

CERIAS Tech Report 2003-33

COLLABORATIVE INTRUSION DETECTION SYSTEM:
(CIDS)

A FRAMEWORK FOR ACCURATE AND EFFICIENT IDS

Paper Number 127
Submitted to ACSAC 2003

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

1

Collaborative Intrusion Detection System (CIDS): A Framework for
Accurate and Efficient IDS

Paper Number 127

Submitted to ACSAC 2003
Abstract

In this paper, we present the design and implementation of a Collaborative Intrusion Detection System

(CIDS) for accurate and efficient intrusion detection in a distributed system. CIDS employs multiple

specialized detectors at the different layers – network, kernel and application – and a manager based

framework for aggregating the alarms from the different detectors to provide a combined alarm for an

intrusion. The premise is that a carefully designed and configured CIDS can reduce the incidence of false

alarms and missed alarms compared to individual detectors, without a substantial degradation in

performance. In order to validate the premise, we present the design and implementation of a CIDS which

employs Snort, a network level IDS, Libsafe, an application level IDS, and a new kernel level IDS called

Sysmon. The system has a manager to which the detectors communicate their alarms using a secure

message queue. The manager has a graph-based and a Bayesian network based aggregation method for

combining the alarms to finally come up with a decision about the intrusion. The system is evaluated

using a web-based electronic store front application and under three different classes of attacks – buffer

overflow, flooding and script-based attacks. The experiments are conducted to measure the performance

degradation between the baseline system with no detection and CIDS with the three detectors and the

manager. The results show degradations of 3.9% and 6.3% under normal workload and a buffer overflow

attack respectively. Experiments are then conducted to explore the cases of false alarms and missed

alarms with a normal transaction and 7 different attack cases corresponding to the 3 attack classes. The

results show that the normal workload generates false alarms for Snort. Also the experiments produce

missed alarms for all the elementary detectors. CIDS does not flag the false alarm and reduces the

incidence of missed alarms to 1 of the 7 cases. CIDS can also be used to measure the propagation time of

an intrusion which is useful in choosing an appropriate response strategy. Timing measurements are

conducted to illustrate the point.

Keywords: intrusion detection, multiple detectors, electronic commerce workload, simulated attacks,

false alarms, missed alarms.

Approximate Word Count: 7200 words (without abstract and references)

2

1 Introduction

Many critical parts of our information infrastructure comprise distributed computer systems with

myriad application level and system level components deployed on multiple platforms. The

infrastructures are vulnerable to attacks especially when they have an open, connected architecture with

interactions with untrusted clients over untrusted networks. Intrusion detection systems (IDSs) are

deployed to protect the computer infrastructures. The classical IDSs fall into two classes – anomaly

based, and misuse based. An anomaly based IDS specifies the normal behavior of users or applications

and considers any pattern falling outside the defined behavior as an attack. A misuse based IDS specifies

the signatures of attacks and parses audit files to detect any matches. The metrics for evaluating an IDS

are false alarms (or, false positives), and missed alarms (or, false negatives). Individual IDSs are often

found to be unsatisfactory with respect to either or both of the metrics. For instance, anomaly based

detection can generate many false positives since deviation from the specified normal behavior is not

necessarily an attack. Also, if the definition of normal behavior is updated at runtime, an expert intruder

can slowly change her behavior to finally include it in the definition. This would then give rise to a false

negative. Misuse based detection can generate many missed alarms since for most practical open systems

it is very difficult to define an exhaustive attack data base. Also current misuse based IDS products

generate false alarms as our experience with Snort reported here also shows.

In this paper we propose a system model that employs multiple specialized detectors installed in

different layers of the system, and a management infrastructure for collating the alerts from the multiple

elementary detectors and synthesizing a global and aggregate alarm. For this purpose, a system is divided

into the network layer, the kernel layer and the application layer. We claim that the aggregate alarm is

more accurate than the elementary alarms, i.e., it reduces the incidence of false alarms and missed alarms.

The system should also be efficient in that the performance degradation compared to the baseline case of

no detector, or of a single detector, should not be substantial. We design and implement a system called

the Collaborative Intrusion Detection System (CIDS) to demonstrate the feasibility of the idea.

CIDS employs three elementary detectors (EDs)–Snort, a network level detector, Libsafe, an

application level detector, and a new detector called Sysmon that executes at the kernel level. CIDS has a

manager to which the alerts from the EDs are communicated. Sysmon consists of a modified Linux kernel

for intercepting certain OS activities  file access, and illegal signals. The EDs may be monitoring

different system components, possibly on different hosts and communicate with the manager through a

message queue (MQ). The MQ design enables detectors on different hosts to communicate securely with

the manager, the security being guaranteed by a signature assigned to each sender and a secure hash

algorithm digest being calculated on the message content.

3

The CIDS manager consists of a Translation Engine, an Inference Engine, a collection of Rule Objects

and a Response Engine. The Translation Engine translates the alerts from the different EDs into a

common format and attaches identifying information, such as the host ID from which the alert originated.

The Inference Engine uses the rule base to calculate the probability of an attack for each class and flags

an alarm if a probability exceeds a threshold. The Inference Engine accommodates the choice of different

techniques for rule matching. In the current system, there is a graph-based inference engine and a

Bayesian network based inference engine. Both are able to handle partial matches of the observed events

with the rule base events and non-determinism in the order in which the events are received. This design

decision is guided by the practical observation that such partial streams and order non-determinism are

common in distributed systems. The Response Engine can take various responses depending on the attack

type and its characteristics (such as, the propagation speed). The current system uses the simple response

of terminating the connection which originated the suspect packets.

