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ABSTRACT

Zhao, Tian. Ph.D., Purdue University, August, 2002. Type Matching and Type Inference
for Object-Oriented Systems. Major Professor: Jens Palsberg.

Type systems in object-oriented systems are useful tools to ensure correctness, safety,

and integration of programs. This thesis studies the matching of recursive interface types

for the purpose of software-system integration and type inference for object types to help

reduce bulky type information for programs with flexible type systems.

We explore the problem of equality and subtyping of recursive types. Potential appli-

cations include automatic generation of bridge code for multi-language systems and type-

based retrieval of software modules from libraries. We present efficient decision procedures

for a notion of type equality that includes unfolding of recursive types, and associativity

and commutativity of product types. Advocated by Auerbach, Barton, and Raghavachari,

these properties enable flexible matching of recursive types.

We also present results on type inference for object-oriented languages with flexible

type systems including features such as read-only field and record concatenation.

Read-only fields are useful in object calculi, pi calculi, and statically-typed intermediate

languages because they admit covariant subtyping, unlike updateable fields. For example,

Glew’s translation of classes and objects to an intermediate calculus places the method

tables of classes into read-only fields; covariant subtyping on the method tables is required

to ensure that subclasses are translated to subtypes. In programs that use updateable fields,

read-only fields can be either specified or discovered. For both cases, we will show that

type inference is equivalent to solving type constraints and computable in polynomial time.

Record concatenation, multiple inheritance, and multiple-object cloning are closely

related and part of various language designs. For example, in Cardelli’s untyped Obliq



x

language, a new object can be constructed from several existing objects by cloning fol-

lowed by concatenation; an error is given in case of field name conflicts. We will present a

polynomial-time type inference algorithm for record concatenation, subtyping, and recur-

sive types. Our example language is the Abadi-Cardelli object calculus extended with a

concatenation operator. Our algorithm enables efficient type checking of Obliq programs

without changing the programs at all.
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1. Introduction

This thesis studies type-equivalence and type-inference problems in object-oriented sys-

tems in order to enhance the interoperability of software components and to infer types

for flexible type systems. Type systems are often integral parts of modern programming

languages. A fundamental purpose of a type system is to prevent the occurrences of exe-

cution errors. Type systems can also increase the efficiency of program execution, allow

easier debugging, enable modular code development, and help improve orthogonality of

language features. To take advantage of these benefits, researchers need to study the prob-

lems related to formal type systems which include, but are not limited to, type equivalence,

type inference, and type soundness.

The integration of multi-language systems becomes increasingly important in the area

of software systems where large amounts of legacy code exists. With the help of inter-

face types of objects and functions, we are able to connect software components written

in different programming languages. In this thesis, we study the type-matching problem

during the integration of multi-language systems. We also present type-inference algo-

rithms for type systems with variance annotations. Types with variance annotations allow

more flexible subtyping and they are useful for typing object calculi, mobile processes,

and statically-typed intermediate languages. We also deal with annotated types that help

support concatenation of objects.

In the rest of this chapter, we first give a brief introduction to type systems in general

and to types in object-oriented systems; and we later explain the applicable areas of type

equivalence including component retrieval in software libraries and generating bridge code

for multi-language systems; and lastly, we explain the applications of type inference for

object-oriented systems.
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1.1 Type Systems

Type systems promote safety at runtime and help eradicate evasive errors which other-

wise may go unnoticed during program execution. Some runtime errors of a program such

as dividing by zero can cause the execution to be halted. Other errors such as improper

access to memory locations may not be detected and consequently cause the program to

behave incorrectly. Type systems are designed to catch some of these evasive errors before

runtime by statically checking the consistency between type declarations and their associ-

ated programs. When there are errors that cannot be detected statically, dynamic checks

are often needed to ensure safety of program execution. Well-designed type systems can

eliminate more of the runtime errors, hence, less dynamic checks are needed and programs

execute more efficiently. Also, with a large fraction of errors automatically detected by

typechecking methods, programmers can be more efficient in debugging their programs.

Besides detecting runtime errors, type systems are also important tools for modular

compilation of programs and essential for collaborative programming in large software sys-

tems. Type information of software components can be arranged in the form of interfaces.

Interface types can characterize much of the interdependencies of components and mod-

ules such that they interact with each other only through their interfaces. While maintaining

relatively stable interface types, programmers are able to modify, debug, and compile com-

ponents and modules independently. Moreover, typechecking algorithms can automatically

verify whether software components have followed the specifications described in the inter-

face types. Hence, developing software systems may become more efficient with suitable

definitions of interface types.

In order for type systems to be useful, types should have precise definitions and proofs

of their formal properties. For instance, the proof of type soundness checks the consistency

between the type definitions and the semantics of a programming language. The property

of type-soundness guarantees that well-typed programs compute without execution errors.

Furthermore, type systems should have decidable typechecking algorithms, should make

it straightforward for programmers to identify type errors, and type declarations should be

checked statically as much as possible.
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To formalize a type system, we need to describe the syntax, scoping rules, semantics,

and type rules of the associated programming language. The syntax of a languages usually

consists of syntax for types and terms. Types set the upper bounds of the ranges of values

that program variables can assume during program execution, and terms are expressions

and statements in program fragments. The scoping rules of a language associate occur-

rences of identifiers to the locations where they are declared. These rules specify the way

in which free variables in a program fragment are substituted with terms. Semantics of a

language relate terms in program fragments to a set of values. Independent of semantics,

the type rules of a language identify a terme with a typeA in the forme : A, relate two

types with a subtyping relation in the formA ≤ B, and associate types that are equivalent

in the formA = B. Sometimes we have type variables that need to be associated with their

definitions. This information is contained in static type environments. For instance, the

type equivalence ruleΓ ` A = B has static type environmentΓ which may contain type

definitions forA,B.

Type equivalence and subtyping can be either by structure or by name. Structural equiv-

alence and subtyping have the advantage of being precise when defined by type rules and

being independent of naming schemes. However, structural type equivalence and subtyp-

ing become nontrivial when recursion is involved. We will explain in Section 1.3 why

determining structural equivalence of types is important for the interoperability of software

components.

We can prove a type soundness theorem by showing that if two terms are semantically

equivalent, then they have the same type. Thus, if a type system is sound and decidable,

then we can use typechecking algorithm to determine whether a program is well-typed and

consequently whether it will execute without errors. To formally prove type soundness

or show that a program is well-typed, we can employ a formal language of type systems

including judgments, type rules, and type derivations. A judgment is an assertionφ entailed

by static type environmentΓ in the form ofΓ ` φ. A typing judgment of the formΓ ` e : A

asserts that in environmentΓ the expressione has typeA. A type rule asserts the validity

of a certain judgmentΓ ` φ by assuming the validity other judgmentsΓi ` φi, i ∈ {1, ..n}.
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Type rules are usually in the form of
Γ1 ` φ1, . . . ,Γn ` φn

Γ ` φ
. A derivation of a judgment is a

tree of judgments constructed by applying type rules. The leaves of a judgment tree should

be known to be valid without assuming the validity of any other judgments.

A term e is well typed in an environmentΓ if there exists a typeA such that the judg-

mentΓ ` e : A can be obtained at the root of a derivation. Thus, typechecking a program is

in fact the discovery of type derivations for all the terms in the program. The type-inference

problem in this thesis, which may be called typability or type reconstruction in other lit-

erature, is the process of finding a typeA, and an environmentΓ for an untyped terme

such thatΓ ` e = A is valid. In section 1.4, we will explain type-inference problems

for object-oriented systems. In particular, we consider type systems with variance anno-

tations so that more flexible subtyping and object concatenation are supported. Subtyping

is almost ubiquitous in typed object-oriented languages which we briefly discuss in next

section.

1.2 Object-Oriented Systems

Object-oriented approaches emulate the properties and behaviors of physical entities.

Unlike functions or procedures, software objects are not designed to have a specific func-

tionality; they may contain a collection of methods that operate on themselves and they may

contains a collection of fields that describe the properties of the objects . Object-oriented

languages have the advantages of being resilient to modifications and being reusable by

allowing flexible replacement of objects and methods.

The abstraction of objects allows programmers to factor out implementation of com-

putation to methods and organize object definitions in ways more suitable for application

designs. Modifications to a particular implementation are therefore usually localized to

some methods and have less effects on the whole organization of the application.

More reusable components can be written in object-oriented languages because objects

and methods are more interchangeable than functions and procedures. Replacement of

objects and methods do not require exact matching of types or interfaces unlike replacing

modules written in procedural languages. This is due to the prevalent use of subsumption
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or subtyping in object-oriented systems. For instance, object replacement only requires

that the new object has at least the same set of fields and methods as the one to be replaced.

Also, methods can be either reused by inheritance or replaced by overriding. The new

methods have to conform to the type signatures of the old ones but with some degrees of

flexibility. Replacement of methods also leads to objects that have dynamic sets of methods

associated with them. In order for a method to access the rest of fields and methods in the

host object, often a notion ofself is used to identify the host object.

Object-oriented languages can be either object-based or class-based such as C++ and

Java. Classes serve as object templates, and objects are instantiated from classes via an

operator such asnew. Inheritance of classes creates class hierarchies and also enables

reuse of methods. A subclass is a class that inherits from other classes and subclassing

usually implies subtyping. For instance, suppose that classc is a subclass ofc′ and objects

o, o′ are instances ofc andc′ respectively. In languages such as C++ and Java, the type of

o is a subtype of the type ofo′. Also, objecto can assume the type ofo′ as well, which

implies that if there is a variablev of the type ofo′, then we can assigno to v and this is

known as subsumption. Because of subsumption and overriding, when we invoke a method

on an object in variablev, we cannot be sure which method will be invoked until runtime

and this is known as dynamic dispatch.

Object-based languages are less popular than class-based languages, though they can

be simpler and more flexible. Object-based languages emulate behaviors in class-based

languages with simpler mechanisms. Without classes as object templates, object-based

languages create new objects by cloning prototypes. Also method-updates are used in

place of method overriding.

The object-type systems that we are concerned with in Section 1.4 are derived from

an Abadi-Cardelli object calculus [AC96a], which is an untyped first-order object calculus

with subtyping and recursion, and the syntax of which with some variations is shown in

Figure 1.1. Object calculi are further decompositions of object-based languages. Only

limited features such as method invocation and method update are built-in for the Abadi-

Cardelli object calculus. The object types are a collection of fields with distinct labels
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A,B ::= types

X type variable

[`i : B i∈1..n
i ] object type (̀i distinct)

µ(X)A recursive type

a, b ::= terms

x variable

[`i = ς(xi)b
i∈1..n

i ] object (̀ i distinct)

a.` method invocation

a.`⇐ ς(x)b method update.

Figure 1.1. Syntax of an Abadi-Cardelli calculus

and one type for each field. The largest object type, denoted by[ ], is an object type

without any fields. If a typeA contains at least the set of fields in typeB, thenB is the

subtype ofA, which is called width subtyping. For instance,[`i : B i∈1..n+m
i ] is a subtype

of [`i : B i∈1..n
i ]. The type system for the object calculus in Figure 1.1 has only width

subtyping and recursive types.

Even though type-checking can help eliminate programs with runtime errors, it can also

rule out sound programs as well. In fact, there are some limitations of the type systems

such as the one in Figure 1.1 that render some sound programs untypable. We will discuss

this problem in Section 1.4. In Section 1.3, we are mainly interested in interface types of

object-oriented languages such as Java, where only type signatures of methods and static

data types are defined in interfaces.

1.3 Type Matching

Much of the study of type isomorphisms (equivalence) is motivated by the component-

retrieval problem and generation of bridge code for multi-language applications.
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1.3.1 Component Retrieval in Software Libraries

Types have been used as search keys in retrieving suitable components from a software

library. Many functions or components that fit the specification of users do not always have

the exact same type as the one the user provided. We therefore need to somehow relate

types isomorphic to the query type.

In some cases, function types are good search keys since non-recursive types are easy

to compare and most function libraries contains the types of their components.

Consider a type system with the following terms.

τ ≡ γ | τ1 → τ2 | τ1 × τ2

The symbolγ ranges over base types such as integer and boolean. The symbols→ and

× denote the function type constructor and the product type (or record type) constructor

respectively.

A type of a function can be written asσ → τ , whereσ is the type of arguments and

τ is the return type of the function. Suppose we are looking for a functionfoo that takes

two arguments of typesbooleanandintegerrespectively and returns a pair consisting of a

boolean and an integer, and the type offoocan be written as

(bool× int)→ (bool× int).

So how do we decide that two types are actually matched? We may require the matched

function to have exactly the same type, that is, the argument types are in the same order

and so are the return types. This is too restrictive as it turns out. Some functions may have

similar types which can be converted into the sought type via simple transformations such

as argument reordering or currying. For instance, functions with the following types

(int× bool)→ (bool× int) or bool→ (int→ (bool× int))

can be converted tofoo by reordering the argument or an uncurry transformation. Fur-

thermore, a function that returns a pair can be translated into two functions that return the

components of the pair. The following type may be what we want as well.

((int× bool)→ bool)× ((int× bool)→ int)
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In fact, we consider these similar types to belong to an equivalence class consisting of

types isomorphic to the type offoo. Informally, two typesσ andτ are isomorphic if there

exist conversion from terms ofσ to terms ofτ and vice versa, where the compositions of

the two conversions in both orders are the identity mappings.

Rittri [Rit91] noted the use of types as query keys for searching functional libraries.

To allow flexible retrieval of desired functions, he defined a notion of isomorphism via

the functions of aλβη-calculus with surjective pairing. He also gave a semantics and

an axiomatic characterization of isomorphism with the axiom rules shown in Figure 2.6.

Rittri noted that these isomorphisms also hold in all Cartesian Closed Categories. (An

introduction to category theory can be found in [Gol79]). This type system was proved

complete for models of the simply typedλ-calculus with surjective pairing and terminal

objects by Bruce, Di Cosmo and Longo [BCL92]. Di Cosmo [Cos95] gave a more detailed

treatment of type isomorphism including systems involving second order types. He also

mentioned as future work to incorporate recursive types into the system of isomorphism.

Zaremski and Wing [ZW95] have done similar work in signature matching for retriev-

ing components from an ML-like functional library. Unlike others, rather than reasoning

about a complete set of rules, Zaremski and Wing emphasized the flexibility of combin-

ing those rules with generalized, specialized or unified matching. They also included user

defined type operators such aslist in the matching.

When users attempt to retrieve specific functions from the library, usually, more gener-

alized functions will suffice as well. They can instantiate the retrieved functions to get what

they need. In addition, it is difficult for a user to guess the most general type of a function.

Generalized matching allows users to query the most general type with more specific ones.

As shown in [NPS93], generalized matching is NP-complete with the isomorphism defined

in Figure 2.6.

Once the desired function is retrieved, programmers may want to convert the interface

of the retrieved function into a certain preferred form. It is easy to modify the retrieved

function so that the type is preserved under isomorphism. However, if the programmers use

a language different from the one that the retrieved function is written in, the translation of
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the interface becomes an non-trivial task. Preferably, we would like to automatically con-

vert a component interface written in one language into an interface for another language

under type isomorphism. This is essential for generating bridge code for multi-language

applications.

1.3.2 Generating Bridge Code for Multi-language Systems

Large and complex software applications often contain modules written in different

programming languages. This may be due to the need for reusing legacy components or

because certain languages are more suitable for particular application areas. In addition,

programmers for distributed applications may want to provide interfaces to facilitate in-

teroperability with other programs already written in several different languages. In any

case, mechanisms are needed to glue these multi-lingual components together. CORBA

[OMG99], PolySpin [BKW96] and Mockingbird [ACC97, ABCCR99], etc. are systems

designed to overcome this difficulty.

In multi-language applications, software modules can be considered to be of two kinds,

object and client. Objects must include public interfaces to allow access from clients writ-

ten in different languages. CORBA-style approaches utilize a separate interface definition

language called IDL. The objects are wrapped with language-independent interfaces de-

fined in IDL, and the wrappers are translated into interfaces in the languages that clients

are using so that clients can invoke methods in these objects via the interfaces. Exact types

are preserved as the method invocations cross the language boundaries, because both the

client and object adhere to the common interfaces for interaction.

Since interfaces defined in IDL must be able to be translated into many different lan-

guages, the type system in IDL has to be the intersection of the type systems of all the

programming languages that CORBA supports. As a result, declarations in IDL lack ex-

pressive power and may not be convenient for local computation. Client code has to switch

between its own type system for local computation and IDL-derived types for remote oper-

ation on objects. In addition, common object types are not transparent to software modules.

Consequently, program modules implemented in a language with a more flexible type sys-

tem have to be modified and retrofitted to use the IDL-based interfaces.
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The PolySpin and Mockingbird projects offer alternatives to defining interfaces in a

common interface language. In both approaches, clients and objects are written within their

own type systems and remote operation across language boundary is supported automati-

cally by compiler-generated bridge code or by modifying object method implementations.

Because object interfaces are not defined in a common type system, we must be able to

convert an object interface into a compatible form in other languages. PolySpin employed

an isomorphism framework similar to Zaremski and Wing [ZW95].

