CERIAS Tech Report 2003-23

A GENERALIZED TEMPORAL ROLE
BASED ACCESSMODEL
FOR DEVELOPING SECURE SYSTEMS

by James B. D. Joshi
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907

A GENERALIZED TEMPORAL ROLE BASED ACCESS CONTROL MODEL FOR

DEVELOPING SECURE SYSTEMS

A Thesis
Submitted to the Faculty
of
Purdue University
by

James B. D. Joshi

In Partial Fulfillment of the
Requirements for the Degree
of
Doctor of Philosophy

August 2003

Thisthesisis dedicated to my parents, to Bhairab and Ganesh, and to my wife.

ACKNOWLEDGMENTS

| would like to sincerely thank my PhD advisor Prof. Arif Ghafoor for his
invaluable guidance and support at each step of my graduate studies at Purdue University.
| would also like to express my gratitude to Professors Mary P. Harper, Eugene H.
Spafford and Hong Z. Tan for their participation in my PhD committee. Their guidance
and suggestions have been very valuable. In particular, Prof. Spafford provided severd
stimulating ideas.

| am highly indebted to Center of Education and Research in Information
Assurance and Security (CERIAS) at Purdue University for the unfettered support
provided throughout my doctoral studies. Without such support my PhD studies would
not have been possible. I would like to thank all my colleagues in the Distributed
Multimedia Systems Lab at Purdue University for their cooperation and help. In addition,
| would like to acknowledge the support provided by the National Science Foundation
through the Grant# 11S-0209111.

| am forever indebted to Prof. Elisa Bertino for her unequivocal help. | relied
heavily on her feedback throughout my research.

Finally, nothing would have been possible without the love and support of my
family.

TABLE OF CONTENTS
Page

LIST OF TABLES ...ttt sttt s vii
LIST OF FIGURES..........coiitiieieieeee ettt st sn s iX
L =S I 2 7N G4 SRR Xiii
1 INTRODUCTION.....cciiiirteieientesie ettt ss et see e s s e esesbe e esesbeseenesneseas 1
1.1 Research Motivation and Problem Statement...........ccoeeeieiinennineneeeee 1
1.2 Summary of CONLITDULIONS.........ccueiiriiiinieieeeeee e e 4
1.3 Outling Of DISSErtaliONccccoeeriiriirierierieeeeee et e 6
2 RELATED WORK. ...ttt sttt sttt e e st n e e s 7
2.1 Traditional Access Control MOELS..........cooiiiiiinireeee e 7
2.1.1 Discretionary Access Control (DAC)......cccceis coereeienereneseseseeeeee 7
2.1.2 Mandatory Access Control (MAC).......coeeererieeieererese e 10
2.2 Role Based ACCESS CONLIOIcc.oiuiiiiieieiesiesie e s 11
2.2.1 The NIST RBAC MOCEL........ccccoriiriieeenerieeee et 14
2.2.2 ROIEHIErArCHY. ..ot e 15
2.2.3 ConstraintSIN RBAC. ..o 16
2.3 Time-based ACCESS CONLIOL.......... cueeeeeeeiereesie e 17
2.3.1 PeriodiC EXPrESSION.....ccuiiuiier weeeeeiesiesie sttt 18
2.3.2 Tempora Access Control MOdElS.cocooererierieieiesesee e 19
3 THE GTRBAC MODEL ..ottt eebeseenesseneas 21
3.1 Temporal Constraintsin GTRBAC..........cooiieiereseseeseeee s 21

3.1.1 Tempora Constraints on Role Enabling and
ASSIGNIMENE. ...ttt ceseee e e e e sresae e saeeneenes 23
3.1.2 Tempora Constraints on Role ACHIVAiON...........cccceeeeiierenenenenenens 23
3.1.3 Run-time Requests, Triggers, and Constraint Enabling...................... 24
3.2 Formal Syntax and Semantics of the GTRBAC Moddlcccccevvrierieenee. 25
3.3 GTRBAC Conflict Resolution and Execution Semantics.............ccooevvreenenne. 31
3.3.1 ConflictSiN GTRBAC.c.oiiiieeeeereee e 31

3.3.2 The GTRBAC EXECUtION MOEL........eeeeeeeeen eeeeeeeeeeens 37

Page
3.3.3 Safe Tempora Constraints and Activation Base (TCAB)cc....... 43
3.4 Authentication and Clock Synchronization ISSUES............ccceeerenerieseneeene 46
3.5 CONCIUSIONS.......coiiiiterieete et ettt e bbb enes 47
4 ROLE HIERARCHIES IN GTRBALC.......coi ittt 48
4.1 Tempora Role HI€rarchy ... 49
4.1.1 Unrestricted HIierarChies..........ooevirerieeiieeseseseseniees seeseesiesieseeeens 50
4.1.2 Enabling Time Restricted Hierarchies..........ocooeeieiencnncneceee, 53
4.2 Uniquely Activable Set (UAS) of RoIE SEtS.........cooeviierieicec e 63
4.2.1 Computing UAS of aHierarchy..........c.cooviriiiniiiiieceeeeee, 65
4.2.2 Acquisition Equivalent Hierarchies............c.cooviiiiiiiiincnes e, 75
4.3 Derived Hierarchical REIEHONS...........cccoiiiiiiiiieeeeeieeet e 76
4.3.1 Inference Rulesfor Hybrid Hierarchies...........cocooeeieieieienescne 78
4.3.2 Soundness and Completeness of the Inference Rules......................... 80
4.4 Hierarchy Transformations...........cceoeiereiineeeeeesesee s creeseeseessesseseesesaens 83
4.4.1 ROIE AQAITION. ..o e 83
4.4.2 ROIEDEBLON ..ottt 87
4.4.3 ROIEPArtitiONc.coviiiiiiieeierieeee et 90
4.5 CONCIUSIONS.....cueiuiiieieitesieste sttt et ss e b bt se st e et e s et e sbeabesee e e ens 93
5 CARDINALITY, DEPENDENCY AND SEPARATION OF DUTY
CONSTRAINTS ...ttt bbbttt b e nn e nne s o7}
5.1 Generalized Cardinality Constraint EXPression.........ccocecevereneneneseseeeenns 95
5.1.1 Predicate Evaluation Function and Projection Operator 96
5.1.2 Time-based Cardinality CONSIraints............cccceeeerieerenenenereseseeeenes 98
5.2 Extended Trigger and Control Flow Dependency Constraints..................... 100
5.2.1 Extended GTRBAC THOOEN ...ccveiviriireinieriesieeeeeeeeee e 100
5.2.2 Control Flow Dependency CONSLIaiNtS..........ccecveeerererenereneniennnns 103
5.3 Time-Based Separation of Duty CONSIraiNtS.........ccceeoereereereerenenesieseeeenens 106
5.3.1 Enabling Time SOD CONSraiNtSccoevererereeieiesesee e 108
5.3.2 Assignment Time SOD CONSIFaiNtS..........cceereeieereereeniesiesiesesieeeenens 108
5.3.3 Activation Time SOD CONSIIaiNtS.........cevrereeieeieenenienesiesesieseenens 110
5.3.4 Possibilistic Activation SOD CONSLraiNtS.........cceververereneresereenns 113
5.3.5 Possibilistic Permission Acquisition SoD Constraints..................... 115
5.3.6 Comparison with other SOD ConStraints...........ccevveeereenesieeseenenn 120
5.3.7 Various Interpretations of Time-based SoD Constraints.................. 120
5.4 CONCIUSIONS.cuiiuiiieeieiesie ettt e bttt ettt e b 122
6 MINIMALITYOF GTRBAC CONSTRAINTS AND DESIGN ISSUES................ 123

6.1 Activity-Equivalent Family of GTRBAC ModélS.........ccooovevvieeneeieeeeeens 124

Vi

Page

6.1.1 Minimality of GTRBACcccooiiieieireeee e 124
6.1.2 Operations on PeriodiCity EXPressions..........cocevevereneneneneseenenn. 129
6.2 Complexity of Specification and Design ISSUES............ccccvreeriieieenenicreniennens 136
6.2.1 Role Enabling vs. Role Assignment Constraints...........c.ccoveeeeeneee. 138
6.2.2 Per-rolevs. Per-user-role Activation Constraints............ccoceeeeeeeneee. 145
6.3 CONCIUSIONS. ...ttt sttt e bt se e b 149

7 X-GTRBAC- AN XML BASED GTRBAC POLICY SPECIFICATION
LANGUAGE ...ttt ettt e bttt e st bbb ne e 150
7.1 Motivation for an XML Based Policy Specification Language.................... 150
7.2 Overview of X-GTRBAC Language FEeatures...........ccooeverenereneneneeeenes 152
7.3 X-GTRBAGC SYNEBX ...cueiviiiierieniisieeieee et sbe et sse s s sne e 155
7.4 X-GTRBAC System ArChiteCture..........cccooeiiriireninieeeeese e 167
7. 4.1 XML PrOCESSONooiieeirieitieeteeee e 168
7.4.2 GTRBAC PrOCESSOLcoitiiiiiieesrieresieesseese e sne e s snennes 168
7.5 CONCIUSIONS.ottt b et s et n bbb 170
8 CONCLUSIONS AND FUTURE WORKc.cooiiiitirienienieeeies crvesiesie e 171
8.1 Research COoNntribULIONS..........c.cooiiiiieee e 171
8.2 FULUIE WOIK ...ttt 172
REFERENCES.......coo ittt n s b e 174

APPENDICES

APPENDIX A: Proofsof Theoremsof Chapter 3.........ccooeieiiniienineneeeeee 184
APPENDIX B: Proofs of Theorems of Chapter 4ccccooeviienenenencneeene 188
APPENDIX C: Proofs of Theorems of Chapter 6cceveviieienenencneeee 200

LIST OF TABLES

Table

3.1: Temporal CONSLraiNt EXPreESSIONSccuerverierierieeieeerreste e s sie e e seesreseesnes 22
3.2 Prioritized eVent EXPrESSIONS.......cccoiiiireriereeieee et sre e 25
3.3 SHAUS PIrEJICALESceveeetieieeieee ettt en e 26
3.4: Example GTRBAC access policy for amedical information system................ 30
3.5: Type 1 conflicts: conflicts between events of same categorycccccverereenne. 32
3.6: Type 2 conflicts: conflicts between events of different categories.................... 33
3.7: Type 3 conflicts: conflicts between CONStraints..........covveeeveeveeneceeseee e 33
3.8: Constraint parameters of u-snapshot and r-snapshotcccceveeveeeeneeneenene 38
4.1: Inheritance semantics of enabling time restricted hierarchy ... 54
4.2: Supporting functions for algorithm in Fig.4.8 ... 73
4.3: Theinferencerulesfor derived hierarchical relations...........ccccceeevenerencrenne. 79
4.4: Application of inference rules over the hierarchy of Fig. 4.9.......cccoiiiinene. 80
4.5: Criteriafor hierarchy transformations.............coceverereneneeeneeeee e 84
4.6: Scenarios for hierarchy transformations............cocoevenereninieeereee e 84
4.7: Transformation with criteria satisfied for different scenarios...........c.ccocevereenne. 85
4.8: Deletion of aroleusing approaches2 and 3..........ccooevereririeeieenenesese e 88
4.9: Transformation characteristics for different approaches to role partitioning..... 91

vii

viii

Table Page
5.1: Various StAtUS PrediCaLEScoueriirieriirierieeie et 95
5.2: Relations among PrediCates.........couvirirerereeieeeree e 96
5.3: Examplesof cardinality CONSIIaNES.ccevereiiierienene s 98
5.4: Enabling time and assignment SODSccoourierierierene e 107
5.5: ACHVALION TIME SODS......ccuiiiiieieiee e 111
5.6: Possibilistic role activation SODSccoceiirieiererene e 114
5.7: Possibilistic permission acquiSition SODS........ccccoeiirerererienieeeseese e 117
5.8: Comparison with SoDs proposed in the literature............cooeeeeveiencnencnens 119
5.9: Time-based SOD CONSIIAINES.......ccoiiiiiireeieeee e 121
6.1: Complexity parameters and NOtation USEd...........cccvevvveereeieseenie e 137

6.2: GTRBAC Family of MOGES.........coiiiiiiieeeee e 137

LIST OF FIGURES

Figure
2.1: An access control matrix and its access control list and capability list

FEPIESENTALIONS ...ttt ettt bbbttt e e e s sr e e b nne s 8
2.2: Constraints and hierarchy in RBAC ..o 12
2.3: Proposed NIST RBAC MOUEc.ooiiiiiiiieeeeeeeie s 14
3L SEAES O @TOIE. ... s 22
3.2: Periodicity constraint on user-role assignmentcoccveverereeieneneseseseennes 26
3.3: Constraint enabled (a) for a specified duration (b) in specified intervals

(C) AL Al TIMES......eieiieeee e 28
3.4: AlQorithm COMPUL ST ... 40
3.5: Algorithm Saf €t YChECK ..o 45
3.6: Example dependency graphs...........coiieieieee s 46
4.1: Hierarchy eXamples ..o 52
4.2: Inheritance through disabled roles............cooiiiiiis e 57
4.3: Example of hierarchy types.........ccocooiririiiciesee s 58
4.4: Anexample hybrid hierarchy.........ccoooeiiiiii e 63
4.5: Horizontal partition of ahybrid linear path ... 67
4.6: Computing UAS of ahybrid linear hierarchy ... 70
4.7: Computing UAS of ageneral hierarchy..........ccocoveiininennieeeee e 72

Figure Page
4.8: Algorithm for computing the uniquely activable setcccoovveiiiciveieenne 74

4.9: A hybrid hierarchy for amedical departmentcooevevirieeierenene e 77

4.10: Example of authorization consistent hierarchies; Hy = H,, H; # Hs,

a0 [P o ST 81
4.11: Addition of anew roler betweenrolessand |c.ccocverrieiciiienc s 86
4.12: Deletion of 1ol F WHEN (F32) ...vveveeeeeeeeeeeeseeeseeeeseeees s s 89
4.13: Partitioning aroler into threerolesr, 12 and ra....cceeeveeveecesiese e 90
5.1: User-assignment SoDs with U={us,Uz} and R={r1,r2} eovevveveiiiieeeceee, 109
5.2: Activation time SoDsfor U ={ug, Uz} and R={r1, o} ceeeveveeiiieeeee, 112
5.3; Session time SOD eXamPIES......cc.ooveiieieceece e 113
5.4: Implication of possibilistic activation SoDs in presence of A-hierarchy......... 114
5.5: Implication of permission acquisition SoDsin presence of I-hierarchy 116

5.6: Possibilistic permission acquisition for U = {uy, g}, P ={p1, p2}

10l (TR Y RS 118
6.1: Algorithm Tr ansf or MPR ..o 126
6.2: Algorithm Tr ansf or MUR ..o 127
6.3: Temporal relations between apair of periodic expressions.............cccoevevveennene 130
6.4: Algorithms Pai r VDS and Conput eNVDS.........ccccoveiieiieneeeseesie e 132
6.5: Algorithm Transf or MVDS ... e 136
6.6: GTRBAC family of MOElS.........ccoooiieiieece e 138

6.7: Access requirements of Example 6.2.1 using (a) GTRBAC, y representation
(b) GTRBAC," representation and (c) GTRBAC,” representation..................... 140

Figure

6.8:

6.9:

7.1:

7.2:

7.3

7.4:

7.5:

7.6:

7.7

7.8:

7.9:

7.10:

7.11:

7.12:

7.13:

7.14:

7.13:

B.1:

B.2:

Page
Requirements of Example 6.3.3 using (a) GTRBAC, »° representation
(b) GTRBAC, ° representation (algorithm Tr ansf or mUJR) on a
GTRBAC1A® CONFIQUIBLION. ...t 146
Constraints of Exanpl e 6. 3. 3 (@) using GTRBAC, representation
(b) using GTRBAC 1 A rERreSENtatioNcccoveieeieerienieriesiesieeeeee e 148
AN XML INStanCe JOCUMENLeouiriieerieieiesie st 151
An XML schemafor document in Fig. 7.1......cccooiiiiireniniceeeeseee e 151
X-GTRBAC POHCY SNEBL.......coeoveeeeeeeeee e seee e 155
XUS SYNEBX ..ttt n e n e nne e 156
KPS SYNEBX ...ttt n e e ne e 157
KRS SYNLBX ...t r e ne e 158
Schemafor temporal and logical EXPreSSIioNccoveerererieeieenesese e 159
L0 o= g Y L= USSP 162
Separation Of dULY EXPIESSION.........ccuerieririeieieree et 162
User-role and role-permission aSSIgNMENES.........coeverereeereeieeneesesee e 163
Schema for metapolicy SPECITICATION..........ccoovevieririreeeeeeeee e 164
MELaPOIICY EXAMPIE.......eeieeeieeeee e s 165
X-GTRBAC policy specification for metapolicy of Fig. 7.12...........cccceuee. 166
X-GTRBAC system arChiteCtUre........ccevuieeeieieieiese e 167
XAS ANA XSS SNEELS.....cceeiieiieieee e 169
Derived hierarchical relation for two consecutive types (rule R2)................. 191

Derived relationsin ageneral linear Hierarchy using rules R3 with set
B IS BIMPLY .. e 192

Xii

Figure Page
B.3: Derived relationsin ageneral linear hierarchy using rules R3 with set

B IS NON-BMPLY ..ot 193
B.4: Derived relations for rUl@S RA.3 ..o 195

B.5. Derived rdlatioNSfor TUIESRA.A ... e 196

Xiii

ABSTRACT

James B. D. Joshi. Ph.D.. Purdue University, August 2003. A Generalized Tempora
Role Based Access Control Model for Developing Secure Systems. Major Professor:
Arif Ghafoor.

A key issue in computer system security is to protect information against
unauthorized access. Emerging workflow-based applications in healthcare,
manufacturing, the financial sector, and e-commerce inherently have complex, time-based
access control requirements. To address the diverse security needs of these applications, a
Role Based Access Control (RBAC) approach can be used as a viable aternative to
traditional discretionary and mandatory access control approaches. The key features of
RBAC include policy neutrality, support for least privilege, and efficient access control
management. However, existing RBAC approaches do not address the growing need for
supporting time-based access control requirements for these applications.

This research presents a Generalized Temporal Role Based Access Control
(GTRBAC) model that combines the key features of the RBAC model with a powerful
temporal framework. The proposed GTRBAC model alows specification of a
comprehensive set of time-based access control policies, including tempora constraints
on role enabling, user-role and role-permission assignments, and role activations. The
model provides an event-based mechanism for supporting dynamic access control
policies, which are crucial for developing secure workflow-based enterprise applications.
In addition, the temporal hierarchies and separation of duty constraints facilitated by
GTRBAC allow the development of security policies for commercial enterprises. The
thesis provides various design guidelines for managing complexity and building secure
systems based on this model. X-GTRBAC, an XML-based policy language has been
developed to alow specification of GTRBAC policies.

1. INTRODUCTION

1.1 Research Motivation and Problem Statement

The rapid proliferation of the Internet and the cost effective growth of its key
enabling technologies such as the World Wide Web, database systems, storage and end-
systems, and networking are revolutionizing information technology and have created
unprecedented opportunities for developing large scale distributed applications. The
emerging trend indicates that information systems are increasingly being interconnected
for sharing data and applications. Applications such as workflow management systems
(WFMSs) are expected to play a critical role in many distributed applications, including
e-commerce, finance and banking, manufacturing, corporate databases, on-line services
and businesses, on-line hedth care services and many others. Such workflow-based
applications are subject to time-based constraints [Alt96, Att93, Ber99b, Ede99, Tho97].

Information systems security refers to the protection of information systems
against unauthorized access to or modification of information, whether in storage,
processing or transit, and against denial of service to authorized users, including measures
necessary to detect, document, and counter such threats. This is achieved by
accomplishing the following set of security goals [JosO1b]:

Confidentiality: The goal of confidentiality is to ensure that an unauthorized person does
not access information whileit isin data storage, during processing and in transit.

Integrity: The goal of information integrity is to protect information from unauthorized
modification done either intentionally or accidentally.

Availability: Information availability ensures that information is available when needed
and is not made inaccessible by malicious data denial activities.

Accountability: Information accountability ensures that every action of an entity can be
uniquely traced back to it.

Assurance: Security assurance is the degree of confidence in the security of the system
with respect to predefined security goals.

Authentication, access control, and auditing have been traditionally considered as
the key security services providing the foundation for information and system security
[San96b]. Each access request is usually mediated by a reference monitor. Several models
of access control have been proposed in the literature to address diverse security needs of
information systems; however, these models have been found inadequate in addressing
the complex security requirements of the emerging applications [JosO1b, San94, San96b].
In this research, we focus on the temporal access control requirements in large
organizations and emerging applications.

Security models that support efficient security management and enforcement, and
capture a wide range of time-based, dynamic access control requirements of applications,
can provide an important framework for developing secure systems [Bac02, BerOla,
Cla87, Fer93]. Such a need has been highlighted by several surveys and reports, and
technological needs of the e-commerce environments [Bar97, Gar96, Gar97]. We briefly
discuss some of these issues that have motivated the research reported in this dissertation.
1. In large corporate information systems, the insider-attack is a growing security

concern. A joint study on computer crimes conducted by the Computer Security
Institute (CSI) and the FBI indicates that the most serious losses in enterprises occur
through unauthorized access by insiders, and 71% of the respondents had detected
unauthorized access by insiders [Pow00, Gho98]. The challenge is in developing new
security models or extending existing ones that alow efficient access control
management and administration of organizational information assets.

2. The Auditing Report published in November, 2001, by the US General Accounting
Office for 24 of the largest federal agencies indicated that security management and
access control were the most significant weaknesses in all these agencies [Gao02].
This report has a significant bearing in the need for a robust national defense in the
light of growing threst to critical infrastructures of the country.

3. As mentioned earlier, many emerging applications have time-based access control
requirements as they employ workflow management systems (WFMSs) where tasks
have a tempora dimension [Ede99]. Furthermore, the size and complexity of these
applications are increasing rapidly. Flexible security models that support viable
security administration are essential to protect the organizational information assets.
The traditional access control models such as Discretionary and Mandatory Access
Control (DAC and MAC) models have several limitations when applied to emerging
applications, in terms of supporting both security management and a wide range of

access requirements [JosO1b, San94, San96b]. Bhavani et. al. enlist the following
crucia requirements for secure e-commerce and web based applications [ThuO1].

a. Tools and mechanisms to support access control policy specification and

enforcement

b. Secure workflows that have time constrained security requirements

C. Securefederations of collaborating organizations.

In other words, there is a crucial need for models that can express flexible access
control policies and can be used in time-constrained application environments such as
WFMSs. Such models should be able to provide support in environments supporting
federations of organizations. While such a comprehensive model is yet to be developed,
role based access control models have been perceived as the most promising approaches
for addressing these challenges.

Role based access control (RBAC) models are receiving increasing attention as a
generalized approach to access control [Fer01, Giu95, Giu97, JosOla, JosOlb, Ker02,
Nya93, Nya99, Osb00a, San95, San96a, San97, San98a, Tar97b]. A survey conducted by
NIST [Fer93] shows that in many organizations the access control decision is based on a
person’s role and responsibilities within the organization, making role-based approaches
suitable for expressing security requirements. In [Cla87], Clark et. al. show that the
traditional DAC and MAC policies do not adequately address the diverse security needs
of many organizations. RBAC approach can greatly ssimplify security administration. For
example, if auser moves to a new function within the organization, he/she can simply be
assigned to the new role and removed from the earlier role, whereas in the absence of an
RBAC model, his’her old privileges need to be revoked, and new privileges need to be
granted. An authorization constraint relevant and well known in commercial application
environments is the separation of duty (SoD) constraint [Ahn00, Ber99b, Bew89, Kun99,
Nya99, San91, Sim97, Tid98]. SoD constraints aim at reducing the risk of fraud by not
allowing any individua to have sufficient authority within the system to single-handedly
perpetrate a fraud. RBAC models allow expressing awide variety of SoD constraints that
are beneficial to many applications. Roles can be organized into hierarchies to capture
organizational functional hierarchies and to define arole’'s permissions inherited by other
roles. A role hierarchy can significantly reduce explicit permission assignments to arole
and hence can considerably reduce the administration overhead. Furthermore, RBAC
models are policy-neutral [JosO1b, San98b]. In particular, by appropriately configuring a
role-based system, one can support different policies, including both DAC and MAC
policies [Nya95, Osb00b]. Such flexibility of RBAC models is extremely significant, as

the can be adapted to support the access control needs of enterprise-wide security
administration and enforcement.

Although RBAC modeling is now a mature field of research, no existing RBAC
models can handle fine-grained time-based access control requirements. Examples of
time-based RBAC policies abound. For instance, a part-time staff member in a company
may be authorized to work within the company only on working days between 9am and
1pm. If a part-time staff member is represented by a role, enforcing such rules requires
that the part-time employee assume the role in that interval only. Similarly, an external
auditor may need access to organizational financial resources for the assigned period of
three months. Such requirements can be supported by specifying times when the role can
be enabled so that alegitimate user can activate it. Roles can thus be enabled/disabled at a
certain time. A part-time staff member or an external auditor role may be further
restricted to only pre-specified hours of active time in one session. Development of such a
temporal RBAC model is highly desirable in order to address the comprehensive security
requirements of organizations and applications.

1.2 Summary of Contributions

In this research, we address the need for a powerful and flexible time-based access
control model, pointed out in the earlier section. Our main objectives are:

1. to develop a model that can express a wide range of time-based access control
requirements of organizations,

2. to develop a user friendly policy specification language and enforcement mechanism
that can be used in awide range of applications.

The contributions of the research reported in this thesis can summarized as
follows:

1. We propose a Generalized Tempora Access Control (GTRBAC) model that extends
the basic RBAC model by introducing a comprehensive set of temporal constraints.
These constraints include periodicity and duration constraints on role enabling and
assignments, as well as duration and cardinality constraints on role activation. The
event-based framework of GTRBAC alows modeling run-time events and triggers,
which can be used to express dynamic access control requirements.

2. In this research, we investigate the issue of how permission inheritance and role
activation semantics can be captured when the hierarchically related roles have

3.

temporal constraints. Contribution with respect to our work in role hierarchy include

the following:

a We introduce various types of role hierarchies and provide their permission-
inheritance and role-activation semantics in the presence of various tempora
constraints on the hierarchically related roles. We identify various scenarios where
hierarchical structure can play an important role.

b. A hybrid role hierarchy consisting of different hierarchy relations among roles can
induce different types of derived hierarchical relations among roles that are not
directly related. We propose a set of inference rules for the derived hierarchical
relations and prove that these rules are sound and complete. A security
administration tool can use these rules to identify possible flaws in the policy
specification of an enterprise. Such flaws may be induced by complex hierarchical
relations among roles.

c. Given a complex hybrid hierarchy, we provide a mechanism for generating the
sets of roles that a user can activate within a session simultaneously. Sessions in
RBAC, in which the users activate one or more roles, correspond to subjects in
traditional access control models [Osb97, Osb00b, San96c, San98b]. Hence,
generating such sets of roles for a user in a session is of crucial importance to
capture policies that are defined with respect to the traditional notion of subject.

d. Role hierarchies evolve with time. New roles may be added and existing ones
deleted or modified. We present rules for handling such hierarchy evolution.

An open issue for a model with a constraint language is its expressiveness and
minimality. In other words, it is important to determine whether the set of constraints
for the model is minimal. If the model is not minimal, an important issue is to
determine whether the non-minima model provides any practical benefits over the
minimal model. It is thus possible a non-minimal model or a model with al the
constraints can be more flexible in terms of complexity and usability than the minimal
model. Given the large variety of such languages that have been recently proposed,
issues concerning expressive power and minimality for RBAC constraint languages
are extremely relevant [Ahn00, Cra03, NeuO3].

In this dissertation, we show that there exists aminimal model that has a subset of
constraint types defined in the GTRBAC model and yet has the same expressive
power as the GTRBAC model. In addition, we show that the sets of different
constraint types can be used to generate a family of GTRBAC models having the

same expressive power. We show that the GTRBAC model, athough is not minimal,

has several advantagesin terms of complexity of specification and usability.

4. Constraints have been considered as a very important aspect of policy specifications.
In this thesis, we investigate the cardinality, dependency and SoD constraints within
the framework of GTRBAC. In particular, we incorporate the following constraints in
our model.

a. We introduce a generic framework for expressing a wide range of time-based
cardinality constraints. The cardinality constraint expression framework provides
specifying cardinality control with respect to al the GTRBAC states.

b. We develop an elaborate trigger expression that can capture complex
dependencies among events and conditions. In particular, we define control flow
dependency (CFD) constraints that can be used to express access control
requirements that are typical in workflow types of applications. Furthermore, we
show that the trigger-based framework and the CFD constraint expressions can be
easily extended to provide an elaborate time-based RBAC model for context-
based access control.

c. We identify a comprehensive set of SoD constraints for using the GTRBAC
framework. These SoDs subsume the SoDs that have been identified earlier in the
RBAC literature, and provide a modeling capability at afiner level of granularity.

1.3 Outline of Dissertation

The dissertation is organized as follows. In Chapter 2, we present the related work
in information system security. In Chapter 3, we present the GTRBAC model, and discuss
various temporal constraints and their execution semantics. In Chapter 4, we first
introduce various types of temporal role hierarchies and then present detailed analysis and
techniques to compute sets of roles users can activate in a session, to derive induced
hierarchical relations using inference rules and to handle hierarchy evolution efficiently.
In Chapter 5, we present a comprehensive set of the time-based cardinality, dependency
and separation of duty constraints. In Chapter, 6, we present the minimality results and
discuss constraint design issues. Chapter 7 will present the X-GTRBAC policy
specification language and discuss its syntax. Finaly, in Chapter 8, we provide our
conclusions and future work.

2. RELATED WORK

In this chapter, we briefly review work related to information system security. In
particular, we present background on access control models and then describe work
related to authorization constraints, role hierarchies and time-based access control.

2.1 Traditional Access Control Models

Traditional access control approaches are broadly categorized as discretionary
access control (DAC) [Grar2, Har76, Jg97, Lam71, San94] and mandatory access
control (MAC) [Bel76, Bib77, Den761, Lam73, Mcl90]. In the following sections, we
briefly overview these approaches.

2.1.1 Discretionary Access Control (DAC)

In DAC, the basic premise is that subjects have ownership over objects of the
system and subjects can grant or revoke access rights on the objects they own to other
subjects at the original subject’s discretion [Har76, San94]. Subjects can be users, groups,
or processes that act on behalf of other subjects. DAC policies are flexible and the most
widely used [San96b]. However, these policies do not provide high security assurance.
For example, DAC alows copying of data from one object to another, which can result in
allowing access to a copy of data to a user who does not have access to the original data.
Such risks can propagate to the entire interconnected environment, causing a serious
violation of security goals. This alows a Trojan horse program to easily leak confidential
information without the knowledge of the subject accessing the object. A Trojan horse
program is one that appears to be doing one thing on the surface but is actualy doing
something else without the knowledge of the person using it. The Trojan horse problem
has been considered the main reason that has led to a distinction between DAC and MAC
[Mcl94].

The genesis of DAC is generaly considered to be the access control matrix
(ACM) model of confidentiality formulated by Lampson [Lam71] and refined by Graham
and Denning [Gra72]. Structurally, the model is a state machine with each triple (S, O, M)
defining a state [Mcl94], where Sis a set of subjects, O is a set of objects, and M is an
access matrix. M has |§ rows and |O| columns, and the content of M[s, o] indicates the
rights that s has over o. Fig. 2.1, shows an access matrix that contains the permissions
that subjects s1, s2 and s3 have on the six different file objects.

fl f2 f3 f4 f5 6

o' own sl o,r,wlor,w w
j 1 read : 2|orw r o,r,w Access Matrix
i wiwrite ;
s3 r r o,rw r o, r,w
Capabilities Access Control List

sl——‘fz o,r,wHB o,r,w‘——‘fS w ‘ f1 ——EQ r,w
sZ——‘fl o,r,waZ r ‘—4f5 o,r,w‘ f2 SlO,I’,WHSZ r HSS r ‘

s3—4f2 r ‘48 r ‘—4f4 o,r,w‘ v
(//’) f4 ——=1s3/ 0,1, w
f5 —=16|0,r, §

r PN w v 8 e e B e

Fig. 2.1. An access control matrix, and its access control list and capability list
representations

The HRU Access Control Modédl and Derivatives

Harrison, Ruzzo and Ullman [Har76] used the concept of the access matrix
proposed by Lampson for the purpose of decidability analysis. The HRU access matrix

model uses a set of commands to construct an authorization scheme, which is of the

following form.
| f
al in Msl1l, ol] and

am”i.n M sm on]
t hen
opl
opn
where each op; is of form:

enter a into Ms, o], delete a from (s, 0), create subject s,

create object o, destroy subject s, destroy object o.

Each command has a body part that contains primitive operations op;s and the
condition part as shown above. The body part is allowed to execute if the rights specified
in the conditions exist in the ACM. HRU’ s formulation of the safety problem is[Har76]:

(Safety Problem) Isthere a reachable state in which a particular subject possesses
a particular privilege, which it did not previously possess?

In [Har76], researchers show that the safety in HRU is, in general, undecidable.
For the mono-operational case, where the body part consists of a single primitive
operation, they further show that safety is decidable.

Resembling HRU closdly is the Schematic Protection Model (SPM) by Sandhu et.
al. [Amm92 San88] that introduces the notion of security types - subject types and object
types. It has been shown that SPM is formally equivalent to monotonic HRU. Every
subject or object is created to be of a particular type. The SPM has been shown to be
flexible and able to formulate policies ‘in between’ the MAC and DAC poalicies. Another
similar HRU extension can be found in Typed Access Matrix (TAM) [San92a] where
again, the subjects and objects are strongly typed.

Yet another model closely related to the HRU access matrix model is the
Dynamically Typed Access Control (DTAC) model by Tidswell et. al. [Tid98, Osb00a].
DTAC addresses the security issues in a highly dynamic environment. In DTAC, subjects
and objects have no distinction and the access decisions are based on the security types.

Subjects are grouped into security types representing the subsystem to which they
belong. Objects are grouped into security types, which encode the format of the

10

information contained within the objects. DTAC uses dynamic typing, unlike the TAM
and SPM models. A safety invariant is maintained by static analysis and the dynamic
checks. Some benefits of DTAC include its use in modeling task-based security because
of its ability to handle dynamic environments and the reduced size of configuration that
can be achieved by grouping entities into types. These models are still in the theoretical
stage of development.

An access matrix implementation in a large system often results in a big matrix
with many empty entries [San94]. Because of this, an access matrix is rarely implemented
in the actual form of a matrix. Two approaches commonly used to represent the
information contained in an access matrix include [San94]:

* Access Control List (ACLs) and

» Capabilities

ACL is a popular implementation form of an access matrix. In this
implementation, an ACL is associated with each object and it contains information about
the rights each subject has on the object. It is easy to determine the access rights a subject
has on an object using ACLSs. Revoking access rights of a subject on an object iseasy as it
simply involves removing the entry in the ACL of the object. However, the disadvantage
of this approach isthat it is difficult to determine all the rights a particular subject has. To
do this, one must check all the ACLs in the system. Similarly, if all the rights of a subject
need to be revoked, again all the ACLs need to be traversed.

The dual approach of ACL is the Capabilities. In this approach, each subject is
associated with a list, called a Capability list, which contains the information about the
rights the subject has on each object of the system. Whereas ACL corresponds to storing
the columns of access matrix with objects, Capabilities correspond to storing rows of the
access matrix with the subjects. It is easy to check the total set of access rights of a
subject using this approach. However, determining the subjects that have access rights to
a particular object is difficult as this necessitates checking al the Capability lists in the
system. Fig. 2.1 shows the ACL and Capabilities representations of an access control
matrix.

2.1.2 Mandatory Access Control (MAC)
In MAC, all subjects and objects are classified based on some predefined

sengitivity levels that are used in an access decision [Bel76, Bib77, Mcl90,, San94].
These levels generaly form a lattice structure, and hence a MAC policy is sometimes

11

known as a lattice-based policy [San92b, San93]. An important goal of MAC is to control
information flow in order to ensure confidentiality and integrity of information, which
DAC does not do. For example, to ensure information confidentiality in defense
applications, Bell-LaPadula (BLP) model [Bel76], aso known as multilevel model, can
be used. BLP model is the best-known model for MAC [Mcl90]. It controls information
flow by enforcing the no read-up and no write-down rules given as:

o Smple security property: asubject sis alowed to read an object o iff 15> 1, (no-

readup property) wherels and |, are clearance and classification levels of sand o.

* *property: a subject s is allowed to write an object o iff Is < |, (no-writedown
property)

To achieve information integrity, the access rules can be formulated as no read-
down and no write-up [Bel 76, San93] as first proposed by Biba [Bib77]. Biba s integrity
model follows along the line of the BLP model in that its aim is to control flow of lower-
integrity information to higher-integrity objects but alow the flow in the opposite
direction [San93]. It is possible to combine the BLP model and the Biba model to get a
composite model that provides both confidentiality and integrity using lattices [Bib77,
San93].

Unlike DAC, MAC provides protection for data that is more robust, and deals
with more specific security requirements, such as information flow control policy.
However, enforcement of MAC policies is often a difficult task, and in particular, for
many commercial organizations [Cla94], they do not provide viable solutions because
they lack adequate flexibility. Furthermore, organizational security needs are often a
mixture of policiesthat may need to use both DAC and MAC, which necessitates seeking
solutions beyond those provided by DAC and MAC only [San94]. An example of such a
policy is the Chinese wall policy [Bew89]. The Chinese wall policy has been proposed to
mainly address access control requirements in conflict of interest situations that occur in
commercial sectors such as in consulting firms. For example, a firm is providing a
consulting service to two companies that are competitors e.g., banks A and B. A
consultant should not be able to access confidential information of both the banks.
Sandhu et. al. show that alattice structure can be used to represent such a policy [San93].

2.2 Role-based Access Control

Role based access control (RBAC) is aflexible approach that has generated great
interest in the security community [FerO1, Giu95, Giu97, JosOla, JosO1lb, Ker02, Nya9d3,

12

Nya99, Osb00a, San95, San96a, San97, San98a, Tar97b]. In RBAC, users are assigned
memberships to roles and these roles are in turn assigned permissions as shown in Fig.
2.2. A user can acquire al the permissions of arole of which he is a member. Role-based
approach naturally fits into organizational contexts as users are assigned organizational
roles that have well-defined responsibilities and qualifications [Fer93].

Manager
/ \

Senior Senior

t
; Administrator Engineer
User Role ission l l
Assignment
Roles
Administrator Engineer
Employee

Fig. 2.2. Constraints and hierarchy in RBAC

According to a survey conducted by the U.S. National Institute of Standards and
Technology (NIST) [Fer93], RBAC has been found to address many needs of the
commercial and government sectors. This study showed that access control decisions in
many organizations are based on “the roles that individual users take on as part of the
organization.” Many surveyed organizations indicated that they had unique security
reguirements and the available products did not have adequate flexibility to address them.

RBAC approach has severa advantages, the key among which include [JosO1b,
San94, San964]:

» Security management: The role in the middle approach to access control removes the
direct association of the users from the objects. This logica independence greatly
simplifies management of authorization in RBAC systems. For example, when a user
changes his role, al that needs to be done is to remove his membership from the
current role and assign him to the new role. In case authorizations were specified in
terms of direct associations between the user and the individual objects, this change
would require revoking permissions granted to al the objects and explicitly granting
permissions to the new set of objects. Using a role-based approach, the number of
assignments of users to permissions is considerably reduced. Generaly, a system has
a very large number of subjects and objects, and hence, using RBAC has benefits in
terms of managing permissions.

13

Role hierarchy: Natural role hierarchies exist in many organizations based on the
principle of generalization and speciaization [San96c]. For example, there may be a
general Employee role in a Consulting Firm as shown in Fig. 2.2: Employee,
Engineer, Senior Engineer, Administrator, Senior Administrator and Manager. Since
everyone is an employee, the Employee role models the generic set of access rights
availableto al. A Senior Engineer role will have al the permissions that an Engineer
role will have, who in turn will have the permissions available to the Employee role.
Thus, permission inheritance relations can be organized in role hierarchies. This
further simplifies management of access permissions. Fig. 2.2 shows a simple
hierarchy.

Principle of Least Privilege: RBAC can be configured to assign the least set of
privileges from a set of roles assigned to a user when that user signs on. Using least
privilege set minimizes the damage incurred to a system if someone not assigned to a
role acquires its permissions through other means, or if someone masquerades as
another user [Jos01b, San94, san96a) .

Separation of Duties. Separation of duties (SOD) has been considered a very
desirable organizational security requirement [Ahn00, Ber99b, Bew89, Kun99,
Nya99, San91, Sim97, Tid98]. SOD constraints are enforced mainly to avoid possible
fraud in organizations. RBAC can be used to enforce such requirements easily — both
statically and dynamically. For example, a user can be prevented from being assigned
to two roles to prevent possible fraud by using a static SOD which says that a user
cannot be assigned to two roles, one of which prepares a check and the other
authorizesit.

Grouping Objects: Roles classify users according to the activity or the access needs
based on the organizational functions they carry out. Similar classifications can aso
be possible for objects. For example, a secretary generally has access to al the
memos and letters in his/her office, whereas an accountant has access to al the bank
accounts belonging to hisher organization. Thus when permissions are assigned to
roles, it can be based on object classes instead of individual objects [San96a]. This
further increases the manageability of authorizations.

Policy-neutrality: Role-based approach is policy-neutral and is a means for
articulating policy [JosOlb, San96a]. Role-based systems can be configured to
represent many useful DAC, MAC policies [Nay95, Osh97, Osb00b] and user-defined
and organizational security policies.

14

2.2.1TheNIST RBAC Model

Recently, Ferrailo et. al. have proposed the NIST-RBAC (Nationa Institute for
Science and Technology RBAC) [Fer0l] as a standard reference model. Depicted in Fig.
2.3, NIST-RBAC uses a four-level system in which each higher level includes the
functional capabilities of all the levels below it. The levels correspond to four RBAC
models: flat, hierarchical, constrained, and symmetric.

The flat RBAC model provides the minimal features essential for any RBAC
mechanism. These include roles, user-role assignment, and role-privilege assignment.
Hierarchical RBAC includes as a requirement role hierarchies that define relationships
among roles in adomain. Constrained RBAC requires SOD.

Symmetric RBAC

Permission-role review with performance

Constrained RBAC

Separation of Duty

Hierarchica RBAC

Role Hierarchies

Flat RBAC

Basic features, user-role assignment view

Fig. 2.3. Proposed NIST RBAC Model

The symmetric RBAC model adds a permission-role review requirement. As a
result, the model allows identification of the permissions assigned to existing roles and
vice versa. RBAC approach is an attractive candidate for use in a multidomain
environment because of its flexibility, generality and easy manageability.

The NIST RBAC model as proposed by Ferraiolo et. al. consists of four basic
components. a set of users Users, a set of roles Rol es, a set of permissions
Per m ssi ons, and a set of sessions Sessi ons [FerO1]. A user is a human being or
an autonomous agent. A role is a collection of permissions needed to perform a certain
function within an organization. A permission refers to an access mode that can be
exercised on an object in the system and a session relates a user to possibly many roles. In
each session, a user can request to activate some subset of roles he is authorized to

15

assume. Such a request is granted only if the corresponding role is enabled at the time of
the request and the user is entitled to activate the role at that time. Severa functions are
defined for the setsUser s, Rol es, Perm ssi ons, and Sessi ons. The user role
assignment (UA) and the role permission assignment (PA) functions model the
assignment of usersto roles and the assignment of permissions to roles, respectively. The
user function maps each session to a single user, whereas the role function establishes a
mapping between a session and a set of roles activated by the corresponding user in the
session. On Rol es, ahierarchy is denoted by >. For rolesr;, rj J Rol es, if ri 2 1j, thenr;
inherits the permissions of r;. In such acase, r; isasenior role and r; ajunior role.

The GTRBAC model proposed in this dissertation is an extension of the NIST
RBAC model. The extensions are essentially with respect to the temporal constraints.

2.2.2 RoleHierarchy

Many researchers have highlighted the importance and use of role hierarchies in
RBAC models [Giu95, Giug7, Mof98, Mof99, Nya99, San96c, San98]. A properly
designed role hierarchy alows efficient specification and management of access control
structures of a system. When two roles are hierarchically related, one is called the senior
and the other the junior. The senior role inherits all the permissions assigned to the junior
roles. The inheritance of permissions assigned to junior roles by a senior role significantly
reduces assignment overhead, as the permissions need only be explicitly assigned to the
junior roles.

Even though the notion of role hierarchy has been widely investigated, to our
knowledge, no earlier work has addressed the implication of the presence of tempora
constraints on role hierarchies, which is the focus of our work. In particular, in this
dissertation, we present a detailed analysis of role hierarchy in the presence of various
temporal constraints with respect to the GTRBAC model and show that there are various
distinctions that need to be made about the inheritance semantics of arole hierarchy.

It is important to point out that Sandhu [San98] and Moffet [Mof98] have already
recognized the limitations of the pure inheritance semantics proposed in the RBAC96
family of models [San96a]. Sandhu [San98] has proposed the ER-RBAC96 model that
incorporates a distinction between two types of role hierarchy: usage hierarchy that
applies permission-inheritance semantics and activation hierarchy that uses activation-
inheritance semantics. In a usage hierarchy, the activation of a senior role allows a user
to acquire al the permissions of all of its junior roles but no user assigned only to the

16

senior role is alowed to activate the junior roles. An activation hierarchy extends
“permission inheritance hierarchy to roles that are stipulated to have dynamic separation
of duty (SoD)” [San98]. Our analysis further strengthens his arguments and shows that, in
the presence of timing constraints on various entities, the separation of the permission-
inheritance and the activation-inheritance semantics provides a basis for capturing
various inheritance semantics of a hierarchy. We show that these hierarchies can further
be divided into sub-types, to account for the subtle effects of temporal constraints. In
another important work related to role hierarchies, Moffet et al. [Mof98, Mof99] have
identified the need for three types of hierarchies — isa hierarchy, activity hierarchy and
supervision hierarchies — in order to address the needs of control principles in an
organization, which include separation of duty, decentralization and supervision and
review [Mof99]. They show that the complete inheritance within a hierarchy can limit a
hierarchy from achieving organizational control needs. Clearly, our temporal hierarchies
aswell as Sandhu’s hierarchies provide a basis for limiting such complete inheritancein a
hierarchy, making it possible to support separation of duty and restricted inheritance in a
hierarchy. Furthermore, Moffett et. al. [Mof99] point out that the commercia
organizations' demand for a dynamic access control model that can support dynamic
authorization states as well as dynamic propagation of access rights has largely been
neglected. As we show in this dissertation, the proposed GTRBAC' s temporal framework
and the trigger mechanism along with the temporal hierarchies provide a strong basis for
such dynamic features in an access control model.