CIDS is evaluated with respect to performance degradation and accuracy of detection. Attacks from

three different classes are used to stress the system – buffer overflow attack, flooding attack and script

based attack. An electronic store front running on an Apache web server, implemented using CGI Perl

scripts, and accessed using a web browser is used as the workload. The application allows the typical

operations of creating a user profile, browsing the catalog, adding items to a cart and completing an order,

with multiple operations being grouped to form a transaction. The performance is measured by the

number of transactions per second (tps) and the CPU available to the web server. The performance

degradation is given by the values of these metrics in CIDS compared with the baseline system

configuration with no detector. The results show degradations of 3.9% and 6.3% under normal workload

and a buffer overflow attack respectively. Experiments are then conducted to explore the cases of false

alarms and missed alarms. The false alarm experiment is conducted with the normal transaction and 3

variants. The missed alarm experiment is conducted with 7 different attack types corresponding to the 3

attack classes. The results show that the normal workload generates false alarms for Snort and Sysmon,

and missed alarms for Snort (3 of 7 cases), Libsafe (6 of 7 cases), and Sysmon’s two configurations (3 of

7,and 4 of 7 cases). CIDS does not show any false alarm and reduces the incidence of missed alarms to 1

of the 7 cases. The third set of experiments tracks the timing information for detection by the EDs and

inference at the manager. This brings out the speed of propagation of the attacks and the latency of each

step in a CIDS workflow.

The work presented here has the following claims of innovation – (i) it proposes a new system model

for correlating alerts from multiple elementary detectors to perform more accurate intrusion detection; (ii)

it presents an incremental inference engine capable of tolerating non determinism observed in practical

systems; (iii) it provides an intrusion detection framework in a distributed multi-host system; (iv) it

4

presents a new kernel level detector and shows it to be effective under several attack scenarios; (v) it

provides timing analysis of events which can aid in selecting an appropriate intrusion response.

The rest of the paper is organized as follows. Section 2 refers to related research. Section 3 presents

the architecture of CIDS and describes its components. Section 4 provides an instantiation of the

architecture and presents the specific configuration of the system being evaluated in this paper. Section 5

describes the experiments and the results. Section 6 concludes the paper with mention of future work.

2 Related Research

Several researchers have addressed the problem of false alarms and missed alarms with traditional

IDSs. Also, traditional IDSs often generate a very large number of alerts for practical attack scenarios.

The alarms correspond to elementary goals of the attack being realized. This large volume of alarms

makes it difficult for a system administrator or even an automated intrusion response system to take

appropriate actions. To counteract this problem, several researchers have developed alert correlation

methods to construct attack scenarios. One class of techniques [STAN02, VAL01] combines alerts based

on similarity of certain alert attributes. For example, in [STAN02], source and destination IP addresses

and ports are used for determining similarity and graphs are drawn with links between related alerts.

However, this class misses out on correlating a large set of related alerts. A second class of techniques

[CUP00, DAI01] use training set data to determine relations between alerts. In [CUP00], attacks are

characterized by pre-condition, post-condition, attacker actions, detection actions, verification actions to

determine if the attack succeeded. Knowing these attributes, they provide techniques to correlate alerts.

However, the challenge remains to determine the attack characteristics. The most promising approach in

alert correlation is demonstrated by [TEM00, NIN02, CUP02] which correlate alerts based on pre-

conditions and post-conditions. Two alerts are correlated if the precondition of a later attack is satisfied

by the post-condition of an earlier attack. This volume of work addresses a related but distinct problem

than our work. The goal is to cluster the alerts corresponding to the distinct elementary attacks that form

part of a larger attack. Our goal is to increase the accuracy of detection of each elementary attack. Their

work uses detectors for detecting different types of attacks while we can have multiple detectors that

detect the same kind of attack and use the multiple detection to increase the assurance in the alert. Thus,

our work can be considered complementary and benefit their work. Consider that the elementary alerts

that they consider are not the alerts from individual detectors, but alerts from our CIDS manager. One

concern about this volume of work is their ability to deal with non-determinism in alerts from detectors in

real-world intrusion situations, such as, missed alarms, alarms appearing in different orders. For example,

in [CUP02], it would be difficult to detect multiple missing alerts and there is no notion of assurance

which is reduced as the number of missing alerts increases. In none of this work is it obvious how

5

overlapping alarms corresponding to multiple concurrent attacks on multiple hosts will be handled. On

the other hand, CIDS can be deployed as a distributed intrusion detection system.

3 Architecture of CIDS

In this section, we describe the architecture of CIDS which has the following components – the

Elementary Detectors (EDs), the Message Queue (MQ), the Connection Tracker, the Manager, and the

Response Engine.

3.1 Elementary Detectors

The Elementary Detectors are the specialized intrusion detectors that are distributed through the

system. From an architecture standpoint, each host is divided into three layers–network layer, kernel layer

and application layer. The network layer consists of the network protocol stack. The kernel layer consists

of the operating system and its managed services. The application layer consists of everything else

running as software on the host, including middleware. The EDs and the manager can be located on

different hosts and communicate through a generalized Message Queue structure which enables

communication regardless of where the communicating processes are located. A possible system view is

represented in Figure 1.

N/W
layer

System
layer

Application
layer

Manager

Dxx
Elementary Detector

Message Queue

Application
layer

N/W
layer

System
layer

D1 D2

D3 D4CT

Application
layer

N/W
layer

System
layer

D5

D3 D4CT

CT Connection Tracker

Keys

N/W
layer

System
layer

Application
layer

Manager

Dxx
Elementary Detector

Message Queue

Application
layer

N/W
layer

System
layer

D1 D2

D3 D4CT

Application
layer

N/W
layer

System
layer

D1 D2

D3 D4CT

Application
layer

N/W
layer

System
layer

D5

D3 D4CT

CT Connection Tracker

Keys

Figure 1. System view of Elementary Detectors and Manager

The EDs may be off-the-shelf detectors. CIDS does not mandate substantial changes of such off-the-

shelf detectors. The only change is in the function when an alert is generated by the detector which puts

an alert out on the MQ destined for the manager.

Different hosts can have different configurations of the EDs. This is an important design principle

since in a distributed system with heterogeneous services, different services on different hosts may need

6

different kinds of detectors. There may be EDs specialized for detecting different kinds of attacks, EDs

with overlapping functionality (such as, multiple detectors for flooding based attacks) and EDs which are

an integral part of an application (such as, a Voice-over-IP application that has inbuilt rules to detect

traffic fraud attacks). The rule base at the manager has to be initialized with values for confidence placed

on the alarms from the individual detectors for different types of attacks. The system will exhibit a faster

learning curve if the initial confidence values are based on the specialized functionality of the detector.

For example, an alarm from Libsafe which is a buffer overflow detector should have a higher confidence

for the Rule Object for buffer overflow, rather than for flooding.