In PolySpin, interoperability support is divided into four parts: locator, language arbitor,

communicator, and type matcher. A locator is the name management component used to

locate objects by their language-neutral name. A language arbitor associates language

information with objects as part of the name-object binding. A communicator achieves

inter-language invocation by automatically modifying the implementation of object meth-

ods. Modified methods consult the language arbitor at each invocation and decide whether

to make a local method call or a generated inter-language call. Modification done to object

methods is dependent on whether the interface type of the object is compatible with inter-

face types defined in other languages. A type matcher checks type compatibility based on

a relaxedcriteria of type isomorphism.

The implementation of PolySpin takes the type definitions of a set of clients and objects

written in multiple languages and modifies the type implementations after checking the

compatibility of these types. The modified objects then are ready to accept method calls

from clients written in other languages. Users have to supply the type definitions that are

matched semantically for PolySpin to do any useful work.

A type matcher only considers abstract object types whose properties are captured com-

pletely in the signatures of methods. Signatures of methods are matched with operations

including renaming, argument reordering and currying. Two object types are considered as

matched if either all methods or a subset of methods in the objects are matched in method

signatures. It seems that PolySpin did not consider recursive types.

TheMockingbirdproject is similar to CORBA in that they both make use of an inter-

mediate interface language. A key difference is that Mockingbird automatically generates
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interfaces, provided some annotations in the source code. Compared with PolySpin, Mock-

ingbird allows more flexible translation of types across languages. Besides abstract data

types such as object, non-abstract types such as records, linked lists and arrays are also

considered when generating interfaces. As in PolySpin, inter-language method calls does

not preserve exact types, that is, data values can be transported across language boundary

if the interfaces of the data object are compatible. Two interfaces in different languages

are compatible if the types of the interface are inter-convertible, which means that there is

an invertible mapping from one type to the other. Thisinter-convertibilityof types follows

the ideas of structure-based type isomorphism. Because certain information is stored struc-

turally via inter-object references, the types of interfaces could be recursive. Determining

whether two recursive types are isomorphic with all the rules in Figure 2.6 turns out to be

quite a hard problem. In fact, Mockingbird used some conservative heuristics to determine

the inter-convertibility and to find invertible mappings between types.

The Mockingbird system consists of four elements: extractor, analyzer, synthesizer, and

emitter. Extractors extract the data-type definitions from annotated source languages. Ana-

lyzers generate an intermediate interface in the Mockingbird Signature Language (MockSL)

based on the type definitions. The annotations in source code are some formatted type in-

formation provided by programmers. Synthesizers interact with the programmer to decide

the type compatibilities of interfaces and generate declarations in clients’ languages. In the

end, the emitters produce marshaling stubs for each language from MockSL.

The improvement of PolySpin and Mockingbird over CORBA largely rests on the abil-

ity to use native type systems in defining operations across programming languages. In

PolySpin, interoperability of interfaces are judged by the compatibility of abstract types

under non-recursive type isomorphism. The Mockingbird project aims to extend definition

of type isomorphism to recursive types and more, and thereby to automate the translation

of non-abstract types.

The structure-based type isomorphism of the Mockingbird project seems non-trivial to

relate to any formal theory however. Auerbach, Barton, and Raghavachari [ABR98] defined

a theory of type isomorphism composed of the axioms of a theory of type isomorphism (see
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Figure 2.6) and the axioms of a theory of equality for recursive types (see Figure 2.8). The

decidability of each in isolation has been proven. Auerbach, Barton and Raghavachari

raised the question of whether the combination of the two set of axioms is consistent and

decidable. It turns out that the combination is in factinconsistentsince all types can be

proven equal in this case. Thus, the isomorphism problem of recursive types cannot simply

be defined by the union of two systems and we have to set out finding a new definition that

is consistent and decidable.

1.3.3 Type Matching Algorithms

In this thesis, we study the problem of matching recursive types with a subset of the

isomorphism rules in Figure 2.6. We are interested in equivalence rules that include as-

sociativity and commutativity of product types because they are more useful for current

software systems. Even though it is straightforward to given an exponential-time algorithm

for the matching problem, it is non-trivial to find a polynomial time solution. Using an

iterative approach, we discovered anO(n2) algorithm [PZ01] for matching recursive types

with flexible equality rules characterized by a definition of bisimulation. The algorithm de-

pends on a monotone function constructed from the definition of a bisimulation and from an

initial relation on potentially equivalent types. Matched types, if any, should be contained

in the greatest fixed point of the monotone function. The time complexity of algorithm was

further improved toO(n log n) time [JPZ02] by reducing the fixed-point computation of the

monotone function to the problem of finding the coarsest size-stable partition-refinement

of a graph. We have implemented the second algorithm in Java and the implementation

allows users to compare interface types with the option to exclude some type equalities

when multiple matches exist.

1.4 Type Inference

Type inference automatically discovers type information from untyped or partially typed

programs. The problems we study in this thesis are type inference for untyped object cal-

culi with variance annotations where both width and depth subtyping are allowed and where

object concatenation is supported. For object types of the form[` : B, . . .], there are several

design choices. Abadi and Cardelli [AC96a] explain that if the field` can be both read and
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Point = [move= ς(x)x]

ColorPoint = [move= ς(y)y, setcolor= ς(z)z]

Circle = [center= ς(d)Point]

ColorCircle = Circle.center⇐ ς(e)ColorPoint.move.setcolor

Main = ColorCircle.center.move

Figure 1.2. Example of an untypable program in the type system ofOb1<:µ

updated, theǹ must beinvariant, that is, if [` : A, . . .] is a subtype of[` : B, . . .], then

A = B. This is the case for a type system with syntax in Figure 1.1. However, invariant

subtyping turns out to too restrictive for some programs.

For example, in Figure 1.2 is a program written in a variant of the Abadi-Cardelli object

calculus [AC96a] with syntax shown in Figure 1.1. Each methodς(x)b binds a namex

which denotes the smallest enclosing object, much like “this” in Java. We apologize in

advance that the methods do not exhibit any useful behavior; the method were chosen to

make them difficult to type check. The ”Main” program of this example should execute

without run-time errors because of the following reductions.

ColorCircle.center.move

→ ((ColorPoint.move).setcolor).move

→ (ColorPoint.setcolor).move

→ ColorPoint.move

→ ColorPoint

Palsberg and Jim [PJ97] noted that this program isnot typable in Abadi and Cardelli’s type

systemOb1<:µ, which has recursive types, width subtyping for object types, and only in-

variant fields. The key reason for the untypability is that the body of theColorCircle ’s
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center method forcesColorPoint to have a type which isnota subtype of the type of

Point , intuitively as follows.

Point : µ(X)[move: X]

ColorPoint : µ(X)[move, setcolor: X]

µ(X)[move, setcolor: X] 6≤ µ(X)[move: X]

Moreover,ColorCircle .center .move is not typable. Nonetheless, the example in

Figure 1.2 is typable in more flexible type systems, which we will study in Chapter 3.

1.4.1 Covariant Read-Only Fields

Variance annotations distinguish fields of an object as covariant, contravariant and in-

variant. A covariant read-only field (CROF) is a field which enjoys covariant subtyping and

which cannot be updated. Similarly, a contravariant field is write-only and cannot be read.

An invariant field can be either read or updated.

Following Abadi and Cardelli, we use the notation[`0 : B, . . .] to denote an object type

with an invariant field̀ ; and we use the notation[m+ : B, . . .] to denote an object type with

a covariant fieldm. Covariance implies that if[m+ : A, . . .] is a subtype of[m+ : B, . . .],

thenA is a subtype ofB, a weaker condition thanA = B.

Variant subtyping of object types increases the expressiveness of type system. Some

sound programs that fail to type check with only width subtyping and recursive types are

typable with variant subtyping. Variance annotations can also be used for typing and sub-

typing for mobile processes [PS93] to enforce that some communication channels are for

input only or for output only. Read-only fields are useful in statically-typed intermediate

languages because they admit covariant subtyping and can be used to type method-table

fields in the Glew’s encoding of classes and objects [Gle00]. The target language used

in the encoding has a super-set of the type syntax shown in Figure 1.3 which is slightly

modified to be consistent with the notations in the rest of the thesis. Notice that there are

two kinds of variance annotationsφ andϕ in Figure 1.3. We first discuss the variance

φ for annotating fields of a record type.Notice that we use record type and object type

interchangeably here.
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Type τ, σ ::= . . . | [`φi
i : τ i∈1..n

i ]ϕ | . . .

Variances φ ::= + | 0

ϕ ::= 0 | →

Figure 1.3. Part of the syntax of Glew’s target language for object and class encoding

CROFs play an essential role in Glew’s translation of objects and classes to a typed

intermediate language. Like most implementations of object-oriented languages, Glew’s

translation uses method tables. One of Glew’s insights is that the method table can conve-

niently be placed in a CROF. For example, leta andb be two source-language objects such

that the type ofb is a subtype of the type ofa. The type system for the source language sup-

ports thatb may havemoremethods thana (width subtyping). This means that the method

table in the translation ofb will be longer than the method table in the translation ofa:

translation(a) = . . . [mt = ma, . . .] . . .

translation(b) = . . . [mt = mb, . . .] . . .

where mt is the field name for the method table. Glew’s translation of b has a subtype of

the type of his translation of a; he makes mt a CROF, and he gives the following types to

the translations ofa andb:

type-of(translation(a)) = . . . [mt+ : type-of(ma), . . .] . . .

type-of(translation(b)) = . . . [mt+ : type-of(mb), . . .] . . .

Glew’s translation produces typed intermediate code, including the annotations0 and+.

1.4.2 Type Systems for Record Concatenation

While covariant subtyping increases the flexibility of subtyping for fields of an object,

type annotations that restrict width subtyping for some object types are useful for the pur-

pose of record concatenation. In Glew’s type system, the varianceϕ (see Figure 1.3) is

used to annotate a record type so that there are two forms of record types. The variance
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annotation0, as in

[`i : B i∈1..n
i ]0,

denotes that records of that typecanbe concatenated, and that subtypingcannotbe used.

The variance annotation→, as in

[`i : B i∈1..n
i ]→,

denotes that records of that typecannotbe concatenated, and that subtypingcanbe used.

For example, if we have

[l : 5,m : true] : [l : int,m : bool]0

[n : 7] : [n : int]0

then for the concatenation (denoted by+) of the two records we would get

[l : 5,m : true] + [n : 7] : [l : int,m : bool]0 ⊕ [n : int]0

= [l : int,m : bool, n : int]0.

where⊕ is the symmetric concatenation operation on record types which is only defined

when the labels sets are disjoint and the two types both have the variance annotation 0. The

idea is that if an object has type[li : ti]
0, then we know exactly which fields are in the

object, and hence we know which other fields we can safely add without introducing a field

name conflict. The more flexible types[`i : B i∈1..n
i ]→ can be used to type objects that will

not be concatenated with other objects.

This kind of type annotation can be useful for Cardelli’s untyped language namedObliq

[Car95], where the operation

clone(a1, . . . , an)

creates a new object that contains the fields and methods of all the argument objects

a1, . . . , an. This is done by first cloning each ofa1, . . . , an, and then concatenating the

clones. An error is given in case of field name conflicts, that is, in case at least two of

a1, . . . , an have a common field. Cardelli notes that useful idioms are:

clone(a, {l : v})
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to inherit the fields ofa and add a new fieldl with initial valuev, and:

clone(a1, a2)

to multiply inherit froma1 anda2. Obliq’s multiple-object cloning is an instance of the idea

of concatenating two records of data. In a similar fashion, languages such as C++ [Str93]

and Borning and Ingalls’ [BI82] version of Smalltalk allow multiple inheritance of classes.

For languages such as Obliq, concatenation is a run-time operation and where a field

name conflict is considered an error; such concatenation is known assymmetric concate-

nation. There are several ways of handling field name conflicts. One idea is to do run-time

checking, and thereby add some overhead to the execution time. Another idea, which we

study in this thesis, is to statically detect field name errors by a type system. The main chal-

lenge for such a type system is to find out which objects will eventually be concatenated

and give them types that support concatenation.

Writing programs with variance annotations adds extra burden to programmers and

on some occasions, having types with variance notations is just too bulky for programs

such as those written in intermediate languages. It is therefore interesting to find type

inference algorithm for an implicitly-typed version of Glew’s intermediate language and

for languages such as Obliq. Such an algorithm would make it possible to omit bulky type

annotations, and to automatically discover the CROFs and support record concatenation.

1.4.3 Type-Inference Algorithms

In this thesis, we study the problem of inferring object types with variance annotations.

We have found an algorithm of type inference for the object expressions with covariant

read-only fields [PZJ02]. We apply the algorithm to a variation of Abadi-Cardelli object

calculus where some of the object fields can be specified as read-only. Type inference

is equivalent to solving type constraints, which in turn is P-complete and computable in

O(n3) time. We have also developed a NP-time algorithm for inferring annotated types to

support record concatenation. Both type-inference problems deal with type systems with

type annotations which either restrict or relax subtyping relations for fields of an object or

a record. The proof structures in Chapter 3 and 4 are quite similar and they follow the style
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of [JP97]. Therefore, we will emphasize some of the similarities and differences between

the reasonings in Chapter 3 and those in Chapter 4.

1.5 Overview of the Thesis

This chapter has provided a brief summary of our research areas and introduced some

motivating examples for the problems that we study in this thesis. In Chapter 2, we present

solutions to the type matching problem for recursive types with a notion of flexible equality

and also briefly discuss our implementation. Chapter 3 gives the solution and implementa-

tion for the type inference problem of discovering covariant read-only fields for an untyped

object calculus. In Chapter 4 we solve the type inference problem for record concatena-

tion, subtyping, and recursive types. Finally, Chapter 5 summarizes the thesis and discusses

some future directions.
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2. Efficient and Flexible Matching of Recursive Types

2.1 Introduction

Much of the previous work on type equality focuses on non-recursive types [BCL92,

Cos95, NPS93, Rit90, Rit91, Rit93, Sol83, ZW95]. In this chapter we consider equality of

recursive types.

2.1.1 Background

Potential applications of flexible type equality include automatic generation of bridge

code for multi-language systems [ABR98, BKW96], and type-based retrieval of software

modules from libraries [Rit90, Rit91, Rit93, ZW95].

Software engineers often look into a software library to find reusable components for

their applications. A large library can be hard to search, however. It may be organized in

alphabetical order or coarsely sorted according to some structure. Beyond the structural

information of the library, the only thing that we can rely on is the component name to

retrieve the code we need. Component names are difficult to guess. So, it makes sense

to search by the type of the components. A component that fits the specification of a

programmer does not always have the exact same type as the one the user is using as search

key. That is why we need a flexible notion of type equality.

Designing and maintaining a multi-language application often calls for bridge code for

components written in various programming languages such as C, C++ and Java. The con-

version of values of isomorphic (equivalent) types is essential. The foundation of deciding

whether a conversion makes sense at all is a flexible notion of type equality. An alternative

might be to start with just one type, and then translate it into a type in a different language

[Gay94]. Such a translation may be helpful when building a new software component that

should be connected to an existing one. However, when faced with connecting two exist-



20

ing software components, programmers may find type matching and automatic bridge code

generation more helpful.

In object-oriented languages such as C++ and Java, many types are recursive. Thus,

to be useful for such languages, a flexible notion of type equality should be able to handle

recursive types.

2.1.2 The Problem

Equality and subtyping of recursive types have been studied in the 1990s by Amadio

and Cardelli [AC93]; Kozen, Palsberg, and Schwartzbach [KPS95]; Brandt and Henglein

[BH97]; Jim and Palsberg [JP97]; and others. These papers concentrate on the case where

two types are considered equal if their infinite unfoldings are identical. Type equality can

be decided inO(nα(n)) time, and a notion of subtyping defined by Amadio and Cardelli

[AC93] can be decided inO(n2) time [KPS95].

If we allow a product-type constructor to be associative and commutative, then two

recursive types may be considered equalwithout their infinite unfoldings being identical.

Alternatively, think of a product type as a multiset, by which associativity and commuta-

tivity are obtained for free. Such flexibility has been advocated by Auerbach, Barton, and

Raghavachari [ABR98].

Until now, there are no efficient algorithmic techniques for deciding type equality in

this case. One approach would be to guess an ordering and a bracketing of all products,

and then use a standard polynomial-time method for checking that the infinite unfoldings

of the resulting types are identical. For types without infinite products, such an algorithm

runs in NP time. One of the inherent problems with allowing the product-type constructor

to be associative and commutative is that

A× A×B = A×B × A,

while A× A×B 6= A×B ×B.

Notice the significance of the multiplicity of a type in a product. One could imagine that

an algorithm for deciding type equality would begin by determining the multiplicities of

all components of product types, or even order the components. However, it seems like
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this would have to rely on being able to decide type equality for the component types, and

because the types may be recursive, this seems to lead to a chicken-and-egg problem.

