.65). However, if the network is more than 60% congested, this method can not achieve

anything significant since almost every edge-to-edge path has one or more congested links.

68

This new tomography scheme requires only O(n) probes when less than 20% links are

congested, where n is the number of edge routers. For an OC3 link, the probe traffic to

identify the congested links is 0.002% of link capacity. The distributed monitoring requires

O(n2) in worst case in contrast to O(n3) probes required by the stripe-based monitoring to

detect attacks in both directions of all links. The distributed monitoring conducts probing

in parallel enabling the system to perform real time monitoring. The simulation results

indicate that the proposed scheme detects service violations, bandwidth theft attacks, and

DoS attacks caused by flow aggregation towards a victim network domain.

69

3. DOS ATTACKS: DETECTION AND PREVENTION

Denial of Service (DoS) attacks are a serious threat for the Internet. DoS attacks can con-

sume memory, CPU, and network resources and damage or shut down the operation of the

resource under attack (victim). The quality of service (QoS) enabled networks, which offer

different levels of service, are vulnerable to QoS attacks as well as DoS attacks. The aim of

a QoS attack is to steal network resources, e.g., bandwidth, or to degrade the service per-

ceived by users. We present a classification and a brief explanation of the approaches used

to deal with the DoS and QoS attacks. In chapter 2, we have shown that monitoring can be

used as an early detection of DoS attacks. In this chapter, a quantitative comparison among

all schemes is conducted, in which, we highlight the merits of each scheme and estimate

the overhead (both processing and communication) introduced by it. For the completeness

of the discussion about the techniques to detect and prevent DoS attacks, we provide a

brief summary of different monitoring schemes in this chapter. The comparison provides

guidelines for selecting the appropriate scheme, or a combination of schemes, based on the

requirements and how much overhead can be tolerated.

3.1 Introduction

The San Diego Supercomputer Center reported 12,805 denial of service (DoS) attacks

over a three-week period in February 2001 [70]. This is just one of the numerous incidents

in which DoS attacks are causing serious security threats to many systems connected to

the Internet. The DoS attacks can be severe if they last for a prolonged period of time

preventing legitimate users from accessing some or all of computing resources. Imagine an

executive of a financial institution deprived of access to the stock market updates for several

hours or even several minutes. In [70], the authors showed that whereas 50% of the attacks

lasted less than ten minutes, unfortunately, 2% of them lasted greater than five hours and

1% lasted more than ten hours. There were dozens of attacks that spanned multiple days.

Wide spectrum of motivation behind these DoS attacks exists. They range from political

70

conflicts and economical benefits for competitors to just curiosity of some computer geeks.

Furthermore, cyber terrorism may not be excluded in the future.

In addition to DoS attacks, the quality of service (QoS) enabled networks are vulnerable

to another type of attacks, namely, the QoS attacks. This attack is introduced and described

in Chapter 2. A QoS-enabled network, such as a differentiated services network [5], offers

different classes of service for different costs. Differences in the charging rates may entice

some users to steal bandwidth or other network resources. An attacker in this environment

as a user who tries to get more resources, i.e., a better service class, than what he has signed

(paid) for. QoS attacks inject traffic into the network with the intent to steal bandwidth or

to cause QoS degradation for other flows. Since the differentiated services framework is

based on aggregation of flows into service classes, legitimate customer traffic may expe-

rience degraded QoS as a result of the illegally injected traffic. Taken to an extreme, that

excess traffic may result in a denial of service attack. This creates a need for developing

an effective defense mechanism that automates the detection and reaction to attacks on the

QoS-enabled networks.

In this chapter, we first elaborate on the denial of service attacks and their potential

threat on the system. We then classify the solutions proposed in the literature into two

main categories: detection and prevention approaches. Several techniques are briefly dis-

cussed, focusing mainly on the salient features and highlighting the potential as well as the

shortcomings of each mechanism. In addition, we show network monitoring techniques

to detect service violations and to infer DoS attacks. We believe that network monitoring

has the potential to detect DoS attacks in early stages before they severely harm the victim.

Our conjecture is that a DoS attack injects a huge amount of traffic into the network, which

may alter the internal characteristics (e.g., delay and loss ratio) of the network. Monitor-

ing watches for these changes and identifies the congested links, which helps in locating

the attacker and alerting the victim. Finally, we conduct a comparative evaluation study

among the approaches presented. The aim of the study is to compare the behavior of the

approaches under different situations of the underlying network. We draw insightful com-

ments from the comparison that guide the selection of one or more defending approaches

suitable for a given environment.

71

3.2 Approaches to Defeat DoS Attacks

In the literature, there are several approaches to deal with denial of service (DoS)

attacks. In this section, we provide an approximate taxonomy (Figure 3.1) of these ap-

proaches. In addition, we briefly describe the main features of each approach and highlight

the strengths and weaknesses of it.

DoS Attacks

Detection

Traceback
Filtering

Ingress/Egress
Filtering

Packet
Marking

SPIE ICMP Edge based

Deterministic Probabilistic

Core based

Monitoring

Prevention

Route−based

Stripe Overlay

Fig. 3.1. Classification of approaches to detect and prevent DoS attacks.

We divide the approaches for dealing with DoS attacks into two main categories: de-

tection and prevention approaches. The detection approaches capitalize on the fact that

appropriately punishing wrong doers (attackers) will deter them from re-attacking again,

and will scare others to do similar acts. The detection process has two phases: detecting

the attack and identifying the attacker. To identify an attacker, several traceback methods

can be used, as explained later in this section. The obvious way to detect an attack is just

waiting till the system performance decreases sharply or even the whole system collapses.

We propose a more effective method for detecting attacks before they severely harm the

system. We propose to use monitoring for early detection of DoS attacks. The details

are given in Section 3.3. The prevention approaches, on the other hand, try to thwart at-

tacks before they harm the system. Filtering is the main strategy used in the prevention

approaches.

72

�������������������������

�������������������������

���

���

������
������

������
������ ����������	�	�		�	�	

��
��
��

��������������������

�������� ������
������

��
��

��������������

������
������
������

������
������
������

������
���
������
���

������
���
������
���

��

��

��

���

A1

D4

R1

R6

H3

V

 H4

A5

Reflector

R5

D5
D1

D2

RouterHostDomain

D3

Internet CloudForged path

R4

Attack using reflector

R2

R3

H2

H1

A3

A2Attack path
H5

A4

Fig. 3.2. Different scenarios for DoS attacks. Attacker A1 launches an attack
on the victim V . A1 spoofs IP address of host H5 from domain D5. Another
attacker A3 uses host H3 as a reflector to attack V.

To clarify the presentation, we use the hypothetical network topology shown in Figure

3.2 to demonstrate several scenarios for DoS attacks and how the different approaches re-

act to them. The figure shows several hosts (denoted byHs) connected to four domains.

Throughout the chapter, we use “domain” to refer to an Autonomous Systems (AS) do-

main, which is a network administered by a single entity. D1, D2, D3, and D4, which are

interconnected through the Internet cloud. In the figure,Ai represents an attacker i while

V represents a victim.

3.2.1 DoS Attacks

The aim of a DoS attack is to consume the resources of a victim or the resources on

the way to communicate with a victim. By wasting the victim’s resources, the attacker

disallows it from serving legitimate customers. A victim can be a host, server, router, or

any computing entity connected to the network. Inevitable human errors during software

development, configuration, and installation open several unseen doors for these type of

attacks.

73

Several DoS attacks are known and documented in the literature [51, 70–72]. Flooding

a victim with an overwhelming amount of traffic is the most common. This unusual traffic

clogs the communication links and thwarts all connections among the legitimate users,

which may result in shutting down an entire site or a branch of the network. This happened

in February of 2000 for the popular web sites Yahoo, E*trade, Ebay, and CNN for several

hours [71].

TCP SYN flooding is an instance of the flooding attacks [73]. Under this attack, the

victim is a host and usually runs a Web server. A regular client opens a connection with

the server by sending a TCP SYN segment. The server allocates buffer for the expected

connection and replies with a TCP ACK segment. The connection remains half-open (back-

logged) till the client acknowledges the ACK of the server and moves the connection to the

established state. If the client does not send the ACK, the buffer will be deallocated after an

expiration of a timer. The server can only have a specific number of half-open connections

after which all requests will be refused. The attacker sends a TCP SYN segment pretend-

ing a desire to establish a connection and making the server reserves buffer for it. The

attacker does not complete the connection. Instead, it issues more TCP SYNs, which lead

the server to waste its memory and reach its limit for the backlogged connections. Sending

such SYN requests with a high rate keeps the server unable to satisfy connection requests

from legitimate users. Schuba et al. [73] developed a tool to alleviate the SYN flooding

attack. The tool watches for SYN segments coming from spoofed IP addresses and sends

TCP RST segments to the server. The RST segments terminate the half-open connections

and free their associated buffers.

Other types of flooding attacks include TCP ACK and RST flooding, ICMP and UDP

echo-request flooding, and DNS request flooding [51,70]. This list is by no means exhaus-

tive.

A DoS attack can be more severe when an attacker uses multiple hosts over the Internet

to storm a victim. To achieve this, the attacker compromises many hosts and deploys at-

tacking agents on them. The attacker signals all agents to simultaneously launch an attack

on a victim. Barros [74] shows that DDoS attack can reach a high level of sophistication

by using reflectors. A reflector is like a mirror that reflects light. In the Internet, many

hosts such as Web servers, DNS servers, and routers can be used as reflectors because they

always reply to (or reflect) specific type of packets. Web servers reply to SYN requests,

DNS servers reply to queries, and routers send ICMP packets (time exceeded or host un-

74

reachable) in response to particular IP packets. The attackers can abuse these reflectors to

launch DDoS attacks. For example, an attacking agent sends a SYN request to a reflector

specifying the victim’s IP address as the source address of the agent. The reflector will send

a SYN ACK to the victim. There are millions of reflectors in the Internet and the attacker

can use these reflectors to flood the victim’s network by sending a large amount of packets.

Paxson [75] analyzes several Internet protocols and applications and concludes that DNS

servers, Gnutella servers, and TCP-based servers are potential reflectors.

3.2.2 Detection Approaches

The detection approaches rely on finding the malicious party who launched a DoS at-

tack and consequently hold him liable for the damage he has caused. However, pinning the

real attacker down is not a straightforward task. One reason is that the attacker spoofs the

source IP address of the attacking packets. Another reason is that the Internet is stateless,

which means, whenever a packet passes through a router, the router does not store any in-

formation (or traces) about that packet. Therefore, mechanisms such as ICMP traceback

and packet marking are devised to figure out the real attacker. In this subsection, we de-

scribe several techniques to identify the attacker after the attack took place. We defer the

issue of early detection of an attack till Section 3.3.

ICMP Traceback

Bellovin [76] proposes the idea of ICMP traceback messages, where every router sam-

ples the forwarded packets with a very low probability (e.g., 1 out of 20,000) and sends an

ICMP Traceback message to the destination. An ICMP Traceback message contains the

previous and next hop addresses of the router, timestamp, portion of the traced packet, and

authentication information. In Figure 3.2, while packets are traversing the network path

from the attacker A1 to the victim V, the intermediate routers (R1, R2, R3, R4, R5, and

R6) sample some of these packets and send ICMP Traceback messages to the destination

V. With enough messages, the victim can trace the network path A1 → V. The pitfall of

this approach is that the attacker can send many false ICMP Traceback messages to confuse

the victim.

To address Distributed DoS (DDoS) attacks by reflectors, Barros [74] proposes a modi-

fication to the ICMP Traceback messages. In his refinement, routers sometimes send ICMP

75

Traceback messages to the source. In Figure 3.2, A3 launches a DDoS attack by sending

TCP SYN segments to the reflector H3 specifying V as the source address. H3, in turn,

sends SYN ACK segments to the victim V. According to the modification, routers on the

path A3 → H3 will send ICMP messages to the source, i.e., to V. This reverse trace en-

ables the victim to identify the attacking agent from these trace packets. The reverse trace

mechanism depends only on the number of attacking agents, and not on the number of re-

flectors [75]. This achieves scalability because the number of available reflectors is much

higher than the number of attacking agents on the Internet.

Snoeren et al. [77] propose an attractive hashed-based system that can trace the origin

of a single IP packet delivered by a network in the recent past. The system is called source

path isolation engine (SPIE). The SPIE uses an efficient method to store information about

packets traversing through a particular router. The method uses n bits of the hashed value

of the packet to set an index of a 2n-bit digest table. When a victim detects an attack, a

query is sent to SPIE, which queries routers for packet digests of the relevant time periods.

Topology information is then used to construct the attack graph from which the source of

the attack is determined.

Packet Marking

Instead of having routers send separate messages for the sampled packets, Burch and

Cheswick [78] propose to inscribe some path information into the header of the pack-

ets themselves. This marking can be deterministic or probabilistic. In the deterministic

marking, every router marks all packets. The obvious drawback of the deterministic packet

marking is that the packet header grows as the number of hops increases on the path. More-

over, significant overhead will be imposed on routers to mark every packet.

The probabilistic packet marking (PPM) encodes the path information into a small frac-

tion of the packets. The assumption is that during a flooding attack, a huge amount of traffic

travels towards the victim. Therefore, there is a great chance that many of these packets

will be marked at routers throughout their journey from the source to the victim. It is likely

that the marked packets will give enough information to trace the network path from the

victim to the source of the attack.

Savage et al. [72] describe efficient mechanisms to encode the path information into

packets. This information contains the XOR (exclusive OR) of two IP addresses and a

distance metric. The two IP addresses are for the start and the end routers of the link.

76

The distance metric represents the number of hops between the attacker and the victim.

To illustrate the idea, consider the attacker A1 and the victim V in Figure 3.2. Assume

there is only one hop between routers R3 and R4. If Router R1 marks a packet, it will

encode the XOR of R1 and R2 addresses into the packet and sets the distance metric to

zero, that is, it will encode the tuple <R1⊕R2, 0>. Other routers on the path just increase

the distance metric of this packet, if they don’t decide to mark it again. When this packet

reaches the victim, it provides the tuple <R1 ⊕ R2, 5>. Similarly, some packets may get

marked at routers R2, R3, R4, R5, and R6 and they will provide the tuples <R2⊕R3, 4>,

< R3 ⊕ R4, 3 >, < R4 ⊕ R5, 2 >, < R5 ⊕ R6, 1 >, < R6, 0 >, respectively, when they

reach the victim. The victim can retrieve all routers on the path by XORing the collected

messages sorted by distance. (Recall that Rx ⊕ Ry ⊕ Rx = Ry.) This approach can

reconstruct most network paths with 95% certainty if there are about 2,000 marked packets

available and even the longest path can be resolved with 4,000 packets [72]. For DoS

attacks, this amount of packets is clearly obtainable because the attacker needs to flood the

network to cause a DoS attack. (Moore et al. [70] report that some severe DoS attacks had a

rate of thousands of packets per second.) The authors describe ways to reduce the required

space and suggest to use the identification field (currently used for IP fragmentation) of IP

header to store the encoding of the path information. They also propose solutions to handle

the co-existence of marking and fragmentation of IP packets [72].

The main limitation of the PPM approaches stems from the fact that, nothing prevents

the attacker from marking packets. If a packet marked by the attacker does not get re-

marked by any intermediate router, it will confuse the victim and make it harder to trace

the real attacker. Park and Lee [79] show that for single-source DoS attacks, PPM can

identify a small set of sources as potential candidates for a DoS attack. For DDoS attacks,

however, the attacker can increase the uncertainty in localizing the attacker. Therefore,

PPM is vulnerable to distributed DoS attacks [79].

3.2.3 Prevention Approaches

Preventive approaches try to stop a DoS attack by identifying the attack packets and dis-

carding them before reaching the victim. We summarize several packet filtering techniques

that achieve this goal.

77

Ingress Filtering

Incoming packets to a network domain can be filtered by ingress routers. These filters

verify the identity of packets entering into the domain, like an immigration security system

at the airport. Ingress filtering, proposed by Farguson and Senie [61], is a restrictive mech-

anism that drops traffic with IP address that does not match a domain prefix connected to

the ingress router. As an example, in Figure 3.2, the attacker A1 resides in domain D1 with

the network prefixa.b.c.0/24. The attacker wants to launch a DoS attack to the victim V

that is connected to domain D4. If the attacker spoofs the IP address of host H5 in domain

D5, which has the network prefixx.y.z.0/24, an input traffic filter on the ingress link ofR1

will thwart this spoofing. R1 only allows traffic originating from source addresses within

the a.b.c.0/24 prefix. Thus, the filter prohibits an attacker from usingspoofed source ad-

dresses from outside of the prefix range. Similarly, filtering foils DDoS attacks that employ

reflectors. In Figure 3.2, ingress filter of D2 will discard packets destined to the reflector

H3 and specifying V ′s address in the source address field. Thus, these packets will not be

able to reach the reflector.

Ingress filtering can drastically reduce the DoS attack by IP spoofing ifall domains use

it. It is hard, though, to deploy ingress filters in all Internet domains. If there are some

unchecked points, it is possible to launch DoS attacks from that points. Unlike ingress

filters, egress filters [80] reside at the exit points of a network domain and checks whether

the source address of exiting packets belong to this domain. Aside from the placement

issue, both ingress and egress filters have similar behavior.

Route-based Filtering

Park and Lee [81] propose route-based distributed packet filtering, which rely on route

information to filter out spoofed IP packets. For instance, suppose thatA1 belongs to do-

main D1 and is attempting a DoS attack on V that belongs to domain D4. If A1 uses

the spoofed address H5 that belongs to domain D5, the filter at domainD1 would recog-

nize that a packet originated from domain D5 and destined to V should not travel through

domain D1. Then, the filter atD1 will discard the packet. Route-based filters do not

use/store individual host addresses for filtering, rather, they use the topology information

of Autonomous Systems (ASes). The authors of [81] show that with partial deployment of

route-based filters, about 20% in the Internet AS topologies, it is possible to achieve a good

78

filtering effect that prevents spoofed IP flows reaching other ASes. These filters need to

build route information by consulting BGP routers of different ASes. Since routes on the

Internet change with time [82], it is a challenge for route-based filters to be updated in real

time.

Finally, all filters proposed in the literature so far fall short to detect IP address spoofing

from the domain in which the attacker resides. For example, in Figure 3.2, if A1 uses some

unused IP addresses of domain D1, the filters will not be able to stop such forged packets

to reach the victim V .

3.3 Monitoring to Detect Service Violations and DoS Attacks

In this section, we discuss how network monitoring techniques can be used to detect

service violations and to infer DoS attacks. This discussion is necessary for the comparative

evaluation presented in Section 3.4. Each monitoring scheme is discussed in details in

Chapter 2.

We believe that network monitoring has the potential to detect DoS attacks in early

stages before they severely harm the victim. Our conjecture is that a DoS attack injects a

huge amount of traffic into the network, which may alter the internal characteristics (e.g.,

delay and loss ratio) of the network. Monitoring watches for these changes and our pro-

posed techniques can identify the congested links and the points that are feeding them. We

describe the monitoring schemes in the context of a QoS-enabled network, which provides

different classes of service for different costs. The schemes are also applicable to best effort

(BE) networks to infer DoS attacks, but not to detect service violations because there is no

notion of service differentiation in BE networks.