3.2 Message Queue

The components in the system communicate with one another using the Message Queue (MQ). MQ

uses TCP as the data transport. Each message has a per sender unique monotonically increasing serial

number and a signature which is the SHA1 hash value of the message body, the serial number, and a

secret key. Each ED in the system has a secret key that is shared with the manager. Thus, without

knowing the secret key, there is no way to forge a message or replay a legitimate message.

3.3 Connection Tracker

The Connection Tracker is a kernel level entity which maintains the mapping of port number to

process ID of the process which has an active connection on the port. For this, it intercepts the system

calls for accepting incoming connections and terminating connections. The manager may query the

Connection Tracker to generate information about the target for which an alert is raised. The Connection

Tracker maintains the information in a queue data structure. A queue is chosen in preference to a hash

table since the insertion operation is likely to be much more frequent (every time a new connection is

initiated or terminated) than the query operation (every time there is an alarm). Although a hash table can

give the same asymptotic insertion performance, the constant term in the overhead is higher than for a

queue.

3.4 Manager

The manager is the workhorse and the key differentiating component in CIDS. The manager is

responsible for aggregating the information from the different detectors and making a combined system-

wide decision about the existence of an intrusion. The architecture permits the manager to monitor

multiple hosts. The manager has the following components:

1. Translation Engine translates the alert from an ED into a CIDS understandable abstract event form.

2. Event Dispatcher dispatches the event to the appropriate host’s Inference Engine instance.

3. Inference Engine matches the received events against the Rule Objects to come up with a

determination of intrusion. There is a separate instance of the Local Inference Engine for each host

7

monitored by the manager, plus there is the Global Inference Engine for correlating the results from

the local engines. The Rule Objects store the rules, one for each class of attack.

4. Combining Engine collates the decisions from the different instances of the Inference Engine and

decides on the appropriate response.

An architecture of the manager with the different components is shown in Figure 2.

Host 1

Rules

Inference
Engine

Host 2 Host N

………….

Event Dispatcher

From ED

Translation Engine

Rules

Global Inference
Engine

Combining Engine

Rules

Inference
Engine

Combining Engine

Rules

Inference
Engine

Combining Engine

Combining Engine

Host 1

Rules

Inference
Engine

Host 2 Host N

………….

Event Dispatcher

From ED

Translation Engine

Rules

Global Inference
Engine

Combining Engine

Rules

Inference
Engine

Combining Engine

Rules

Inference
Engine

Combining Engine

Combining Engine

Figure 2. Architecture of the CIDS Manager

3.4.1 Translation Engine (TransEng)

The Translation Engine (TransEng) translates the alert from the ED into a common format. The format

is as follows.
Event Id (EID)

• ID of the detector (DID)

• Specific ID given to the alarm type by the detector (AID)

Location Info (LID)

• Source IP address and port number (SIP, SPN)

• Destination IP address and port number (DIP, DPN)

• Process ID (PID)

Each detector in the system has a unique ID which is filled in as DID when it sends an alarm. In

addition, an ED may specify a unique ID specific to its detection, e.g., an ID corresponding to the nature

of the attack detected. This may be used by the Inference Engine in deciding on the Assurance Value for

8

the attack, e.g., an alarm corresponding to a buffer overflow by Snort will contribute less to the Assurance

Value of a rule for detecting flooding attacks. The location information fields seek to pinpoint the location

of the source and the target of the attack. SIP and SPN identify the source while DIP and DPN identify

the target. PID gives the id of the process to which the suspected malicious packet was destined. The

responsibility for filling in these fields is shared between the ED and the manager. Not all of the fields

may be filled in for every alarm. TransEng fills in DIP, since the MQ maintains information about the IP

address from which the message came. When Snort raises an alarm, it fills in the DPN field while

TransEng queries Connection Tracker for the process which accepted the connection to this port and fills

in the PID field. Libsafe on the other hand fills in PID and TransEng queries Connection Tracker to fill in

DPN.

3.4.2 Event Dispatcher (EvDis)

The Event Dispatcher (EvDis) dispatches the events to the Local Inference Engine of the host

corresponding to the destination (the DIP field) of the event. The events being forwarded by EvDis are

maintained in an Inference Queue in time order at each Local Inference Engine. The events are logically

grouped by the target process they correspond to (the PID field). The Inference Engine can then process

the events efficiently to determine if there is an attack on the target process. The logical structure of the

Inference Queue is shown in Figure 3.

…
PID1 PID2 PIDn

A1 A2 A3 B1 B2 B3 C1 C2
…

PID1 PID2 PIDn

A1 A2 A3 B1 B2 B3 C1 C2
Figure 3. Logical structure of Inference Queue at each host’s Inference Engine. Ai, Bi, Ci are

events.

3.4.3 Inference Engine

The goal of the Inference Engine is to process the events in the Inference Queue and come up with the

determination if an intrusion is in progress. The determination is quantified by an Assurance Value. The

matching of the observed events is performed against a rule base consisting of Rule Objects. There is an

instantiation of the Inference Engine and the Rule Base for each host monitored by the manager and a

global Inference Engine and Rule Base which processes the output from the local engines.

We describe below the design of the Inference Engine without the need to make a distinction between

a Local and a Global Inference Engine. The distinction arises due to the specific rules that are in their

corresponding rule bases. We have designed two different kinds of Inference Engines – a Graph-based

Inference Engine and a Bayesian Network based Inference Engine.

9

Graph-based Inference Engine

Each Rule Object is a graph with the nodes being the events associated with an attack type and the

edges denoting a sequencing of the events and marked with the confidence associated with the sequence.

Intuitively, the Assurance Value (AV) for a particular attack is given by the sum of the edges in the

longest path of the entire sequence of observed events. A path is considered longer if it has a higher

assurance value. When a new event is added to the Inference Queue, the Inference Engine checks to see if

it is fusionable with the events being currently matched. Two events are considered fusionable if they can

be events in a common attack instance. This is application specific and can be customized in the

environment. Currently, if two events are for the same target process they are considered fusionable. A

sequence of fusionable events forms an event stream.

The Inference Engine matches different streams of events that are in its Inference Queue in parallel.