2.1.3 Our Result

We have developed an efficient decision procedure for a notion of type equality that

includes unfolding of recursive types, and associativity and commutativity of product types,

as advocated by Auerbach et al. For two types of size at mostn, our algorithm directly

based on our definition of type equivalence decides equality inO(n2) time. The main data

structure is a set of type pairs, where each pair consists of two types that potentially are

equal. Initially, all pairs of subtrees of the input types are deemed potentially equal. The

algorithm iteratively prunes the set of type pairs, and eventually it produces a set of pairs

of equal types. The algorithm takesO(n) iterations each of which takesO(n) time, for a

total ofO(n2) time.

We also present anO(n log n) time algorithm for deciding type equivalence. The al-

gorithm works by reducing the type matching problem to the well-understood problem of

finding a size-stable partition of a graph [PT87].

2.1.4 Implementation

We have implemented a type-matching tool based on our second algorithm. The tool is

for matching Java interfaces. It supports a notion of equality for which interface names and

method names do not matter, and for which the order of the methods in an interface and the

order of the arguments of a method do not matter. When given two Java interfaces, our tool

will determine whether they are equivalent, and if they are, it will present the user with a

textual representation of all possible ways of matching them. In case there is more one way

of matching the interfaces, the user can input some restrictions, and invoke the matching

algorithm again. These restrictions may come from non-structural information known to

the user such as the semantics of the methods. In this way, the user can interact with the

tool until a unique matching has been found.

2.1.5 Chapter Overview

In the following section we give an overview of our techniques by way of an example.

This example will be used later in the chapter for illustrative purposes. In Section 2.3
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we summarize related work. Section 2.4 gives an excerpt of the definitions of terms and

automata from [KPS95] which we will use in later sections. In Section 2.5 we present the

definitions and properties of types and type equivalence and we explain in detail anO(n2)

algorithm for deciding type equivalence based on our definitions. In Section 2.6 we show

an extension to intersection and union types. In Section 2.7, we introduce aO(n log n)

algorithm to decide type equivalence. An implementation of the algorithm is discussed in

Section 2.8. Subtyping of recursive types is discussed in Section 2.9. Concluding remarks

appear in Section 2.10.

2.2 Example

The purpose of this section is to give a gentle introduction to the algorithm and some

of the definitions in Section 2.5. We do that by walking through a run of our algorithm

on a simple example. While the example does not require all of the sophistication of our

algorithm, it may give the reader a taste of what follows in Section 2.5.

This example which will be used throughout the chapter. It is straightforward to map a

Java type to a recursive type of the form considered in this chapter. A collection of method

signatures can be mapped to a product type, a single method signature can be mapped to a

function type, and in case a method has more than one argument, the list of arguments can

be mapped to a product type. Recursion, direct or indirect, is expressed with theµ operator.

This section provides an example of ofJava interfaces and provides an illustration of our

algorithm.

Suppose we are given the two sets of Java interfaces shown in Figures 2.1 and 2.2. We

would like to find out whether interfaceI1 is structurally equal to interfaceJ2. We want

a notion of equality for which interface names and method names do not matter, and for

which the order of the methods in an interface and the order of the arguments of a method

do not matter.

Notice that interfaceI1 is recursively defined. The methodm1 takes an argument of

type I1 and returns a floating point number.In the following, we use names of interfaces

and methods to stand for their type structures. The type of methodm1 can be expressed as

I1 → float. The symbol→ stands for the function type constructor. Similarly, the type of
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interfaceI1 {

float m1(I1 a);

int m2(I2 a);

}

interfaceI2 {

I1 m3(float a);

I2 m4(float a);

}

Figure 2.1. InterfacesI1 andI2

interfaceJ1 {

J1 n1(float a);

J2 n2(float a);

}

interfaceJ2 {

int n3(J1 a);

float n4(J2 a);

}

Figure 2.2. InterfacesJ1 andJ2

m2 is I2 → int. We can then capture the structure ofI1 with conventionalµ-notation for

recursive types:

I1 = µα.(α→ float)× (I2 → int)

The symbolα is the type variable bound to the typeI1 by the symbolµ. The interface

typeI1 is a product type with the symbol× as the type constructor. Since we think of the

methods of interfaceI1 as unordered, we could also write the structure ofI1 as

I1 = µα.(I2 → int)× (α→ float) ,

I2 = µβ.(float→ I1)× (float→ β) .

In the same way, the structures of the interfacesJ1, J2 are:

J1 = µα′.(float→ α′)× (float→ J2)

J2 = µβ′.(J1 → int)× (β′ → float).

The unfolding rule for recursive types says that

µα.τ = τ [α := µα.τ ],
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I1×
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@→
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I2
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int

I2×
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�→
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I1
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@
@→
�

float
@

I2

Figure 2.3. Trees for interfacesI1 andI2

J1×
�

�→
@

J1

�

float
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float
@

J2

J2×
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�→
@

int
�

J1

@
@→
�

J2

@

float

Figure 2.4. Trees for interfacesJ1 andJ2

which means that the recursive typeµα.τ is equivalent toτ where every free occurrence

of α in τ is replaced byµα.τ . Infinite unfolding of a recursive type will result in a regular

tree, that is, a tree with a finite number of distinct subtrees.

Trees corresponding to the two types are shown in Figures 2.3 and 2.4. The interface

typesI1, J2 are equal iff there exists a bijection from the methods inI1 to the methods in

J2 such that each pair of methods in the bijection relation have the same type. The types of

two methods are equal iff the types of the arguments and the return types are equal.

The equality of the interface typesI1 andJ2 can be determined by trying out all possible

orderings of the methods in each interface and comparing the two types in the form of finite

automata. In this case, there are few possible orderings. However, if the number of methods

is large and/or some methods take many arguments, the above approach becomes time

consuming because the number of possible orderings grows exponentially. An efficient

algorithm for determining equality of recursive types will be given later in the chapter.

Our approach is related to the pebbling concept used by Dowling and Gallier [DG84].

We propagate information about inequality from the type pairs known to be unequal toward

the ones we are interested in.
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We will use the concepts ofbipartite graphsandperfect matching.A bipartite graph

is an undirected graph where the vertices can be divided into two sets such that no edge

connects vertices in the same set. A perfect matching is a matching, or subset of edges

without common vertices, of a graph which touch all vertices exactly once.

We organize the types of interfaces, methods, and base types (such asint) into a bi-

partite graph(V,W,R), whereV represents the types in interfacesI1, I2 andW repre-

sents the types in interfacesJ1, J2. That is,V = {I1, I2,m1,m2,m3,m4, int, f loat}, and

W = {J1, J2, n1, n2, n3, n4, int, f loat}. The set of edgesR represents “hoped-for” equal-

ity of types.

We initializeR as(V ×W ), that is, we treat every pair of types as equivalent types at

the start. The idea is that by iteration, we remove edges between types that are not equal.

When no more edges can be removed, the algorithm stops. The types connected in the final

graph are equal.

First, we remove the edges between types that are obviously not equal. For example, an

interface type and a method type are not equal; and a base type and a method type are not

equal. We remove edges that connect interface types and method types, and edges between

method types and base types.

In the iterations that follow, we remove edges between types that are not equal based

on the information known from previous iterations. For example, we can determine that

the method typesm1 andn1 are not equal because the argument type ofm1 is I1 while

the argument type ofn1 is float, and the edge betweenI1 andfloat is removed in the

preceding iteration. Therefore, we remove the edge betweenm1 andn1.

The interesting part is to determine whether the types of two interfaces withn methods

each are not equal based on information from previous iterations. This subproblem is

equivalent to the perfect matching problem of a bipartite graph(V ′,W ′, R′), whereV ′ and

W ′ are the sets of methods in each interface, and there is an edge between two methods iff

the types of the two methods have not been determined unequal in the previous iterations.

If the set of edgesR′ is arbitrary, then the complexity of the perfect matching problem is

O(n5/2) (see [HK73]).
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Figure 2.5. Bipartite graphs after the 2nd, 3rd and 4th iterations

However, the graph(V,W,R) has a coherence property: if a vertex inV can reach a

vertex inW , then there is an edge between these two vertices. Coherence both enables us

to perform each iteration efficiently, and guarantees that the whole algorithm will terminate

within |V |+ |W | iterations.

The resulting bipartite graphs after the second, the third, and the fourth iterations are

given in Figure 2.5. In the third iteration, we examine the edges between interface types

and determine whether we should remove some of the edges. For the types of interfaces

I1 andJ1 to be equal, there must exist a bijection from{m1,m2} to {n1, n2} such that

the pair of methods in the bijection relation are connected in the bipartite graph after the

second iteration. It is clear that the types of interfaceI1 andJ1 are not equal since there is

no edge betweenm1,m2 andn1, n2 at all. Thus, the edge betweenI1 andJ1 is removed.

Similarly, we remove the edge betweenI2 andJ2.

By the same steps, we are able to remove the edge betweenm3 andn1, and the edge

betweenm4 andn2 in the fourth iteration. After that, we cannot remove any more edges

from the graph. Now the algorithm terminates and we can conclude that interfaceI1 is

equal to interfaceJ2. If we compare two types that can be represented with two automata

each of size at mostn, then the above algorithm will spendO(n) time in each iteration and

will terminate withinO(n) iterations, for a total ofO(n2) time.
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The simple example above does not reveal how the coherence property of an edge

set can help speed up an iteration. This is because interfacesI1, I2, J1, J2 only have two

methods each. In the Section 2.5 we present an efficient algorithm for the general case.

2.3 Related Work

Problems of type isomorphism can be divided into three categories: word problems,

matching problems and unification problems. A word problem is to decide the equality of

two types via a theory of isomorphism. The types could be finite or infinite and they may

contain types variables. A matching problem is to decide for given a pair(p, s) of types

(the pattern and the subject), whether there exists a substitutionσ such thatpσ is equal

to s. Similarly, a unification problem is about the existence ofσ such thatpσ andsσ are

equal. Notice that matching is a generalization of the word problem while a special case

of unification. If p ands do not contain type variables, then the matching and unification

problems reduce to word problem.

The axiom systemTCC in Figure 2.6 gives a sound and complete axiomatization of

isomorphism of types in Cartesian Closed categories [Sol83, BCL92]. If we exclude

Rules (DISTRIB→ ×), (UNIT), then the remaining axiom system, denotedTSMC , gives a

sound and complete axiomatization of isomorphism (calledlinear isomorphism) of types

in Symmetric Monoidal Closed categories [Sol93]. Rittri [Rit90, Rit91, Rit93] used both

kinds of isomorphism in his work on using types as search keys. The following table sum-

marizes some decidability results forTCC andTSMC .

Axioms Word problem Matching problem Unification problem

TCC n2 log(n) [Con00] NP-hard, decidable [NPS93]Undecidable [NPS93]

TSMC n log2(n) [AS97] NP [NPS93] NP-complete [NPS93]

One approach to deciding whether two types are isomorphic inTCC is based on reduc-

ing both types to normal forms. Bruce, Di Cosmo and Longo defined a notion of normal

form and proved its properties. The idea is to repeatedly apply the set of reduction rulesR

in Figure 2.7 until it no longer applies. Isomorphism of types in normal form is defined by
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A ` σ × τ = τ × σ (COM×)

A ` σ × (τ × η) = (σ × τ)× η (ASSOC×)

A ` (σ × τ)→ η = σ → (τ → η) (CURRY)

A ` σ → (τ × η) = (σ → τ)× (σ → η) (DISTRIB→ ×)

A ` σ ×T = σ (IDENT×)

A ` σ → T = T (UNIT)

A ` T→ σ = σ (IDENT→)

A ` σ = σ (REF)

A ` σ = η A ` η = τ

A ` σ = τ
(TRANS)

A ` σ = τ

A ` τ = σ
(SYM )

A ` σ1 = τ1 A ` σ2 = τ2
A ` σ1 → σ2 = τ1 → τ2

(CONG→)

A ` σ1 = τ1 A ` σ2 = τ2
A ` σ1 × σ2 = τ1 × τ2

(CONG×)

Figure 2.6.TCC

associativity and commutativity of×. Let nf(τ) be the normal form of typeτ such that

nf(τ) =

 T, or a base type, or a function type, or

τ1 × τ2 × . . .× τn

where theτi’s are in normal form. We can use the abbreviation
∏n
i=1 τi for τ1×τ2× . . .×τn

to emphasize that the order of theτi’s is not important; a product in normal form can

be viewed a bag (multi-set) of factors. We can decide equality of two types in normal

form with a straightforward recursive algorithm which applies a bag-equality algorithm

whenever it encounters a pair of product types. Notice that such an algorithm would not

work for recursive types; it would not terminate.
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R =



σ → (τ → η) ⇒ (σ × τ)→ η

σ → (τ × η) ⇒ (σ → τ)× (σ → η)

T× τ ⇒ τ

τ ×T ⇒ τ

T→ τ ⇒ τ

τ → T ⇒ T

Figure 2.7. Set of rules for reducing non-recursive types into normal forms.

A ` µα.τ = τ [µα.τ/α] (UNFOLD/FOLD)

A, σ = τ, A′ ` σ = τ (HYP)

A ` σ = σ (REF)

A ` σ = η A ` η = τ

A ` σ = τ
(TRANS)

A ` σ = τ

A ` τ = σ
(SYM )

A, σ1 → σ2 = τ1 → τ2 ` σ1 = τ1 A, σ1 → σ2 = τ1 → τ2 ` σ2 = τ2
A ` σ1 → σ2 = τ1 → τ2

(ARROW/FIX )

A, σ1 × σ2 = τ1 × τ2 ` σ1 = τ1 A, σ1 × σ2 = τ1 × τ2 ` σ2 = τ2
A ` σ1 × σ2 = τ1 × τ2

(CROSS/FIX )

Figure 2.8.TR
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Equality and subtyping of recursive types have been studied in the 1990s by Amadio

and Cardelli [AC93]; Kozen, Palsberg, and Schwartzbach [KPS95]; Brandt and Henglein

[BH97]; Jim and Palsberg [JP97]; and others. These papers concentrate on the case where

two types are considered equal if and only if their infinite unfoldings are identical. This

can be formalized using bisimulation [JP97, Par81]. Sound and complete axiomatizations

have been presented by Amadio and Cardelli [AC93], and Brandt and Henglein [BH97].

Related axiomatizations have been presented by Milner [Mil84] and Kozen [Koz94]. This

notion of type equality can be decided inO(nα(n)) time, and a notion of subtyping defined

by Amadio and Cardelli [AC93] can be decided inO(n2) time [KPS95].

The axiomatization by Brandt and Henglein [BH97], here denoted byTR (R for Recur-

sive), is shown in Figure 2.8. Auerbach, Barton, and Raghavachari [ABR98], in a quest

for a foundation of the Mockingbird system, raised the question of whetherTCC ∪ TR is

consistent and decidable. They later discovered that this combined system is inconsistent,

see also [AF96]. Thus, the isomorphism problem of recursive types cannot simply be de-

fined byTCC ∪ TR. Moreover, it seems like reduction byR may not terminate, for some

recursive types.

In the following section we consider a notion of type equality where two types can be

equal even if their infinite unfoldings are different. Intuitively, our notion of type equality

is

TR ∪ { (COM×), (ASSOC×) }.

A related system has been studied by Thatte [Tha96]. We will present several equivalent

definitions of type equality, including one based on the axiomatization of Brandt and Hen-

glein [BH97], and one based on the bisimulation approach of Jim and Palsberg [JP97].

2.4 Basic Definitions

In Section 2.5, we will use the notions of terms and term automata defined in [KPS95].

For the convenience of the reader, this section provides an excerpt of the relevant material

from [KPS95]. Our algorithm relies on that the types to be matched are represented as term

automata.
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2.4.1 Terms

Here we give a general definition of (possibly infinite) terms over an arbitrary and finite

ranked alphabetΣ. Such terms are essentially labeled trees, which we represent as partial

functions labeling strings overω (the natural numbers) with elements ofΣ.

Let Σn denote the set of elements ofΣ of arity n. Let ω denote the set of natural

numbers and letω∗ denote the set of finite-length strings overω.

A termoverΣ is a partial function

t : ω∗ → Σ

with domainD(t) satisfying the following properties:

• D(t) is nonempty and prefix-closed;

• if t(α) ∈ Σn, then{i | αi ∈ D(t)} = {0, 1, . . . , n− 1}.

Let t be a term andα ∈ ω∗. Define the partial functiont↓α : ω∗ → Σ by

t↓α(β) = t(αβ) .

If t↓α has nonempty domain, then it is a term, and is called thesubterm oft at positionα.

A term t is said to beregular if it has only finitely many distinct subterms;i.e., if

{t↓α | α ∈ ω∗} is a finite set.

2.4.2 Term Automata

Every regular term over a finite ranked alphabetΣ has a finite representation in terms

of a special type of automaton called aterm automaton.

Definition 2.4.1. Let Σ be a finite ranked alphabet. Aterm automatonoverΣ is a tuple

M = (Q, Σ, q0, δ, `)

where:

• Q is a finite set ofstates,

• q0 ∈ Q is thestart state,
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• δ : Q× ω → Q is a partial function called thetransition function, and

• ` : Q→ Σ is a (total)labeling function,

such that for any stateq ∈ Q, if `(q) ∈ Σn then

{i | δ(q, i) is defined} = {0, 1, . . . , n− 1} .