Nyanchama et. al. address the transformation of hierarchies in terms of the
addition, deletion and partitioning of roles in the context of access rights administration
[Nya94]. However, the analysis is limited to hierarchies that contains only one type of
hierarchy among roles and does not indicate how the transformations are affected by the
presence of other constraints on hierarchical roles. We analyze the transformation of a
role hierarchy in the presence of multiple hierarchy types and constraints on hierarchically
related roles.

2.2.3 Constraintsin RBAC

Mainly two kinds of cardinality constraints are often mentioned in the literature -
user cardinality and role cardinality [Ahn0OO, Atl96, Fer0l1]. In this dissertation, we
introduce status predicates to capture al the states of a GTRBAC systems and present a
set of functions to capture complex cardinality control on these states.

17

Severa papers in the literature deal with separation of duty constraints, with
efforts focused on identifying various forms of SoDs as well as to categorize them
[Ahn0O, Ber99b, Bew89, Kun99, Nya99, San9l, Sim97, Tid98]. Simon and Zurko
[Sim97] discuss informally awide variety of SoD constraints that are required in systems.
Gligor et. al. [Gli98] provide a formalism for these SoDs. One limitation of this work,
however, is that it does not consider the session-based dynamic SoDs needed for
simulating lattice-based access control and Chinese Wall policy in RBAC [Bew89,
Sanl7, San92b]. Another limitation is that the SoDs defined do not capture the
hierarchical semantics. Improvements along these lines can be seen in the SoDs listed by
Ahn et. al. [Ahn00]. Unlike these approaches, we follow a predicate-based definition of
general exclusion and inclusion of various kinds of assignments and activations to define
the SoD propertiesin GTRBAC. This approach, while subsuming the SoDs defined in the
above-mentioned literature, also identifies the overall capability of an RBAC model to
capture the separation of duty constraints that may exist.

Dependency constraints form a less explored aspect in RBAC. While some form
of dependency is implied by role triggers, aso used in GTRBAC, the control flow
dependency constraints, where strict dependencies are implied, have not been included
within an RBAC framework. Such control flow dependencies are typically used in
workflow types of systems to define inter-dependencies between workflow tasks [Att93,
Tho97]. We believe that using such dependency constraints, GTRBAC can better handle
access control requirements in time-sensitive, workflow types of applications by
providing a much broader framework for mapping tasks into roles and using these
constraints to capture the interdependencies between these tasks.

No earlier work has addressed the issue of time-based cardinality, SoD, and
dependency constraints. Applying periodicity/duration constraints for these SoDs is more
suitable for supporting the access control needs of dynamically evolving systems that are
prevaent today. We further show that when intervals, durations or periodicity expressions
are associated with these constraints, different interpretations are possible.

2.3 Time-based Access Control

The importance of time-based access control requirements has only recently been
recognized. The need for time-based access control requirement can be attributed to the
growing importance of workflow-based applications, particularly in e-commerce and web
based application environments. Furthermore, the humongous volumes of data available

18

over the Internet based applications may have tempora characteristics which attach
varying security risks or importance to the available data. Such applications require
support for time-based authorization policies.

Few access control models have been proposed to address such requirements. In
particular, Bertino et. al. propose a time-based access control model in [BerOla]. In
[BerOla], Bertino et. al propose a Temporal RBAC model that extends the NIST RBAC
model with periodicity expressions used in [Ber98, Nie92]. Atluri et. al have recently
proposed a Tempora Data Access Model (TDAM) for addressing access control based on
the temporal characteristics of data being accessed, such as the valid time and transaction
time.

In the following sections, we briefly overview these models and compare with the
proposed GTRBAC model. As GTRBAC is a generdization of limited tempora
constraints introduced in the TRBAC model, the GTRBAC model borrows the periodic
time expression used in the TRBAC model. We briefly overview the periodic time
expression before discussing the time-based access control models.

2.3.1 Periodic Expression

Periodic time is represented through a symbolic formalism and is expressed as a
tuple ([begi n, end], P), where P is a periodic expression denoting an infinite set of
periodic time instants, and [begi n, end] isatime interval denoting the lower and upper
bounds imposed on instants in P [Ner98, Nie92]. The periodic time uses the notion of
calendar defined as a countable set of contiguous intervals representing their indices. A
sub-calendar relationship can be established among calendars. Given two calendars C;
and C,, C; is said to be a sub-calendar of Cy, written as C; = C,, if each interval of C; is
covered by afinite number of intervals of C;. A set of calendars containing the calendars
Hours, Days, Weeks, Months, and Years is assumed where Hours is the calendar that has
the finest granularity. Calendars can be combined to represent more general periodic
expressions denoting periodic intervals such as the set of Mondays or the set of the third
hour of the first day of each month. A periodic expression is defined as. P = Z i”:l 0.GCi

>X.Cq, Where Cy, Cy, ..., Charecdendarsand O, = all, G; 02N [{all}, G = Ci.. fori =
2,.,n CqE Cp,and x O N. Symbol > separates the first part of the periodic expression
that distinguishes the set of starting points of the intervals, from the specification of the
duration of each interval in terms of calendar C4. For example, {all.Years + {3,

19

7} Months > 2.Months} represents the set of intervals having aduration of 2 months with
their starting times synchronized with the same instant as the third or seventh month of
every year. In practice, O; is omitted if its value is all. In case O; is a singleton, it is
represented by its unique element. Similarly, x.Cqy is omitted when x isequal to 1. A set of
time instants corresponding to a periodic expression P is denoted by Sol(l, P). Similarly,
the set of intervalsin (I, P) is denoted by [](P). For ssimplicity, in this dissertation the
bounds begin and end, constraining a periodic expression, will be denoted by a pair of
date expressions of the form mm/dd/yyyy:hh. The end point end can aso be «. For
instance, [1/1/2001, 12/31/2001] denotes al the instants in 2001.

2.3.2 Temporal Access Control Models

Bertino et. al. propose a time-based access control model that supports temporal
authorization and derivation rules in a non-RBAC environment [BerOla]. The periodicity
constraint expression introduced earlier is used to describe how subjects are allowed time
constrained access to resources. Their model also introduces high level operators such as
WHENEVER, ASLONGAS and UPON to show tempora relations between temporal
authorizations. However, the proposed model is not role based and hence does not
provide the benefits of RBAC.

Atluri et. al. have recently proposed a Temporal Data Authorization Model
(TDAM) that can express access control policies based on the temporal characteristic of
data, such as valid and transaction time [Atl01]. The GTRBAC model proposed in this
dissertation can capture this aspect of authorization by using dynamic role-permission
assignments through periodicity and duration constraint, as well as triggers, athough we
do that at the abstraction of a permission, which is defined as a permitted operation on an
object. As TDAM focuses on the tempora characteristic of data and not on the overall
aspect of an authorization system, it again lacks benefits of an RBAC model. We believe
that TDAM’s capability to capture fine-grained temporal characteristics of data in an
authorization decision, it can be used to supplement, at a more concrete level, the
dynamic aspects of role-permission assignmentsin GTRBAC.

The Tempora-RBAC (TRBAC) model proposed by Bertino et. al. is the first
model that extends an RBAC model with temporal constraints [BerOla]. The TRBAC
model, however, supports tempora constraints on role enabling only. The main features
of the TRBAC model include periodic enabling of roles and dependencies among roles
expressed by means of triggers. Priorities are associated with role events for handling

20

potential conflicts. Precedence rules are used to resolve conflicts among events. The
TRBAC model also allows an administrator to issue run-time requests for enabling and
disabling arole.

The TRBAC model, however, cannot handle several other important temporal
constraints. First, the model does not include tempora constraints for the user-role and
role-permission assignments. It assumes that only roles are enabled and disabled at
different time intervals. In this dissertation, we show that in some applications, roles are
static in that they are enabled at al times, while users and permissions assigned to them
can be transient. Second, the TRBAC model only handles the temporal constraints on role
enabling and does not include any constraints on the actual activations of roles by the
users. Thus, the TRBAC model does not support well-defined, separate notions of role
enabling and role activation. Therefore, the TRBAC model cannot handle many
constraints that are related to the activations of a role such as the constraints on the
maximum active duration allowed to a user, the maximum number of activations of arole
by a single user within a particular interval of time, etc. In this dissertation, aroleis said
to be enabled, if it can be assumed by a user. On the other hand, aroleis active if thereis
a least one user who has assumed that role. Third, as the TRBAC model does not
consider duration constraints as well as constraints on the actual activations of roles, it
does not support the notion of enabling and disabling of constraints. The activation
constraints need to be clearly defined with respect to the enabled time of a role. We,
therefore, introduce the notion of constraint enabling/disabling. Finally, the TRBAC
model does not address the time-based semantics of role hierarchies and SoD constraints.

In this dissertation, we illustrate the importance of the constraints mentioned
above and accordingly propose a Generalized TRBAC (GTRBAC) model that subsumes
TRBAC and can handle all the issues mentioned above. To incorporate various
constraints regarding role activations, we distinguish between the notions of role
activation and role enabling.

21

3. THE GTRBAC MODEL

In this chapter, we propose the Generdized TRBAC (GTRBAC) mode that
allows expressing a wide range of temporal constraints. We first discuss various types of
temporal constraints relevant to role-based systems. In particular, we show how temporal
constraints can be meaningfully applied to various components of RBAC systems. To
incorporate various constraints regarding role activations, we distinguish between the
notions of role activation and of role enabling. The proposed GTRBAC model provides
duration and periodicity constraints, as well as other forms of specialized activation
constraints. We present the syntax and semantics of these constraint expressions. In the
subsequent sections, we discuss conflicts that may arise in a GTRBAC system and show
to handle them to provide an execution model. We also use a notion of safeness to argue
that the safe constraint sets ensure that certain undesirable or ambiguous execution
semantics do not occur.

3.1 Temporal Constraintsin GTRBAC

A key aspect of the proposed GTRBAC modd is that it distinguishes between the
notions of role enabling and role activation states. Such distinction leads to the notion of
states of arole, as depicted in Fig. 3.1. In the proposed model, a role can assume one of
the three states: disabled, enabled and active. The disabled state indicates that the role
cannot be used in any user session, i.e., a user cannot acquire the permissions associated
with the role. A role in the disabled state can be enabled. The enabled state indicates that
users who are entitled to use the role at the time of the request may activate the role.
Subsequently, if a user activates the role, the state of the role becomes active. A role in
the active state implies that there is at least one user who has activated the role. Oncein
active state, further activations of the same role do not change its state. When aroleisin
active state, upon deactivation, the role transitions to the enabled state if thereis only one
session in which it is active, otherwise it remains in the active state. A role in enabled or
active state transitions to the disabled state if adisabling event occurs.

activate

Enabled

disable disable

enable

deactivate

Disabled

Fig. 3.1 States of arole

22

Table3.1
Temporal constraint expressions
Categories Constraints Expression Set/
Type
User-role assignment (I, P, pr:assi gny deassi gny rtou) Curp
Periodicity i I, P, pr:ienabl e/ di sabl er
Consraint | ROe enabling (1, P, pr: | |) Cro
Role-permission assignment | (I, P, priassi gng/ deassigne p tor) Crrp
User-role assignment ([(1, P)| D], Dy, pr:assi gny deassigny r tou) | Cyyq
Duration : : :
[, P)|D], DR, pr:enabl e/ di sabl er
Congraints | Roleenabling ([(1, P)| D], Dg, p | |) Cra
Role-permission assignment | ([(I, P)| D], Dp, pr:assi gne/ deassi gnp ptor) | Cpgy
Total active Per-role ([(|, P)l D]: Doactive: [Ddefault]n pr:act [VER total r) Cadr
CDu;atlorl duration Per-user-role ([(|, P)l D]: Duactives U, priact | VER total r) Cadur
onstraints .
(activation) | Max role dur. Per-role ([(1, P)I D], Drvex, pr:act i Ver pax I') Cor
per activation Per-user-rolel ([(I, P)| D], Dumex, U, Pr:act i Ve(g mx) CPour
Total no. of Per-role ([, P)| D], Nactives [Ngetauit], pr:act i Vern) Canr
Céardsitna[it}[/ activations Per-user-rolel ([(I, P)| D], Nyaciives U, pr:act i veys n 1) C
onstrain :
(activation) | Max. no. of Per-role | ([(I, P)| D], Nirax, [Noetau], Pr:act i veg con I) Corr
con. activations | Per-user-rolg ([(I, P)| D], Numex, U, pr:act i Ve con) Cqomur
Constraint enabl e/ di sabl ec c
Enabling where ¢ 0{ (D, D,, pr:E), (C) , (D, C)} ©
Users activationrequest (si(de) activate r for uafter At)) Cy
. (pr:assi gny de-assigny rtou after At) Coadmi
Run-time Administrator’ s run-time : ; —
request request (pr:enabl e/ di sabl erafter At) Coagmin
(pr:assi gnp/ de-assignp p tor after At) | Cumin
(pr:enabl e/ di sabl ec after At) Coagmin
Trigger Ei,.... ., Ci,...,Ck - pr:Eafter At Cu

23

The proposed model allows the specification of the following types of constraints:
(1) temporal constraints on role enabling, user-role and role-permission assignments, (2)
activation constraints, (3) run-time events, (4) constraint enabling expressions, and (5)
triggers. Table 3.1 summarizes the constraint types and expressions of the GTRBAC
model, which are discussed in the following section.

3.1.1 Temporal Constraints on Role Enabling and Assignment

An important feature of the proposed GTRBAC model is that periodicity and
duration constraints can be applied to various components of RBAC. Specifically, by
constraining the times when roles are enabled or active, these constraints can be applied
to roles themselves, as well as to user-role and role-permission assignments. Depending
on the requirements, role enabling and assignments can be restricted to particular
intervals or to a specified duration.

Periodicity constraints are used to specify the exact intervals during which arole
can be enabled or disabled, and during which a user-role assignment or a role-permission
assignment is valid. Duration constraints, on the other hand, are used to specify durations
for which enabling or assignment of arole is valid. When an event occurs, the duration
constraint associated with the event validates the event for the specified duration only. In
case no duration constraint exists for the event, the event remains valid until it is disabled
by some other means, e.g., by atrigger.

3.1.2 Temporal Constraints on Role Activation

Role activations are the result of granting users requests to activate roles. Such
requests are made at the discretion of a user at arbitrary times and hence periodicity
constraints on role activations should not be imposed. However, duration constraints can
be imposed on role activations. In the proposed model, duration constraints on role
activations can be classified into two types: total active duration constraint and maximum
duration per activation constraint. The total active duration constraint on arole restricts
the span of the role's activation duration in a given period to a specified vaue. After the
users have utilized the specified total active duration for a role, the role cannot be
activated again, even though it may still be enabled. It can be noted that the total active
duration allowed for a role may span a number of intervals in which the role is enabled.
The total active duration may be specified on per-role and per-user-role basis. Per-role

24

constraint restricts the total active duration for a role. Once the sum of all activation
durations of the role reaches the maximum allowed value, no further activation of the role
is alowed. Per-user-role constraint restricts the total active duration for a role by a
particular user. Once a user utilizes the total active duration of the role specified for him,
he cannot activate the role further, whereas other users may still activate the role.

The maximum duration constraint per activation restricts the maximum duration
for each activation of arole. Once such a duration expires for a user, the role activation
for that user becomes void. However, there may still be other activations of the same role
in the system, including one by the same user in some other session. This constraint can
also be specified on per-role or per-user-role basis. The per-role constraint restricts the
maximum active duration for each activation of arole for any user, unless there is a per-
user-role constraint specified for that user. The per-user-role constraint restricts the
maximum active duration alowed for each activation of arole by a particular user.

In some applications, restrictions on the number of concurrent activations of arole
may be required for controlling access to critical objects or resources. For example, we
may want to ensure that a single user does not access al the resources while others are
denied the access. Such a cardinality restriction on role activation can be categorized into
two types: total n activations constraint, and maximum n concurrent activations
constraint. In the first category, aroleis limited to atotal of n activations. This constraint
may also be specified on a per-role or per-user-role basis. The per-role constraint allows
at most n activations of a role in a given period of time, irrespective of whether these
activations occur simultaneously in different sessions or at different times. Similarly, the
per-user-role constraint restricts atotal of n activations of arole by a specified user.

In the second category arole is restricted to n concurrent activations at any time.
Constraint on a per-role basis may be specified to restrict the number of concurrent
activations of arole to a maximum value. The activation of these roles may be associated
with the same or different users. On the other hand, the per-user-role constraint restricts
the total number of concurrent activations of a role by a particular user to a given vaue.
Different users may have different permissible upper limits on the number of concurrent
activations of the same role.

3.1.3 Run-time Requests, Triggers, and Constraint Enabling

As mentioned earlier, a user’s request to activate arole is made at his discretion.
In GTRBAC, a user’s role activation request is modeled as a run-time event. Similarly,

25

the administrators run-time requests to initiate events that may override any existing
valid events are also modeled. Such events can be used to override a pre-defined policy to
make useful changes in the policy. For example, an administrator may initiate events to
disable roles found to be in use by some malicious users. A relevant requirement in many
application domains is the need of automatically executing certain actions as an
occurrence of an event, such as the enabling or disabling of a role. In GTRBAC, we
model such dependencies among events by using triggers. In addition, the duration
constraints on role enabling and assignments and role activation constraints can be
enabled for a pre-specified interval or duration. GTRBAC includes constraint enabling
expressions to enable or disable such constraints.

3.2 Formal Syntax and Semantics of the GTRBAC Modél

In this section, we discuss the formal syntax and semantics for the constraint
expressions used in the GTRBAC model. Basic event expressions used by the GTRBAC
constraint language are depicted in Table 3.2. Priorities are associated with each event in
the proposed model. We define (Pri os, <) as a totally ordered set of priorities and
assume that Pr i os contains two distinct elements 0 and T such that, for all x O Pri os,
O< X<T.Weusex <y, if x< yand x Zy. Status predicates, listed in Table 3.3, are
used to capture the state information associated with roles. In GTRBAC, event
expressions, priorities and status predicates are used to express the constraints listed in
Table 3.1. Next, we present the syntax and semantics of the constraint expressions listed
in Table 3.1 and illustrate their use in expressing an access control policy in a medical
application domain.

Table 3.2
Prioritized event expressions

SimpleEvent (r 0 Rol es,ulUser s, and p O Per m ssi ons)

enabl er ordi sabler

assigny r tou orde-assigny r tou,

assignp ptororde-assigns ptor,

enabl ec or di sabl ec,

Prioritized Events

pr:E, where pr O Pri os and E isa simple event expression

26

Periodicity Constraints (I, P, pr:E)

As shown in Table 3.1, the periodicity constraint expressions have the general
form (I, P, pr:E). The pair (I, P) specifies the intervals during which an event E takes
place. E can be a role enabling event: “enabl e/ di sabl e r”, or either of the
assignment events: “assi gny deassigny p to r” or “assi gnp/ deassi gnp U
tor”.

Table 3.3
Status predicates
Status Predicate (C) Status Predicate with time (C)) | Semantics [for time]
enabl ed(r) enabl ed(r, t) r isenabled [at time t]
u_assi gned(u,r) u_assi gned(u,r,t) uisassignedtor [at timet]
p_assi gned(p,r) p_assi gned(p,r,t) pisassignedtor [at timet]
active(r) active(r,t) r isactive[at timet]
u_active(u,r) u_active(u,r,t risactivein u'ssession [at timet]
s_active(ur,s) s_active(ur,st) risactivein u'ssession s[at timet]
acqui res(u, p) acqui res(u, p, t) uacquiresp [at timet]
Uy
Sy | e e —————— e
Us
S3 llllllllll
us
Sp [— T
u,
S; PRI

1:l t2 t3 t4 tS 1:6 t7 t8 th 1:11th2

Fig. 3.2. Periodicity constraint on user-role assignment

Fig. 3.2 shows an example of periodicity constraints on user-role assignments.
The two thick lines at the time axis represent the intervals (ts, ts) and (tg, t11) in which role
r isenabled. The lines above the axis indicate intervals in which users are assigned to role
r. The dotted portions of these lines indicate intervals in which user-role assignments are

27

valid, although their assignment may not be in effect because the role is disabled in these
intervals. For example, when user u; is assigned to role r in interval (ti, ts), he can
activate role r only in the interval (i3, ts), as the role is disabled in the remaining part of
interval (t, ts). Similarly, user u, is assigned to r in interval (ts, ti0) but can activate the
role only in intervals (ts, ts) and (ts, tig). User uzisassigned to r in interval (o, t7) but can
assumer only ininterval (ts, te).

Duration Constraints ([(I, P,)|D], Dy, pr:E)

The general form of the duration constraint expressions for role enabling and
assignment is ([(I, P,)|D], Dy, pr:E), where x iseither R, U, or P, corresponding to events,
respectively:

“enabl e/ di sabl e r”,
“assi gny deassigny r tou” and
“assi gnp/ deassi gnp ptor”.

D and Dy refer to the durations such that D > Dy. The symbol “|" between (I, P)
and D indicates that either (I, P) or D is specified. The square bracket in [(I, P,)|D]
implies that this parameter is optional. Accordingly, we have three types of duration
congtraints: (I, P, Dy, pr:E), (D, Dy, pr:E) and (Dx, pr:E).

The expression (I, P, Dy, pr:E) indicates that event E is valid for the duration Dy
within each valid periodic interval specified by (I, P). (Dx, pr:E) implies that the
constraint is valid at all times. Therefore, if event E is caused at any time, it is restricted
to duration Dy. The constraint ¢c = (D, Dy, pr:E) implies that there is a valid duration D
within which the duration restriction Dy applies to event E. In other words, the constraint
c is enabled for duration D. The constraint enabling expressions as shown in Table 3.1
can be used to enable such constraints and the activation constraints discussed later. The
constraint enabling/disabling event has the expression of the form “enabl e/ di sabl e
c’, where c is a constraint expression (D, Dy, pr:E). A constraint enabling event
corresponds to either a run-time request or a triggered event. The duration constraint
expression has the same general form as that of the activation constraint expression.
Hence, the semantics of the duration constraints on role enabling and assignments is
similar to that of the activation constraints. The example about activation constraints in
Fig. 3.3 also illustrates how duration constraints mentioned here are imposed.

28

Activation Constraints ([(I, P,)|D], C):

Activation constraints have the general form ([(I, P)| D], C), where C represents
the restriction applied to a role activation. For example, C = (Dagives [Ddefault],
acti vertotal I) corresponds to the total active role duration per-role constraint. [(l,
P)| D] is an optional temporal parameter and has the same meaning as given by the
duration constraints. Therefore, similar to the duration constraints, an activation
constraint assumes one of the three forms: (I, P, C), (D, C) or (C). The first two
expressions are semantically similar to those for duration constraints. Constraint (C)
implies that the activation restriction specified by C applies to each enabling of the
associated role. If C is a per-role constraint, it has an optional default parameter that can
be used to specify the default value corresponding to the per-user-role restriction. For
example, if C = (Dactives [Ddefaut], 8Ct i VER total I') then Dyeaur indicates that the default
per-user-role active duration value is applied to al the users assigned to the role. In case
Dyeraut 1S NOt Specified, it is assumed to be equal to the per-role value, Dagive. Parameters
of other activation constraints can be similarly interpreted.

enablec
| Triggered or run-time
c :(D1 Nactive! activer-total I') c= (lv Pv Nactive’ act I Ver-tota] r)
t, i, t, t, (P t, ot ta t, tstg t,
_ (@ ()
Duration =D (t t3), (ts, tz) D M(1, P)
c= (Nactive’ acti Ver-total r)
b t ty Gt s & tg

s Duration = D
(¢) renabledusing (D, enabl e r)

Fig. 3.3. Constraint enabled (a) for a specified duration (b) in specified intervals (c) at all
times

29

Fig. 3.3 illustrates the three different forms of an activation cardinality constraint
C. In Fig. 3.3(a), the constraint c is of form (D, C). In this case, the role is enabled in the
intervals (ti, t3) and (t4, ts). A trigger or a run-time request can enable this constraint at
time t; (i.e.,, event “enabl e ¢’ occurs). Subsequently, ¢ becomes valid for duration D,
which in this case corresponds to interval (t,, ts). However, within interval (t, ts), a
subinterval (ts, t4) can exist in which role r is not enabled. The cardinality constraint c
implies that the total number of activations of role r in the intervals (t, ts) and (s, ts)
combined should not exceed Ngcive-

Fig. 3.3(b) illustrates an activation constraint of the form c = (I, P, C). Here, (ta,
t3) and (ts, t7) are intervals in (I, P) and hence, during each of these intervals the total
number of activations of roler isrestricted to Nacive- Fig. 3.3(C) shows a constraint of the
form c = (C), where, for each enabling period of r, constraint (C) is valid. For example,
role r is enabled by a periodicity constraint in the intervals (1, to), (i3, ts) and (t7, tg).
During each of these intervals, at most Naive activations of role r are alowed.
Furthermore, role r can aso be enabled in interval (ts, ts) because of the duration
constraint (D, enabl e r). The activation constraint ¢ is then also applicable to this
interval, for which only Nggive activations of roler are allowed.

Run-time Requestsand Triggers:

As shown in Table 3.1, a user’s run-time request to activate or deactivate a role
canbeexpressed as: (1) s: activaterfor uafter At,and(2) s: deactivater
for uafter At The priority associated with this request is assumed to be the same as
that of event “assign r to u” that authorizes the activation of role r by user u.
Similarly, an administrator's run-time request expression, written aspr:E after Atis
aprioritized event that occurs At time units after the request. In case the priority and the
delay need to be omitted, we set pr =T, where T represents the highest priority, and At =
0.

The trigger expression has the form E; ,..., E,, C1,..., Ck - pr:Eafter At,
where E;’s are simple event expressions or run time requests, C;’s are status predicates,
pr:E isaprioritized event expression with pr< T, E is a simple expression such that E [
{s.activater for u},and Atisaduration expression. It can be noted that because
an activation request is made at a user’'s discretion, the event E should not be
“scactivate r for u’. However, event “s. activate r for u’ can trigger other
events and hence can be a part of the body of a trigger. Note that the event “s. de-

30

activate r for u’ isalowed to appear in the head of atrigger as it can be used to
enforce system controls. We illustrate the GTRBAC specification of an access control
policy through the following example for a medical information system.

Exanpl e 3. 2. 1: Consider the GTRBAC access control policy of Table 3.4,
from a medical information system. In row 1a, the enabling times of DayDoctor and
NightDoctor roles are specified as a periodicity constraint. The (I, P) forms for
DayTime (9am-9pm) and NightTime (9pm-9am) are as follows. DayTime =
([12/1/2003, o], all.Days, + 10.Hours > 12.Hours), and NightTime = ([12/1/2003, o],
all.Days, + 12.Hours > 12.Hours).

Table 3.4.
Example GTRBAC access policy for amedical information system

A | (DayTime, enabl e DayDoctor), (NightTime, enabl e NightDoctor)

(M, W, F), assi gny Adamst o DayDoctor), ((T, Th, S, Su), assi gny Billt o
DayDoctor),

(Everyday between 10am - 3pm, assi gny Carol t o DayDoctor)

(assi gny Ami t o NurselnTraining); (assi gny Elizabetht o DayNurse)

¢l = (6 hours, 2 hours, enabl e NurselnTraining)

(enabl e DayNurse - enabl e cl)

W | > |m| >0

(act i vat e DayNurse f or Elizabeth — enabl e NurseInTraining af t er 10 min)

(enabl e NightDoctor — enabl e NightNurse after 10 min); (di sabl e NightDoctor
- di sabl e NightNurse after 10 min)

@]

A | (10, acti vegr , DayNurse);

4 | B | (5 activeg, NightNurse);

C | (2hours, acti veg (ora NurselnTraining)

In 1b, Adams is assigned to role DayDoctor on Mondays, Wednesdays and
Fridays, whereas Bill is assigned to it on Tuesdays, Thursdays, Saturdays and Sundays.
The assignment in 1c indicates that Carol can assume the DayDoctor role everyday
between 10am and 3pm. In 2a users Ami and Elizabeth are assigned roles
NurselnTraining and DayNurse respectively, without any periodicity or duration
constraints. In other words, their assignments are valid at all the times. 2b specifies a

31

duration constraint of 2 hours on the enabling time of the NurselnTraining role, but
this constraint is valid for only 6 hours after the constraint cl is enabled. Consequently,
once the NurselnTraining role is enabled, Ami will be able to activate the
NurselnTraining role at the most for two hours.

Trigger 3a indicates that constraint cl is enabled once the DayNurse is enabled.
As a result, the NurselnTraining role can be enabled within the 6 hours. Trigger 3b
indicates that 10 minutes after Elizabeth activates the DayNurse role, the
NurselnTraining role is enabled for a period of 2 hours. Asaresult, anursein training
can then have access to the system only if Elizabeth is present in the system. In other
words, once the roles are assumed, Elizabeth acts as a training supervisor for anursein
training. It is possible that Elizabeth activates the DayNurse role a number of times
within 6 hours after the DayNurse role is enabled. The activation constraint 4c limits
the total activation time associated with the NurselnTraining role to 2 hours. The
constraint set 4 shows additional activation constraints. For example, constraint 4a
indicates that there can be at most 10 users activating DayDoctor role at a time,
whereas 4b shows that there can be at most 5 users activating the NightDoctor role at a
time.

3.3 GTRBAC Conflict Resolution and Execution Semantics

In this section, we address issues related to conflicts that may arise in the
GTRBAC mode and propose an approach for conflict resolution and generating an
execution model. We define set /~ consisting of all the event expressions, constraints and
triggers in a GTRBAC system as the Tempora Constraint and Activation Base (TCAB).
The set /" is essentially a set of constraints of the types listed in Table 3.1. Furthermore,
we assume users and administrators run-time requests as a sequence RQ = (RQ(0),
RQ(2),..., RQ(t), ...). Note, RQ(t) U RQ is a set of run-time requests at time t and may be
empty.

3.3.1 Conflictsin GTRBAC

Various types of conflicts may arise in a GTRBAC system. A clear semantics is
needed to capture such conflicting scenarios. For example, a role enabling event caused
by a periodicity constraint, and arole disabling event caused by the firing of atrigger, can
correspond to the same role and may occur at the same time. Such a scenario givesrise to

32

conflicts. Essentialy, there are three categories of conflicts that may occur for a given /~
and arequest sequence RQ, as depicted in tables 3.5-3.7. These include:

1.

Conflicts between events of the same category (type 1 conflicts): Events in the same
category are associated with the same pair of states of a role or assignment. For
example, event “enabl e r” results in changing the disabled state of role r to an
enabled state whereas event “di sabl e r” corresponds to changing the enabled state
of a role to the disabled state. Similarly, events “assign r for u” and “de-

assi gnr for u” are of the same category. The entriesin Table 3.5 refer to conflicts
among the same category of events. A pair of events E; and E, in arow is said to
conflict (written as E, = Conf (E,)) if the corresponding condition C holds.

Table3.5

Type 1 conflicts: conflicts between events of same category

Conflicting o
E; E, = Conf (Ey) Condition (C)
Events
Role Enabling enabler Di sabler
conflicts disabler enabl e r’ (r=r)
assignyr tou de-assignyr tou
Assignment de-assignyrtou assignyrtou (r=randu=u)
conflicts assignp ptor de-assignpp' tor
de-assigne ptor assignp ptor (r=randp=p’)
o s.deactivaterfor u | s:activater foru | (s=s,r=r andu=u)
Activation
. . s:deactivater for
conflicts s activaterforu (s=s,r=r andu=u)
u
Congtraint enabl e c di sablec
enabling _
) di sablec enablec (c=c)
conflicts

Conflicts between events of different categories: (type 2 conflicts): Conflicts may aso
arise between events of different categories. For instance, an activation request
“activateufor r” andaroledisabling event “di sabl e r” are conflicting events
if they attempt to occur simultaneously, as a disabled role cannot be active. Similarly,

an activation event “act i vat e uf or r” and a user-role de-assignment event “de-

33

assignrto u’ cannot occur at the same time as a user may activate arole only if

he is assigned to the role. We aso note that events “enable r ” and

“s: deacti vaterfor u” donot conflict even if both occur simultaneously.
Table 3.6

Type 2 conflicts: conflicts between events of different categories

Conflicting Events E; E, = Conf (E,) Condition (C)
Activation vs. role _ _
s activaterfor u di sabler (r=r)
disabling
Activation vs. _ _
] s activaterfor u De-assignr tou (r=r & u=u)
deassignment

3. Conflicts between constraints (type 3 conflicts): Conflicts may also occur between
two constraints defined for role enabling or role assignment (type 3a shown in Table
3.7). For example, a duration constraint on role enabling, (Dgr, enabl e r) and a
duration constraint on role disabling (Dg, di sabl e r) may occur at the sametime, if
both “enabl e r” and “di sabl e r” events are valid at the same time. It can be noted
that such conflicts occur because of the underlying conflicting events.

Table3.7

Type 3 conflicts: conflicts between constraints

Cemilielit C C, = Conf (Cy) Condition (C)
Constraints
E, = Conf (Ey) &
Type 3a (X, di, Ey) (X5, dy, Ey) occurrence of d; and
d, overlap
(dy, dg, @Ct i VER total _ (r=r)and(dy#dyor
B (duau u, acti VeUR_t ot al r')
I') dd 3& dua)
. . (r=r") and (dmax #
(dyeo @Cti veg mx) (dumess U, ACLT Ve R max)
uren)
Type 3b
)) (r=r)and(ny#ny or
(Na Ng, acti veg o r) (N, u,activegn 1)
Na 7 Nya)
. . (r=r") and (Nmax #
(Mmaxs Ct T VER max 1) | (Numaxs U, ACL T VEUR frax 1)
Nyrren)

34

A conflict can occur between the per-user activation constraint and the per-role
activation constraint (type 3b) as shown in Table 3.7. For example, consider the per-
role constraint (Dacive, [Daetault], aCt i Ver torar I) and the per-user-role constraint
(Duactives U, @Ct i Veur total). Thefirst constraint indicates that roler is allowed for
an activation duration of Dacive, Whereas the second constraint specifies that user u is
allowed to assume role r for the total activation duration of Dy,. If duration Dgetaui 1S
specified, then all the users are restricted to atotal activation time of Dgeaut. Thereis
an inherent ambiguity whether the user u should be allowed a total activation time of
Duactive OF Dyerauit- NOte, in the per-user constraint if dyerau: 1S NOt Specified then we
assume Dyetaut = Daciive- IN Other words, any single user may activate role r for the
entire activation duration of Dagive. Therefore, the per-user-role constraint will again
conflict with the per-role constraint.

The GTRBAC model uses the notion of blocked events to resolve conflicts of
types 1 and 2, as defined below. When priorities cannot resolve conflicts, the model uses
a negative-takes-precedence principle to resolve type 1 conflicts. According to this
principle, disabling of arole takes precedence over enabling the role and the deactivation
of arole takes precedence over the activation of the role. Similarly, for type 2 conflicts,
we prefer the role disabling and user-role deassignment event over the activation event, as
an enabled role and a valid assignment are prerequisites for a role activation. The
following definition states these conflict resolution rules.

Definition 3.3.1 (Conflict resolution for Type 1 and Type 2) Let Sbe a set of
prioritized event expressions and constraints. Let pr:E be a prioritized event expression,
where E is an event and pr [Pri os. pr:E is said to be blocked by S if the following
conditions hold:

1. ifthereexistsa q [Pri os, such that g:Conf(E) O Sand the following holds
a |If pr:E and g:Conf(E) result in a type 1 conflict, then either
i. Ecorrespondsto E; orin Table 3.5, and pr < g, or
ii. Ecorrespondsto E; in Table3.5and pr < g;
b. If pr:E and g:Conf(E) result in atype 2 conflict,and E=s:acti vaterfor u
2. if there exists a valid constraint ([(I, P)| D], X) that does not permit event pr:E to
occur.

The set of non blocked events in Sis denoted by Nonbl ocked(S). Furthermore,
if both type 1 and type 2 conflicts occur, events blocked by type 1 conflicts are removed
prior to removing events blocked by type 2 conflicts. In addition, if S has valid

35

constraints of the form ([(I, P)| D], X), events blocked by these constraints are evaluated
last.

In definition 3.3.1, 1(a)(i) implies that event “q:disable r” blocks “pr:enable r” if
pr < g. If, however, pr < q then according to condition 1(b)(ii), the event “g:enable r”
would instead block the event “pr:di sabl e r”. Condition 1(a) appliesto all the conflicts
of type 1. Rule 1(b) applies to type 2 conflicts depicted in Table 3.6. According to this
rule, events associated with role disabling or user-role de-assignment events override the
role activation events, as role activation by a user depends on both the role enabling and
user-role assignments. It is important that a role disabling or user-role de-assignment
event is not blocked if either one aims to block an activation event. By resolving the type
1 conflicts first, we ensure that an activation event is blocked by a role disabling or user-
role de-assignment that has not been blocked. Parts (b) and (c) of Example 3.3.1
presented below illustrate the necessity of handling type 1 conflicts prior to handling type
2 conflicts. The second part of the definition indicates that an event may also be blocked
by the duration constraints on role enabling and assignments, and activation constraints
on roles. When several activation requests for arole are present, some of these activation
requests may need to be blocked to enforce an activation constraint. For example, assume
that there is a cardinality constraint that says only five activations of role r are to be
allowed at atime. If, at a particular time, multiple requests associated with role r are
present, the cardinality constraint on the role will block two of these events. In such cases,
a predefined selection criterion is needed to select the activation requests that are to be
blocked. Such a selection criterion may depend, for example, on the priority of the
activation requests, or the duration for which the activation has existed, or their
combinations. Furthermore, note the general form of the activation request is “activate r
for u after At”, which indicates that a user may request role activation in advance. The
selection criteria can use the value of At to determine activation requests that should be
blocked. Furthermore, once the type 1 and type 2 conflicts have been resolved, events
blocked by constraints following the resolution rule defined for the type 3b conflicts are
selected. The following example further illustrates the notion of the blocked events.

Exanpl e 3.3.1: Assume asystem with two prioritiesH = Hi gh and VH
= Very Hi gh withH<VH. Now, consider the following three cases of increasing
complexity.

@ Le S = {H enable ro H disable ro, VH enable ry,
H: di sabl e r;}. Thus, by condition 1(a)(i) of Definition 3.3.1, Nonbl ocked(S) =

36

{H: di sabl e rg, VH: enabl e r;}, since event “H: enabl e ry” isblocked by event
“H: di sabl e ro”. Similarly, according to condition 1(a)(i), event “H: di sabl e ry”
isblocked by “VH: enabl e ry.”

(b) Next, we consider a more complex case for S = {H: enable
ro, H: di sabl e ro, VH. enable r;, H disable r; VH (s:activate r;
for wu)}. Assume we first resolve type 2 conflicts and then type 1 conflicts. In this
case, event “VH: (s: activate ry for u)’ isremoved first asit is blocked by the
event “H: di sabl e ry,” as per condition 1(b)(i). We then encounter the case where
Nonbl ocked(S) = {H: di sabl e ro, VH enabl e ri}. Note, event “H: di sabl e
r;,” that blocks event “VH. (s: activate ry for u)”, which itself is a blocked
event. Hence, blocking of event VH: (s: activate r; for u)byH disable r;
IS not correct.

Alternatively, assume we first remove type 1 conflicts, which results in
Nonbl ocked(S) = {H: di sabl e ro, VH: enabl e r;, H (s: activate r; for
w)}. In the next step, we remove any type 2 conflicts. Asevent “H: (s: activate r;
for wu)” is not blocked by any event, the final result is Nonbl ocked(§ =
{H: di sabl e ro, VH: enabl er;,H (s:activate r; for u)}.

(© S can be further extended as follows: S={H: enabl e ro, H: di sabl e
ro, VH: enable r;, H disable ry, VH (s:activate r; for uy),
H. (s:activate rpy for uy), enable c}, wherec= (1, Hacti ver total r1).
After resolving type 1 and type 2 conflicts, we generate Nonbl ocked(S =
{H: di sabl e ro, VH:. enabl e r;, VH: (s: activate r; for u), Henabl e c,
H: (s:activate rp; for wuy)}. Note that constraint ¢ implies that only one
activation of ry is permitted. Thus, one of the activation requests must be blocked.
Because of the low priority event “H: (s: activate ry; for up)” isblocked. Hence,
the final set of non-blocked events generated is Nonbl ocked(S) = {H: di sabl e ry,
VH: enabl er;, VH: (s: activate ry for u)}.

It can be noted that type 3a conflicts associated with constraints are mainly due to
the underlying conflicting events associated with the constraint expressions. Hence, the
resolution of type 1 conflicts in Definition 3.3.1 is applicable to type 3a conflicts as well.
To resolve type 3b conflicts, we us a combination of the “per-role-takes-precedence over
the per-user-role constraint” and the “more-specific constraint takes precedence’ rules.
These rules are formally defined below:

37

Definition 3.3.2 (Conflict resolution for Type 3b conflicts): Let (dn,, [dngefauit,]
pr:acti veg x r) bea per-role constraint and (dny,, U, act i veyr x r) be a per-user-role
constraint defined for the sameroler, and R x [{R Total , R_ Max, R n, R con}.
Then the following rules apply:

1. If there exist the same type of activation constraints for a role, the highest priority
constraint blocks the others as per definition 3.3.1.

2. With respect to the per-role parameter dn, and the per-user-role parameter dng,, the
per-role constraint overrides the later one.

3. With respect to the default parameter dngerau; @nd the per-user-role parameter dny,,
the more-specific per-user-role constraint overrides the later. In other words, when
per-role activation constraint (dna, dngeraut, Pr:acti vegryx r) and per-user-role
activation constraint (dng, U, activeur x r) are both specified, user u has
constraint dny,, but not dngefauit-

4. The following conditions hold: (1) d; = dya, and (2) dy = N.dya, for some n > 0. In
other words, the value of per-user-role parameter should not exceed the value of per-
role parameter.

3.3.2The GTRBAC Execution Mode

Based on the rules for conflict resolution defined in the previous section, we now
discuss the execution semantics of the GTRBAC model. In this section, we define system
states and traces, and construct an execution model for GTRBAC. We also provide a
definition to capture events that are caused at each instant of time, and present a state
generation algorithm for constructing new states from the existing states based on the
current set of the valid constraints.

The dynamics of occurrences of events and various states of role enablings and
activations in GTRBAC are represented as a sequence of snapshots. Each snapshot
provides the current set of prioritized events and the status of role, user-role and role-
permission assignments as well as that of the activation constraints. To efficiently
represent status information in the form of snapshots, we first define the following two
structures, called u-snapshot and r-snapshot:

Definition 3.3.3 (u-snapshot/ r-snapshot): We define:

1. a u-snapshot for user u with respect to aroler as a tuple (u, r, dua, Nua, dm, Nm, S,
Dy), wherer 0 Rol es, ulJ User s such that u is assigned to r, and the constraint
parameters are as defined in Table 3.8.

38

2. an r-snapshot for arole r as a tuple (r, dra, Nra, drm, Nrm, Status, Py, U;) where, r O

Rol es and the other constraint variables are as defined in Table 3.8.

In particular, these structures are used to model events, various role and
assignment status, and the status of constraints obtained by two distinct sequences EV,
and ST, respectively. The model in the form of a system trace is defined below.

Table 3.8.
Constraint parameters of u-snapshot and r-snapshot

u-snapshot parameter

r-snapshot parameter

dua | remaining total duration for which d remaining total active duration for r,
u can activater @
N | remaining number of timesthat u n remaining total number of activations of r,
can activater, @
dn | maximum duration for which u can d remaining maximum active duration for r,
activater at onetime m
N, | maximum number of concurrent n remaining maximum number of activations of r,
activations of r that u can have m
S = (S, S, - » &) isthelist of status | current status of r
sessionsin which uiscurrently P isthe set of permissionsthat are assigned tor.
SJ r
usingr and D, = (dy, d, ..., d) is is the set of u-snapshots such that, for all ut /7
thelist of durations of activations U, U, , ut.r = r; where ut.r refer to the element r of

of r by uin each of these sessions.

the u-snapshot ut.

Definition 3.3.4 (System Trace) A system trace - or simply a trace — consists of
infinite sequences of EV and ST, such that for all integerst > O:

the t" element of EV, denoted as EV(t), is a set of prioritized event expressions.
Intuitively, thisis the set of events which occur at timet;

the t" element of ST, denoted as ST(t), is a set of r-snapshots corresponding to
existing roles at time t. Algorithm Conput eST in Fig. 3.4 is used to compute ST(t)
for eacht.
A trace is called canonical if ST(0) = set of r-snapshots of the form (r, o, o,, oo,,
o, di sabl ed, O, O) for all rolesr in the system, i.e., all r-snapshots areinitialized to
(r, o,, 00, 00, 00, di sabl ed, 0, 0). We assume that a system starts from an initial state
where all the roles are disabled and there are no user-role assignments, role-permission
assignments or valid activation constraints. Such a state exists a timet = 0. As the time
progresses, the events listed in Table 3.2 take place thus changing various role and

39

assignment states. The notion of a GTRBAC trace with such an initial state is represented
by a canonical trace.

The above definition of a trace enforces the intended semantics of events. The set
Nonbl ocked(EV(t)) contains the maximal priority events that occur at time t. We note
that /~ and RQ determine a unique state. It can also be noted that the state information
contained in ST(t) concerning the active state of roles depends on activation constraints
enabled at time t. A duration constraint or role activation constraint (c) is valid if event
“enabl e ¢’ isin Nonbl ocked(EV(t)). Therefore, given a previous state, event set and
the valid activation constraint set, the following proposition holds.

Proposition 3.1 [7]. Given a sequence EV, and an initial status &, a unique trace
(EV, ST) is generated with ST(0)=S,.

The proposition implies that a procedure to generate a unique trace can be
developed. Accordingly, we describe an algorithm Conput eST, shown in Fig. 3.4 that,
based on a given set of events and valid constraints, computes the next state from an
existing state. Based on the unblocked events and the current set of valid constraints, the
algorithm updates the state information contained in r-snapshots and u-snapshots. All the
eventsin Nonbl ocked(EV(t)) happen at time t. The state information ST(t) contains the
effect of the eventsin Nonbl ocked(EV(t)) on state ST(t-1).