For each stream, it matches it against each Rule Object. Let us consider below the processing of events

from a single event stream being matched against one Rule Object graph. The Inference Engine drains an

event from the Inference Queue and if fusionable with the previous event, puts it in a Match Queue. Each

element in the Match Queue contains the highest Assurance Value associated with a path having the itself

as the terminal node, and the predecessor event in such a path. When the Assurance Value exceeds pre-

defined thresholds, called Response Thresholds, the manager signals the Response Engine for taking

appropriate response to the intrusion. The Assurance Value staying below the lowest threshold indicates

that the alerts generated were false alarms and CIDS disregards them.

A

B

C

D

E

2

1

2

4

1

Rule Object #1

…
PID1 PID2 PIDn

A B C … …D E E

Inference Queue

A B C D E E

Matching Queue

S 3 A

B

C

D

E

2

1

2

4

1

Rule Object #1

…
PID1 PID2 PIDn

A B C … …D E E

Inference Queue

A B C D E E

Matching Queue

S 3

Figure 4. Example of Graph-based Rule Object and Event Stream

Let us now consider a running example of a Rule Object graph and the processing at the Inference

Engine. The Rule Object is shown in Figure 4. The nodes correspond to possible events with S being a

10

special node corresponding to the start event. The events observed in time order are A;B;C;D;E;E. The

snapshots of the Matching Queue on receipt of each event are shown in Figure 5. Only the arc

corresponding to the newly added event is shown. The assurance value for an added event may not be

monotonic as the addition of C shows.

T0: Event A A
3

T1: Event B A
3

B
5

T2: Event C A
3

B
5

C
4

T3: Event D A
3

B
5

C
4

D
7

T4: Event E A
3

B
5

C
4

D
7

E
9

T5: Event E A
3

B
5

C
4

D
7

E
9

E
9

T0: Event A A
3

T0: Event A A
3

T1: Event B A
3

B
5

T1: Event B A
3

B
5

T2: Event C A
3

B
5

C
4

T2: Event C A
3

B
5

C
4

T3: Event D A
3

B
5

C
4

D
7

T3: Event D A
3

B
5

C
4

D
7

T4: Event E A
3

B
5

C
4

D
7

E
9

T4: Event E A
3

B
5

C
4

D
7

E
9

T5: Event E A
3

B
5

C
4

D
7

E
9

E
9

T5: Event E A
3

B
5

C
4

D
7

E
9

E
9

Figure 5. Matching Queue snapshots on receiving each event in event stream

The Inference Engine processes an event by scanning through the possible predecessors of the event in

the Rule Object and calculating the Assurance Value for the new event. The Assurance Value at the end

of the processing is converted to a probability value for matching against thresholds by dividing it by the

maximum possible Assurance Value from the Rule Object. The algorithm runs in O(V2+VE) where V is

the number of events being processed and E the number of edges in the Rule Object graph. The algorithm

is given in Figure 6.

Gi := Rule Object Graph i
M := Matching Queue
T := Tail of the Matching Queue
BestAV := 0
BestPredecessor := T
AddEvent (NewEvent)
{

if (NewEvent.Fusionable(M[T].event) M.insert(NewEvent);
for k = T-1 to 0
{

if (!ExistEdge(Gi(M[k].event , NewEvent)))
continue;

NewAV := EdgeValue(Gi (M[k].event , NewEvent)) + M[k].AV;
if (NewAV > BestAV) {

BestAV := NewAV;
BestPredecessor := k;

}
}

M[T].AV = BestAV
M[T].Predecessor = BestPredecessor

}
Probabilistic AV = BestAV/MaximumAV
if (Change in Probabilistic AV) send message to Combining Engine

Figure 6. Algorithm for processing a new event at the Graph-based Inference Engine

How to terminate protocol? Whenever the arrival of a new event causes the Probabilistic Assurance

Value to change, a message is sent to the Combining Engine to determine any possible response and the

processing continues. Once fusionable events stop arriving, no further processing takes place with respect

11

to the event stream, and after a certain number of new event streams are formed, the Matching Queue for

the old event stream is garbage collected.

How to handle missing events? In a practical system, there will be missing events and exact matches with

the Rule Object graph will not always be possible. In order to handle this condition, we allow partial

matches with a discounted Assurance Value. The discounted Assurance Value is obtained by multiplying

the Assurance Value by a discount factor, which is given by the number of observed event nodes divided

by the total number of nodes on the path. Thus, if event B was missing and the event stream was A;D, the

Assurance Value would be 2/3*(3+2+2)=4.67.

Parallelization and Distribution. The Inference Engines can be distributed very intuitively by having each

local Inference Engine execute on a separate host. Each Inference Engine can parallelize the processing

by matching each separate event stream against a Rule Object graph concurrently.

Bayesian Network-based Inference Engine

Bayesian Network is a compact representation of joint probability distributions via conditional

independence [MUR03]. In a Bayesian Network, the nodes represent random variables and edges the

direct influence of one variable on another. A set of conditional probability distributions is associated

with each node and a node is considered conditionally independent of its ancestors given its parents.

There are two steps to modeling a Bayesian Network. The first step is creating the graph which describes

the conditional probability relationship among events by putting an edge from event A to event B if B is

conditioned on A. Next, we have to specify all the conditional probabilities, i.e. P(B|A).

In CIDS, we model the rules in a very similar way.

For example, in the OpenSSL attack case, we have the

following Bayesian Network as the BN-based rule in

the manager. The conditional relationship is put in a

causal way. For instance, we know that a OpenSSL

attack could cause a Snort alert so we put an edge from

the ‘OpenSSL Attack’ event node to the ‘Snort’ node.

After this, we give all the conditional probabilities P(Snort | OpenSSL Attack), P(Libsafe |OpenSSL

Attack, Snort), P(SIGSEGV | OpenSSL Attack, Snort).

When a new alert comes into the Inference Queue, it is checked for the fusionable property and all

fusionable alerts are grouped into a vortex. The Matlab Bayesian Network Toolbox [MUR02] is then

invoked and events in the vortex are fed to it as evidence nodes. The inference function of the toolbox is

executed to acquire the probability of the root node (e.g. the Open SSL Attack node), which is the alert

probability of the attack based on the observed evidences.