We decorateQ, δ, etc. with the superscriptM where necessary. 2

Let M be a term automaton as in Definition 2.4.1. The partial functionδ extends

naturally to a partial function

δ̂ : Q× ω∗ → Q

inductively as follows:

δ̂(q, ε) = q

δ̂(q, αi) = δ(δ̂(q, α), i) .

For anyq ∈ Q, the domain of the partial functionλα.δ̂(q, α) is nonempty (it always

containsε) and prefix-closed. Moreover, because of the condition on the existence ofi-

successors in Definition 2.4.1, the partial function

λα.`(δ̂(q, α))

is a term.

Definition 2.4.2. LetM be a term automaton. The termrepresented byM is the term

tM = λα.`(δ̂(q0, α)) .

A term t is said to berepresentableif t = tM for someM. 2

Intuitively, tM(α) is determined by starting in the start stateq0 and scanning the input

α, following transitions ofM as far as possible. If it is not possible to scan all ofα because

somei-transition along the way does not exist, thentM(α) is undefined. If on the other

handM scans the entire inputα and ends up in stateq, thentM(α) = `(q).
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Lemma 2.4.3.Let t be a term. The following are equivalent:

(i) t is regular;

(ii) t is representable;

(iii) t is described by a finite set of equations involving theµ operator.

2.5 Type Equality

In this section, we define a notion of type equality where the product-type constructor

is associative and commutative, and we present an efficient decision procedure.

In Section 2.5.1 we define our notion of type, and in Sections 2.5.2 and 2.5.3 we give

some preliminaries about bipartite graphs and fixed points needed later. In Section 2.5.4 we

present our notion of type equality, in Section 2.5.5 we show a convenient characterization

of type equality, and in Section 2.5.6 we present an efficient decision procedure.

2.5.1 Recursive Types

A type is a regular term over the ranked alphabet

Σ = Γ ∪ {→} ∪ {
n∏
, n ≥ 2},

whereΓ is a set of base types,→ is binary, and
∏n is of arity n. With the notation of

Appendix 2.4, the root symbol of a typet is writtent(ε).

We impose the restriction that given a typeσ and a pathα, if σ(α) =
∏n, thenσ(αi) ∈

Γ
⋃ {→}, for all i ∈ {1..n}. The set of types is denotedT . Given a typeσ, if σ(ε) =→,

σ(0) = σ1, andσ(1) = σ2, then we write the type asσ1 → σ2. If σ(ε) =
∏n and

σ(i) = σi+1 ∀i ∈ {0, 1, . . . , n− 1}, then we write the typeσ as
∏n
i=1 σi.

Intuitively, our restriction means that products cannot be immediately nested, that is,

one cannot form a product one of whose immediate components is again a product. We

impose this restriction for two reasons:

i) it effectively rules out infinite products such asµα.(int× α), and

ii) it ensures that types are in a “normal form” with respect to associativity, that is,

the issue of associativity is reduced to a matter of the order of the components in a∏n
i=1 σi type.
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Currently, we are unable to extend our algorithm to handle infinite products. Types without

infinite products can easily be “flattened” to conform to our restriction.

For Java interfaces, our restriction has no impact. We model interfaces using one kind

of product-type constructor, we model argument-type lists usinganotherkind of product-

type constructor, and we model method types using the function-type constructor. The

syntax of Java interfaces ensures that a straightforward translation of a Java interface to our

representation of types will automatically satisfy our restriction.

2.5.2 Bipartite Graphs

A bipartite graph(V,W,R) is given by two setsV,W of vertices, and a setR ⊆ V ×W

of undirected edges.

For our application, we will only be interested in bipartite graphs where the edge sets

arecoherent. A relationR is coherent iff

if (a, c), (b, c), (b, d) ∈ R, then(a, d) ∈ R.

It can be illustrated by the following picture,

a

b

c

d��������p p p p p p p p p p p p p p p p p p p p
where the edges(a, c), (b, c), and(b, d) imply the existence of the edge(a, d).

Lemma 2.5.1.SupposeG = (V,W,R) is a bipartite graph whereR is coherent. Ifa ∈ V

can reachd ∈ W , then(a, d) ∈ R.

Proof. Supposea ∈ V can reachd ∈ W in k steps. Since all the edges are betweenV

andW , each step will move from one set to the other. Therefore,k must be an odd number

and letk = 2 ∗ n+ 1, n ≥ 0.

We proceed by induction onn.

(n = 0) We have thata can reachd in one step, so(a, d) ∈ R.

Suppose the Lemma holds forn = m > 0
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(n = m+1) We have thata can reachd in 2∗m+3 steps. Letc andb be the(2∗m+1)th

and(2 ∗ m + 2)th nodesa reaches along the path tod, then(b, c), (b, d) ∈ R. By

the induction hypothesis,(a, c) ∈ R. Consequently,(a, d) ∈ R by the coherence

property ofR.

2

Definition 2.5.2. Suppose
∏n
i=1 σi,

∏n
i=1 τi are two types andR is a relation on types.

The matching functionmatch(
∏n
i=1 σi,

∏n
i=1 τi, R) is true iff there exists a bijectiont :

{1..n} → {1..n} such that∀i, (σi, τt(i)) ∈ R. 2

Lemma 2.5.1 enables a simple algorithm formatch(
∏n
i=1 σi,

∏n
i=1 τi, R) whereR is

coherent and finite. LetV,W be two finite sets such thatσi ∈ V , for all i ∈ {1..n},

τi ∈ W , for all i ∈ {1..n}, andR ⊆ V × W . Let N = |V | + |W |. The bipartite

graph(V,W,R) has at mostN connected components,B1, B2, . . ., and we label them with

numbers starting at 1. Thus, all the numbers are in the set{1..N}.

Define a functionI : (V ∪W )→ {1..N}, whereI(σ) = i iff σ ∈ Bi. Two typesσ and

τ are in the same connected component iffσ can reachτ in (V,W,R). Thus, by Lemma

2.5.1, we have(σ, τ) ∈ R iff I(σ) = I(τ).

Let [.] denotes a multi-set of elements.

Lemma 2.5.3.match(
∏n
i=1 σi,

∏n
i=1 τi, R) is true iff

[I(σ1), I(σ2), .., I(σn)] = [I(τ1), I(τ2), .., I(τn)].

Proof. If [I(σ1), I(σ2), .., I(σn)] = [I(τ1), I(τ2), .., I(τn)], then there exists bijectiont :

{1..n} → {1..n}, such that∀i, I(σi) = I(τt(i)). By the definition ofI, vertexσi can reach

vertexτt(i); thus, by Lemma 2.5.1,(σi, τt(i)) ∈ R,∀i. Therefore,match(
∏n
i=1 σi,

∏n
i=1 τi, R)

is true.

Supposematch(
∏n
i=1 σi,

∏n
i=1 τi, R) is true. There exists bijectiont such that(σi, τt(i)) ∈

R,∀i. Thus,I(σi) = I(τt(i)) sinceσi andτt(i) are connected. Since[I(τ1), I(τ2), .., I(τn)] =

[I(τt(1)), I(τt(2)), .., I(τt(n))], we have[I(σ1), I(σ2), .., I(σn)] = [I(τ1), I(τ2), .., I(τn)]. 2



36

2.5.3 Monotone Functions and Fixed Points

We now recall the notion of a greatest fixed point of a monotone function, and we prove

three basic results about greatest fixed points that will be needed in Section 2.5.5.

LetP denote the unary operator which maps a set to its power-set. Consider the lattice

(P(Z),⊆) and a function

F : P(Z)→ P(Z).

We say thatF is monotone iff ifz1 ⊆ z2, thenF (z1) ⊆ F (z2). If F is monotone, then

Tarski’s fixed point theorem [Tar55] gives thatF has a greatest fixed pointνF given by:

νF =
⋃
{ X | X ⊆ F (X) }.

SupposeF is monotone, andZ ⊆ Z. In Section 2.5.5, we will be particularly interested in

a case whereZ is finite andZ is infinite. Define

H ∈ P(Z)→ P(Z)

H(X) = F (X) ∩ Z.

Lemma 2.5.4.νH ⊆ νF ∩ Z.

Proof.

νH =
⋃
{ X | X ⊆ H(X) }

=
⋃
{ X | X ⊆ F (X) ∩ Z }

= (
⋃
{ X | X ⊆ F (X) ∩ Z }) ∩ Z

⊆ (
⋃
{ X | X ⊆ F (X) }) ∩ Z

= νF ∩ Z.

2

The converse of Lemma 2.5.4 may be false. For example, consider

Z = {1, 2}
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Z = {1}

F ({1, 2}) = {1, 2}

F ({1}) = F ({2}) = F (∅) = ∅.

We have thatF is monotone,νF = {1, 2}, andνH = ∅. We conclude thatνF ∩ Z =

{1, 2} ∩ {1} = {1} 6⊆ ∅ = νH.

We now give a sufficient condition under which the converse of Lemma 2.5.4 is true.

Lemma 2.5.5. Suppose that ifX ⊆ F (X), thenF (X) ∩ Z ⊆ F (X ∩ Z). We have

νF ∩ Z ⊆ νH.

Proof. FromX ⊆ F (X) we have

X ∩ Z ⊆ F (X) ∩ Z ⊆ F (X ∩ Z).

Now we can calculate as follows:

νF ∩ Z =
⋃
{ X | X ⊆ F (X) } ∩ Z

=
⋃
{ Y | ∃X : (Y = X ∩ Z) ∧ (X ⊆ F (X)) }

⊆
⋃
{ Y | ∃X : (Y = X ∩ Z) ∧ (X ∩ Z ⊆ F (X ∩ Z)) }

=
⋃
{ Y | ∃X : (Y = X ∩ Z) ∧ (Y ⊆ F (Y )) }

=
⋃
{ Y | (Y ⊆ Z) ∧ (Y ⊆ F (Y )) }

=
⋃
{ Y | Y ⊆ F (Y ) ∩ Z }

=
⋃
{ Y | Y ⊆ H(Y ) }

= νH.

2

If S is finite, then a well-known characterization ofνF is given by:

νF =
∞⋂
i=0

F i(S).
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Lemma 2.5.6. If H is a monotone function from(P(V ×W ),⊆) to itself, whereV,W are

finite andN = |V | + |W |, and if for all non-negative integersi, H i(V ×W ) is coherent,

thenνH = HN(V ×W ).

Proof. LetX = (V ×W ). SinceH is monotone,H i+1(X) ⊆ H i(X) ∀i ≥ 0.

If H i+1(X) = H i(X), thenH i(X) is a fixed point ofH andHj(X) = H i(X), ∀ j > i.

Otherwise, ifH i+1(X) ⊂ H i(X), thenH i+1(X) ⊂ . . . ⊂ H1(X) ⊂ X.

SupposeH i+1(X) ⊂ H i(X) and(v, w) ∈ (H i(X) ∩ ¬H i+1(X)). We construct the

bipartite graphGi = (V,W,H i(X)). Each connected component ofGi corresponds to one

or more connected component inGi+1, because any set of vertices that are connected in

Gi+1 are connected inGi as well.

Since(v, w) ∈ H i(X), v, w are in the same connected component ofGi. From(v, w) ∈

¬H i+1(X) and Lemma 2.5.1,v cannot reachw in Gi+1. Therefore,v andw are in sepa-

rate connected components ofGi+1. Consequently,Gi+1 has at least one more connected

component thanGi.

Consider{H i(X)}ki=0 such thatHk(X) ⊂ ... ⊂ H1(X) ⊂ X. Then the bipartite

graphGk has at leastk connected components. However,Gk can have at mostN connected

components, which is the case when there is no edge in the graph and each vertex forms a

connected component. Thus,k ≤ N andHN(X) = HN+1(X).

We conclude thatνH =
⋂∞
i=0H

i(X) =
⋂N
i=0H

i(X) = HN(X). 2

2.5.4 Type Equality

We now give three equivalent definitions of type equality. They will be denotedEQ,R, νF .

The first definition is based on the rule setTRAC (R for Recursive,A for Associative,

andC for Commutative) in Figure 2.9. The rule(
∏

/FIX) entails that the product-type

constructor is associative and commutative. Define

EQ = { (σ, τ) | ∅ ` σ = τ }.

The second definition of type equality is based on the idea of bisimilarity. A relationR on

types is called abisimulationif it satisfies the following three conditions:
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A, σ = τ, A′ ` σ = τ (HYP)

A ` σ = σ (REF)

A, σ1 → σ2 = τ1 → τ2 ` σ1 = τ1 A, σ1 → σ2 = τ1 → τ2 ` σ2 = τ2
A ` σ1 → σ2 = τ1 → τ2

(→/FIX )

A,
∏n
i=1 σi =

∏n
i=1 τi ` σi = τt(i), i ∈ {1..n}

A ` ∏n
i=1 σi =

∏n
i=1 τi

(
∏

/FIX )

wheret : {1..n} → {1..n} is a bijection

Figure 2.9.TRAC .

(C) If (σ, τ) ∈ R, thenσ(ε) = τ(ε).

(P1) If (σ1 → σ2, τ1 → τ2) ∈ R, then(σ1, τ1) ∈ R and(σ2, τ2) ∈ R.

(P2) If (
∏n
i=1 σi,

∏n
i=1 τi) ∈ R, thenmatch(

∏n
i=1 σi,

∏n
i=1 τi, R) is true.

A relationR is said to beconsistentif it satisfies propertyC, and it is said to beclosedif

it satisfiesP1, P2. Bisimulations are closed under union, therefore, there exists a largest

bisimulation

R =
⋃
{ R | R is a bisimulation}.

The third definition of type equality is based on the notion of greatest fixed points. Define

F ∈ P(T × T )→ P(T × T )

F = λR.{ (σ, τ) | σ, τ are base types andσ(ε) = τ(ε) }

∪ { (σ1 → σ2, τ1 → τ2) | (σ1, τ1), (σ2, τ2) ∈ R }

∪ { (Πn
i=1σi,Π

n
i=1τi) | match(Πn

i=1σi,Π
n
i=1τi, R) }

Notice thatF is monotone so it has a greatest fixed pointνF .
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Lemma 2.5.7.R is a bisimulation iffR ⊆ F (R).

Proof. Suppose first thatR is a bisimulation. For every type pair(σ, τ) ∈ R, if σ, τ

are base types, thenσ(ε) = τ(ε), so(σ, τ) ∈ F (R). If σ = σ1 → σ2, τ = τ1 → τ2, then

(σ1, τ1), (σ2, τ2) ∈ R, so(σ, τ) ∈ F (R). Similarly forσ =
∏n
i=1 σi, τ =

∏n
i=1 τi.

Conversely, suppose thatR ⊆ F (R). It is straightforward to prove thatR is a bisimu-

lation; we omit the details. 2

Theorem 2.5.8.EQ = R = νF .

Proof. For a proof ofEQ = R, see Appendix A.1. From Lemma 2.5.7 we have

R =
⋃
{ R | R is a bisimulation}

=
⋃
{ R | R ⊆ F (R) } = νF.

2

We may apply the principle ofco-inductionto prove that two types are related inR. That

is, to show(σ, τ) ∈ R, it is sufficient to find a bisimulationR such that(σ, τ) ∈ R.

Theorem 2.5.9.R is a congruence relation.

Proof. By co-induction, see appendix A.2. 2

Theorem 2.5.9 implies thatR is an equivalence relation. Two typesτ1 andτ2 are said to be

equivalent(denoted byτ1 ∼= τ2) iff (τ1, τ2) ∈ R.

2.5.5 A Characterization of Type Equality

In this section we prove that type equality can be decided by an iterative method (The-

orem 2.5.15). To prove this result, we need five lemmas which establish that coherence is

preserved by one step of iteration (Lemmas 2.5.10, 2.5.11, 2.5.12), and that it is sufficient

to concentrate on the types that are subtrees of the input types (Lemmas 2.5.13, 2.5.14).
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Lemma 2.5.10.If R ⊆ (T × T ) is coherent, thenF (R) is coherent.

Proof. First, notice that if(σ, τ) ∈ F (R), thenσ(ε) = τ(ε) by the definition ofF .

Suppose(a, c), (b, c), (b, d) ∈ F (R), we want to show that(a, d) ∈ F (R). There are

three cases.

i) a..d are base types. We havea(ε) = c(ε) = b(ε) = d(ε), so(a, d) ∈ F (R).

ii) a..d are→ types. Supposea = a1 → a2, b = b1 → b2, c = c1 → c2, and

d = d1 → d2.We have(ai, ci), (bi, ci) and(bi, di) ∈ R, i = 1, 2. SinceR is coherent,

(ai, di) ∈ R, i = 1, 2, which means(a, d) ∈ F (R).

iii) a..d are product types. Supposea =
∏n
i=1 ai, b =

∏n
i=1 bi, c =

∏n
i=1 ci, and

d =
∏n
i=1 di. We have(a, c) ∈ R andmatch(

∏n
i=1 ai,

∏n
i=1 ci, R) is true. The same

applies to(b, c) and(b, d). Therefore,∃ bijectionss, t, u from {1..n} to {1..n} such

that (ai, cs(i)), (bi, ct(i)), (bi, du(i)) ∈ R,∀i. Let bijectionv = u ◦ t−1 ◦ s, we have

(ai, dv(i)) ∈ R ∀i, sinceR is coherent. Thus,match(
∏n
i=1 ai,

∏n
i=1 di, R) is true. and

(a, d) ∈ F (R).