In step 1, al non-blocked assignment/de-assignment and deactivation events are
processed. In step 2, the role disabling events are processed. Note, when a role is
disabled, the role-specific and the user-specific parameters are reset to oo, which indicates
that if there are no per-role or per-user-role constraints then the activation duration and
number of concurrent activations are unlimited.

Note, the conflict resolution rules for type 2 conflicts indicate that the role
disabling and the user-role de-assignment events affect the active sessions related to
corresponding roles and users. Hence, it isimportant to first process these events and then
update the information related to active roles that remain active for the next unit duration.
In step 3, the values of per-role parameters in r-snapshots are reverted to the initial value
oo corresponding to those activation constraints that become invalid. In step 4, per-role
constraint variables in r-snapshots of the newly enabled roles are initialized. In step 5,
new activations of roles are processed. In this process, first, the cardinality variables per-
role and per-user-role are decremented to find the remaining number of activations
allowed after this activation request has been granted. Next, users’ constraint variables
areinitialized and session information is entered to the session list.

40

Functions used are defined as
follows:

renove(s, S D), where, s is a
session id, S={s, S, ... , &
and D = {dy, dy, ... , d} isa
procedure that computes (S, D)
suchthat S= S—{sf andD =D
—{d}, where d correspondsto s.

add(s, d, S D), where, s is a
session id, d is the duration of
activationrelated to s, S={s,, 5,
St and D ={d;, dy, ..., di};
after processing, we get S= SO
{s} andD =D O {d}.

decr enent (D), where D = {d,,
dy, ... , d} is a set of integers;
after processing we get D =
{di-1,dx>-1, ...,d1}.

sessions (r) returns a set of
sessions {sy, S, ... , & tin which
roler is currently activated.

durations(r) retuns a set of
active durations {d;, do, ... ,
dgthat corresponds to the
sessionsinsessi ons(r)

Algorithm Conmput eST !
I nput 1, BV, ST, CT,; '
Qut put : ST(b); :

/* Initialy ST(0) = (r, o0, 00, 0, 0o, di sabl ed, 0, O). For each

pair (r, u) we use the associated snapshotsrt and ut 0 U,. |
Assume that CT (t) = {c| enabl e ¢ ONonbl ocked(EV(t))*/

Step 1: Handle assignments */ i

FOR each E 00 Nonbl ocked(EV(t)) DO !
Case(E)of de-assignrtou :U,=U,-{ut}; !

de-assignptor :P,=P -{p}; !
assignptor ;P =P, O{p}; !
assignrtou : U= U, O{(u, oo, o, 0, 0o, [1,00)};1
adeactivaterfor u:renove(s S, Dy |

/* Step 2: Handle role disabling event */ |

FOR each (di sabl e r) [0 Nonbl ocked(EV(t)) DO |

rt.status = di sabl ed; |
IF (C, 0 CT (t)) THEN
Set per-role parameters of rt to c !
FOR each ut 0 U, DO !

Set (S, Dy) to (0.0, |

IF (C« O CT (1)) OR (Cy1 O CT (1)) THEN !

Set per-user-role parameters of rt to oo :

/* Step 3: Handle valid congtraints */ |

FOR each ((X, C) O CT (t-1) and (X, C) O CT (t)) |

where X 0{(l, P), D} & Cisaper-role activation constraint DO

IF (C=C,) THEN :
Set per-role parameters of the corresponding rt to
/* Step 4: Handle role enabling events */
FOR each (enabl e r) 0 Nonbl ocked(EV(t)) DO
IF (rt.status# enabl ed) / * roleisbeing enabled */
rt.status = enabl ed;
FOR each ([(I, P)|D], C) O CT (t)) Set the per-role parameter of rt to per-role value specified in C

/* Step 5: Handle valid activation requests*/

FOR each (s: acti vat e r for u) O Nonbl ocked(EV(t)) DO /* assumert forr and ut foruinrt* /
rt.n,=rt.n,- 1, ut.n,= ut.n,-1; /* decrement the values */

FOR each ([(I, P)|D], C) O CT (t)) such that C isaconstraint onr DO
IF (Cisper-user-role constraint) THEN
Set the per-user-role parameter of the corresponding ut to that in C.
ELSE /* Cisaper-role constraint */
|F (per-user-role default value is specified in C)
Set the per-user-role parameter of the ut to default value;
ELSE /* per-user-role default value is not specified in C*/
Set the per-user-role parameter of ut to the per-role valuein C;
d = min(dy, dy); /* update the remaining role value */
add(s, d, §, Dy);
/* Step 6: Process constraint variables for the currently active roles and user-role activation*/
FOR each r-snapshot DO
IF status=enabl ed THEN
decrenent (durations(r)); da=da-|sessions(r);
ELSE
O = da—1;
FOR each user assigned tor DO dy, = dya—1;

Fig. 3.4. Algorithm Conput eST

41

In step 6, the remaining active duration of each role is decremented. The tota role
duration is also adjusted accordingly. For disabled roles, the duration constraint variables,
for both roles and users assigned to them, are decremented. Decrementing duration
constraint variables takes care of any activation constraint that is valid at the time the
associated role is disabled. The following theorem shows that the agorithm terminates
correctly. Also, the theorem provides the complexity of the algorithm.

Theorem 3.1 (Correctness and complexity of Conput eST): Given EV(t),

CT(t), ST(t-1) and /, the algorithm Conput eST:

1. produces ST(t) such that the updated status of r-snapshots and u-snapshots in ST(t)
satisfies all the constraintsin /~and the valid activation constraints for the interval (t,
t+1).

2. terminates, and has complexity O(ng (Nny + Np+ Ngy)), where ng, np, Ny and ngy
represent the number of roles, permissions, users, and the maximum allowable
number of sessions, respectively, in a system.

Proof of the theorem is presented in the appendix A.

Given a /[~ and arequest stream RQ, we need to identify eventsin EV. Intuitively,
each event should be caused by some element of /- or RQ. When a trigger causes a
prioritized event, the event expressions in the body of the trigger should not be blocked.
Eventsin EV are formally defined as follows.

Definition 3.3.5 (Caused Events) Given atrace, a /- and a request sequence RQ,
the set of caused prioritized events at time t, is the least set Caused(t, EV, ST, 7, RQ)
(in short, written as CSet (t) below) that satisfies the following conditions:

Cl. If (I,P,pr:E) and t 0 Sol(l, P) thenpr:E =CSet (t) (for periodicity constraint)

C2. If (pr:Eafter At) 0RQ(t-At) At<t)then (for run-time request)
pr:E = CSet (t);
C3. If[E1,....,En,C1,...,Ck - p:Eafter At] O/ and thefollowing
conditions hold then pr:E 0 CSet (t); (for triggers)
a 0<At<st&

b. OC;, suchthat (1<i<Kk), Ciholds(CijisCorC; asshowninTable4.1 &
c. 0E;, suchthat (1<i<n), pr:E OEV(t - At) not blocked by EV(t - At)
C4. a Ifc=(,P,X)0/7andtdS0I(l,P) & (for duration/activation constraints)
i. 0 At=(t-t) <Ds&

42

ii. [B - pr:E after At] O/ or arun-timerequest pr: ECIRQ(t- ty),
asaresult of which pr:E CSet (t - t;) not blocked (EV(t - t1)))))
then pr:enabl e c 0 CSet (t);
b. Ifc= (D, X) 0/ wherexO{U, R, P}, andif thereexistsa pair tj, t, such
that

i <t & Aty=(t-t)) <D &

ii. (OB - pr:enabl e cafter At;]] O/ OR pr:enabl e ¢ ORQ(t-
t1) as a result of which enabl e c [0 CSet (t- t;) and is not blocked
by EV(t- t1))

then pr:enabl e c 0 CSet (t);
Furthermore, in addition to (a) and (b), If X = (Dx, pr:E) O /" is a duration
constraint suchthat x 0 {U, R, P}, and the following condition holds
i. (OB - pr:E after Aty] O/ OR pr:EORQ(t- tp), as a result of
which pr:E 0 EV(t—t) and is not blocked by EV(t —t)
then pr:enabl e ¢ 0 CSet (t) and g:enabl e ¢ [0 CSet (t) where q isthe priority
specified for c;

Condition C1 implies that all events scheduled via a periodic event are added into
the set Caused(t, EV, ST, /7, RQ). Condition C2 shows that all the explicit run-time
requests are added into the set Caused(t, EV, ST, /, RQ). Similarly, condition C3
implies that all the events scheduled through a trigger are added to Caused(t, EV, ST, 7,
RQ), provided that the conditions C;s specified in the body of the trigger are satisfied and
each of the events E;’s occurs at time t-At. Furthermore, it is necessary that events E;’s
are not blocked by any other concurrent event, as indicated by condition C3(c).

Condition C4 implies that all the events not blocked by valid duration or
activation constraints are added to Caused(t, EV, ST, /7, RQ). C4(a) defines the condition
that must be satisfied by caused events associated with either a duration or activation
constraint. Note that events restricted by a duration or activation constraint are caused by
either the run-time requests or by the triggers and are not activated by any periodicity
constraints. Furthermore, such events must not be blocked by any concurrent event. These
conditions are ensured by condition C4(a)(ii).

Condition C4(a)(i) ensures that an event is still valid only if the duration Dy
associated with the event has not expired. Similarly, C4(b) implies that al events that are
associated with the duration or activation constraints of the foom ¢ = (D, X) are
considered. Note, as the start time of D is not known, semantically we require that c itself

43

be enabled for a duration D. In other words, “enable ¢’ is a caused event for D duration.
Furthermore, “enable ¢’ should not be blocked by any concurrent event at that time. The
condition C4(b)(ii) ensures that these conditions hold. Condition C4(b)(iii) defines those
events which are restricted by the constraint c.

It can be noted that the TCABSs and request streams determine changes in system
state at each time instant. Next, we define the system behavior induced by TCABs and
request streams and address the safeness issue. Intuitively, safeness implies that for each
event in EV(t), thereis a definite and known cause.

Definition 3.3.6 (Execution Model) A trace (EV, ST,) is an execution model of a
TCAB /" and a request stream RQ, if for all t > 0, EV (t) = Caused(t, EV, ST, 7/, RQ) .

It is possible that some specifications may yield no execution model, whereas
some ambiguous specifications may admit two or more such models [BerOlal. For
instance, if an event in EV(t), say enable r, triggers another event which in turn causes
event disable r to occur, the later one is added in EV(t). By the conflict resolution rule,
event disable r blocks enable r. Such a situation is undesirable as the event enable r that
is the cause of event disabler isitself being blocked by the event disable r. However, if
such cases are excluded, the GTRBAC specifications yield exactly one model for all
possible run-time requests. There are simple syntactic conditions that prevent undesirable
behavior as aresult of conflicting events. Such syntactic conditions - called safeness — are
introduced next.

3.3.3 Safe Temporal Constraint and Activation based (TCAB)

We use a safeness condition that can be verified in polynomia time and that
guarantees that a given TCAB has one and exactly one execution model. The notion of a
dependency graph is essential to analyze the safeness of the execution model. Each
TCAB /[can be represented as a directed labeled dependency graph DGgr = (N, ED)
where N, a set of nodes, represents the set of al prioritized event expressions pr:E that
occur in the head of atrigger [B- pr:E]T /; and ED (the set of edges) consists of the
following triples, for all triggers [B — pr:E] O /7, for all events E’ in the body B, and for
all nodesq:E O N,

1. (q:E, +, pr:E) and

2. (r:Conf(E’), -, pr:E), for all [r:Conf(E’)] I Nsuchthatq < r.

44

Each triple (N1, |, Ny) represents an edge from node N; to Ny, labeled by |. Given
the initial status of the roles and assignments, safeness of /~ implies that the system's
behavior is unambiguously determined by /, and RQ. Accordingly, /~ is safe if its
dependency graph DGg contains no cycles in which some edge is labeled *-' [BerOla].
Based on this notion of safeness of /, we extend the formal results of TRBAC to
GTRBAC, stated asfollows:

Theorem 3.2 If a /" is safe, then for a given RQ and ST(0), there exists exactly
one execution model <EV, ST>.

Asthe GTRBAC model essentially extends the TRBAC model with alarge set of
events, and the safeness of these models is determined with respect to the event
dependencies through the triggers in /-, the formal proof of this theorem follows directly
from that of the theorem applied to the TRBAC model, as the rule based semantics of the
TRBAC model can be easily extended to capture that of the GTRBAC model by simply
incorporating the new events [BerO1a).

It can be noted that safeness is a sufficient condition for predictable system
behavior. Although it is difficult to find the necessary conditions, even if found, they
offer little practical help, because such syntactic properties fail to recognize that the ill-
formed portions of a program may be harmless because they can never be activated.
Furthermore, checking the existence and uniqueness of a model are, in general, NP-hard
problems [BerOla]. Accordingly, if /”is safe then for a given RQ, there exists exactly one
execution model [BerOla].

Next, we present algorithm Saf et yCheck to determine the safety of a given 7/,
as shown in Fig. 3.5. The first part of the agorithm builds the dependency graph
associated with /7, and the second part checks for cycles with a negative edge. The
correctness of the algorithm can be proven from the results reported in [BerOla)l. If /" is
found to be unsafe then we need to remove atrigger to ensure that a cycle with a negative
edge does not exist in the dependency graph of /-

Algorithm Saf et yCheck illustrated in Fig. 3.5 is used for the safeness
verification of a TCAB. The first part of the algorithm builds the dependency graph
associated with /7, and the second part checks for cycles with a negative edge. The
correctness of the algorithm can be simply proven from the results reported in [Cor90].
We note the following with respect to the |abeled dependency graph:

45

» Dependency graph construction takes polynomia time. Such complexity can be
reduced to O(|/7.|N|) by representing the graph as an ordered vector, which can be
sorted in time O(|N|.|og|N]).

* The strongly connected components of the graph can be determined in O(|N| + [ED])
time (cf. [C090]). As the total number of edges is bounded by |E|, the second phase of
the algorithm has a cost of O(|N| + [ED]).

« Aseach node must occur in some trigger’s head, [N| = |/~| and [ED|isin O(|/ P).

From this, we see that the algorithm’s complexity isin O(|/”). We note that the
number of iterations of the innermost loop of the graph construction phase is bounded by
a constant (i.e., |Pri os|) for afixed set of priorities. Hence, for a given set of priorities,
the cost of the safeness verification is O(|/|. log|/|).

Algorithm Saf et yCheck

Input:: aTCAB /I~

Output: trueif /" is safe, false otherwise

/* construction of the dependency graph */

N:=0; ED:=0;

FORal [B - pr:E] O /DO
IF(E=activaterfor u) THEN return false;
N:=NO{pr:E};

FOR Al [B - pr:E] O/ DO
FOR dl E' O B such that [y; g:E' O NDO

ED:=ED O {{q:E’, +, pr:E) };
FOR dl r:conf(E’) ON such that g< r DO
ED:= ED O{{r:conf(E’), - , pr:E)}

/* cycle generation and checking */

SCC :=strongly connected components of (N, ED)

FOR dl (N', ED’) 0 SCC DO

FORal (X, 1,Yy DED’ DO
IFI = THEN return falsg;
return true;

Fig. 3.5. Algorithm Saf et yCheck

The examples presented below illustrate the working of agorithm

Saf et yCheck.
Exanpl e 3. 3. 2: First, let //={enable r; —~ enabl e ry; enable r, -
di sabl e r;} and RQ(t) = {enabl e ri}. Hence, initially, EV(t) = {enabl e ri}.
Because of event “enabl e ry” the first trigger fires resulting in EV(t) = {enabl e ry,
enabl e ry}. Next, because of event “enabl e ry” the second trigger fires resulting in

46

EV(t) = {enabl e ry, enabl e r,, di sabl e r;}. Here, event “di sabl e r;” blocks
event “enabl e ry” (assuming the same priority). As event “di sabl e r;” was caused
by event “enabl e r;” such blocking is undesirable or ambiguous. Algorithm
Saf et yCheck detects such unsafe cases by detecting a cycle shown in Fig. 3.6(a).

di sable r, enabl e di sable r, di sable r,

(@ (b)
Fig. 3.6. Example dependency graphs
Next, consider /= {t;: enabl e r; - di sabl e ry; tx:enabl er, - di sabl e
r.} and initial EV(t) = {enabl e r;, enabl e ry}. Now, for the firing of the triggers
there are two aternatives:
1. Firdt, thetrigger t; fires. In this case, we get, EV(t) ={enabl e r;, enabl e
rp, di sabl e ry}. Assuming equal priorities, once the trigger t; fires we get
Nonbl ocked(EV(t)) = {enabl e r;, di sabl e ry}. Asaresult, trigger t;
does not fire.
2. First, the trigger t; fires. In this case, we get, EV(t) = {enabl e r;, enabl e
rp, di sabl e ri}. Assuming equal priorities, after the trigger t, fires we get
Nonbl ocked(EV(t)) = {enabl e r,, di sabl e ri}. As aresult, trigger t;
cannot fire.
Such ambiguous system behavior is captured by the agorithm by indicating the
cycleshown in Fig. 3.6 (b).

3.4 Authentication and Clock Synchronization Issues

An important issue related to access control is the authentication of users. In
practice, authentication is a prerequisite for access control [JosOlb, San96al. A
comprehensive access control solution requires an authentication mechanism which
ensures that the users are who they clam to be. In this chapter, although we have not
explicitly addressed this issue, whenever we address an activation of arole by a user, we
have implicitly assumed that the user has been properly authenticated. This assumption is
made throughout this dissertation. In practice, severa mechanisms can be used for
authenticating users [And01, Schog].

a7

Another assumption for the enforcement of the temporal constraints that has been
made in this chapter is also the granularity and accuracy of the underlying clock. For the
purpose of modeling, we have assumed that the temporal constraints are specified at the
granularity of the smallest calendar — hours. Ensuring accurate time to support the
GTRBAC system can be a chalenging issue. By manipulating the system clock used by
the GTRBAC framework, attacks on the system security may be possible. Existing
techniques to ensure clock accuracy can be used to augment the existing implementation
of the GTRBAC framework to provide secure time for practical applications. For
example, in a networked system, a clock synchronization mechanism such as Network
Time Protocol (NTP) can be used. The NTP provides a moderate amount of protection
with clock voting and authentication of time servers and is dependable enough for many
applications [And01]. In case the GTRBAC system is used in a database application, the
database clock can be used to provide the basic timing support for the GTRBAC system.
When the proposed model is employed in an open internet environment, the issue of how
the users' time and the system time are synchronized can provide a daunting challenge. In
this dissertation, we assume that such synchronization problem in such distributed
environment has been properly addressed [Lam77].

3.4 Conclusions

In this chapter, we have presented a generalized tempora role based access
control model that can handle a comprehensive set of tempora constraints. The model
allows temporal constraints on role enablings and role activations, as well as triggers to
specify dependencies among GTRBAC events. Various tempora restrictions can be
specified on user-role and role-permission assignments. We have also presented various
time-based semantics of hierarchies and SoD constraints. We have described a notion of
safeness that has been used to generate a safe execution model for a GTRBAC system.

48

4. ROLE HIERARCHIESIN GTRBAC

Many researchers have highlighted the importance and use of role hierarchies in
RBAC models. A properly designed role hierarchy allows the efficient specification and
management of access control policies of a system. When two roles are hierarchically
related, one is called the senior and the other the junior. The senior role inherits al the
permissions assigned to the junior roles. The inheritance of permissions assigned to junior
roles by a senior role, i.e., permission-inheritance, significantly reduces assignment
overhead, as the permissions need only be explicitly assigned to the junior roles. Even
though the notion of role hierarchy has been widely investigated, no earlier work has
addressed the implication of the presence of temporal constraints on role hierarchies.

Sandhu [San98] distinguishes a role hierarchy into two types: usage hierarchy and
activation hierarchy. Sandhu’'s usage hierarchy alows only permission-inheritance,
wheresas the activation hierarchy allows role-activation semantics as well, allowing a user
assigned to the senior role to activate its junior roles also. In particular, he shows that the
distinction alows capturing dynamic SoD constraints that may exist between
hierarchically related roles. Our analysis further strengthens his arguments and shows
that, in the presence of timing constraints on various entities, the separation of the
permission-inheritance and the role-activation semantics provides a basis for capturing
the various inheritance semantics of a hierarchy.

Moffet et al. [Mof99] have identified the need for three types of hierarchies: isa
hierarchies, activity hierarchies and supervision hierarchies. These hierarchies are needed
to address the needs of control principles in an organization, principles which include
separation of duty, decentralization and supervision and review [Mof98]. They show that
combining permission-inheritance and role-activation within a hierarchy can its ability to
achieve organizational control needs. Clearly, hierarchies that capture tempora
characteristics of roles presented in this chapter provide a basis for limiting such
complete inheritance in a hierarchy, making it possible to support separation of duty and
restricted inheritance. Furthermore, Moffet et. al. [Mof99] point out that the commercial
organizations' demand for a dynamic access control model that can support a dynamic

49

authorization state as well as a dynamic propagation of access rights has largely been
neglected. The GTRBAC model’s temporal framework and the trigger mechanism aong
with the temporal hierarchies presented in this chapter provide a strong basis for such
dynamic features in an access control model.

In this chapter, we formally define the various types of temporal hierarchies and
then anayze the effects of various temporal constraints on them. We show that the
different types of hierarchies need to be further divided into subtypes in order to capture
the complete inheritance semantics introduced due to different temporal properties
associated with the roles of the hierarchies. We then present an anaysis of hybrid
hierarchies and inference rules for derived hierarchical relations among roles. Finaly we
present the transformation rule for hybrid hierarchies when roles are added, deleted, or
modified in an existing hierarchy.

4.1 Temporal Role Hierarchy

Here, we take a dightly different approach than in [San98]. We explicitly define
the hierarchy that allows only permissions to be inherited as an inheritance-only
hierarchy or I-hierarchy (same as the usage hierarchy in [San98]) and the one that allows
only the activation-inheritance semantics as activation-only hierarchy or A-hierarchy. We
further refer to a hierarchy combining both the inheritance and activation semantics as a
general inheritance or Inheritance-Activation hierarchy (1A-hierarchy for short). Finally,
we extend the notion of hierarchical relations with respect to a time instant t in order to
capture the fact that such semantics are time dependent. We use the predicate status
expressions introduced in the previous chapter (refer to Table 3.3). In order to define the
semantics of the hierarchies, we first introduce the following axioms to capture the key
relationships among various status predicates:

Axioms. For all rJ Rol es, ull User s, plJ Per m ssi ons, sl Sessi ons,
and timeinstant t = 0, the following implications hold:
1. assi gned(p,r,t)-» canbe_acquired(p,r,1t)
2. assigned(u,r,t) - can_activate (u,r,t)
3. can_activate (ur,t)dcanbe_acqui red(p,r,t) —» can_acquire (u,p,t)
4. active(u,r,st)dcanbe_acquired(p,r,t) - acquires(u,p,s,t)

50

Axiom (1) states that if a permission is assigned to a role, then it “can be
acquired” through that role. Axiom (2) states that all users assigned to arole can activate
that role. Axiom (3) states that if a user u can activate arole r, then all the permissions
that can be acquired through r can be acquired by u. Thus, for the simple case where user
u and permission p are assigned to r, the axioms indicate that u can acquire p. Similarly,
axiom (4) states that if there is a session in which a user u has activated a role r, then u
acquires al the permissions that can be acquired through role r. We note that axioms (1)
and (2) indicate that permission-acquisition and role-activation semantics are governed by
explicit user-role and role permission assignments.

4.1.1 Unrestricted Hierarchies

Semantically, the purpose of a role hierarchy is to extend the possibility of
permission-acquisition and role-activation beyond the explicit assignments, as we shall
show next. Below, we define the formal semantics of the time-dependent role hierarchies.
The following definitions do not consider the enabling times of the hierarchically related
roles, and hence are termed unrestricted hierarchies. The restricted forms will be
introduced in later sections.

Definition 4.1.1 (Unrestricted inheritance-only hierarchy or I-hierarchy): Let x
and y be roles such that (x'y), that is, x has an inheritance-only relation over y at timet.
Then the following holds:

Op, &) Ocanbe_acqui red(p, y, t)» canbe_acqui red(p, x,t) (cl)

X is said to be a senior role of y, and conversely y is said to be a junior role of x, with
respect to the inheritance-only hierarchy.

The condition characterizing the inheritance-only relation provides a new way of
acquiring a permission through a role by using its relation with other roles. Its semantics
indicates that a permission can be acquired through arole by direct inheritance of all the
permissions of junior roles. Thus if (x='y), the permissions that can be acquired through x
include all the permissions assigned to x (by axiom (1)) and all the permissions that can
be acquired through roley (by c1), which in turn include all the permissions assigned to y
as well as al the permissions that can be acquired through y's juniors (by axiom (1) and
condition c1). This shows that the I-hierarchy is transitive. Note that the axioms and

51

condition c1 do not alow u to activate y. Hence, the hierarchical relation >' is restricted to
the permission-inheritance semantics only.

Definition 4.1.2 (Activation hierarchy or A-hierarchy): Let x and y be roles such
that (x3='y), that is, x has an activation-only relation over y at time t. Then the following
holds:

Ou, (x='y) Ocan_activate (u x,t) — can_activate (u,y,t) (c2)

X is said to be a senior role of y, and conversely y is said to be a junior role of x, with
respect to the activation inheritance.

Here, the activation-only semantics introduces a new “can activate” semantics
between a user and arole . Axiom (2) states that a user is able to activate a role through
explicit assignment, whereas the A-relation alows such activation through relations
between roles, without a need for explicit user-role assignment. Condition (c2) states that
if user u can activate role x, and x has an A-relation over y, then ghe can activate role y
too, even if uis not explicitly assigned to y. However, note that an explicit assignment of
u to y, while possible, would be redundant here. The set of axioms and condition c2
together alow a user u assigned to role x to activate al of y's juniors. However, as
condition ¢l does not apply to an A-hierarchy, if (x='y), then u cannot acquire y's
permissions just by activating x. Note that the can_act i vat e (u, x, t) predicate makes
A-hierarchy transitive the same way the canbe_aqui r ed (p, y, t) makes an I-hierarchy
0.

Definition 4.1.3 (General inheritance hierarchy or |A-hierarchy): Let x and y be
roles such that (x='y), that is, x has a general inheritance relation over y at time't. Then
the following holds

(x2'y) - () O(x=Yy)

The 1A-hierarchy is the most common form of hierarchy and contains both
permission-inheritance and activation-inheritance aspects of a hierarchy. In particular, a
user assigned to a role can acquire the permissions of its junior roles without activating
them. At the same time, s’/he may activate the junior roles even though heis not explicitly
assigned to them. Note that the definitions do not account for the enabling times of the
rolesthat are hierarchically related.

52

On a given set of roles, there may be various inheritance relations. Therefore, we
require that the following consistency property be satisfied in arole hierarchy:

Property (Consistency of hierarchies): Let <f> O{>', ', ¥} and <f'> O{2', ',
Zz1{<f>}. Let x and y be distinct roles such that x<f>y; then the condition - (y<f >x)
must hold.

The main purpose of a hierarchical relation is the acquisition of permission of
junior roles by a senior role using of any of the three hierarchy types. The consistency
property ensures that a senior-junior relation between two roles in one type of hierarchy is
not reversed in another type of hierarchy.

LEGEND uassignedto uassigned to | uassigned to |
<— |A-Hierarchy ”
_______ A-Hierarch Software Software Software
X y Engineer Engineer Engineer
— |-Hierarchy
P :) T Combination of rolesthat
%ﬁi;;rgmn of roles that can be Lo 4 can be activated:
v . | { (Software Engineer)}
{(Software Engineer), !
(Software Engineer, Programmer),
(Programmer) } Programmer Programmer Programmer
(a) IAHierarchy (b) A Hierarchy (c) | Hierarchy
Software
Engineer
T &
Programmer
(i) (ii)

(d) Enabling intervals of Software Engineer and Programmer roles

Fig. 4.1. Hierarchy examples

Examples of the three hierarchies are given in Fig. 4.1, where the Software
Engineer role is senior to the Programmer role. In Fig. 4.1(a) and 4.1(b), the
combination of roles that a user u, assigned only to the Software Engineer role, can
activate is {(Software Engineer), (Software Engineer, Programmer)

53

(Programmer)}. However, the permissions associated with the same combinations in the
two cases are not the same. For example, if u activates the Software Engineer role, the
permissions acquired by u under an |A-hierarchy (see Fig. 4.1(a)) is maximal, that is, both
the roles permissions are acquired. On the other hand, only the permissions assigned to
the Software Engineer role are acquired in the case of an A-hierarchy (see Fig. 4.1(b)).
Furthermore, the activation of the combination (Software Engineer, Programmer) is
redundant in an 1A-hierarchy in terms of what permissions are acquired, while it is
significant in an A-hierarchy.

Under the I-hierarchy reported in Fig. 4.1(c), the user can activate only the
Software Engineer role (unless of course, the user is aso explicitly assigned to the
Programmer role). However, he acquires maximal permissions, that is, permissions
assigned to both roles.

4.1.2 Enabling Time Restricted Hierarchies

A hierarchy in the presence of various temporal constraints becomes dynamic as
permissions and users can be assigned or de-assigned to any junior roles at times when a
senior role is enabled. Furthermore, there are activation constraints that need to be
accounted for when either of the hierarchy types is considered. Here, we consider the
effect of the presence of temporal assignment constraints on both inheritance and
activation hierarchies.

Inheritance-only hierarchy (I-hierarchy)

As we can see, in an |-hierarchy, the permissions of a junior role are implicitly
assigned to the senior role itself. However, in the presence of tempora constraints, we
need to be able to capture various dynamic aspects of the hierarchy.

Let us revisit the I-hierarchy of Fig. 4.1(c). Fig. 4.1(d) shows two possible
intervals associated with the enabling times of the two roles. In Fig. 4.1(d)-(i), we see that
the enabling interval of the Software Engineer role is a subset of that of the
Programmer role. In this case, the I-hierarchy has the semantics similar to the non-
temporal RBAC,; that is, whenever u activates the Software Engineer role she aso
acquires the permissions of the Programmer role, because at that time the Programmer
role is aso enabled. Thus, in interval 7, u cannot acquire any permissions of the
Programmer role even if thisrole is enabled, as the Software Engineer roleis disabled

54

at that time. It is also possible that there is a temporal interval in which the Software

Engineer role is enabled but the Programmer role is not, as indicated by interval 7 in

Fig. 4.1(d)-(i1). In such a case, we can see that the following two approaches can be used

to capture the inheritance semantics:

1. Weakly restricted approach (lw): The permissions of the Programmer role are
inherited by the Software Engineer roleininterval 1,

2. Strongly restricted approach (Is): The permissions of the Programmer role are not
inherited by the Software Engineer roleininterva .

Under the weakly restricted approach, every permission that can be acquired
through a junior role can also be acquired through its senior roles under an I-hierarchy,
irrespective of whether the junior role is enabled or disabled. Under the strongly
restricted approach, each permission that can be acquired through a junior role can also
be acquired through its senior roles only in intervals where the junior role is also enabled.

Table 4.1 summarizes the inheritance semantics of an I-hierarchy in the presence
of tempora constraints. I, refers to the I-hierarchy that adopts the weakly restricted
approach above, whereas I refers to adopting the strongly restricted approach. Note that
the two types of hierarchy act differently only in intervals where the senior role is enabled
while the junior role is disabled.

Activation-only hierarchy (A-hierarchy)

We see that when we have an A-hierarchy, it is natural to just use the second
approach given above. That is, there is no activation-inheritance allowed in interva 7.
This is because of an explicit need for activating a junior role by a user assigned to its
senior role in order to acquire the junior role’'s permissions, and in 7, the junior role
cannot be activated. If we also try to enforce the first possibility mentioned above then it
will conflict with the semantics of an enabled role, as only enabled roles can be activated.

However, as an activation hierarchy needs a user who is assigned to the senior
role to activate ajunior role in order to acquire the junior role's permissions, the issue of
the propagation of tempora user-role assignment down the A-hierarchy needs to be
considered. For example, consider the roles Software Engineer and Programmer
forming the A-hierarchy in Fig. 4.1(b). Consider again the same enabled times of the two
rolesasin Fig. 4.1(d). We need to determine whether the user is to be allowed to activate
the junior role at the time when the senior role he is assigned to is not enabled, as

55

indicated by the interval 7; in Fig. 4.1(d)-(i). For such a case, we can again delineate the
following two approaches:

1. Weakly restricted approach (A,): The user u is allowed to activate Programmer role in
the A-hierarchy at any time the Programmer role is enabled.

2. Srongly restricted approach (As): The user u is allowed to activate the Programmer
role only if both the Software Engineer and Programmer roles are enabled (note that
he does not need to activate the Software Engineer role).

In both approaches, when a user tries to activate arole in an activation hierarchy,
additional checks need to be carried out. The first check is to determine if the user is
assigned to any role, up the hierarchy, starting from the role it is attempting to activate.
The second check is required to determine if the senior role that a user is assigned to is
also enabled. If the senior role is disabled, we then need to deactivate all activations of
junior roles by the user assigned to the senior role.

In Table 4.1, A, refers to the activation hierarchy that adopts the weakly restricted
approach, whereas A refers to that adopting the strongly restricted approach. We note
that the two types of hierarchy act differently only in intervals where the senior role is
disabled whereas the junior role is enabled.

Table4.1.
Inheritance semantics of enabling time restricted hierarchy

ryissenior of ry - T T

| Hierarchy Type r.di sabl ed, r,enabl ed rrenabl ed’ r,di sabl ed

|-hierarchy lw No inheritancein r Permission-inheritance in 7 (by activating r;)
ls No inheritancein r No inheritancein 7

, Activation-inheritancein 7 . . .

A-hierarchy | Ay (by activating r,) No inheritancein 7

Ag No inheritancein r No inheritancein 7
Activation-inheritancein 7 Lo . . -

| Ahierarchy 1A, (by activating r,) Permission-inheritance in 7 (by activating r,)

1A No inheritancein r No inheritancein 7

General inheritance hierarchy (I A-hierar chy)

As general inheritance embodies both the permission inheritance and role-
activation semantics of arole hierarchy, it is smply a combination of the two. In other
words, in interva n, the general hierarchy can benefit from the use of role-activation
semantics and activate the junior role using the weakly restricted semantics. Similarly, in

56

interva 1, the inheritance-only semantics can be used and inheritance through the senior
role using weakly restricted semantics can be utilized. Thisis shown in Table 4.1.

We now formally define the weakly restricted and strongly restricted forms of
each hierarchy type discussed in the previous section.

Definition 4.1.4 (Weakly restricted inheritance-only hierarchy or |,-hierarchy):
Let x and y be roles such that (x >, y); that is, x has a weakly restricted inheritance-only
relation over y at time t. Then the following holds:
Op, (x=wt y) Oenabl ed(x, t) Dcanbe_acqui red(p,y, t) -
canbe_acqui r ed(p, X, t)

We note that for ax >, y relation, only role x needs to be enabled at timet. Roley
may or may not be enabled at that time. Similarly, for the weakly restricted A-hierarchy,
X>=wiY, only role y needs to be enabled as shown in the following definition.

Definition 4.1.5 (Weakly restricted activation hierarchy or Ay-hierarchy): Let x
and y be roles such that (x > Yy); that is, x has a weakly restricted activation-only
relation over y at time t. Then the following holds
Op, (X >wt Y) Oenabl ed (y,t) Ocan_acti vat e(u, x,t) - can_acti vat e(u,vy,t)

Definition 4.1.6 (Weakly restricted general inheritance hierarchy or 1A~
hierarchy): Let x and y be roles such that (x Z.; Y); that is, x has a weakly restricted
general inheritance relation over y at timet. Then the following holds:

Dp! (X >W,t Y) - (X 2W,t y) O (X >W,t y)

The strongly restricted forms of the hierarchies alow inheritance semantics to be
valid only when both the hierarchicaly related roles are enabled. The following
definitions formalize these hierarchies.

Definition 4.1.7 (Strongly restricted inheritance-only hierarchy or Is-hierarchy):
Let x and y be roles such that (x >s; y); that is, x has a strongly restricted inheritance-
only relation over y at time t. Then the following holds:
Op, (x=st y) Denabl ed(x, t) Denabl ed(y,t) Ocan_be_acqui red(p,y,t) -
can_be_acqui red(p, X, t)

57

Definition 4.1.8 (Strongly restricted activation hierarchy or As-hierarchy): Let x
and y be roles such that (x st y); that is, X has a strongly restricted activation-only
relation over y at time t. Then the following holds:

Op, (X =st Y) Denabl ed(x, t) Oenabl ed(y,t) Ocan_act i vat e(u, x,t) -
can_activate(uy,t)

Definition 4.1.9 (Strongly restricted general inheritance hierarchy or 1A«
hierarchy): Let x and y be roles such that (x Zs; y); that is, x has a strongly restricted
general inheritance relation over y at timet. Then the following holds:

(X =stY) - (X2t Y) O(X =5t Y)

The weakly restricted and strongly restricted forms of hierarchies deal with the
cases where at least one of the two roles is enabled. The hierarchies defined in section
4.1.1 do not consider the enabling times of the related roles. In this sense, the weakly
restricted and strongly restricted hierarchies are specializations of the unrestricted
hierarchy types with an additional requirement that one or both roles be enabled for the
inheritance semantics to be valid.

@ Enabled int
@ Disabledint

@ Disabled int

Enabled in T

Fig. 4.2. Inheritance through disabled roles

It is important to note that if the inheritance between two roles is defined just by
using one of the unrestricted types, the inheritance semantics applies even when the roles
are not enabled. The benefit of such a case is in the propagation of the inheritance
semantics along the hierarchy, as illustrated in Fig. 4.2. Assume that the hierarchy is an
unrestricted A-hierarchy, and consider an interval T in which only roles r; and r4 are
enabled. We can see that Definition 4.1.2 applies to each pair and the result is that any
user assigned to ry can aso activate ry. Now suppose it is aweakly restricted A-hierarchy.

58

As rp and r3 are both disabled, the activation-inheritance semantics does not apply
between them. And hence, it blocks the activation-inheritance semantics between r; and
r4 also. Thus, no user assigned to r; will be able to activate roler ..

We illustrate with the examples reported in Fig. 4.2 the practical uses of the

various kinds of restricted hierarchies.

Exanple 4.1.1: Consider the I,-hierarchy in Fig. 4.3(a). Note, the
SeniorSecurityAdmin role is enabled only in interval (8pm, 11pm). Neither of the
junior roles is enabled in the entire interval (8pm, 11pm). But the I, relation alows a
user who activates the SeniorSecurityAdmin role to acquire all the permissions of the
junior roles too. This may be desirable if the SeniorSecurityAdmin role is designed to
perform special security operations for checking and maintenance. In such a casg, it is
reasonable to think that the user assigned to the SeniorSecurityAdmin role will need
al the administrative privileges of the junior roles. The tempora restrictions on
SecurityAdminl and SecurityAdmin2 restrict the users assigned to them in carrying
out corresponding system administration activities only in the specified intervals.
However, here, the user assigned to SeniorSecurityAdmin cannot assume the role of
the junior roles SecurityAdminl and SecurityAdmin2. To remove this limitation, we
can use the | Ay-hierarchy instead.

SeniorAsecurityAdmin PartTimeDoctor
{(8pm-11pm)} {(3pm-6pm), (7am-10am)}

(@ (b)

SecurityAdmin1 SecurityAdmin2
(9am-9pm) (5am-5pm) DayDoctor NightDoctor
(9am-9pm) (9pm-9am)

GeneralDoctor SupervisorDoctor
{(10am-12noon), (7am-9am)}

A A, A/ NA
DayDoctor NightDoctor DayDoctor NightDoctor
(9am-9pm) (9pm-9am) (9am-9pm) (9pm-9am)

Fig. 4.3. Examples of hierarchy types

59

The hierarchy in Fig. 4.3(b), on the other hand, is of type Is. The senior roleis the
PartTimeDoctor role, which has two intervals in which it can be enabled, (3pm, 6pm)
and (7am, 10am). If a user activates the PartTimeDoctor role in the first interval,
according to the Isrelation, he essentially gets al the privileges of only the DayDoctor
role, as the NightDoctor role is disabled at that time. Now, consider the second
interval. We see that it overlaps with the enabling times of the two junior roles. Hence,
if the user activates the PartTimeDoctor role in the second interval, he acquires the
privileges of only the NightDoctor role in the sub-interval (7am-9am) and that of only
the DayDoctor role in the interval (9am, 10am). Thus, we see that the two different
semantics of an inheritance hierarchy can be used to achieve different needs. Again, a
part time doctor cannot work as a DayDoctor or a NightDoctor, athough, he can
acquire the permissions assigned to them. If a user is aso to be allowed to use the
junior roles, we can use | As-hierarchy instead.

Now, consider Fig. 4.3(c). Note that in this case, there is no interva in which the
GeneralDoctor role can be enabled. However, since the activation hierarchy is of type
A, any user assigned to the GeneralDoctor role can activate either of the junior roles
when they are enabled. In effect, any one assigned to the GeneralDoctor role can
activate both the DayDoctor and the NightDoctor roles whenever they are enabled.

Fig. 4.3(d) illustrates the use of an activation hierarchy of type As. Here, a doctor
supervisor can assume the SupervisorDoctor role in intervals (10am, 12noon) and (7am,
9am). In the first interval, the supervisor will be able to acquire al the privileges of the
DayDoctor role by activating it, and in the second interval, he will be able to acquire all
the privileges of the NightDoctor role by activating it along with the SupervisorDoctor
role. The SupervisorDoctor role may simply contain some extra privileges that are
required for the supervision task during day and night.

Activation Constraintsand Enabling Time Restricted Role Hierarchies

Each individual role in a hierarchy may have its own activation constraints. These
constraints provide a way of limiting resource use by limiting access to resources. In
either of the inheritance or activation hierarchies, the question of whether such activation
constraints have any effect on the permission-inheritance becomes an issue. Next, we
consider a hierarchy in the presence of cardinality constraints and then generalize the
discussion to the other activation constraints.

60

Assume that the Programmer role has a permission set, say P, associated with a
licensed software package. Suppose that there are five user licenses for the package
indicating that only five users can concurrently execute any program of the package. Such
a constraint could be directly expressed as a cardinality constraint on the Programmer
role. Software Engineer, being senior to Programmer, can inherit P. However, at any
time the number of concurrent executions of any particular program by users assigned to
the Software Engineer role and Programmer role needs to be restricted to five. If we
adopt an | or |A- hierarchy, we observe that correctly enforcing such a constraint is not
straightforward:

» Asthe cardinality constraint is applied on the Programmer role, it cannot capture the
use of the permission set P by the Software Engineer role. Hence, there may be five
concurrent activations of the Programmer role and some activations of the Software
Engineer role at any time, allowing more than five users to have access to the
programs. In such a Situation extra measures need to be taken to enforce the
cardinality constraint.

» An dternative solution may be to develop a constraint expression on the combination
of roles, such as the one that says “the number of concurrent activations of Software
Engineer and Programmer roles should be at most five”. However, this introduces
other problems because of the fact that P could be only a subset of the permission set
associated with the Software Engineer role. In such a case, the constraint will
enforce the same cardinality constraint on all the permissions assigned to the
Software Engineer role and not only to P. For example, six concurrent activations
of the Software Engineer role will not be permitted and therefore permissions other
than P assigned to it cannot be used, which may not be what we want.

We note that the cardinality constraint on a role is aimed at controlling the
concurrent use of permissions and, hence, we say that the cardinality constraint is
permission-oriented.

Now suppose that the role hierarchy is an A-hierarchy. As users need to explicitly
activate junior roles in order to acquire its permissions, the above problems do not arise.
Hence, in the example, if we use the activation hierarchy rather than the inheritance
hierarchy, the intended cardinality control on the use of P is easily enforced. Furthermore,
if thereis another role Programmer2 that is also ajunior to the Software Engineer role
and that has a permission set P, and cardinality constraint (permission-oriented as in
Programmer) of n, the ssmple overal activation hierarchy is an effective solution.

61

As another example, suppose we want at the most five nurses and three doctors on
active duty at a time, and we create two roles, Doctor and Nurse, such that Doctor is
senior to Nurse. Here, the cardinality constraints are user-oriented rather than being
permission-oriented in that, by imposing the cardinality constraint of three on the Doctor
role and five on the Nurse role, we want to restrict scheduling at the most three doctors
and five nurses at a time. We can assume that there is no need to control the permission
distribution associated with the Doctor and Nurse roles, asin the previous case.

Now assume that we use an A-hierarchy. This means, when there are three doctors
and five nurses in active duty, the doctors do not have permissions that are associated
with the Nurse role, as they cannot activate the Nurse role. If we want each doctor to
also be able to use permissions associated with the Nurse role every time s/he is active,
by making her/him activate both the roles, then only two nurses will be able to activate
the Nurse role. This is not what we intend to enforce. However, if we adopt an I-
hierarchy or an 1A-hierarchy, the problem does not arise, because, the permissions
associated with the Nurse role are implicitly assigned to the Doctor role too. Thereis no
need to explicitly enable the Nurse role by a user assigned to the Doctor role.

Note that an I-hierarchy or an |A-hierarchy can capture any activation constraint
on roles when the cardinality control implies the control on the number of users. An A-
hierarchy, on the other hand, captures any activation constraint on roles when the
activation control implies control on the distribution of permissions.

Similar to the cases in cardinality constraint, an I-hierarchy or an |A-hierarchy is
appropriate when other activation constraints imply a user-oriented control, whereas an
A-hierarchy is appropriate when the activation constraints imply a permission-oriented
control. Furthermore, the prevalent concept of arole asa*set of permissions’ implies that
the permission-oriented activation control is a phenomenon that is closer to the RBAC
concepts than the user-oriented activation control.

Periodicity and Duration Constraint Expression

A hierarchical relation between two roles is essentially a constraint on them.
Hence, the GTRBAC model’s constraint enabling/disabling expression can be used to
enable or disable a hierarchical relation. Thus, if hisahierarchical relation (rs<f> r), its
enabling/disabling can be done by the event “enabl e/ di sabl e h”. This alows
administrators to dynamically change the hierarchical relationships on a set of roles
through predefined periodicity constraints, run-time requests, and triggers.

62

For specifying the periodicity constraints on a hierarchy, we simply use the
GTRBAC mode’s periodicity expression framework. Thus, we use (I, P,
enabl e/ di sabl e h) to mean that the enabling or disabling of hierarchical relation his
constrained by the interval expression (I, P); i.e, for all t O Sol(l, P), h is
enabled/disabled, where Sol(l, P) isthe set of valid time instants denoted by (1, P).