OpenSSL
Attack

1100

Snort

1101

LibSafe

1002

SIGSEGV

1004

OpenSSL
Attack

1100

Snort

1101

LibSafe

1002

SIGSEGV

1004

12

Role of Global Inference Engine. Alerts determined by a Local Inference Engine are fed into the

Inference Queue of the Global Inference Engine (GIE). The motivation for a GIE is that several attacks in

a distributed system are coordinated through initiating multiple attacks on the individual services. A Local

Inference Engine can determine if an individual service is under attack, but a GIE can determine if the

aggregate distributed service is under attack. For example, the authentication information in an electronic

store front may be compromised by launching a parallel attack against the DNS service (to misdirect

traffic to a rogue host) and the SSH server (trying to sniff authentication information being exchanged

between the client and the server).

3.4.4 Combining Engine

The Inference Engine matches the event stream against the different Rule Objects using both the

graph-based and Bayesian network based approaches. The Probabilistic Assurance Value from a

particular type of Inference Engine is the maximum of the values from the different rules. The Combining

Engine takes the greater of the Assurance Values from the two approaches. It compares this against a set

of threshold values and depending on the threshold that is exceeded, the appropriate signal is sent to the

Response Engine.

3.5 Response Engine

The Response Engine performs response and recovery action on the detection of an intrusion as

directed by the manager. Possible responses that have been considered are (in increasing order of

severity): Log the information for action in case of repeat event but take no action at the present time;

Mark the current connection as suspect and inform the manager, which can restrict the services available

to the connection (e.g., allow electronic store browsing but not purchasing); Temporarily block the

connection pending (possibly out-of-band) diagnosis; Permanently block the connection and add it to a

blacklist; Take the target host offline for reconfiguration, e.g., installing a new ED.

A key determinant of the response to be chosen is the time taken to deploy the mechanism. This is

conditioned on the speed of propagation of the intrusion. A benefit of the CIDS architecture is that the

propagation speed can be estimated using the timing of the alerts from the EDs. Consider an attack to

service S1 has been determined by the CIDS manager at time t1 and a second attack to service S2 has

been determined at time t2 (t2 > t1). Information about cascaded security vulnerabilities in

communicating services can be obtained by various tools developed by researchers such as Kaaniche,

Deswarte and Dacier [DAC94,DAC96,ORT98]. From such information, a graph of services can be

created and the time for a service to be affected can be extrapolated from an estimate of the speed of

propagation of the intrusion. For example, if services S1, S2 and S3 are placed in a linear chain, then an

13

unweighted linear extrapolation will indicate S3 will get affected by the intrusion at t2+(t2-t1) and

therefore, the response mechanism must be able to complete by then.

The current Response Engine simply closes the connection which is determined to be the source of the

packet that generated the alarm.

4 Instantiation of CIDS

We build a system that instantiates the CIDS architecture and is described in this section with all the

components that are used in the experimental evaluation. CIDS is currently implemented on Red Hat

Linux 8.0. The main components of the current system are: Manager, Three EDs, Response Engine,

Netfilter, and Apache web server as workload. A schematic of the system is shown in Figure 7.

Apache web
server

Libsafe
Snort

Sysmon

Response
Engine

Manager

Netfilter

External
NetworkInternal Network

Linux Kernel

: netlink
:OS API & interface
: Message Queue

: Elementary Detector

Arrows

Apache web
server

Libsafe
Snort

Sysmon

Response
Engine

Manager

Netfilter

External
NetworkInternal Network

Linux Kernel

: netlink
:OS API & interface
: Message Queue

: Elementary Detector

Arrows

Figure 7. Currently implemented CIDS

4.1 Manager

The manager has the Graph-based and the Bayesian Network based Inference Engines. The Inference

Engines use Rule Objects for each attack type. Examples of graph and Bayesian Network rules for the

Open SSL attack are shown in Figure 8. The nodes are labeled with the ED and the alarm ID.

14

OpenSSL
Attack

1100

Snort

1101
LibSafe

1002

Sysmon

(SIGSEGV)

1004

2 2

2 1

OpenSSL
Attack

1100

Snort

1101

LibSafe

1002

SIGSEGV

1004

0.70.3TRUE

0.30.7FALSE

TRUEFALSE

Snort
OpenSSL

Attack

0.70.3TRUE

0.30.7FALSE

TRUEFALSE

Snort
OpenSSL

Attack

0.90.1TRUETRUE

0.20.8TRUEFALSE

0.70.3FALSETRUE

0.10.9FALSEFALSE

TRUEFALSE

LibSafe
SnortOpenSSL

Attack

0.90.1TRUETRUE

0.20.8TRUEFALSE

0.70.3FALSETRUE

0.10.9FALSEFALSE

TRUEFALSE

LibSafe
SnortOpenSSL

Attack

0.90.1TRUETRUE

0.20.8TRUEFALSE

0.70.3FALSETRUE

0.10.9FALSEFALSE

TRUEFALSE

SIGSEGV
SnortOpenSSL

Attack

0.90.1TRUETRUE

0.20.8TRUEFALSE

0.70.3FALSETRUE

0.10.9FALSEFALSE

TRUEFALSE

SIGSEGV
SnortOpenSSL

Attack

0.50.5

TRUEFALSE

OpenSSL Attack

0.50.5

TRUEFALSE

OpenSSL Attack

(a)

(b)

Figure 8. (a) Graph-based and (b) Bayesian Network-based rules for the OpenSSL attack

4.2 Elementary Detectors

Three EDs are used in CIDS: Snort, Libsafe and Sysmon. Snort and Libsafe are existing systems and

are adopted for CIDS, while Sysmon is a new detector that is designed and implemented for CIDS.

Snort [ROE99] is a network level intrusion detector which sniffs the network flow by using libpcap

[LIB03]. Snort is capable of sniffing TCP, UDP, and ICMP packets. It then compares the sniffed packet

against its rulebase and signals alerts when it matches rules. The snort rule has a very versatile description

format and the Snort engine can perform simple matching by port numbers or IP addresses or perform

more involved pattern matching in the payload of a packet and stateful protocol matching. We use Snort

version 1.9.0 with the complete default set of rules (snort.conf version 1.124).