2

Forσ ∈ T , define

Vσ = { τ | τ is a subterm ofσ }.

Givenσ, τ , define

H ∈ P(Vσ × Vτ )→ P(Vσ × Vτ )

H = λR.(F (R) ∩ (Vσ × Vτ )).

Lemma 2.5.11.If R ⊆ (Vσ × Vτ ) is coherent, thenH(R) is coherent.

Proof. By the definition ofH, we haveH(R) = F (R) ∩ (Vσ × Vτ ).

SinceR ⊆ (Vσ × Vτ ) ⊂ (T × T ), by Lemma 2.5.10,F (R) is coherent. Thus, if

(a, c), (b, c), (b, d) ∈ F (R) ∩ (Vσ × Vτ ), then(a, d) ∈ F (R) and (a, d) ∈ (Vσ × Vτ )

becausea ∈ Vσ andd ∈ Vτ . Therefore,(a, d) ∈ F (R) ∩ (Vσ×Vτ ), andH(R) is coherent.

2
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Lemma 2.5.12.For all n,Hn(Vσ × Vτ ) is coherent.

Proof. We proceed by induction onn.

Forn = 0, we haveH0(Vσ × Vτ ) = (Vσ × Vτ ). If (a, c), (b, c), (b, d) ∈ (Vσ × Vτ ), then

(a, d) ∈ (Vσ × Vτ ) sincea ∈ Vσ andd ∈ Vτ .

SupposeHn(Vσ × Vτ ) is coherent. SinceHn(Vσ × Vτ ) ⊆ (Vσ × Vτ ), we know that

H( Hn(Vσ × Vτ ) ) is coherent, by Lemma 2.5.11. 2

Lemma 2.5.13.F (R) ∩ (Vσ × Vτ ) ⊆ F (R ∩ (Vσ × Vτ )).

Proof. LetZ = (Vσ × Vτ ).

F (R) ∩ Z

= { (σ′, τ ′) ∈ Z | σ′, τ ′ are base types andσ′(ε) = τ ′(ε) }

∪ { (σ1 → σ2, τ1 → τ2) ∈ Z | (σ1, τ1), (σ2, τ2) ∈ R }

∪ { (Πn
i=1σi,Π

n
i=1τi) ∈ Z | match(Πn

i=1σi, Πn
i=1τi, R) }

= { (σ′, τ ′) ∈ Z | σ′, τ ′ are base types andσ′(ε) = τ ′(ε) }

∪ { (σ1 → σ2, τ1 → τ2) ∈ Z | (σ1, τ1), (σ2, τ2) ∈ R ∩ Z) }

∪ { (Πn
i=1σi,Π

n
i=1τi) ∈ Z | match(Πn

i=1σi, Πn
i=1τi, R ∩ Z) }

⊆ { (σ′, τ ′) | σ′, τ ′ are base types andσ′(ε) = τ ′(ε) }

∪ { (σ1 → σ2, τ1 → τ2) | (σ1, τ1), (σ2, τ2) ∈ R ∩ Z) }

∪ { (Πn
i=1σi,Π

n
i=1τi) | match(Πn

i=1σi, Πn
i=1τi, R ∩ Z) }

= F (R ∩ Z);

2

Lemma 2.5.14.νH = νF ∩ (Vσ × Vτ ).

Proof. By Lemma 2.5.4, we haveνH ⊆ νF ∩ (Vσ × Vτ ). By Lemma 2.5.13,F (R) ∩

(Vσ × Vτ ) ⊆ F (R ∩ (Vσ × Vτ )). Therefore, by Lemma 2.5.5, we also haveνH ⊇ νF ∩

(Vσ × Vτ ).

2
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Theorem 2.5.15.(σ, τ) ∈ R iff (σ, τ) ∈ HN(Vσ × Vτ ), whereN = |Vσ|+ |Vτ |.

Proof. From (σ, τ) ∈ (Vσ × Vτ ) we have that(σ, τ) ∈ R iff (σ, τ) ∈ R ∩ (Vσ × Vτ ).

Moreover, from Theorem 2.5.8 and Lemma 2.5.14 we have

R∩ (Vσ × Vτ ) = νF ∩ (Vσ × Vτ ) = νH.

Finally, Lemma 2.5.12 shows thatH i(Vσ×Vτ ) is coherent for alli, so by Lemma 2.5.6,

νH = HN(Vσ × Vτ ). 2

2.5.6 Algorithm and Complexity

We can use Theorem 2.5.15 to give an algorithm for deciding type equality. Given a

type pair(σ, τ), we can decide(σ, τ) ∈ R by deciding(σ, τ) ∈ HN(Vσ × Vτ ), where

N = |Vσ| + |Vτ |. To do this, we need to applyH at mostN times. In each round,

according to Lemma 2.5.12,H will be applied to a coherent relationR, whereH(R) is

also coherent. Thus, we only need to represent coherent relations. We will now present

such a representation scheme, and we will show that given a representation ofR, we can

efficiently compute a representation ofH(R).

Given a coherent relationR, we representR by a function

I : (Vσ ∪ Vτ )→ {1..N},

where(σ′, τ ′) ∈ R iff I(σ′) = I(τ ′). The existence of such a representation was established

in Section 2.5.2. The abstraction functionabs maps a functionI to the relation represented

by I:

abs(I) = { (σ′, τ ′) ∈ (Vσ × Vτ ) | I(σ′) = I(τ ′) }.

SinceI representsR, we want to defineH(I) as a representation ofH(R). The function

H has the following properties:

H(I)(σ′) = H(I)(τ ′)

⇔ σ′(ε) = τ ′(ε)

H(I)(σ1 → σ2) = H(I)(τ1 → τ2)
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⇔ I(σ1) = I(τ1) ∧ I(σ2) = I(τ2)

H(I)(Πn
i=1σi) = H(I)(Πn

i=1τ)

⇔ [I(σ1), . . . , I(σn)] = [I(τ1), . . . , I(τn)],

whereσ′, τ ′ are base types.

Any such functionH satisfies the following lemma 2.5.16, which states that we can

compute a representation of the result of applyingH to the relation represented byI, by

computingH(I).

Lemma 2.5.16.H(abs(I)) = abs(H(I)).

Proof. Suppose(σ′, τ ′) ∈ H(abs(I)). We haveσ′(ε) = τ ′(ε) by definition ofH andF .

There are three cases.

i) σ′, τ ′ are base types. SinceH(I)(σ′) = H(I)(τ ′) ⇔ σ′(ε) = τ ′(ε), we have

(σ′, τ ′) ∈ abs(H(I)).

ii) σ′, τ ′ are→ types. Suppose thatσ′ = σ1 → σ2 and τ ′ = τ1 → τ2. We have

(σ1, τ1), (σ2, τ2) ∈ abs(I). By the definition ofabs(I), I(σ1) = I(τ1) andI(σ2) =

I(τ2). Hence,H(I)(σ1 → σ2) = H(I)(τ1 → τ2) and(σ′, τ ′) ∈ abs(H(I)).

iii) σ′, τ ′ are product types. Suppose thatσ′ =
∏n
i=1 σi and τ ′ =

∏n
i=1 τi. We have

match(σ′, τ ′, abs(I)) true. By Lemma 2.5.3 and the definition ofabs(I), we have

[I(σ1), . . . , I(σn)] = [I(τ1), . . . , I(τn)]. Therefore,H(I)(Πn
i=1σi) = H(I)(Πn

i=1τ),

and(σ′, τ ′) ∈ abs(H(I)).

Conversely, if(σ′, τ ′) ∈ abs(H(I)), we haveH(I)(σ′) = H(I)(τ ′). It is straightfor-

ward to show that(σ′, τ ′) ∈ H(abs(I)) by a case analysis as above. We omit the details.

2

Here is a particular definition of anH which satisfies the three properties. GivenI, we

defineH(I) in three steps:
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i) Definev on (Vσ ∪ Vτ ) to be the smallest preorder which includes the following

definitions. First,

Γ v σ1 → σ2 v
n∏
i=1

τi

for all base typesΓ, all function typesσ1 → σ2, and all product types
∏n
i=1 τi. Next,

we choose some arbitrary linear ordering of the base types. Finally, we useI to

further sort the function types, and to further sort the product types. The idea of

the further sorting is to define a lexicographical order based onI. Given a string of

k numbersm1 . . .mk, the notationsort(m1 . . .mk) denotes a string of the samek

numbers but now in increasing order.

σ1 → σ2 v τ1 → τ2 iff I(σ1)I(σ2) is lexicographically less thanI(τ1)I(τ2)

∏n
i=1 σi v

∏n
i=1 τi iff sort(I(σ1) . . . I(σn)) is lexicographically less than

sort(I(τ1) . . . I(τn)).

ii) Notice thatv can be viewed as a directed graph. Number the strongly connected

components ofv in ascending order.

iii) DefineH(I)(σ) to be the number of the strongly connected component to whichσ

belongs.

It is straightforward to show that the resultingH(I) satisfies the three properties listed

earlier.

Let us now restate the definition ofH(I) in a more algorithmic style. The main task is

to sort the elements ofVσ ∪ Vτ byv. This is done in two steps:

i) generate a string of numbers for each element ofVσ ∪ Vτ :

• for each base type, generate a one-character string;

• for each function typeσ1 → σ2, generateI(σ1)I(σ2); and

• for each product type
∏n
i=1 σi, generatesort(I(σ1) . . . I(σn)), and
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ii) sort the generated strings by lexicographical order.

We will now consider the complexity of computingH(I).

Let σ be represented by the term automaton

Mσ = (Vσ, Σ, q0, δ, `).

Notice that we can construct a directed graph(Vσ, Eσ), where(q, q′) ∈ Eσ iff δ(q, i) = q′,

for somei ∈ {0, 1, .., n − 1} and`(q) ∈ Σn. Similarly, for typeτ , we can construct a

directed graph(Vτ , Eτ ). LetM = |Eσ|+ |Eτ |.

We now show that we can computeH(I) in O(M) time.

The size ofI andH(I) isN . For each product type
∏nk
i=1 σi ∈ (Vσ ∪ Vτ ), we compute

sort[I(σ1), I(σ2), .., I(σnk
)] in O(nk) time using COUNTING SORT [CLR90].

In graph(Vσ, Eσ), the vertex
∏nk
i=1 σi hasnk outgoing edges. Suppose there areK such

vertices in the graph, thenΣK
k=1nk ≤ |Eσ|. Similarly, for the product types

∏mk
i=1 τi in graph

(Vτ , Eτ ), we haveΣK′
k=1mk ≤ |Eτ |, whereK ′ is the total number of product types inVτ .

SinceM = |Eσ| + |Eτ |, the total amount of time for computingsort(.) for all product

types isO(M).

To order all the→ types and products types, we need to lexicographically order strings

of numbers. Using RADIX SORT [CLR90], the ordering of all strings can be computed

in time linear in the total size of the strings. The size of the string corresponding to type∏nk
i=1 σi ∈ Vσ is nk, which is equal to the number of outgoing edges of

∏nk
i=1 σi in (Vσ, Eσ).

The size of the string corresponding toσ1 → σ2 ∈ Vσ is 2, which is equal to the number of

outgoing edges ofσ1 → σ2 in (Vσ, Eσ). Therefore, the total size of strings corresponding

to→ types and product types inVσ is equal to|Eσ|. Similarly, the total size of strings cor-

responding to→ types and product types inVτ is equal to|Eτ |. Thus, the lexicographical

ordering of all strings costsO(M) time.

In conclusion, our decision procedure for membership inR is given byO(N) iterations

each of which takesO(M) time. Thus, we have shown the following result.

Theorem 2.5.17.Type equality as defined byR can be decided inO(N ×M) time.
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2.6 Equality of Intersection and Union Types

Palsberg and Pavlopoulou [PP98] defined a type system with intersection and union

types, together with a notion of type equality. An intersection type is written∧ni=1σi, and

a union type is written∨ni=1σi. Their notion of equality of intersection types is the same

as our notion of equality of product types. Their notion of equality of union types has the

distinguishing features thatσ ∨ σ = σ, and that there is a special base type⊥ such that

σ ∨ ⊥ = ⊥ ∨ σ = σ.

The goal of this section is to demonstrate that our framework is sufficiently robust to

handle union types with only minor changes to the algorithm and correctness proof. We

will present the definitions and theorems in the same order as in Section 2.5. We do not

show the proofs; they are similar to the ones in Section 2.5.

Palsberg and Pavlopoulou [PP98] define a set of types, where, intuitively, each type is

of one of the forms:

n∨
i=1

∧ ni
k=1(σik → σ′ik)

(
n∨
i=1

∧ ni
k=1(σik → σ′ik)) ∨ int .

In the case where the unions are empty, the first form can be simplified to⊥, and the second

form can be simplified toint .

A type is a regular term over the ranked alphabet

Σ = {int ,⊥,→} ∪ {∧n, n ≥ 2} ∪ {∨n, n ≥ 2},

whereint ,⊥ are nullary,→ is binary, and∨n,∧n aren-ary operators.

Palsberg and Pavlopoulou [PP98] impose the restrictions that given a typeσ and a path

α, if σ(α) = ∨n, thenσ(αi) ∈ {int ,⊥,→} ∪ {∧n, n ≥ 2}, for all i ∈ {1..n}, and

if σ(α) = ∧n, thenσ(αi) =→, for all i ∈ {1..n}. Intuitively, the restrictions mean that

neither union types nor intersection types can be immediately nested, that is, one cannot

form a union type one of whose immediate components is again a union type, and similarly

for intersection types. Moreover, a union type cannot be an immediate component of an

intersection type. The set of types is denotedT̂ .
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Given a typeσ, if σ(ε) =→, σ(1) = σ1, andσ(2) = σ2, then we write the type as

σ1 → σ2. If σ(ε) = ∧n andσ(i) = σi ∀i ∈ {1, 2, . . . , n}, then we write the typeσ as

∧ni=1σi. If σ(ε) = ∨n andσ(i) = σi ∀i ∈ {1, 2, . . . , n}, then we write the typeσ as∨ni=1σi.

If σ(ε) = ⊥, then we write the type as⊥. If σ(ε) = int , then we write the type asint .

Definition 2.6.1. The functionmatch(∧ni=1σi,∧nj=1τj, R) is true iff there exists a bijection

t : {1..n} → {1..n} such that for alli ∈ {1..n} : (σi, τt(i)) ∈ R. 2

Palsberg and Pavlopoulou [PP98] define type equality as follows. A relationR is called

abisimulationif it satisfies the following six conditions:

i) If (∨ni=1σi,∨mj=1τj) ∈ R, then

• for all i ∈ {1..n}, whereσi(ε) 6= ⊥: there existsj ∈ {1..m} : (σi, τj) ∈ R, and

• for all j ∈ {1..m}, whereτj(ε) 6= ⊥, there existsi ∈ {1..n} : (σi, τj) ∈ R.

ii) If τ(ε) ∈ {int ,⊥,→} ∪ {∧m,m ≥ 2}, and(∨ni=1σi, τ) ∈ R, then,

• for all i ∈ {1..n}, whereσi(ε) 6= ⊥: (σi, τ) ∈ R, and

• if τ(ε) 6= ⊥, then there existsi ∈ {1..n} : (σi, τ) ∈ R.

iii) If τ(ε) ∈ {int ,⊥,→} ∪ {∧m,m ≥ 2}, and(τ,∨ni=1σi) ∈ R, then,

• for all i ∈ {1..n}, whereσi(ε) 6= ⊥: (τ, σi) ∈ R, and

• if τ(ε) 6= ⊥, then there existsi ∈ {1..n} : (τ, σi) ∈ R.

iv) If (∧ni=1σi,∧nj=1τj) ∈ R, thenmatch(∧ni=1σi,∧nj=1τj, R).

v) If (σ1 → σ2, τ1 → τ2) ∈ R, then(σ1, τ1) ∈ R and(σ2, τ2) ∈ R.

vi) If (σ, τ) ∈ R, then either

σ(ε) = τ(ε) ∈ {int ,⊥,→} ∪ {∧n, n ≥ 2}, or

σ(ε) ∈ {∨n, n ≥ 2}, or

τ(ε) ∈ {∨n, n ≥ 2}.
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Bisimulations are closed under union, therefore, there exists a largest bisimulation

E =
⋃
{ R | R is a bisimulation}.

The setE is Palsberg and Pavlopoulou’s notion of type equality. It is straightforward to

show, by co-induction, that

σ ∨ ⊥ = ⊥ ∨ σ = σ ∨ σ = σ.