To monitor a domain, we measure three parameters: delay, packet loss ratio, and

throughput. We refer to these parameters collectively as the service level agreement (SLA)

parameters, since they indicate whether a user is achieving the QoS requirements contracted

with the network provider. In our discussion, delay is the end-to-end latency; packet loss

ratio is defined as the ratio of number of dropped packets from a flow to the total number

of packets of the same flow entered the domain; and throughput is the total bandwidth con-

sumed by a flow inside the domain. A flow can be a micro flow with five tuples (addresses,

ports, and protocol) or an aggregate one that is combined with several micro flows. Delay

and loss ratio are good indicators for the current status of the domain. This is because, if the

domain is properly provisioned and no user is misbehaving, the flows traversing through the

79

domain should not experience high delay or loss ratio inside that domain. It is worth men-

tioning that delay jitter, i.e., delay variation, is another important SLA parameter. However,

it is flow-specific and therefore, is not suitable to use in network monitoring.

The SLA parameters can be estimated with the involvement of internal (core) routers

in a network domain or can be inferred without their help. We describe both core-assisted

monitoring and edge-based (without involvement of core routers) monitoring in the follow-

ing subsections.

3.3.1 Core-assisted Monitoring

A core-assisted monitoring scheme for QoS-enabled network is studied in Chapter 2. In

this scheme, the delay is measured by having the ingress routers randomly copy the header

of some of the incoming packets. The copying depends on a pre-configured probability

parameter. The ingress router forms a probe packet with the same header as the data traffic,

which means that the probe packet will likely follow the same path as the data packet. The

egress router recognizes these probe packets and computes the delay.

This monitoring scheme measures the loss ratio by collecting packet drop counts from

core routers. It then contacts the ingress routers to get the total number of packets for each

flow. The loss ratio is computed from these two numbers. To measure the throughput, the

scheme polls the egress routers. The egress routers can provide this information because

they already maintain this information for each flow. This scheme imposes excessive over-

head on the core routers, therefore, it is not scalable. Other monitoring schemes that involve

both core and edge routers are proposed in the literature, see for example [44, 45, 47].

3.3.2 Edge-based Monitoring

We describe two edge-based monitoring schemes: stripe-based and overlay-based.

Both schemes measure delay and throughput using the same techniques as the previous

core-assisted scheme. They differ, however, in measuring the packet loss ratio.

Stripe-based Monitoring. The stripe-based scheme infers loss ratio inside a domain with-

out relying on core routers. We show how to infer loss ratios for unicast traffic as explained

in [29] and refer the reader to [50] for the multicast traffic case. The scheme sends a series

of probe packets, called a stripe, with no delay between them. Usually, a stripe consists of

three packets. To simplify the discussion, consider a two-leaf binary tree spanning nodes

80

0

k

R R21

Fig. 3.3. Inferring loss ratio from the source 0 to receivers R1 and R2.

0, k, R1, R2, as shown in Figure 3.3. The loss ratio of the link k → R1, for instance, can

be estimated by sending stripes from the root 0 to the leaves R1 and R2. The first packet of

a 3-packet stripe is sent to R1, while the last two are sent to R2. If a packet reaches to any

receiver, we can infer that the packet must have reached the branching point k. Further, if

R2 gets the last two packets of a stripe, it is likely that R1 receives the first packet of that

stripe. The packet loss probability is calculated based on whether all packets sent to R1 and

R2 reach their destination. Similarly, the loss ratio of the link k → R2 is inferred using a

complementary stripe, in which the first packet is sent toR2 and the last two are sent to R1.

The loss ratio of the common path from 0 → k can be estimated by combining the results

of the previous two steps. For general trees, this inference technique sends stripes from the

root to all ordered pairs of the leaves of the tree. Finally, this technique is extended in for

routers with active queue management in a QoS domain.

Overlay-based Monitoring. The overlay-based monitoring approach is proposed in

Chapter 2 to further reduce the monitoring overhead. In this mechanism, the edge routers

of a domain form an overlay network on top of the physical network. Figure 3.4(a) shows

the spanning tree of the domain’s topology. The edge routers form an overlay network

among themselves, as shown in Figure 3.4(b). This overlay is used to build tunnel for

probe packets on specified paths. The internal links for each end-to-end path in the overlay

network are shown in Figure 3.4(c). In this monitoring approach, an SLA monitor sits at

any edge router. The monitor probes the network regularly for unusual delay patterns. The

81

E1

C1

E5

C4

E6

Core RouterEdge Router

E2

E7E4

E3 C5

C2C3

(a) The spanning tree of the domain’s

topology.

E3

E4 E5

E2

Peers (Edge Router)

E7E6

E1

(b) An overlay constructed over all edge

routers.

Fig. 3.4. Overlay-based distributed network monitoring. (a) Tree-like topology
(b) The overlay network formed by the edge routers.

82

delay and throughput measurements are the same as described in stripe-based scheme. The

two schemes differ in measuring loss. Since service violation can be detected without exact

loss values, we need only to determine whether a link has higher loss than the specified

threshold or not. The link with high loss is referred to as a congested link. The goal of this

monitoring is to detect all congested links.

When delay goes high, the SLA monitor triggers agents at different edge routers to

probe for loss. Each edge router probes its neighbors. Let Xρ be a boolean random variable

that represents the output of probe ρ. Xρ takes on value 1 if the measured loss exceeds the

threshold in any link throughout the probe path, and takes on 0 otherwise. For example,

if the outcome of E1 → E3 probing path is 1, it means either E1 → C1, C1 → C3,

C3 → E3, or a combination of them is congested. If the outcome is 0, then definitely all

internal links are not congested. In this way, we write equations to express all internal links

in terms of the probe outcomes. Solving these equations and identifying the congested

links are detailed in Chapter 2.

The overlay-based monitoring scheme requires less number of total probes, O(n), com-

pared to the stripe-based scheme, which requires O(n2), where n is the number of edge

routers in the domain. This scheme is able to detect violation in both directions of any link

in the domain, whereas the stripe-based can detect a violation only if the flow direction of

the misbehaving traffic is the same as the probing direction from the root. To achieve same

ability, the stripe-based needs to probe the whole tree from several points, which increases

the monitoring overhead substantially.

3.3.3 Violation and DoS Detection

In both the stripe-based and overlay-based monitoring schemes, when delay, loss, and

bandwidth consumption exceed the pre-defined thresholds, the monitor decides on possible

SLA violation. The monitor knows the existing traffic classes and the acceptable SLA

parameters per class. High delay is an indication of abnormal behavior inside the domain.

If there is any loss for the guaranteed traffic class and if the loss ratios of other traffic classes

exceed certain levels, an SLA violation is flagged. This loss can be caused by some flows

consuming bandwidth beyond their SLA. Bandwidth theft is checked by comparing the

total bandwidth achieved by a user against the user’s SLA for bandwidth. The misbehaving

flows are controlled at the ingress routers.

83

To detect DoS attacks, set of links L with high loss are identified. For each congested

link, l(vi, vj) ∈ L, the tree is divided into two subtrees: one formed by leaves descendant

from vi and the other from the leaves descendant from vj . The first subtree has egress

routers as leaves through which high aggregate bandwidth flows are leaving. If many exit-

ing flows have the same destination IP prefix, we can infer that either this is a DoS attack

or the traffic is a going to a popular site [68]. Decision can be taken with consulting the

destination entity. If it is an attack, we can stop it by triggering filters at the ingress routers

that are leaves of the other subtree.

We illustrate a scenario of detecting and controlling DoS attack using Figure 3.4. Sup-

pose, the victim’s domain D is connected to the edge router E6. The monitor observes

that links C3 → C4 and link C4 → E6 are congested for a time duration ∆t sec. From

both congested links, we obtain the egress router E6 through which most of these flows are

leaving. The destination IP prefix matching atE6 reveals that an excess amount of traffic is

heading towards the domain D connected toE6. To control the attack, the monitor needs to

figure out through which ingress routers the suspected flows are entering into the domain.

The monitor activates filters at these ingress routers to regulate the flows that are destined

to D.

The advantage of the monitoring-based attack detection is that the neighbor domains

of the victim can detect the attack early by observing the violation of SLA parameters. By

consulting with the potential victim, these domains can regulate the intensity of the attack

and even an early detection can thwart the attack. For each violation, the monitor takes

actions such as throttling a particular user’s traffic using a flow control mechanism.

3.4 Comparative Evaluation

In this section, we conduct a quantitative analysis of the overhead imposed by different

schemes to detect and prevent DoS attacks. The objective of this comparison is to show

the characteristics of each scheme and how they behave when different configuration pa-

rameters of a domain are changed. We do not emphasize on numeric overhead value of

any specific scheme, rather, we draw a relative comparison among them. The comparison

provides guidelines for selecting the appropriate scheme, or a combination of schemes,

based on the requirements and how much overhead can be tolerated. The schemes we com-

pare here are: Ingress Filtering (Ingf), route-based packet filtering (Route), traceback with

84

Table 3.1
Symbols used in the comparison and their values. The parameters define a high
speed network domain, where thousands of flows are passing through it.

Symbol Description Values
used in
comparison

Psch Processing overhead for scheme sch –

Csch Communication overhead for scheme sch –

M Number of edge routers [10 – 20]

N Number of core routers 12

F Number of flows entering through each edge router 100,000

P Number of packets per flow 10

p Probability to mark a packet [0 – 0.20]

θ Percentage of misbehaving flows [0 – 20%]

h Path length inside a domain or hop count 4, 6

s Length of a stripe 3

fs Frequency of stripe per unit time in stripe-based monitoring 20

fd Frequency of probes per unit time in overlay-based monitoring 30

α1 Processing overhead for filtering –

α2 Processing overhead for marking –

α3 Processing overhead for monitoring –

probabilistic packet marking (PPM), core-assisted network monitoring (Core), stripe-based

monitoring (Stripe), and overlay-based monitoring (Overlay).

3.4.1 Setup

For each scheme, we calculate two different overheads: processing and communication.

The processing overhead is due to extra processing required at all routers of a domain per

unit time. The communication overhead is due to extra packets injected into a domain. The

communication overhead is computed as the number of extra bytes (not packets) injected

per unit time. For processing overhead, the extra processing at routers may contain: more

85

address lookups, changing some header fields, checksum re-computation, and any CPU

processing needed by the scheme. For example, filters need to check the source IP address

to verify whether a packet is coming from a valid source. This requires one extra address

lookup (to check the source IP address) for each packet. The monitoring schemes inject

probe packets into the network. Each router inside a domain requires processing such as

address lookup, TTL field decrement, checksum computation for each probe packet. For

simplicity, we charge the filtering schemeα1 processing units, the marking scheme α2 pro-

cessing units, and the monitoring schemes α3 processing units for each packet processed.

We express the processing overhead in terms of α1, α2, and α3 (processing units), and the

communication overhead in terms of the total kilobytes (KB) injected in the domain.

We consider a domain D with M edge routers and N core routers. We assume there are

F flows traversing through each edge router and each flow has P packets on average. We

defineθ as the percentage of misbehaving flows that may cause DoS attacks. We denote

Csch as the communication overhead and Psch as the processing overhead respectively for

scheme sch. Table 3.1 lists the variables used in the comparison and their values.

3.4.2 Overhead Calculation

Filtering and marking techniques do not incur any communication overhead. The mon-

itoring schemes have both processing and communication overhead.

Ingress filtering. The processing overhead of ingress filtering depends on the number

of packets entering a domain. It requires one processing unit to check the source IP address

of every packet. For our domain D, the total entering packets is M × F × P . Thus, the

total processing overhead of ingress filtering is given by:

PIngf = M × F × P × α1. (3.1)

Route-based filtering.We need to deploy ingress filters in every domain in the Internet to

effectively stop all possible attacks. The route-based filtering scheme, on the other hand,

does not require every single domain to have a filter. Parket al. show that placing this filter

at approximately 20% of all autonomous systems can prevent DoS to a great extent [81].

For a domain that deploys a router-based filter, the overhead is the same as the ingress

86

filter. Globally speaking, the overhead of route-based filtering is one fifth of the overhead

of ingress filtering on the average. In our comparison, we use

PRoute = 0.2 × PIngf . (3.2)

Probabilistic packet marking (PPM). PPM does not incur any communication overhead

but adds extra α2 processing units for every packet that gets marked at an intermediary

router. PPM might need sophisticated operation such as taking hash of certain IP fields.

The traceback with PPM marks packets with a probability p at each router on the path to

the victim. If a packet passes through h hops, on the average, in the network domain D, the

processing overhead is computed as:

PPPM = M × F × P × p× h× α2. (3.3)

Core-assisted monitoring. The monitoring schemes inject probe traffic into the network

and add processing overheads as well. The total number of injected probes and the size

of each probe packet are used to calculate the communication overheads in terms of bytes.

The Core scheme depends on the number of packets that core routers send to the monitor

to report drop history. The drop history at each core router depends on the flows traversing

the network domain and the percentage of these flows that are violating their SLAs at a

particular time. For the domain D, if d bytes are required to record the drop information

of each flow, then each core needs to send C = max(1, F×θ×d
packet size

) control packets to the

monitor. The packet size is the size of a control packet, which depends on the MTU of the

network. To obtain loss ratio, the monitor queries all edges for packet count information

of the misbehaving flows. Every edge replies to this query. The total number of packets

exchanged among all edge routers and the monitor is (2M + N) × C packets. Therefore,

the communication overhead is given by:

CCore = (2M +N) ×max(1,
F × θ × d

packet size
) × packet size, (3.4)

and the processing overhead is given by:

PCore = (2M +N) ×max(1,
F × θ × d

packet size
) × h× α3, (3.5)

where packet size is a configurable parameter.

87

0 0.05 0.1 0.15 0.2
10

4

105

106

107

108

Packet Marking Probability

P
ro

ce
ss

in
g

O
ve

rh
ea

d

Route
Ingf
PPM, h=4
PPM, h=6

(a) Effect of varying the marking probability

on the processing overhead.

10 12 14 16 18 20
10

5

10
6

10
7

108

Number of Edge Routers

P
ro

ce
ss

in
g

O
ve

rh
ea

d

Route
Ingf
PPM, h=4
PPM, h=6

(b) Effect of varying the number of edge

routers on the processing overhead.

Fig. 3.5. The processing overhead per unit time for filters and probabilistic
packet marking (PPM) schemes. Marking scheme has less processing overhead
than filtering scheme if the marking probability is not too high (e.g.,p ≤ 0.07).

Stripe-based monitoring. In the stripe-based monitoring scheme, a stripe of s packets

is sent from the monitor to every egress router pairs. For the network domain D, the total

number of probing packets is s × (M − 1) × (M − 2) × fs, where fs is the frequency

by which we need to send stripes per unit time. The communication overhead and the

processing overhead are shown in equation (3.6) and equation (3.7) respectively.

CStripe = s× (M − 1) × (M − 2) × fs × packet size, (3.6)

PStripe = s× (M − 1) × (M − 2) × fs × h× α3. (3.7)

Overlay-based monitoring. For this monitoring, each edge router probes its left and right

neighbors. If it requires fd probes per unit time, the communication overhead is:

COverlay = 2 ×M × fd × packet size. (3.8)

On the average, each probe packet traverses h hops and thus the processing overhead can

be calculated as:

POverlay = 2 ×M × fd × h× α2. (3.9)

88

0 5 10 15 20
10

2

10
3

10
4

105

Percentage of Misbehaving Flow

P
ro

ce
ss

in
g

O
ve

rh
ea

d
(C

P
U

 c
yc

le
s)

Core
Stripe
Overlay

(a) Processing overhead.

0 5 10 15 20
10

1

102

103

104

105

Percentage of Misbehaving Flow

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
in

 K
B

yt
es

Core
Stripe
Overlay

(b) Communication overhead.

Fig. 3.6. The processing and communication overhead for the monitoring
schemes when the percentage of misbehaving flows is increased. The Core
scheme has less communication overhead than Stripe scheme for θ < 20%.
Both Stripe and Overlay schemes have less communication overhead than Core
unless θ is very low.

10 11 12 13 14 15 16 17 18 19 20
103

104

105

106

Number of Edge Routers

P
ro

ce
ss

in
g

O
ve

rh
ea

d

Core
Stripe
Overlay

(a) Processing overhead.

10 12 14 16 18 20
10

1

10
2

10
3

104

Number of edge routers

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
in

 K
B

yt
es

Core
Stripe
Overlay

(b) Communication overhead.

Fig. 3.7. The processing and communication overhead for the monitoring
schemes when the number of edge routers in a domain is increased. The Core
scheme has less processing overhead than both edge-based schemes when the
number of edge routers in the domain is increased. Edge-based schemes al-
ways impose less communication overhead than the Core scheme. The Core
might perform better than Stripe for a large domain (e.g., M > 20) depending
on the value of θ.

89

3.4.3 Results and Analysis

To visualize the differences among all schemes, we plot the processing and communica-

tion overhead for one of the domain shown in Figure 3.2. Usually, DoS attacks are directed

towards a particular host or a set of hosts connected to a relatively small size domain. In the

example, Figure 3.2, the DoS attack is directed towards domain D4 and the attack traffic

is coming from various other domains. For our comparison, we use the parameters’ values

shown in Table 3.1 for domain D. We use second as unit time in all comparisons.

Figure 3.5 (a) shows the processing overhead in terms of α1 for ingress filtering, route-

based filtering, and PPM when packet marking probability is varied along the X-axis. The

route-based filtering requires less processing than marking scheme forp ≥ 0.07 because

this filtering scheme does not need to be deployed at all routers of all domains. Savageet al.

use marking probability p = 0.04 in their traceback analysis [72]. Using this probability,

the marking mechanism has less overhead than others. We use two different path lengths

in the plot; one is h = 4 and another is h = 6. The path length does not increase the

overhead substantially because the path length does not go up very high for a small-size

domain. Figure 3.5(b) shows that when number of edge routers are increased in a domain

the processing over is increased for all schemes.

Figure 3.6 shows both processing and communication overhead for different monitoring

schemes. The processing overhead is low for Core scheme than the Stripe scheme for

θ ≤ 20%. This is because the control packet size of Core can be set equal to the maximum

transmission unit of the network to minimize total number of packets sent, whereas the

probe packet size of the Stripe is 20 bytes with 20 bytes of IP header. However, if the attack

intensity is high, i.e., the value of θ is high, the overhead of Core exceeds the overhead of

both edge-based schemes. In this example, probes injected by Stripe scheme consumes

600K bytes of bandwidth per sec, which is distributed over all links of the domain. If all

links are OC3 type, on average each link experiences probe traffic less than 0.015% of

the link capacity. The Overlay scheme consumes ten times less than the Stripe one in this

setup.

In Figure 3.7, we vary the domain size changing the number of edge routers while keep-

ing the number of core routers fixed toN = 12. The percentage of misbehaving trafficθ

is fixed and equals1%. Figure 3.7 (a) shows that Core can result in less computation over-

head than edge-based schemes when the number of edge routers increases. Even though

the overhead of Core scheme depends on both core and edge routers, this scheme reduces

90

Table 3.2
Comparison among different schemes to detect and prevent DoS attacks. Some
techniques can detect service violation additionally.

Property PPM Ingress Filtering Route-based Core-assisted Stripe-based Overlay

Filtering Monitoring Monitoring Monitoring

Overhead attack number of number of number of routers, routers,

depends on volume incoming incoming flows violating topology, topology,

packets packets SLAs attack traffic attack traffic

Implementation all routers all ingress all routers of all edge and all edge all edge

overhead edge routers selective domains core routers routers routers

Clock — — — at edge and at edge at edge

synchronization core routers routers routers

Response reactive proactive proactive reactive reactive reactive

SLA violation no no no yes yes yes

detection

Detect attacks any IP spoofed IP from spoofed IP from any IP any IP any IP

initiated using other domains other domains

processing overhead by aggregating flows when it reports to the monitor. When number of

edge routers increases, overhead for both Core and Overlay schemes increase linearly. The

overhead for Stripe increases substantially with the increase of edge routers. Depending

on θ, Figure 3.7 (b) shows that the communication overhead for Stripe may exceed the

communication overhead of Core when M > 20.