Libsafe [LIB02] is an application level ED. It provides a middleware software layer that intercepts

function calls made to a set of C library functions that are known to be vulnerable to buffer overflow

attacks, such as string manipulation routines. A substitute version of the corresponding function

implements the original functionality, but in a manner that ensures that any buffer overflows are

contained within the current stack frame. This prevents attackers from 'smashing' (overwriting) the return

address and hijacking the control flow of a running program. Libsafe is limited to protecting against stack

buffer overflow and is unable to catch heap or static buffer overflows. Also, according to our experiment,

it will miss some stack buffer overflow situations with optimized program code when it fails to get an

accurate estimate of the stack frame size. Libsafe can be used transparently with any pre-existing

15

compiled executable application by pointing the LD_PRELOAD environment variable to the Libsafe

library. On detecting an overflow, it sends SIGKILL signal to the process and with our modification,

sends an alarm to the manager. We use Libsafe version 2.0-1 for our system.

Sysmon is a new kernel level detector which comprises modifications to the Linux kernel for

intercepting certain OS activities. Sysmon has two functions.

1. Monitoring file accesses by intercepting the sys_open and sys_execve system calls

Sysmon monitors all the file accesses. Currently, we only put simple access rules for conceptual

purpose. The rules we have are: (a) Not allowing access to other users’ home directories; (b) Not allowing

the execution of commands ‘ls’, ‘rm’, and ‘gcc’ to prevent the hacker from listing or removing files and

from compiling malicious codes on the machine. A more comprehensive approach in our current plans is

to create a list of allowed file accesses based on audit data.

2. Intercept interested signals

Sysmon can intercept all signals that a monitored process is receiving. Currently, we only process the

SIGSEGV segmentation fault signal. This signal is usually a result of unsuccessful return address

overwriting or unsuccessful injection of malicious code, and catching this, our system can deduce a

possible attack against the monitored process.

4.3 Apache Web Server Workload

The Apache web server version 1.3.24 is used as the workload. An electronic store front is

implemented using Perl CGI scripts which consists of 3 major parts: (i) Registering a user profile or

account, (ii) Browsing the online catalog and placing items in a shopping cart, and (iii) Completing the

order.

5 Experiments

In this section, we describe the experiments used to evaluate CIDS. We describe the normal workload,

the simulated attacks, the performance measurements, the evaluation of false alarms and missed alarms,

and the timing measurements.

5.1 Electronic Store Front Workload

The normal workload used in the evaluation of CIDS is a client transaction which exercises different

functionalities of the web-based electronic store front running. The client transaction is written in HTML

1.1 and consists of the following steps. The CGI script name that provides the functionality at a step is

also mentioned.

1. Getting the html page that allows a customer to register a profile.

2. Sending information to mailer.cgi to create a profile.

16

3. Getting the html page that contains the store catalog.

4. Sending information to cart.cgi to place an item in the shopping cart.

5. Viewing the shopping cart by executing view_cart.cgi.

6. Viewing the checkout information by executing checkout.cgi.

7. Sending information to complete.cgi to complete the checkout.

A basic TCP stream socket client program is used to send and receive all the steps synchronously and

in sequence with no delay between successive steps.

5.2 Attack Types

We simulate three classes of attacks to evaluate CIDS. For each class, we develop multiple attack

types and variants for some of the types. A detailed description of the attack types is not relevant to the

evaluation and hence only a high-level overview is given along with references to their details. A problem

we faced in the study was availability of code to simulate the attacks. We developed the attack code from

scratch for most types and occasionally got fragments of code that we could modify and use. An

important design principle for the experiments was to separate the developer of the attack code from the

designers of the system to prevent biasing of the attack methodology either to favor CIDS, or exploit

known vulnerabilities in CIDS. The two groups had no communication during the entire length of the

study.

1. Buffer Overflow Attack. A buffer overflow attack exploits the fact that oftentimes programs do not

check for boundary conditions in operations such as accessing arrays. This can be used to overwrite parts

of the stack such as the return address and cause malicious code to be executed.

1.1. Apache Chunk attack [CHU02]. Versions of the Apache web server up to and including 1.3.24 and

2.0 up to and including 2.0.36 contain a bug in the routines which deal with invalid requests which are

encoded using chunked encoding. This bug can be triggered remotely by sending a carefully crafted

invalid request. In 32-bit platforms (including ours), the attack causes a stack buffer overflow and process

crash, while in 64-bit platforms, it could be used to execute malicious code.

1.2. Open SSL attack [SSL02]. This is a static buffer overflow attack and contains a remotely exploitable

buffer overflow vulnerability in OpenSSL servers prior to 0.9.6e and pre-release version 0.9.7-beta2. This

vulnerability can be exploited by a client using a malformed key during the handshake process with an

SSL server connection using the SSLv2 communication process. As stated in

http://www.securityfocus.com/bid/5363, in our version of Linux (Redhat 8.0) and Apache web server

(1.3.24), this attack can cause a segmentation fault, but not execution of malicious code. This attack

consists of two phases  determining the version of Apache web server to calculate the memory layout,

17

and sending the malicious packet that causes the buffer overflow. We develop a variant of this attack

where the initial phase is omitted and directly different malicious packets are sent for the memory layouts

of different Apache versions.

2. Flooding Attack. This class of attacks consists of sending a flood of network requests to a server

program in order to occupy the resources of the network or the server and deprive legitimate clients from

accessing the server functionality.

2.1. Ping flood. The attack attempts to saturate a network by sending a continuous series of ICMP echo

requests (pings) over a high-bandwidth connection to a target host on a lower-bandwidth connection to

cause it to send back an ICMP echo reply for each request. The variants of this attack type use different

packet sizes (64, 1024, 4096, 16000, 65000 bytes), and different inter-packet intervals (1 ms, 10 ms, 100

ms, 1 s).

2.2. Smurf. The attack sends a large volume of ICMP echo (ping) traffic to the broadcast addresses of

well-populated "intermediate" networks with the source IP address spoofed to match that of the intended

victim host. On receiving the echo request, each host in the intermediate network responds with an echo

reply to the attacked host, flooding both the host and its network. Variants of the attack use different sizes

of echo packets (512 and 1024 bytes).

3. Script-based Attack. Script programs running on a web server get user inputs and then invoke shell

commands, system commands, or other programs to accomplish some tasks. If the program doesn’t

validate the input string before it transfers the input data to shell or system commands, this class of

attacks may allow remote command execution. In our experiments, we probe the vulnerability in open(),

and system() functions in the Perl CGI scripts to either overwrite or delete files, or inject executable code.