We now reformulate the above definition of bisimulation to make it better fit the framework

of Section 2.5.

Definition 2.6.2. Defineσ 'R τ iff

• σ(ε) = τ(ε) ∈ {int ,⊥,→} ∪ {∧m,m ≥ 2},

• if σ = σ1 → σ2 andτ = τ1 → τ2, then(σ1, τ1) ∈ R and(σ2, τ2) ∈ R, and

• if σ = ∧ni=1σi andτ = ∧ni=1τi, thenmatch(∧ni=1σi,∧nj=1τj, R).

The function ̂match(σ, τ, R) is true iff

i) if σ = ∨ni=1σi andτ = ∨mj=1τj, then

• for all i ∈ {1..n}, whereσi(ε) 6= ⊥: there existsj ∈ {1..m} : σi 'R τj, and

• for all j ∈ {1..m}, whereτj(ε) 6= ⊥, there existsi ∈ {1..n} : σi 'R τj.

ii) if σ = ∨ni=1σi, andτ(ε) ∈ {int ,⊥,→} ∪ {∧m,m ≥ 2}, then,

• for all i ∈ {1..n}, whereσi(ε) 6= ⊥: σi 'R τ , and

• if τ(ε) 6= ⊥, then there existsi ∈ {1..n} : σi 'R τ .

iii) if τ = ∨ni=1τi, andσ(ε) ∈ {int ,⊥,→} ∪ {∧m,m ≥ 2}, then,

• for all i ∈ {1..n}, whereτi(ε) 6= ⊥: σ 'R τi, and

• if σ(ε) 6= ⊥, then there existsi ∈ {1..n} : σ 'R τi.
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2

Lemma 2.6.3. If R is a bisimulation andσ(ε), τ(ε) 6= ∨n, wheren ≥ 2, then(σ, τ) ∈ R

iff σ 'R τ .

The following is an equivalent definition of bisimulation. A relationR is called a bisim-

ulation if it satisfies the following four conditions:

i) If (σ, τ) ∈ R, then ̂match(σ, τ, R).

ii) If (∧ni=1σi,∧nj=1τj) ∈ R, thenmatch(∧ni=1σi,∧mj=1τj, R).

iii) If (σ1 → σ2, τ1 → τ2) ∈ R, then(σ1, τ1) ∈ R and(σ2, τ2) ∈ R.

iv) If (σ, τ) ∈ R, then either

σ(ε) = τ(ε) ∈ {int ,⊥,→} ∪ {∧n, n ≥ 2}, or

σ(ε) ∈ {∨n, n ≥ 2}, or

τ(ε) ∈ {∨n, n ≥ 2}.

Define

F̂ ∈ P(T̂ × T̂ )→ P(T̂ × T̂ )

F̂ = λR.{ (σ, τ) | σ, τ are base types andσ(ε) = τ(ε) }

∪ { (σ1 → σ2, τ1 → τ2) | (σ1, τ1), (σ2, τ2) ∈ R }

∪ { (∧ni=1σi,∧ni=1τi) | match(∧ni=1σi,∧ni=1τi, R) }

∪ { (σ, τ) | ̂match(σ, τ, R) }

Notice thatF̂ is monotone so it has a greatest fixed pointνF̂ .

Theorem 2.6.4.E = νF̂ .

Theorem 2.6.5.E is a congruence relation.
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Givenσ, τ , define

Ĥ ∈ P(Vσ × Vτ )→ P(Vσ × Vτ )

Ĥ = λR.(F̂ (R) ∩ (Vσ × Vτ )).

Theorem 2.6.6.(σ, τ) ∈ E iff (σ, τ) ∈ ĤN(Vσ × Vτ ), whereN = |Vσ|+ |Vτ |.

Given a coherent relationR, we representR by a function

I : (Vσ ∪ Vτ )→ {1..N},

where(σ′, τ ′) ∈ R iff I(σ′) = I(τ ′).

The abstraction functionabs maps a functionI to the relation represented byI:

abs(I) = { (σ′, τ ′) ∈ (Vσ × Vτ ) | I(σ′) = I(τ ′) }.

If I representsR, then we want to definêH(I) as a representation of̂H(R). The function

Ĥ should have the following properties:

Ĥ(I)(σ′) = Ĥ(I)(τ ′)

⇔ σ′(ε) = τ ′(ε)

Ĥ(I)(σ1 → σ2) = Ĥ(I)(τ1 → τ2)

⇔ I(σ1) = I(τ1) ∧ I(σ2) = I(τ2)

Ĥ(I)(∧ni=1σi) = Ĥ(I)(∧ni=1τi)

⇔ [I(σ1), . . . , I(σn)] = [I(τ1), . . . , I(τn)]

Ĥ(I)(∨mi=1σi) = Ĥ(I)(∨ni=1τi)

⇔ {Ĥ(I)(σ1), . . . , Ĥ(I)(σm)} \ {Ĥ(I)(⊥)} =

{Ĥ(I)(τ1), . . . , Ĥ(I)(τn)} \ {Ĥ(I)(⊥)}.

Ĥ(I)(∨mi=1σi) = Ĥ(I)(τ)

⇔ {Ĥ(I)(σ1), . . . , Ĥ(I)(σm)} \ {Ĥ(I)(⊥)} =

{Ĥ(I)(τ)} \ {Ĥ(I)(⊥)}.

whereσ′, τ ′ are base types, andτ(ε) ∈ {int ,⊥,→} ∪ {∧m,m ≥ 2}.

Any such functionĤ satisfies the following lemma.
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Lemma 2.6.7.Ĥ(abs(I)) = abs(Ĥ(I)).

We can define the function̂Hmuch the same way asH except for the union types. Once

Ĥ is defined for base types,→ types, and intersection types, we can defineĤ for union

types the following way. We first compute the setS(∨mi=1σi) = {Ĥ(I)(σ1), . . . , Ĥ(I)(σm)}\

{Ĥ(I)(⊥)} for every union type∨mi=1σi. If S(∨mi=1σi) = ∅, then we letĤ(I)(∨mi=1σi) =

Ĥ(I)(⊥). If S(∨mi=1σi) = {k}, then we letĤ(I)(∨mi=1σi) = k. We then order the rest of

the union types lexicographically by the setsS(.) and assign unused integers to the union

types according to their ranking.

Given a type pair(σ, τ), letN = |Vσ|+ |Vτ |, andM = |Eσ|+ |Eτ |. It is now straight-

forward to show, using the techniques that were applied in Section 2.5, that our decision

procedure for membership inE is given byO(N) iterations each of which takesO(M)

time. Thus, we have shown the following result.

Theorem 2.6.8.Type equality as defined byE can be decided inO(N ×M) time.

2.7 An Efficient Algorithm for Type Equivalence

In this section, we will present a slightly more efficient algorithm for the type-matching

problem. We have shown that matched types can be found by computing the greatest fixed

point of a monotone function constructed from a definition of bisimulation and an initial set

of type pairs that are potentially equivalent. By reducing the fixed-point computation of the

monotone function to the problem of finding the coarsest size-stable partition refinement

of a graph, we are able to reduce the time complexity of type matching toO(n log n).

Assume that we are given two typesτ1 andτ2 that are represented as two term automata

M1 andM2. Lemma 2.7.1 proves thatτ1 ∼= τ2 (or (τ1, τ2) ∈ R) if and only if there

is a reflexive bismulationC betweenM1 andM2 such that the initial states of the term

automataM1 andM2 are related byC. Lemma 2.7.3 essentially reduces the problem of

finding a reflexive bisimualtionC betweenM1 andM2 to finding a size-stable coarsest

partition [PT87]. Theorem 2.7.4 uses the algorithm of Paige and Tarjan to determine in

O(n log n) time (n is the sum of the sizes of the two term automata) whether there exists a

reflexive bisimulationC betweenM1 andM2.
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Throughout this section, we will useM1,M2 to denote two term automata over the

alphabetΣ:

M1 = (Q1,Σ, q01, δ1, `1)

M2 = (Q2,Σ, q02, δ2, `2).

We assume thatQ1 ∩ Q2 = ∅. DefineQ = Q1 ∪ Q2. Define alsoδ : Q × ω → Q

whereδ = δ1 ⊕ δ2, and` : Q → Σ, where` = `1 ⊕ `2, where⊕ denotes disjoint union

of two functions. We say thatM1,M2 arebisimular if and only if there exists a relation

C ⊆ Q×Q, called a bisimulation betweenM1 andM2, such that:

• if (q, q′) ∈ C, then`(q) = `(q′)

• if (q, q′) ∈ C and`(q) =→, then(δ(q, 0), δ(q′, 0)) ∈ C and(δ(q, 1), δ(q′, 1)) ∈ C

• if (q, q′) ∈ C and`(q) =
∏n, then there exists a bijectiont : {0..n−1} → {0..n−1}

such that∀i ∈ {0..n− 1}: (δ(q, i), δ(q′, t(i))) ∈ C.

Notice that the bisimulations betweenM1 andM2 are closed under union, therefore, there

exists a largest bisimulation betweenM1 andM2. It is straightforward to show that the

identity relation onQ is a bisimulation, and that any reflexive bisimulation is an equivalence

relation. Hence, the largest bisimulation is an equivalence relation.

Lemma 2.7.1.For typesτ1, τ2 that are represented by the term automataM1,M2, respec-

tively, we have(τ1, τ2) ∈ R if and only if there is a reflexive bisimulationC betweenM1

andM2 such that(q01, q02) ∈ C.

Proof. Suppose(τ1, τ2) ∈ R. Define:

C = { (q, q′) ∈ Q×Q | (λα.`(δ̂(q, α)), λα.`(δ̂(q′, α))) ∈ R }.

It is straightforward to show thatC is a bisimulation betweenM1 andM2, and that

(q01, q02) ∈ C, we omit the details.



54

Conversely, letC be a reflexive bisimulation betweenM1 andM2 such that(q01, q02) ∈

C. Define:

R = { (σ1, σ2) | (q, q′) ∈ C ∧ σ1 = λα.`(δ̂(q, α)) ∧ σ2 = λα.`(δ̂(q′, α)) }

From (q01, q02) ∈ C, we have(τ1, τ2) ∈ R. It is straightforward to prove thatR is a

bisimulation, we omit the details. From(τ1, τ2) ∈ R andR being a bisimulation, we

conclude that(τ1, τ2) ∈ R. 2

A partitioned graphis a 3-tuple(U,E, P ), whereU is a set of nodes,E ⊆ U × U is

an edge relation, andP is apartition of U . A partitionP of U is a set of pairwise disjoint

subsets ofU whose union is all ofU . The elements ofP are called itsblocks. If P andS

are partitions ofU , thenS is arefinementof P if and only if every block ofS is contained

in a block ofP .

A partitionS of a setU can be characterized by an equivalence relationK onU such

that each block ofS is an equivalence class ofK. If U is a set andK is an equivalence

relation onU , then we useU/K to denote the partition ofU into equivalence classes for

K.

A partitionS is size-stablewith respect toE if and only if for all blocksB1, B2 ∈ S, and

for all x, y ∈ B1, we have|E(x)∩B2| = |E(y)∩B2|, whereE(x) is the set{y|(x, y) ∈ E}.

If E is clear from the context, we will simply use size-stable. We will repeatedly use the

following characterization of size-stable partitions.

Lemma 2.7.2.For an equivalence relationK, we have thatU/K is size-stable if and only

if for all (u, u′) ∈ K, there exists a bijectionπ : E(u)→ E(u′) such that for allu1 ∈ E(u),

we have(u1, π(u1)) ∈ K.

Proof. Suppose thatU/K is size-stable. Let(u, u′) ∈ K. Let B1 be the block of

U/K which containsu andu′. For each blockB2 of U/K, we have that|E(u) ∩ B2| =

|E(u′) ∩B2|. So, for each blockB2 of U/K, we can construct a bijection fromE(u) ∩B2

toE(u′)∩B2, such that for allu1 ∈ E(u)∩B2, we have(u1, π(u1)) ∈ K. These bijections

can then be merged to single bijectionπ : E(u)→ E(u′) with the desired property.
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Conversely, suppose that for all(u, u′) ∈ K, there exists a bijectionπ : E(u)→ E(u′)

such that for allu1 ∈ E(u), we have(u1, π(u1)) ∈ K. Let B1, B2 ∈ U/K, and let

x, y ∈ B1. We have that(x, y) ∈ K, so there exists a bijectionπ : E(x)→ E(y) such that

for all u1 ∈ E(x), we have(u1, π(u1)) ∈ K. Each element ofE(x)∩B2 is mapped byπ to

an element ofE(y) ∩ B2. Moreover, each element ofE(y) ∩ B2 must be the image under

π of an element ofE(x) ∩B2. We conclude thatπ restricted toE(x) ∩B2 is a bijection to

E(y) ∩B2, so|E(x) ∩B2| = |E(y) ∩B2|. 2

Given two term automataM1,M2, we define a partitioned graph(U,E, P ):

U = Q ∪ { 〈q, i〉 | q ∈ Q ∧ δ(q, i) is defined}

E = { (q, 〈q, i〉) | δ(q, i) is defined}

∪ { (〈q, i〉, δ(q, i)) | δ(q, i) is defined}

L = { (q, q′) ∈ Q×Q | `(q) = `(q′) }

∪ { (〈q, i〉, 〈q′, i′〉) | `(q) = `(q′) and if `(q) =→, theni = i′ }

P = U/L.

The graph contains one node for each state and transition inM1,M2. Each transition in

M1,M2 is mapped to two edges in the graph. This construction ensures that if a node in

the graph corresponds to a state labeled
∏n, then that node will haven distinct successors

in the graph. This is convenient when establishing a bijection between the successors of

two nodes labeled
∏n.

The equivalence relationL creates a distinction between the two successors of a node

that corresponds to a state labeled→. This is done by ensuring that if(〈q, i〉, 〈q, i′〉) ∈ L

and`(q) =→, theni = i′. This is convenient when establishing a bijection between the

successors of two nodes labeled→.

Lemma 2.7.3. There exists a reflexive bisimulationC betweenM1 andM2 such that

(q01, q02) ∈ C if and only if there exists a size-stable refinementS of P such thatq01 and

q02 belong to the same block ofS.
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Proof. Let C ⊆ Q × Q be a reflexive bisimulation betweenM1 andM2 such that

(q01, q02) ∈ C. Define an equivalence relationK ⊆ U × U such that:

K = C

∪ { (〈q, i〉, 〈q′, i〉) | (q, q′) ∈ C ∧ `(q) = `(q′) =→ }

∪ { (〈q, i〉, 〈q′, i′〉) | (q, q′) ∈ C ∧ (δ(q, i), δ(q′, i′)) ∈ C

∧ `(q) = `(q′) ∧ `(q) 6=→ }

S = U/K.

From(q01, q02) ∈ C, we have(q01, q02) ∈ K, soq01 andq02 belong to the same block ofS.

We will now show thatS is a size-stable refinement ofP .

Let (u, u′) ∈ K. From Lemma 2.7.2 we have that it is sufficient to show that there exists

a bijectionπ : E(u)→ E(u′), such that for allu1 ∈ E(u), we have(u1, π(u1)) ∈ K. There

are three cases.

First, suppose(u, u′) ∈ C. We have

E(u) = { 〈u, i〉 | δ(u, i) is defined}

E(u′) = { 〈u′, i′〉 | δ(u′, i′) is defined}.

Let us consider each of the possible cases ofu andu′. If `(u) = `(u′) ∈ Γ, thenE(u) =

E(u′) = ∅, and the desired bijection exists trivially. Next, if`(u) = `(u′) =→, then

E(u) = { 〈u, 0〉, 〈u, 1〉 }

E(u′) = { 〈u′, 0〉, 〈u′, 1〉 },

so the desired bijection isπ : E(u) → E(u′), whereπ(〈u, 0〉) = 〈u′, 0〉 andπ(〈u, 1〉) =

〈u′, 1〉, because(〈u, 0〉, 〈u′, 0〉) ∈ K and(〈u, 1〉, 〈u′, 1〉) ∈ K. Finally, if `(u) = `(u′) =∏n, then

E(u) = { 〈u, i〉 | δ(u, i) is defined}

E(u′) = { 〈u′, i′〉 | δ(u′, i′) is defined}.
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From (u, u′) ∈ C, we have a bijectiont : {0..n − 1} → {0..n − 1} such that∀i ∈

{0..n− 1} : (δ(u, i), δ(u′, t(i))) ∈ C. From that, the desired bijection can be constructed.

Second, supposeu = 〈q, i〉 andu′ = 〈q′, i〉, where(q, q′) ∈ C, and`(q) = `(q′) =→.

We have

E(u) = { δ(q, i) }

E(u′) = { δ(q′, i) },

and from(q, q′) ∈ C we have(δ(q, i), δ(q′, i)) ∈ C ⊆ K, so the desired bijection exists.