Similarly, we use the constraint expression ¢y = (Dy, enabl e/ di sabl e h) to
define the duration constraint on a hierarchy h. Dy, indicates how long the hierarchical
relation h may hold. In other words, if Dp = tend - tsart , Where tgart is the time at which h
becomes valid, then for all t O (tend, tsart), the relation h holds. Note that tga iS not
known in advance and is therefore determined by the firing of the event
enabl e/ di sabl e h by atrigger or a run-time request. For example, suppose we have
the following trigger and a duration constraint on a hierarchical relation:

enabler - enableh after 10min

(1 Hour, enabl e h)

Here, only 10 minutes after role r is enabled will role rs become the senior of r.
Furthermore, the duration constraint allows rsto remain senior of r for only 1 hour.

We also note that the duration constraint can aso be of forms (I, P, Dy,
enabl e/ di sabl e h) and (D, Dy, enabl e/ di sabl e h). Constraint ¢ = (I, P, Dy,
enabl e/ di sabl e h) implies that the enabling/disabling of h can be done for duration
Dy, only within the intervals defined by (I, P). Now, suppose that constraint (c) above is
replaced by ([Mondays, Fridays], Dy, enabl e/ di sabl e h). In that case, if thetrigger tr
is fired, then, on the days other than Mondays and Fridays, role rsis not the senior of r.
But on Mondays and Fridays, the firing of tr makes rs the senior of r for 1 hour.

If the duration constraint (c) is (D, Dy, enabl e/ di sabl e h), it needsto be first
enabled by a constraint enabling expression “enabl e ¢”. If tr fires after constraint (c)
has been enabled, then the hierarchical relation is enabled and rs becomes the senior of r.
Compared to this, constraint ¢y = (Dp, enabl e/ di sabl e h) indicates that the duration
constraint ¢y isenabled at all times.

A practical use of such a dynamically changing hierarchical relation isin the case
where a senior (acting as a supervisor) is alowed to inherit the read-only permissions of
its juniors. For example, a particular end of the week period can be specified when the
supervisor can read all hisjuniors’ documents, by enabling the senior-junior hierarchical
relations. This will alow her/him to carry out a progress review of the project as well as
the weekly progress of each individual team member that he is supervising. Moffet et. al.

63

[Mof99] have identified such a supervision-review capability as an important
organizational control principle.

4.2 Uniquely Activable Set (UAS) of Role Sets

In a role hierarchy containing multiple hierarchy types, referred to as a hybrid
hierarchy, a user may be able to activate different sets of junior roles in a session. Sets of
roles that can be activated or permissions that can be acquired by a user at a particular
time indicate the overall access capabilities of the user. From the perspective of the
principle of the least privilege, it may be necessary to ensure that such activable sets of
roles do not result in giving a user unnecessary access capabilities. Determining such sets
can become very complex in a hybrid hierarchy. Furthermore, we may want to know what
indirect relations may exist between roles that are not directly related so that when
modifications are made to the hierarchy, origina relations are not violated. For example,
consider the relatively simple hybrid hierarchy of Fig. 4.4. Here, determining sets of roles
that can be activated in a single session by a user assigned only to role, say rs, is not
straightforward. Similarly, when we delete a role, say s;, we need to make sure that
desirable relations between rz and tq, r3 and s, or rzand x; are retained.

bd

Fig. 4.4 An example hybrid hierarchy

A flexible model, such as GTRBAC, needs formal tools to analyze hierarchies in
order to determine such activation and permission acquisition capabilities of users who
are assigned to the roles in a hierarchy. The model also needs to identify how roles are
related to each other indirectly through the permission-inheritance and role-activation
semantics in the presence of different hierarchical relations between roles. Such tools are

64

very essentia for an efficient security administration and management function. In this

section, we present an extensive analysis of hybrid temporal role hierarchies. The results

provide a formal basis for developing support tools for analyzing hybrid tempora
hierarchiesin GTRBAC.

In this section, we present the following:

* We define the notion of the uniquely activable set of a hierarchy that can be used by
security administrators for determining the access capabilities that a user can obtain
from arole hierarchy in a single session. We also show formally how the set can be
determined in a hybrid temporal role hierarchy.

* We introduce a set of inference rules that alows inferring the hierarchical
relationships between pairs of roles that are not directly related and show that the
inference rule set is sound and compl ete.

* We develop a set of hierarchy transformation algorithms to assist in administering
role hierarchies when the roles are added, deleted or modified.

We introduce the notion of a uniquely activable set (UAS) and present formal
results for characterizing it for a hierarchy. The UAS associated with a hierarchy is
essentialy the set of role sets that can be activated by a user assigned to a role of the
hierarchy. In a hierarchy that allows the coexistence of the multiple hierarchy types, the
permission-inheritance and role-activation semantics can be complex, thus making
administration and management of large hierarchies difficult. As UAS gives the role
combinations that can be activated by a user in a single session, it helps in determining
the granularity of permission sets that can be acquired by users through a role in a
hierarchy. Thus, UAS is mainly relevant from the perspective of the principle of the least
privilege. Here, we first determine the UAS characteristics of a monotype hierarchy with
only one type of hierarchical relation over the roles, followed by that of a hybrid linear
path and then formalize the results for the more general role hierarchy. We then introduce
the notion of acquisition equivalence to characterize equivalent hierarchies in order to
address the usefulness of a hybrid hierarchy. Here onwards we will only use the
unrestricted forms of hierarchies. The results can be extended easily to restricted forms
by considering additiona requirements associated with them. Furthermore, although we
consider unrestricted forms of temporal hierarchies, the results directly apply to the non-
temporal case with the same three different hierarchy types, as non-temporal cases are
simply the special cases of temporal hierarchies in which the hierarchical relations apply
at al times.

65

4.2.1 Computing UAS of a Hierarchy

We represent by UAS(H, t) the UAS associated with a user assigned to the senior-
most role of a hierarchy H at time instant t. For agiven role set X = {xs, X, ..., Xo} and a
set of hierarchy relations [f] O {2, ', ="}, we represent a general hierarchy H over X as
X, [f]). If [f] = {<f>} is asingleton set with hierarchy relation <f>, then we call H a
monotype hierarchy and write (X, <f>), else we call H ahybrid hierarchy. Furthermore, H
isalinear path over Xif (X, [f]) ={x <fij>x|i =1ton-1,j=i+l,and <fi;> O[f]}, and
we represent it asLH (i.e., LH = H). LH may be either monotype, represented as L = (X,
<f>), or ahybrid type, represented as Lh = (X, [f]). We use Roles(H) to indicate the set of
rolesin ahierarchy H. In this dissertation, we assume that
(@) the set of permissions assigned to each role in Roles(H) is distinct, and
(b) for each hierarchy H, there is only one senior-most role, indicated by Sy. The
results can be easily extended to deal with a genera hierarchy. We use Jy to
denote the set of junior-most roles of H.

We use notation P(r, t) to refer to the set of permissions assigned to roler at time
t. Similarly, given a set X of roles, we use P(X, t) to denoteUer P(r,t). Now, we

formally define the UAS of ahierarchy asfollows:

Definition 4.2.1 (Uniquely Activable Set of a Hierarchy H): Let H = (X, [f]) bea
hierarchy. Then, UASH, t) ={Y1, Yo, ..., Yo}, where O 00 Y; O Roles(H) for each i [I{1,
2, ..., m}, isthe uniquely activable set of role sets for a user assigned only torole §; at
timet, if the following conditions hold:

oL 01,2, ..., m} andi #], P(Y;, t) # P(Yj, t), and
ii. 0z 0O Roles(H) st. Z OUASH, t), if P(Y, t) = P(Z, t) for a’Y O UASH, t),
then ([Y] < [2]);
where |A| isthe cardinality of set A.

Note that each element Y; is a subset of Roles(H). As condition (i) indicates,
UAS(H, t) is unique because for any pair of role sets of UASH, t), the permission sets
associated with them are not the same as per assumption (a). Condition (ii) considers the
possibility of different role sets associated with the same set of permissions. In such a
case UAS(H, t) contains the role set that has the least number of roles. In conjunction with
assumption (b), condition (ii) prevents a pair of senior and junior roles, e.g. of an IA-
hierarchy, to be in arole set of UAS(H, t). For instance, if relation (x='y) isin H, then the

66

set {x} and not {x, y} will bein UASH, t), as P({x}, t) = P{X, y}, t). The UAS values for
I, A and IA-hierarchy can differ significantly because of the difference in permission-
inheritance and role-activation semantics associated with them.

As ahybrid linear path may have different types of hierarchical relations it can be
decomposed into a set of monotype linear paths. We term such a decomposition of a
hybrid linear path into a set of monotype components as a horizontal partition. The
following definition formalizes these concepts.

Definition 4.2.2 (Horizontal Partition) Let Lh = (X, [f]) be a hybrid linear path
over role set X. Then Lh can be represented by an ordered set of monotype linear paths,
that is, Lh = {L1, Ly, ..., Ly} with X =X; O X; 0..00 X,, provided that the following
conditions hold:

1. forall i O{1,., n-1}, (i) if Lj = (X, <fi>) then <fi> # <fi;1>, (ii) X N Xy =

{di}={S (+1}, and

2. foral i0{1, ., nfand(i+1<j<n)or(l<j<i-1), Xin X =01,

Here, we say that {L,, Lo, ..., Ln} isthe complete horizontal partition of Lh. Lh
can also be written as {L;, Lh'}, {Lh", L}, {Lhy, Lhy}, etc., each of which is a
horizontal partition of L, not necessarily complete. We denote the senior-most and the
junior-most roles of a hybrid hierarchy Lh as S, and Ji. It is easy to see that S =S4,
and Jin=dn

As indicated, we will use L to represent a monotype linear path, Lh to represent a
hybrid linear path, and LH to mean either of them. H represents any hierarchy, which may
simply be alinear path. Asindicated by definition 4.2.2, we can break a hybrid linear path
into an ordered set of monotype linear paths. Such a horizontal partition of a hybrid path
into its monotype components alows us to use the UAS of the monotype linear paths to
determine the UAS of a hybrid linear path. Note that a complete horizontal partition
consists of monotype linear paths that are maximal in the sense that combining any
consecutive pair of component linear paths will give a hybrid linear path, as indicated by
condition (a) of the definition. The use of horizontal partitions that are not complete
allows expressing a hybrid linear path as a combination of smaller linear paths that may
be of hybrid type. Furthermore, the complete horizontal partitioning of a hybrid linear
path allows us to determine its UAS by using the UASs of the component monotype

67

linear paths. Example 4.2.1 illustrates partitioning of a hybrid linear path into its
components.

0-0

6666668

(a)

Fig. 4.5 Horizonta partition of a hybrid linear path
Exanpl e 4.2.1: Consider the role hierarchy of Fig. 4.5. The complete
horizontal partition of the hybrid linear path is{ L3, Ly, L3, L4, Ls, Le}. We notethat if L4
issplitinto Ls1 = ({4, 5}, |A-type) and L4, = ({5, 6}, IA-type), then {L1, Lo, L3, L4, 1, Lg,
2, Ls, Le} isnot acomplete horizontal partition, asL4 1 and L4 » do not satisfy condition
(1) of definition 4.2.2.

In this dissertation, we also use functions sub, (LH) and suby(LH) that return the
lower and upper parts of alinear path LH That is, if L = ({x1, X2, ..., X}, <f>), then,

o subi (L) = ({x2 ..., X}, <f>); suby(L) = ({xq, X2, ..., Xn-1}, <>); For L = ({x, v},
<f>), sub, (L) = suby(L) = T;

e sub (Lh)={sub(Ly), Ly, ..., L} and suby(Lh)={L4, L, ..., sub y(Ln)}, where Lh =
{L1, Ly, ..., Ly} isthe complete horizontal partition of Lh.

Here, sub,(LH) and suby(LH) return the lower and the upper sub-paths of LH.
sub, (x<f>y) = suby(x<f>y) = 0 indicates that path (x<f>y) has no sub-paths. Because of
the different activation semantics associated with each hierarchy type, the UAS associated
with each typeis also different. The following theorem formally characterizes the UAS of
amonotype linear hierarchy:

Theorem 4.1: Let H = (X, <f>) be a monotype hierarchy onrole set X = {xy, X,
..., X} and the hierarchy relation <f>0 {=', »', =% Then,

68

{{S}} ={{x}} if (<f>=2"
UASH,) =) 2¢O if (<f>=)

{x}}0{2%| 2=z ; 2 DUAS(SUbH; (H), }/00 if (<f>=%")
where SubH;(H) represents the i™ subhierarchy of H.

The theorem basically states that for a monotype linear hierarchy over an I-
relation, the UAS only contains the senior-most role. For a monotype hierarchy with an
A-relation, the UAS contains the power set of the role set X without the empty el ement;
i.e.,, auser assigned to the senior-most role can activate every combination of the rolesin
the hierarchy. For a monotype hierarchy with an IA-relation, the UAS contains set
elements containing individual roles of the hierarchy and the combinations of roles that
occur in the different sub-hierarchies of the seniormost role. The proof for the theorem
follows directly from the transitive properties of the hierarchical relations and the
permission inheritance-only and/or role activation-only semantics of the three hierarchies.
Example 4.2.2 illustrates the use of the results of Theorem 4.1.

Exanpl e 4. 2. 2: Consider the monotype hierarchies of Fig. 4.3. In each of the
monotype hierarchies in figures 4.3(i)(a) and 4.3(i)(b), the UAS only contains the set
with the senior-most role of the hierarchy, as each of them has the senior-most role
related to its junior(s) by I-relation(s). For hierarchies in figures 4.3(i)(c) and 4.3(i)(d),
assuming unrestricted forms in both the cases, instead of the restricted forms indicated
in the figure, the UASs are as follows:

In the hierarchy of Fig. 4.3(c), UAS = {{GeneralDoctor}, {DayDoctor},
{NightDoctor}, {GeneralDoctor, DayDoctor}, {GeneralDoctor, NightDoctor},
{DayDoctor, NightDoctor} ,{ GeneralDoctor, DayDoctor, NightDoctor}}. However,
GeneralDoctor is never enabled. Furthermore, if we take the periodicity constraints on
the roles, we have, in interval (9am — 9pm), UAS = {{DayDoctor}}, and in interval
(9pm —9am), UAS = {{ NightDoctor}}.

In the hierarchy of Fig. 4.3(c), UAS = {{SupervisorDoctor}, {DayDoctor},
{NightDoctor}, { SupervisorDoctor, DayDoctor}, {SupervisorDoctor,
NightDoctor}, {DayDoctor, NightDoctor}, {SupervisorDoctor, DayDoctor,
NightDoctor}}. However, the effective UAS, because of the temporal constraints,
differ. Hence, in intervals (9am — 10am) and (12noon-9pm), UAS = {{ DayDoctor}};
in interval (10am - 12noon), UAS = {{DayDoctor}, {SupervisorDoctor},
{SupervisorDoctor, DayDoctor}}; in interval (7pm—9am), UAS = {{NightDoctor},

69

{ SupervisorDoctor} { SupervisorDoctor, NightDoctor}}; in interva (9pm—7am),
UAS={{NightDoctor }}.

Next, we present a formal basis for characterizing the UAS for a hybrid linear
path. We first present the results for a hybrid linear path consisting of only two monotype
linear components in the following Lemma and then use it to characterize arbitrary hybrid
linear paths.

Lemma 4.1: Let Lh = {L,, L} be a hybrid linear path Lh such that L; = (X,
<f;>) and L, = (Xp, <f>), where X = {xy, X, ..., Xo} =Xy O Xz, and <f;> # <f,>. Then for
auser uassigned only to § 1, we have:

UAS(Ly,t), if 2'0{<f>, <>}

UASLh, t) = { UAS(Lyy,t) DUAS(L,,t) D(UAS(L1y,t) O UAS(L, b)) if (<fy>,<f>)=(>',2")
UAS(L,t) OUAS(Lo) O(UAS(L1,t) O UAS(Lo 1)) if (<f1>,<f2>):(it,>t)

where, Lo = suby (L), Lou=suby(Ly)) and (A0 B) ={ {x Oy} [xOAandy O B}.

Note that, in the computation involving UAS(Lh, t), the components on the right
side are digjoint with respect to each other and hence [UAS(Lh, t)| is simply the sum of the
cardinalities of the components on the right side. Theorem 4.2 determines the UAS for an
arbitrary hybrid linear path.

Theorem 4.2: Let Lh = {L,, LH2} be a hybrid linear path such that L; = (X,
<f;>), LH; is a linear path over X,, and X = X; [0 X;, where X; and X; are role sets.
Furthermore, let LH, = {Ly, LH’}, where Ly = (Xx, <f,>) over role set X, such that <f,> #
<f;>and LH’ isalinear path, possibly empty. Then, we have the following:

1. if <f;> = >' then UAS(Lh, t) = UAS(L, 1)
2. if<f;>= 3" then

UAS(Ly, 1) if (<f,> = 2)

UASLh. 1) = UAS(L1y, t) DUAS(LH,, t)O(UAS(Lyy,)OUAS(LH,, 1)) if (<f> =29

3. if <f;>= =! then
UAS(L4, 1) if (<f,>=2)
UASLh, t) = | UASLy, t) 0 UAS(LH,)O(UAS(Ly,)OUAS(LHo, 1) if (<f> =)

70

The next example illustrates the use of the above theorem and refersto Fig. 4.6.

Exanpl e 4. 2. 3: Consider Fig. 4.6. We note that the hierarchy in (@) is part of
the hierarchy in (b), which in turn is a part of the hierarchy in (c). We look at each
case separately.

Case (8): Here Ly = r3 ' rp, and Ly = rp ' ry. Hence, (<fy>,<f>)= (2,)
applies. Therefore, by Lemma 4.1, we have, UASLh, t) = UAS(L4, t), O UASL,, t) O
(UASLLy, 1) O UAS(La, 1) = {{rd} O {{ ra}, {ra}} O ({{ ra}, {ra}} O {{ra}}) =
{{ra}, {ra}, {ra}, { ro, ra}, { ro, ra}}.

Set UA=

Set UA= Ly {{rs}. {re}. {rs}}

Lot {{rat {rs} {ra rst} LHo {{ry, rad {ra, 1, {rs, 1},
rorbHy {{rod, {rab, {ra}, {ro, rab, {ry, rgh} {ro, 1, rad {ry ra, ra}}
{ | Rest: UAof L, 0 UA of LM, Rest: UA of L, 0 UA of LH,
SetUA= =
Ly {{ra}. {rg}} TN
Ly {{rd}, @ ;
Rest: UA of L, O UA of LH,’ 1 / : |
= {{ry 12} {ra. 1} LH; /

\
/ \
/ ! \ k
’ [v b ’
I 1) E
[} ! ' 1 I}
' 1 ’ 1 v
' 3 L. E S 1
i ' | b
1 |‘]
| H i i
: 1 ' } 1 |
' P ' P 1u
v ‘ k i ‘
\ g
] \ ; .
\ VoS !
\
) o S ’
— \ Sabe ’
P \ S /
- ~ Y . N /
y N \]
4 Ay ’
4 \
4)
4 i)

Fig. 4.6. Computing UAS of ahybrid linear hierarchy

Casa(b): Here L1 = r5 =" r43=" r3, and LM, is the hierarchy in (a). Now, we apply
Theorem 4.1. As <f;> = ' case (2) of the theorem applies. Thus, UAS(Lh, t) =
UAS(Lyy, t), O UAS(LHy, t) O (UAS(L1y, t) O UAS(LHy, t)) = {{ra}, {rs}, {rs, rs}} O
{{ra}, { ra}, { ra}, {ra, ra}, { ro, ra}} O ({{ra}, {ra}, {ra}, {ra, ra}, {ro, ra}} O {{r4},
{rs}, {ra, rs}}}) = {{ra}, { ra}, { ra}, {ro, ra}, {ro, ra}, {ra}, {rs}, {ra, rs}, {ra, ra}, {rs,

rsp, {ra, ra, , rs}, {rz, ra}, {ro, rs}, {r2, ra,, rs}, {rs, ra}, {rs, rs}, {rs, ra,, rs}, {ry, ra,

71

ra}, {ras, ra, rs}, {ra, ra, ra, rs}, {ra, rs, ra}, {ra, rs, ra}, {ra, rs, ra, rs}} . Thus, the total
number of elementsis 23.

Case(c): Here Ly = r7 Z' rgx' rs, and LH, is the hierarchy in (). Again, we apply
Theorem 4.1. Computation can be carried out similarly using UAS(Lh, t) = UAS(L, t),
0 UAS(Ly, t) O (UAS(Ly, t) O UASLy, t)) as depicted in Fig. 4.2(c). Note that the
computation of UAS(Lh, t) involves computing UAS(L., t), which can be done as in

case(b).

A hybrid general hierarchy can have complex inheritance and activation
semantics. We note that each hierarchical structure can be broken down, or vertically
partitioned, into a list of linear paths. In the following, we consider a genera hierarchy
rooted at arole and represent it using a vertically partitioned set of linear components. A
vertical partition, defined next, represents a genera hierarchy as an ordered list of its
component linear paths.

Definition 4.2.3 (Hybrid Hierarchy rooted at a role as a set of linear paths): Let
H = (X, [f]) be a hierarchy over role set X rooted at role S with relation set [f] O{2', >,
Zz%. We say that H is representable by an ordered set of linear paths (hybrid or
monotype), that is, H = {LHj, LHo, ..., LHy}, if, fori,j {1, 2, ..., m},i #jand LH; isa
linear path over X;, the following conditions hold
1 SHi=Sy Jwi O,
2. XX x:LmJ Xi
i=1
3. for all J O Jy, there exists no linear path LH = ({S4, X1, X5, ..., Xsi, J}
[f]), where [f'] O [f] and {Xna, X2, ..., X4} O X{ Sy, J}, such that LH
O{LHy, LHy, ..., LHy}.
We say that {LH1, LHo, ..., LHy} is the complete vertical partition of H. H can
also be written as {LH;, H'}, {H”, LHn}, {Hx Hy}, etc., each of which is (smply) a
vertical partition of H.

Based on the notion of vertical partitioning of a general hybrid hierarchy, the
following theorem shows how we can formally determine UAS of a genera hybrid
hierarchy that is not asimple linear path.

72

Theorem 4.3: Let H = (X, [f]) = {LH4, H1} be a hierarchy such that the following
condition holds: 00x, y, zO X, (x<f>y) O (x<f>2). Then, UASH, t) = 1/C, where
e | = (UAS(LHy, t) O UAS(H4, t) O (UAS(LH1, t)/B O UAS(H;, 1)/B)),
e B= (UAS(LHy, t) M UAS(Hy, 1)) = {X, Y| X O UAS(LHy,), YO UASH4, t) and X nY
#0},and
« C={Z|zOl,suchthatOx,y 0Z xZ"y}.

The theorem determines the UAS of a genera hierarchy that has at least one role
having multiple juniors, hence making it different from the linear paths. The computation
is based on the partition of the hierarchy into two components, in which one is a linear
component and the other is the remaining part of the hierarchy. This allows us to compute
the UAS recursively once we have the linear components. The next example illustrates
the working of Theorem 4.3.

Example 4.2.3: Consider the hierarchy in Fig. 4.7. The linear components of the
hierarchy are shown in (a)-(d). Each component’s UAS computed using Theorem 4.3 is
shown in Fig. 4.7. Now, we apply Theorem 4.3 to generate the UAS of the overal
hierarchy. We will write H;, to mean the hierarchy formed by components L, and Lh,,
H,5 to mean the hierarchy formed by components L,, Lh, and Lh;, and H,, to mean the
overal hierarchy.

Lo ={{ra}, {ra}, {ra}}

Lhy = {{ts}, {ra}, {ra}, {ts, ra}, {t1, ra}}

Lhs={{rs}, {si}, {tu}, {s1, ra}, {rs ta}}

Lhy={{ra}, {:i}, {s}, {sab . {ra s} {rs =}, {13 ssh {0, S} {0, St {1,

L, Lm, Lmj,

i A A A A
! & A & A
H PN TEEANT. S
i T I
/ oo 1 |
4 : i 4 i

| @ I | ° I

(a) (b) (c) (d)

Fig. 4.7. Computing UAS of agenera hierarchy
Step 1: Consider components L, and Lh,. Here, B = UASL4, t) [1 UAS(Lhy, t) =
{{ra}, {ra}, {ts, ro}, {t;, r5}}. Therefore, (UAS(L4, t)/B) O (UAS(Lhy, t)/B) = {{r}} O

73

{{t3} = {{ry, t;}}. Note that C is empty. Thus, UASH1o, t) = I/C = | = {{rg}, {rs},
{rad, {td, {ro, t, {rs td, {ty, rod}

Step 2: Consider component H,, (result from Step 1) and Lh;. Here, B = UAS(H12,
t) [1 UAS(Lhs, t) ={{r3}, {t;}, {ry, t;}, {rs ti}, {t;, ro}} .Therefore, (UASH12, t) -B) U
(UAS(Lhs, 1) -B) = {{r}, {ry}} O {{s}} = {{ro s}, {ry, si}}. Hence I = {{rg}, {r;},
{rd, {t}, {ro, .}, {rs t.}, {t;, ro}, {s}, {ro s}, {ry, S} } . Note that Lh, introduces the
|A-relation between r; and t,, but we have {rj, t;} U I. Thus we need to remove{r, t;}.
Therefore, UAS(Hy3, 1) = I/C = {{rg}, {r}, {r}, {t:}, {ry, ts}, {ty, ra}, {si}, {ra s},
{ru si}}.

Step 3: Consider component H,; (result from Sep 2) and Lm,. Here, B =
UASHis, 1) 1 UASLmy, 1) = {{rg}, {s}, {r s}, {rs S}, {8y, S;}}. Therefore,
(UAS(Hy3 -B) O (UAS(Lmy, 1) -B) = {{ry}, {ry}, {t}, {ry, to}, {ty, ro}} O {{ s}} =
{{r, s} {ry, s}, {t, S5}, {ry, 1y, S {tg, 1y, S} We also note that C is empty. Hence,
UAS(His, 1) = 1/C =1 ={{rg}, {ra}, {ro}, {ta}, {ry, i}, {ts, 13}, {si}, {ro s}, {ry, s},
{s}.{ra o}, {s1, S} {12 S} {ry, S}, {t, S {1, 1, S {1, 1 S}

Table4.2
Supporting functions for algorithmin Fig.4.8

Conput el (UASail, UAShead)

Compute | according to theorem 4.3

Conput eC(l, H Compute C according to theorem 4.3

i sLi near (H) if (thereisaxinRol es(H) s. t. x issenior of two other rolesin
Rol es(H)) then returns FAL SE else returns TRUE

i sEnpt y(H) if (Rol es(H) isempty) then returns TRUE else returns FALSE

i sMonot ypeLi near (LH)

if (there are two relationsin H) then returns FALSE else returns
TRUE

returns the type of linear hierarchy L (returns|, A or |A)

Type(L)

if {Ly, Ly, ..., Ln} isthe complete horizontal partition of Lh then it
hHead(Lh) returns{L,, ..., L.}

if {LHy, LH,, ..., LH,} isthe complete vertical partition of H then it
vHead(H) returns LH;
vTai | (H) if {Ly, Ly, ..., Ln} isthe complete horizontal partition of Lh then it

returns{L,, ..., Lp}}(returns O if n = 1).

74

Algorithm Conput eUASH er ar chy(H)

1. if (i sMonot ype(H)) then return Conput e UASMonot ype(H)

2. dseif (i sLi near (H)) then return Conput eUASLi near (H)

3. UASail = Conput eUASH er ar chy(vTai | (H))

4. UAShead = Conput eUASLi near (vHead(H))

5. | =Conput el (UASail, UAShead); C = Conmput eC(l, H)

6. return(1-C) /I Refer to Theorem 4.3
End Conput eUASH er ar chy

Algorithm Conput eUASLi near (LH)
1. if (i sEnpt y(LH)) thenreturn O;
2. if (i sMbnot ype(hTai | (LH))) then
return Conput e2Monot ypeli near (hHead (LH), hTai | (LH))
f, = Type(hHead(LH))
fx= Type(hHead(hTai | (LH)))
UAShead = Conput eUASLI near (hHead(LH)) /I Refer to Theorem 4.2
Case: (fy=‘1I")or (f,="A', fy="1")or (f,= 1A, f,="‘I")
return Conput eUASLi near (hHead(LH))
7. Case: (fi='A,fi="1A")
return (Conput eUASMonot ype(suby(hHead(LH)))OConput eUASLi near (hTai | (LH))
(Comput eUASMonot ype(suby(hHead(LH)))OComput eUASLI near (hTai | (LH))))
8. Case (fy='IA,f,="A")
return (Conput eUASMonot ype(hHead(LH))OConput eUASLi near (sub (hTai | (LH)))
(Comput eUASMbnot ype((hHead(LH)))OConput eUASLI near (sub (hTai | (LH))))
End Conput eUASHI er ar chy

o0 A®

Algorithm Conput e2Monot ypelLi near (Ly, L)
1. fi=Type(Ly); f= Type(Lo)
2. Case (f,="I")or (f,="1") /I Refer to Lemma 4.1
return Conput eUASMbnot ype(L,)
3. Case (fi='A,f,="1A)
return (Conput eUASMonot ype(suby(L,)) O Conput eUASMonot ypeLi near (L)
(Conmput eUASMonot ype(suby(Ly)) O Conput eUASMbnot ypelLi near (L))
4, Case (fi=‘IA,f,='A)
return (Conput eUASMonot ype(L,) O Conput eUASMonot ypeLi near (sub,(L,))
(Conput eUASMbnot ype(L;) O Conput eUASMonot ypeLi near (sub (L))
End Conput e2Monot ypelLi near

Algorithm Conput eUASMonot ype(H)

1 f=Type(H)

2. Case: (fy='1") return {{S:}} /I Refer to Theorem 4.3
3. Casel (f;=*A") return (2770 /1)

4, Case: (fi="1A") return{{x}, {Xo}, ..., {X.}} where, Roles(L) = {Xy, X, ..., X}

End Conmput eUASMonot ypeli near

Fig. 4.8 Algorithm for computing the uniquely activable set.

75

Based on the theorems, we derive the algorithms depicted in Fig. 4.8 for
generating the UAS of a hierarchy rooted at a role. Conput eUASH er ar chy
essentially implements Theorem 4.3 and constructs UAS recursively. For this, it uses
algorithm Conput eUASLI near which recursively constructs the UAS of linear paths.
Algorithm Conput eUASLI near, on the other hand, implements Theorem 4.2 and
makes use of algorithm Conput e2Mbnot ypLi near that implements Lemma 4.1.
Theorem 4.1 isimplemented by algorithm Conput e UASMonot ypelLi near .

4.2.2 Acquisition Equivalent Hierarchies

In earlier sections, we have characterized the UAS of a general hierarchy. An
important issue is whether or not we can use a hierarchy of one type to achieve what a
hierarchy of another type allows. To address such an issue, we need an appropriate notion
of equivalence between different hierarchies, as they are structurally and semantically
different. We note that central to the use of hierarchies in a GTRBAC system is the
efficient management of permission acquisition by users assigned to various roles in the
hierarchy. Thus, a notion of equivalence between two types of hierarchy can be
established if we show that the maximum set of permissions that can be acquired by a
user in the two hierarchies is the same. The significance of using the maximum set of
permissions is that within the equivalent hierarchies, the user can carry the same accesses,
even though, in each hierarchy, the user may have to activate a different set of roles. Here,
we introduce the notion of acquisition-equivalence between two hierarchies. We say that
two hierarchies are acquisition-equivalent if they allow the same maximum set of
permissions to be acquired by a user assigned to the senior-most role. We use Ppax(H, t)
to refer to the maximum set of permissions that a user can acquire through the senior-
most role of the hierarchy H in a session at time instant t. The notion of acquisition-
equivalenceis formally defined as follows:

Definition 4.2.4 (Acquisition equivalence or AC-equivalence of two hierarchies):
Let H; and H; be two hierarchies over role set Rol es. Then we say that H; and H, are
acquisition-equivalent or AC-equivalent (written as Hy =ac Hy), if Prax(H1, t)=Prax(Ha2, t).

The following theorem provides the formal characteristics of an AC-acquisition -
equivalent set of hierarchies

Theorem 4.4 (AC-equivalent hierarchies): Let Hi= (X, [fi]) = (LH1, LHa,... ,
LH,) and H, = (X,<f,>) be two hierarchies over role set X. If, for roles x, y 0 X and a

76

relation <f> [[f1], the condition (x<f>y O Hj iff x<f,>y [0 Hy) holds, then Hy=ac Hz (i.€.
H, and H, are AC-equivalent) provided the following holds
o foralil{1, 2, ..,n}, and hierarchies LH’, LHpq4, LH", each possibly empty, the
following is satisfied
=Ly, Ly such that LH; = (LH’, Ly, LHmig, Ly, LH”), where <f,>=>"and <f,> = '

The condition LH; = (LH’, Lx, LHmig, Ly, L") implies that in the linear component
LH;, thereis an I-relation that precedes (not necessarily immediately, as LHyig may not
be empty) an A-relation. All hierarchies that do not have such a component are AC-
equivaent to a monotype hierarchy. As a consequence, first, the theorem implies that any
two monotype hierarchies are AC-equivalent, as the condition LH; = (LH’, Ly, LHpig, Ly,
L") cannot occur in a monotype hierarchy. Furthermore, the theorem says that every
hierarchy that does not contain such a linear component is AC-equivaent to a monotype
hierarchy and hence to each other. This is because if an I-relation precedes an A-relation
in the hierarchy, then the permissions associated with the roles below the A-hierarchy
cannot be acquired by any user assigned to the senior-most role, thus, reducing the
permissions that can be acquired. The significance of this result is that, in systems where
the principle of least privilege is not of much concern, any monotype hierarchy can be
used instead of a more complex hybrid hierarchy.

4.3. Derived Hierarchical Relations

In a hierarchy where all three types of hierarchies can co-exist, a hierarchical
relation between a pair of roles that are not directly related may be derived. While most
derived relations fall into the three hierarchy types discussed earlier, we introduce a
specia derived type called a conditioned derived relation, written as (X[A](B)<f>y), and
defined as follows:

Definition 4.3.1 (Conditioned Derived relation): Let H be a role hierarchy, x, y [
Roles(H) and A, B O Roles(H). Then x[A](B)<f>y is called a Conditioned Derived
Relation (also read as “the derived relation x<f>y is conditioned on rolesin A and B"), if,
for all a[d A and b 0 B, the following holds:

for all alA, b O B, (x='a) 0 (a<f>Yy) O ((x=b) O (x>='b)) O (b3=y),
where<f> [{2', ', |A| >0, B| =0, and (b3='y) isa direct relation.

Here, the condition indicates that x is related to each a [0 A, directly or through a
derived relation, by an A-relation, whereas each a is related to y by the <f> relation. This

77

implies that a permission that can be acquired through role y can be acquired by a user
assigned to role x, without activating y, if he activates any of the rolesin A. We note that
B may be empty, in which case, the conditioned derived relation is simply written as
x[A]<f>y. If B is not empty then for each b U B, there is an A-path from x to y through b.
If C= A n Bthen, for al ¢ O C, both (c2'y) and (c3='y) hold; i.e., for al ¢ O C, we have
(cz'y). It is possible that X[A]({x})<f>y, which means x[A]<f>y, and (x>'y) is a direct
relation. As we shall see, it is not necessary that the hierarchical path from x to each a [
A contain all A-relations; it isonly required that a user who is assigned to or can activate x
can also activate a. This, however, implies that the hierarchical path from x to each a does
not contain any I-relation as it prohibits activation of ajunior role by users assigned to the
senior. Furthermore, we note that in X[A](B)<f>y, <f> is either > or =

HeadDoctor
{AtAlITime}

i SupervisorDoctor
PartTimeDoctor
(3 Hours) {(10am-12noon),
-9am

(7am EmergencyDoctor

DayDoctor

(9am-9pm) NightDoctor

(9pm-9am)

Short forms of the role names are -
given inside the circle, eg., PD
stands for PartTimeDoctor
I-hierarchy between PD and DD is
restricted; al others are
unrestricted.

{AtAIITime}

Fig. 4.9 A hybrid hierarchy for amedical department

Exanpl e 4. 3. 1: Consider the hierarchy of Fig. 4.9, representing a medical
department. PD can be enabled for three hours only. Since it has restricted-inheritance
over DD, a user assigned to PD can acquire DD’s permissions only in daytime. SD’s
relation to DD and ND are as discussed in Fig. 4.3(d). N can be I-inherited by DD and
ND. ED is enabled at al times. The A-relation between ED and N alows a user
assigned to ED to explicitly act as a nurse besides inheriting N’s permissions through
DD or ND. Assume that the HD role represents the head doctor of the medical

78

department, which is enabled at all times. HD can act as the supervisor role of doctors,
because of the unrestricted relations through SD. Two conditioned derived relations are
asfollows.
1. SD[DD, NDJ="' N: This is because users assigned to SD can acquire permissions
of N only by activating SD or ND.
2. HD[DD, ND, ED](ED) =' N: This is because users assigned to HD can acquire
permissions of N by activating SD, ND or ED, without activating N.
Furthermore, the users can directly activate N (because of the A-path through ED).

4.3.1 Thelnference Rules for Hybrid Hierarchies

We now introduce the inference rules that alow the derivation of indirect
relations between roles from explicitly specified relations between roles. Such derived
relations can be used to determine the permissions that can be acquired through the
activation of a role in a hierarchy by a user. We use 1Sen(y) = {x| x>'y is a direct
relation} to denote the set of immediate seniors of role y through A-relation. The
inference rules are as follows:

Inference Rules: Let H be a role hierarchy, x, y, z 0 Roles(H), and A, A, Ay,
B, B, [Roles(H). Then the inference rules for deriving indirect relations are as shown
in Table4.3.

R1isatrivial case of transitivity using a single hierarchy type. Thus, if <f> is 3=,
then from the two relations x3='y and y3='z, relation x='z is inferred. R2 appliesto al the
pairs of relations x<f>y and y<f>z that may not be direct relations. This can result in a
conditioned derived relation of the form X[A] <f>z. R3 deals with each of the cases in
which an unconditioned relation follows a conditioned derived relation. In a hierarchy,
there may be more than one relation between a pair of roles. Such a situation arises when
there are multiple hierarchical paths between a given pair of roles. R4 deals with such
cases. Rule R4.1 is a trivia case in which both the hierarchical paths are the same
unconditioned relation (derived or direct). Rule R4.2 captures all the possible
combinations of two different hierarchical unconditioned relations between the same pair.
Similarly, rule R4.3 captures al the possible combinations of two different hierarchical
relations between the same pair in which one is an unconditioned derived relation. Lastly,
R4.4 are for capturing al the possible combinations of two different hierarchical
conditioned derived relations between a pair of roles. Example 4.3.2 illustrates the
application of rulesto determine derived relations for the hierarchy in Fig. 4.9.

Table4.3
The inference rules for derived hierarchical relations

79

Rule | Case | Inference Rule
R1 (Monotype hierarchy)
(x<f>y) O(y<f>2) - (x<f>2) for all <F>0{>", ', 21
(Hybrid hierarchy with unconditioned relations)
R> 1 (x<f>y) O(y<f>2) - (x="2) for all <f;>, <f,>0{2', %'}, such that <f,> # <f,>
2 xZ'y) O(y>2 - (x='2);
3 (=) D(y<f>2) - (x[{y}]<f>2) for 0{2, 2'}
(Hybrid hierarchy with one unconditioned derived relation)
for <f>0{>", %', =} such that <f, >z<f,>;
1 a. | (x AI(B)=Y) O(y="2 — (X[AOC] ='2), where C={y} if |B|>0, else C=[1;
R3 b. | (x{ Al(B)2Y) O(yz'2) - (X[AOC] (C)="2) where C={y} if |B|>0, else C=0
for <f>0{=, ', '} such that <f, >#<f,>
2 a. | ((AI(B)Z'Y) O(y="2 — (X[AOC] ='2) where C={y} if |B|>0, else C=0
b. | ({ AI(B)ZY) O(y='2) — ({ Al £'2);
3 for <f>0{=", 2% (] A] (B)<f>y) O(y="2) - (x=")
(Hierarchy with multiple paths between two roles; subscriptsindicate the path number)
1 (x<f>y);, O (x<f>Y), — (x<f>y) for all <f>0{2, ', =}
2 (x<f>y); O (x<f>Y), — (x Z'y) for all <f>, <f,>0{>", ', ="} such that <f,> # <f,>
for all <f>,<f,;>, <f,>0{>', '} such that <f,>#<f,>
3 a | (X A] (B)<f>y), O(x<f>y), - (x<f>y)
R4 b. | (X Al (B)<f>y)1 O (x=)2 — X[Al (ISen(y))<f>y)
C. | (4 Al (B)<f>y): O (x<f>Y)o— (XX'Y)
for all <f>,<f;>, <f,>0{>', Z'} such that <f,>#<f,>
4 a. | (X A (BY<f>y): O(X[A (Bo)<f>Y), - (X[AOA](BOBy)<f>y)
o, | OLAL (BI<F>Y)T(A (B)<>Y)2— (ADIAL (ATB,IBy) >'y) st. A= A, if

<f;>=x'else A=A,

80

Table4.4
Application of inference rules over the hierarchy of Fig. 4.9

aEUI:Zd Deriverelations
R1 (PD ='N), (HD >tN)

1 | (ED ZtND) O(ND 2'N) implies(ED 2' N)

, | (HD xtSD) O(SD>t DD) implies (HD »»t DD)

R (SD >t DD) O(DD ='N) implies (SD[{DD}] =' N)

3 | (HD »>tED) O(ED xtND) implies (HD{ED}] Xt ND)

(HD >t DD) (DD %t N) implies (HD[{DD}] =t ND)

(HD[{ED}} =zt DD) O(DD ="' N) implies (HD[{ED}] =' N)
R3 | 2a

(HD[{ED}} Zt ND) O(ND ="' N) implies (HD[{ED}] =' N)

1 | (ED2'N) (onethrough DD, another through ND)

> | (ED2'N) O(ED »tN) implies (ED Xt N)

Ra| 3p | (HDHEDY >'N) O(HD =t N) implies (HD[{ED}]{ED}) =" N) (which is same as
(HD{ED}] Zt N)
4a | (HD{DD}] ' N) O(HDEND}] Xt N) implies (HD[{DD, ND}] > N)

4p | (HDEDD, ND}} ' N) O (HD[{ED}] %t N) implies (HDKDD, ND, ED}] ' N)

Exanpl e 4. 3. 2: Applications of the rules over the hierarchy of Fig. 4.9 is
illustrated in the Table 4.4.

4.3.2 Soundness and Completeness of the I nference Rules

In this section, we show that the set of inference rules introduced above is sound
and complete, using the notion of authorization consistent hierarchies, which is defined
below. In the definition, we use predicate can_act i vat e (u, r, t, H) to mean that u can
activate role r using role-activation semantics in role hierarchy H at time t. Similarly, we
use the predicate can_be_acquired (p, r, t, H) to mean that permission p can be
acquired through role r at time t using permission-inheritance semantics in hierarchy H.
Let UAH(H) and PAH(H) be sets of al the user-role and role-permission assignments
related to rolesin Roles(H).

Definition 4.3.1 (Authorization consistent hierarchies): Let H; and H, be two
hierarchies such that Roles(H;) = Roles(H;), UAH(H;) = UAH(H,) and PAH(H,) =

81

PAH(H,). Then, we say that H; and H, are authorization consistent (written as H; = Hy) if
for all r O Roles(H,), the following conditions hold:

1. OulUsers, can_activate (u,r,t, Hy)iffcan_activate (u,r,t, Hy),

2. Op O Perm ssions, can_be_acquired (p, r, t, Hy) iff can_be_acqui red

(P, 1, t, Ha), @
@
2

Hs

Fig. 4.10. Example of authorization consistent hierarchies; H; = H,, H;# Hzand Ho# Hj

Here, we note that the two hierarchies considered have the same role set, user-role
assignments and role-permission assignments. Condition (1) implies that if a user u can
activate arole r in Roles(H;) under hierarchy Hy, then g/he can activate it even if Hy is
replaced by H, (and vice versa). Similarly, the second condition says that the set of
permissions that can be acquired through a role under H; is also the same set of
permissions that can be acquired through that role in H, for any given user. This signifies
that if two hierarchies are authorization consistent then a user assigned to a role can
activate exactly the same set of roles and acquire the same set of permissions under the
two hierarchies. This means the permission-inheritance and role-activation semantics in
the two hierarchies are the same even if the sets of hierarchical relations in the two
hierarchies are different. Fig. 4.10 depicts an example of the notion of authorization
consistency. Here, the hierarchy relation h; in H, can be inferred from the hierarchical
relations (r1='rs) and (r3='rs), whereas, h, can be inferred from the two hierarchical paths
from role r; and r4. Hence, H; adds no new access capability compared to H,. However,
hs in Hs is not inferred from the hierarchical relations (r.>'rs) and (r3='rs). In Hs, a user
assigned to r3 can activate rs aso, which is not possiblein Hy or H,. Hence, Hy # Ha, and

82

H, # Hz. We use this notion of authorization consistency between two hierarchies to

show that the set of rules presented above is sound; i.e., each new derived relation that
can be deduced from a given set of hierarchical relations using the rules produces the
same inheritance and activation semantics that is already present in the original hierarchy.
Within a hierarchy H, we use hy; to represent (x<f>2) for <f>0{>, ', =} or x[A](B)<f>z
for <f>0{=, =}, where x, z 0 Roles(H) and A, B O Roles(H). The following theorem
formally states this result.

Theorem 4.5 (Soundness of rules R1-R4): Given a role hierarchy H, if a new
hierarchical relation hy, is derived from hierarchical relationsin H as per rules R1-R4,
and H' =H O {h}, then H and H’' are authorization consistent, i.e. H = H'.

The theorem implies that the new relations derived using the rules do not allow a
user to inherit more (or less) permissions than was allowed to him before the derived
relation is added. Similarly, the new derived relation does not allow a user to be able to
activate more (or less) number of roles than was allowed before the derived relation is
introduced. Next, we present the completeness theorem for the rules R1-R4. We write
H[R1-R4] E hy, to indicate that the relations in H can logically derive relation hy, using
rules R1-R4.

Theorem 4.6 (Completeness of rules R1-R4): Given a role hierarchy H, rules
R1-R4 are complete; That is, if =~ H[R1-R4] hy,, for any pair of roles x, z 0 Roles(H),
then H# H O {hyj}, i.e, the hierarchiesH and H' = H O {hy,} are not authorization

consistent.