5.3 Performance Evaluation

This experiment is divided into two sets – without and with attacks injected. Different configurations

of the EDs are tested. For economy of space, for the attack case, only the results with the Apache chunk

attack and open SSL attack are shown. Also these attacks trigger the most number of detectors and

therefore provide a worst case performance measure.

For the no attack case, 30 transactions are run concurrently. The number of transactions completing

per second is measured for the 8 possible combinations of EDs. For the combinations with multiple EDs,

the CIDS manager is present along with all the components mentioned in Section 4.1. These results are

presented in Figure 9.

18

13.21

12.88
12.76

12.66 12.72

12.52
12.61

12.47

12.88 12.82
12.73 12.69

12.00

12.40

12.80

13.20

13.60

No detector Libsafe Sysmon Snort Libsafe +
Sysmon

Sysmon +
Snort

Snort +
LibSafe

LibSafe +
Snort +
Sysmon

(NF) Snort (NF) Snort
+ Libsafe

(NF) Snort
+ Sysmon

(NF)
Libsafe +
Snort +
Sysmon

T
ra

ns
/s

ec

Figure 9. Performance measurement in transactions per second for electronic store front client

application with different combinations of EDs

Snort as deployed with the default set of rules exhibits false alarms due to rules with Snort Rule ID, or

SID 1807 and 1933. These rules are fired respectively due to the use of chunk encoded data and an

inexplicable disallowing of use of the string “cart.cgi” in input. Experiments are also run after disabling

these erroneous rules and are shown with the prefix “NF”. The results show that the performance

degradation is most significant for the active ED, Snort (4.18%) and least for the passive ED, Libsafe

(2.53%). For Sysmon, the degradation is intermediate (3.46%). With the complete CIDS configuration,

the performance degradation is only 5.60%, or 3.95% if the erroneous Snort rules are removed. For the

rest of the paper, Snort is deployed with the full set of rules so that it satisfies the requirement of being an

off-the-shelf detector.

Next we ask what the performance degradation of CIDS will be if the EDs are performing some

detection. For this set of experiments, the normal workload (concurrency = 30) is run together with the

attack program running continuously. The results are shown in Figure 10.

The result for the chunk attack is counter-intuitive since the performance is better for all the EDs

turned on. This is because Libsafe is able to detect the chunk attack and prevent the process from core

dumping. With no detector, core is dumped and the overhead of creating a large core file causes the

performance degradation. With the Open SSL attack, the performance degradation is 6.33%.

19

11.19

12.30

13.13

12.30

10.00

11.00

12.00

13.00

14.00

No ED All EDs No ED All EDs

Chunk Attack Chunk Attack Open SSL Attack Open SSL Attack

T
ra

n
s/

se
c

Figure 10. Performance measurements

under two attack types

CPU Utilization (User level)

0 10 20 30 40 50

1

% (CPU Utilization)

httpd snort
sysmon manager
matlab CGI
CPU Util. Spent on other processes

Figure 11. CPU utilization due to CIDS
components and workload processes

Now let us try to analyze what the performance degradation is due to. In Figure 11, we show the CPU

utilization by each of the components in CIDS. The total CPU utilization (user level + system level) is

100%, implying system level utilization is about 51%. The workload processes of the web server and the

CGI processes have the highest utilizations. Among the CIDS components, the Matlab toolbox has the

highest utilization (2.8%). This can be reduced by not invoking a separate toolbox for the Bayesian

Network based Probabilistic Assurance Value computation, but performing this through native code

resident within the manager itself. The Sysmon utilization is 1.5%.

5.4 Detection Effectiveness Evaluation

In this section, we present our experiments to evaluate the effectiveness of CIDS with respect to the

false positives and false negatives for the attack types and variants presented in Section 5.2.

First, we show the incidence of missing alarms with different EDs and under CIDS in Table 1. A

“Yes” in a cell indicates the attack was detected. With the Snort column, the ID of the Snort rule that

detected the attack is shown. Sysmon (Signal) implies the illegal signal interception function of Sysmon

and Sysmon (File) implies its file access detection function. Smurf 1000 and 500 refer to ping packets of

sizes 1 kB and 0.5 kB respectively. For both, the outgoing traffic from the attacker host is 114 kB/s and

10 broadcast addresses are used.

Snort throws false alarms for the normal transaction due to rules 1807 and 1933. CIDS detects 6 of the

7 types of attacks which is better than what any individual ED can accomplish. The cells marked R1

imply that Sysmon was unable to detect a file access (creation) since the attack was not successful in

reaching that step and instead crashed the Apache process. The smurf attack is undetectable by any of the

EDs if it uses small enough packets, being sent at a high rate. The importance of having Sysmon is borne

out by the fact that the Open SSL variant and script vulnerability attacks could only by detected by it.

20

 Snort Libsafe Sysmon (Signal) Sysmon (File) CIDS
No attacks Yes (1807,1933) No No No No attack
Open SSL Yes (1881,1887) No Yes R1 Yes
Open SSL variant No No Yes R1 Yes
Apache Chunk Yes (1807, 1808,

1809)
Yes Yes R1 Yes

Smurf 1000 Yes (499) No No No Yes
Smurf 500 No No No No No
Ping Flooding Yes (523, 1322) No No No Yes
Script No No No Yes Yes

Table 1. Cases of missing alarms for different attack types in different EDs and CIDS

Next, we run experiments to detect the incidence of false alarms. We create three variants of the

normal transaction: placing items in shopping cart (cart.cgi), clearing shopping cart (delete.cgi),

contacting store owner (contact.html, formmailer.cgi). The scripts used in each are mentioned alongside.

The first and third throw false alarms in Snort (rules 1933 and 884 respectively) while the second throws

false alarm in Sysmon (File) since a file is being removed. CIDS shows no false alarms. It is clear that

since the attack developer and system developer are isolated, to make this experiment more effective, a

much larger set of legal transactions will have to be generated and tested.