3.4.4 Summary

We summarize the important features of all schemes in Table 3.2. Ingress filtering and

core-assisted monitoring schemes have high implementation overhead because the former

needs to deploy filters at all ingress routers in the Internet and the latter needs support from

all edge and core routers in a domain. But filtering and monitoring can provide better safety

compared to the traceback which only can identify an attacker after the attack has occurred.

All monitoring schemes need clock synchronization to measure SLA parameters, which is

an extra overhead. But, they can detect service violations and DoS attacks as well. Filters

are proactive in nature and all other schemes are reactive. Filters can detect attacks by

spoofed packets whereas the rest of the schemes can detect an attack even if the attacker

does not use spoofed IP addresses from other domains.

91

3.5 Conclusions

We have investigated several methods to detect service level agreement violations and

DoS attacks. We showed that there is no single method that fits all possible scenarios.

Specifically, in ICMP traceback and probabilistic packet marking mechanisms, the attacker

may be able to confuse the victim by sending false ICMP traceback packets and by ran-

domly marking attacking packets. Ingress filters need global deployment to be effective,

whereas route-based filters strive against the dynamic change of the routing information.

We have showed that network monitoring techniques can be used to detect service viola-

tions by measuring the SLA parameters and comparing them against the contracted values

between the user and the network provider. Monitoring techniques have the potential to

detect DoS attacks in early stages before they severely harm the victim. Our argument is

based on the fact that a DoS attack injects a huge amount of traffic into the network, which

may alter the internal characteristics (e.g., delay and loss ratio) of the network. The moni-

toring techniques watch for these changes and identify the congested links, which helps in

locating the attacker and alerting the victim.

The presented comparative study showed several issues. First, it showed that while

marking imposes less overhead than filtering, it is only a forensic method. Filtering, on the

other hand, is a preventive method, which tries to stop attacks before they harm the sys-

tem. Second, the core-assisted monitoring scheme has a high deployment cost because it

needs to update all edge as well as core routers. However, the core-assisted scheme has less

processing overhead than the stripe-based scheme because it aggregates flow information

when it reports to the monitor. Third, the stripe-based monitoring scheme has lower com-

munication overhead than the core-assisted scheme for relatively small size domains. For

large domains, however, core-assisted may impose less communication overhead depend-

ing on the attack intensity. Fourth, the overlay scheme outperforms the other monitoring

schemes in terms of deployment cost and overhead in many of the cases.

92

4. TRAFFIC CONDITIONER FOR SLA ENFORCEMENT

Traffic conditioner is an important component of the edge routers to mark, shape, and reg-

ulate traffic. We discuss how flow characteristics can be used to improve the conditioner

to provide better quality of service (QoS). The characteristics are combined to develop an

adaptive and scalable traffic conditioner. The conditioner is adaptive because the mark-

ing algorithm changes based upon the current number of flows traversing through an edge

router. If there are a small number of flows, the conditioner maintains and uses state infor-

mation to intelligently protect critical TCP packets. On the other hand, if there are many

flows going through the edge router, the conditioner only uses flow characteristics as indi-

cated in the TCP packet headers to mark without requiring per flow state. The conditioner

uses Round Trip Time (RTT) as well as the Retransmission Time-out (RTO) to mitigate

TCP bias to short RTT connections.

4.1 Introduction

Designing an edge router that intelligently conditions Assured Forwarding (AF) traffic

has been an active research area. Several studies show that application performance is poor

if traffic conditioning at network edges does not consider transport protocol reaction to drop

at the end systems, and dropping behavior at the core routers. Several proposals adjust the

marking, dropping, or shaping scheme of a traffic conditioner based upon TCP connection

state. Most of these proposals, however, do not scale well to large numbers of flows. The

literature is discussed in related work section of this chapter. In addition, the proposals

only consider bulk data applications, and do not examine delay-sensitive traffic and WWW

traffic.

We study the behavior of transport protocols, and use TCP characteristics to develop an

adaptive traffic conditioner that protects critical TCP packets from drop in order to avoid

TCP timeouts. Each conditioner feature is studied individually, and then they are studied in

combination. Our conditioner behaves differently based on the number of flows traversing

93

it. This adaptive design overcomes scalability problems arising from maintaining excessive

per flow state.

We investigate how to mitigate the Round Trip Time (RTT) bias on a TCP flow to im-

prove the QoS of a long RTT flow. The throughput of a TCP connection is inversely propor-

tional to the Round Trip Time (RTT) of the connection . Traffic conditioners that mitigate

this unfairness by being RTT-aware were first proposed in [83]. These conditioners avoid

RTT bias of TCP connections through marking packets with high drop priority inversely

proportional to the square of their RTTs according to the steady state TCP behavior. Such

conditioners work well when the number of flows is small. We show that for a large number

of flows, short RTT flows often so far time out because only long RTT flows are protected

by the conditioner after satisfying the target rate. Excess bandwidth is mostly given to long

RTT flows. To remedy this unfairness introduced by an RTT-aware conditioner, we propose

two strategies. The first strategy is to combine the RTT-aware conditioner with techniques

that protect a TCP flow when its congestion window is small. The second method is to

re-design the RTT-aware conditioner to consider time-outs as well as RTTs to approximate

throughput. Both strategies are analyzed for data intensive applications and delay sensitive

applications with realistic traffic models.

We note that our method for incorporating RTT-awareness into the conditioner does not

grant all available resources to long-RTT connections while short-RTT connections starve.

The RTT-awareness only mitigates unfairness in distributing excess bandwidth. When a

network is under-provisioned, the RTT-aware conditioner does not consider RTTs.

The performance of the conditioner is analyzed both for data intensive applications and

delay sensitive applications in multiple-domain and variable delay configurations.

4.2 Basics of a Conditioner

The conditioner may re-mark a traffic stream or discard or shape packets to alter the

temporal characteristics of the stream and bring it into compliance with a traffic profile

specified by the network administrator [5]. Figure 4.1 shows different components of a

traffic conditioner. We describe each component below:

Meter and Marking Strategy. The meter measures and sorts the classified packets

into precedence levels. The marking, shaping, or dropping decisions are based on the

measurement result. If C denotes the capacity of bottleneck link of a network system, F

94

denotes set of flows going through an edge router and Ri denotes the reservation rate of

flow i then the excess bandwidth E at time t is expressed as shown:

E = C −
∑

i∈F

Ri. (4.1)

A marker distributes the excess bandwidth using a predefined algorithm. This marking

can be deterministic or probabilistic depending on the policy taken by the provider. A

probabilistic marker gets the current flow rate, measuredRate, of a user from the meter and

puts a tag on each packet based on the targetRate from the service level agreement and the

current flow rate. An incoming packet is marked as IN profile (low probability to drop) if

the corresponding flow does not reach the target rate otherwise the packet is marked with

probability 1 − p, where p is shown in equation (4.2), to a higher drop precedence.

p =
measuredRate− targetRate

measuredRate
. (4.2)

Shaping/Dropping Traffic. Shaping reduces the traffic variation and makes it smooth.

It provides an upper bound for the rate at which the flow traffic is admitted into the network.

A shaper usually has a finite-size buffer. Packets may be discarded if there is not sufficient

space to hold the delayed packets. Droppers drop some or all of the packets in a traffic

stream in order to bring the stream into compliance with the traffic profile. This process is

known as policing the stream.

Meter

Shaper/
Dropper

 Classifier Marker

Traffic Conditioner

Fig. 4.1. Components of a traffic conditioner to meter, mark, shape, and/or
drop incoming packets.

95

4.3 Related Work

Ibanez and Nichols [19] used a token bucket marker for Assured Service and showed

that target rates and TCP/UDP interaction are key factors in determining throughput of

flows. The TCP response to packet loss is the main problem. Seddigh, Nandy and Pieda [84]

showed that the above mentioned factors are also critical to the distribution of excess band-

width in an over-provisioned network. Lin, Zheng and Hou [85] proposed an enhanced

TSW profiler, but their solution requires state information to be maintained at core routers,

which does not scale well.

The Single Rate Three Color Marker (srTCM) [86] and Two Rate Three Color Marker

(trTCM) [87] are two basic markers applicable to three drop precedences. srTCM meters

an IP packet stream and marks its packets either green, yellow, or red using one Committed

Information Rate (CIR) and two associated burst sizes, a Committed Burst Size (CBS) and

an Excess Burst Size (EBS). The trTCM marks based on two rates, PIR and CIR. These

markers can be used as a component of a traffic conditioner. Bonaventure and Cnodder [88]

propose rate adaptive shaper in combination with srTCM and trTCM to improve the per-

formance of TCP by reducing the burstiness of the traffic. With TCP traffic, this reduction

of the burstiness is accompanied by a reduction of the number of marked packets and by

an improved TCP throughput. Fang, Seddigh and Nandy [89] proposed the Time Sliding

Window Three Color Marker (TSW3CM), which we use as a standard conditioner.

Yeom and Reddy [90] pass the marking information to the sender, so that a sender can

slow down its sending rate in the case of congestion. This requires modifying the host

TCP implementation. They also use three drop precedences IN, OUT-IN and OUT-OUT to

provide better QoS. Storing and searching per flow information at the border router for a

large number of flows may, however, not scale well.

Feroz et al. [91] propose a TCP-Friendly marker. As TCP applications are influenced by

bursty packet loss behavior, they use TCP characteristics to design their marker. The main

concept is to “protect small-window flows from packet losses” by marking their traffic IN.

Detailed analysis on a good window size threshold (below which a flow is marked as IN)

for various situations is not provided in [91]. We investigate different thresholds to identify

a small window and analyze how they affect the throughput of flows with different RTTs.

We also incorporate the idea of protecting small window flows into one of our RTT-aware

traffic conditioner proposals.

96

Nandy et al. extend the TSW marker to design RTT-aware traffic conditioners [83]. The

basic idea of this conditioner is to adjust the packet drop rate in relation to the RTT. Hence,

the acquired bandwidth for the aggregate becomes less sensitive to RTT. Their conditioner

is based on the steady state TCP behavior as reported by Matthis et al. [92], i.e., bandwidth

is inversely proportional to RTT. Their model does not consider time-outs. However, we

observe time-out events when a large number of flows is multiplexed onto a bottleneck.

Andrikopoulos et al. [93] emphasizes on fair sharing of bandwidth between TCP and

UDP flow in their fair traffic conditioner. They mainly focus on queue management. The

fairness capability based on the use of FRED (Flow RED). They propose to use Fair MRED

in the border of a DiffServ network. This work is an extension of simple fair marker

proposed by Kim [94].

Adaptive packet marker proposed by Feng et al. [95] uses a Packet Marking Engine

(PME), which can be a passive observer under normal conditions, but becomes an ac-

tive marker at the time of congestion. The marking rate is adjusted by the throughput.

This engine can be source transparent or source integrated. The host TCP reacts to the

marked/unmarked packet drop differently using two congestion windows: one for best ef-

fort traffic and another for priority traffic. The source integrated technique is hard to deploy.

4.4 Proposed Traffic Conditioner

In this section, we discuss techniques to incorporate in a conditioner to improve per-

formance of applications running on top of TCP. Some of these techniques are (loosely or

closely) based on ideas proposed in the literature as cited below, but the techniques not re-

quiring per flow state, the combination of techniques, and the adaptivity of the conditioner

to the number of flows have not been previously proposed. Like [89], we use the TSW

tagger [27], a rate estimator, and the TSW3CM marker as a standard conditioner [83].

4.4.1 Marking Techniques

We examine the following TCP-adaptive features to protect critical TCP flow by mark-

ing them as low probability to drop:

SYN. The first few packets of a TCP flow should not be dropped to allow the TCP con-

gestion window to grow. At the edge router, the first few packets can be identified by their

sequence numbers. As the initial TCP sequence number is not known to the conditioner,

97

the conditioner needs to store it. To avoid storing per flow information at the edge, we

propose to give low drop priority only to SYN packets as indicated in the TCP header

Small Window (SW). We protect flows with small window from packet losses by mark-

ing them with DP0. This strategy was introduced in [91]. TCP increases the congestion

window exponentially until it reaches the slow start threshold, ssthresh. The congestion

window reduces to 1 or half of the ssthresh for timeouts or packet loss respectively. The

congestion control algorithms of different flavors of TCP are discussed in [96–98]. We

give low drop priority to flows with small congestion window sizes. The calculation of

TCP window size needs sequence number of data and acknowledgment (ACK) packets.

This technique requires per flow state at the edge router. We use SW when we have state

information and use SYN otherwise.

Congestion Window Reduction (CWR). An ECN-Capable TCP may reduce its con-

gestion window due to a timeout, triple duplicate ACKs, or in response to explicit conges-

tion notification (ECN) [99]. TCP sets the CWR flag in the TCP header of the first data

packet sent after the window reduction. The CWR bit should not be set on retransmitted

packets [100] for greater robustness and against denial of service attacks. Instead, when

the TCP data sender is ready to set the CWR bit after reducing the congestion window,

it should set the CWR bit on the first new data packet that it subsequently transmits. We

propose to give low drop priority for a packet if the CWR bit is set. This avoids consecutive

ssthresh reductions that lead to poor performance with TCP Reno [101].

Target Rate (TR). The target rate is an important factor in marking. Nandy et al. [83]

mark DP1 and DP2 only when target rates have been achieved, and marking is inversely

proportional to the square of the flow requested rates if proportional sharing of excess

bandwidth is required. Another strategy is to mark packets based on the difference be-

tween target rate and exponentially averaged input rate of the aggregate in order to improve

fairness. We use the first strategy.

Burst. The marker avoids marking high drop priority in bursts to work well with TCP

Reno. The shaper avoids burstiness to avoid consecutive packet drops and poor perfor-

mance. This strategy was introduced in [91].

4.4.2 Avoiding RTT-bias

The RTT-aware traffic conditioner proposed in [83] avoids the TCP short RTT bias

through marking packets with high drop priority inversely proportional to the square of

98

their RTTs. This is based upon the steady state TCP behavior modeled in [92]. Equation

(4.3) shows that, in this model, bandwidth is inversely proportional to RTT where MSS is

the maximum segment size and p is the packet loss probability:

BW ∝ MSS

RTT
√
p
. (4.3)

The RTT-aware marking algorithm proposed in [83] works well when the number of

flows is small because (4.3) accurately represents the fast retransmit and recovery behavior

when p is small. We have observed that for a large number of flows, short RTT flows time

out because only long RTT flows are protected by the conditioner after satisfying the target

rates. Excess bandwidth is mostly given to long RTT flows.

To remedy this situation, we can use one of two strategies. First, we can combine

the RTT-aware conditioner with a technique that protects the TCP packets after time-outs.

Feroz et al. propose the small window protection technique [91], which marks TCP pack-

ets with lowest drop priority when the congestion window of TCP is small. TCP grows the

congestion window exponentially until it reaches the slow start threshold, ssthresh. The

congestion window reduces to 1 or half of the ssthresh for time-outs or packet loss, respec-

tively. Giving low drop priority to flows with small congestion window sizes helps these

flows to achieve high throughput.

We have already discuss and analyze the performance of Small Window (SW) based

conditioning earlier in this chapter. With SW, a packet is marked as DP0 when the con-

gestion window size of a particular flow is < k. We show that SW protects the short RTT

flows when an RTT-aware conditioner is used. This combination eliminates the unfairness

of the basic RTT-aware conditioner for a large number of flows. The RTT-aware marking

algorithm with SW is referred to as RTT-SW in this work.

The second approach to eliminate unfairness is to use the throughput approximation by

Padhye et al. [102], which considers time-outs. Equation (4.4) shows this approximation,

where b is the number of packets acknowledged by a received ACK, and To is the time-out

length:

BW ≈ 1

RTT

√

2bp
3

+ To×min(1, 3
√

3bp
8

)p(1 + 32p2)
. (4.4)

If we take b = 3
2

(one delayed ACK for two packets for every three incoming packets),

approximate min(1, 3
√

3bp
8

) to 1 (so that BW will be less than or equal to the right side

99

of the (4.5), and discard the higher order term of p, i.e., 32p3 (if p ¿ 1, p3 ≈ 0), we can

simplify (4.4) to:

BW ≈ 1

RTT ×√
p+ To× p

. (4.5)

Designing an RTT-aware traffic conditioner using (4.5) is more accurate than using

(4.3). Consider two flows with achieved bandwidths BW1 and BW2. The objective is to

obtain:

BW1 = BW2. (4.6)

(4.5) and (4.6) give:

RTT1 ×
√
p1 + To1 × p1 = RTT2 ×

√
p2 + To2 × p2. (4.7)

Let ρ = p2
p1

. Equation (4.7) can then be written as:

RTT1 ×
√
p1 + To1 × p1 = RTT2 ×

√
ρ× p1 + To2 × ρ× p1. (4.8)

Solving for ρ, this means that we should have:

ρ ∝
(RTT1

RTT2

)2

. (4.9)

And:

ρ ∝ To1

To2

. (4.10)

Equations (4.9) and (4.10) show that the packet drop ratio between two flows depends

on the square of ratio of RTT of the two flows and the ratio of their time-outs. We combine

the two equations to obtain the following heuristic:

ρ2 =
(RTT1

RTT2

)2

× To1

To2

. (4.11)

We follow the same steps as in [83] to derive the marking probabilities. If measured

rate is beyond the target rate of a flow, it marks the packet as DP1 or DP2 with probability
measuredRate−targetRate

measuredRate
. The ratio ofDP1 andDP2 marked packets is directly related to the

packet drop probabilities at the core. This means that packet drop at the core is proportional

to the out-of-profile marked packets. Thus, (4.11) is used to marked packets asDP1 and

DP2. The resulting algorithm, which we refer to as the RTT-RTO algorithm, is shown in

Figure 4.2. Note that for the flow with minimum RTT and RTO, the packets are marked

100

Algorithm: RTT-RTO aware Conditioner()

If measuredRate <= targetRate

mark packets as DP0

Else

mark packets as DP0 with probability (1-p2)

If packet is not marked DP0

mark packets as DP1 with probability (1-q)

mark packets as DP2 with probability q
where p and q are:

p = (measuredRate−targetRate)
measuredRate

q = (minRTT
aggregateRTT

)
2
(minRTO
aggregateRTO

)

Fig. 4.2. An RTT-RTO aware Traffic Conditioner with three drop precedences.

based on the ratio of its own RTT and RTO. Otherwise, the right hand side of (4.11) may

become 1, and all packets of the flow with minimum RTT will be marked as DP2, which

will deteriorate the performance of the flow.