The theorem indicates that if arelation, say <f>, between any two roles, say x and
z, of Roles(H) cannot be derived from the hierarchical relations in H, then any role
hierarchy containing such a relation is not authorization consistent with H. In other
words, we can take every pair of roles (x, 2) of Roles(H) and every possible hierarchical
relation between them, including conditioned derived relations, and extend H by adding it
toget H'. If we get H = H’, the theorem implies that the rules R1-R4 are able to derive it.
Hence, this shows that the rules are complete. Using the transitivity of the hierarchical
relations and considering al the cases of the rules, we can easily construct the proofs. The
proofs for both the theorems are provided in appendix B.

83

4.4. Hierarchy Transformations

In an organization, roles evolve with time, affecting the existing role hierarchies.
New roles may need to be added and old ones deleted or modified. Permission sets of
existing roles or their temporal properties may need to be altered. Making such changes
may require restructuring the hierarchies to avoid undesirable situations. In this section,
we analyze transformations of a role hierarchy when arole is added, modified, or deleted
that best maintain the permission inheritance and role activation semantics of the original
hierarchy.

4.4.1 Role Addition

Typically, anew roleis added to an existing hierarchy to distribute a unique set of
new permissions among the already existing roles in the hierarchy. Before we add a new
role to a hierarchy, we need to properly define its permissions and identify the existing
sets of roles that can beits seniors and juniors. Furthermore, we need to account for other
existing temporal, separation-of-duty and activation constraints in the hierarchy.

Let rn be the new role to be added in the origina hierarchy H,. Supposery isto be
added between roles s and j, and s<f>j [J H,. By adding the new role, assume we obtain
the new hierarchy H,.. Then, it is easy to see that Hy= Ho/(s<f>]) O{(s<fi>ry), (rn<f2>})}
for some hierarchy relations <f;> and <f,>.

Table 4.5 lists various criteriafor hierarchy transformations. Criteria C1 states that
the roles of the original hierarchy H, can be activated by a user in the new hierarchy Hp, if
and only if the user can activate it in Ho. Similarly, criteria C2 states that the permissions
associated with the roles of the original hierarchy H, can be acquired by a user in the new
hierarchy H,, if and only if the user can acquireit in H,. It may also be possible that the
addition of a new role actually results in a conditioned derived relation between roles s
and j, when originaly s> or sxj. Semantically, it means that in H,, instead of acquiring
the permissions of j by activating role s, which is originally allowed in Ho, now a user u
assigned to s or its senior needs to activate the new role to acquire j’s permission. In such
a case, the “can be acquired” semantics is not completely lost as u still does not have to
explicitly activate | to acquire its permission. However, the origina “can be acquired”
semantics aso is not entirely retained. Hence, we say that such a scenario results in a
restricted transformation. We represent such a scenario as criteria C2" indicating that
criteria C2 has been satisfied in arestricted sense.

Table4.5
Criteriafor hierarchy transformations

Criteria
1 CL OuOUser s, r 0 Roles(Hy)
can_activate (ur,tHy,) - can_activate (ur,tH,)
OpOP(Roles(Hy), t), r0 Roles(Hy),

C2 can_be_acqui red (p,r,t,Hy) —can_be_acquired (pr.tHy).

2
, DLH = ({Xll X2y X S, J}! [fLH]),rD{Xl, X250y Xy S}l
C2Z | (r<f>j) OHo (r[ra]<f>j) O Hy, where {X, X,..., % s, j} O Roles(Hy), [fiu] O {=', >,
z'} and 0{2, 2.

Table 4.6
Scenarios for hierarchy transformations

Scenarios for role addition

s1 No extra constraint is added with respect to the new roler,;

A permission-centric activation constraint is added for the new roler,

A user-centric activation constraint is added for the new roler,,;
(s, ry) isconsidered to bein DSoD
(rn,]) isconsidered to be in DSoD

Qhle s

When a new role is added, various new constraints related to the new role may
need to be added as well. It is important to note that the above criteria may not be
satisfied if we introduce new constraints along with the new role. We consider the five
scenarios (S through S5), shown in Table 4.6 to describe the addition of constraints
related to the new role and describe with regards to them various transformations that
satisfy criteria C1 and C2 or C1 and C2', as shown in Table 4.7. Here, V indicates that the
transformation satisfies the indicated criteria under the given scenario and x indicates
otherwise. Note that the static separation of duty (SSoD) constraint between
hierarchically related roles is not appropriate [Gav98]. However, an A-hierarchy allows
dynamic SoD (DSoD) to be defined on a role [Jos02]. Hence, we only consider DSoD
between roles as a scenario.

85

Table4.7
Transformation with criteria satisfied for different scenarios

(s<f>)) _—
(s<fi>ry), (rn<f>>j) O Ha Criteria | 51 | s2 | s3 | s4s5
0 H, Satisfied
[S='h, M= Vv x| V]|V
alii | s#i |3ty rox CLC2 | v | x| v | x|V
iii s<f>ry, r.>Y, for any <f> x | x | x| x| x
[S% T, 0> CLC2 | ¥V | ¥V | x| V| x
b L of | R i) | CLC2 | V| < | V] x]
i (s¥rn2]); (% MZi)i (<Pl o) oo | | | x| x|
r.»=,) for any <f>
i S=Tn Mz CLC2 | V[V | x| V]| x
c i s ek N Al V| x| V| x| x
(s<f>rn, rZh)i(s<f>rn, rn2j,) or| CLC2
i t: X X x X X
(s<f>rp, rn3=1]), for any <f>

Various transformation cases for role addition indicated in Table 4.7, which are
depicted in Fig. 4.11, can be easily explained by applying the inference rules to infer the
derived rules between s and j in H,. Note that DSoD constraints are allowed among roles
that are only A-hierarchically related. Similarly, permission-centric activation constraints
are appropriate when A-hierarchy is used whereas the user-centric activation constraint is
appropriate in an | or |A-hierarchy.

Fig. 4.11(a) depicts the addition of role r, when (s3=j) for case (a) of Table 4.7.
As Fig. 4.11(a) shows, only cases (i) and (ii) satisfy C1 and C2 under some scenarios.
Case (i) alows defining a permission-centric activation time constraint on role r, ()
because of the new relation (s3='r,). Defining a DSoD constraint between roles s and r,
and r and j ($4 and) is alowed by the A-relations between them. Case (ii) alows a
user-centric activation-time constraint on role r, because of the relation (s='ry), (rn=Y).
Cases depicted in (iii) do not retain origina hierarchical properties, not even when no
constraint is added for the new role (S1). The main reason is the introduction of an I-
relation that removes the original activation semantics.

86

N
[\ (|
I . — |
| — > | | Roletobeadded |
]K o Rdleto beadted)l N I)
______________________________ - T P - '
i H
0 (i) (i (i) (i) i),
Lo 3 = S, 2, 2 s3
@) (b)

<5 oo) CTDCTD
i - Sslaslas
- S lanlan

() (ii) i

(81, 2,2 3

Fig. 4.11. Addition of anew role r between rolessand

Fig. 4.11(b) depicts the addition of role r, when (s>') isin Ho. Because of the new
relation (s='ry,) for case (i), we see that C2' is satisfied for some scenarios as s and j are
related by an I-relation in H, only. Furthermore, (s3='r,) alows the permission-centric
activation constraint on r, and DSoD constraints on s and r, (S4 and). Cases depicted
in Fig. 4.11(b)(ii) maintain the original derived relation (s>). These choices alow
defining a user-centric activation time constraint on role r, (S3). Cases depicted in Fig.
4.11(b)(iii) either introduce an A-relation between s and j, which is not present in the
original hierarchy, or makes them hierarchicaly unrelated, removing the original |-
relation between s and j. Hence, such transformations do not satisfy any criteria.

87

Fig. 4.11(c) depicts the addition of role r, when (s='r,) is in H,. Choice (i)
introduces an A-relation between s and ry,, removing the I-relation between s and j; thus,
only C2" instead of C2 can be satisfied for some scenarios. Choice (ii) retains the original
relation between s and j and hence is the most accurate transformation. However, there is
more restriction on choice (i) in terms of what constraints can be defined for r,, than in
choice (i). In the choices depicted in (iii), the I-relation between s and j is completely
removed, hence no transformation is possible.

4.4.2 Role Deletion

When arole is deleted from a hierarchy, the crucial issue is what to do with the
permissions associated with it and the users assigned to it. Generally, we can expect to
require that the permissions be retained in the system, and thus making them available
through other roles in the hierarchy. This requires redistributing the permissions
associated with the deleted role to other roles in the hierarchy, and reassigning the users
originally assigned to the deleted role. We identify the following three approaches for a
deletion of arole from a hierarchy: (1) thefirst approach is to reassign the permissions of
the deleted role to its immediate seniors; (2) the second approach is to reassign the
permissions of the deleted roles to its immediate juniors; and (3) the third approach is to
reassign the permissions of the deleted role to each of the senior roles through which the
permissions of the deleted role can be acquired within the original hierarchy. One key
problem with these approaches is the reassignment of the users who were originaly
assigned to the deleted role. Any reassignment will result in a privilege escalation of
some users assigned to roles in the hierarchy. The third approach is ad-hoc and defeats the
purpose of a hierarchy structure. In practice, this approach may be applicable when the
whole hierarchy needs to be restructured. We do not discuss the third approach further.

Let H, be the origina hierarchy and H, the new hierarchy obtained by deleting
role r. Furthermore, let U, and P, be the sets of users and permissions explicitly assigned
to roler. For each immediate junior j of r, let U; be the set of users assigned to j. Let sbe
an immediate senior of r. Table 4.8 depicts different cases of transformations for the first
and the second approaches that attempt to meet the criteria C1 and C2 introduced earlier.

As shown in the table, privilege escalation of users in U, occurs in the first
approach as they are assigned to senior roles, whereas that of usersin U; occurs in the
second approach, as the permissions associated with the senior role are assigned to role .

88

The table further shows what the appropriate transformations are for different sets of
relations between sand r, and r and j in Ho.

Table 4.8
Deletion of arole using approaches 2 and 3

The First Approach The Second Approach
For r<f>j00 H,, For s<h>r00 H,, For s<f>j00 H,, For s<f>r0 H,, For s<f>j00 H,, <f>is
<f>is <h>is <f>is <h>is (for appropriate
(for appropriate transformation)
transformation)
I-hierarchy (=) no relation I-hierarchy (=) none appropriate
A-hierarchy (»!) | A-hierarchy (=) | A-hierarchy (=) | A-hierarchy (=) A-hierarchy (=)
IA-hierarchy (XY | A-hierarchy (= | IA-hierarchy (X" A-hierarchy ()
(restrictive)
I-hierarchy (=) any I-hierarchy (=) any I-hierarchy (=)
| A-hierarchy (") for any <h> <h> for any <h> <h>
Reassignments— U, and P, are assigned to role s U, and P, are assigned to rolej
Resuilt of Privilege escalation for usersin U, Privilege escalation for usersin U,
reassignment —

Fig. 4.12 depicts various transformations when (r3=4)0 H, under the first
approach. Note that s may be related to its immediate senior by any of the three
hierarchical relations. To show the overall picture, we include roles x, y, and z as seniors
of s with respect to I, A and 1A-relations, respectively. Let <h> be the origina relation
between s and r. When <h> is an I-hierarchy, s and | are not hierarchically related, as s
does not inherit j's permissions. Neither is any user assigned to s or its seniors able to
activate j in Ho. Hence, case (i) in Fig. 4.12(a) (i.e., “no relation” between s and j) retains
the original derived relation between s and j, also indicated in the table. The choices (ii),
(i) and (iv) in Fig. 4.12(a) result in undesirable situations as each one makes something
possible that was not originally possible. Similarly, when <h>is an A or 1A-hierarchy, s
and j have a derived relation (s3=j). Hence, as shown in figures 4.12(b) and 4.12(c), after
the deletion of role r, we can introduce the direct relation () or (s='j). We note that
after the deletion of roler, if we have (s=Y), it makes the inheritance of j’s permissions
by s possible, something that was not originally allowed.

89

S p— -

n
(D P,

Original |

@iy

(i)
(a) hiisan I-hierarchy

Fig. 4.12. Deletion of roler when (r3=4)
The cases for (r=1) or (rz') in H, can be similarly explained. When (r=') O H,, for all
relations between s and r, the resulting relation between s and j will be () as shown in
the table. It is straightforward to see that it is so when h is an I-relation. If <h>isan IA-
relation, then (s>Y) is the derived relation in Ho; hence after the transformation, the
relation is maintained. However, if <h> is an A-relation, then the origina relation
between s and j would be (s{r}=Y). If in the transformed hierarchy we use relation (s>),
then users who can activate s still cannot activate j, but still can acquire j’s permission,
now by activating s in place of the deleted role r. Hence, the semantics about a user not
being able to activate it but acquire its permission by activating some senior role s still
present in the hierarchy with the new relation (s>'). It is, however, to be noted that this
transformation affects the original relations between j and role s or those above it. The

changeisin terms of what needs to be activated to acquire’s permission.

Various cases for the second approach can be similarly explained. The key
difference is when (r3=Y) O Ho. Here, if (s2'r) O H,, no hierarchical relation between s
and j can be derived in Hy; hence, we cannot have any relation between s and j. However,
“no relation” between s and j means that the permission set P, now assigned to j, cannot
be used by any user who can activate s. Note that in H,, a user who can activate s can also

90

activate r and hence acquire P,. For this case, therefore, there is no appropriate
transformation. Similarly, if (s='r) O H,, the only possible new reation is (si).
However, it is somewhat restrictive in the sense that, in H,, a user, u, who can activate s
need not explicitly activate j to acquire its permission. But in Hy,, u needs to activate | to
acquire its permission.

4.4.3 Role Partition

Sometimes it is essential that an existing role be simply partitioned to change the
semantics of the hierarchy. In particular, partitioning may indicate the requirement for
separating the role’'s permissions into different subsets. We identify the following three
ways to partition a role: (1) vertical partitioning: here a role is partitioned into a set of
new roles that form alinear path with the permission set of the old role distributed among
the new roles; (2) horizontal partitioning: here the rol€’' s permission set is partitioned into
a number of digoint sets, each of which is assigned to a new role; the new roles do not
have any hierarchical relations between them; and (3) hybrid partitioning: here both
vertical and horizontal partitioning are applied on the role resulting in an arbitrary
hierarchy over the new roles. Fig. 4.13 illustrates these partitions.

? Vertig:al Partition Hybrid Partition

? g HOFIZgntal Partition ! @

Fig. 4.13. Partitioning aroler into threerolesry, roand ra
In each case, the set of new roles replaces the partitioned role in the hierarchy.
Once a role is partitioned, it is possible that an administrator completely redefine the
hierarchica relationships in the part of the hierarchy above the partitioned role. Such a
case requires offline redesign of the system. However, it may be required that the origina
hierarchical semantics as defined by criteria C1 and C2 (see Table 4.5) do not change.

91

Table 4.9 lays out various transformation characteristics of the three approaches. Here,
role r of the origina hierarchy H, is partitioned into a set of new roles RP = {xy, Xy, ...,
Xn}. Asusual, let sand | represent a senior and ajunior of r.

Table 4.9

Transformation characteristics for different approaches to role partitioning

Roler O Roles(H,)
is partitioned into . . Horizontal : i,
RP = {Xy, Xo, ... X} Vertical Partition Partition Hybrid Partition
O Roles(H,)
L = (RP, <f>)
(i.e. formslinear path)
. H=(RP, [f]) = {LH,,
if then LHy, ..., LHy} for n >
(=), 1(.e a hierarchy whichi s
(r<h>j)OH,, o not alinear path) such that
<f>0{=', = .
. or (521, =2 i i Roles(LH;)0 RP
1 -y (r=)0H, hierarchically .
characteristics related Condtion:
(sz'), if s<f>j is a derived
(rZj)0H, or ot relation in H, then at
t <f>=x .
(sz'n), least one linear path LH;
(r>=)0H, must allow deriving
relation s<h>j in H,.
(S>t r), st
(r<h>j)0H, <002}
, | Reassignment For all udu,, FErDiljl Xilf For a”SLXD{}S‘Jé'US‘HZ'
H H r Hn S r
of Uy uisassignedtox assigned to x uisassigned to x
Relation with s For al XO{ S i1, Sh2s o
3 where s<f>x; For :I<If)>(|):(| RP, SHn},
(s<f>r)OH, s<f>x
Relation with r For all XO{ I n1s Jimzs -
4 where Xn<f>] For illf);D RP, Jihn}s
(r<f>))0H, J x<f>j

Row 1 shows various hierarchy characteristics associated with the rolesin RP. As
already indicated above, in vertical partitioning, the new roles form a linear path. The
linear path can be a monotype in order to retain original hierarchy semantics. As shownin
the table, if originally (s>'r), (r<f>j)0H,, or (s='r), (r=Y)0H,, then in the new hierarchy
H,, the monotype hierarchy over the roles in RP should be of type =' or ='. This is
necessary to retain the original derived relation (s>) in the transformed hierarchy. If
(sz'r), (rz)0H, or (sz'r), (r=')0H,, then the new linear path over the roles in RP

92

should be of type =" or . Similarly, if (s>='r), (r<h>j)OH,, then the new linear path over
the rolesin RP should be of type =".

The original semantics as defined by criteria C1 and C2 are ensured in the vertical
partitioning by these transformations and by the new relations defined in rows 3 and 4.
For horizontal partitioning, the roles in RP are not hierarchically related. For hybrid
partitioning, the roles in RP form multiple linear paths. The condition for the hybrid
partitioning states that at least one linear path must allow inferring the derived relation
s<f>j of H,. For the linear path that maintains the original derived relation s<f>j, we can
use the transformations outlined for vertical partitioning in the if-then columns.

Entries in row 2 indicate the reassignments of the users in U, originally assigned
toroler, to new role(s) in RP. The reassignments shown here are defined on the basis that
the original access capabilities of the users are to be retained, athough privilege
escalation for some user may result from the process. In practice, this may not be the
actual case, and the relations among roles in the partition shown in row 1 may need to be
accordingly adjusted. Rows 3 and 4 indicate how the roles s and j are related to the new
rolesin the partition. For avertical partitioning approach, the original relation between s
and j is used between s and x; (X, and j) as indicated. Note that x; and x, are the senior-
most and the junior-most roles of the new linear path created by the rolesin RP. In case
of horizontal partitioning, s and j are made senior and junior of each of the rolesin RP.
The case for hybrid partitioning is similar to that of the horizontal partitioning except that
the role s is made senior to the senior-most roles of each of the linear paths formed over
the roles in RP, whereas j is made the junior of each of junior-most roles of these linear
paths.

As indicated above, the need for such partitioning is primarily to restructure or
redistribute permission sets in a hierarchy. Another reason for doing such partitioning
may be because of the temporal properties. For example, arole may need to be vertically
partitioned to arrange the temporal properties in such a way that the intervals associated
with a senior role contain the interval associated with the junior roles. Similarly, a
horizontal partition may need to be done to create roles with distinct nonoverlapping
intervals. Furthermore, a hybrid partitioning may be needed to properly structure very
complex temporal properties. An analysis of such partitioning based on temporal
properties will be considered in detail in adlightly different context in Chapter 7.

93

4.5 Conclusions

In this chapter, we have presented an analysis of hybrid temporal role hierarchies
for the GTRBAC model. We have introduced the notion of a uniquely activable set of a
hierarchy that identifies access capabilities of a user assigned to arolein a hierarchy in a
single session. The formal results we have presented alow determining uniquely
activable sets for hybrid temporal role hierarchies and provide a basis for controlling
privilege distribution to the users by restricting activable sets associated with the roles
they are assigned to. The results related to the AC-equivalence between different role
hierarchies also show that, in cases where the principle of least privilege is not a concern,
a monotype hierarchy may be used. Furthermore, as an A-hierarchy does not alow direct
permission-inheritance, the results show that the A-hierarchy provides the most needed
flexibility. In particular, an A-hierarchy alows DSoD constraints to be defined on
hierarchically related roles. Furthermore, the inherit-all-permission semantics of |-
hierarchy as well as |A-hierarchy has severa pitfalls in terms of their ability to handle
many organizational control principles [Mof98].

We have also introduced a set of inference rules which can be employed to infer
hierarchical relationships between pairs of roles that are not directly related. We have
formally showed that the set of inference rules is sound and complete. In a complex
hybrid hierarchy, these rules provide a formal basis for analyzing the permission
acquisition and role activation semantics. We have also introduced the notion of
conditioned derived relation which augments the three hierarchies (I, A and IA-
hierarchies) and facilitates capturing much fine-grained derived permission acquisition
and activation semantics within a hierarchy.

We have aso addressed the issue of hierarchy transformation with respect to role
addition, deletion, and partitioning. These transformations essentially form the basis for
policy evolution in an organization. It is to be noted that transformations that retain
original hierarchical semantics in a hybrid hierarchy need to be based on what type of
additional role constraints exist or will be added in the hierarchy.

The results presented in this chapter provide a forma basis for developing
administrative tools for the management of GTRBAC systems. Such security
administrative functions are crucia for a well-planned, timely control of unauthorized
accesses as well as for distributing least access capabilities to usersin order to allow them
to carry out their activities and at the same time minimize damage that may be caused by
misuse of privileges.

94

5. CARDINALITY, DEPENDENCY AND SEPARATION OF DUTY
CONSTRAINTS

Cardinality and SoD constraints are crucia for securing many applications in a
commercia environment. Many researchers have highlighted the importance and use of
cardinality and SoD constraints in RBAC models. However, no one has addressed the
time-based cardinality and SoD constraints. Use of a particular constraint for a period of
time or duration is important for emerging applications as access requirements frequently
change with time. Dependency constraints are relevant to role based systems as roles
often embody organizational functions that may be inter-dependent. For instance, a doctor
in training may be allowed to work only if some senior doctor who can supervise him is
also on duty. Some aspect of dependency constraints, such as history based access
control, operational SoD, etc., have been mentioned in general access control literature
[Sim97], but they have not been adequately addressed for general RBAC systems. Such
dependency constraints have been well-recognized in workflow systems where workflow
tasks have inherent dependencies.

In this chapter, we focus on these constraints within the GTRBAC modeling
framework. The key contributions of this chapter are as follows:

* We introduce a generic framework for expressing a wide range of time-based
cardinality constraints with the help of GTRBAC status predicates, a function to
evauate these predicates, and a projection operator that extracts a set of elements
from the evaluation of the predicates.

* We develop an elaborate trigger expression that can capture complex dependencies
among events and conditions. In particular, we define CFD constraints that can be
used to express stricter control flow dependencies. Furthermore, we show that the
trigger framework and the CFD constraint expressions can be easily extended to
provide an elaborate time-based RBAC model for context-based access control.

* We identify a large set of possible SoD constraints using the GTRBAC status
predicates. These SoDs subsume the SoDs that have been identified in the RBAC
literature, and at the same time provide a much finer modeling capability. In

95

particular, extended with a temporal dimension, these SoDs can provide various
forms of semantics generating aricher set of fine grained SoD constraints.

5.1 Generalized Cardinality Constraint Expression
In this section we develop a framework for expressing cardinality constraints with
respect to all states of GTRBAC systems including role states, assignments states as well

as user sessions. First, werevisit the status predicates introduced in Chapter 3.

Table5.1.
Various status predicates

Predicate(s;) Evaluation Semantics
Domain(DOM)

P:permission set, R:role set, U:user set, S:set of sessions, T:time instants, rOR, pOP, uOU, sOS, tOT
enabl ed(r, t) RxT risenabled at timet
u_assi gned(u,r,1t) UxRxT uisassignedtor attimet
p_assi gned(p, r, t) P x RxT pisassignedtor at t
can_activate (u,r,t) UxRxT u can activater at t
can_acquire (u, p,t) UxPxT ucanacquirep at t
r_can_acquire (up,r,t) U xP x RxT u can acquire p throughr at t
can_be_acquired(p,r.t) P x RxT p can be acquired throughr at t
active(r,t) R xT risactiveinatt
u_active(u,r,t) UxRxT risactivein u'ssession at t
us_active(u,r,st) U xR x ST risactiveinu'ssessionsatt
acquires(u,p,t) U xP xT uacquiresp atimet t
r_acquires(up,r,t) U xP x RxT u acquires p throughr at t
s_acquires(u,p,st) U xP x SxT uacquirespinsessionsatt
rs_acquires(u,p,r, st) U xP x Rx SxT u acquires p throughr in session sat t

96

Table 5.1 lists al the possible GTRBAC status predicates. The non-temporal
counterparts of each predicate can be simply obtained by removing the time parameter. A
non-tempora predicate s simply indicates that its corresponding tempora predicate s
applies at al times, i.e,, s - [t, s;. Inversaly, s; means that status predicate s holds at
time t. The second column of Table 5.1 specifies the evaluation domain for the predicates
in the first column. The third column describes the semantics of the predicate. The
axioms, as introduced in Chapter 4, capture the key relationships among various
predicates in Table 5.2 and provide the basis for defining precisely the permission-
acquisition and role-activation semantics of a GTRBAC system.

Table5.2.
Relations among predicates

can_acquire (u, p,t) « OrdRr_can_acquire (u,p,r,t)

active (r,t) « OJuOU,u _active (u,r,t)

u active(u, r,t) « OsOS us_active(u,r,st)

acquires (u p,t) - OrdR, r_acquires (u,p,r,t)

acquires (u, p,t) » OsOS s _acquires (u,p,st)

acquires (u, p,r,t) « OsOS rs_acquires (u,p,r, st

acquires (u p,st) « OrdR, rs_acquires (u,p,r, St

5.1.1 Predicate Evaluation Function and Projection Operator

Next, we formulate a general framework for expressing cardinality constraints by
using the status predicate. This alows us to define cardinality constraints with respect to
any state of a GTRBAC system. For this purpose, we use a predicate evaluation function
and a projection operator over the result of the evaluation function to extract information
about users, roles, permissions, sessions, and time. The predicate evaluation function eval
returns the subset of the evaluation domain of the predicate specified as its argument. The
projection operation My, », . mm Projects over the specified set of elements from the
evauated domain. Ny . . mmiS Similar to the projection operator in relational calculus.
The two functions are defined as follows:

Definition 5.1.1(eval, IM;): Let s(alist) be a status predicate, where alist is a list
of arguments ay, ..., &, ..., &, associated with domains Dy, ..., Dj, ..., Dy, respectively

97

(O0{1, .n}, 5, O{R, P, U, S T}) . If DOM is the evaluation domain of s(alist), then we

define evaluation function eval and projection operator My, 1z, .. m as follows:

o eval(s(alist)={(x1, ..., Xi, .-, Xn) | (X2, --., Xy -+, Xn) (OIDOM) Os(X1, ..., X, +-.) Xn)}

e Mnu o . meval(s(@ist)={ (X, X2 ..., Xam) | {0, To, ..., T} 0{1, 2, ..., n}; OxyODy,;
and for all pairs (X1, Xo.-- , Xa), (Y1, Y2--- , Yn) O eval(s(ay, .. a1, &, &+1,---, @), X =
yiforalljO{1,2, ...,n}{1w, T, ..., Thy};
moreover, for all such j we replace the argument by its constant value in quotes; i.e.,
we denote a constant value XD by “x” in the argument list}.

Evaluation function eval returns the subset of the evaluation domain
corresponding to the predicate that it evaluates. For instance, eval (enabl ed(r, t)) isa
subset of domain (R x T). Similarly, My, 12, ., m alows us to project the evaluation of a
predicate over a particular argument indexed by i. For instance, Mieval(enabl ed(r,
“t")) returns the set of al roles that are enabled at time “t’. Similarly,
Meeval(enabl ed(“r”, t)) returns the set of all time instants at which role “r” is enabled.
Let us denote the set of all projection functions over the predicates defined in Table 5.2 as
. Note that we can also have evaluation of the negation of the predicates of Table 5.2,
for instance, M,eval (-enabl ed(r, “t”)). M denotes the set of projection operators
over negated predicates. Based on these projection operators and the origina set of set
elements Orig={R, U, P, S T}, we build a framework for expressing an exhaustive set of
cardinality constraints as follows. Let OP 00 {[, n,/} be aset operation; then we have a
generic set function f as follows:

1. Fonondy;
2. f=(fOP X), where X [0 E O Orig;
3. f=(f1 OPf,), where f; and f> are generic set functions.

We can express a cardinality constraint as (|f] cop n), where |f] is the number of elements
inset f, cop =, % <, >, 2, <} is acomparator operator, and n is a positive number.
Some examples of the cardinality constraint expressions are shown in Table 5.3. It isto
be noted that while projection operators in 1 make sense in a general context (as shown
in Table 5.3), those in M™* may not have a clear meaning. Therefore, care should be taken
in constructing cardinality constraints based on them. For example, the function
Meeval(-u_active(“u”, r, “t")) refersto a set of roles that are not active in any of
user u's sessions at time t. Hence, | Myeval(-u_active(“u”, r, “t"))| < n states that
the number of roles not active in any of user u’'s sessions at time t cannot be more than n.

98

However, it is not clear whether it is n out of those that u can activate or out of thosein R.
Depending upon the application, a distinction may need to be made a priori. For instance,
we can say that, “by default, out of those that u can activate”. Furthermore, we note that
some cardinality constraints of type C = ([N, e, .. meVval(s(plist))| cop n) may not have
direct application in a general RBAC framework. For example, M;eval(s_acti ve(u,
“rr,"s’, “t")) (set of users that have activated r in session s at time t) associates
multiple users with the same session. Such cases may be useful if we consider a
collaborative system where a session is created with multiple active users.

Table5.3.
Examples of cardinality constraints

Number of roles enabled at time
“t” cannot be lessthan n

Number of roles disabled at time
“t” cannot be more than n.
Number of roles assigned to “u” at
time“t” cannot be morethann

1| |M.eval(enabl ed(r,“t")] =n

2| |Mseval(-=enabl ed(r,“t")] <n

3| |N.eval(u_assi gned(“u”, r,“t"))|<n

Set of rolesthat u can activate at

4| |Meval(can_acti vat e(“u”, r,"t"))|< n) time t cannot be more than n

5| (Daytime, |Meval(u_assi gnedSet (u,“Nurse”, t)] < | Number of users assigned to Nurse
n) role in Daytime cannot exceed n

5.1.2 Time Based Cardinality Constraints

Periodicity and duration constraints on a cardinality constraint C = (|f] cop n) can
be simply defined using the GTRBAC temporal framework as (I, P, C), which indicates
that the cardinality constraint is valid for each instant in intervals defined by (I, P), and as
([1, P,| D], Dx C), with Dy indicating the duration in which the cardinality constraint is
valid. However, the different semantics may need to be attached to its interpretation. To
illustrate these possible interpretations, we first present the cardinality constraint in a
singleinterval, say t:

Definition 5.1.2 (Interval-constraint on Cardinality): Let C =(|My, o .,
meval(s(plist))[cop n)be a cardinality constraint and 7 an interval. Then, C can be time-
constrained within rin the following ways:

99

1. Wesak form: (7, Cy) is said to be a weak form of time-based cardinality constraint
if the following is satisfied:

OtO0z7i 041, 2, .. m, (75 =1t) 0N e .. weval(s(plist)cop n)

2. Strong form: (7, Cg) is said to be a strong form of time-based cardinality
constraint if the following is satisfied:

(>} N, e, .. meval(s(plist)]) cop n

tor

Note that the difference between the two forms is that, in the weak form, the
cardinality constraint is defined with respect to each instant in the specified interval. For
example, if the cardinality constraint is ((9am-9pm), (|My = smit €val(u_assi gned(u,
r, t)] < 5)w), then it implies that at each time unit between 9am and 9pm, the user Smith is
assigned to not more than five roles. At different time units, Smith may be assigned
different roles. In contrast, the strong form, ((9am-9pm), (|My = smit
eval(u_assi gned(u, r, t)] £ 5)s) would mean that, between 9am and 9pm, the total
number of roles assigned to Smith, ssmultaneously or otherwise, should be less than or
equal tofive.

Next, we extend these forms to provide differing semantics for periodicity
constraints.

Definition 5.1.3 (Periodicity constraint on Cardinality): Let C =(|Nmu, e, ..
meval(s(plist))|cop n)be a cardinality constraint and (I, P) be a periodicity expression.
Then, C can be time-constrained in (I, P) in the following ways:

1. Weak form: (I, P, Cyw) is said to be a weak form of time-based cardinality
constraint if the following is satisfied:

Oz adn(, P), (7, P, Cw)
Alternately, (I, P, Cy) can be expressed as:
Ot O0Sol(1, P), i O{1,2,...,m}, (i =1) (M re, .. meval(s(plist))|cop n)

2. Strong form: (I, P, Cg) is said to be a strong form of time-based cardinality
constraint if the following is satisfied:

100

Ozon(, P), (7, P, Co

3. Extended Strong form: (I, P, Cgw) is said to be a strong form of time-based
cardinality constraint if the following is satisfied:

(D) N . meval(s(plist)]) cop n

t0Sol(1,P)

Note that the weak periodicity constraint implies that in each of the recurring
intervals, the weak interval-constraint semantics applies. Similarly, the strong periodicity
constraint implies that for each recurring interval of the periodic expression, the interval-
constraint applies. It is aso intuitive to extend the strong interval-constraint on cardinality
to all the time instants of the periodic expression. We refer to this as the extended strong
form.

5.2 Extended Triggersand Control Flow Dependency Constraints

Another set of constraints that are often needed in the commercial systems is that
of dependencies between roles and other events associated with RBAC entities.
GTRBAC provides a trigger mechanism that can be used to express some dependency
constraints. However, there are much stricter forms of dependency constraints known as
control flow dependency (CFD) constraints, which are needed in various applications. In
this section, we extend the originad GTRBAC triggers and define the CFD constraints
using extended triggers.

5.2.1 Extended GTRBAC Triggers

The basic trigger expression of GTRBAC is of the form: (E; ,..., En, Cyp ..., Ck
- pr:Eafter At), where E is an event and C; is a status condition. Semantically, it
means that the prioritized event pr:E with priority pr can take place At time units after
the trigger fires. The definition, however, is limiting in the following ways: (1) it only
allows scenarios in which all the antecedent events E;, ..., and E,, occur at the same time
and all the conditions C; ,..., and Cy hold; it does not allow capturing history information
in which events are spread in the tempora dimension; (2) it does not allow specifying
temporal intervals in which the occurrence of an event E; can take place, or a condition

101

Ci is satisfied; (3) it is possible that in some cases a condition C; must be valid for a
specified duration before triggering the event E; such a requirement is also not captured
by the current triggers; and (4) the current trigger considers that E # s activate r
for u; this needlessly prevents specifying any preconditions for activation events. In
some cases, an activation request may need to be granted only if certain conditions have
been satisfied. We define the extended trigger form, which is temporally more expressive
than the current GTRBAC triggers and does not have the above limitations, as follows:

Definition 5.2.1 (Extended Triggers): The extended trigger expression has the
following form:

(E1i nTg) 0p;1 ... 0Pm-1 (Emi N Th) Opm (Cri nTof or di) opmer... OPmin-1 (Cn 1 N Ty
for dy - pr:Eafter At for Ad, where

» Ejs are simple event expressions or run time requests; and C;s are GTRBAC status
expressions,

» pr:Eisaprioritized event expression with priority pr.

e If(E=s activater for u)isan activation request at time t, = (t + At) then
u_active(u, r, s, t)istruein the interval (t;, ta+ Ad), provided that the trigger
firesat timet,

» thetrigger isfired if T; (15) isan interval such that there existsat [t; (15) at which G
(Ei) becomes valid, and C; remains valid for duration d;; we simply write“C; i n 1" to
mean that thereexistsat [1; at which C; isvalid for some duration; we write “C; at
t" “Eat t")instead of “Cii n 1" (“Ei i nt") when T (15) = (t, t); wewrite“C; f or
d” to mean that C; isvalid for some duration d.

» At istheduration between the firing of the trigger and the occurrence of the event E,
and Ad is the duration for which the event E remains valid. If not specified, At = 0,
and Ad = 0 op; {0, [} and O has precedence over [l For simplicity, we use “,” to
denote the [operator and “|” to denote the [operator.

We note that the old trigger form cannot be used to specify the temporal
information suchas“E;ji n 13" or “Ci i n 1;". The earlier form is actually a special case of
the extended form, in which all the antecedent events and conditions are associated with
the same timeinstant. That is, for any t,

102

E;at t,..,Enat t,Cyat t,..,,Cat t - pr:Eafter At, (@

The duration information Ad associated with the triggered event E in the
extended trigger simplifies specification but does not increase the expressive power over
the earlier form. The following trigger:

E;at t,...,Eqat t,Ciat t,...,Cat t - pr:Eafter At for Ad (b)

is semantically equivalent to the combination of the following two old triggers

1 Ei,..,EnCi,..,C - priEafter At,
2. E - pr:Conf(E) aft er Ad, where Conf(E) is the conflicting event of E and

pr’ = pr.

We note that the triggers of form (a) (one with “at t,” phrase) can represent the
extended form (one with “i n T4, phrase); however, it is easy to see that the extended
form achieves compaction in expression over the form (a). For instance, the extended
trigger form without the “f or d,” part can only be represented by using multiple triggers
of form (a), each with a permutation of time instants from 1y, T0,..., T, T1, T2,..., Tn.
Similar compaction is achieved by the use of the two logical operators.

Note that triggers allow GTRBAC events and status conditions only. However, it
can easily be extended to include other events and conditions. For instance, condition C;
can be any predicate expression that evaluates contextual information that affects access
control decisions. Consider the following trigger:

(Location(x) = “EmergencyRoom”) | (situation ()= “LifeThreatening”) —
pr:E enabl e EmergencyDoctor

Here, if the room, indicated by variable x, is EmergencyRoom, or the current
situation is LifeThreatening then the EmergencyDoctor role is enabled, thus capturing
environmental context. Similarly, we can alow event E to be any system related event.
With a predefined set of predicates to capture static as well as dynamic environmental
conditions and events, the extended GTRBAC trigger framework can easily provide a
very elaborate support for context-based access control.

103

5.2.2 Control Flow Dependency Constraints

Control flow dependency (CFD) constraints often occur in task-oriented systems
and are stricter forms of dependency constraints than those that can be expressed using
GTRBAC triggers. The following example illustrates such CFD constraints.

Exanpl e 5. 2. 1: Consider the following requirements. (1) a junior employee
of an office is alowed to activate the Junior_Employee role in the system only if his
manager has activated the Manager role; (2) whenever a system administrator makes
some changes in the system, the activation of the SysAdmin role that he uses must
enable the SysAudit role so that another user can activate the SysAudit role and log
those changes. The SysAudit role may need to be activated by the user within the next
r minutes; (3) everyday, if both the roles SysAdmin and SysAudit are activated, then
the SysAdmin role must be activated before the SysAudit role.

The three requirements imply (1) pre-condition, (2) post-condition and (3)
precedence constraints. Next, we show that GTRBAC does not adequately model these
constraints, but we can semantically define CFDs in terms of these triggers.

Pre-condition Constraints

A pre-condition constraint between two events essentially implies that an event
can occur only if the other event has already occurred and/or the required conditions have
already become true, as in the first case above. The following trigger closely resembles
the pre-condition constraint (1):

s: acti vat e Manager for John - enabl e Junior_Employee
(Assume that John is the manager)

However, the “only if” semantics of the pre-condition constraint requires that
there be no other events that will enable the Junior_ Employee role; i.e., the
Junior_Employee roleis not enabled if John does not activate the Manager role. This
means the above trigger can enforce the pre-condition constraint only if we also enforce
the additional restriction that no other constraint or trigger allows the enabling of the

104

Junior_Employee role. However, GTRBAC's trigger mechanism currently does not
imply such an additional restriction; hence, it falls short in providing support for the pre-
condition constraint. For instance, in addition to the above trigger, assume that we also
have the following periodicity constraint:

Everday between 9am and 6pm, enabl e Junior_Employee

The presence of this periodicity constraint does not allow the above trigger to
enforce the pre-condition constraint as it allows the role to be enabled even if the
Manager roleis not enabled.

Post-condition Constraints

A post-condition constraint between two events essentially implies that if an event
occurs or a condition is satisfied, then the other event also must occur, as indicated in the
second case in the example above. Here, if the SysAdmin role is enabled then the
SysAudit role must also be enabled; otherwise, it may incur certain security risks.
However, the activation of the SysAudit role may aso be triggered by other eventsin the
system. In essence, the post-condition constraint will not be enforced if there are some
other triggers or constraints that do not allow the SysAudit role to be enabled even
though the SysAdmin role has been enabled. Thus, it is easy to see that the following
trigger:

enabl e SysAdmin - enabl e SysAudit

enforces the post-condition constraint only if the system additionaly makes sure that
there are no other constraints or triggers that prohibit enabling of the SysAudit role when
thistrigger fires; this cannot be expressed using GTRBAC triggers.

Precedence Constraints

A precedence constraint is said to exist between two events if there is a condition
that if the two events occur, then one must always precede the other, as shown in
requirement (3). Another real world scenario in which such a precedence semantics
appliesis a pair of tasks involving authorizing a check and cashing it. It is easy to see
that such precedence semanticsis not enforced by triggers alone.

105

Next, we formalize the syntax and semantics of the CFD constraints in GTRBAC
using triggers. In the definitions we will use (ts, te), such that (ts, te) isin aninterval of (I,
P), or (ts, te) is some duration D. For (i, te) = D, tsis the time instant when D startsand is
non-deterministic. A constraint ¢ = (D, C) needs to be enabled by a trigger or a runtime
event. Assume that T is the set of al GTRBAC constraints and Causes(c, pr:E, t) isa
predicate that evaluates to true if there is a constraint ¢ in T which causes event pr:E to
fire a time t. Furthermore, we use Y to denote the left hand side of a trigger expression,
e,

Y=E3inmy, .., Eninm, Ciintifor di,...,Ch int, for d,

The following precedence rule is applied in a GTRBAC system - if there are
conflicting pairs of events (eg., assign and deassign, activate and
deacti vat e, etc.) then the negative event takes precedence (e.g., deassi gn takes
precedence over assi gn) if the priority of the two events are the same; otherwise the
higher priority event takes precedence.

Definition 5.2.2 (Pre-condition constraint): The pre-condition constraint is
expressed as ([I, PID,] pre, Y, pr:E after At for Ad). Semantically, to say that ([I,
PID,) pre, Y, pr:E after At for Ad) OTisequivalent to saying that:

1. (Y- priE after At for Ad);OTisan extended-trigger, and
2. ~OcOTst (Ot O (t +At, t+ At+ Ad) and pr’= pr, Causes(c, pr': E, ty) is
true for pr'= pr.

Definition 5.2.3 (Post-condition constraint): The post-condition constraint is
expressed as ([I, P|D,] post, Y, pr:E af t er At). Semantically, to say that ([I, P|D,] post,
Y,pr:E after At for Ad) isinTisequivalent to saying that:

1. (Y- priE after At for Ad);OTisan extended-trigger;
2. m0cOTst Ot O(t+At, t+ At+ Ad), Causes(c, pr': Conf(E), ty) is true
for pr'=pr.

Note that condition (2) in each definition ensures that the additiona conditions
required for the two CFDs, as discussed earlier, are enforced. Next, we define a
precedence constraint, which relates two events. We can aso define a CFD with “if and
only if” by combining the above two constraints. Next we define a precedence constraint
that essentially relates two events.

106

Definition 5.2.4 (Precedence constraint): Let pri:E; and pra:E, be prioritized
events such that ([I, P|D,] prec, pri:E;, pro:E; af t er At), i.e. praE; is precedent on
pr1:E;. Then, for all t such that t [J (tg, te):

([1, P|D,] precedence, pri:E;, pro:Ez) —
(for each pair c1, ¢ O T,
Causes(cy, pr:Eg, t1) OCauses(cy, priEz to) » (te<t1+At < t,<ty))

The safety notion introduced in Chapter 3 identifies scenarios that have
ambiguous execution semantics, for example, the existence of a cycling dependency
among events through triggers. The safety checking algorithm can be easily extended to
identify the violation of the CFD constraint by introducing extra checks to ensure that
additional restrictions are enforced for the CFDs. Furthermore, it is easy to see that by
using triggers, we can easily express al the 13 tempora relations between a pair of
GTRBAC events [All83]. Moreover, using CFD constraints, we can define stronger
forms of the temporal relations.

5.3 Time-Based Separation of Duty Constraints

Separation of Duty (SoD) policies have been found to be very crucial for securing
commercial applications. Role-based systems are particularly very beneficial for
expressing and enforcing such policies. Various SoDs have been identified in the
literature. However, all earlier research focus on SoDs in a non-temporal environment.

The triggers and CFD constraints introduced in the previous section can aso be
used to define SoD constraints that are based on access history, such as the history-
dependent SoD, order-dependent SoDs, object-based SoDs, which are identified in
[Ahn00, SiIm97]. In this section, we define various SoD constraints that cannot be
captured by such CFD constraints, some of which correspond to those already identified
in the literature. These SoDs will be defined with respect to GTRBAC status predicates
introduced earlier.