5.5 Attack Propagation Speed

0

1

2

3

4

5

Conn
ec

tio
n w

hic
h t

rig
gers

 S
ID

 188
1

SID
 188

1

Conn
ec

tio
n w

hic
h t

rig
gers

 S
ID

 188
7

Sign
al

Catch
er

(S
IG

SEGV)

SID
 188

7

Inf
ere

nc
e D

on
e

Coun
ter M

eas
ure

R
el

at
iv

e
Ti

m
e

fo
r G

ra
ph

-b
as

ed
 In

fe
re

nc
e

En
gi

ne
 (s

ec
s)

0

1

2

3

4

5

6

Con
nec

tio
n w

hic
h t

rig
gers

 S
ID

 188
1

SID
 188

1

Conn
ec

tio
n w

hic
h t

rig
gers

 S
ID

 188
7

Signa
l C

atch
er (S

IG
SEGV)

SID
 18

87

Inf
ere

nc
e Beg

in

Inf
ere

nc
e D

on
e

Coun
ter M

eas
ure

R
el

at
iv

e
Ti

m
e

fo
r B

ay
es

ia
n

N
et

w
or

k
ba

se
d

In
fe

re
nc

e
En

gi
ne

 (s
ec

s)

Figure 12. Timing for Open SSL attack with two CIDS Inference Engines

The timing of the different events associated with the Open SSL buffer overflow attack are shown in

Figure 12. Snort Rule 1881 (SID 1881) corresponds to the triggering of the rule for the initial web server

version query and SID 1887 corresponds to the rule that checks for the string “TERM=xterm” in the

malicious packet. Libsafe is unable to detect this attack and as a result, the process crashes dumping core

which is detected by Sysmon. It is observed that the time to launch the counter attack is higher for the

Bayesian Network based Inference Engine (5.01 s against 3.97 s for the graph-based inference engine).

21

This is due to the longer time to invoke the Bayesian Network toolbox, and the more expensive

computation.

6 Conclusions

In this paper, we have presented the architecture of a distributed system for intrusion tolerance called

CIDS, which employs multiple elementary detectors and combination of their alerts to make an accurate

determination of intrusion. Then we presented an instantiation of this architecture with three elementary

detectors and a manager with a graph-based and a Bayesian network based inference engine. We

evaluated the system under a real-world web based e-commerce application and three classes of attacks.

CIDS was found to bring down the incidence of missing alarms and false alarms with negligible impact

on the performance.

We are currently exploring how to set up the Rule Objects for different attack classes in an automated

manner. The approach uses a feedback control loop to adjust the weights or probabilities in the rules. We

are developing a larger set of test cases to carry out statistically large set of experiments to measure false

positives and false negatives in CIDS. We are adding a timing module to estimate the speed of

propagation of attacks and augmenting the Response Engine to have a choice of responses which will be

decided based on the timing information.

Acknowledgements

We would like to acknowledge the help of Eugene Spafford, Arif Ghafoor and James Joshi for several

illuminating discussions on intrusion tolerance and pointers to related work. Our thanks are also due to

Alan Fern for pointing us to the Bayesian Network approach to the inferencing problem.

22

References

[CHU02] “Apache Chunk Buffer Overflow Attack”. At: http://httpd.apache.org/info/security_bulletin_20020617.txt
[CUP00] F. Cuppens and R. Ortalo, “LAMBDA: A Language to Model a Database for Detection of Attacks”, In
Proceedings of the Third International Workshop on the Recent Advances in Intrusion Detection (RAID’2000),
Toulouse, France, October 2000.
[CUP02] F. Cuppens and A. Miege, “Alert Correlation in a Cooperative Intrusion Detection Framework”, In IEEE
Symposium on Security and Privacy, Oakland, USA, 2002.
[DAC94] M. Dacier and Y. Deswarte, “The Privilege Graph: an Extension to the Typed Access Matrix Model”, in
European Symposium in Computer Security (ESORICS'94), (D. Gollman, Ed.), Lecture Notes in Computer Science,
875, pp.319-334, Springer-Verlag, Brighton, UK, November 1994.
[DAC96] M. Dacier, Y. Deswarte and M. Kaâniche, “Models and Tools for Quantitative Assessment of Operational
Security”, in 12th International Information Security Conference (IFIP/SEC'96), (S.K. Katsikas and D. Gritzalis,
Eds.), pp.177-186, Chapman & Hall, Samos (Greece), May 1996.
[DAI01] O. Dain and R. Cunningham, “Fusing a heterogeneous alert stream into scenarios”, In Proc. of the 2001
ACM Workshop on Data Mining for Security Applications, pages 1-13, Nov. 2001.
[LIB02] “Avaya Labs Research - Projects: Libsafe”, At http://www.research.avayalabs.com/project/libsafe
[LIB03] “SourceForge.net: Project Info - The libpcap project”, At: http://sourceforge.net/projects/libpcap
[MUR02] Kevin Murphy, “Bayes Net Toolbox for Matlab”, At:
http://www.ai.mit.edu/~murphyk/Software/BNT/bnt.html
[MUR03] Kevin Murphy, “Tutorial on Bayesian Network Toolbox”, At:
http://www.ai.mit.edu/~murphyk/Software/BNT/BNT_mathworks.ppt
[NIN02] Peng Ning, Yun Cui, Douglas S. Reeves, “Constructing Attack Scenarios through Correlation of Intrusion
Alerts”, In Proceedings of the 9th ACM Conference on Computer & Communications Security (CCS 2002), pages
245-254, Washington D.C., November 2002.
[ORT98] Rodolphe Ortalo and Yves Deswarte and Mohamed Kaaniche, “Experimenting with Quantitative
Evaluation Tools for Monitoring Operational Security”, Journal of Software Engineering, vol. 25, no. 5, pp. 633-
650, 1999.
[ROE99] M. Roesch, “Snort – Lightweight Intrusion Detection for Networks”, In Proceedings of USENIX LISA’99,
November 1999.
[SSL02] “Apache OpenSSL Attack”. At: http://www.cert.org/advisories/CA-2002-27.html
[STAN01] S. Staniford, J.A. Hoagland and J.M. McAlerney, “Practical Automated Detection of Stealthy Portscans”,
In the Journal of Computer Security, Volume 10, Issues 1/2, 2002, pp. 105-136.
[TEM00] S. Templeton and K. Levit, “A requires/provides model for computer attacks”, In Proc. of New Security
Paradigms Workshop, pages 31-38, September 2000.
[VAL01] A. Valdes and K. Skinner, “Probabilistic alert correlation”, In Proc. of the 4th Int'l Symposium on Recent
Advances in Intrusion Detection (RAID 2001), pages 54-68, 2001.