Third, supposeu = 〈q, i〉 andu′ = 〈q′, i′〉, where(q, q′) ∈ C, (δ(q, i), δ(q′, i′)) ∈ C,

`(q) = `(q′), and`(q) 6=→. We have

E(u) = { δ(q, i) }

E(u′) = { δ(q′, i′) },

and(δ(q, i), δ(q′, i′)) ∈ C ⊆ K, so the desired bijection exists.

Conversely, letS be a size-stable refinement ofP such thatq01 andq02 belong to the

same block ofS. Define:

K = { (u, u′) ∈ U × U | u, u′ belong to the same block ofS }

C = K ∩ (Q×Q).

Notice that(q01, q02) ∈ C and thatC is reflexive. We will now show thatC is a bisimulation

betweenM andM′.

First, suppose(q, q′) ∈ C. FromS being a refinement ofP we have(q, q′) ∈ L, so

`(q) = `(q′).

Second, suppose(q, q′) ∈ C and`(q) =→. From the definition ofE we have

E(q) = { 〈q, 0〉, 〈q, 1〉 }

E(q′) = { 〈q′, 0〉, 〈q′, 1〉 }.

FromS being size-stable,(q, q′) ∈ C ⊆ K, and Lemma 2.7.2 we have that there exists a

bijectionπ : E(q) → E(q′) such that for allu ∈ E(q) we have that(u, π(u)) ∈ K. From
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K ⊆ L and`(q) =→ we have that there is only one possible bijectionπ:

π(〈q, 0〉) = 〈q′, 0〉

π(〈q, 1〉) = 〈q′, 1〉,

so (〈q, 0〉, 〈q′, 0〉) ∈ K and(〈q, 1〉, 〈q′, 1〉) ∈ K. From the definition ofE we have, for

i ∈ {0, 1},

E(〈q, i〉) = δ(q, i)

E(〈q′, i〉) = δ(q′, i),

and sinceS is size-stable, we have, fori ∈ {0, 1}, (δ(q, i), δ(q′, i)) ∈ K. Moreover, for

i ∈ {0, 1}, (δ(q, i), δ(q′, i)) ∈ Q×Q; therefore we conclude,(δ(q, i), δ(q′, i)) ∈ C.

Third, suppose(q, q′) ∈ C and`(q) =
∏n. From the definition ofE we have

E(q) = { 〈q, i〉 | δ(q, i) is defined}

E(q′) = { 〈q′, i〉 | δ(q′, i) is defined}.

Notice that|E(q)| = |E(q′)| = n. From S being size-stable,(q, q′) ∈ C ⊆ K, and

Lemma 2.7.2, we have that there exists a bijectionπ : E(q) → E(q′) such that for all

u ∈ E(q) we have that(u, π(u)) ∈ K. Fromπ we can derive a bijectiont : {0..n− 1} →

{0..n − 1} such that∀i ∈ {0..n − 1}: (〈q, i〉, 〈q′, t(i)〉) ∈ K. From the definitions ofE

andE ′ we have that fori ∈ {0..n− 1},

E(〈q, i〉) = { δ(q, i) }

E(〈q′, i〉) = { δ(q′, i) },

and sinceS is size-stable, and, for alli ∈ {0..n − 1}, (〈q, i〉, 〈q′, t(i)〉) ∈ K, we have

(δ(q, i), δ(q′, t(i))) ∈ K. Moreover,(δ(q, i), δ(q′, t(i))) ∈ Q × Q; therefore, we conclude

(δ(q, i), δ(q′, t(i))) ∈ C. 2

The sizeof a term automataM = (Q,Σ, q0, δ, l) is |Q|+ | |δ|, i.e., the sum of the

number of states and transitions in the automata.
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Theorem 2.7.4.For typesτ1, τ2 that can be represented by term automataM1,M2 of size

at mostn, we can decide(τ1, τ2) ∈ R in O(n log n) time.

Proof. From Lemma 2.7.1 we have that(τ1, τ2) ∈ R if and only if there is a reflexive

bisimulationC betweenM1 andM2 such that(q01, q02) ∈ C. Fromc Lemma 2.7.3 we

have that there exists a reflexive bisimulationC betweenM1 andM2 such that(q01, q02) ∈

C if and only if there exists a size-stable refinementS of P such thatq01 andq02 belong to

the same block ofS.

Paige and Tarjan [PT87] give anO(m log p) algorithm to find the coarsest size-stable

refinement ofP , wherem is the size ofE andp is the size of the universeU .

Our algorithm first constructs(U,E, P ) fromM1 andM2, then runs the Paige-Tarjan

algorithm to find the coarsest size-stable refinementS of P , and finally checks whetherq01

andq02 belong to the same block ofS.

If M1 andM2 are of size at mostn, then the size ofE is at most2n, and the size of

U is at most2n, so the total running time of our algorithm isO(2n log(2n)) = O(n log n).

2

Next, we illustrate how our algorithm determines that equivalence between the types.

Details of the algorithm can be found in [PT87]. Consider two typesI1 andJ1 defined in

Section 2.2. The set of types corresponding to the two interfaces are:

{I1, I2,m1,m2,m3,m4, int, float}

{J1, J2, n1, n2, n3, n4, int, float}

Figure 2.10 shows various steps of our algorithm. For simplicity, the figure only shows the

blocks of actual types, but not the blocks of the extra nodes of the form〈q, i〉. The blocks

in the first row are based on labels, e.g., states labeled with× are in the same block. In

the next step, the block containing the methods are split based on the type of the result of

the method, e.g.. methodsm1 andn4 both returnfloat, so they are in the same block. In

the next step (corresponding to the third row) the block{I1, I2, J1, J2} are split. The final

partition, where block{m3,m4, n1, n2} is split, is shown in the fourth row.



60

I1 I2 J1 J2 m 1 m 2 m 3 m 4 n 1 n 2 n 3 n 4 float int

I I J J1 2 1 2 m n m n m m n float int1 4 2 3 3 4 1 2

I J I J float intm n m n m m 

n 

n n 1 12 2 1 4 2 3 3 4 1 2

I J I J m m n m n m n int1 2 12 1 2 3 3 2 4 1 floatn 4

Figure 2.10. Blocks of types

Our algorithm can be tuned to take a specific user needs into account. This is done

simply by modifying the definition of the equivalence relationL. For example, suppose a

user cares about the order of the arguments to a method. This means that the components of

the product type that models the argument list should not be allowed to be shuffled during

type matching. We can prevent shuffling by employing the same technique that the current

definition ofL uses for function types. The idea is to insist that two component types may

only be matched when they have the same component index.

Another example of the tunability of our algorithm involves the modifiers inJava .

Suppose a programmer is developing a product that is multi-threaded. In this case the

programmer may only want to matchsynchronized methods with othersynchronized

methods. This can be handled easily in our framework by changingL such that two method

types may only be matched when they are both synchronized. On the other hand if the user

is working on a single-threaded product, the keywordsynchronized can be ignored. The

same observation applies to other modifiers such asstatic .

2.8 Implementation

We have implemented our algorithm inJava and the current version is based on the

code written by Wanjun Wang. The implementation has a graphical user interface so that

users may input type definitions written in a file and also may specify restrictions on type

isomorphism. The implementation and documentation are available at

http://www.cs.purdue.edu/homes/tzhao/matching/matching.htm .
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Figure 2.11. Schematic diagram for the implementation

Suppose we are given the following file with fourJava interfaces.

interfaceI1 {

float m1 (I1 a, int b);

int m2 (I2 a);

}

interfaceI2 {

J2 m3 (floata);

I1 m4 (floata);

}

interfaceJ1 {

I1 n1 (floata);

J2 n2 (floata);

}

interfaceJ2 {

int n3 (J1 a);

float n4 (int a, J2 b);

}

The implementation, as illustrated in the Figure 2.11, will read and parse the input file

and then transform the type definitions into partitions of numbers with each type definition

and dummy type assigned a unique number. The partitions will be refined by Paige-Tarjan

algorithm until it issize-stableas defined in this chapter. Finally, we will be able to read

the results from the final partitions. Two types are isomorphic if the numbers assigned to

them are in the same partition. The implementation will give the following output:

I1 = J2 , I2 = J1
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Figure 2.12. Screen shot of the implementation

I2.m3 = I2.m4 = J1.n1 = J1.n2

I1.m1 = J2.n4 , I1.m2 = J2.n3 .

We can see that the types of interfacesI2 andJ1 are isomorphic and moreover, all

method types ofI2, J1 match. Suppose that we have additional information about the

method types such that only methodm3 andn1 should have isomorphic types. We can

restrict the type matching by addingI2.m3 = J1.n1 to therestrictionswindow of the user

interface. The new matching result is illustrated by the screen shot in figure 2.12.

Note that we are able to focus on the matching of two interface types such asI2, J1 as in

thefocuswindows of Figure 2.12, whereI2, J1 are matched and their methods are matched

one to one.

2.9 Subtyping of Recursive Types

In this section we discuss subtyping and formalize it using a simulation relation. We

also discuss reasons why the algorithm given in Section 2.7 is not applicable to subtyping of

of recursive types. Consider the interfacesK1 andK2 shown in Figure 2.13, and suppose a
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interfaceK1 {

K1 m (floata,booleanb);

booleanp (K1 j);

}

interfaceK2 {

K2 m (int i,booleanb);

}

Figure 2.13. InterfacesK1 andK2

user is looking forK2. The interfacesK1 andK2 can be mapped to the following recursive

types:

τ1 = µα.((float × boolean)→ α)× (α→ boolean)

τ2 = µβ.(int × boolean)→ β)

Assuming thatint is a subtype offloat (we can always coerce integers into floats) we

have thatτ1 is a subtype ofτ2. Therefore, the user can use the interfaceK1. There are

several points to notice from this example. In the context of subtyping, we need two kinds

of products: one that models a collection of methods and another that models sequence

of parameters. In our example, the user only specified a type corresponding to method

m. Therefore, during the subtyping algorithm methodp should be ignored. However, the

parameters of methodm are also modeled using products and none of these can be ignored.

Therefore, we consider two types of product type constructors in our type systems and the

subtyping rule for these two types of products are different.

As stated before, a type is a regular term, in this case over the ranked alphabet

Σ = Γ ∪ {→} ∪ {
n∏
, n ≥ 2} ∪ {×n, n ≥ 2}.

Roughly speaking,
∏n and×n will model collection of parameters and methods respec-

tively. Also assume that we are given a subtyping relation on the base typesΓ. If τ1 is a

subtype ofτ2, we will write it asτ1 � τ2. A relationR̄ is called asimulationon types if it

satisfies the following conditions:

• if (σ, τ) ∈ R̄ andσ(ε) ∈ Γ, thenτ(ε) ∈ Γ andσ(ε) � τ(ε).



64

• if (σ, τ) ∈ R̄ andσ(ε) ∈ ({→} ∪ {∏n, n ≥ 2}), thenσ(ε) = τ(ε).

• if (σ1 → σ2, τ1 → τ2) ∈ R̄, then(τ1, σ1) ∈ R̄ and(σ2, τ2) ∈ R̄.

• if (
∏n−1
i=0 σi,

∏n−1
i=0 τi) ∈ R̄, then there exists a bijectiont : {0 . . . n− 1} → {0 . . . n−

1} such that for alli ∈ {0 . . . n− 1}, we have(σi, τt(i)) ∈ R̄.

• Suppose(σ, τ) ∈ R̄, σ(ε) = ×n, andσ = ×n−1
i=0 σi. If τ(ε) 6∈ {×m,m ≥ 2},

then there exists aj ∈ {0 . . . n − 1} such that(σj, τ) ∈ R̄. Otherwise, assume that

τ(ε) = ×m, wherem ≤ n andτ = ×m−1
i=0 τi. In this case, then there exists an injective

functions : {0 . . .m − 1} → {0 . . . n − 1} such that for alli ∈ {0 . . .m − 1}, we

have(σs(i), τi) ∈ R̄. Notice that this rule allows ignoring certain components ofσ.

As is the case with bisimulations, simulations are closed under union, therefore there

exists a largest simulation (denoted byR̄).

LetM1,M2 denote two term automata overΣ:

M1 = (Q1,Σ, q01, δ1, `1)

M2 = (Q2,Σ, q02, δ2, `2).

We assume thatQ1 ∩ Q2 = ∅. DefineQ = Q1 ∪ Q2. Define alsoδ : Q × ω → Q where

δ = δ1 ⊕ δ2, and` : Q → Σ, where` = `1 ⊕ `2, where⊕ denotes disjoint union of two

functions. We say thatM2 simulatesM1 (denoted byM1 � M2) if and only if there

exists a relationD ⊆ Q×Q, called asimulation relationbetweenM1 andM2, such that:

• if (q, q′) ∈ D and`(q) ∈ Γ, then`(q′) ∈ Γ and`(q) � `(q′)).

• if (q, q′) ∈ D and`(q) ∈ ({→} ∪ {∏n, n ≥ 2}), then`(q) = `(q′).

• if (q, q′),∈ D and`(q) =→, then(δ(q, 0), δ(q′, 0)) ∈ D and(δ(q′, 1), δ(q, 1)) ∈ D.

• if (q, q′),∈ D and `(q) =
∏n, then there exists a bijectiont : {0 . . . n − 1} →

{0 . . . n− 1} such that for alli ∈ {0 . . . n− 1}, we have(δ(q, i), δ(q′, t(i)) ∈ D.
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• Suppose(q, q′) ∈ D and`(q) = ×n. If `(q′) 6∈ {×m,m ≥ 2}, then there exists a

j ∈ {0 . . . n − 1} such that(δ(q, j), q′) ∈ D. Otherwise, assume that`(q′) = ×m,

wherem ≤ n and in this case, there exists an injective functions : {0 . . .m− 1} →

{0 . . . n− 1} such that for alli ∈ {0 · · ·m− 1}, we have(δ(q, s(i)), δ(q′, i)) ∈ D.

Notice that the simulations betweenM1 andM2 are closed under union, therefore,

there exists a largest simulation betweenM1 andM2. The proof of Lemma 2.9.1 is similar

to the proof of Lemma 2.7.1 and is omitted.

Lemma 2.9.1.For typesτ1, τ2 that are represented by the term automataM1,M2, respec-

tively, we have(τ1, τ2) ∈ R̄ if and if only there is a reflexive simulationD betweenM1 and

M2 such that(q01, q02) ∈ D.

The largest simulation between the term automataM1 andM2 is given by the follow-

ing greatest fixed point

νD.sim(q, q′, D).

whereD ⊆ Q1×Q2 and the predicatesim(q, q′, D) is the conjunction of the five conditions

which appear in the definition of the simulation relation between two automata. Letn and

m be the size of the term automataM1 andM2 respectively. Sincenm is a bound on

the size ofD, the number of iterations in computing the greatest fixed point is bounded by

nm. In general, the relationD (or for that matter the simulation relation) is not symmetric.

On the other hand, the bisimulation relation was an equivalence relation, and so could

be represented as a partition on the setQ1 ∪ Q2, or in other words, partitions give us a

representation of an equivalence relation that is linear in the sum of the sizes of the set

of statesQ1 andQ2. The Paige-Tarjan algorithm uses the partition representation of the

equivalence relation. SinceD is not symmetric (and thus not an equivalence relation), it

cannot be represented by a partition. This is the crucial reason why our previous algorithm

cannot be used for subtyping.

2.10 Conclusion

In this chapter, we addressed the problem of matching recursive types with flexible

equality rules. We characterized the equivalence of recursive types by a definition of bisim-
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ulation. The decision procedure for type equivalence depends on the computation of the

greatest fixed point of a monotone function constructed from the definition of bisimulation

and from an initial relation on potentially equivalent types. A straightforward implementa-

tion of this approach resulted in anO(n2) algorithm.

An algorithm withO(n log n) time complexity was found by reducing the fixed-point

computation to the problem of finding the coarsest size-stable partition of a graph. To our

knowledge, this is the most efficient algorithm for this problem. Our results are applica-

ble to the problem of matching signatures of software components and to the integration of

multi-language systems. We showed an extension of our decision procedure to the intersec-

tion and union types and issues related to subtyping of recursive types were also addressed.

Remark: A natural next step is to investigate how to automatically generate bridge

code for a multi-language system. We would also like to find out whether our notion of

type equality is sound and complete for some class of models of recursive types. On the

implementation side, we want to make connections to work on multiset discrimination

[CP95] and chaotic fixed-point iteration [Cou81].

When dealing with building bridge code between interfaces, there are interesting equiv-

alences involving currying and uncurrying at the interface level [AC96b, ABR98]. Recall

that currying is usually expressed with the rule

σ1 → (σ2 → σ3) = (σ1 × σ2)→ σ3.

Consider the type

σ = µα.(int → α).

When uncurrying is allowed,σ is equivalent to a number of types containing product types

of different sizes, such as:

σ = µα.((int × int)→ α)

= µα.((
4∏
i=1

τi)→ α)

where, for alli ∈ 1..4, τi = int . Notice thatσ does not contain any product types, while

the second type contains a binary product type, and the third type contains a 4-ary product

type. It remains an open problem to decide this notion of type equality.
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3. Automatic Discovery of Covariant Read-Only Fields

3.1 Introduction

3.1.1 Background

In the quest for more expressive type systems, subtyping has become a common means

for flexible matching of types. For example, in an assignmentx=e, we can allowx ande to

have different types, provided that the type ofe is a subtype of the type ofx. This relieves

the programmer from having to insert coercions.