107

Table5.4
Enabling time and assignment SoDs

SoD Type

Semantics
Dul Ui, u2|:| U| Dr, r, rZD R, Dp, pl, pzD R‘ , (uli uz)’ (r]_i r2) and
(p1# po) the following holds:

Expression (SoD)

Enabling/Disabling SoD

‘ SoD L enabl ed(r) — —enabl ed(r,)

EN-SoD | (1,P,EN,R)
No two rolesin R can be enabled at the same time
(DISSoD) | (1, P, DIS,R) ‘ SoD [di sabl ed(r;) — ~di sabl ed(r,)

No two rolesin R can be disabled at the same time

User-Role assignment/de-assignment SoDs

(1,P, UAS;, U,R) ‘ SoD Cu assi gned(u,r;) — -~u assi gned(u,r,)

UAS-SoD;
No two rolesin R can be assigned to auser in U at the same time

UAS-SoD, (1, P, UAS;,U,R) ‘ Or0R, SoD Cu_assi gned(uy, r,t) - =u_assi gned(u,, r, t)
No two usersin U can be assigned to arolein R at the same time

UAS (I, P, UAS;, U, R) ‘ SoD Cu_assi gned(uq, r1,t) - =u_assi gned(u,, I, t)
SoD; Different usersin U cannot be assigned different rolesin R at the same time

UAS-SoD, (1, P, UAS,, U,R) ‘ SoD « UAS-SoD, C UAS-SoD4
Rolesin R can be assigned to only one of the usersin U at the same time

UAS-SoDs (1, P, UAS:, U, R) ‘ SoD « UAS-SoD; C UAS-SoD4
Usersin U can be assigned only one of the rolesinR at the same time

UAS-SoD (1, P, UASg, U, R) ‘ SoD ~ UAS-SoD, C UAS-SoD,
A roleinR can be assigned to only one user in U (and vice versa) at the sametime

Role-Per mission assignment/de-assignment SoDs

PAS'%D]_ (Ia P, PAS]_, Pv R) DpDP, SoD Dp_aSSI gned(p, r, t) — —|p_aSS| gned(p, ro, t)
No two rolesin R can be assigned a permission in P at the same time

PAS-SoD, (I, P, PAS,, P,R) Or0R, SoD Op_assi gned(py, r,t) - —p_assi gned(p,, 1, t)
No two permissionsin P can be assigned to arole in R at the sametime

PAS.SOD, (I, P, PAS;, P, R) Ops, poLP, SoDOp_assi gned(py, ri,t) > —p_assi gned(para, t)
Different permissionsin P cannot be assigned to different rolesin R at the same time

PAS-SoD, (1, P, PAS,, P,R) ‘ SoD o PAS-SoD, C PAS-SoD,
Rolesin R can be assigned only one of the permissionsin P _at the same time

PAS-SoDs (1, P, PAS;, P, R) ‘ SoD o PAS-SoD; C PAS-SoD,
Permissionsin P can be assigned to only one of therolesin R at the same time
I, P, PASg, P, R D o PA D, OPA D

PAS-SoDs (5 P\ R) -y SSoD, DPAS SoD,

Permissionsin P can be assigned to only one of therolesinR at the sametime

108

5.3.1 Enabling Time SoD Constraints (predicates: enabl ed/di sabl ed)

The SoD constraints related to enabling and disabling events are shown in Table
5.4. EN-SoD indicates that roles from a given role set cannot be enabled at the same time.
If there are role enabling events that attempt to enable more than one role at the same
time, then the enforcement mechanism must use some criteria to enable only one of the
roles. SoD DISSoD is defined with respect to the role-disabling event. The difference
between them is that EN-SoD does not alow all the roles to be enabled at the same time
but allows them to be disabled at the same time, whereas DIS-SoD alows al the roles to
be enabled at the same time but does not allow them to be disabled at the same time. Role
enabling SoDs (EN-SoD) are cases where limiting access is a primary concern. Similarly,
role disabling SoD (DIS-SoD) is more useful in cases where availability is the key
concern. For example, in a hospital, a requirement may state that “Both the Nurse and
Doctor roles cannot be disabled at the same time”. These SoDs can be expressed in the
form of cardinality constraints introduced earlier; e.g., EN-SoD can be expressed as
[Mieval(enabl ed(r, t)) n R| < 1. Similarly, other SoDs defined below can aso be
expressed in this form; however, we use uniformly the implication rule to provide the
semantics of these SoDs.

5.3.2 Assignment Time SoD Constraints(predicates: u_assi gned, p_assi gned)

Table 5.4 defines various user-role and role-permission assignment time
constraints. UAS-SoD; indicates that multiple roles from R cannot be assigned to a user in
U at the same time. Accordingly, the roles from R can be assigned to any user not included
in U. In other words, this implies that the role set R has conflicting semantics only with
respect to the user set U. Allowing specification of such a set of conflicting roles with
respect to a particular user set provides the benefit of expressing fine-grained SoD
constraints. UAS-SoD,, states that different users of U cannot be assigned to arole in R;
i.e., the users in U are conflicting with respect to role set R. Fig. 5.1 depicts various
assignment combinations that are not alowed by the user-role assignment constraints for
U={us, U} andR ={ry, ry}. Here, alinefrom u tor indicates that uisassignedtor. In
general, set U can be expected to be the set User s. In Fig. 5.1, UAS-SoD; does not allow
assignment combinations depicted in (c), whereas, UAS-SoD, does not allow assignment
combinations shown in (b).

109

[

(@) (0) ©)

SoD Doesn’t Allow SoD Doesn’t Allow
UAS oD, (© UAS oD, (@), (b)
UAS oD, (b) UAS SoDsg (@), (c)
UAS SoD3 (@) UAS SoDg (b), (c)

Fig. 5.1. User-assignment SoDs with U={u;,uz} and R={rq,r,}

UAS SoD; states that different users from set R cannot be assigned to different
roles. Here, U and R have conflicting semantics with respect to each other. Note that the
notion of conflict here is dlightly different from that of UASSoD; and UAS-SoD».
However, this constraint allows a single user from U to be assigned to multiple roles of R,
and a single role from R to be assigned to multiple users. UAS-SoD3 does not alow the
assignment scenario depicted in (a). In areal world scenario, U of UAS-SoD3 may refer to
a set of employees who are related. The assignment of any two of these employees to
different roles will allow them to commit fraud. If, for instance, one employee is assigned
to role AuthorizationManager (that authorizes checks) and another is assigned to role
CashingClerk (for cashing authorized checks), they can easily commit fraud. Another
practical scenario in which this constraint can be applicable is when a set of roles
represents subtasks of a bigger task, with the constraint that the different users of U cannot
carry out different subtasks.

UAS-SoD,4, UAS-SoDs and UAS-SoDg can be derived as combinations of earlier
SoDs, as shown in Table 5.1. We note that, athough UAS-SoD3 alows defining

110

constraints such as al the subtask roles which need be assigned to the same user, it aso
allows the assignment scenario (b), which may not be relevant with regards to such a
requirement. UAS-SoD,, for instance, omits the possibility of assigning al the usersto the
same subtask role rendering the overall task un-accomplishable. As shown in the figure,
UAS SoDs prevents the set of assignments of the type shown in (a) and (c) —i.e., it allows
multiple users to be assigned to only one of the roles, such asthosein Fig. 5.1(b). That is,
as soon as one of theroles, say roler, is assigned to a user, then none of the users can be
assigned to any other roles; however, role r can be assigned to any number of users. An
example of the application of UAS-SoDs is the assignment of a given set of consultants
(set U) to the same consultancy duty (the assignment of al the users to the role
ConsultantOfCompanyA).

The role-permission assignments have semantics similar to that of the user-role
assignments. Note that, here, we are using the notion of conflicting permission, for
examplein PAS-SoD,.

5.3.3 Activation Time SoD Constraints (predicate: act i ve)

Activation time SoD constraints are listed in Table 5.5. ACT-SoD; implies that
activation of conflicting roles at the same time in the same session or different sessions by
auser in U is not allowed. Fig. 5.2 depicts the scenarios for U = {uy, up} and R = {ry, ra}
when both the roles are active. Here, s: uy(ry, r») indicates that rolesr; and r, are activein
u;'s session s. ACT-SoD; does not allow activation combinations depicted in figures
5.2(b) and 5.2(c). ACT-SoD,, does not allow activation of arole by conflicting users at the
same time. Similarly, ACT-SoD3 does not allow conflicting roles to be active in different
users’ sessions, as depicted in Fig. 5.2(a).

ACT-SoD, does not allow the scenario in Fig. 5.2(c); i.e. it prevents activation of
the conflicting roles in the same session simultaneously. ACT-SoDs does not allow
scenarios depicted in 5.2(b); i.e. it prevents the activation of the conflicting roles in the
different sessions of the same user simultaneously. ACT-SoDg and ACT-SoD; are
combinations of the earlier SoDs, as indicated in the table.

Fig. 5.3 illustrates the usefulness of SoD constraints ACT-SoD; - ACT-SoDs. In
Fig. 5.3(i), roles r; and r, have a common set of permissions. Now suppose we allow
users u; and U, assigned to roles ry and r,, respectively, to activate the respective roles at
the same time. As the read permission on the object Oy is available to both the roles, the
information that each role writes to object Oy is visible to the other. Hence, O« opens up

111

the information flow channel between the two users. Common permissions like these may
occur explicitly, in a non-hierarchical case, or implicitly through an I-hierarchy relation
such as in the one shown in Fig. 5.3(i). In a non-hierarchical case, declaring the two roles
as conflicting and applying ACT-SoDs is a straightforward solution if such information
flow needs to be contained.

Table5.5
Activation time SoDs

Semantics
Type SoD Ou, ug, U0 U, Os, py, po0 R, Or, rq, 10 R, Ot O SOI(I, P), (u#
Up), (ri# ry) and (p1# p.), the following holds:

ACT- (I, P, ACT-SoD4, U, R) OuOU, SoD Ou_active(u,r;,t) > ~u_active(u,ryt)
SoD; No two rolesin R can bein active state in session(s) of auser in U at the same time
ACT- (I, P, ACT-SoD,, U, R) OuOU, SoD Ou_active(ug,r,t) - —u_active(u,r,t)
SoD, No two usersin U can have arolein R active at the same time
ACT- (I, P, ACT-SoDs U, R) Ouy, 00U, SoDOu_active(uy,ry, t) - =u_active(uy, rat)
SoDs

No two usersin U can have two different rolesin R active at the same time
ACT. (1. P, ACT-SoDs, U, R) OuOuU,0s0S SoD Ou_active(u,ry,st) - =u_active(u,
SoD, r2st)

Two rolesin R cannot be in active state at the sametimein asingle session of auser in U

OudU,0sy, s,0S, SoD Ju_acti ve(u,ry, s, t) -

ACT- (I, P, ACT-SoDs, U, R)
SoDs =u_active(u,ry St

No two sessions of a user in U can have two rolesin R active at the same time
ACT- | (1,P, ACT-SoDg, U,R) | SoD < ACT-SoD,[JACT-SoD,
SoDs Rolesin R can be active in asession(s) of only one of the usersin U at the sametime
ACT- | (1,P, ACT-SoD;,U,R) | SoD ACT-SoDsACT-SoDg
SoD4

Rolesin R can be active in asingle session of only one of the users U at the same time

Kuhn [Kuh99] indicates that roles that have common permissions cannot form a
conflicting pair. We believe that such semantics is too restrictive. Moreover, with that
semantics, we indirectly impose mutual exclusion on the permission sets of the two roles.

112

This may not be what is required in practice. For example, there may be situations where
only the private permissions of a pair of roles are conflicting, but the roles may have a
common set of permissions.

u, O{uy, uy}

Mo [O{ry, ra}irg £,

(a) (c)

u, O{uy, uy} Iy O{ry, ra}

(b) (d)

SoD Doesnot allow | SoD Doesnot allow
ACT-SoD, (b), (¢ ACT-SoDsg (b)

ACT-SoD, (d) ACT-SoDg (@), (d)
ACT-SoD3 @ ACT-SoD4 (@), (b), (d)
ACT-SoD, (c)

Fig. 5.2. Activation time SoDsfor U ={uj, U} and R={r4, ry}

In such scenarios, conflicting roles imply a conflicting set of private permissions
only. For example, an Employee role in general can be used to group the basic set of
permissions available to all the employees of an organization. We may have two roles
such as AuthorizationManger and CashingClerk, which are both senior to Employee
but are considered to be conflicting; however, conflicting semantics is obviously limited
to their private permissions rather than the common permissions inherited from
Employee. Kuhn's strict mutual exclusion semantics necessitates partitioning even such
basic roles in order to enforce mutual exclusion over the total sets of permissions
associated with the two roles. However, sometimes in such a scenario, common
permissions may create information flow when the private permissions of the two roles
conflict. In Fig. 5.3(i), for example, when user u; activatesrole rq, and u, activatesroler;
at the same time, they can exchange information contained in Oy and Oy to each other.
ACT-SoD3 prevents such possibilities.

113

ACT-SoD; can be used in cases where a user needs to be restricted from acquiring
permissions that give him/her enough power to carry out some activities. For example,
Fig. 5.3(b) shows two roles that contain permissions for the subtasks of a bigger task. If
we want that the same user not carry out the two subtasks, then we can employ the ACT-
SoD; constraint. Furthermore, the roles may be organized as an A-hierarchy, where role r
represents the actual task role and is the senior of rolesr; and r, that represent sub-tasks 1
and 2. If users from U are assigned to r and the ACT-SoD; is defined with respect toR =
{r1, r2}, then the task can only be performed by two different users of U working at the
sametime.

o, e)
o,
r, i ra |
(Feaglwrie}— 0.,
Sub-task T
o, :
(readhwrite} | 05,

—— Oy

Sub-task T,

u, assigned to u, assigned to \\ Task T /
(uy, u,) assigned to (>

Fig. 5.3. Session time SoD examples

O |\,

ACT-SoD-, can be used to enforce the requirement that a particular task can be
performed by only one person at a time by assuming the task role. ACT-SoD, limits the
access capability of a user by not allowing the conflicting roles to be active in a single
user session. Its usefulness comes from the fact that a session in RBAC system is
semantically the same as a subject in traditional access control models (DAC, MAC, etc.)
[San94]. Similarly, ACT-SoDs prevents a user from simultaneously acting as two
subjects.

5.3.4 Possibilistic Activation SoD Constraints (predicates: can_act i vat e)

We aso define SoDs based on thecan_act i vat e predicate, as shown in Table
5.6. CACT-SoD; prevents all possible activation of conflicting roles by usersin U.

114

Table 5.6
Possihilistic role activation SoDs

Possibilistic Activation (can_act i vat e) SoDs

Semantics
Type SoD Ou, ug, O U, Or, rq, 10 R, Ot 0 Sol(1, P), (ug# up) and (ry#
r,), the following holds:
CACT. (I, P, CACT-SoDy, U, R) OubJU, SoD Ocan_acti vate(u, ry,t) -
SoD, -can_activate(u, rpt)
No two rolesin R can be activated by auser in U at the same time
CACT. (I, P, CACT-SoDy, U, R) Ouy, u,0U, SoD Ocan_act i vat e(uy, ry,t) -
SoD, -~can _activate(uy, rt)
No two usersin U can activate two rolesin R at the same time
CACT- | (I,P,CACT-SoD3, U, R) SoD » CACT-SoD; O CACT-SoD,
SoDs Usersin U can activate only one of therolesinR at the same time
(I, P, CACT-SoD,, U, R) OuOU, SoD Ocan_acti vate(u, ry, s t) -
CACT- -~can _activate(u, ryst)
SoD,

No two rolesin R can be activated by auser in U in asingle session s at the sametime

Usersin U can activate only one of therolesinR in asingle session s at the same time

assigned
A-hierarchy

] not
@ assigned Q Q assigned e

Conflicting roles

!

Fig. 5.4. Implication of possibilistic activation SoDs in presence of A-hierarchy

Note that the purpose of UASSoD; is essentidly to prevent activation of
conflicting roles by a user by not alowing explicit assignments to conflicting roles in the
first place. For example, when U = {us, Uz} and R ={ry, r}, we can prevent the possibility

115

of activation of both the roles by explicitly denying assignments to conflicting roles using
UAS SoD;. Let's assume that because of this constraint u; is assigned to rq but not ro.
Now, assume that there is a role x such that x is senior to r, with respect to an A-
hierarchy; i.e., any user assigned to x can also activate role r,, as depicted in Fig. 5.4.
Now, if we alow the assignment of u; to X, the purpose of preventing u; from activating
both r; and r; at the same time is not fulfilled. This is because the A-hierarchy between s
and r, makes the predicate can_act i vat e(uy, r», t) true, hence allowing u; to activate
r, even when u; is aready assigned to ri. Therefore, when we have role hierarchies,
implicit assignment may be possible through the use of the can_acti vat e(u, r, t)
predicate. The use of this predicate may make it possible for a user to activate conflicting
roles even if the constraint UAS-SoD; is already employed. CACT-SoD; prevents such
scenarios; i.e., it prevents both implicit and explicit assignments of a user to conflicting
roles. Furthermore, CACT-SoD, is an activation-time counterpart of UAS-SoD3;, and
CACT-S0Ds is the activation-time counterpart of UAS-SoDs. CACT-SoD, is a session
specific counterpart of CACT-SoD;.

Note that one way to prevent the scenarios depicted in Fig. 5.4 is to consider that
r, isin conflict with al the roles hierarchically superior to r,. However, this approach is
very restrictive, and makes the task of properly designing arole hierarchy very difficult.

5.3.5 Possibilistic Permission Acquisition SoD Constraints
(predicates: can_acqui re, can_be_acqui red)

Table 5.7 lists the possibilistic permission acquisition SoDs. CACQ-SoD;
prevents the acquisition of permissions through the conflicting roles that will not be
caught by PAS-SoD3, similar to the way CACT-SoD; prevents the activation of conflicting
roles not prevented by ACT-SoD;. That is, constraint CACQ-SoD; employs the “can
acquire’” semantics and hence captures both explicit and implicit role-permission
assignments. Note that PAS SoD3 can prevent the acquisition of permissions through the
conflicting roles by a user by restricting explicit role-permission assignment. However,
permission acquisition may aso be alowed through the implicit role-permission
assignment because of some hierarchical relations. For example, let us consider P = {p,
p2} and R = {ry, ry}. Suppose we have the SoD constraint PAS-SoD3; then the same
permission in P cannot be assigned to the two roles. Provided there are no hierarchies in
the system, the effect (and hence the purpose) of this SoD constraint is that the same
permission is not acquired through two roles even if a user is allowed to activate them

116

both. Now, assume there is a role x such that r; is the senior of x with respect to an I-
hierarchy, as shown in Fig. 5.5. Suppose we allow the assignment of p; to x. Furthermore,
suppose we have the following assignment: p; is assigned to r;, and hence p; is not
assigned to r, by virtue of the constraint PAS- SoD,. But, as p; is also assigned to x, and
(r2='x), pris aso implicitly assigned to r, the SoD constraint PAS-SoD. does not prevent
p1 being acquired through role r, using hierarchy semantics. CACQ-SoD; prevents such
permission-acquisitions through implicit assignments. CACQ-SoD., is to CACQ-SoD; the
way UAS-SoD; was to UAS-SoDs.

CACQ-SoDj; alows the acquisition of permissionsin R by users through only one
of the conflicting roles, whereas CACQ-SoD, does not allow different users to acquire
different permissions through the conflicting roles. Similar to the CACQ-SoD; constraint,
CACQ-SoDs5 prevents the acquisition of permissions which is allowed by both explicit
and implicit assignments. CACQ-SoDs prevents conflicting users from acquiring a
permission of P through the samerole, asin Fig. 5.4, or through different roles, asin Fig.
5.5. CACQ-SoDg, on the other hand, does not allow two separate permissions to be
acquired by conflicting users neither through the same role (as in (c)) nor the different
roles (asin (d)). CACQ-SoD- prevents conflicting users from acquiring a permission in P
through the same role in R at the same time and hence does not allow case (a). Similarly,
the table in Fig. 5.7 shows the cases depicted in Fig. 5.6 that are not allowed by CACQ-
SoDg, CACQ-SoD3 and User-SoDg. Various combinations of these SoDs define the SoDs

from CACQ-SoD; to CACQ-S0D1s.
not
assighed to e

I-hierarchy

Conflicting roles

@ assigned to 0
0 assigned to

Fig. 5.5. Implication of permission acquisition SoDs in presence of |-hierarchy

117

Tableb.7.

Possibilistic permission acquisition SoDs

Possibilistic User-Permission Acquisition (can_be_acqui red and can_acqui r e) SoDs

Semantics
Type SoD Ou, ug, w0 U, Or, rq, 120 R, Op, po, p20 P, 0t O Sal(1, P),
(ug# up), (r1# rp) and (p.# p,) the following holds:
CACQ (I, P, CACQy, U, P, R) SoD Ocan_acqui re(u, r,t)- -can_acqui re(u,pry,t)
SoDl_ A permission in P cannot be acquired by a user in U through different rolesin R at the same
time
CACQ_ | (1,P,CACQ,, U, P,R) OuOU, Opy, p.0P, SoD Ocan_acqui re(u, pg, rg, t) -
SoD, —can_acquire(u, p rzt)
No two permissionsin P can be acquired by auser in U through rolesinR at the same time
CACQ | (I,P,CACQs, U, P,R) Oug,u,00U,0p0P, SoD Or _can_acqui r e(uy,p, ry,t) -
SoD —can_acqui r e(uyp, rat)
3
No two usersin U can acquire a permission in P through different roles at the same time
CACQ_| (I,P,CACQ4U, P,R) Ouy,u,0U,0py,p.0P, SoDOr _can_acqui r e(ug,py, 1,t) »
. =r _can_acqui r e(U,,py, rat)
4
No two usersin U can acquire different permissionsin U through two roles at the same time
CACQ (1, P, CACQs, U, P) Op, SoD Ocan_acqui re (u,p,t) - mcan_acqui re (U,
— il)) il p’ t)
SoDs
No two usersin C can acquire apermission in P at the same time.
CACQ (1, P, CACQs, U, P) Opy, po0P, SoD Ocan_acqui re (U, p, t) -
- —can_acqui re (U pyt)
SoDg
No two permissionsin P can be acquired by the different usersin U at the same time
OpdP, Or0R, SoD Ocan_acqui re (U, p, r, t) -
I, P,CACQ U, P,R ! -
CACQ_ (@&) ~acquires(u,p,r,t)
Sob; A permissionin P cannot be acquired by different usersin U through the same roleinR at
the same time.
(I, P, CACQg, U, P, R) Opy, po0 P, OrO0R, SoD Ocan_acqui re (U, py, r, t) -
CACQ | ' Y —~acqui res(u, pa I, t)
SoDg No two permissionsin P can be acquired by two users through the samerolein R at the
same time.
Or0R, SoD Ocan_be_acqui red(py, r,t) -
I, P, CACQq, R, P ==
CACQ_ (Qe) -can_be_acqui red(p,r,1)
SoDg . . .
No two permissionsin P can be acquired through aroleinR at the same time.
CACQ (I, P, CACQio, R, P) Ory,r,0 R, SoD Ocan_be_acqui red(pg, ry, t) -

-can_be_acqui red(py ra t)

118

SOD1o Different permissionsin P cannot be acquired through different rolesin R at the same time.
CACQ_| (I,P,CACQu, U, P) Oud U, SoD Ocan_acqui re(u, p, t) - =can_acquire
(U, p21 t)
SoDy3
A user in U cannot acquire different permissionsin P at the sametime.
CACQ_| (I,P,CACQi,, U, P) Ouy, w0 U SD O can_acquire(u, p;, t) -
—can_acqui re (Up, po, t)
SoDy,
No two usersin U can acquire different permissionsin P at the sametime.
CACQ_| (I,P,CACQis, U, P,R) Or OR, Du_, SoD O can_acquire (U, py, r, 1) - =
can_acquire(u, po,r, t)
Permissionsin P cannot be acquired by a user in U through arolein R at the sametime.
@ e S (b) Ty
(o) (d) py O
(f)
(e)
b, >
(9) ; ;
T
Tpy, O
SoD Doesnot allow | SoD Doesnot allow | SoD Does not allow
CACQ-SoD; | (i) CACQ-SoDg | (i) CACQ-SoDy; | (ii), (vii)
CACQ-oD, | (ii) CACQ-SoD; | (iii), (v) CACQ-S0oDy;, | (iv), (Vi)
CACQ-SoD3 | (iii) CACQ-SoDg | (iv), (Vi) CACQ-SoDy5 | (vii)
CACQ-SoD, | (iv) CACQ-SoDg | (vi), (vii)
CACQ-SoDs | (V) CACQ-S0oDy | (ii), (iv)

Fig. 5.6. Possibilistic permission acquisition for U = {uy, Uz}, P ={p1, p2} and R={ry, ry}

Table5.8.

119

Comparison with SoDs proposed in the literature

SH: Simon-Zurko's SoDs [Sim97]; AH: Ahn’s SoDs

GTRBAC (non-temporal forms)

[Ahn0Q].
sz Strong SSoD (no user can be assigned to UAS SoD,
conflicting roles)
1
SSoD-CR (no user should be (implicitly and CACT-SoD;
AH | explicitly) assigned to conflicting roles, i.e., no
user can-activate conflicting roles)
2 | aH SSoD-CP (a user cannot acquire conflicting CACTs-SoDg
permissions)
3| AH Variation of 2 (2 + conflicting permissions | CACTs-SoDg 1 CACQ-S0D, 4
cannot be acquired through a role)
Variation of 1 (1 + conflicting permissions | CACT-SoD, [0 CACQ-SoD4; [0 PAS-SoD,
4 | AH | cannot be acquired through arole + conflicting
permissions cannot be assigned to arole
5| AH SSoD-CU (1" + conflicting users cannot be | CACT-SoD; 0 CACQ-SoD; O UAS SoD,
assigned to arole)
6 | A4 | Variation: (4) O(5) (4) O(5) above
SZ | Smple DSoD
7 :
User-based DSoD (Conflicting roles cannot be ACT-S0D,
AH . .
active at the same time for a user)
8 | AN User-based DSoD with CU (Conflicting roles | Sameas 7 but U isalso a conflicting set
cannot be active at the same time for a user)
9 Session-based DSoD (Conflicting roles cannot | ACT-SoD,
AH . . .
be active at the same in the same user session)
Session-based DSoD with CR (Conflicting roles | Same as9 but Ris also a conflicting set
10 | oy | cannot be active at the same in the same user
session) Only difference from 9 is that it has
conflicting set of users
Object-based DSoD (no user may act upon a | Can be rephrased as: if a user acquires a
11} sz target that that user has previously acted upon) | permission then he cannot acquire it again.
Post-condition constraint can be used here.
Operational DSoD (no user may assume a set | Task oriented: if the task can be
12| o of roles that have capability for a complete | represented by at least two roles (sub-tasks)
business job) then it can be easly represented using
UAS-SoD; or ACT-SoD,

120

History-based DSoD (no user is allowed to | Comment similar to 12 can be made here,
B sz perform all the actions in a business task in the | too.
sametarget or collection of targets)

14| o Order-dependent SoD (The roles must perform | It can be expresged as a sequence of
their actionsin a particular order) precedence constraints
15| o Order-independent SoD (Order does not | Triggersx-y after At,y- x after Atcan

matter as long as both happen) be used to enforce this.

5.3.6 Comparison with other SoD Constraints

Table 5.9 shows the correspondence between the major SoDs identified in the
literature and the ones proposed here. First, we note that our SoDs take into account time,
a factor which has not been considered earlier. Secondly, we can express al the SoDs in
[Ahn0Q] with our constraint expressions or their combinations. The table also shows how
our SoDs correspond to those proposed in [Sim97]. We note that the SoDs in rows 10
through 15 are more task oriented. However, with the help of the triggers and dependency
constraints along with some transformation of the problem to map into RBAC domain,
our framework can easily express them. Since previously identified SoDs are non-
temporal, they correspond to the special case of the time-constrained SoDs proposed here,
where (I, P) = all and any occurrence of U, R or P in GTRBAC SoDsrefer to the complete
sets User s, Rol es and Per m ssi ons. Furthermore, by using the GTRBAC status
predicates, several new SoDs have been identified.

5.3.7 Various I nterpretations of Time-based SoD Constraints

In the earlier section, we introduced periodicity constraints on SoDs. Note that
these SoDs apply for each time instant in (I, P). However, we can alow other
interpretations of these SoDs in the temporal dimension. Before presenting the different
interpretations of a periodicity constraint (I, P, SoD), we first observe that for a single
interval, say T, the constraint expression (11, SoD) can be interpreted in two ways, as
defined for weak and strong forms. To illustrate these interpretations, we use the UAS-
SoD;, as shown in Table 5.9. For al other SoDs, the various forms of temporal
constraints may be similarly defined.

The weak form (11, SoDy) implies that within the specified interval there does not
exist a time instant in which conflicting roles are assigned to the same user. (1T, SoDy)

121

does not, however, restrict conflicting roles being assigned to the same user at different
time instants. The strong form (1, SoDs) implies that within the specified interval, if there
isan instant in which arole, say r, is assigned to a user, then at no other instantsin 1t, the
user can be assigned to arole that conflicts with r. By using these two forms, we obtain
three semantic interpretations of the periodicity constraint (I, P, SoD) listed in the table.
The weak form (I, P, SoDw) implies that at each timeinstant in (I, P), auser should not be
assigned to conflicting roles. (I, P SoDw), however, alows a user to be assigned to two
conflicting roles at different time instants. Note, this is the form of the SoDs that we
presented in the earlier section.

Table5.9.
Time-based SoD constraints

Interval constraint on SoD The following condition holds: Ou O U, Ory, r, O Rsuch that ry# 1,

Weak (T, UAS,, UR) Ot O, SoDyw Ou_assi gned(ry, u,t) O--u_assi gned(r,, u, t)
as

(T, SoDy)

Strong Ot O, SoDs (u_assi gned(ry, u, t) - X O, u_assi gned(r,, u, t)

Periodicity constraintson

SSoD Thefollowing condition holds

Ot Ool(l, P), SoDy Ou_assi gned(ry, u,t) > —u_assi gned(r,, u, t)

Weak Furthermore, we seethat (I, P, SoDy ~ Ord[](l, P), (T;SoDw)
(1, P, UuAS;, UR)
Stron as I, P, SoDg) ~ Om[](l, P), (1, SoD
9 | 1pepy L 9 M0, P). (1 SoDg
Extended Ot 0 Sol(1, P), SoDes Ou_assi gned(ry, u, t) O - =(0Ot0 Sol(l, P),
Strong u_assi gned(ry, u, t))

The strong form (I, P, SoDg) implies that for each recurring interval in (I, P), the
strong form of interval constraint (11, SoDs) applies. The extended strong form (I, P,
SoDgg) implies that there do not exist two or more time instants in (I, P) for which a user
is assigned to conflicting roles. The weak, strong and extended strong forms also exist for
duration constraints of the form ([I, P|D], Dx, SoD). The weak, strong and extended strong
forms also exist for periodicity and duration constraints of the forms (I, P, SSoD) and ([I,
P|D], Dx DSoD) on DSoD constraints.

122

5.4 Conclusion

We have presented constraints for the GTRBAC model including cardinality
constraints, control flow dependency constraints, and separation of duty constraints. We
used an evaluation function and a projection operator associated with a set of GTRBAC
status predicates to build an elaborate framework for expressing cardinality constraints.
GTRBAC' s trigger has been extended so that more complex time-based past information
can be captured. A set of control flow dependency constraints have been introduced using
the trigger framework to enforce much stricter dependency constraints than those that can
be expressed using triggers. We aso showed that by generalizing to system events and
conditions, the triggers and CFD framework provides an elaborate model for capturing
context-based access requirements. Our approach to separation of duty constraints is
based on the fact that the notion of conflict between elements in a set is often associated
with another set. This allows us to consider SoDs that are of much finer-granularity. We
have shown that the separation duty constraints identified in the literature can be easily
expressed by a subset of our separation duty constraint expressions.

123

6. MINIMALITY OF GTRBAC CONSTRAINTSAND DESIGN
| SSUES

An open issue for any model with arich constraint language is its expressiveness
and minimality. That is, it is important to determine whether the set of constraints the
model contains is minimal. If the constraint model is not minimal, then a crucia issueis
to determine whether the non-minimal model provides any practical benefits over the
minimal model. It is possible that a model may not be minimal, and yet it is more
advantageous to have all the constraints so that the model is more flexible and provides
better practical benefits in terms of complexity and usability than the minimal model.
Issues concerning expressive power and minimality for RBAC constraint languages is
very relevant given the large variety of such languages that have been recently proposed
[Cra03, NeuO3].

In this chapter, we present an analysis framework for addressing the issue of the
expressiveness and minimality of constraint languages for RBAC. We cast our analysisin
the framework of the GTRBAC model, as this model has a very rich constraint language.
It is easy to see that GTRBAC' srich set of constraints is not minimal. We thus show that
there exists aminimal model that has a subset of constraint types defined in the GTRBAC
model and yet has the same expressive power as the GTRBAC model. We show that the
sets of different constraint types can be used to generate a family of GTRBAC models
having the same expressive power.

An important issue, as mentioned above, is to determine if having a non-minimal
set of constraints in the GTRBAC model is at al beneficial. In particular, we show that
the GTRBAC model, although it is not minimal, has advantages in terms of complexity of
specification and usability. Usability of the model is informally expressed as
manageability and user convenience in policy specification. It also refers to maintaining a
clear semantics among the constraints. For example, as we show in this dissertation, time
based user-role assignment policies may be represented by temporal constraints on role
enabling (the role may be newly created) in place of a timing constraint on the user-role
assignment; however, by doing so, the semantics may be lost; i.e., we will be representing
the fact that a user is scheduled to assume a particular role in agiven interval of time by a

124

semantics that the particular role is enabled at that interval of time. Based on our analysis,
we provide a set of design guidelines aimed towards improving efficient and convenient
use of various constraints to represent time-based RBAC policies.

To the best of our knowledge, there exists no work similar to ours that addresses
the issue of the minimality of an RBAC model versusits complexity and usability.

6.1 Activity-Equivalent Family of GTRBAC Models

As shown in earlier chapters, the GTRBAC model allows specification of alarge
set of time-based constraints. A pertinent question is whether such an exhaustive set of
temporal constraints is desirable at al, or if thereisaminimal set of constraint types that
have the same expressive power as the set containing all the constraint types introduced
in this dissertation. In this section, we show formally that the set of GTRBAC constraint
types is not minimal. By introducing the notion of activity-equivalence or a-equivalence,
we show that there exists a minimal set of constraint types that have an expressive power
equivaent to the set of al the GTRBAC constraint types. However, we show through an
extensive analysis that even though such a minimal set exists, the set of GTRBAC
constraints provides better aternatives for representing access constraints. Such
alternatives alow one to favor user convenience and lower complexity of representation
over the use of the minimal set of constraints. Furthermore, the large set of constraints in
the GTRBAC model makes it flexible and allows an appropriate choice of specification,
enhancing the usability of the model.

6.1.1 Minimality of GTRBAC

Given a GTRBAC system, note that we call the set containing all the constraints
its Temporal Constraint and Activation Base (TCAB). A TCAB / can be represented as
(CURp, CRp, CPRp, CURd, CRd, CPRd, Cadra Cadura arrr, arrur, anr, anur, anm’, Canmur, Ctr,
C.) (see Table 3.1, Chapter 3). In the discussion below, we use a shorter version, such as
T = (Crp, Curp), When only Cg, and Cyg, are nonempty sets of constraints. The behavior
of a GTRBAC system depends on T, the set of users User s, the set of roles Rol es, the
set of permissions Per m ssi ons, and therole hierarchy RH. Therefore, we can use the
tuple (T, User s, Rol es, Per m ssi ons, RH) to indicate a GTRBAC configuration.

Cf
We will aso use the notation (u= p) to read “u acquires permission p at time t under
t

125

configuration Cf”. Next, we define the notion of a-equivalence between two GTRBAC
configurations.

Definition 6.1.1 (Activity-equivalence or a-equivalence): Given a GTRBAC
system with two configurations Cf; = (T;, User s, Rol esy, Per mi ssi ons, RH;) and
Cf, = (T, User s, Rol esy, Perm ssi ons, RHy), the configurations Cf; and Cf, are

said to be a-equivalent (written as Cf, = Cf5) if, for all pairs (u, p) such that u 0 User s,
Cf1 Cf2
p O Per m ssi ons, the following condition holds: (u:t> p) iff (u:t> p). Furthermore, if

Cf, = Cfy and Cfx= Cf, then Cf; = Cf; (trangitivity).

The a-equivalence between two configurations of a GTRBAC system indicates
that a user can perform the same accesses under the two configurations. Hence, by
replacing configuration Cf; by Cf,, we do not change the accesses that are allowed for
each individual user. It is to be noted that a-equivalence does not necessarily imply
policy equivalence as we consider the same set of users and permission. Policy
equivalence would mean that at al times the two configurations follow the same rule.
Our goal here is to show different configurations of roles and constraints allowing the
same set of permissions being acquired by the same set of users, and analyze the
complexities of these configurations.

Next, we show that the set of GTRBAC constraint typesis not minimal; i.e., some
constraint types can be removed without reducing the expressive power of the GTRBAC
constraints system. For example, the temporal constraints on assignments can be
expressed by using temporal constraints on roles. Using a-equivalence between GTRBAC
configurations, we will show that there is a minima representation that uses only
periodicity and duration constraints on roles, and the per-role activation constraints.
However, we will still need the default assignments that simply assign users or
permissions to roles without specifying any tempora restriction. Although default
assignments can be considered as a specia case of periodicity constraints, we will
consider it a specia constraint type (non-tempora constraint) represented by Cy. Next we
introduce two agorithms that can be used to generate an a-equivalent configuration of a
given GTRBAC configuration with the temporal constraints on user-role and role-
permission assignments removed.

Transf or nPR shown in Fig. 6.1 takes in a GTRBAC configuration and
produces an a-equivalent configuration with al the tempora constraints on role-

126

permission assignments removed. Similarly, the agorithm Tr ansf or mJUR shown in Fig.
6.2 produces a new configuration that is a-equivalent to the input configuration Cf;,,, with
all user-role assignments and per-user-role activation constraints removed.

Algorithm Tr ansf or nPR

Input :Cfi; Output : Cfyy

1.Cfy ={T, Users, Rol es’, Perm ssi ons, RH'}= Cf;,={T, Users, Rol es, Perm ssi ons,
RH};

2.FOR eachc= (X, pr:assi gn/ deassignptor)OT,where X={(l, P), ([(I, P)|, D4, D)} DO

3. Create auniqueroler;;
4, Replace all occurrences of {X, pr:assi gn/ deassi gnptor} by
{X,pr:enabl e/ di sabler}inT
5 Add default assignment assi gn/ deassi gnptortoT
6. FOR eachtrigger TR O T', where TR="E,,...,E,,C;,...,Cc - pr:E,,after At” DO
7. Replace TRby TR =“E'y,...,E',,C'1,...,Cyx > priEafter At
suchthat,(i=1ton+l,j=1tok) &
8. IF (E== “assign/deassignptor’) THENE; = “enabl e/ di sabl er;" ;
9. ELSEE; =E;
10. IF (G == “assi gned/ deassignedptor”) THEN
C; = “enabl ed/ di sabl ed 1" ;
12. ELSEC; =C;
13. ENDFOR
14. Rol es’ =Rol es’ O {r;};
15. FOR eachroler; O Rol es such that {r=sr;} DO
16. RH=RH" U {rixsr; }; RH" =RH’ - {r 51}
17. ENDFOR
18. RH' =RH’ O {r=4}; /I Note: all are strongly restricted I-hierarchy
19. ENDFOR

20. RETURN Coy;

Fig. 6.1 Algorithm Tr ansf or nPR

The following two lemmas formally show that the transformation done by each

algorithm is correct. To maintain readability, we include the proofs of these lemmas and
the other formal statements presented later in this chapter in appendix C.

Lemma 6.1 (Correctness of Tr ansf or nPR): Given an input configuration Cfiy,

algorithm Tr ansf or nPR produces C,; such that there are no temporal role-permission
assignments in Cfqyt, and Cfi, = Cfoyt.

127

Algorithm Tr ansf or nlJR

Input : Cfj,; Output : Cfyy

1. Cfyy = Cf, (i.e, {T, Users, Roles’, Perm ssions, RH}={T, Users, Roles,
Per mi ssi ons, RH}); S=0;

2. FOReachc=(X, pr:assi gn/ deassignutor)OT,whereX={(l, P), ([(I, P)|, Dy, D)} DO
3. Createauniqueroler;; S=SO (u,r,) /I function getSu;(S, u, r) used in line 24 returnsr;
4, Replace all occurrences of {X, pr:assi gn/ deassi gnutor} by
{X,pr:enabl e/ di sabler}inT
5 Add default assignment “assi gn/ deassignutoritoT ”
6. FOR eachtrigger TR O T, where TR="E,,..., E,,C;,...,Cc - pr:Eniafter At” DO
7. Replace TRby TR where TR ==“FE'¢,...,E',,,C'1,...,C - pr:E1after At” suchthat
8 IF (E=="assi gn/deassignutor’) THEN E; : = “enabl e/ di sabl er" ;
9. ELSEFE; :=E;
10. IF (CG="assi gned/ deassi gned utor”) THEN C';:="enabl ed/ di sabl ed r";
12. ELSEC; : =C;

13 ENDFOR

14. Rol es’ =Rol es’ O {r};

15. FOR eachroler; O Rol es such that {r;3>sr} DO

16. RH =RH O{rj>sr}; RH =RH" - {rj>=sr1}; /I Strongly restricted A-hierarchy
17. ENDFOR

18. RH =RH’ O {r>sr};

19. ENDFOR

20. /I Handle al the per-role-activation constraints

21. FOR each pair (u, r) such that there is an activation constraint (X, Y,, u, acti veyyr) d T

22. where X [J {(|, P), D}, Yu U {Duactivea Durmx: Nuactivea Dun‘ax} and

23. activeyy ={acti Veyr o, aCt i VEyR max, acti veyrn, acti veyr conp DO

24. IF (ri:=getSu(S u, r) == NIL) THEN Create aunique roler;, // getSui(S u, r)= NIL impliesthere
25. FOReachc=(X,Y,uactiveyr)dT DO /I wasno u, r assignment in line 2
26. Letc =(X, Y, activeyyr);

27. ReplacecinT by ¢ wherec’ =(X, Y,, acti veyyr); //Notethat old c will not bein T’
28. Replace all occurrences of “enabl e ¢’ by “enabl e ¢’ ”

29 ENDFOR

30 IF (riwascreated in Line 24) THEN

31. Rol e’ =Rol e’ O {rj};

32. FOR eachroler; O Rol es such that {r;Z4} DO

33. RH =RH' O {rjz4}; RH' = RH" - {r;Z4};

34. ENDFOR

35. RH =RH' O {r;>r}; /I Note: all are strongly restricted |A-hierarchy

36. Replace per-role activation constraint by (0, act i veg ,r) inT

37. ENDFOR

38. RETURN Cfqy;

Figu. 6.2 Algorithm Tr ansf or nlJR

128

Lemma 6.2 (Correctness of Tr ansf or mUR): Given an input configuration Cfiy,
algorithm Tr ansf or MJR produces Cfyy such that there are no temporal user-role
assignments and per-user-role activation constraints in Cfoy, and Cfi,, = Cfgyt.

We use the following notion of minimal constraint set (MCS) to express the fact
that there is an a-equivalent configuration that has the minimum number of constraint
types.

Definition 6.1.2 (Minimal Constraint Set): Let MCSYT) be the set of constraint
typesin TCAB T, and CS= { Cf;, Cfy, .. Cf} be an a-equivalent set of configurations such
that Cf; = (T;, User s, Rol es;, Perm ssi ons, RH;) for i =1, 2, ..., n. We say that
MCST;) isthe minimal constraint set (MCS) of CSfor i 0 {1, 2, ..., n}, if there exists no
other configuration Cf; = (T;, User s, Rol es;, Per m ssi ons , RH;), such that i #j and
MCS(T;) O MCS(T)).

The definition implies that a minimal constraint set is the one that has the least
number of temporal constraint types. Note that the role set and hierarchy may be altered
to reduce the number of constraint types. Next, we present the minimality result for a
GTRBAC system, which is expressed by the following theorem.

Theorem 6.1 (Minimality of GTRBAC): Let Cf; be a GTRBAC configuration,
such that { Cq4, Cry, Cra, Cr, Cir, Co} 0 MCS(Ty); there exists a GTRBAC configuration
Cf, such that:

a Cf;=Cfy and

b. MCST2) ={Cq4, Cro Cra» C% Cu, Cc, (note that C% represents per-role
activation constraint types), and

c. MCS(T,) isaminimal constraint set,

Theorem 6.1 shows that the set of GTRBAC constraints is not minimal, because a
set of default assignments, periodic and duration constraints on role enabling (disabling),
and per-role activation constraints and triggers can be used to represent any access policy
that GTRBAC constraints can represent. We can see from the transformation algorithms
that replacing tempora constraints on assignments with temporal constraints on roles, in
general, increases the number of roles and the complexity of role hierarchy, which may
not be desirable. This is because algorithmst r ansf or nPRand t r ansf or nlR create
anew role for each temporal assignment that they replace. This may not be very intuitive

129

and efficient as it means there will be as many new roles as there are temporal
assignments. This results in a worst case where a role is created for each user (or
permission) in the system. A more intuitive and practical approach would be to create a
least number of roles such that the enabling/disabling intervals for them are non-
overlapping. For example, if there is a Doctor role and each of the n users are assigned
to it for either day time or night time (or both), then, instead of creating n new roles, we
can simply create DayDoctor and NightDoctor roles and assign all the n users to one or
the other (or both). Thus, to create such temporally non-overlapping roles, we must first
divide n periodic expressions into temporally non-overlapping set of periodic expressions
such as, Daytime and Nighttime. We next provide formal definitions and agorithms to
generate such a digoint set of temporal roles by generating digoint periodicity
expressions associated with temporal assignment constraints.

6.1.2 Operations on Periodicity Expressions

In this section, we first introduce the formal notions of containment, equivalence,
overlapping, and disunction operations between a pair of periodic expressions. Note that
an arbitrary set of intervals can be represented by a periodic expression. This is possible
because each such expression can be formulated, at the worst as a periodic expression
that lists every starting point and the smallest calendar.

Definition 6.1.2 (Containment/Equivalence/Overlapping/Digunction of
periodic Expressions) : Let PE;=(I;, P1) and PE,=(l,, P,) be two periodic expressions,
then

1. PE; is said to be contained in PE; (written as PE; [0 PE), if the following
conditions hold
for all t, (t 0 Sol(l1, P1) — t O Sol(l,, P2)) O
[(t O Sol(I, Pp) — t 0 Sol(14, Py))
2. PEj;and PE; are said to be equivalent (written as: PE; = PE)) if
for all t, (t O Sol(l1, P1) & t 0 Sol(l2, Py));
3. PE; and PE; are said to be overlapped (written as PE; [0 PE,) if the following
condition holds:

[Jt;, t, such that

o (g, tp)N(Py), i.e ty, t,are end points of an interval in P, and

o [ty ty,

130

o 1 <ta< tp <ty and
o (ta th O SOI(l1, P1) - (tad Sol(l2, P2) Oty O Sol(12, P2)) O (ted Sol(l2, P2) O
ta 1 Sol(12, P2)));
4. PE; and PE; are said to be digoint (written as PE; OPEy), if, for all t;, t; such that
(2.0 Sol (14, P1) Ot O Sol(l2, P2), the following condition holds:
((t« O Sol(ly, Py) - (tx O ESol(l2, Po) O
(tx 0 ESol(13, Py))), for (x,y) U{(1, 2), (2, 1)}
where ESol(l, P) is the set of end-points of intervals in (I, P) such that if t O
ESol(l, P) then t I Sol(l, P).

A set of periodic expressions is said to be digoint if the periodic expressions are
pair-wise digoint, elseit is said to be non-digoint. Similarly, a set of periodic expressions
issaid to be equivalent if all the period expressions are equivalent to each other.

Fig. 6.3 shows some examples of these relations. Note that the fourth part of the
definition implies that if only the endpoints of intervals of two periodic expressions are
common, then they are considered digoint. Ideally, we want to compute a digoint set of
periodic expressions that is minimal.