4.4.3 Developing Scalable Conditioner

Each of the techniques described in Section 4.4.1 and 4.4.2 has advantages and limita-

tions. SYN, CWR, and aggregate Target Rate do not need to store per flow information and

are simple to implement. On the other hand, SW, Target Rate based on individual informa-

tion, Burst, and RTT-RTO need to maintain and process per flow information. Storing and

processing excessive state information about each micro-flow at the edge routers does not

scale well. To overcome scalability problem, the edge router will store per flow informa-

tion for a certain number of flows based on its available resources. If its per flow state table

for N flows is full, the router overwrites previous entries. N here is a router configuration

parameter that depends on router memory size. We choose to maintain state for the N most

recent flows, thus implementing a least recently used (LRU) replacement strategy. For an

incoming flow, conditioning will be done based on state information if it is present. If there

101

Algorithm: AdaptiveConditioner()

begin
for each incoming flow do

if there is a state entry for this flow then
statePresent = TRUE

Update the state table to reflect recent information

else
statePresent = FALSE

Add the flow in the state table, overwrite if table is full

end if
if statePresent is TRUE then

Use Standard Traffic Conditioner with SYN, CWR, SW, Burst, RTT, and RTO

else
Use Standard Traffic Conditioner with SYN and CWR

end if
end for

end

Fig. 4.3. Algorithm for Adaptive Traffic Conditioner. Flow characteristics are
used when they are available. Otherwise, flow independent conditioning is
conducted.

is no state present, conditioning will be done using techniques that do not need per flow in-

formation. In this way, the router does not handle state information beyond its capabilities

and achieves scalability.

4.5 Simulation Setup

We use the ns-2 simulator [103] for our experiments. For the standard DiffServ imple-

mentation, we use software developed at Nortel Networks [104]. We use the combination

of TSW tagger [27], a rate estimator, and the TSW3CM marker [89] to refer as a standard

conditioner.

102

4.5.1 Topologies and Configuration Parameters

The simple network topology shown in Figure 4.4 is used to show the basic marking

problems with RTT-aware conditioners, and how RTT-RTO and RTT-SW can overcome

these problems. We use the multiple domain topology in Figure 4.5 with cross traffic to

illustrate more realistic scenarios. Each edge router is connected to a host which sends

aggregate flows to simulate different users. The RED parameters {minth, maxth, Pmax}
used are: for DP0 {40, 55, 0.02}; for DP1 {25, 40, 0.05}; and for DP2 {10, 25, 0.1} as

suggested in [83]. wq is set to 0.002 for all REDs. TCP New Reno is used with a packet

size of 1024 bytes and a maximum window of 64 packets. We use 200 micro-flows (where

a micro-flow represents a single TCP connection) per aggregate flow.

n2

n1
n3

n4

E1

C

Host Edge Router Core Router

Bottleneck Link

E3

E2

Fig. 4.4. Simple topology to evaluate the basic marking principles by simula-
tion.

4.5.2 Performance Metrics

The metrics we will use to evaluate performance are:

Throughput. This denotes the average bytes received by the receiver application over sim-

ulation time. A higher throughput usually means better service for the application

(e.g., smaller completion time for an FTP flow). For the ISP, higher throughput is

preferable because this means that links are well-utilized.

Packet Drop Ratio. This is ratio of total packets dropped at the core to the total packets

sent. A user can specify for certain applications that packet drop should not exceed a

103

E6C3

E4C2

C4

E5

E1

C1

Core RouterEdge RouterHost

40ms

5ms

20ms

10ms

10ms

10ms 20ms 10ms
5ms

10ms

n5

n6
n7

n8

n9

n1

n2
E2

E3
n3

n4

E7

Fig. 4.5. Simulation topology with multiple domains. All links are 10 Mbps.

threshold. This is a metric for both ISP and user. Lower drop reduces bandwidth and

other resources wastage on upstream links.

Packet Delay. For delay sensitive application like Telnet, the packet delay time is a user

metric. We use this metric to show that user can be benefited using traffic conditioner

for Telnet type application.

Response Time. This is the time between sending a request to a web server and receiving

the response back from the server.

4.6 Simulation Results

We study the behavior of the standard traffic conditioner and each marking technique

individually and in combination. We also study the performance of the proposed adaptive

traffic conditioner with FTP, Telnet and WWW applications. Network hosts and routers are

ECN-enabled for all experiments.

4.6.1 Marking Techniques

The objective of our first experiment is to study how each marking technique discussed

in section 4.4.1 affects the performance of the standard traffic conditioner individually and

collectively. We vary the RTTs, window size for SW, and target rates in this experiment.

The output parameters (metrics) are throughput and packet drop ratio. We use the simple

104

topology in Figure 4.4 where one aggregate flow, Flow 1-3, is created between nodes n1

and n3 with RTT 20 ms and another aggregate flow, Flow 2-4, is created between nodes n2

and n4. The RTT of Flow 2-4 is varied from 4 to 200 ms.

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (M

bp
s)

RTT (msec)

over-provision
under-provision

extreme-over

(a) Aggregate Flow 1-3

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (M

bp
s)

RTT (msec)

over-provision
under-provision

extreme-over

(b) Aggregate Flow 2-4

Fig. 4.6. Throughput for standard traffic conditioner in over, under-
provisioned, and extremely over-provisioned networks for 200 flows.

Standard Conditioner. We test the conditioner for both small (10 micro flows) and

large (200 micro flows) number of flows, in under and over-provisioned networks. All

flows have the same target rate. For the over-provisioned case, the committed rate CIR

is 2 Mbps and peak rate PIR is 3 Mbps for each aggregate flow. For the extremely over-

provisioned case, CIR is 0.2 Mbps and PIR is 0.3 Mbps, and for the under-provisioned one,

CIR is 6 Mbps and PIR is 10 Mbps.

Figure 4.6 shows the achieved bandwidth for the under, over, and extremely over-

provisioned network cases as RTT of Flow 2-4 varies. In the under-provisioned case, both

flows achieve close to 5 Mbps, which is a desirable outcome. In the over-provisioned

cases, small RTT connections are favored. For example, Flow 1-3 is favored at the expense

of Flow 2-4 when its RTT is lower than the RTT of Flow 2-4 (when RTT on the X-axis is

greater than 20 ms). If the network is extremely over-provisioned, we see more unfairness

and higher packet drop ratio. This is because TCP connections are very aggressive for the

flow with small RTT. Due to the fluctuation of the sending rate, TCP loses more packets.

As the RTT of Flow 1-3 is fixed, it has almost the same packet drop ratio throughout the

105

experiment, but the drop ratio decreases when RTT of Flow 2-4 increases. This is because

for higher RTT, TCP can estimate the sending rate more accurately.

SYN. SYN is useful for short-lived connections and high degrees of multiplexing. Even

though the bandwidth improvement we observed in experiments (not shown) is insignifi-

cant (200 kbps for the total), SYN can be used when other expensive techniques (in terms

of complexity to deploy) cannot be used. This technique is used in the adaptive conditioner

when there is no state information about the flow.

Small Window(SW). Small window works both for small and large number of micro

flows as well as short and long lived flows. To study the effect of the window size, k,

on achieved bandwidth on both flows, k is varied from 3 to 10. If the window size of a

flow is less than k, the flow packets are marked DP0. We have observed that the larger

value of k helps the (more aggressive) small RTT connection (Flow 1-3) to achieve more

bandwidth at the expense of the large RTT flow (Flow 2-4) due to the preferential drop

at the core. This contrast is clearer in an under-provisioned network. The total achieved

bandwidth is higher than the standard conditioner and is close to the link capacity. Thus,

SW significantly improves utilization. The choice ofk depends on policy. A higher value

of k such as 7 or 8 may favor short RTT flows and result in more unfairness against long

RTT flows, while a lower value of k (e.g., 3) avoids this problem.

Congestion Window Reduction (CWR). Giving priority to CWR packets helps the

growth of the congestion window after reductions and reach equilibrium. Results show

that CWR helps Flow 2-4 to achieve higher throughput. Flow 1-3 sometimes times out and

has high packet drop.

Burst. Avoiding bursty marking and shaping packet bursts improves achieved band-

width over the standard traffic conditioner. The improvement is more significant for both

flows when RTT is low. Flow 2-4 achieves its highest bandwidth in an over-provisioned

network when Burst and CWR are combined for low RTT. The “Burst” technique exhibits

the lowest packet drop ratio for both flows among other techniques when each is studied

separately.

Target Rate. We use a target aware traffic conditioner to divide excess bandwidth in

an over-provisioned network in proportion to the subscribed target rates [83]. This feature

has no effect in cases of congestion.

Combinations and Overall Performance. Figure 4.7 compares different marking

techniques in separate simulation runs. From the figure, it is clear that the “small win-

106

8.6

8.8

9

9.2

9.4

9.6

9.8

10

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (M

bp
s)

RTT(msec)

SW k=3
CWR
SYN

Standard
Burst

Fig. 4.7. Throughput comparison of the standard traffic conditioner and various
marking techniques with 200 flows.

dow” technique contributes most to total bandwidth gain, followed by CWR and SYN. SW

favors short RTT connections (Flow 1-3), but it reduces packet drop ratio and timeouts for

Flow 2-4 as well, compared to the standard traffic conditioner. “Burst” is effective for short

RTT (less than 40 ms). If SW is not used, Burst+CWR achieves higher bandwidth than any

other combination. Although SW works better than any other technique alone, using all

design techniques together has advantages over SW alone.

As previously discussed, in an under-provisioned network SW increases the throughput

of Flow 1-3 at the expense of Flow 2-4. Fluctuations occur when RTT is relatively low for

both connections. The fluctuations can be overcome by using the Burst technique. CWR

helps Flow 2-4 to achieve more bandwidth as before.

4.6.2 RTT-aware Traffic Conditioners

As previously mentioned, we have observed that a basic RTT-aware conditioner (with

both 2 and 3 Drop Precedences) as in [83] is biased when a large number of flows is being

multiplexed. Using the same experimental setup as the previous experiment, we observe

that Flow 2 (the longer RTT flow) obtains most of the extra bandwidth after target rates

107

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (

M
bp

s)

RTT (ms) of F2

F1 RTT
F2 RTT
F1 R-O
F2 R-O

F1 RTT-SW
F2 RTT-SW

Fig. 4.8. Throughput comparison of basic RTT, RTT-RTO (R-O), and RTT-
SW based conditioners. RTT of F1 is 20 ms and RTTs of F2 is shown on the
X-axis.

have been satisfied for both aggregates. Figure 4.8 shows that Flow 1 achieves only 2.3

Mbps whereas Flow 2 gets 7.52 Mbps (at Flow 2 RTT=100 ms) with the basic RTT-aware

conditioner.

We trace the reason for this behavior to the fact that Flow 2 gets priority over Flow 1

due to its longer RTT, after target rates are satisfied. As a result, many micro flows in the

aggregate Flow 1 time-out, and Flow 1 cannot achieve more than its target rate. Figure 4.9

shows that the congestion window (cwnd) of a randomly selected micro flow in the Flow

1 aggregate remains small due to timeouts. The figure also shows that incorporating small

window protection overcomes this problem.

Figure 4.8 illustrates that our proposed RTT-RTO (R-O) based conditioner (as well as

the incorporation of small window protection into the RTT-aware conditioner (RTT-SW))

mitigate this RTT-based unfairness. This is because with a larger number of flows, the per

micro flow bandwidth share is small and thus the steady-state cwnd is reduced. When cwnd

is small, there is a higher probability of timeouts in the case of packet drops. Protecting

packets (via DP0 marking) when the window is small reduces time-outs, especially back-

to-back time-outs. The micro flow also recovers from timeouts when RTO as well as RTT

is used to mark packets. The fairness is also improved.

108

1

2

3

4

5

6

7

8

9

10

5 10 15 20 25 30

C
on

ge
st

io
n

W
in

do
w

 S
iz

e

Time (sec)

Flow 1 Standard
Flow 1 Small Window

Fig. 4.9. Congestion window size with and without small window protection
with RTT-based conditioners for a micro flow of Flow 1.

To examine more realistic scenarios, we use the multiple domain topology shown in

Figure 4.5 where flows traverse multiple differentiated services domains. We have created

flows F1 = n1 to n7, F2=n2 to n8, F3=n3 to n4, F4=n0 to n9, and F5=n5 to n6. The first

two aggregate flows traverse multiple domains while the remaining two act as cross traffic.

F1 and F2 have long RTTs whereas F3, F4, and F5 have short RTTs. Figure 4.10 shows

that, with the basic RTT-aware conditioner, F1 and F2 obtain much higher bandwidth than

flows with short RTTs. We discard initial values to reduce transient effects on the result.

With the basic RTT-aware conditioner, the excess bandwidth is distributed according to the

RTT so that the longer RTT flows get higher share. We do not see this unfairness with the

RTT-RTO conditioner or with RTT-SW. With RTT-SW the short RTT flows get much higher

bandwidth than long RTT flows. The RTT-RTO based conditioner is fair because long RTT

flows do not get higher bandwidth as with the basic RTT-aware conditioner, but also short

RTT flows do not steal most of the resources as with RTT-SW. F1, F2, and F4 achieve

almost same amount of bandwidth and F3 gets little higher, which is fair because this

flow has a very short RTT. If the network is extremely over-provisioned, the performance

difference is more pronounced. We have observed that flow F3 obtains 67 times more

109

Table 4.1
Per Telnet packet delay (first three columns) and per session delay for Telnet
traffic. Number of Telnet sessions = 100.

Conditioner Delay (sec) Delay (sec) Delay (sec) Delay (sec)

F1, F2, F4 F3, F5 overall / session

Standard 5.36 2.32 3.62 72.11

Basic RTT 5.23 2.18 3.48 69.19

RTT-RTO 5.32 1.98 3.19 68.68

RTT-SW 5.12 1.84 2.89 66.09

bandwidth than what F1 and F2 achieved with the standard conditioner, whereas with

RTT-RTO the flows achieve very similar bandwidths.

Telnet and WWW Traffic. We compare the performance of Telnet (delay-sensitive)

and WWW (response time sensitive) applications with the various RTT-aware conditioner

variations. For the Telnet experiment, the metric used is the average packet delay for each

Telnet packet. The topology is the same as Figure 4.5, but all links capacities are set to

1 Mbps to induce congestion. We simulate 100 sessions each from node F1=n1 → n7,

F2=n2 → n8, F3=n3 → n4, F4=n0 → n9, and F5=n5 → n6. Each session transfers

less than 10 to more than 30 TCP packets.

Table 4.1 shows the average packet delay for each Telnet packet. We compare the

standard, the basic RTT-aware conditioner, the RTT-RTO conditioner and the RTT-aware

conditioner with small window protection (RTT-SW). The delays are long because the net-

work is congested. The standard conditioner has the highest delay for long RTT flows. The

RTT-SW has the lowest delay for short RTT flows. This is because with small window

protection, short RTT flows get much better service than the long RTT flows. With the

RTT-RTO conditioner, the delay for long RTT flows is lower than with the standard and

RTT-aware conditioners. In some cases, short RTT flows have higher delay with the RTT-

RTO conditioner, which is consistent with the fairness objective of the conditioner. Our

experiments show that we can achieve better overall performance with the RTT-RTO con-

ditioner because the delay of long RTT flows is reduced with RTT-RTO aware conditioner

110

1

1.5

2

2.5

3

3.5

4

4.5

20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (M

bp
s)

Number of flows

F1 RTT
F2 RTT
F3 RTT
F4 RTT

(a) RTT-aware

1

1.5

2

2.5

3

3.5

4

4.5

20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (M

bp
s)

Number of Flows

F1 R-O
F2 R-O
F3 R-O
F4 R-O

(b) RTT-RTO

1

1.5

2

2.5

3

3.5

4

4.5

20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (M

bp
s)

Number of Flows

F1 RTT-SW
F2 RTT-SW
F3 RTT-SW
F4 RTT-SW

(c) RTT-SW

Fig. 4.10. Throughput of RTT-aware traffic conditioners in a multiple domain
topology (Figure 4.5) for various number of micro-flows. F1, F2 are long RTT
flows and F3 has very short RTT. F4 is in the middle.

111

Table 4.2
Response time comparison among different conditioners for WWW traffic.
Number of concurrent sessions = 50

Conditioner Avg response time Std Avg response time Std

(sec): first packet dev (sec): all packets dev

Standard 0.75 1.60 2.25 4.79

Basic RTT 0.71 1.52 2.16 4.62

RTT-RTO 0.77 1.64 1.69 3.61

RTT-SW 0.64 1.37 1.80 3.83

and the overall Telnet packet delay for all flows is minimized. The per Telnet session delay

is low with RTT-RTO conditioner.

As web traffic constitutes most (60%-80%) of the Internet traffic, we examine our traffic

conditioners with the WWW traffic model in ns-2 [103]. Details of the model are given

in [105]. The model uses HTTP 1.0 with TCP Reno. Servers are attached to n4, n7 and n8

of Figure 4.5, while n1, n2 and n3 are used as clients. Each client generates a request for

5 pages with a variable number of objects (e.g., images) per page. We use the default ns-2

probability distribution parameters to generate inter-session time, inter-page time, objects

per page, inter-object time, and object size (in kB).

Table 4.2 shows the average response time per WWW request received by the client for

50 concurrent sessions. The network setup is the same as with Telnet traffic. Two response

times are shown in the table: one is the time to get the first response packet and another

is to get all data. The table shows that the RTT-RTO conditioner reduces total response

time over all other conditioners. The RTT-SW conditioner takes less time for the first

packet because of the small window protection at the time of connection setup. For 100

concurrent sessions, RTT-RTO conditioner takes the minimum time to get first response.

The response time does not differ significantly if the network is not congested.

112

4.6.3 Adaptive Conditioner

We examine our proposed adaptive conditioner for both the simple and multiple do-

main topologies. The algorithm used for conditioning is described in Section 4.4.1. Fig-

ure 4.11(a) compares achieved bandwidth with the standard, adaptive, and the standard

conditioner with all marking techniques at the same time (referred as “Max”) for the sim-

ple topology (Figure 4.4) with different number of flows. Max is the maximum bandwidth

achievement by standard conditioner with all existing techniques and using per-flow infor-

mation. The adaptive conditioner switches the marking techniques based on the availability

of state information, however, “Max” has a huge state table so that it can use all marking

techniques described in Section 4.4.1 to mark every packet. The adaptive conditioner out-

performs the standard one for both aggregate flows. The adaptive conditioner is fair in the

sense that Flow 1-3 does not steal bandwidth from flow 2-4, and total achieved bandwidth

is close 10 Mbps (bottleneck link speed). Aggregate Flow 2-4 performs better perform with

the adaptive conditioner than the performance achieved with “Max.”

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (M

bp
s)

Number of Flows

Max
Adaptive
Standard

(a) Simple Topology

9.5

10

10.5

11

11.5

12

12.5

13

13.5

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (M

bp
s)

Number of Flows

Max
Adaptive
Standard

(b) Multi-Domain Topology

Fig. 4.11. Achieved bandwidth by the standard conditioner and adaptive con-
ditioner. Max is the maximum bandwidth achievement by standard conditioner
with all existing techniques and using per-flow information. a) state table
size=20 micro-flows b) State table size=50 micro-flows

Figure 4.5 shows our second simulation topology. Three domains are interconnected,

with all links being 10 Mbps. We create aggregate flows between nodes n1 → n8,

n2 → n9, n3 → n4, n5 → n6, and n7 → n9. Flows have very different RTTs and

113

bottlenecks. Not all flows start/stop transmission at the same time. Short-lived flows last

from less than a second to a few seconds. Flows from multiple hosts sometimes traverse

the same edge router. C2 → E4, E5 → C4 and C4 → E7 are the busiest links. We

measure the total throughput over the simulation time at the receiving end. Figure 4.11(b)

shows the total bandwidth gain for this topology comparing different conditioners (note

that the solid line here is “Max” and the adaptive uses dotted line). From the figure, the

adaptive conditioner works better than the standard one and achieves performance close to

the complex conditioner (“Max”) and achieves scalability. The adaptive conditioner im-

proved throughput over the standard conditioner, and improves fairness between low and

high RTT flows, without requiring large per-micro-flow state tables.