PE1, PE2 overlaps with PE PE3 is contained in PE

PEA G~ AimiAint frama DE P i~ Ami s sal mnt 44 DE

Fig. 6.3. Temporal relations between a pair of periodic expressions
The next definition expresses the notion of minimal digoint set (MDS) over a set
of periodic expressions.

Definition 6.2.4 (Minimal Digoint Set): Let PE= { PE1, PE,, ..., PE,} bea set of
arbitrary periodic expressions. The minimal digoint set (MDS) over PE isthe least set of
disjoint periodic expressions, MDSg, defined as:

131

MDSee = ming{ PE'; | 1< i <m}, such that the following conditions hold,
1. PE.0OPE,0..0PEw=PEOPEO...OPE,,
2. forall 1<i<m, 1<j<neither PE; 0 PE or PE; nPE; =0.

In the definition, the first condition says that the MDS contains a digoint set of
periodic expressions containing all time instants that are contained in all the original set
of periodic expressions PE;s. The second condition ensures that each PE’; contains time
instants that entirely belong to a PE;. Associated with MDS, we define minimal subset
(MS) of a periodic expression over aMDS asfollows:

Definition 6.1.5 (Minimal subset (MS) for a periodic expression over a MDS):
Let MDSe = ming{ PE'; | 1 < i < m} beaminimal digoint set over periodic expressions
PE= {PE., PE,, ..., PE,}; the minima subset (MS) for a periodic expression PE; U PE
over the MDSee isthe set MSpg(MDSog) = {PE 11, PE 12, ..., PE' i} O MDSpg, 1< k<
m such that,
e {m, 2, ...& 0{12 .. m,
« for each t 0 Sol(PE;), there is exactly one i O {74, 72, ..., 7K} such that (t O
Sol(PE'), and
o Km, 72, ..., 7K}| or kis minimum.

We see that MS of a periodic expression PE; of PE is a subset of MDS that
collectively contains all the time instants of PE;. Before presenting an example for MDS
and MS, we first show some formal properties related to the computation of MDS and
MS. We write'MDSpe to mean MDS of thefirst i periodic expressions of PE.

Lemma 6.3 (MDS for two expressions): Let (PE;, PEy) be a pair of non-
equivaent and non-disjoint periodic expressions; The following holds:

a If (PE O PE) then, for (i, J) O{(1, 2), (2, 1)}, there exist periodic expressions
PE,, PE, such that MDSe = { PE,, PE,}. Furthermore, PE,= PE; and PE, =
PE; - PE.

b. if (PE OPE) then for (i, j) O{(1, 2), (2, 1)}, there exist periodic expressions
PE,, PEy, PE; such that MDSe = {PE,, PE,, PE;}. Furthermore, PE, = PE
n PE;, PE,= PE; - PE;and PE; = PE; - PE,.

Algorithm Pai r MDS
Input: PE;, PE,
Output: MDS of PE;, PE,
1 IF (PEy= PE;) THEN RETURN({PE};
IF (PELO PE;) THEN RETURN {PE,, PE;};
IF (PE; O PE,) THEN // as per Lemma6.3(a)
PE, = PE;;
PE, = PE; - PE;;
RETURN {PE,, PE;};
IF (PE; O PE;) THEN // as per Lemma 6.3(a)
PE, = PE,;
PE, = PE; - PE;;
RETURN {PE,, PE};
IF (PE.O PE,) THEN // as per Lemma 6.3(b)
12 PE, = PE; n PE;;
13 PE, = PE; - PE;;
14 PE,= PE; - PE,;
15 RETURN {PE,, PE,, PE}
16 END

N

O OWoO~NO UL W

ol
H

Algorithm Conmput eMDS
Input: PE;, PE,, ..., PE,
Output: MDS of PE,, PE,, ..., PE,
1 // Assumethat PE = {PE,, PE,, ..., PE;}

2 S=0;MDS=10;

3 IF|PE|=1THEN RETURN PE;

4 |F|PE|=2THEN RETURN Pai r MDS(PE,, PE,);
5 IF|PE|>2THEN

6 MDS= Conput eMDS(PE;, PE,, ..., PE,.J);

7 Let MDS computed be (PE’ 1, PE’», ..., PE' 11);
8 FORi=1tom1 DO

9 PairMDS = Pai r MDS(PE;, PE,);

10 IF [PairMDY =1 THEN

11 return MDS,

12 IF [PairMDY =2 THEN

13 Let PairMDS computed be (PE'y, PE'y);
14 S=S0O{PE'};

15 ELSEIF |PairMDS =3 THEN

16 Let PairMDSbe (PE',, PE', PE’));
17 S=SO{PE,, PE'};

18 ENDFOR

19 Let Scomputed be (PE'" 1, PE'"’"5, ..., PE" 1p);
20 PE" 1= PE, -(PE".0PE" O...0PE"1n);
21 IF (PE" 1ps1=0) THEN
22 MDS= (PE'’ 1, PE"5, ..., PE" 1p,PE"" 110+1);
23 ELSE
24 MDS= (PE'’ 1, PE"5, ..., PE" 1p);

25 RETURN MDS
26 END

Fig. 6.4 Algorithms Pai r MDS and Conput eMDS

132

133

Figure 6.4 depicts the algorithms used to compute the MDS. Algorithm Pai r MDS
computes MDS for a pair of periodic expressions. We note that when the two expressions
are equivaent, the MDS contains a single periodic expression, which can be either of the
original expressions. Similarly, when the expressions are digoint, the MDS contains both
the periodic expressions. Algorithm conput eNVDS repeatedly calls Pai r MDS and
recursively builds the MDS by first finding the MDSs of smaller sizes. It uses the
inductive technique used to prove Lemma 6.4. The following formal results show that
conmput eMDS computes the MDS of a set of periodic expressions.

Lemma 6.4 (MDSfor n periodic expressions): Given a non-equivalent and non-
digoint set of periodic expressions PE = {PE;, PE,, ..., PEy}, there exist periodic
expressions PE’ 1, PE',, ..., PE msuch that MDSse = {PE’1, PE', ..., PE' }.

Theorem 6.2 (MDS using conmput eNVDS): Given an arbitrary set of periodic
expressions PE ={ PE’; , PE',, ..., PE'\}}, there exist periodic expressions PE'; , PE'», ...,
PE’ m, such that

a. MDSe={PE',,PE,, ..., PE' 1} and

b. For PE asinput, algorithm conput eMDS produces MD S

Theorem 6.2 shows that we can construct a MDS of an arbitrary set of periodic
expressions. As we will show later, this will help us in finding a minimum set of roles
corresponding to a set of periodic expressions such that they are minimal and digoint in
terms of their enabling intervals. We a so derive the following two corollaries:

Corollary 6.2.1 (Bounds for size of MDS): Given a set of periodic expressions
PE = {PE,, PE;, ..., PE.}, the algorithm computeM DS produces MDSse = {PE’1 , PE’,,
..., PE'mpsuch that if s, = [MDSpg| then 1 < 5,< (2™ 1).

Corollary 6.2.2 (Bounds for size of MS): Given a set of periodic expressions PE
= {PE; , PE,, ..., PE}} and MDS% = {PE'1 , PE',, ..., PE'} produced by algorithm
computeM DS, if pn = [MSee1| + [MSpgo| + ... + [MSeen|, then n < p, < n2™.

We illustrate the notion of MDS and MS, and the computation of MDS by
algorithms conput eMDS and pai r MDS with the following example.

134

Exanpl e 6. 2. 1: To simplify notation, we consider the Daytime of the days
listed for a periodic expression. For example, if PE = {Sun}, we mean the interval
(9am, 9pm) or daytime of a Sunday. Let PEx = {Sun, Mon, Tue, Wed, Thu, Fri}, PEg
={Sun, Tue}, PEc ={Sun, Tue, Thu, Fri}, PEp ={Sun, Mon, Tue, Wed, Sat}, PEg =
{Thu, Fri}. The following steps illustrate the computation of MDSpea, pes, Pec, PED,
pee} Using algorithm conput eMVDS.

. MDSpea, pesy ={PE'1, PE' 2} ={{Sun, Tue}, {Mon, Wed, Thu, Fri}} (as PEg [l PEa)

. MDSpea, pes, pecy = MDS of { PE'y, PE',, PEc} = MDS of {{Sun, Tue}, {Mon,

Wed, Thu, Fri}, {Sun, Tue, Thu, Fri}}

Here,

« MDSof (PE';, PEc} = {PE',q ={Sun, Tue}, PE'y; = { Thu, Fri} (as PE’'; 0 PEQ)},

« MDS of {PE',, PEc}= {PE',; ={Thu, Fri}, PE'y, ={Sun, Tue}, PE »= {Mon,
Wed}} (as PE', O PEc)

» S={PE'y, PE y, PE 2}

* PEq0PEOPE »={Sun, Mon, Tue, Wed, Thu, Fri}.

* PE"4=PEc-(PEq0PEOPE) =0

Therefore, MDSpea, pes, pecy = {PE" 1, PE” 2, PE"3} = {{Sun, Tue}, {Thu, Fri},

{Mon, Wed}}

. MDSpea, pes, pec,Pe;y = MDSof {PE'’1, PE’,, PE’ 3, PE p}

=MDSof {{Sun, Tues}, { Thu, Fri}, {Mon, Wed}, { Sun, Mon, Tue, Wed, Sat} }
Here,

« MDSof {PE";, PEp} = {PE s ={Sun, Tue}, PE'ys = {Mon, Wed, Sat} (as PE'’;
0 PEp),

« MDS of {PE",, PEp} = {PExs = {Thu, Fri}, PE'ys = {Sun, Mon, Tue, Wed,
Sat}} (asPE'"; 0 PEp),

« MDS of {PE"'s, PEp} = {PE,s = {Mon, Wed}, PE',s = {Sun, Tue, Sat}} (as
PE’ 3 O PEp),

e S={PE, PE 4, PE

135

* PEs [PEwOPE s ={Sun, Mon, Tue, Wed, Thu, Fri},

e PE”,=PEp - (PE' s 0 PE [PEs) = {Sa};

Therefore, MDS pea, pes, pec, pepy ={PE’" 1, PE'" 2, PE'" 3, PE” 4} ={{Sun, Tue},

{Thu, Fri}, {Mon, Wed}, { Sat} }
4. MDSpea, pes, pec, Pep, PEe} = MDSof {PE'"1, PE"’,, PE"’ 3, PE'” 4, PEg}

=MDSof {{Sun, Tue}, {Thu, Fri}, {Mon, Wed}, { Sat}, { Thu, Fri}}

Since PEg = PE" 2, MDS pea, pes, Pec, PED, PEE} = MDS(pEA, PEB, PEC, PED}

={PE" 1, PE" 5, PE"" 3, PE'"" 4} ={{Sun, Tue}, {Thu, Fri}, {Mon, Wed}, { Sat} }
Also, we see that,

1. MSea(MDSpea, pes, pec, Pep, Pegy) = {PE'" 1, PE'" 2, PE'” 3} .

2. MSe(MDSpea, Pes, PeC, PED, PEE}) = { PE'” 1}

3. MSec(MDSpen, pes, pec, PeD, PER}) = {PE'" 1, PE'” 2} .

4. MSep(MDS pea, pes, PeC, PED, PEE}) = { PE'"1, PE'”3, PE' " 4}.

5. MSee(MDS pea, pes, PeC, PED, PEE}) = { PE' "2} .

Algorithm Tr ansf or nivDS
Input :Cfi,
Output : Cfyy
1. Cfyw={T,Users,Rol es’,Perm ssi ons, RH'}
= Cf;,={T, User s,Rol es, Per m ssi ons, RH};
2. FOR eachr ORol es DO
3 Let PE = {PE,, PE,..., PE} and U ={uy, W,..., U} besuchthat (PE;, assignrtou)OT;
4, Compute MDS of PE; Let the computed MDS={PFE’ 4, PE',..., PE';};
5. FORi=1tonDO
6 Compute MSo; for PE;
7 ENDFOR
8. FOR each PE'; 0 MDSDO
9. Create auniqueroler;;
10. FOR al u, 0 U such that PE'; 0 MSg DO
11. Add default assignment (assignritou)inT.
12. Add constraint (PE’;, enabl er;)inT.
13. Remove constraint (PE;, assi gnrtou) fromT;
14. Rol es’ =Rol es’ O {rj};
15. RH =RH’ O {ri>4}; /I Note: Srongly restricted A-hierarchy
16 ENDFOR
17 ENDFOR
18. //[ENDFOR

Fig. 6.5. Algorithm Tr ansf or mvDS

136

We next present an algorithm that produces an a-equivalent configuration for a
given GTRBAC system by removing the temporal constraints on user-role assignments.
The following theorem establishes its correctness:

Theorem 6.3 (Correctness of Tr ansf or mvDS): Given an input configuration
Cfi, with only periodicity constraints on user-role assignments, algorithm
Tr ansf or mvDS produces a configuration Cf; such that the following holds:
1. Cfi,=Cfoy, and
2. Cfoy has no periodicity user-role assignment constraints.

Here, we have considered only the presence of the periodicity constraints on user-
role assignment. If we alow the presence of per-role constraints, agorithm
Tr ansf or mvVDS can be extended easily to handle it by introducing per-role constraints
on the newly created roles.

6.2 Complexity of Specification and Design | ssues

The complexity of a GTRBAC system may have different components. Foremost
among them is the number of roles. Typically, we do not want an unmanageable number
of roles in a system. Another component is the number of temporal constraints. Then we
have the complexity incurred by a hierarchy. Finally, we have the default assignments
with no timing constraint. In default assignments, the only check needed is the
membership check, for example, to determine whether a particular user is assigned to a
role or not. Thus, we can expect tempora assignments to introduce additional complexity
compared to an RBAC system without temporal constraints because it involves, besides
checking for membership, ensuring the temporal validity of a membership. To ssimplify
our discussion on trade-offs and complexity issues, we first develop a family of
GTRBAC models that have equivalent expressive power, based on the results in the
previous section, and we then investigate the potential benefits of a model at a higher
level of family hierarchy over those at the lower level. For our analysis of complexity of
policy specification, we use the complexity parameters notation shown in Table 6.1. Note
that we have left H to just indicate that some hierarchy processing overhead is present.

The minimality result in the previous section shows that the minimal model of
GTRBAC system is the one that includes the following components. per-role activation
constraint, periodicity and duration constraints for role-enabling/disabling, constraint

137

enabling, and triggers, as shown in Table 6.2. Figure 6.6 shows the minimal model as

GTRBAG, at level 0.

Table6.1

Complexity parameters and notation used

Complexity parameter

Notation Description

Role R n.R indicatesnroles (Note: wewrite LR simply asR)
Default (smple) assignment S n.S indicates n default assignments

Er?abl ing time constraints on T, n.T, indicatesn periodicity/duration constraints on (n) roles
Temporal constraints on Tur, Tp | N.Tw (N.Ty) indicates n periodicity/duration constraints on (n)

assignments

user- role (role-permissions) assignment

Activation time constraintson | A, , A | n.Ay (n.A) indicates n per-user-role (per-role) activation time

Hierarchy H n.H indicatesIn hierarchical relations
Table 6.2.
GTRBAC Family of models
Level M odel Constraint Set

2 GTRBACZ T = Tl,A D Tl,U D T1'p
GTRBAC,p Tip = To O{ Cprps Cera}

1 GTRBAC,y Tou = To I{Curp: Curd}
GTRBAClA T1,A = TO D{Cadun Carnurx Canun Canmur}
GTRBAC

O 0 TO ={Cd) CRpl CRd) Carl Ctr) CC}

Minimal

At level 1, we have three different models, each of which adds a new type of
constraints to the constraint set of GTRBAC,. GTRBAC; 4 represents the model having all
the temporal constraints of GTRBAC, plus the per-user-role activation constraints.
Similarly, GTRBAC, represents the model having all the tempora constraints of
GTRBAC, plus the user-role assignment constraints, whereas, GTRBAC;, p represents the
model having all the tempora constraints of GTRBAC, plus the role-permission
assignment constraints. At level 2, we have the overall GTRBAC, model that contains all

138

the temporal constraints. We note that we can have other models between level 1 and
level 2 that represent model s representing the pairs of models at level 1 models. However,
for our analysis, we adopt this simpler hierarchy. We also keep in mind that, according to
the results in the previous section, al the models in Fig. 6.6 have the same expressive
power; i.e, these models can be used to generate a-equivalent configurations.

All congtraints

Leve 2 GTRBAC,

{Per-user-role condraint} {user-role congtraint} {role-permission congtraint}

Levd 1 GTRBAC, , GTRBAC, GTRBAC, »
Leve O
Minirmel Model ARZaS

{Per-role congraint, role enabling}

Fig. 6.6. GTRBAC family of models

Next, we show through analysis that it is advantageous to use a model at a higher
level in terms of user-convenience, clarity of semantics, and complexity of representation.
Our analysis will focus on the advantages and disadvantages of using a Level 1 model
compared against that of the Level 0, the minimal model.

6.2.1 RoleEnabling vs. Role Assignment Constraints

We have shown in an earlier section that all temporal constraints on user-role and
role-permission assignments can be transformed into the temporal constraints on roles.
However, such a transformation may result in a large number of roles and/or produce
inconvenient or complex access control structures. In this section, we look at various
design alternatives for choosing constraints on role enablings and assignments. We do
this by comparing the complexity of representation using a Level 1 model against those of

139

various representations using the minimal model for expressing the same set of access
requirements.

As we can see, in TransfornJR (see Fig. 6.2), the transformation from
temporal constraints on user-role assignments to the temporal constraints on roles is
similar to the transformation from temporal constraints on role-permission assignments to
the temporal constraints on roles in Tr ansf or MUR (see Fig. 6.2), except for the
differencein hierarchy relation. That is, in the first case, the newly created roles are made
senior of the original role, whereas in the second case, the original role is made the senior
of the new roles. Because of this similarity, we will focus mainly on the user-role
assignments, as similar results can be obtained for the role-permission assignments. Also,
algorithm Tr ansf or mJR transforms both the periodicity and duration constraints in a
similar way; i.e., each such constraint is replaced by a new role. Hence, the complexity
analysis we apply for periodicity constraints will apply for the duration constraints as
well. We will, therefore, focus on the periodicity constraints and point out important
considerations related to duration constraints whenever they apply.

A temporal constraint on user-role assignment states that the user can activate a
role in the specified periods or for a specified duration, provided the role is enabled.
Instead of using a tempora constraint on user-role assignment (the user is still assigned
to the role using default assignment), we enforce the desired access control by using
temporal constraints on role enabling. Next, we will present the complexity issues related
to the representations of a set of access requirements using GTRBAC, and GTRBAC, u
models. For our purpose, we use the following example:

Example 6.3.1: Let us assume that there is a DayDoctor role in a hospital. Five
doctors A, B, C, D, and E are assigned to this role in the periods given by the periodic
expressions PEa, PEg, PEc, PEp, and PEg of Example 6.2.1. We assume that we have
the GTRBAC;y representation of these constraints (hence, there are no activation
constraints). We will also look at two different representations using the GTRBAC,
model, which we will denote as the GTRBAC," and GTRBAC,’ representations.

GTRBAC;, y representation: For each doctor, a periodicity constraint on his
assignment to the DayDoctor role is specified using periodic expressions shown in Fig.
6.7(a). For example, for doctor A, PE, is the periodic expression used —i.e., thereis a
constraint (PEa, assign DayDoctor to A) in T. Similarly, assignment constraints for the
remaining doctors with the respective periodic expressions are specified.

GTRBAC," representation: In this aternative, we use agorithm TransformUR
with the above GTRBAC, representation as the input. Accordingly, arole is created

140

for each constraint, and a default assignment and a periodicity constraint on the new
role are added. For instance, for a constraint (PEa, assign DayDoctor to A), arole, say
ra, is created and a new constraint (PEa, enable rp) is added, whereas the constraint
(PEa, assign DayDoctor to A) is replaced by default assignment (assign ra to A).
Similarly, al other temporal assignments are replaced. Thisis depicted in Fig. 6.7(b).

PE, = {Sun, Mon, Tue, Wed, Thu, Fri} PE, = {Sun, Mon, Tue, Wed, Thu, Fri}
Q PE, = {Sun, Tue} Q PE, = {Sun, Tue} /}
B B N
PE, = {Sun, Tue, Thu, Fri} - PE_ = {Sun, Tue, Thu, Fri} V4 -
© ()@ @ (o
Doctor/ \Boctor/
@ PE, = {Sun, Mon, Tue, Wed, Sat} T @ PE, = {Sun, Mon, Tue, Weﬁa_t}\. —
PE. = {Thu, Fri} PE, = { Thu, Fri}
G - ® -
(a) (b)

PE'" ;= {Sun, Tue}

.. PE™,={Thu, Fri}
‘_,_—-"Qjoctor/\/

PE’" .= {Mon, Wed}

(C) - ——— PE7,={Sa}

Fig. 6.7. Access requirements of Example 6.2.1 using (a) GTRBAC;, y representation (b)
GTRBAC," representation and (c) GTRBAC,? representation

GTRBAC,® representation: This alternative uses the minimal disjoint set
approach using agorithm Tr ansf or mvDS (see Fig. 6.5). The result is as shown in
Figure 6.7(c). From Example 6.2.1, we know that MDS pea, pes, pec, pep, Pee} = { PE’” 1,
PE'”,, PE”3 PE” = {{Sun, Tue}, {Thu, Fri}, {Mon, Wed}, {Sat}}. A role is
created for each periodic expression of MDSpea, pes, pec, Pep, Pee }- AS [MDSpea, pes,
pec, Pep, pee }| = 4, four new roles are created, and a periodicity constraint is added for
each new role. The i™ new role is associated with the i periodic expression of
MDSpea, pes, Pec, PED, PEE }- Each doctor is assigned to a set of new roles that
corresponds to the periodic expressions that constitutes MS of the periodic expression

141

associated with him; e.g., since MSec(MDSpen, res, Pec, PeD, PER}) = {PE'” 1, PE'” 2},
doctor C is assigned to the new roles that correspond to periodic expressions PE’” ; and
PE’” 5.

In the complexity expressions we will neglect original role and any activation
constraints associated with it, as they remain the same in al the representations. We can
see that for the GTRBAC;, y representation, the complexity is: n.Tyr . The following
theorem establishes formally the complexities of the alternative representations using the
GTRBAC, model.

Theorem 6.4 (Complexity expressions for GTRBAC," and GTRBAC,
representations): Let n be the number of users assigned to a role r, and let PE = { PE;,

PE, ..., PE)} be the set of the periodic expressions in the user-role assignment
constraints corresponding to n users assigned to r; i.e., thereisa (PE;, assign r to u;) for
each i = 1 to n; Then, the general complexity expressions for the alternative

representations GTRBAC,' and GTRBAC,® are as fol lows:

1. GTRBAC,' representation: n.S+n.Tg+n.R+n.H,

2. GTRBAC/’ representation: pn.S+ s, Tr+ Si.R+ sp.H;
where pp = [MSei(MDSe) | + IMSe2(MDSe) | + ... + [MSen(MDSE) |, and s, =
IMDSe |-

Based on this, we get the following complexities for each representation of
Exanpl e 4. 3, whichisshownin Figure6.7.

GTRBAC, y representation: 5.Tyr.

GTRBAC,' representation: 5.5+ 5.Tgr+ 5.R+ 5.H

GTRBAC® representation: 10.S+ 4Tz + 4R+ 4.H

(using agorithm Tr ansf or mMJUR)

We see that, for the above example, the GTRBAC;, y representation is the best in
terms of complexity — it has the least number of roles, no hierarchy overhead, and no
default assignments; furthermore, it is ssmple and intuitive to use and hence very
convenient. The main difference between the GTRBAC," and GTRBAC,® representations
is that the latter always produces roles that are temporaly disjoint. The GTRBAC,
representation associates one role for each user for whom there is a temporal assignment
constraint. However, the GTRBAC, y representation may not be the best for al cases as
we show below.

142

It can be seen that the complexities of the GTRBAC,y and GTRBAC,
representations each remain the same for a given n, irrespective of how periodic
expressions are pair-wise related. The complexity of the GTRBAC,? representation, for a
given n, depends on MSand MDS of PE. The following corollary states the effect of MS
and MDS on the complexity of the GTRBAC,? representations.

Corollary 6.4.1(Complexity cases for GTRBAC,’ representations): Let n be the
number of users assigned to a roler, and let PE = {PE;, PE; ..., PE;} be the set of the
periodic expressions in the user-role assignment constraints corresponding to n users,
i.e, thereisa (PE;, assignr to u;) for each i = 1to n; then:

1. if PE #PE;, for all i, j pairssuchthat 1 <1, j < n (i.e, they are pair-wise digoint),
then the following holds true:
complexity of GTRBAC,? = complexity of GTRBAC,'
In other words, the complexity of GTRBAC,? = n.S+ n.Tg + n.R+ n.H
2. if PE =PE;, for dl i,] pairs such that 1 < i, j < n (i.e, they are pair-wise
equivalent), then the following holds true:
the complexity of GTRBAC,?=n.S+ Tr+ R+ H.

3. theworst case for GTRBAC,? is. n2".S+ 2" Tr+ 2".R+ 2" H.

The first part of the corollary shows that when all the periodic expressions
associated with the user-role assignments are disjoint, the GTRBAC,> representation is the
same as the GTRBAC," representation. When PE; =PE;, for al i,j = 1tonand nislarge,
GTRBAC,? is substantially better than the GTRBAC, , representation, based on the fact
that temporal constraints incur more processing cost than default assignments. The
hierarchy overhead introduced by an extra role can be expected to be negligible to a
membership check associated with a default assignment for a large n. Furthermore, the
new role created can be combined with the original role, if that does not introduce extra
complicacies, thus removing the hierarchy overhead.

However, the worst case for the GTRBAC,® representation, as indicated by the
third part of corollary 6.4.1, is O(2") in the number of new roles created, temporal
constraints on roles, and new hierarchical relations, and O(n2") in the number of default
assignments.

Based on the above observation, we can summarize the following design
guidelines.

143

1. The GTRBAC; y representation is preferable to GTRBAC," representations as its
complexity in terms of the number of roles, the number of tempora constraints,
and/or the number of hierarchical relations created, is always better.

2. The GTRBAC, y and GTRBAC,' representations may result in using temporal
constraints that can be avoided because of some common periodic expressions. For
example, there may be alarge number of doctors who need to use the role DayDoctor
at daytime, making daytime a common period for many users. Using the GTRBAC,*
representations in such cases also results in the same tempora periodicity constraints
on different roles, as algorithm TransformUR does not attempt to reduce constraints
based on common periodicity expressions. The GTRBAC, is a good solution in all
such cases where some user-role assignments have common periodic expressions. If
all the periodic expressions are equivalent, then it produces asingle role and all users
are assigned to that role, as indicated by the results in the second part of corollary
6.4.1. Theorem 6.4 and corollary 6.4.1 show that GTRBAC,’ is advantageous when
the MS set of each periodic expression is very small (the smallest case is when it has
one member, as indicated by the second part of the corollary; i.e., when al the
periodic expressions are equivaent). Furthermore, we want a small MCS set, as it
determines the number of new roles created.

Similarly, if al the periodic expressions are par-wise disoint, then the
GTRBAC,® representation becomes equivalent to the GTRBAC,' representation as
shown by thefirst part of corollary 6.4.1.

3. The GTRBAC, y representation is very flexible with respect to access specification
since it supports tempora constraints on user-role assignments, in addition to the
constraints on role enabling. For example, we can have the following constraints:

([Mon, Wed, Fri], assi gn Johnt o DayDoctor)

([Tue, Thur], assi gn Johnt o NightDocotor).

([10am, 3pm], assi gn Gregt o DayDoctor).
By using the above constraints, we can keep the roles that have static temporal
enabling times fixed in the system and express individua user requirements using
periodicity constraints. Here, DayDoctor and NightDoctor roles are more or less
fixed in the system and, as illustrated, users are assigned to it as required.
Furthermore, these are semantically much clearer than the GTRBAC," and GTRBAC,®
forms with only role enabling time temporal constraints.

4. Note that if there are per-user-role activation constraints, using the GTRBAC
representations may not be advantageous. For example, in the example above (Fig.

144

6.7(c)), each user is assigned to multiple new roles. In such a case, if there had been a
per-user-role constraint for each user, we would have needed to take extra steps
during its transformed representation. Here, we note that algorithm Tr ansf or mvDS
creates an Agshierarchy (strongly restricted activation hierarchy) between the new
roles and the original role. So if we leave the per-user-role constraints untouched; i.e.,
in the transformed representation, if the per-user-role is still specified in terms of the
original role, then the new representation is still valid, as the users assigned to the
new role will have to explicitly activate the new role. However, it is neither intuitive
nor convenient to keep track, as the users are only implicitly assigned to the original
role. Therefore, in the presence of per-user-role activation constraints, GTRBAC,"
and GTRBAC,y provide more intuitive and convenient representations than
GTRBAC,”.

Unlike periodicity constraints, duration constraints are somewhat inflexible in terms
of being replaced (for example, replacing user-role assignment by role enabling). As
duration constraints have non-deterministic start times, such constraints depend on
some other events. Such dependencies often have some application semantics, and
even though it may be possible to replace a duration constraint on user-role
assignment, as in the case of periodicity constraints, care must be taken to ensure that
the dependency semantics is not hindered. Weillustrate this with an example:

Exanpl e 6. 3. 2: Consider Manager and Employee rolesin an office and assume
that the Employee role is enabled on weekdays from 9am to 5pm, whereas the
Manager role is enabled everyday. At other times, the Employee role is enabled only
if Mr. Smith, the manager who is also the owner, has activated his Manager role. This
can be expressed using the following trigger:

acti vat e Manager f or Smith - enabl e Employee (to)

Suppose Smith wants to alow John, an employee in his office, to work on Saturday
and Sunday when he is aso working, for a most four hours. Then he can do that by
adding the following constraints:

([Sat], 4 hours, assi gn Johnt o Employee) (c1)
acti vat e Manager f or Smith - assi gn Johnt o Employee (t2)
de- act i vat e Manager f or Smith — di sabl e Employee (t3)

145

When Smith activates the Manager role on Saturday, it enables Employee using
trigger t; and assigns John to the Employee role using trigger t,. Because of the
constraint c¢; active at the time, the assignment gets restricted to four hours during
which John can work.

In this case, if we try to use the duration constraint on the Employee role instead, the
implicit dependency between the activation of the Manager role and alowing John to
work islost.

6. We note that the transformation such as in GTRBAC, is not possible for user-role
assignment with duration constraints. Although there may be common duration values
associated with different user-role assignments, there is an inherent dependency
semantics associated with each duration constraint that relates it to a trigger or a
constraint enabling expression.

7. Except for the discussion presented in guideline 4, all apply to role-permission
assignments too.

Thus, we can see, except for some cases, where GTRBAC, is better in terms of
complexity of representations. GTRBAC;, y gives the best representational form, in terms
of complexity, user convenience, and semantic clarity.

6.2.2 Per-role vs. Per-user-role Activation Constraints

In this section, we compare the use of the GTRBAC, and GTRBAC; o models to
express the same set of activation constraints. For simplicity, we assume that GTRBAC; a
has only total active duration constraints in addition to constraints in GTRBAC,. The
same kinds of analysis apply to other activation constraints. In the complexity
expressions, we use Ayr to mean per-user-role activation constraint, and Ag to mean per-
role activation constraints as shown in Table 6.1. In addition, we will not include the
original role and any of its associated per-role constraints in the complexity expressions.
For the discussions that follow, we use the following example:

Exanpl e 6. 3. 3: Let A, B, C, D and E be the users subscribing 100, 100, 100,

250, 50 hours of active time per week respectively from a Video Library. A
straightforward representation of these constraints using the GTRBAC; o modd is
shown in Fig. 6.8(a) (we will refer to this as the GTRBAC»® representation). To
represent these constraints using GTRBAC,, we can use the part of algorithm
Tr ansf or mJR that removes per-user-role activation constraints (or we can simply
assume that there are no tempora assignment constraints and run the Tr ansf or nlJR

146

on this configuration). Such a representation, later referred to as the GTRBAC,
representation, is shown in Fig. 6.8 (b).

From the example, it is clear that the straightforward representation of a set of n
per-user-role constraints for n users assigned to arole (a per-role constraint on the role
may or may not be present) using the two models incurs the following costs:

@) GTRBAC; A° representation: n.Ayr

(i) GTRBAC,’ representation: n.Agr+ n.R+ n.H

(using algorithm Tr ansf or mMUR)

@ (Weekly, 100, A, activeyg tgq MV) (Weekly, 600, activeg g MV
@ (Weekly, 100, B, activeyg o MV) T
© (Weekly, 100, C, activeyg o MV) T
C
® (Weekly, 250, D, activeyg joa MV) o
@ (Weekly, 50, E, activeyg orm MV) @)
D) ‘\/ MV1
(Weekly, 300, 100, activeg 1oy MV1)
L// (o, actlveR " MV)
B ; (
®—eskiy 300,100, activen g MV2) \ MV2
© ¢
(Weekly, 300, 100, activeg 1o MV3) \
® €
Weekly, 2 ti MV 4
(Weekly, 250, active ia) (strongly restricted | A-hierarchy)
/
® \
(Weekly, 50, activeg o MVSL/\ —

Fig. 6.8. Requirements of Example 6.3.3 using (a) GTRBAC »° representation (b)
GTRBAC, ° representation (algorithm Tr ansf or MUR) ona GTRBAC; »° configuration

Note that we did not include the original role and any per-role constraints on it, as
they will always remain the same. We can see that between the two cases illustrated
above, the GTRBAC,° model gives a better representation in terms of the reduced
number of roles. The total number of activation constraints is the same in both.
However, we want to know if these give the best representations. We observe that in
Fig. 6.8(a), the users A, B, and C have the same per-user-role access requirements and
hence, can possibly be expressed as one per-role constraint. Similarly, we see that in

147

Fig. 6.8(b), MV1, MV2 and MV3 have the same per-role constraint values, which can
possibly be combined. The following theorem formally shows that such reduction in
complexity can be achieved, when there are duration constraint values that are common.

Theorem 6.5 (Complexity expresson for GTRBAC, and GTRBAC;
representations): Let n be the number of users assigned toroler, D = {dy, dp,, ... dy | di
be the total active duration that the i user is allowed over roler}, D = {d's, d'2,, ...
d'm} O D be the set of distinct elements of D, and C,(d) be the number of times d occurs
in D; then the complexities of the following two representations are as follows:

1. GTRBAC, A representation: (N - ny).Ayr + ny.Ag + c.(b.ny+ 1).R+ c. H

2. GTRBAC, representation: N.Ar + N.R + ne.H

where,

* ny=|Dm andny=|D’|, such that
i. D 0Dp,and
ii. ifdOD’ then Cy(d) > 1

* b=1if (n>n,); b=0otherwise,

« c=1if (n>n,0); c=0otherwise.

The complexities of the previously mentioned representations of the constraints as
shown in figures 6.8(a) and 6.8(b) can be easily derived by forcing each element in D to
be considered as unique. Note that the values of some disin D may be equal. In that case,
D’ is non-empty and contains those elements of D that occur more than once.

Nx=|Dm|=n,ny=0,b=0 andc=0
and hence, the complexities are as follows:

GTRBAC, A° representation:

= (k- ny).Agr + ny.Ar+ c.(b.ny+ 1).R+ c. H= nAur (sameas (i))
GTRBAC,’ representation:

=N AR+ N R+H = nAR+n.R+nH (same as (ii))

Thus, for Example 6.3.3, we have the following complexities, as given by
Theorem 6.5 (the constraints are as shown in Figure 6.8):

GTRBAC; A° representation: 5.Aur

GTRBAC, representation: 5.Ax + 5.R+ 5.H

148

Here, we see that, in the GTRBAC,® representation, there are mainly temporal
constraints for the five new roles and one for the old role. In the GTRBAC®
representation, there is just one role with one per-role constraint (the origina role and

hence not included) but there are five per-user-role and one per-role constraints.

AN :
[(Weekly, 300, 100, active, o MVD) | 27 | (0, activeg g MV) ;
: MV | ,
o S
| (Weekly, 250, active oy MV2) | 7 Y
©), [Mve e My
S’ -
e
| (Weekly, 50, active, MV2) | A @
(E) CMv2
) - 4
N .
/ \\
[Mv1 |
d | (Weekly, 300, 100, active, g MV) | /\
r = 1 / ; \\\
| (0, activey oy MV) - 4 MV
| | "o
@< ------- T (Weekly, 250, D, activeyg qq MV2) | /
— mMv2 | .
d ! (Weekly, 50, E, activeyg qq MV2) |

Fig. 6.9. Constraints of Exanpl e 6. 3. 3 (a) using GTRBAC, representation (b) using

GTRBAC; o representation

Fig. 6.9 illustrates the general constraint design that combines common total
active duration constraints as used in Theorem 6.5. Here, we get n,=3 as D,={50, 100,

250}, ny=1 as D'={100}, b =1 and c = 1. Therefore, the complexities are:

GTRBAC, representation: = nc.Ar+nN.R+H =3.Ax+ 3.R+ 3.H

GTRBAC, arepresentation: = (nx - ny).Aur + ny.Ag + c.(b.ny+ 1).R+ c. H

=2Aur+ 1 AR+ 2R+H

We can summarize the following guidelines based on the above observation:

1. If there are many users having a common active duration requirement, then using a
role and a constraint that specify both the total and default duration constraint
minimizes both the number of roles and the number of tempora constraints, as shown

by Theorem 6.5.

149

2. If the expected requirements for active durations for individual users vary
substantially from user to user, the GTRBAC, A representation is preferable.

3. If flexibility is needed, using per-user-role constraints (and hence the GTRBAC, A
representation) is better. For example, if the users A, B, C, D and E request a different
active duration every week, then the use of per user-role constraints is more
appropriate.

4. In some cases, a hybrid approach utilizing constraints on both per role and per user-
role will give a more efficient representation, as shown by Figure 6.9(b). This is the
GTRBAC, A representation as per Theorem 6.5.

Thus, we see that the GTRBAC 4 representation has distinct advantages over the

GTRBAC, representation.

6.3 Conclusions

In this chapter, we have addressed the issue of the expressiveness of the GTRBAC
model. As our major contribution, we showed through exhaustive anaysis of the
minimality of the GTRBAC model that a comprehensive set of GTRBAC constraints can
provide distinct advantages over minimal GTRBAC model in terms of user convenience
and the complexity of constraint representation. Thisis practically asignificant result asit
shows that although the GTRBAC mode is not minimal, its constraints set provides
constraint designers with flexibility and intuitive choices over various constraint
expressions as well as much better and less complex representations in certain cases.
Based on these results, we outlined some design guidelines that can assist constraint
designers in choosing more convenient and |ess complex constraint expressions.

150

7. X-GTRBAC —AN XML BASED GTRBAC POLICY
SPECIFICATION LANGUAGE

In this chapter, we present X-GTRBAC, an XML based GTRBAC policy
specification language. The X-GTRBAC language design and implementation is a joint
work in [Bha03] and therefore, only an overview of the language and system architecture
is provided in this dissertation. The implementation details can be found in [Bha03].

We first motivate the choice of using XML as the policy specification language.
We then present an overview of the features of X-GTRBAC. In particular, the language
has been extended with the capability to support credential-based role assignment. Such a
capability allows X-GTRBAC to be used in a generic web-based environment where the
users are not known a priori. Furthermore, X-GTRBAC also includes some features to
allow role mapping between multiple security domains. While there are many challenging
technical issues related to secure interoperability in a multidomain environment that are
yet to be adequately addressed [Gon96, Hos92a, Hos92b, JosO1a, Jon95, Kuh95, Tar97a,
Tar97b, Vas94, Vuo0l], such a provision in X-GTRBAC dlows, at least at a
specification level, support for specifying metapolicies that govern the permissible
interdomain access mapping between apair of domains.

7.1. Motivation for an XML Based Policy Specification L anguage

The eXtensible Markup Language (XML) [BerO1lb, URL&], which evolved from a
simple subset of SGML [1s086], is considered as the most promising technology for
information interchange across heterogeneous, distributed domains [Vuo01]. XML can be
considered as a meta-language that allows users to design their own markup language,
using some agreed-upon vocabulary for application-specific purposes. XML offers this
capability by providing an extensible set of markup tags for creating custom documents,
aswell as a set of related technologies for their interpretation.

XML documents have logical as well as physical structures [Ber99a, BerOlb,
Vuo01]. An XML document is physically composed of entities, which may include other

151

entities and attributes. Each document has a root or document entity. Each XML
document is logically composed of declarations, elements, comments, character
references, and processing instructions. These logica components are al indicated in a
document by explicit markup. Additionally, elements may contain attributes.

<enterprise>
<dept s>
<engi neeri ng>
<engg_ranager job_id= “EM >
<nanme>John</ nane>
<l evel >5</| evel >
<.z .. <l..>
</ engg_nanager >
<pr oduct _engi neer job_id="PE">
<nane>Paul </ nane>
<shi ft>1</shift>
<.z .. <l..>
</ product _engi neer >
</ engi neeri ng>
</ dept s>
</enterprise>

Fig. 7.1. An XML instance document

<xs: schema>
<xs:el enment nane ="enterprise’>
<xs:conpl exType>

<xs: el enment nane = “depts”>
<xs:conpl exType>
<xs: el enent nane = “engi neering”>
<xs:conpl exType>
<xs: el enment nane = “engg_manager” >

<xs:conpl exType>
<xs:attribute nane =*job_id” type="xs:string”/>
<xs: el enment nane “name” type="xs:string’/>
<xs: el enment nane “level ” type="xs:string”/>
<xs:/conpl exType>
<xs: /el ement >

<xs: el enment nanme = “product _engi neer” >

<xs:conpl exType>
<xs:attribute nane =*job_id” type="xs:string”/>
<xs: el enent nanme = “nane” type="xs:string’/>
<xs:elenment nane = “shift” type="xs:string”/>

<xs:/conpl exType>
<xs:/ el ement >
<xs:/conpl exType>
<xs:/ el ement >
<xs:/conpl exType>
<xs:/ el ement >
<xs:schema>

Fig. 7.2. An XML schemafor document in Fig. 7.1

152

The syntactic structure of an XML document instance is defined by an associated
XML schema, which itself is an XML document [URLc]. The instance document is said
to conform to its associated schema. Fig. 7.1 illustrates an XML instance document that
conforms to the XML schema shown in Fig. 7.2. Essentialy, the structure of XML tagsin
the instance document is as per the schema definition. Note, each element may contain its
own set of child elements. For instance, the second line in Fig. 7.2 indicates that
ent erpri se is the root element of the document that contains element dept s as its
child element. Elements can thus form a hierarchy. The engg_manager and
desi gn_manager eements have an attribute named job _id. The tags are usualy
chosen to be meaningful within the context of the application that the XML document is
part of. Such an extensible naming feature of XML alows capturing the application
specific needs of an organization to create customized documents. The detailed
specifications of XML and XML Schema can be found at [URLa, URLC(].

The use of XML for expressing GTRBAC policies has many advantages. In
particular, we are motivated by the fact that XML is user-friendly, extensible, and widely
supported by all the main platform and tool vendors [URLd]. Hence, the XML policy
specification language will have awider applicability. In particular, an XML-based policy
specification language can be used in any web-enabled e-commerce applications. Another
motivation for using XML as the language of choice for specifying access control policies
is the heterogeneity of collaborating entities, within a large distributed enterprise
environment, that enable high level information system services. The functional entities
within an enterprise, connected through multiple media, and each comprised of
heterogeneous information systems that are linked together by the EC technology,
require a common policy specification language to efficiently express and enforce the
enterprise level access control policy. As XML provides a uniform, vendor-neutra
representation of enterprise data, and allows a mechanism for interchange, sharing and
dissemination of information content across heterogeneous systems [Bar97, JosOla,
Bis98], an enterprise can benefit significantly from an XML-based policy specification
language.

7.2 Overview of X-GTRBAC Language Features
In this section, we present the features of the proposed X-GTRBAC language. X-

GTRBAC has been designed to be used in a web-based environment or a large enterprise
setting. The key features that X-GTRBAC provides are discussed below.

153

Specification of GTRBAC Elements: X-GTRBAC allows specification of all the
elements of the GTRBAC model. These elements include user, role and permission
definitions, specification of hierarchies and separation of duty constraints, periodicity and
duration expressions, and triggers.

Specification of Credentials Based Role Assignment: X-GTRBAC allows the
specification of dynamic assignment of users to roles based on the credentials that a user
presents. In an RBAC model, users are assigned memberships to roles. However, in
emerging web-based applications, the pool of users is not known in advance. While in
such cases, other access control models have limitations [JosOlb, San94], RBAC
provides roles as the basis for capturing the access control requirements of an application.
However, the policy aso should include how unknown users in the open Internet
environment may be assigned to roles so that services provided by the application are
available to legitimate, yet unidentified users. Furthermore, in a large enterprise, a
considerable amount of administrative effort needs to be expended in the administration
of the assignment of tens of thousands of users to hundreds of roles. Credential based
dynamic assignments of users to roles allows efficient administration of access control
policies in such environments by defining rules on credential attributes for assigning roles
to strangers. X-GTRBAC dlows an administrator to define credentials that can be
assigned to users and later used to resolve the assignment of roles when access requests
are made.

Specification of Content and Context based policy : X-GTRBAC provides
some level of support for content-based access control, in particular when access control
policies are defined for XML documents themselves. For protected XML documents,
protection granularity can be at the schema level, an instance document level, or an
element level. In a generic case, we believe, the abstraction provided by a permission as
an authorized operation on an object, can be used to capture generic content based access
control. In such a case, the content-based access control framework described in [Jos02]
can be used. We have not addressed thisissue in this dissertation.

Although we have not formally addressed the issue of general context-based
extension of the G-TRBAC model, it has been noted in Chapter 5 that context based
access control policies can be easily defined by allowing triggers to include events and
conditions that are external to the GTRBAC system. X-GTRBAC allows capturing such
context information through a trigger on constraints on assignments to provide context-
based dynamic access control support. In addition to triggers, X-GTRBAC allows
specifying pre-conditions for each state of a role enabling, role activation or role

154

assignment in order to alow authorizations to be controlled based on dynamic context
information. While triggers and control flow dependency constraints can capture such
issues, we include the facility for the specification of such preconditions in X-GTRBAC
to alow simplified policy specification and flexibility. Policy designers may choose
either triggers or such pre-conditions, or a combination of them, to better express the
policy requirements. The notion of pre-condition for roles provides good support for
credential and context-based policies, as these pre-conditions can be defined on credential
attributes as well as the contextual information of an application environment. For each
role, we define the following three types of preconditions
|. Role enabling/disabling precondition: This precondition needs to be
satisfied for arole to be enabled.
[l. Role assignment/deassignment precondition: This precondition needs to be
satisfied before a user can be assigned/deassigned to arole.
IIl. Role activation/deactivation precondition: This precondition needs to be
satisfied before an authorized user can activate arole.

Specification of Policy Mapping Between Different Security Domains: X-
GTRBAC dso provides some support for expressing mapping between roles of
GTRBAC policies belonging to different domains. Multidomain environments have
manifested in various forms of emerging systems. Those particularly becoming prominent
include Web-services and Grid-based systems [Azz02, Pea02]. Web Services are typically
employed in B2B applications where a service provider may need to expose specific
information to a client website, or an automated transaction may need to be carried out
between two e-commerce applications based on pre-specified rules. Grid-based systems,
on the other hand, are emerging as a promising technology that can span an environment
with the size and scope of the Internet with heterogeneous computing systems
geographically distributed across multiple administrative domains [Azz02]. In general a
multidomain environment can be characterized as loosely coupled or tightly coupled
systems. In a loosely coupled environment, the interoperation needs are transient and
dynamically determined, whereas in the tightly coupled or federated environment, the
policies from multiple systems are integrated to enable higher goals. X-GTRBAC can be
used to support the specification of interdomain role mapping in such environments.

155

7.3. X-GTRBAC Syntax

In this section, we describe the X-GTRBAC syntax using a BNF-like grammar
that we refer to as X-Grammar. The X-Grammar supports the tagging notation of XML
and alows expressing attributes within element tags. The non-terminals are represented
as <!-- “non_terminal_name”> XML tags, and terminals as standard XML tags. We use the
optional tags by placing them within square brackets “[]”. Group portions of a production
are included in curly brackets “{}”, with a subscript to indicate the repeat count. The
default count, if the subscript is not specified, isone. A “*” and a“+” indicates a count of
“zero or more” and “one or more” respectively, whereas a “-” indicate a range.
Alternative elements are separated by “[’s in a production. Any data placed in parenthesis
“()" is not part of the terminal symbol, and shall be supplied by the security
administrator. The X-Grammar has been used to simplify expressing production rules for
the X-GTRBAC language constructs.

<!I-- Policy Definition-->::=

<Policy [policy_id =*“(value)']>
<Pol i cyName> (name)
</ Pol i cyName>
[<!--XCredType Definition Sheet>]
[<!--XTemporalConstraint Definition Sheet>]
<!-- XML User Sheet>
<!-- XML Role Sheet>
<!-- XML Permission Sheet>
<I-- XML User-Role Assignment>
<!-- XML Role-Permission Assignment>
[<!-- XSoD Definition Sheet>]
[<!-- XHierachy Definition Sheet>]
[<!-- Local Policy Definitions-->]
[<!-- Policy Relationship Definitions>]

</ Pol i cy>

Fig. 7.3. X-GTRBAC policy sheet

Policy Document: The XML syntax for general policy definition (<!-- Policy
Definition-->) is shown below. The key policy component definitions include the XML
Role Sheet (XRS), the XML User Sheet (XUS), the XML Permissions Sheet, (XPS), the
XML User-Role Assignment Sheet (XURAS), and the XML Permission-Role
Assignment Sheet (XPRAS). Moreover, a policy can include multiple constituent
policies, thus facilitating the specification of policies for multidomain environments.

156

Each constituent policy may be a local policy of a federated system or a policy of a
partner domain in aloosely coupled environment. Local policy definitions are included or
simply referred to by using the ids of the local policies. If local policies are defined, then
the set of relationships between the global policy and each of the local policies needs to
be defined. The relationship definition will include mapping specification between the

global entities and the local entities.

<I-- XCredType Defintion Sheet > ::=
<XCredType xCrType_id = (id)>

{<!-- Definitions of Credential Types>}+
</ XCr edType>

<l-- Definitions of Credential Types> ::=

<XCredType [xctd_ id = (id)] >
{<!-- Credential Type Definition>}+

</ XCr edType>

<I-- Credential Type Definition> ::=

<CredTypecred_type_id = (id)

t ype_name= (type name) >
<Attributelist>

{<!-- Attribute Definition>}+
</Attributelist>
</ CredType >

<I-- Attribute Definition> ::=
<Attri bute>
<Attri but eName
usage =‘“mand |opt”
t ype = (type)>
(name)
</ Attribut eNane>

</Attribute>

<!-- XML User Sheet > ::=
<XUS xus_id = (id)>

{<!-- User Definitions>}+
</ XUS>

<l-- User Definitions > ::=
<Users>

{<!-- User Definition>}+
</ User s>

<!I-- User Definition> :=
<User user _i d = (id)>
<User Nanme> (name) </ User Name>
{<!--CredType>}+
<MaxRol es> (number) </ MaxRol es>
</ User >

<I-- CredType> ::=
<CredTypecred_type_id = (id)
t ype_name= (type name) >
<!I-- Credential Expression>
</ CredType>

<I-- Credential Expression> =
<Cr edExpr >

{<(attribute name)> (attribute value)

</(attribute name)>} +
</ Cr edExpr >

Fig. 7.4 XUS syntax

Credential Type Definition and XML User Sheets (XUS): X-GTRBAC uses
the notion of credentias proposed in [Ber99a]. Credential type definition specifies the
attribute list associated with a credentia type. The value of each attribute is assumed to
be of string type. Each attribute of a credential type may be defined as mand, to indicate
that it is mandatory, or as opt, to indicate that it is optional. Consider the following user
credential based on a general credential expression of the form (cred_type_ i d,

157

cred_expr), where cred_type_id is a unique credential type identifier and
cred_expr isaset of attribute-value pairs.
(Nurse, {(credtypeid, ”C100”, mand), (uname, “John”, mand), (age, 30, opt), (level, 5,

mand)})

X-GTRBAC alows the definition of new credential types to group users based on
their credentials. The schema for the credential type definition (XCr edType) isshownin
Fig. 7.4. The credential information in XCr edType sheet allows adding vocabulary to
express the credentials needed by the users. Users and their credentials are expressed in
XUS. Fig. 7.4 shows the grammar for XUS. User definition may simply define user
name and user id, or additionally specify the assigned credentials that the user may carry.
The MaxRol es tag indicates the maximum number of roles that a user can be assigned
to.

XML Permission Sheet (XPS): Permissions are specified in X-RBAC using the
syntax for XPS shown in Fig. 7.5. The permissions for a given system are defined in
terms of objects and associated operations such as read, write, delete, modify, etc.
Permissions are defined by security administrators. The set of permissions for a system is
expressed in the form of an XML document that we refer to as the XML Permission
Sheet (XPS). The grammar for XPSis shownin Fig. 7.5.

<!-- XML Permission Sheet> ::= <!-- Permission Definition> ::=
<XPS [xps_id = (d)]> <Perm ssion permid = id
{<!-- Permission Definition>}+ [pr op= (prop op)] >
</ XPS> <Obj ect type= (type name) i d= (id)/ >

<Oper ati on> (access op)
</ OQper ati on>
</ Perm ssi on>

Fig. 7.5 XPS syntax

The “per mi d” uniquely identifies a permission. Each object also has a unique
id and an associated type attribute. When the resources in the system are modeled as
XML, the hierarchical structure of an XML document is used to capture the physical
object hierarchy described. An object hierarchy could be composed of either documents,
or document elements (in case of XML documents). A permission can, hence, be allowed
on such XML schema, document instances and on each element in the element hierarchy
of the document. When XML documents are to be protected, an optional propagation
option, given by the “pr op” attribute, can be specified which indicates whether or not

158

the authorization of privileges propagates down the object hierarchy. X-GTRBAC allows
propagation options “no_prop”, “first _level” and “cascade” [BerOlb], with
default being “no_pr op”, meaning that no propagation of authorized privilege is to be
allowed down the element hierarchy.

XML Role Sheets (XRS): Role definitions are provided in an XRS as shown in
Figure 7.4. For each role, a set of role attributes is specified. Preconditions are defined on
these attributes. Such attributes may refer to credential attributes that users present as well
as contextual information of the system. As mentioned earlier, each role may have
associated with it preconditions for its enabling, assignment and activation that are
separately defined using the <EnabCondi ti on>, and <Act i vCondi ti on> tagsin

Fig. 7.6.

<I-- XML Role Sheet> ::=
<XRS [xrs_id = (id)]>

{<!-- Role Definition>}+
</ XRS>

<!-- Role Definition> ::=
<Rol e role_id =(id)
rol e_nane = (role name)>
[<!--Attributes>]
[<!--{En|Dis}abling Constraint>]
[<!--[De]Activation Constraint>]

[<Juni or HType = “I| A I A"
PConst = (TenpExl D) >

(name)

</ Juni or >]

[<Seni or HType = “I| Al A
PConst = (TenpExl D) >

(name)

</ Seni or >]

[<Car di nal i t y> (number)
</ Cardinality>]
</ Rol e>

<!-- {En|Dis}abling Constraint> ::=
<{En| Di s} abConstrai nt
[op = {AND|OR|NOT}] >
{<!--{En|Dis}abling Condition>}+
</ {En| Di s} abConstrai nt>

<l-- {En|Dis}abling Condition> ::
<{En| Di s} abCondi ti on
[{pt _expr_id=(id) |
d_expr_i d=(id)}] >
[<!-- Logical Expression>]
<{En| Di s} abCondi ti on>

<!--[De]Activation Constraint> ::
<[De] Acti vConst rai nt

[op ={AND|ORINOT}]>
{<!--[De]ActivationCondition>}+
</[De] Acti vConst r ai nt >

<!--[De]Activation Condition> ::=
<[De] Acti vCondi ti on
[d_expr_i d=(id)] >
[<!-- Logical Expression>]

</[De] ActivCondition >

Fig. 7.6 XRS syntax

For enabling/disabling preconditions, we can use a temporal expression, which
can be defined separately, as a condition. Semantically, it means that the role is enabled
if the current time instant is contained in the periodic time expression. The language
allows specifying additional logical predicates to be used to express context based

159

conditions using the generic syntax for the logical expressions. Periodic time and logical
expressions are shown in Fig. 7.7 and discussed below. Note that we may alow any
complex logical expression using this syntactic framework. A role definition may specify
hierarchy relations by specifying its juniors using the <Juni or > and <Juni or > tags
and specifying the type HType. Furthermore, the hierarchy relation may be associated
with a tempora expression to time-constrain the validity of the relation and to express
role cardinality using the <MaxUser s> tag.

<l-- Definitions of Temporal Constraints>
<XTenmpConst Def [xtcd_id = (id)]>
{<!—Interval Expression>}*
{<!-- Periodic Time Expression>}*

{<!-- Duration Expression>}*
</ XTenmpConst Def >

<l—Interval Expression ::=

<I nterval Expr i_expr_id = id)>
<begi n> (date)</begin>
<end> (date)</end>

<I| nt er val Expr >

<l-- Periodic Time Expression> ::=

<Peri odi cTi neExpr pt_expr_id = (id)
[d_expr_id=(d)] [i_expr_id=(d)]>
<!-- Start Time Expression>

</ Peri odi cTi meExpr >

<!I-- Duration Expression> ::=

<Dur ati onExpr d_expr_id = (id)>
<cal >{ Years|Months|Weeks|Days}</cal>
<l en> (number)</len>

</ Dur at i onExpr >

<l-- Start Time Expression> ::=

<StartTi meExpr [pt_id_ref =(pt_id)]>
[<Year >{ alljodd|even} / <Year >]
[<!--MonthSet>]
[<!--WeekSet>]
[<!--DaySet>]

</ StartTi neExpr>

<!--MonthSet> ::=
<Mbnt hSet > {<Month>{1|..|12}</Month>},.

12
</ Mont hSet >

<l--WeekSet> ::=
<WeekSet >
{<Week>{1|..|4}</Week>}, 4
</ WekSet >

<!--DaySet> ::=

<DaySet >
{<Day>{1|..|7}</Day>}, 7

</ DaySet >

<

I—Temporal Expression> ::=

<l—Interval Expression>|

<l-- Periodic Time Expression>|

<!-- Duration Expression>|

<l-- Logical Expression>::=

<Logi cal Expr [op ={AND|OR|NOT}]>
{<!-- Predicate>}+

</ Logi cal Expr>

<!-- Predicate> ::=
<Pr edi cat e>
[{<Oper at or > {gt|lt|eq|neq}
</ Oper at or >
[<FuncPar ame(functionname)
</ FuncPar anv]
{<NanePar am

type=(rol eluser|attribute)]>
(parameter name)
</ NamePar ane

1+

<Val uePar an®(value)</ Val uePar ane
}
|
< l--LogicalExpression>]
</ Predi cat e>

Fig. 7.7 Schemafor temporal and logical expression

160

Temporal Constraint and General Logical Expressions: X-GTRBAC alows
defining temporal expressions separately so that they can be associated with role
enabling, assignments and other constraints. Temporal constraint expressions are defined
inthe XTenpConst Def sheet, presented in Fig. 7.7.

The “Attributes” tag of the role contains a list of role attributes that may be
parameters of the context conditions, or credentia attributes which need to be
dynamically evaluated for any role enabling/disabling or activation/deactivation. The
context conditions may be based on parameters such as system load, location information
etc., or on status expressions such as “whether role R has been enabled by user U”. The
“(En| Di s)abling Constraint” and“[De] Acti vation Constraint” tags
contain a set of conditions, where each condition is composed of possibly multiple logical
expressions for specification of the respective constraints based on both temporal and
non-tempora context-dependent parameters. The constraint tag has an optiona op-
code attribute to specify the logical operators applied on its child elements. An op-
code of (i) “AND” impliesthat all constituent expressions must be true for the constraint
to be true, (i) “OR” implies that at least one expression must be true for the constraint to
be true, and (iii) “NOT” implies that none of the expressions must be true for the
constraint to be true. The op-code defaultsto “AND” if noneis specified.

Each condition tag may contain a “pt _expr _i d” or “d_expr _i d” attribute
that refers to a periodic-time or a duration expression respectively. These expressions are
the XML representation of the periodic-time expression framework provided in the
GTRBAC model, and bind the corresponding condition with the respective periodic
expression. We give an XML representation for each of the start-time, interval, and
duration expressions that together constitute the periodic-time expression. Following the
notion of “calendars’ used in the GTRBAC model, the start time expression consists of
“calendar sets’, where each calendar is a unit of time, e.g. years, months, weeks, etc. As
an example, an event that occurs at the start of the second week of every first and eighth
month of every odd year would be represented by using “{odd}” as the Year set, “{1,8}”
as the Month Set, and “{2}” as the Week Set. The optional “pt i d_ref” attribute
indicates start time with reference to the provided periodic-time expression id. If it is
supplied, then the start time is the same as that of the referenced periodic time. Note that
a“pt_id ref” is provided only when the calendar sets are not provided, and vice
versa. Any new start time is aways explicitly defined using new calendar sets. An
interval is given by a (begi n_dat e, end_dat e) pair, and a duration is specified as a

161

(cdlendar, calendar_length) pair. The semantics of the periodic time expression thus
dictate that the associated event can only occur if the start time expression is satisfied by
the time of request, and if such time falls within the interval specified by the interval
expression. The duration of the event, if it occurs, would be governed by the duration
expression.

The “Logi cal Expression” tag contains a set of predicates, where each
predicate may contain a context-condition expressed in terms of role attributes, or embed
within itself another logical expression. Hence, the structure allows evaluation of nested
conditions expressed by multiple logical expressions. The predicates are composed of
context-based parameters, where the “NanePar ani tag contains the name of the
parameter to be evaluated, and the "Val uePar ani tag contains its value that is to be
checked according to the given “Qper at or ”. For instance, any attribute supplied as part
of a user credential expression may be compared for a pre-requisite value needed for
certain role assignment or activation by supplying the attribute name as “NanmePar anf,
the required values as "Val uePar ani, and the comparison operator as “Qper at or ”.
The “FuncPar ani is an optional tag which is useful if the parameters in question can
only be evaluated through a system review function, expressed as the status expressions
of the GTRBAC model. Multiple parameter names may be passed to functions that
evaluate multiple parameters, with the distinction among parameter types made with the
“type’ attribute. As an example of predicates, we might evaluate status expressions for a
role by supplying a status condition such as “acti ve r for u” as“FuncParam’, the
role name and the user id as two instances of “NanmePar ani, and the value of either
“True” or “Fal se” asthe “Val uePar anf. In such situations where a boolean output
is returned, only the “eq” operator is useful for comparison. The “Logi cal
Expressi on” tag also has an optional op-code attribute that determines the
evaluation logic of the predicates. On the similar lines as the constraint tag, an op-code of
(i) “AND” implies that all constituent predicates must be true for the logical expression to
be true, (ii)) “OR” implies that at least one predicate must be true for the logica
expression to be true, and (iii) “NOT” implies that none of the predicates must be true for
the logical expression to be true. The op-code defaultsto “AND” if noneis specified. The
grammar for logical expression specification is shownin Fig. 7.7.

Trigger: Fig. 7.8 shows the syntax of the GTRBAC trigger expression. As the
predicates within a logical expression can include both temporal and non-temporal
context-based parameters, they allow for the specification of context-based triggersin our

162

X-GTRBAC framework. This set of triggers is supplied in a separate XTr i gDef sheet.
The grammar for the XTr i gDef sheetisshowninFig. 7.8.

The “Head” tag of the trigger has an attribute that indicates the target role or the
permission on which the trigger action is performed. An optional “user _i d” attributeis
also supplied for triggers that need to perform the action with respect to certain individual
users. The triggering constraint in the “Body” tag is semantically similar to the
constraints discussed above, and is evaluated in an analogous manner. The action
associated with the trigger is performed if the constraint evaluates to true.

<!--Triggers Specification>::= <!--Triggering Constraint> ::=
<XTrigDef [xtd_id = (id)]> <Tr|[gOonst raint
<!-- Trigger>}* op =
</{XTr [g%gf >} { AND|OR|NOT}] >
{<!--Triggering Condition>}+
<l--Trigger> := </ Tri gConstrai nt >
<Trigger [trig_id = (id)]>
<Head {rol e_name = (name) |perm.id = (id)} <!T—_Trig§);e(;i_ntg Condition>
[user _id =(id)] <TrigCondition>
acti on ={enable | disable | <T[r<i!“CI:_cCJ)r%]:JICiatI iEXﬁLeSSIOn>]
assign | deassign | deactivate} > 9 0
</ Head>
</ Body> <!--Triggering Constraint> </Body>
</Trigger>

Fig. 7.8 Trigger syntax

Separation of Duty Expression: The separation of duty constraint specification
simply uses a predefined set of SoD types to identify the type of SoD as shown in Fig.
7.9. For each SoD a set of roles, users, or permissions may need to be specified. If any of
these sets is not specified, and the specified SoD type requires one as discussed in
Chapter 5, then the entire set of the users, roles, or permissions will be considered.

<I-- Separation of Duty Definitions> ::= <I—SoD Definition>
<XSoDDef [xsod_id = (id)]> <XSoD [xsod_i d = (id)

{<!—SoD Definition>}* [xsod_type = (id)] >
</ XSoDDef > [<l—UserSet >]

[<!—RoleSet >]
[<!—PermissionSet >]

[<!—Temporal Expression >]
</ XSoD>

Fig. 7.9 Separation of duty expression

163

XURAS: The schema for XURAS is shown in Fig. 7.10. Each
“User Rol eAssi gnnent ” (URA) tag has an associated “r ol e_nane” attribute, and
contains a set of “Assi gnUser s” tags containing the set of users who are to be
considered for potential assignment to the specified role. Each such user is identified by
the “user _ i d” attribute of the corresponding “Assi gnUser” tag. This tag aso
contains the assignment constraint for this particular user. The assignment constraint has
a“cred_type” atribute that specifies the credentia type that the user must possess in
order to be considered for a potential role assignment. The remaining part of the
constraint is semantically similar to the constraints discussed above and is evaluated in an
analogous manner. The user is assigned to the specified role if the constraint evaluates to
true. Similar logic applies to de-assignment of users from roles. Note that a special user
with user _i d = “any” is recognized by the system as an unknown user, who may be
required to supply additional assignment conditions in order to be assigned to a particular
role. If no explicit conditions are specified, then any user could be assigned the particular
role, which usually isthe “guest” role in most enterprise applications.

<l-- XML User-role Assignment Sheet> ::= <l--[De]Assign User Condition> ::=
<XURAS [xuras_id = (id)]> <[De] Assi gnUser Condi ti on
{<!-- User-role Assignment>}+ cred_type="type_nane”
</ XURAS> [{pt _expr_id=(id) |
d_expr_i d=(id)}] >
<l-- User-to-role Assighment> ::= [<!-- Logical Expression>]

<URA ura_i d=(id) rol e_nane=(nane) > </ [De] Assi gnUser Condi ti on>
<[De] Assi gnUser s>

{< !--[De]Assign User>}+ <l-- XML Permission-role Assignment Sheet>
</ [De] Assi gnUser s> =
</ URA> <XPRAS [xpras_id = (id)]>

{<!-- Permission-role Assignment>}+

<!--[De]Assign User > := </ XPRAS>
<[De] Assi gnUser

user _i d=(id)> _ <l-- Permission-role Assignment> =
<!--[De]Assign User Constraint> <PRA pra_i d=(id) rol e_name=(nane) >

</ [De] Assi gnUser > <[De] Assi gnPer ni ssi ons>

{< !--[De]Assign Permission>}+

<l--[De]Assign User Constraint> ::= </ [De] Assi gnPer mi ssi ons>
<[De] Assi gnUser Const r ai nt </ PRA>
[op = {AND|ORINOT|XOR}]> <l--[De]Assign Permission > =
<l--[De] Assign User Condition> <[De] Assi gnPer mi ssi on
</ [De] Assi gnUser Const r ai nt > [{pt_expr_id=(id) |

d_expr _i d=(id)}]
{ <Per m d>(id)</ Per m d>} +
</ [De] Assi gnPer m ssi on>

Fig. 7.10 User-role and role-permission assignments

164

XPRAS: The grammar for XPRAS is shown in Fig. 7.10. Each
“Per m ssi onRol eAssi gnnent” (PRA) tag has an associated “rol e _nane”
attribute, and contains a set of “Assi gnPer m ssi on” tags containing the set of
permissions that are to be potentially assigned to the specified role. Each such permission
isidentified by a“Per nl d” tag within the corresponding “Assi gnPer ni ssi on” tag.
Note that the permissions would typically be subject to periodic-time or duration
constraints, and hence we allow the option of specification of periodic-time or duration
constraint expression for the permission assignment. The permission is assigned to the
specified role if the constraint evaluates to true. Similar logic applies to de-assignment of
permissions from roles.

<I'-- Role Mapping>:: =
<Rol eMappi ng>
<MappedRol e [r_id = (id)]> (hame)
{ <! —Roles Mapped To>} +
</ MappedTo>} +

<l—Local Policy Definitions -->
<Local Pol i ci es>

<l—(Local) Policy Definition -->
</ Local Pol i ci es>

<l—Policy Relationship Definitions -->
<Pol i cyRel ati onshi ps
[prs_id =(d)][pt_id = (id)-->
{<!-- Definition of Policy Relation>}+
</ Pol i cyRel ati onshi ps>

<!I-- Definition of Policy Relation>::=
<Pol i cyRel ation pr_id =(id)

</ Rol eMappi ng>

<I'-- Roles Mapped To>: : =
<MappedTo>
<Rol e [r_id=(id)] [policy_id =(id)]>
(name)
</ Rol e>
<! - - Mapping Condition>

[pt_id = (id)]> </ MappedTo>

<d obal ToLocal Mappi ng
[gMap_i d = (id)] >
{<!'-- Role Mapping>} +
</ d obal ToLocal Rol eMappi ng>
</ Pol i cyRel ati on>

Fig. 7.11 Schemafor metapolicy specification

Specification of Metapolicy: Within a policy definition, we can include local
policy definitions using the XML syntax depicted in Fig. 7.11. Note that each policy may
itself be a global policy over a set of local domains. Thus a hierarchy of policy may be
specified in which a multidomain environment may become a component of a larger
multidomain environment and so on. A relevant principle for mediation policies is the
following scoping rule:

165

Scoping rule: If a policy P becomes a local policy of a higher level policy, then

P’s local policy definitions and the policy relations are not known to the higher

level policy.

Such arule says that, within aglobal policy definition, only the entities of its local
policies, and not those of constituent domains of these local policies, are visible. This
abstraction simplifies the metapolicy construction. However, if the higher level policy
management must oversee the policy of the overall federation, then this rule may need to
be relaxed.

With local policies included, we need to define the relationships among their
policy entities with the global entities. The XML syntax for defining policy relationships
isshown in Fig. 7.11. Each global role may be mapped to a number of local roles, which
may belong to the same or different local domains. For each mapping, a condition can be
specified. We require that the local roles that a global role can be mapped to are included
in thelocal policy definitions.

Example of metapolicy specification: The following example illustrates the
specification of the mapping relationship depicted in Fig. 7.12:

® Global Role

Y \‘~~~[|,P]4
R iaintai itttk ! [I,P]y.~ H IS~ G !
: @ IRl WP ! .@ !
' Domainl | © | Domain2 Domain 3

Fig. 7.12. Metapolicy example

Fig. 7.12 shows the mapping of the global role R to the local roles C in Domain 1,
r, and ry in Domain 2, and X in Domain 3. Next, we illustrate the possible use of such a
mapping healthcare systems.

Consider a healthcare federated system of three hospitals which alow cross-
appointment of a doctor. In such a case, R can represent a FederatedDoctor which is
mapped to local doctor roles, say C = DayDoctor in hospital 1, r; = DayDoctor and r, =
EmergencyDoctor in hospital 2, and X = SupervisorDoctor in hospital 3. Furthermore,
assume that the global-to-local role mappings are valid in the intervals defined as follows:

166

[I, P]1 = {Mondays, Wednesdays}, [l, P]> = {Tuesdays and Thursdays}, [I, P]z =
{Fridays} and [I, P]s, = Weekends. With these mappings, a user, say Dr. Smith, who
needs to be cross-appointed to different hospitals at different times, for instance, can be
assigned to the FederatedDoctor role between 9am and 6pm on Mondays through
Saturdays. This means that during the daytime between 9am and 6pm, Dr. Smith can
assume;

» DayDoctor role in hospital 1 on Mondays and Wednesdays, and in hospital 2 on

Tuesdays and Thursdays,
» EmergencyDoctor rolein hospital 2 on Fridays, and

» SupervisorDoctor role on Saturdays in hospital 3.

<poOl i cyRel ation pr_id =PR1>
<d obal ToLocal Mappi ng [gMap_id =“GL1"]>
<Rol eMappi ng>
<MappedRol e> FederatedDoctor
</ MappedRol e>
<MappedTo>
<Rol e policy_id ="“Policyl™> DayDoctor </ Rol e>
<Mappi ngCondi ti on>
<PeriodicTime pt_id ="“PTa” />
</ Mappi ngCondi ti on>
</ MappedTo>
<MappedTo>
<Rol e policy_id ="“Policy2”> DayDoctor </ Rol e>
<Mappi ngCondi ti on>
<PeriodicTime pt_id ="“PTh"/>
</ Mappi ngCondi ti on>
</ MappedTo>
<MappedTo>
<Rol e policy_id ="“Policy2”> EmergencyDoctor </ Rol e>
<Mappi ngCondi ti on>
<PeriodicTime pt_id ="“PTc" />
</ Mappi ngCondi ti on>
</ MappedTo>
<MappedTo>
<Rol e policy_id = "Policy3"> SupervisorDoctor </ Rol e>
<Mappi ngCondi ti on>
<PeriodicTime pt_id =“PTd" />
</ Mappi ngCondi ti on>
</ MappedTo>
</ Rol eMappi ng>
</ d obal ToLocal Rol eMappi ng>
</ Pol i cyRel ati on>

Fig. 7.13. X-GTRBAC policy specification for metapolicy of Fig. 7.12.

167

The global-to-local role mapping component can be specified using X-GTRBAC
as shown in Fig. 7.13. Note that in this case the policy of the domains 1 2 and 3 will be
expressed as local domains. The global role FederatedDoctor will be defined at the top
level of the policy definition sheet.

7.4 X-GTRBAC System Architecture

In this section, we present the system architecture of X-GTRBAC. We briefly
provide an overview of the systemm components and technol ogies.

The X-GTRBAC framework alows the access policies to be specified and
enforced through a Java-based GUI-enabled application. The application code can be
readily integrated into a Web browser by an application-to-applet transformation
mechanism provided by Java

~ ~N Y e N UR PR DataSet !
Document 1 {TRIG DataSet} :
Composition 1 .
Module : A |
1
Policy XML \ y -
Validation P 1 RBAC
arser 1
XML Modul > 1 —
Policy Base e 4—:— L Module) o l>I Authorization |
| A A !
. L | [xmusoap |
N DOM R v !
Vo oxmL Session | !
Access 1 | Sessions DataSet |
Reguest il ettt > I Log .
~— \ }
e '
XML/SOAP
XML GTRBAC
Pr ocessor Processor

Fig. 14. X-GTRBAC architecture

The overall system architecture is depicted in Fig. 14. Information about security
policy is contained in the XML Policy Base. A document composition module external to
X-GTRBAC facilitates the composition of the policy components discussed earlier. The
policy sheets from the XML Policy Base are then loaded into the X-GTRBAC Module by
the security administrator. As shown in the Fig. 14, the two main sub-systems of the X-
GTRBAC Module are the XML Processor and the GTRBAC Processor. The XML
processor is implemented in Java using a Java API for XML Processing (JAXP). The

168

Document Object Model (DOM) instances of the parsed XML documents representing
the policies are forwarded to the GTRBAC Processor. The GTRBAC Module then
enforces the policy accordingly. Since X-GTRBAC can act both as a stand-alone and
web-deployable application, it may be invoked from either the local system, or remotely
through an XML-aware browser. Hence, the X-GTRBAC Module seamlessly interfaces
with an external client across distributed domains over an interconnect network (i.e.
LAN, WAN etc.). The client may submit an access request through any standard XML-
based Web services messaging protocol, like SOAP [URLe]. Similarly, the access
authorization is returned via the same protocol.

7.4.1 XML Processor

The XML Processor consists of the XML Parser and the DOM tree structure of
the XML policy documents. A Policy Loader loads the policy sheets for a given policy
from the policy base. A Policy Validation Module is used to validate the policy sheetsin
terms of existence checking and type conformance. In other words, all users, roles, and
permissions referenced in the XURAS, XPRAS and XTr i gDef sheet should be defined
in the corresponding XUS, XRS and XPS respectively. Further, all the referenced data
must exist in the corresponding definition files. This implies that (i) the credential types
associated with the users in XUS must conform to the type definitions in the
XCr edTypeDef sheet, (ii) the separation of duty constraint sets referenced in the XRS
must be present in a XSoDDef sheet, and (iii) the periodic-time, start-time, interval, and
duration expressions referenced in XRS must be defined in a XTenpConst Def sheet.
Currently, this validation support is provided by the Apache Xalan XSLT engine built
into JAXP. The DOM tree representations of validated policy documents are generated
and passed on to the GTRBAC Processor. A GUI facility is provided to display the
instance of the DOM tree.

7.4.2 GTRBAC Processor

The GTRBAC Processor contains the GTRBAC Module and associated data
items generated by the GTRBAC Module. It performs the policy administration and
enforcement tasks.

169

The GTRBAC Module provides functionality to parse the DOM tree structures
supplied by the XML Processor, and retrieves the relevant information into its internal
data structures. It may be noted that for all the users assigned to roles, the actua role
activation occurs when the users actualy log into the system and request a roles. The
notion of role assignment in this context is of static type; i.e. it implies that the user has
been declared as assignable to the associated role based on already supplied credential
information. A dynamic role assignment for an unknown user based on hisher credentials
supplied at the time of login is possible. These static and dynamic policy assignments,
together with the role activation and enabling rules and triggers information, create the
complete internal representation of the XML Policy Base within the GTRBAC Processor
for enforcement of the policy. A collection of these policy information items are referred
as UserRole (UR) datasets, PermissionRole (PR) datasets, and TRIG dataset. A facility is
provided to display the UR, PR and TRIG datasets viathe X-GTRBAC GUI.

<xas [xas_id= (id)] > <xss [xss_id= (id)] >
<l ogi n | ogin_id= (id)> <sessi on>
[<!--CredType>] <session_i d> (id) </ session_i d>
</l ogi n> <user _i d> (userid) </ user _id>
------- <rol e_nane> (role name) </ r ol e_nane>
<xar xar_id= (id)> <donai n> (domain name) </ donai n>
{ <Ooj ect type= (type name) <l ogi n_time> (time) </ ogi n_ti me>
i d=(id)/ >} + <l ogi n_dat e> (date) </ | ogi n_dat e>
:igg;> <dur at i on> (duration) </ dur at i on>

<active> {Yes|No}</active>
</ sessi on>
</ xss>

Fig. 15. XAS and XSS sheets

The information from the internal data structures is then used by the GTRBAC
Module to enforce the policy and manage user sessions. The initia login into the system
creates a default session for the user with a pre-specified “minimal” set of roles activated
based on the supplied user credentials. The initial login can be the “user_id” from the
XUS provided it is aknown user, or a“user_id” of “any”, as discussed above. In addition
to the default set of activated roles, more roles can also be activated if the user’s
credentials permits. Any triggers associated with role activation or other events are
handled by the GTRBAC Module based on the information from the TRIG dataset.
Access to resources is requested in the form of an XML Access Request (XAR) that
specifies the “object type” and “object id” of the requested resource. An XAR can be
submitted locally or remotely as an assertion in SOAP or through a similar XML-based

170

messaging protocol. This access request is then evaluated based on the currently activated
roles for this user. Only those resources may be accessed during a session for which the
activated set of roles has the respective permissions. Both the login information and
XARs for a user are stored in an XML Access Sheet (XAS). The session-related
information is contained in the Sessions Dataset within the GTRBAC processor. This
information is extracted from an activity log maintained for every user by the GTRBAC
module which we refer to as an XML Sessions Sheet (XSS). A session parameter is
included in the XSS to record the domain from which the user is generating the access
request. In addition to the domain of the requesting user, the XSS aso contains the
attributes such as “login_time”, “login_date’, and “duration” of the session. These
attributes are used to capture the activity profile of the user. Such information is
constantly updated into the Sessions DataSet, where it can be dynamically processed, and
incorporated into the access decisions. This feature is useful in certain situations where
context information may be an important decision parameter, as discussed in Section 3.2.
The grammar for atypical XAS and XSSisshownin Fig. 15.

7.5 Conclusions

In this chapter, we have presented an XML-based specification language for
expressing GTRBAC policies and an implementation architecture. X-GTRBAC provides
compact representation of access control policies and allows context-aware access
control and metapolicy features. We have emphasized the separation of language schemas
to provide efficient specification of definitions of RBAC elements, user-to-role and
permission-to-role assignments, hierarchical and separation of duty constraints, and an
elaborate set of temporal constraint expressions.

171

8. CONCLUSIONSAND FUTURE WORK

In this chapter, we summarize the contributions of this dissertation and discuss

future research directions.

8.1 Resear ch Contributions

1.

2.

Following are the main contributions of this dissertation:

We have proposed a generalized tempora role based access control model that can
handle a comprehensive set of tempora constraints. The model allows temporal
constraints on role enablings and role activations. Various temporal restrictions can be
specified on the user-role and role-permission assignments. We use a notion of
safeness to generate a safe execution model for a GTRBAC system.

We have identified various types of temporal hierarchies that capture permission-
inheritance and role-activation semantics based on the tempora properties of
hierarchically related roles. In case, different types of hierarchica relations are
allowed to coexist in a system, complex permission-inheritance and role-activation
semantics are needed. In such a case, it becomes difficult to determine the
permissions that can be acquired and the roles than can be activated by a user
assigned to a role in the hierarchy. We have presented formal analysis and a set of
inference rules related to such role hierarchies that characterize roles that a user can
activate. The detailed formal analysis presented in this dissertation can be used in
security administration tools to efficiently administer access control policies.
Furthermore, we have presented an analysis mechanism for managing evolution of a
role hierarchy.

We have presented a comprehensive set of constraints that can be used to capture
complex access control requirements. A generic framework for expressing a wide
range of time-based cardinality constraints associated with GTRBAC states has been
presented. We have developed a trigger expression that can capture complex
dependencies among events and conditions. In particular, we have defined a set of

172

control flow dependency (CFD) constraints that can be used to express stricter access
control requirements typical in workflow applications. We have presented a
comprehensive set of time-based SoD constraints that subsume the SoDs that have
been identified in the earlier work on the RBAC models. Furthermore, these
constraints provide basis for formally expressing many of the earlier identified SoDs,
including history based, and order independent SoDs.

4. We have presented an analysis of GTRBAC's expressiveness and generated a set of
GTRBAC family of models with equivalent expressive power. We have shown that
the set of constraints in the GTRBAC model, athough not minimal, provides better
flexibility in expressing access control policies with less complexity. Various design
guidelines have been provided to alow specification of access policiesin asimplified
manner.

We believe that our approach for anayzing the expressiveness and reducing
specification complexity for the GTRBAC model has a broader significance. This is
because the proposed analytical approach is generally applicable to any specification
model that uses more than the minimal specification constructs needed. Such analysis
can be used to derive design guidelines that can be used to generate specification
model with reduced complexity. With the rapidly increasing complexity of
information systems, the current emphasis is on developing more complex models
capturing the semantics and/or requirements of such systems. Analysis similar to that
presented in this dissertation need to be carried out to study tradeoff between
complexity and usability such models.

5. Finaly, we have presented X-GTRBAC, an XML-based specification for GTRBAC.
The proposed X-GTRBAC framework allows specification of GTRBAC policies as
well as specification of credential and context based dynamic access control policies
and metapolicies. The framework is particularly beneficial because of the growing
importance of XML and its widespread use in emerging large scale enterprise
applications that span multiple security domains.

8.2 Future Work
The GTRBAC model can provide a foundation for pursuing several challenging

research problems that are becoming relevant in the context of emerging large scale
applications. Below, we summarize severa directions in which our work can be pursued.

173

. An immediate extension of our work will be to extend SQL language for specifying
temporal constraints of the proposed GTRBAC model. Such an extension would
allow using GTRBAC policy framework in database applications.

. Another possible research direction is to develop tools to support security policy
administration using various analysis techniques we have presented in this
dissertation. Such tools can significantly reduce the administration efforts in large
enterprise environments.

. One key issue is the verifiability of a policy specification in terms of its safety and
liveness. The GTRBAC execution model provides a restricted notion of safeness that
only guarantees that certain ambiguous situation does not occur, as discussed in
Chapter 3. As pointed out in Chapter 2, the general notion of safety is to ensure that
something bad does not occur. Similarly, to verify liveness of a specification model is
to ensure that something desirable eventualy happens. One future direction is to
address the safety and liveness characteristic of the GTRBAC model.

In the dissertation, we have referred to WFM Ss as motivation for the work presented.
Although roles and temporal constraints capture requirements of workflow tasks in
organizational context, research can be done to reconcile RBAC models with WFM Ss
so that complex WFM Ss can benefit from the use of RBAC models. Several concepts
regarding restricted hierarchies, SoD constraints as well as temporal constraints
presented in this dissertation can be used to facilitate requirement specification of
WFMSs. X-GTRBAC can be extended to fully address the unique requirement of
WFMSs.

. As mentioned earlier, RBAC provides a promising approach for addressing the
complex issues of access control in multidomain environments because of its policy-
neutral nature and the flexibility that it provides in expressing a wide range of access
control policies. Accordingly, the GTRBAC model can serve as a foundation for
addressing the complex access control needs of dynamic multidomain environments.
Various types of hierarchies and constraints introduced in this dissertation can provide
support for handling complex scenarios encountered during integration of multiple
policies. Emerging multidomain environments such as Web Services based
application environments and Grids pose severa challenges in terms of access control
and policy representation. X-GTRBAC framework can be integrated with other
security functionalities such as authentication and cryptography to generate holistic
solutions to the problems of such multidomain environments.

174

REFERENCES

[Abag3]

[Ahn0O]

[All83]

[AtI96b]

[AmMm9Z]

[And01]

[Atl9g]

[Atl02]

[Att93]

[Azz02]

175

REFERENCES

M. Abadi, M. Burrows, B. W. Lampson, G. Plotkin, “A Caculus for Access
Control in Distributed Systems’, ACM Transactions on Programming
Languages and Systems, Vol. 15, No. 4, September 1993, pages 706-734.

G. Ahn, R. Sandhu, “Role-Based Authorization Constraints Specification,”
ACM Transactions on Information and System Security, 3(4), November
2000.

J. F. Allen, “Maintaning Knowledge about Temporal Intervals’,
Communications of the ACM, Vol. 26, No. 11, November 1983, pages 832-
843.

V. Atluri and W-K. Huang, “An Authorization Model for Workflows’,
Proceedings of the Fifth European Symposium on Research in Computer
Security, Rome, Italy, and Lecture Notes in Computer Science, No. 1146,
Springer-Verlag, September, 1996, pages 44-64.

Ammann, P.E. and Sandhu, R.S. "The Extended Schematic Protection
Model.", Journal of Computer Security, Volume 1, Numbers 3 and 4, 1992,
pages 335-383.

R. Anderson, “Security Engineering: A Guide to Building Dependable
Distributed Systems,” John Wiley & Sons Inc., 2001.

V. Atluri editor. Proc. of the Fourth ACM Workshop on Role-Based Access
Control, Fairfax (VA), 1999.

V. Atluri, A. Ga, “An Authorization Model for Temporal and Derived Data:
Securing Information Portals,” ACM Transactions on Information and System
Security, 5(1), February, 2002, pages 62 — 94.

P. C. Attie, M. P. Singh, A. Sheth, M. Rusinkiewicz, “Specifying and
Enforcing Intertask Dependeices’, Proceedings of the 19" International
Conference on Very Large Data Bases, Dublin, Ireland, 1993, pages 134-145.

F. Azzedin, M. Maheswaran, “Towards Trust-Aware Resource Mangement”,
Proceedings of the 2 IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid’ 02), 2002.

[Bac02]

[Bar97]

[Bel 76]

[Berog]

[Ber99g]

[Ber9g]

[Ber01]

[Ber01]

[Bews9)]

[BhaO3]

[Bib77]

176

J. Bacon, K. Moody, W. Yao, “A Model of OASIS Role-based Access Control
and its Support for Active Security”, ACM Transactions on Information and
System Security, Volume5, Issue4, November 2002.

J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrila, and D.R. Kuhn. Role Based
Access Control for the World Wide Web. In Proceedings of 20th National
Information System Security Conference, NIST/NSA, 1997.

D. E. Bdll and L. J. LaPadula, “Secure Computer System: Unified Exposition
and Multics Interpretation,” MTR-2997, MITRE Corp., Bedford, MA, March,
1976. Available as NTIS AD A023 588.

E. Bertino, C. Bettini, E. Ferrari, P. Samarati, “An Access Control Model
Supporting Periodicity Constraints and Temporal Reasoning,” ACM
Transactions on Database Systems, 23(3), September 1998, pages 231-285.

E. Bertino, S. Castano, E. Ferrari, M. Mesiti, “Controlled Access and
Dissemination of XML Documents’, Workshop On Web Information And
Data Management, November 1999.

E. Bertino, E. Ferrari, V. Atluri, “The Specification and Enforcement of
Authorization Constraints in Workflow Management Systems,” ACM
Transactions on Information and System Security, 2(1), February 1999, pages
65-104.

E. Bertino, P. A. Bonatti, E. Ferrari, “TRBAC: A Temporal Role-based
Access Control Model,” ACM Transactions on Information and System
Security, 4(3), August 2001, pages 191-233.

E. Bertino, S. Castano, E. Ferrari, “Securing XML Documents with Author
X", 1EEE Internet Computing, May-June, 2001.

D. F.C. Bewer, M. J. Nash, “The Chinese Wall Security Policy,” In
Proceedings of the Symposium on Security and Privacy, |IEEE Computer
Society, May 1989, pages 206-214.

R. Bhatti, “X-GTRBAC: An XML-based Policy Specification Framework and
Architecture for Enterprise-Wide Access Control,” Master’'s Thesis, School of
Electrical and Computer Engineering, Purdue University, 2003.

K. J. Biba, “Integrity Considerations for Secure Computer Sytems,” Technical
Report ESD{ TR{ 76-372, The MITRE Corporation, HQ Electronic Systems
Division, Hanscom AFB, MA, April 1977.

[Bisog]

[ClagT]

[Cor90]

[Cra03]

[Den76]

[Ede9g]

[Fero3]

[Fer99]

[FerO1]

[Gao02]

[Gavos]

177

J. Biskup, U. Flegel, Y. Karabulut, “Secure Mediation: Requirements and
Design,” In Proceedings of 12th Annual IFIP WG 11.3 Working Conference
on Database Security, Chalkidiki, Greece, July 1998.

D. D. Clark, D. R. Wilson, “A Comparison of Commercial and Military
Computer Security Policies’, IEEE Symposium on Security and Privacy,
1987, pages 184-194.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, “Introduction to Algorithms,”
MIT Press, 1990.

J. Crampton, “Specifying and enforcing constraints in role-based access
control,” Proceedings of the 8" ACM Symposium on Access Control Models
and Technologies, Como, Italy, June 02 - 03, 2003, pages 43-50.

D. Denning, “A Lattice Modd of Security Information Flow”,
Communications of ACM, Voal. 19, 1976, pages 236-243.

J. Eder, E. Panagos, Michael Robinovich, “Time Constraints in Workflow
Systems’, Proc. of 11th Int. Conf. on Adv. Inf. Systems Engineering (CAISE
99), Heidelberg, Germany, 1999.

D. F. Ferraiolo, D. M. Gilbert, N. Lynch, “An Examination of Federal and
Commercial Access Control Policy Needs,” In Proceedings of NISTNCSC
National Computer Security Conference, Batimore, MD, September 20-23,
1993, pages 107-116.

D. F. Ferraiolo, J. F. Barkley, D. R. Kuhn, “A Role-Based Access Control
Model and Reference Implementation within a Corporate Intranet,” ACM
Transaction on Information and System Security, Vol. 2, No. 1, February,
1999, pages 34-64.

D, F. Ferraiolo , R. Sandhu , S. Gavrila, D. Richard Kuhn, R. Chandramouli,
“Proposed NIST standard for role-based access control,” ACM Transac