C3
10ms 20ms10ms 20ms

5ms
10ms

C2

E3
5ms

C4

10ms

E5

n7

E1

40ms

C1

10ms

Core RouterEdge RouterHost

E6
E4

E7

E2

Fig. 4.12. Complex multiple domain topology used for performance evalua-
tion.

Figure 4.12 shows a variation on the multiple domain topology, where many hosts are

connected at most edge routers. The link delay between host and the edge is varied from 1

to 10 ms to simulate users at different distances for different hosts. This topology is more

realistic and some edges such as E4 experience a large number of micro-flows. Since each

aggregate flow contains 200 micro flows, the soft state table for the adaptive conditioner

covers only a small percentage of the flows passing through it (we use a table for the 50

most recent micro-flows). Table 4.3 shows that the bandwidth achieved with the adap-

114

Table 4.3
Performance for topology in Figure 4.12. Bandwidth (BW) shown is in Mbps.
State table size = 50 micro-flows.

Micro Standard Adaptive Adaptive (% flows Max

flows BW gain BW gain covered at E4) BW gain

10 12.65 12.87 41.16 12.87

50 12.18 13.84 16.66 14.20

100 11.67 13.48 8.33 14.89

200 11.77 13.61 4.16 14.91

tive conditioner is close to the conditioner that uses “Max” techniques, and the adaptive

conditioner always outperforms standard conditioner.

Telnet and WWW Traffic. We compare the performance of Telnet (delay-sensitive)

and WWW (response time sensitive) applications with the standard conditioner and adap-

tive conditioner. For the Telnet experiment, the metric used is the average packet delay time

for each Telnet micro flow in an aggregate flow. The topology is the same as Figure 4.5,

but all links capacities are set to 1 Mbps to introduce congestion. We simulate 200 users

each from node n1 → n8, n2 → n9, n3 → n4, n5 → n6, and n7 → n9.

Table 4.4 shows the average packet delay of micro-flows from n1 → n8 with the stan-

dard versus adaptive conditioners. The table shows average packet delay and standard

deviation per micro-flow, and average delay per TCP packet. Average packet delay in the

standard conditioner is higher than the adaptive conditioner. The delays are long because

the network is congested. If 10 or 20 flows are used per aggregate flow, both delays are

very low. The standard conditioner also shows high standard deviation. The result is simi-

lar for other aggregate flows. We have repeated this experiment for 100 micro flows and the

outcome is the same: average Telnet packet delay is reduced with the adaptive conditioner.

As web traffic constitutes most (60%-80%) of the Internet traffic, we test our traffic

conditioner with the WWW traffic model in ns-2 [103]. (Details of the model are given

in [105].) The model uses HTTP 1.0 with TCP Reno. Servers are attached to n6, n8 and

n9 of Figure 4.5, while n1, n2 and n5 are used as clients. A client can send a request to any

server. Each client generates a request for 5 pages with a variable number of objects (e.g.,

115

Table 4.4
Micro-flow statistics of aggregate flow n1-n8 with Telnet traffic. Number of
micro-flows = 200.

Conditioner Avg delay (sec) Std. dev Total TCP Delay (sec)

/micro flow of delay pkts sent /TCP pkt

Standard 131.12 115.47 1313 18.77

Adaptive 122.76 107.46 1478 16.61

Max 131.02 116.37 1456 17.81

Table 4.5
Response time of the Adaptive conditioner for WWW traffic. The response
time is compared with the maximum possible value. Number of concurrent
sessions = 50

Conditioner Avg response time Std Avg response time Std

(sec), first pkt dev (sec), all pkts dev

Standard 0.48 0.17 2.23 0.78

Adaptive 0.45 0.14 2.15 0.75

Max 0.49 0.19 2.15 0.71

images) per page. We use the default ns-2 probability distribution parameters to generate

inter-session time, inter-page time, objects per page, inter-object time, and object size (in

kB).

Table 4.5 shows the average response time per WWW request received by the client.

The network setup is same as with Telnet traffic. Two response times are shown in the

table; one is to get the first packet and another is to get all data. The table shows that

our conditioner reduces response time over the standard traffic conditioner. The adaptive

conditioner does not change the response time significantly if the network is not congested.

116

4.7 Conclusion

In this chapter, we have discussed techniques to design TCP-aware traffic conditioners

and analyzed the performance of the proposed adaptive conditioner for flows with vari-

ous RTTs and degrees of multiplexing, for over and under-provisioned networks, and for

single domain and multiple domain networks. All marking techniques examined improve

performance, but the small window (SW) protection contributes the most. Small window,

however, appears to mostly favor small RTT flows in our experiments. A lower thresh-

old for the window size reduces this unfairness, without compromising the total bandwidth

gain. Congestion Window Reduced (CWR) packet protection favors long RTT flows, while

burst avoidance (Burst) is effective when round trip time is small.

We have shown that using a basic RTT-aware traffic conditioner can be unfair by giving

all extra bandwidth to long RTT flows when many micro-flows traverse through an edge

router. This behavior causes short RTT flows to starve because they frequently time-out and

go to slow start. To overcome this unfairness, we present two schemes: one protects flows

with small windows, and the other re-designs the conditioner using both RTT and RTO

values. Both conditioners are shown to perform well for both small and large numbers

of flows. The RTT-RTO conditioner is shown to improve FTP throughput, reduce packet

delay for Telnet and response time for WWW traffic.

We design an adaptive conditioner which stores state information based on available

resources. When the per-micro-flow state table is full, the conditioner overwrites previous

state information based on a least recently used strategy. Marking is based on information

in packets, such as SYN and CWR, if state information is not available. The proposed

adaptive conditioner has been shown to improve FTP throughput, reduce packet delay for

Telnet and response time for WWW traffic.

To avoid RTT-bias, the conditioner requires to determine the RTT of aggregates pass-

ing through them. The RTT can be measured by monitoring the flow sequence number in

one direction and observing the ACKs in the other direction. This approximation works

because the conditioner compares approximate values to each other. It is possible to take

a single flow as a representative of the aggregate. As an RTT-aware conditioner also re-

quires the minimum aggregate RTT, the edge routers need to exchange this information.

The retransmission timeout can be approximated based on the RTT value using the RTT

variance.

117

We protect flows by giving priority to their critical packets. If a packet is protected (it

is re-marked to green when it was yellow or red), the flow profile must still be preserved

by marking later packets yellow or red. This ensures that the congestion situation of the

network does not deteriorate due to this flow protection.

This conditioner can be used for any architecture that supports service differentiation,

or even with active queue management techniques at network routers. For example, the

RED algorithm at network routers can itself protect critical packets such as SYN and CWR

packets without requiring any additional state. Alternatively, the adaptive conditioner con-

cept can be employed with algorithms like RED. The router would, in this case, store state

for the most recently seen flows and use this information to make intelligent dropping de-

cisions.

118

5. FRAMEWORK OF CONGESTION CONTROL

To avoid a congestion collapse, network flows should adjust their sending rates. Adaptive

flows adjust the rate, while unresponsive flows do not respond to congestion and keep

sending packets. Unresponsive flows waste resources by taking their share at the upstream

links of a domain and dropping packets later when the downstream links are congested.

In this chapter, we devise two algorithms to control unresponsive flows during conges-

tion. The first one takes help from the core routers of Differentiated Services (DiffServ)

networks to detect congestion. We describe how core routers detect congestion and inform

edge routers about it. The second algorithm uses network tomography—an edge-to-edge

mechanism to infer per-link internal characteristics of a domain—to identify unresponsive

flows that cause packet drops in other flows. The network tomography is introduced and

discussed in Chapter 2. We discuss network tomography briefly in this chapter to clarify

how it helps in detecting congestion and unresponsive flows.

We have designed an algorithm to regulate unresponsive flows. The congestion control

algorithm is evaluated using both adaptive and unresponsive flows, with sending rates as

high as four times of the bottleneck bandwidth, and in presence of short and long-lived

background traffic. Our rate control algorithm works well in a variety of situations. The

goal of this work is to ensure that TCP does not starve due to unresponsive flows as well as

to stop bandwidth waste in the upstream path when packets are dropped in the downstream

because of unresponsive flows.

5.1 Introduction

A flow is unresponsive if it fails to decrease its sending rate in response to congestion.

During congestion, adaptive flows such as TCP back off and reduce their sending rates.

This behavior of TCP prevents congestion collapse in a network. If all flows act in this

manner, there should not be any unfairness as well as congestion collapse. However, flows

such as UDP send at the same rate even when there exists congestion along the path, be-

119

cause UDP does not use any feedback mechanism and can not respond to congestion. This

behavior may cause TCP flows to starve, and introduces unfairness when various types of

flows coexist at the same time in the Internet.

If a packet is dropped at the downstream path, it wastes resources already taken at the

upstream. This behavior causes global max-min unfairness [106]. The packets dropped

at the bottleneck link have already consumed resources from non-bottleneck links earlier

along the path. The unresponsive flows cause this unfairness.

Congestion collapse can be mitigated using improved packet scheduling or active queue

management [23–25, 32]. However these techniques can not solve the global max-min

unfairness problem, because congestion can be far down along the path, and the upstream

queues do not know about this. To solve both problems, we need a mechanism to ensure

that the rate at which packets are entering into a network domain should be the same as the

rate at which packets are leaving from the domain. We use the DiffServ architecture [5] to

address this issue. The DiffServ framework uses edge routers at the border of a network

domain and core routers inside the domain.

We design two frameworks to detect and control congestion. The first framework takes

the advantage of the core routers to report about congestion to the edge routers. Dropping

highest priority packets of each class exhibits that a network is congested [33]. This con-

gestion drop is sent to ingress routers to regulate unresponsive flows. The drops due to

shaping at the ingress routers is propagated to egress routers of previous domain to regulate

an unresponsive flow at the upstream path. We use this framework to control unresponsive

flows, and refer to it as Core-assisted Congestion Control (C3).

The second framework uses the network tomography, an edge-to-edge mechanism to

infer per-link characteristics of a network domain, to detect congestion in a network do-

main. The tomography-based unresponsive flow detection scheme samples incoming flows

at the ingress routers, and probes the network with sampled data. The edge-to-edge probing

detects excessive packet loss inside of a network domain and the cause behind the loss. To

alleviate the congestion, the unresponsive flows are regulated at the edge routers. We re-

fer to this framework as tomography-based congestion control (TCC). We design detection

and adaptive control mechanism for the TCC framework. During congestion, the control

algorithm regulates the suspected flows such a way that the loss ratio of the congested links

drops exponentially with time. In absence of the congestion, the flow rates are increased to

the maximum value subscribed by the user. To achieve scalability, the detection and control

120

processing is done without involvement of core routers. The scheme has been evaluated,

and the performance has been tested using the ns-2 simulator.

5.2 Related Work

Floyd et al. discuss congestion collapse from undelivered packets in [63]. This situation

arises when bandwidth is continuously consumed by packets at the upstream domains and

are dropped at the downstream domains. The authors presented several ways to detect

unresponsive flows. It is suggested that routers can monitor flows to detect whether flow

is responsive to congestion or not. If a flow is not responsive to congestion, it can be

penalized by discarding packets to a higher rate at the router. According to the authors

there are some limitations of these tests to identify non-“TCP-friendly flow”. It does not

help to save bandwidth at the upstream if the flow sees the congestion at the downstream

because this solution does not propagate the congestion information from downstream to

upstream.

Seddigh et al. [107] suggest that if TCP and UDP are put into separate queues or As-

sured Forwarding classes, they may coexist fairly. This discrimination between TCP and

UDP traffic may punish some well-behaved UDP flows. The core router does not know the

profile of a flow and can not decide to allocate bandwidth to them fairly. The problem is

associated with network load, capacity, and the reaction of different transport protocols to

congestion. A dynamic control mechanism can solve this problem.

Albuquerque et al. [106] propose congestion avoidance mechanism named Network

Border Patrol. To detect congestion, it measures entering rate of traffic to a domain and

the leaving rate from the domain. It detects and restricts unresponsive traffic flows and

eliminates congestion collapse. The border routers monitor all flows, measure rates, and

exchange this information with all edge routers periodically and this can be expensive.

Moreover, TCP is responsive so we do not need control mechanism for TCP at the edges.

Chow et al. [108] propose a framework where edge routers periodically obtain infor-

mation from the core by probing, and adjust the conditioner using the traffic dynamics. In

this scheme, core needs to maintain all the state information. A simpler scheme can be

employed where core sends packets to edge routers only at the time of congestion.

Wu et al. propose Direct Congestion Control Scheme (DCCS) in [33]. In this scheme,

they detect congestion by observing packet drops with lowest priority to drop at the core

router. We follow the same rule in our research to detect congestion. Our core is simpler

121

in the sense that it detects drops of only unresponsive flows. Unlike [33], we design the

shaper at the edge that controls the unresponsive flow.

Mahajan et al. [68] use Aggregate-based Congestion Control (ACC) to detect and con-

trol high bandwidth aggregate flows. They use the history of packet drops over a time

interval, and the ACC agent matches prefix of IP destination addresses to detect flows go-

ing to the same destination address for Denial of Service(DoS) attacks. The ACC agent

controls the flows using a rate-limiter and pushes status messages reporting the aggregate’s

arrival rate to the upstream routers. We use DiffServ architecture to detect and propagate

messages. Our goal is to detect and control unresponsive flows and at the same time it can

protect DoS attack by using their idea of prefix matching [68].

5.3 Core-assisted Congestion Control (C3) Framework

This section describes the extension of the DiffServ components that are necessary to

support C3 framework. We need to extend core routers so that they can inform the edge

routers about the congestion. The edge router has a traffic conditioner that may re-mark a

traffic stream or may discard or shape packets to bring the stream into compliance with a

traffic profile specified by the network administrator [5]. We have to use a proper shaping

algorithm that can control unresponsive flows at the time of congestion. One additional

modification is to be done at the edge; the ingress router of one domain informs the egress

router of the previous domain about the congestion. Thus, congestion information is prop-

agated to the upstream.

5.3.1 Support from Core Router

Core does not store any per flow reservation information. This makes the DiffServ

architecture more scalable. We make little modification at the core routers to inform edge

routers about the congestion.

Wu et al. [33] suggest that packets dropped at the core with lowest drop precedence, say

DP0, indicates that there is a congestion in the network. We use a similar idea to identify the

congestion. We detect congestion only for unresponsive flows using protocol information

from transport layer. At the core, there is no way to classify packets as responsive or

unresponsive. This idea of monitoring all flows vs. unresponsive flows is debatable. But it

122

is true that responsive flows will back off just after one time-out period. The advantage of

monitoring responsive flows is small comparing to the overhead of monitoring it.

In C3 framework, the core routers store the tuple {source addr, destination addr, source

port, destination port, protocol, timestamp, outgoing link bw} about a dropped packet. The

cores send the drop information periodically to the ingress routers when total drop exceeds

a local threshold. The first five fields of the tuple are necessary to identify a flow. The

outgoing link bandwidth for each flow at the core helps to regulate the flow dynamically.

The edge routers can be more aggressive if the core has a thin outgoing link. It can store

the outgoing link information based on the core id. The core sends its id to mention the

outgoing link the packet is traversing through if it has multiple of those. The modification

at the core does not impose a lot of overheads on it because it stores/sends drop information

only about unresponsive flows and only at the time of congestion.

5.3.2 Support from Edge Routers

There are two types of edge routers: ingress and egress. Same router can be configured

to act as both. We present the extension on each of them separately.

Egress Router. We distinguish two types of drops at the edge routers. First one is a

drop due to shaping at the edge, say sdrop and the other one is a drop due to congestion at

the core/edge router, say cdrop. If there is a drop due to congestion, we use more informa-

tion than just packets dropped to regulate conditioner. The egress router informs both drop

information to the previous ingress router separately.

Ingress Router. The modification in the ingress router is to add/modify shaping

algorithm. Ingress gets shaping drop, sdrop, from egress node and congestion drop, cdrop,

from cores and egress routers, which are used for shaping. For a particular flow, suppose,

the bottleneck bandwidth is bb. The bandwidth of outgoing link of the flow at the edge bo.

The flow has an original profile (target rate) of op and adjusted profile ofap. The weighted

average rate for this flow is wavg. In case of cdrop, the profile of the flow is updated using:

adjust = cdrop× packet size×max(1, γ
bo

bb
), (5.1)

ap = max(0,min(ap− adjust, wavg − adjust)), (5.2)

123

where 0 < γ < 1, γ is aggressiveness to congestion control. Higher value of γ helps

to converge the drop adjustment faster. In equation (5.2), adjusted profile is taking non-

negative minimum value from current profile or from current average arrival rate. The

arrival rate is calculated over a time frame using Time Sliding Window [27] algorithm.

For sdrop, the profile is adjusted using equation

ap = max(0, ap− sdrop× packet size). (5.3)

The ap is initialized at the beginning with op. If the router does not receive any drop

information during a time interval, it increases the adjusted profile using equation below:

ap = min(op, ap+ r). (5.4)

The profile ap is adjusted periodically at a certain rate r, where r is initialized to a

constant number of packets each time the router gets drop information. In absence of any

drop, the rate r is increased using equation below:

r = min(
wavg

f
, 2 × r), (5.5)

where f is a factor that controls how fast the rate can be increased in the absence of any drop

feedback. This rate should be bounded by the current average rate. This rate adjustment

algorithm follows TCPs congestion control algorithm. The profile increment is doubled

each time in absence of any drop until it hit a threshold wavg
f

and then it is increased linearly.

At the edge, shaping is done based on the current average rate and the adjusted profile

using the algorithm shown in Figure 5.1. The algorithm ensures dropping some packets

when current rate is higher than the adjusted profile to reduce congestion. The chance

of dropping all d packets from a particular flow is low. Too many packets should not be

dropped at a time since it may deteriorate the application level quality of the flow.

5.4 Core-assisted Congestion Control (C3): Experimental Study

5.4.1 Simulation Setup

We use the ns-2 simulator [103] for our experiments. For the standard DiffServ imple-

mentation, we use software developed at Nortel Networks [104]. We use the TSW tagger

meter and TSW3CM marker in the edge device. It has three drop precedences DP0, DP1

and DP2. DP0 means lower precedence to drop and DP2 means higher.

124

Algorithm:Shaping()

begin
for each incoming flow do

if avg > ap then
drop next d = min(α, avgap) packets

where num of active flows
2 ≤ α < num of active flows

update average rate /* rate is decreasing over time*/

else
do regular marking

end if
end for

end

Fig. 5.1. Shaping flows during congestion based on adjusted profile of unre-
sponsive flows.

The simple topology, shown in Figure 5.2(a), has two network domains. We can test

both ingress and egress routers to control congestion. The complex topology, Figure 5.2(b),

is used later to simulate a more realistic situation. The edge devices implement traffic con-

ditioning, while the core device implements the Assured Forwarding [18] PHB using three

drop precedences. We use throughput and packet drop ratio as metrics to evaluate perfor-

mance. The parameters for the simulation is shown in Table 5.1. RED [23] parameters in

the table are set to get the service differentiation among different types of packets. We use

the software implementation of DiffServ network developed at Nortel Networks [104]. The

RED parameters are taken from their work.

Initially, we use two aggregate flows. Flow 1-3 is from node n1 to n3 and Flow 2-4 is

from node n2 to n4. The number of flows in each aggregate is varied with time. Normally,

we use 10 TCP micro-flows, where a micro-flow represents a single TCP connection, as

Flow 1-3, and 10 UDP micro-flows as Flow 2-4. We add background traffic (both TCP

and UDP type) from node n5 to n6. We change the number of flows and RTTs in different

experiments. The metrics used to evaluate performance include:

125

C1
E2

C2
E3

E1

E4

Core RouterEdge RouterHost

n1

n2

n5

n3

n6

n4

Bottleneck Link

(a) Topology 1

E6C3

E4C2

C4

E5

E1

C1

Core RouterEdge RouterHost

40ms

5ms

20ms

10ms

10ms

10ms 20ms 10ms
5ms

10ms

n5

n6
n7

n8

n9

n1

n2
E2

E3
n3

n4

E7

(b) Topology 2

Fig. 5.2. Simulation topologies. All links are 10 Mbps except bottleneck links.
(a) Simple topology. The bottleneck link is E4 → n4. (b) Complex topology
with multiple domains. The bottleneck link is E7 → n9.

126

Table 5.1
Simulation parameters and their typical values for the C3 framework.

Parameters Value

Packet Size 1024 Bytes

TCP implementation TCP new Reno

TCP window size 64

TSW window size 1 sec

weighted average wq 0.002

RED parameters {minth,maxth,Pmax}
DP0 {40,55,0.02}
DP1 {25,40,0.05}
DP2 {10,25,0.1}

1. Throughput. This denotes the average bytes received by the receiver application

over simulation time. A higher throughput usually means better service for the appli-

cation (e.g., smaller completion time for an FTP flow). For the ISP, higher throughput

is preferable because this means that links are well-utilized.

2. Packet Drop. We measure packets drop with the lowest precedence to drop, DP0,

to show congestion and drops due to the shaping to show that shaping is done at

different edges based on congestion information to improve the situation.

5.4.2 Simulation Results

We present a variety of scenarios to show that C3 framework works well. First, we

show if there is no flow control, there is a chance for congestion collapse in the Internet.

Then, we show that the congestion collapse can be overcome with C3. Both TCP and UDP

type traffic are used as background traffic. We show the effect of RTT and number of flows

on the flow control algorithm. Finally, simulation is conducted with complex topology and

multiple cross traffic across the path of controlled flows.

127

5.4.3 Congestion Collapse

First, we show the congestion collapse due to unresponsive flows. In Figure 5.2 (a),

there is an aggregate TCP flow with 10 micro-flows from host n1 → n3 and a UDP ag-

gregate flow with 10 micro-flows from host n2 → n4. Both flows have the same profile

or target rate (5 Mbps). Figure 5.3 shows how TCP and UDP flows behave with respect to

the bottleneck bandwidth (bb), which is varied from 1 to 5 Mbps. The X-axis shows the bb,

and the Y-axis shows the throughput achieved by both flows. Figure 5.3(a) shows that TCP

flow gets its share of 5 Mbps all the time because it does not go through the congested link.

When the bottleneck bandwidth is 1 Mbps, 4 Mbps bandwidth is wasted by UDP flows in

the absence of the flow control. If we use C3 framework, it controls the UDP flow rate, and

makes the extra bandwidth available for TCP flow. The Figure 5.3(b) shows that TCP flows

get more than 8 Mbps when bb is 1 Mbps. The C3 prevents the network from congestion

collapse due to undelivered packets. It can not achieve 100% link utilization, which can be

achieved with proper tuning of parameters described in C3 framework.

0

1

2

3

4

5

6

7

8

9

10

1 1.5 2 2.5 3 3.5 4 4.5 5

T
hr

ou
gh

pu
t (

M
bp

s)

Bottleneck (E4->n4) Bandwidth in Mbps

TCP
UDP
Total

(a) No Flow Control

0

1

2

3

4

5

6

7

8

9

10

1 1.5 2 2.5 3 3.5 4 4.5 5

T
hr

ou
gh

pu
t (

M
bp

s)

Bottleneck (E4->n4) Bandwidth in Mbps

TCP
UDP
Total

(b) With Flow Control

Fig. 5.3. (a) Without flow control, TCP gets only 5 Mbps when bottleneck
bandwidth is 1 Mbps. (b) With Flow control, TCP gets 8 Mbps. Both flows
have the same profile.

To show how effectively flow control scheme works, both TCP and UDP flows are

assigned the same profile and the sending rate of UDP flows is varied. We define a rate

fraction, Rf = SendingRate
Profile

. For example, Rf = 0.5 means that the flow is sending at a rate

50% of its own profile, andRf = 4 means the flow is sending at a rate four times of its

128

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4

T
hr

ou
gh

pu
t (

M
bp

s)

Rate Fraction

TCP
UDP
Total

(a) No Flow Control

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4

T
hr

ou
gh

pu
t (

M
bp

s)

Rate Fraction

TCP
UDP
Total

(b) With Flow Control

Fig. 5.4. UDP sending rate is varied using rate fraction, Rf . UDP sends as
high as 20 Mbps (Rf=4), bottleneck (E4 → n4) bandwidth is 1 Mbps.

own profile. In Figure 5.4, the X-axis shows the rate fraction,Rf , of UDP and the Y-axis

shows the bandwidth achieved by both flows. When UDP’s sending rate is zero, TCP gets

the whole 10 Mbps. If sending rate of UDP is very low and no packet is dropped, there is

no shaping (shaping drop is zero) at the edge. Figure 5.4(a) shows that when the sending

rate is high enough to drop packet at the bottleneck link (bb= 1 Mbps), there is a congestion

collapse in the network. TCP gets only 5 Mbps, and the total is 6 Mbps. With C3, Figure

5.4(b), the high sending rate of UDP does not affect the TCP flow to get extra bandwidth.

The sending rate of UDP is increased as high as 4 times of its profile. The profile is5 Mbps,

i.e. UDP is sending at a rate of 20 Mbps, and still there is no congestion collapse with the

C3 framework.

Figure 5.5 shows the cumulative packets received successfully at the destination side.

It shows that the curve is linear, which means the receiver gets packets at a constant rate.

There is no large number of drop in the middle of the network, which may affect the

application performance. The application level quality of UDP flows will deteriorate if

there is a sharp drop of huge number of packets in the middle of a network.

We use a similar algorithm as TCP’s congestion control to adjust the rate of unrespon-

sive flows. When there is a drop, the profile of a flow is adjusted temporarily and shaping

is done based on the current average rate of a flow, number of active flows, and the ad-

justed profile. In the absence of any drop, the profile of the flow is increased periodically

129

0

1

2

3

4

5

6

7

0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

Time (Sec)

TCP
UDP

Fig. 5.5. Cumulative receiving rate at the destination. There is no sharp drop
during transmission.

by adding a constant. The constant value is doubled (exponential increase) in each time

interval until it hits a threshold, provided that there is no drop event (does not get any drop

feedback from any core or edge routers). Then, the adjusted profile is increased linearly.

In Figure 5.6, the CBR is sending at a rate that is three times of its profile,Rf = 3. The

packet drop rate is increased and decreased based on traffic changes (shaping information

propagates with time and the rate is controlled accordingly). The TCP flow has only initial

drop, and then it does not see much drop. There is no drop with the background traffic

because it does not see any bottleneck on its way. It takes a short period of time at the

beginning to make the drop rate stable.

5.4.4 Effect of RTT and Multiple Flows

We analyze the robustness of the flow control algorithm. We use aggregate TCP flows

from n1 to n3, UDP flows from n2 to n4, TCP as well as UDP flow are used as background

traffic from noden5 to n6 of Figure 5.2(a). The RTT is varied by changing the link delay.

The link delay for the path of TCP is kept fixed while it is varied for both CBR and back-

ground traffics. First, we keep the number of flows fixed to 10 micro flows per aggregate

flow, and later we fix the RTT and vary the flows from 5-200.

130

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

D
ro

ps
/S

ec

Time (Sec)

TCP
3x CBR

background CBR

Fig. 5.6. Drop rate of packets for different flows. The TCP flows have very
packets for a short period of time because they adjust the sending rate ac-
cording to the network traffic. On the other hand CBR flows with three times
sending rate have very high drop rates. The drop rate changes with time, and
follow a saw-tooth like fashion. The background CBR does not have drops
because it does not experience congestion.

Figure 5.7 (a) and (b) show the throughput achieved by TCP and CBR flows for varying

RTT and varying the number of flows respectively. Background traffic is not shown in the

figure. The flow control algorithm works nicely for different RTTs. The throughput does

not change significantly with RTT. Figure 5.7(b) is more interesting because the bandwidth

achievement of TCP flows changes with the number of active flows. When there is a large

number of flows, TCP gets a good share even without having any flow control. It is because

when many flows are present in a system, some flows starve and go for long time-out where

as others still can get service. High volume of traffic makes it possible to increase the

overall gain by the TCP flows. One interesting point we observed is that, the flow control

algorithm needs a close approximation of active flows. If there are 200 active flows in the

system, the algorithm works fine even if the approximation is 100 but fails to gain good

performance if the approximation is 10. It is also true in the reverse manner, that is if

there are 10 flows in the system and if the approximation is 200 then the performance of

unresponsive flows deteriorate.

131

0

1

2

3

4

5

6

20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (M

bp
s)

RTT (ms)

TCP 1 (no control)
TCP 1 (w control)

3x CBR (no control)
3x CBR (w control)

(a) Effect of RTTs

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (M

bp
s)

Flows

TCP (no control)
TCP (w control)

3x CBR (no control)
3x CBR (w control)

(b) Changing number of Flow

Fig. 5.7. RTTs and number of micro-flows per aggregate flow is varied for both
TCP and UDP. Flow control works well with varying RTT and with changing
number of micro flows per aggregate flow.

5.4.5 Simulation with Cross Traffic

We use more complex topology with multiple domains and with cross traffic to test our

framework. The topology is shown in Figure 5.2(b). There are several aggregate flows

present in this case such as TCP flow between n1 → n8, UDP flow between n2 → n9,

n3 → n4, n5 → n6, and n7 → n10. We label the flows F1 between n1 → n8, F2

between n2 → n9 and Cr1, Cr2 and Cr3 flows between n3 → n4, n5 → n6, and

n7 → n10 respectively. These Crs are used as cross traffic. We set the start and the finish

time of these Crs flows differently to change the overall traffic situation over the path for

the flows F1 and F2. There are 10 micro flows per aggregate in this setup. Flows F1 and

F2 have same profile of target rate5 Mbps, and all cross traffic are sending at a rate of2

Mbps.

Figure 5.8 shows the bandwidth achievement of all aggregate flows mentioned above

with and without flow control. The cross traffic achieves the same target in both scheme.

This cross traffic does not suffer because the flows do not send more than their profile, and

they do not see any bottleneck on their way. If there is no flow control, F1 (TCP) can not

even get its target 5 Mbps, With flow control mechanism, F1 gets more than the target. It

is because after controlling the UDP flow, TCP gets some unused bandwidth.

132

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
(M

bp
s)

Time (Sec)

F1 (TCP)
F2 (UDP)

Cr1
Cr2
Cr3

(a) No Flow Control

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
 (M

bp
s)

Time (Sec)

F1 (TCP)
F2 (UDP)

Cr1
Cr2
Cr3

(b) With Flow Control

Fig. 5.8. Dynamic adjustment of F2 flow works fine in presence of cross traffic.
TCP flow (F1) gets more bandwidth with flow control scheme.

5.5 Tomography-based Congestion Control (TCC)

In this framework, we use network tomography to detect congestion and control unre-

sponsive flows. This framework is completely edge-to-edge and does not involve the core

routers to achieve scalability. We briefly describe the loss inference mechanism that is used

to detect congestion.

5.5.1 Network Tomography and Loss Inference

Network tomography uses correlations among end-to-end measurements to infer per-

link characteristics. For example, Duffieldet al. [29] use unicast packet “stripes” (back-

to-back probe packets) to infer a link loss by computing the correlation of a packet loss

within a stripe at different destinations. This scheme sends a series of probe packets, called

a stripe, with no delay among the transmissions of successive (usually three) packets. For

a two-leaf binary tree spanning nodes 0, k, R1, R2, as shown in Figure 5.9. The loss ratio

of the link k → R1, for instance, can be estimated by sending stripes from the root 0 to

the leaves R1 and R2. The first packet of a 3-packet stripe is sent toR1, while the last two

are sent to R2. If a packet reaches to any receiver, we can infer that the packet must have

reached the branching point k. Further, if R2 gets the last two packets of a stripe, it is likely

that R1 receives the first packet of that stripe. The packet loss probability is calculated

133

based on whether all packets sent to R1 and R2 reach their destination. Similarly, the loss

ratio of the link k → R2 is inferred using a complementary stripe, in which the first packet

is sent to R2 and the last two are sent to R1. The loss ratio of the common path from 0 → k

from the transmission probability as shown below:

Ak =
ZR1

ZR2

ZR1∪R2

, (5.6)

where Z represents the empirical mean of a binary variable which takes 1 when all packets

sent to R1 reach their destination and 0 otherwise. The mean is taken over n identical

stripes. By combining estimates of stripes down each such tree, the characteristics of the

common path from 0 → k is estimated.

0

k

R R21

Fig. 5.9. Binary tree to infer loss of each link. The probes are sent from the
sender 0 to both receivers R1 and R2.

This inference technique extends to general trees. Consider an arbitrary tree where for

each node k, R(k) denotes the subset of leaves descended from k. Let Q(k) denote the set

of ordered pairs of nodes in R(k) descended from k. For each (R1, R2) ∈ Q(k), a stripe

should be sent from the root to the receivers R1 and R2.

5.5.2 Congestion Detection

Congestion detection depends on delay and loss measurements. Delay is the end-to-end

latency; packet loss ratio is defined as the ratio of number of dropped packets from a flow

134

to the total number of packets of the same flow entered the domain. We first describe delay

measurements and loss measurements before discussing the detection algorithm.

Delay Measurements

The unresponsive flows are sampled (using transport layer protocol information) at all

ingress routers. The header of a sampled packet is used to probe the path of an unresponsive

flow. The probe and user traffic follow the same path with a high probability, because the

route does not get changed often inside a network domain. This measurement is a close

approximation of the delay value that is experienced by the sampled flows in the network

domain. This process is similar as it is described in Chapter 2. The main difference is that

here only unresponsive flows are sampled.

For delay probing, the ingress routers encode the current timestamp tingress into the

payload, and mark the protocol field of the IP header with a new value. An egress router

recognizes such packets, and removes them from the network. Additionally, the egress

router computes the edge-to-edge link delay for a packet from the difference between its

own time and tingress. We ignore minor drifts of the clocks since all routers are in one

administrative domain, and can be synchronized fairly accurately. The egress classifies the

probe packet as belonging to flow i, and update the average packet delay, avg delayi, for

delay sample delayi(t) at time t using an exponential weighted moving average (EWMA):

avg delayi(t) = α× avg delayi(t− 1) + (1 − α) × delayi(t), (5.7)

where α is a small fraction 0 ≤ α ≤ 1 to emphasize recent history rather than the current

sample alone.

If the average packet delay of path k exceeds the delay guarantee of the path for flow

i, it is an indication of congestion. If the network is properly provisioned and flows do not

misbehave, there should not be any delay greater than the estimated path delay for any flow

i. A flow may experience high delay due to some other flows that cause congestion in the

network.

135

Loss Measurements

If the edge-to-edge link delay is higher than a predefined threshold, we use the loss

inference mechanism described in previous subsection (using equation 5.6) to measure loss

in links that experience high delay. The objective of loss measurements is to obtain loss

ratio of each individual links. The links with high losses are identified, and the loss value

is used to control the congestion.

The delay probing identifies the paths that need to be considered for loss measurements.

Each loss probing needs one sender and two receiver nodes. The incidence of high delay

and the edge-to-edge paths that have high delay are reported to a congestion controller that

sits at any edge router. The controller collects a set of paths P for the loss probing. The

set P and the topology are used to determine the root of the probing tree for stripe-based

probing. Probes are sent from the root to all ordered pair of edge routers. The root is

selected such a way that it can cover maximum number of links in the set P . If some links

in the path set P are not covered, we need to repeat the loss measurements from another

edge router considering as a root of the tree.

Detection

The links with high losses and egress routers through which flows are exiting the do-

main are identified. At these egress routers, all flows that are consuming high bandwidth

are isolated. These rates are sent to the ingress routers through which the flows enter into

the domain. The ingress routers compare the rate at which the suspected flows are entering

and leaving the network domain. This identifies the flows that are not cooperating with the

network to control their rates in response to congestion.

The rate of unresponsive flows can be reported per flow basis or in aggregate. If the

number of flows to be reported exceeds a threshold, the feedback is done on an aggregate

basis for each ingress router. This aggregation is done based on the traffic class. For

each traffic class the unresponsive flows with high bandwidths are reported to the ingress

routers. The identity of the ingress routers are obtained from the delay probes, where an

identification code is used to relate a flow and its entry point. Otherwise, the egress does not

know through which ingress routers the flows are entering into the domain. The detection

algorithm runs as follows:

136

1. Each ingress router samples the user traffic for delay probing. The egress routers

report the incidence of high delay and the edge-to-edge path that has high delay to a

congestion controller.

2. The controller generates a probing tree using the set of path P that has high delay.

The root of the tree is the sender of the loss probing. These probes are sent to every

order pair of the edge routers of the domain. The loss probing obtains the loss ratio

of each individual link of the path in P .

3. Using the links with high loss ratio and the topology tree, a set of egress routers E are

obtained through which the unresponsive flows are leaving the domain. These flows

need to be controlled because they are causing congestion in the domain.

4. Flows are analyzed at each egress router of the set E . The flows that are having high

bandwidth are reported to the ingress routers through which flows are entering into

the domain.

5.5.3 Congestion Control

To control the unresponsive flows, the inferred loss ratio is used. As it is discussed

in detection mechanism, the loss ratio is sent to the ingress routers to control the flows.

For each flow that has high packet loss inside a domain, the router reduces the rate pro-

portionally to the packet drop rate inside the network. Suppose that a flow has an original

profile (target rate) of targetrate. In case of the packet drop ratio lossratio, the profile

of the flow is updated temporarily (to yield the rate newprofile) using newprofile =

targetrate× lossratio.

The congestion control algorithm adjusts the rate of the flows (that are causing drops

to other flows) such a way that the loss ratio inside a network domain converges to a low

predefined threshold LLOSSTHR. If the loss ratio decreases with time due to the current

control setup, the control parameters are not changed until the loss ratio converges to a

value. If the converged loss value is higher than the LLOSSTHR, the rate is controlled

based on the loss ratio. If the loss ratio stays below LLOSSTHR for a while, the control

algorithm allows more traffic to enter into the domain. The rate is increased linearly until it

crosses the LLOSSTHR. In this way, the loss oscillates towards the LLOSSTHR parameter.

The control algorithm runs as follows:

137

1. If the loss ratio jumps to a high value, the control algorithm decreases the incoming

rate of the unresponsive flows. This control decreases the loss ratio exponentially

with time. If the loss decreases with time, the control algorithm does not change

the rate control (RC) parameter. We refer to this decreasing loss ratio direction as

DOWNWARD direction.

2. When the loss ratio converges to a value higher than the LLOSSTHR, the algorithm

decreases the rate again based on current loss ratio. If the converged loss ratio is

below the LLOSSTHR for a specified time, the algorithm allows more traffic to enter

into the domain.

3. If the loss ratio curve goes UPWARD (opposite of DOWNWARD) direction, the rate

control is increased with the current loss ratio.

Therefore, the rate control algorithm conducts Additive Increase and Multiplicative

Decrease (AIMD). In presence of loss, the rate is control aggressively, and in absence

of loss the rate is increased linearly. Thus, the rate adjustment algorithm is similar to

TCP congestion control algorithm. At the edge router, shaping is done based on the RC

parameter. The value of the RC parameter varies from 0 → 1. To shape a flow, a random

number is generated. If the random number is less than RC, a packet from this flow is

dropped. Otherwise, the packet is admitted into the domain.

5.6 TCC: Experimental Study

5.6.1 Setup

Using the ns-2 [103] simulator, we evaluate the performance of our unresponsive flow

control scheme. To test our framework, we have used a topology shown in Figure 3.4.

The same topology is used in [29] to infer loss. We generate several TCP and UDP type

aggregate flows in the network. Each aggregate flow contains 10 to 100 micro flows. Cross

traffic is used to vary the background traffic by setting the start and the finish times of these

flows differently, in order to change the overall traffic situation over the paths of all flows.

The sending rate and the round trip time (RTT) of different flows are changed over time to

show the robustness of the control mechanism for a variety of flows.

138

C4

E1

E5

E6

C1

C3

E4

C5C2
E7

E2

Edge Router

Bottleneck linkShared link

E3

Core Router

Fig. 5.10. Simulation topology. Each edge router is connected with multiple
domains. C4 → E6 is the bottleneck link in the setup. Unresponsive flows
take their share from the shared link C3 → C4, and their packets are dropped
in the bottleneck link.

We conduct a series of experiments to show congestion collapse in the absence of flow

control mechanism, the effectiveness of the tomography-based inference of network pa-

rameters, and the unresponsive flow detection and control in a variety of scenarios.

5.6.2 Congestion Detection

The congestion is detected using edge-to-edge link delay and link loss ratio. If some

links are congested, the edge-to-edge delay through these links become very high. This

high delay is used as an indication of congestion. Figure 5.11 shows delay of the path

E1 → E6. The latency of this path is 100 ms when the links are idle. However, the delay

goes as high as one second due to the congestion. The figure also shows that with proper

congestion control the delay can be reduced to a desired level.

The congested links are identified using stripe based unicast probing. The probes are

sent to obtain loss ratio of the links that lie on the high delay path. In our experiment, we

send probes from E1 to all other edge routers to obtain the loss of the links on the path

E1 → E6. The inferred loss for the link C4 → E6 is shown in Figure 5.12. It shows

loss inference for the topology described above for 3-packet stripes. First experiment has

139

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25 30

D
el

ay
 (S

ec
)

Simulation Time (Sec)

with control
no control

Fig. 5.11. Delay pattern changes with excessive traffic. This high delay is an
indication that the edge-to-edge path is congested. The flow control mecha-
nism alleviates the congestion, and reduces the delay.

fewer number of flows to cause packet drops inside the network domain. Second and third

experiments have enough flows to cause huge packets drops in the network. The figure

shows loss inference is close to the actual loss in most of the cases. In few cases, it over-

estimates or under-estimates the loss. We can reduce this effect by increasing the time

interval to measure probe loss. 4-packet stripe has little advantage on 3-packet stripe in our

experiment.

Upon detection of the congested links, we identify the unresponsive flows at the egress

routers, and pass this information to the appropriate ingress routers to control them. The

inference mechanisms converge to real measurements value in 15-20 seconds. The detec-

tion mechanism is effective if the congestion continues for a while. If the congestion lasts

only a few seconds, we do not need to control that.

5.6.3 Congestion Control

The unresponsive flows are controlled using a shaper. The shaping algorithm drops

packets based on the service level agreement (SLA) parameters of the flow, the drop rate,

140

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

In
fe

rr
ed

 L
os

s

Actual Loss

Exp 1
Exp 2
Exp 3

y=x

Fig. 5.12. Inferring loss using unicast stripe-based probing. The actual loss is
close to the inferred loss.

and the sending rate of the flow. First, we show that in absence of congestion control there

might be a congestion collapse in a network domain. Second, we show the performance of

an adaptive congestion control algorithm. Third, the robustness of the algorithm is shown

with varying number of micro flows, where a micro flow is defined with five tuples (source

addr, source port, dest addr, dest port, and protocol).

Congestion Collapse. Congestion collapse due to undelivered packets wastes resources

in a network. In our experiments, TCP and UDP flows share the link C3 → C4. Then,

the UDP flows experience congestion at the link C4 → E6, which causes huge amount

of packet drops. As, these UDP flows take the equal share with TCP flows of the link

C3 → C4, the resources are wasted in the next link. If we know the packets will be

dropped any way at the link C4 → E6, it is better to drop them earlier at the ingress router

so that the TCP flows can get the wasted share of the link C3 → C4, which increases

the application level quality of the TCP flows. Figure 5.13 shows that without any flow

control, the TCP flows obtain less than 1.5 Mbps, whereas, with flow control mechanism

the bandwidth gain goes higher than 3 Mbps. The congestion window of a sampled TCP

flow is shown with or without flow control in Figure 5.14. Flow control helps to increase

the congestion window of the TCP flows.

141

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

B
an

dw
id

th
 (M

bp
s)

Simulation Time (Sec)

with control (TCP)
with control (UDP)

no control (TCP)
no control (UDP)

Fig. 5.13. Congestion collapse if there is no flow control. TCP gets the wasted
bandwidth by the UDP flows when flow control mechanism is used.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

T
C

P
C

on
ge

st
io

n
w

in
do

w

Simulation Time (Sec)

with control
no control

Fig. 5.14. Congestion window of a TCP flow with or without flow control. The
congestion window is reset to one several times if there is no flow control.

142

Adaptive Control. The adaptive control algorithm throttles the rate of unresponsive

flows during congestion so that the loss ratio converges to a low and predefined value. The

algorithm needs to infer loss periodically. An interval of 30 seconds is used to infer loss,

and high loss is informed to the appropriate flow controller. We run the experiment for 1200

seconds to evaluate the performance of the adaptive congestion control. Figure 5.15 shows

that this mechanism helps the TCP flows to obtain 2.5 - 3 Mbps bandwidth. The UDP flows

face more aggressive drops for a while, because the algorithm tries to determine the control

rate at which the unresponsive flows should be shaped.

Figure 5.16 shows the loss pattern during this congestion control. Initially, the loss

drops exponentially. When the loss ratio hits the lowest acceptable level at 600 seconds,

the control mechanism allows more traffic into the domain. In this way, the rate control

parameter is adjusted, and the loss ratio oscillates towards the LLOSSTHR value, which is

0.1 in our experiments.

0

0.5

1

1.5

2

2.5

3

3.5

4

200 400 600 800 1000 1200

B
an

dw
id

th
 (M

bp
s)

Simulation Time (Sec)

Adaptive control (TCP)
Adaptive control (UDP)

Fig. 5.15. Bandwidth gain by TCP and UDP flow with adaptive flow control.

Robustness. To show the robustness of the control algorithm, we vary the number

of micro flows per aggregate flows from 10 to 100. We sample the bandwidth of TCP

and UDP flows from 50 second to 60 second, and take the average to plot in Figure 5.17.

This figure shows that increasing number of flows does not hurt the performance of the

143

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

200 400 600 800 1000 1200

L
os

s
R

at
io

Simulation Time (Sec)

Adaptive control
No control

Fig. 5.16. Loss ratio with adaptive flow control. Initially the loss decays expo-
nentially, and the loss converges with time to a low value.

congestion control algorithm. Experiments are conducted with different network dynamics

that change the congestion dynamically to test the robustness of the control algorithm.

5.6.4 Overhead

The overhead of our scheme is low. If all links are OC3 type, on average each link

experiences probe traffic less than 0.015% of the link capacity in the network domain shown

in Figure 5.10. Our mechanism in non-intrusive, i.e., the injected traffic does not change

the characteristics of the network domain.

5.7 Summary

We have proposed and evaluated frameworks to detect and regulate unresponsive flows

to prevent congestion collapse due to undelivered packets. The C3 framework requires

little extension at the core, and does not introduce a lot of overhead. The changes at the

edges (ingress and egress) is not major. The implementation is simple and the deployment

will be easy. In our scheme, core/egress routers sends control packets only at the time of

144

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
 (M

bp
s)

Number of micro flows

TCP
UDP

Fig. 5.17. Bandwidth achieved by TCP and UDP flows with varying number
of micro flows.

congestion. For this reason, this scheme will not introduce a lot of control packets into the

network.

The TCC is a new and scalable way to detect and regulate unresponsive flows to prevent

congestion collapses due to undelivered packets. This scheme does not require any help

from the core routers and introduces a very low overhead. The changes require at the edges

(ingress and egress) are minor. The implementation is simple and the deployment should

be easy. As the probe sizes are not huge, consumption of user profile by this probing is

insignificant.

145

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, we provide the answer of the question “How can we protect a network

domain, and serve the users with their quality of service (QoS) requirements?” To solve

the problem, we need to perform the followings:

1. A monitor is required to ensure that no one is stealing bandwidth and/or inject-

ing packets through multiple ingress routers to create distributed denial of service

(DDoS) attacks. The monitor always observe a network domain for changes of its

internal characteristics. Flow control mechanism is used to recover from attacks.

2. All edge routers need traffic conditioner to ensure every user is following their speci-

fied service level agreements (SLAs). Traffic exceeds their SLAs needs to be policed

and shaped.

3. Unresponsive flows do not response to a congestion status, rather than, sends packets

at the same rate. This can lead to a congestion collapse in a network. We proposed

algorithms to detect and control unresponsive flows in a QoS network.

Our experimental results show that we can detect change of internal characteristics

of a network due to attacks that inject excessive packets in a network. The monitoring

mechanism is able to detect service violations and DoS attacks. The stripe-based scheme

probes the network on demand to reduce the total probe required for monitoring. The

overlay-based scheme reduces the overhead even more. Our analytic analysis (verified by

simulation) shows that even if 20% links of a network are congested, the status of each link

can be identified with probability≥ .98. If the network is 40% congested, this probability

is still high (.65). However, if the network is more than 60% congested, this method can

not achieve anything significant since almost every edge-to-edge path has one or more

congested links. This new tomography scheme requires only O(n) probes when less than

146

20% links are congested, where n is the number of edge routers. For an OC3 link, the

probe traffic is 0.002% of the link capacity. The distributed monitoring requiresO(n2) in

worst case in contrast to O(n3) probes required by the stripe-based monitoring to detect

attacks in both directions of all links. The distributed monitoring conducts probing in

parallel enabling the system to perform real time monitoring. The monitoring scheme has

less computation overhead than filtering or traceback mechanisms. However, monitoring

schemes inject probe in the networks and other schemes do not.

We improve the traffic conditioner that intelligently uses transport layer flow character-

istics to improve application level QoS. The conditioner achieves scalability avoiding using

excessive per-flow information. We minimizes RTT bias on a TCP flow so that long-RTT

flows do not suffer much while short-RTT flows steal all the available resources. The con-

ditioner is tested for data extensive traffic such as FTP and delay sensitive applications such

as Telnet and Web traffic.

We have shown mechanism to detect loss during congestion and use this information to

control unresponsive flows. The tomography based congestion control is the first scheme

that detects unresponsive flows using only edge-to-edge measurements. The flow control

improves the overall bandwidth achievement because the resources wasted by unresponsive

flows are saved and given to other flows.

6.2 Future Work

6.2.1 Network Provisioning

As an extension of this research, a network provisioning component will be integrated

with other components of the edge routers of a Differentiated Services (DiffServ) domain.

A service provider can maximize the profit by proper network provisioning. Provisioning is

an important issue for a QoS network domain. Without proper provisioning, it is impossible

to maintain the SLA bounds promised to each user. An admission control is necessary to

provide end-to-end quality of service (QoS) guarantees in term of maximum delay and loss

probability.

Guaranteed service [109] provides hard QoS bounds for IP networks. However, it re-

quires to store excessive flow information at the routers and does not scale well in the

Internet. The DiffServ [60] came along to address scalability by aggregating flows into

fixed number of classes. A DiffServ network provides guaranteed service EF and a group

147

of AF class traffic. The EF class traffic is similar as the guaranteed service provided by

Integrated Service architecture [3]. The EF traffic needs a requirement that the sum of in-

coming EF traffic must not exceed the reserved rate of the output link capacity. It is shown

that keeping sum of peak input rates less than the output capacity does not ensure low delay

or jitter when traffic are combined inside a network domain. Again, no loss requirement in-

creases the delay to unacceptable even for few hops. An admission control based on worst

case analysis to provide hard delay and loss bound keeps the utilization of a network very

low. This is because the worst case analysis uses maximum delay, which is usually far away

from delay distribution [110]. To obtain a more realistic resource utilization efficiency, the

zero loss requirements need to be eliminated. In our model, we assume non-zero loss for

EF class with very low end-to-end loss probability. The statistical bound of EF traffic im-

proves the resource utilization significantly [111, 112] without hurting the objective of the

traffic class.

The AF model is not well studied yet. A simple performance model of AF is studied by

May et al. in [62]. We will follow same way to derive our model. This model will lead us

to delay and loss bound of AF traffic. These bounds are necessary in profit maximization

formulation as constraints.

A conceptual framework for Service Level Management is discussed in [113] and

used software development paradigm. Internet pricing and provisioning are discussed

in [114, 115]. Semret et al. [115] discuss about Internet provisioning using the game theo-

retic model. This discussion is mainly about optimizing the capacity of provider resources

and the demands of the user for the raw-capacity of the network. End to end network pro-

visioning requires signaling mechanism to make reservation in all domains from source to

destination. The commonly used protocol for this purpose is COPS [116]. AT&T and IBM

work on the policy based networking for automation of network provisioning [117]. Other

tools for automation of dynamic service provisioning and network configuration are dis-

cussed in [118,119]. Our research task is to formulate profit maximization using admission

rate of traffic of different classes and assigning weights to queues at each internal router. If

necessary, we divert traffic inside the network domain for better link and router utilization

having the constraint of the users QoS parameters, delay, jitter, loss requirements. Recent

work of Liu et al. [120] distribute user request to different web server to maximize profit.

We want to use similar approach in router level. To model the incoming traffic to each

148

edge and core router and to provide statistical bounds of QoS parameters are challenging

research tasks.

We aim to design different components of an edge router with the flow control mecha-

nism where each part is scalable. In future, we plan to

• Derive statistical model for delay and loss bounds of AF class traffic. Validate all

models for realistic network and traffic models.

• Formulate SLA profit maximization and simulate with multiple domains networks to

evaluate the performance.

6.2.2 Monitoring Overlay and Sensor Networks

It is important to maintain the overlay network working properly. The monitoring

scheme detects failure of the peers, and provides this information to the agents that are

involved in collective and opportunistic information aggregation. We propose a low over-

head and scalable monitoring scheme for overlay networks. The research problem we plan

to address in this area is to design a low overhead and scalable monitoring scheme for an

overlay network. Monitoring a large scale overlay network poses several challenges. First,

the topology of the network changes with time because peers join and leave the system of-

ten in a dynamic peer-to-peer (P2P) networks. Second, the number of peers are extremely

high in a P2P network in contrast to the number of edge routers of a network domain. Thus,

the overlay-based network monitoring might not be efficient to monitor an overlay network.

Monitoring wireless sensor networks is different from monitoring wired networks. Our

monitoring schemes are not directly applicable to the wireless sensor networks. Recent

works propose several techniques to monitor the health of sensors. Residual energy scan-

ning [121], aggregates computation [122], and distributed monitor [123] are some of them.

We plan is to devise a new monitoring mechanism that is energy efficient. The concept of

parameter inference will be explored to obtain the status of a sensor. The status will be sent

to the data center only when it is necessary.

LIST OF REFERENCES

149

LIST OF REFERENCES

[1] “Internet engineering task force, http://www.ietf.org.”

[2] X. Xiao and L. Ni, “Internet QoS: A big picture,” IEEE Network, vol. 13, 2, pp. 8–19,
Mar./Apr. 1999.

[3] R. Braden, D. Clark, and S. Shenker, “Integrated services in the Internet architecture:
An overview.” RFC 1633.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation
Protocol (RSVP).” RFC 2205, Sept. 1997.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture
for Differentiated Services.” RFC 2475, Dec. 1998.

[6] K. Nichols, V. Jacobson, and L. Zhang, “A two-bit differentiated services architec-
ture for the Internet.” RFC 2638, July 1999.

[7] R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow, and A. Viswanathan, “A
framework for multiprotocol label switching.” Internet draft, Nov. 1997.

[8] I. Stoica and H. Zhang, “Providing guaranteed services without per flow manage-
ment,” tech. rep., CMU-CS-99-133, May 1999.

[9] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden, B. Davie,
J. Wroclawski., and E. Felstaine, “Interoperation of RSVP/Intserv and Diffserv net-
works.” Internet draft, draft-ietf-issll-diffserv-rsvp-01.txt, 1999.

[10] D. Awduche, J. Malcolm, M. J. Agogbua, M. O Dell, and J. McMaus, “Requirements
for traffic engineering over MPLS.” Internet draft, draft-ietf-mpls-traffic-eng.00.txt,
Oct. 1998.

[11] P. Vaananen and R. Ravikanth, “Framework for traffic management in MPLS net-
works.” Internet draft, draft-vaananen-mpls-tm-framework-00.txt, Mar. 1998.

[12] R. J. Gibbens, S. K. Sargood, F. P. Kelly, M. Azmoodeh, R. Macfadyen, and N. Mac-
fadyen, “An approach to service level agreements for IP networks with differentiated
services.”

[13] Y. Bernet, S. Blake, D. Grossman, and A. Smith, “An informal management model
for diffserv routers.” Internet Engineering Task Force Draft, July 2000.

[14] R. Yavatkar, D. Pendarakis, and R. Guerin, “A framework for policy-based admis-
sion control.” RFC 2753, Jan. 2000.

150

[15] I. Yeom and N. Reddy, “Marking for QoS improvement,” tech. rep., Texas A & M
University College Station, Dept. of Elec. Engg., TX 77843-3128, 1999.

[16] I. Yeom and N. Reddy, “Impact of marking strategy on aggregated flows in a Differ-
entiated Services network,” in Proc. IEEE/IFIP Eighth International Workshop on
Quality of Service (IWQoS), (London, United Kingdom), May 1999.

[17] V. Jacobson, K. Nichols, and K. Poduri, “An Expedited Forwarding PHB.” RFC
2598, June 1999.

[18] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forwarding PHB
Group.” RFC 2597, June 1999.

[19] J. Ibanez and K. Nichols, “Preliminary simulation evaluation of an Assured Service.”
Internet draft, draft-ibanez-diffserv-assured-eval-00.txt, Aug. 1998.

[20] O. Elloumi, S. de Cnodder, and K. Pauwels, “Usefulness of three drop precedences
in Assured Forwarding service.” Internet draft, draft-elloumi.diffserv-threevstwo-
00.txt, 1999.

[21] M. Goyal, P. Misra, and R. Jain, “Effect of number of drop precedences in assured
forwarding,” in Proc. Globecom ’99, (Rio de Janeiro, Brazil), Dec. 1999.

[22] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the differentiated service
field (DS field) in the IPv4 and IPv6 headers.” RFC 2474, Dec. 1998.

[23] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoid-
ance,” IEEE/ACM Transactions on Networking, vol. 1, pp. 397–413, Aug. 1993.

[24] W. Feng, D. Kandlur, D. Saha, and K. Shin, “BLUE: A new class of active queue
management algorithms,” tech. rep., U. of Michigan CSE-TR-387-99, Apr. 1999.

[25] T. Ott, T. Lakshman, and L. Wong, “SRED: Stabilized RED,” in Proc. IEEE INFO-
COM, (New York, New York), Mar. 1999.

[26] Z. Cao, Z. Wang, and E. Uegura, “Rainbow fair queueing: Fair bandwidth sharing
without per-flow state,” in Proc. IEEE INFOCOM, (Tel-Aviv, Israel), Mar. 2000.

[27] D. Clark and W. Fang, “Explicit allocation of best effort packet delivery service,”
IEEE/ACM Transactions on Networking, vol. 6, 4, pp. 362–374, 1998.

[28] M. Thottan and K. Swanson, “Sequin: Scalable edge-based qos for intra-domain
networks.” http://www.bell-labs.com/org/1134/, 2001.

[29] N. G. Duffield, F. L. Presti, V. Paxson, and D. Towsley, “Inferring link loss using
striped unicast probes,” in Proc. IEEE INFOCOM, (Anchorage, Alaska), Apr. 2001.

[30] Y. Vardi, “Network tomography: Estimating source-destination traffic intensities
from link data,” Journal of the American Statistical Association, vol. 91, pp. 365–
377, Mar. 1996.

[31] M. Coates and R. Nowak, “Network tomography for internal delay estimation,” in
Proc. IEEE International Conference on Acoustics, Speech and Signal Processing,
(Salt Lake City, Utah), May 2001.

151

[32] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Ja-
cobson, G. Minshall, C. Partridge, L. Peterson, K. K. Ramakrishnan, S. Shenker, and
J. Wroclawski, “Recommendations on queue management and congestion avoidance
in the Internet.” RFC 2309, Apr. 1998.

[33] H. Wu, K. Long, S. Cheng, and J. Ma., “A Direct Congestion Control Scheme for
Non-responsive Flow Control in Diff-Serv IP Networks.” Internet draft, draft-wuht-
diffserv-dccs-00.txt, Aug. 2000.

[34] IEPM, “Internet End-to-end Performance Monitoring.” http://www-
iepm.slac.stanford.edu/, 2002.

[35] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple Network Management
Protocol (SNMP).” IETF RFC 1157, May 1990.

[36] Waldbusser, S., “Remote network monitoring management information base.” IETF
RFC 2819, May 2000.

[37] Cisco, “Netflow services and applications.” http://www.cisco.com/, 2002 May 2000.

[38] E. Al-Shaer, H. Abdel-Wahab, and K. Maly, “HiFi: a new monitoring architecture
for distributed systems management,” in Proc. IEEE 19th International Conference
on Distributed Computing Systems (ICDCS ’99), (Austin, Taxas), pp. 171–178, May
1999.

[39] R. Subramanyan, J. Miguel-Alonso, and J. A. B. Fortes, “A scalable SNMP-based
distributed monitoring system for heterogeneous network computing,” in Proc. High
Performance Networking and Computing Conference (SC 2000), (Dallas, Texas),
2000.

[40] A. Liotta, G. Pavlou, and G. Knight, “Exploiting agent mobility for large-scale net-
work monitoring,” IEEE Network, vol. May/June, 2002.

[41] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, J. Ioannidis, M. Greenwald, and
J. M. Smith, “Efficient packet monitoring for network management,” in Proc. IEEE
Network Operations and Management Symposium (NOMS), (Florence, Italy), Apr.
2002.

[42] V. Paxson, Measurement and Analysis of End-to-End Internet Dynamics. PhD thesis,
University of California, Berkeley, Computer Science Division, 1997.

[43] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis, “Framework for IP performance
metrics.” IETF RFC 2330, May 1998.

[44] Y. Breitbart, C. Y. Chan, M. Garofalakis, R. Rastogi, and A. Silberschatz, “Effi-
ciently monitoring bandwidth and latency in IP networks,” in Proc. IEEE INFO-
COM, (Anchorage, Alaska), Apr. 2001.

[45] M. Dilman and D. Raz, “Efficient reactive monitoring,” in Proc. IEEE INFOCOM,
(Anchorage, Alaska), Apr. 2001.

[46] J. Jiao, S. Naqvi, D. Raz, and B. Sugla, “Toward efficient monitoring,” IEEE Journal
on Selected Areas in Communications, vol. 18(5), May 2000.

152

[47] M. C. Chan, Y.-J. Lin, and X. Wang, “A scalable monitoring approach for service
level agreements validation,” in Proc. International Conference on Network Proto-
cols (ICNP), (Osaka, Japan), pp. 37–48, Nov. 2000.

[48] A. Adams, T. Bu, R. Caceres, N. Duffield, T. Friedman, J. Horowitz, F. L. Presti,
S. B. Moon, V. Paxson, and D. Towsley, “The use of end-to-end multicast measure-
ments for characterizing internal network behavior,” IEEE Communications, vol. 38,
no. 5, May 2000.

[49] T. Bu, N. Duffield, F. L. Presti, and D. Towsley, “Network tomography on general
topologies,” in Proc. ACM SIGMETRICS, (Marina del Rey, California), June 2002.

[50] R. Cáceres, N. G. Duffield, J. Horowitz, and D. Towsley, “Multicast-based inference
of network-internal loss characteristics,” IEEE Transactions on Information Theory,
vol. 45, pp. 2462–2480, Nov. 1999.

[51] G. Spafford and S. Garfinkel, Practical Unix and Internet Security. O’Reilly &
Associates, Inc, second ed., 1996.

[52] F. Zhi, S. W. Felix, T. S. Wu, H. Huang, and F. Gong, “Security issues for differen-
tiated service framework.” Internet Engineering Task Force Draft, Oct. 1999.

[53] W. Stallings, “SNMPv3: A Security enhancement for SNMP,” IEEE Communica-
tions Surveys , Vol.1 No. 1, 1998.

[54] G. Sager, “Security fun with OCxmon and cflowd.” Intenet2 working group meeting,
Nov. 98.

[55] R. Stone, “Centertrack: An IP overlay network for tracking DoS floods,” in Proc.
USENIX Security Symposium, (Denver, Colorado), Aug. 2000.

[56] S. Seshan, M. Stemm, and K. R. H., “Spand: Shared passive network performance
discovery,” in Proc. USENIX Symposium on Internet Technologies and Systems
(USITS ’97), Dec. 1997.

[57] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoff-
man, J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan, “Detour: a case for informed
Internet routing and transport,” IEEE Micro, v 19, no 1, Jan. 1999.

[58] D. Anderson, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient overlay
network,” in Proc. ACM Symp on Operating Systems Principles (SOSP), (Banff,
Canada), Oct. 2001.

[59] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct traffic observa-
tion,” IEEE/ACM Transactions on Networking, vol. 9, pp. 280–292, June 2001.

[60] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture
for differentiated services.” RFC 2475, Dec. 1998.

[61] P. Ferguson and D. Senie, “Network ingress filtering: Defeating denial of service
attacks which employ IP source address spoofing agreements performance monitor-
ing.” IETF RFC 2827, May 2000.

[62] M. May, J. Bolot, A. Jean-Marie, and C. Diot, “Simple performance models of dif-
ferentaited services schemes for the Internet,” in Proc. IEEE INFOCOM, (New York,
New York), Mar. 1999.

153

[63] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion control in the
Internet,” IEEE/ACM Transactions on Networking, vol. 7, no. 4, pp. 458–472, Aug.
1999.

[64] K. G. Anagnostakis, M. B. Greenwald, and R. S. Ryger, “On the sensitivity of net-
work simulation to topology,” in Proc. of the 10th IEEE/ACM Symposium on Model-
ing, Analysis, and Simulation of Computer and Telecommunications Systems (MAS-
COTS 2002), Oct. 2002.

[65] Y. Zhang, N. G. Duffield, V. Paxson, and S. Shenker, “On the constancy of Internet
path properties,” in Proc. ACM SIGCOMM Internet Measurement Workshop, Nov.
2001.

[66] S. Savage, “Sting: a TCP-based network measurement tool,” in Proc. USENIX Sym-
posium on Internet Technologies and Systems (USITS ’99), (Boulder, Colorado),
Oct. 1999.

[67] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies with rocket-
fuel,” in Proc. ACM SIGCOMM, (Pittsburgh, Philadelphia), Aug. 2002.

[68] M. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker, “Con-
trolling high bandwidth aggregates in the network,” ACM Computer Communication
Review, vol. 32, no. 3, pp. 62–73, July 2002.

[69] J. Jung, B. Krishnamurthy, and D. Rabinovich M., “Flash crowds and denial of ser-
vice attacks: Characterization and implications for cdns and web sites,” in Proc.
World Wide Web (WWW), (Honolulu, Hawaii), May 2002.

[70] D. Moore, G. M. Voelker, and S. Savage, “Inferring Internet denial-of-service activ-
ity,” in Proc. USENIX Security Symposium, (Washington D.C), Aug. 2001.

[71] L. Garber, “Denial of Service attacks rip the Internet,” IEEE Computer , vol. 33,4,
pp. 12–17, Apr. 2000.

[72] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Network support for IP trace-
back,” IEEE/ACM Transaction on Networking, vol. 9:(3), pp. 226–237, June 2001.

[73] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram, and D. Zam-
boni, “Analysis of a denial of service attack on tcp,” in Proc. IEEE Symposium on
Security and Privacy, (Oakland, California), May 1997.

[74] C. Barros, “A proposal for ICMP traceback messages.” Internet draft,
http://www.research.att.com/lists/ietf-itrace/2000/09/msg00044.html, Sept. 18,
2000.

[75] V. Paxson, “An analysis of using reflectors for distributed denial-of-service attacks,”
ACM Computer Communication Review, vol. 31 (3), July 2001.

[76] S. M. Bellovin, “ICMP traceback messages.” Internet draft, draft-bellovin-itrace-
00.txt, Mar. 2000.

[77] A. Snoeren, C. Partridge, L. Sanchez, W. Strayer, C. Jones, and F. Tchakountio,
“Hashed-based IP traceback,” in Proc. ACM SIGCOMM, (San Diego, California),
Aug. 2001.

154

[78] H. Burch and H. Cheswick, “Tracing anonymous packets to their approximate
source,” in Proc. USENIX LISA, (New Orleans, Lousiana), pp. 319–327, Dec. 2000.

[79] K. Park and H. Lee, “On the effectiveness of probabilistic packet marking for IP
traceback under Denial of Service attack,” in Proc. IEEE INFOCOM, (Anchorage,
Alaska), Apr. 2001.

[80] S. Institute, “Egress filtering v 0.2.” http://www.sans.org/y2k/egress.htm, Feb. 2000.

[81] K. Park and H. Lee, “A proactive approach to distributed DoS attack prevention using
route-based packet filtering,” in Proc. ACM SIGCOMM, (San Diego, California),
Aug. 2001.

[82] V. Paxson, “End-to-end Internet packet dynamics,” in Proc. SIGCOMM ’97,
(Cannes, France), 1997.

[83] B. Nandy, N. Seddigh, P. Pieda, and J. Ethridge, “Intelligent Traffic Conditioners for
Assured Forwarding based Differentiated Services networks,” in Proc. IFIP High
Performance Networking (HPN), (Paris, France), June 2000.

[84] N. Seddigh, B. Nandy, and P. Pieda, “Bandwidth assurance issues for TCP flows in
a Differentiated Services network,” in Proc. Globecom 99, (Rio de Janeiro, Brazil),
Dec. 1999.

[85] W. Lin, R. Zheng, and J. Hou, “How to make Assured Services more assured,” in
Proc. International Conference of Network Protocols (ICNP), Oct. 1999.

[86] J. Heinanen and R. Guerin, “A single rate Three Color Marker.” RFC 2697, Sept.
1999.

[87] J. Heinanen, T. Finland, and R. Guerin, “A two rate Three Color Marker.” RFC2698,
Sept. 1999.

[88] O. Bonaventure and S. de Cnodder, “A rate adaptive shaper for Differentiated Ser-
vices.” Internet draft, draft-bonaventure-diffserv-rashaper-00.txt, 1999.

[89] W. Fang, N. Seddigh, and B. Nandy, “A Time Sliding Window Three Colour
Marker.” RFC 2859, June 2000.

[90] I. Yeom and N. Reddy, “Realizing throughput guarantees in a Differentiated Services
network,” in Proc. IEEE Int. Conf. on Multimedia Comp. and Systems, June 1999.

[91] A. Feroz, S. Kalyanaraman, and A. Rao, “A TCP-Friendly traffic marker for IP Dif-
ferentiated Services,” in Proc. IEEE/IFIP Eighth International Workshop on Quality
of Service (IWQoS), (Pittsburgh, Philadelphia), June 2000.

[92] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of the
TCP congestion aviodance algorithm,” ACM SIGCOMM Computer Communication
Review, vol. 27, 3, pp. 67–82, 1997.

[93] I. Andrikopoulos, L. Wood, and G. Pavlo, “A fair traffic conditioner for the Assured
Service in a Differentiated Services Internet,” in Proc. IEEE International Confer-
ence on Communications - ICC’99, June 1999.

[94] H. Kim, “A fair marker.” Internet draft, Apr. 1999.

155

[95] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Understanding and improving TCP
performance over networks with minimum rate guarantees,” IEEE Transactions on
Networking, vol. 7, 2, pp. 173–186, 1999.

[96] V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIGCOMM, (Palo
Alto, California), pp. 158–173, Aug. 1988.

[97] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledge-
ment options.” RFC 2018, Oct. 1996.

[98] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno, and SACK
TCP,” ACM Computer Communication Review, vol. 26, 3, pp. 5–21, 1996.

[99] K. Ramakrishnan and S. Floyd, “A proposal to add Explicit Congestion Notification
(ECN) to IP.” RFC2481, Jan. 1999.

[100] S. Floyd and K. K. Ramakrishnan, “TCP with ECN: The Treatment of Retransmitted
Data Packets .” Internet draft, draft-floyd-tcp-ecn-00.txt, Oct. 2000.

[101] S. Fahmy, New TCP standards and flavors, High Performance TCP/IP networking,
ch. 13. Prentice Hall, Inc., 2001.

[102] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: A sim-
ple model and its empirical validation,” in Proc. ACM SIGCOMM ’98, (Vancouver,
Canada), Sept. 1998.

[103] S. McCanne and S. Floyd, “Network simulator ns-2.” http://www.isi.edu/nsnam/ns/,
1997.

[104] F. Shallwani, J. Ethridge, P. Pieda, and M. Baines, “Diff-Serv implementation for
ns.” http://www7.nortel.com:8080/CTL/#software, 2000.

[105] A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger, “Dynamics of IP traffic: A
study of the role of variability and the impact of control,” in Proc. ACM SIGCOMM,
(Cambrdige, Massachusetts), pp. 301–313, 1999.

[106] C. Albuquerque, B. Vickers, and T. Suda, “Network Border Patrol,” in Proc. IEEE
INFOCOM, (Tel-Aviv, Israel), Mar. 2000.

[107] N. Seddigh, B. Nandy, and P. Pieda, “Study of TCP and UDP interaction for the AF
PHB.” Internet draft, 1999.

[108] H. Chow and L.-G. A., “A feedback control extension to differentiated services.”
Internet draft, draft-chow-diffserv-fbctrl-00.pdf, Mar. 1999.

[109] S. Shenker, C. Partridge, and R. Guerin, “Specification of guaranteed quality of
service.” RFC 2212, Sept. 1997.

[110] M. Listanti, F. Ricciato, S. Salsano, and L. Veltri, “Multistage deterministic worst
case analysis,” in Proc. MQOS Workshop, Jan. 2000.

[111] M. Listanti, F. Ricciato, and S. Salsano, “Delivering statistical QoS guarantees using
expedited forwarding PHB in a differentiated services network,” in Proc. MQOS
Workshop, Jan. 2000.

156

[112] T. Bonald, A. Proutiére, and J. W. Roberts, “Statistical performance guarantees for
streaming flows using expedited forwarding,” in Proc. IEEE INFOCOM, (Anchor-
age, Alaska), Apr. 2001.

[113] L. Lewis, “Service level management for enterprise networks.” Artech House, 1999.

[114] D. Clark, Internet Economics, ch. ”Internet cost allocation and pricing”. Eds McK-
night & Bailey, MIT press, 1997.

[115] N. Semret, R. R.-F. Liao, T. Campbell, and A. A. Lazar, “Peering and provisioning of
differentiated Internet services,” in Proc. IEEE INFOCOM, (Tel-Aviv, Israel), Mar.
2000.

[116] D. Durham, K. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry, “The COPS
(Common Open Policy Service) Protocol.” IETF RFC 2748, Jan. 2000.

[117] R. Rajan, D. Verma, S. Kamat, E. Felstaine, and S. Herzog, “A policy framework
for integrated and differentiated services in the Internet,” IEEE Network, vol. 13, 5,
pp. 36–41, Sept./Oct. 1999.

[118] G. D. Rodosek and L. Lewis, “Dynamic service provisioning: A user-centric ap-
proach,” in Proc. 12th International Workshop on Distributed Systems: Operations
and Management, Oct. 15-17, 2001.

[119] T. Naik, K. Swanson, S. Mazumdar, P. Krishnan, R. Sequeira, and R. Ganesan, “IP
network configurator: An Infrastructure for IP network and services provisioning,”
in 12th International Workshop on Distributed Systems: Operations and Manage-
ment, Oct. 15-17, 2001.

[120] Z. Liu, M. S. Squillante, and J. L. Wolf, “On maximizing service-level-agreement
profits,” in Proc. ACM Conference of Electronic Commerce (EC), (Tampa, Florida),
Oct. 2001.

[121] Y. Zhao, R. Govindan, and D. Estrin, “Residual energy scans for monitoring wireless
sensor networks,” in Proc. IEEE Wireless Communication and Networking Confer-
ence, Mar. 2002.

[122] Y. Zhao, R. Govindan, and D. Estrin, “Computing aggregates for monitoring wire-
less sensor networks,” in Proc. IEEE International Workshop on Sensor Network
Protocols and Applications (SNPA’03), (Atlanta, Georgia), May 2003.

[123] C. Hsin and M. Liu, “A distributed monitoring mechanism for wireless sensor net-
works,” in Proc. ACM WiSe, (Atlanta, Georgia), Sept. 2002.

VITA

157

VITA

Md Ahsan Habib was born in Jessore, Bangladesh. He received B.Sc. degree in Com-

puter Science and Engineering from Bangladesh University of Engineering and Technol-

ogy (BUET) in 1996. He joined to the Department of Computer Science and Engineering

at BUET as a lecturer. During that period, he taught undergraduate courses, and he was a

member of the consultative committee to computerize the Cabinet Division of Bangladesh.

Ahsan came to Virginia Polytechnic Institute and State University, Blacksburg, Virginia in

1997, and received his masters in Computer Science in 1999. He joined the Department of

Computer Sciences at Purdue University, West Lafayette, Indiana in 1999. He received his

Ph.D. in 2003.

His research interests include quality of service and security issues of networking, net-

work tomography, network economics, peer-to-peer networks, and distributed systems. He

is a member of ACM, IEEE, and Upsilon Pi Epsilon honor society.