Subtyping comes in many flavors. For object types of the form[` : B, . . .], where` : B

denotes a field̀ of typeB, there are several design choices. Abadi and Cardelli [AC96a]

explain that if the field̀ can be both read and updated, then` must beinvariant in the

subtype ordering, that is, if[` : A, . . .] is a subtype of[` : B, . . .], thenA = B. Following

Abadi and Cardelli, we will use the notation[`0 : B, . . .] where the superscript 0 denotes

that the object type has an invariant field`.

A covariant read-only field (CROF) is a field which enjoys covariant subtyping and

which cannot be updated. Again following Abadi and Cardelli, we will use the notation

[m+ : B, . . .] where the superscript+ denotes that the object type has a covariant fieldm.

Covariance means that if[m+ : A, . . .] is a subtype of[m+ : B, . . .], thenA is a subtype of

B, a weaker condition thanA = B.

CROFs are a useful addition to type systems. For example, Glew has given a nice

translation of classes and objects into an intermediate calculus in which the method tables

of classes are placed in CROFs; covariant subtyping on the method table fields is needed

to ensure that subclasses are translated to subtypes. We will discuss Glew’s translation in

more detail later in the chapter.

First, however, we illustrate some of the central technical difficulties of CROFs with a

much simpler, more whimsical example. Our program is written in a variant of an Abadi-
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Cardelli object calculus [AC96a]. Each method@(x) b binds a namex that denotes the

smallest enclosing object, much like Java’s “this.” The program declares four objects, then

makes two successive method calls:

let

Man = [id = @(x)x]

Batman = [id = @(y)y secretid = @(z)z]

Phone = [dial = @(d)Man]

Batphone = update Phone.dial <=

@(e) call (call Batman.id).secretid

in

call (call Batphone.dial).id

Here is the intuition behind the example. AMan has an identity (himself).Batman

has an identity too, and he also has a secret identity. By dialing thePhone you can reach

Man, and by dialing theBatphone you can reachBatman : the definition ofBatphone

is equivalent to[dial = @(e)Batman] .

Some fairly powerful type systems cannot handle this example: Palsberg and Jim [PJ97]

noted that this program isnot typable in Abadi and Cardelli’s type systemOb1<:µ, which

has recursive types, width subtyping for object types, and only invariant fields. The reason

is that in this calculus,Batman is not a subtype ofMan:

Man : µ(X)[id 0 : X] (from the definition ofMan)

Batman : µ(Y )[id 0, secretid 0 : Y ] (from the definition ofBatman )

µ(Y )[id 0, secretid 0 : Y ] 6≤ µ(X)[id 0 : X] (from the definition of subtyping)

The id field of Batman hasBatman ’s type, and theid field of ManhasMan’s type,

so by invariant subtyping, the two types are not related. The only common type ofManand

Batman is [ ], so we have

Phone : [dial 0 : [ ]]

Batphone : [dial 0 : [ ]]
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In conclusion,call (call Batphone.dial).id is not typable.

To increase expressiveness, we can add CROFs toOb1<:µ such that each field can be

either invariant or covariant:

Ob1<:µ+ = Ob1<:µ ∪ CROFs.

This is sufficient to make the above program type check with the following types:

Man : [id 0: [ ]]

Batman : [id 0: [secretid +: [id +: [ ]]]; secretid 0: [id +: [ ]]]

Phone : [dial 0: [id +: [ ]]]

Batphone : [dial 0: [id +: [ ]]]

These types were produced by our implementation of the algorithm presented in this chap-

ter. Notice that the program (the input to our algorithm) does not mention whether a field

is read-only, or whether it can both be read and updated. It turns out that this information

does not make the problem of type inference any easier, so our algorithm automatically

discoverswhich fields should be CROFs.

The types produced by our algorithm are intended to be minimal-shape types, in the

sense of [KPS94, PWO97], although proving that is left to future work. The idea of minimal

shape is that the inferred types exhibit exactly the amount of structure of objects that the

program exploits. For example, we haveMan : [id 0 : [ ]] because there is no usage

of Man.id , so the return type ofMan.id need not have any features at all. Note that

minimal-shape types need not be principal types. If principal types are desired, then the

best known approach is to output a representation of the type constraints used by the type

inference algorithm, possibly in a simplified form [Pot96]. In the worst case, such a set of

constraints has a size that is linear in the size of the program.

One can achieve a degree of modularity by letting the programmer specify types at, say,

module boundaries. Those types then become part of the input to the type inference algo-

rithm, so, in effect, the algorithm determines whether there is a typing which is consistent

with the specified types. Without any such declared types, the inferred types can be quite
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different for two programs that use their objects in slightly different ways. This may not

be desirable for large-scale software development. Similarly, slightly different programs

may have quite different inferred annotations of the fields of the object types. It remains

an open problem to find a convenient mechanism to explain to a programmer why a certain

field ended up being a CROF.

The above program is also typable with the so-called simple self-types of Palsberg

and Jim [PJ97]. Bugliesi and Pericas-Geertsen [BPG02] observed that any program that

can be typed with simple self-types can also be typed inOb1<:µ+. Perhaps interestingly,

their encoding of simple self-types uses recursive types to type the above program, while

our more direct algorithm produces nonrecursive types in this case. More importantly, type

inference with simple self-types is NP-complete [PJ97], while our type inference algorithm

for the more expressive type systemOb1<:µ+ runs in polynomial time.

In our implementation, a programmer can specify that some of the fields are read-only.

For example, in the above program, a programmer may specify that thesecretid field

is read-only by inserting a+ annotation:

let

Man = [id = @(x)x]

Batman = [id = @(y)y secretidˆ+ = @(z)z]

Phone = [dial = @(d)Man]

Batphone = update Phone.dial <=

@(e) call (call Batman.id).secretid

in

call (call Batphone.dial).id

For this program, our implementation produces the following types:

Man : [id 0: [ ]]

Batman : [id 0: [secretid +: [id +: [ ]]]; secretid +: [id +: [ ]]]

Phone : [dial 0: [id +: [ ]]]

Batphone : [dial 0: [id +: [ ]]]
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Notice that the second occurrence ofsecretid in the type forBatman now has the

annotation+ instead of0.

If, in addition, the program were changed to make thedial method ofPhone read-

only, then our implementation would correctly decide that the resulting program is not

typable (becausedial is updated inBatphone ).

As we have mentioned, adding annotations, such as the one forsecretid , seems

not to make the type inference problem easier. In this chapter, we show that even if all

fields are explicitly specified as either updateable or read-only, the type inference problem

is P-complete. If the programmer leaves a field unspecified (or, equivalently, gives the

annotation 0), then our algorithm willdiscoverwhether it is advantageous to make it read-

only. The “discovery” process takes place at the type level: a field which was annotated as

read-write may be implicitly turned into a read-only field at any time via subsumption.

Glew’s type system Glew’s translation of objects and classes to a typed intermediate

language [Gle00] is an important motivation for our work on CROFs. Like most imple-

mentations of object-oriented languages, Glew’s translation uses method tables. One of

Glew’s insights is that the method table can conveniently be placed in a CROF. For exam-

ple, leta andb be two source-language objects such that the type ofb is a subtype of the

type ofa. The type system for the source language supports thatb may havemoremethods

thana (width subtyping). This means that the method table in the translation ofb will be

longer than the method table in the translation ofa:

translation(a) = . . . [mt = ma, . . .] . . .

translation(b) = . . . [mt = mb, . . .] . . .

where mt is the field name for the method table. Glew’s translation of b has a subtype of

the type of his translation of a; he makes mt a CROF, and he gives the following types to

the translations ofa andb:

type-of(translation(a)) = . . . [mt+ : type-of(ma), . . .] . . .

type-of(translation(b)) = . . . [mt+ : type-of(mb), . . .] . . .
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Glew’s translation produces typed intermediate code, including the annotations0 and+.

Is type inference possible for an implicitly-typed version of Glew’s intermediate lan-

guage? Our work shows that type inference is possible for a fragment of Glew’s type sys-

tem. Glew’s type system also features function types, bounded universal polymorphism,

and self types, as well as a special variance annotation for record types which indicates

whether subtyping can be applied at all. Our long-term goal is to extend the algorithm to

cover a larger fragment of Glew’s system. Such an algorithm would make it possible to

omit bulky type annotations, and to automatically discover the CROFs.

Constraint solving A O(n3) time type inference algorithm for Abadi and Cardelli’s type

systemOb1<:µ (only invariant fields) was given by Palsberg [Pal95]; later, anO(n2) time

algorithm for the same problem was given by Henglein [Hen97]. There is a similarO(n3)

type inference algorithm for the calculus with only CROFs (only covariant fields). Surpris-

ingly, there seems to be no easy way to “merge” the two algorithms to obtain an algorithm

for the combined type system,Ob1<:µ+. Both algorithms work by reducing type inference

to the problem of solving a set ofconstraints. A constraint is a pair(A,B), whereA andB

are types that may contain type variables; and the goal is to find a substitutionS such that

for each constraint(A,B), we haveS(A) ≤ S(B) where≤ is the subtype order. We will

useR to range over sets of constraints; we will often refer toR as a relation on types. A

key theorem about both algorithms states:

TheoremA set of constraints is solvable if and only if its closure is consistent.

Here, “closure” means that certain syntactic consequences of the constraints have been

added to the constraint set, and “consistent” means that there are no obviously unsatisfiable

constraints (e.g.,([ ], [`0 : [ ]])). Both algorithms construct a solution from a closed, con-

sistent constraint set. This framework has been used for solving subtype constraints for a

variety of types [Pal95, KPS94, PWO97, PO95, PS96].

Finding an algorithm thus rests on finding a correct definition of “closure.” For the type

system with only covariant fields, there are three closure rules, all operating on a constraint

setR:
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• if (A,B) ∈ R, then(A,A), (B,B) ∈ R (reflexivity);

• if (A,B), (B,C) ∈ R, then(A,C) ∈ R (transitivity);

• if ([`+ : B, . . .], [`+ : B′, . . .]) ∈ R, then(B,B′) ∈ R (propagation of subtyping

to fields).

Computing the closure takesO(n3) time. ForOb1<:µ (only invariant fields), there are also

three closure rules:

• if (A,B) ∈ R, then(A,A), (B,B) ∈ R (reflexivity);

• if (A,B), (B,C) ∈ R, then(A,C) ∈ R (transitivity);

• if (A, [`0 : B, . . .]), (A, [`0 : B′, . . .]) ∈ R, then(B,B′) ∈ R (propagation of subtyp-

ing to fields).

Notice that the last rule also can be used to give(B′, B), so it actually forcesB andB′ to

be unified. Now, can we solve constraints over the types inOb1<:µ+ by taking the union of

the two sets of closure rules? As it happens, a notion of closure based on the union of the

rules doesnot support the result mentioned above. For example, consider the constraint set

that consists of the following two constraints:

(V, [`+ : B]) (V, [`+ : B′])

whereV is a type variable,B = [m0 : [ ]], andB′ = [m0 : [m0 : [ ]]]. The key property of

B,B′ is that they don’t have a common lower bound. Apart from reflexivity, this constraint

set is closed under the four closure rules above. Moreover, the constraint set is consistent:

there are no obviously unsatisfiable constraints. So, if there was a theorem of the form

mentioned above, this constraint set should be solvable. However, it is not solvable. To

see that, consider the following informal argument. In any solution,V must be assigned a

type of the form[`+ : A, . . .], for someA. (Actually, it might also be possible to annotate

` with 0, but that will not help). Now, because` is a CROF, we must be able to satisfy the

constraints:

(A,B) (A,B′)
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This is not possible: there is no subtype of bothB andB′ in this system. With only

covariant fields, the set of types form a lattice. Once invariant fields are introduced, not all

pairs of types have lower bounds. In our setting with both covariant and invariant fields, all

pairs of types have a least upper bound. Conclusion: either there are too few closure rules,

or else there is something wrong with the notion of consistency.

The example suggests that in a setting with both covariant and invariant fields, a new

technique is called for.

3.1.2 Our Results

We present the design and implementation of a type inference algorithm forOb1<:µ+.

The algorithm automatically discovers CROFs. It is based on a theorem of the form dis-

cussed above, with a new notion of closure and a traditional notion of consistency. Type

inference is equivalent to solving type constraints, which in turn is P-complete and com-

putable inO(n3) time. The novel aspect of our definition of closure is that it keeps track of

both subtype relations and which pairs of types must have a lower bound. For the example

constraint set above, our closure rules will note that since[`+ : B] and [`+ : B′] must

have a lower bound, it must also be the case thatB andB′ have a lower bound, which is

obviously false. Our nine closure rules describe the interaction between a set of subtype

constraints and a set of lower-bound constraints. In our proof of the main theorem (of the

form mentioned above), we use a technique that employs a convenient characterization of

the subtyping order (Lemma 3.2.6). The characterization uses notions of subtype-closure

and subtype-consistency that are different, yet closely related, to the already-mentioned no-

tions of what we for clarity will call satisfaction-closure and satisfaction-consistency. The

result that type inference is P-hard indicates there are no fast NC-class parallel algorithms

for the type inference problem, unless NC = P.

Our prototype implementation, already showcased above, works with a version of an

Abadi-Cardelli object calculus. The implementation is freely available from:

http://www.cs.purdue.edu/homes/tzhao/type-inference/inference.htm

Future work includes the addition of atomic subtyping [Mit91, Tiu92, HM95, Fre97,
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Ben94].

3.1.3 Related Work

One of the first uses of annotations such as+, often calledvariance annotations, can be

found in Pierce and Sangiorgi’s paper [PS93] on typing and subtyping for mobile processes.

They used annotations of types in a type system for theπ-calculus to enforce that some

channels are for input only or for output only.

The variance annotation “−” is sometimes used to denote that a field is contravariant

and write-only. We know of no easy way of extending the results of this chapter to cover

“−”. The main problem is that for a system with invariant, covariant, and contravariant

fields, not all pairs of types have least upper bounds. For example, consider the types

C = [l0 : A]

C ′ = [l0 : B]

A = [ ]

B = [m0 : [ ]].

Notice thatB ≤ A. Here are two incomparable upper bounds ofC,C ′:

[l+ : A]

[l− : B].

However, there is noleastupper bound ofC,C ′. So, with both covariant and contravariant

fields, the types donot form lattice.

Rémy [Ŕem98] used covariant and contravariant fields in a calculus with object exten-

sion, and depth and width subtyping. His language is explicitly typed.

Igarashi and Viroli [IV02] used variance annotations to control subtyping between dif-

ferent instantiations of a generic class, and to specify the visibility of fields and methods.

Their example language is explicitly typed.

Igarashi and Kobayashi [IK00] showed how to infer types with annotations about the

usesof communication channels in concurrent programs. A use is either 0 (never used),
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1 (used at most once), orω (used arbitrarily). The set of uses forms an algebra with op-

erations such as0 + 1 = 1. Depending on the use annotations of a record type, the fields

may enjoy covariant or contravariant subtyping. Their approach differs from ours in the

use of variance variables (calleduse variables), whose value determines whether a channel

type is contravariant, covariant or invariant. Because these are variables, structural decom-

position (closure) is sometimes be suspended until some of these variables receive values,

which requires a form of conditional constraints. Our approach does not use conditional

constraints and therefore appear simpler. Another notable difference between their type

inference problem and ours is that their type inference problem uses finite types without

width subtyping and with all of covariance, contravariance, and invariance, while ours uses

recursive types and width subtyping, but only covariance and invariance. It remains to

be seen whether it is possible to extend their techniques to handle width subtyping and

recursive types.

Tang and Hofmann [TH01] studied type inference for a logic of Abadi and Leino, for

the purpose of helping with automatic generation of verification conditions [TH02]. They

use a subtyping relation for object types in which fields are invariant and methods are

covariant. Thus, in their type inference problem it is explicitly specified what is read-only

and what is updateable. The two most notable differences between their type inference

problem and ours are that (1) they consider finite types while we study recursive types and

(2) we enable automatic discovery of CROFs. Their work was carried out independently

of ours; the technical approaches have some basic ideas in common. In particular, most of

our nine rules for satisfaction-closure seems to have counterparts in Tang and Hofmann’s

approach.

Our type system does not contain a bottom type, that is, a least type. Adding a bottom

type would make the set of types form a lattice, rather than a semilattice, and it would

make more programs type check [WOP95]. Type inference with bottom types have been

investigated for various type systems [PWO97, PO95, PS96, BPG02], and in each case type

inference can be done in cubic time in the size of the program. Thus, we can expect type

inference for our type system extended with a bottom type do be in cubic time. However,
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bottom types seem not to be popular. Java does have a top type, that is, a greatest type,

called Object, but it does not have a bottom type. Above, we discussed a range of previous

work [AC96a, Gle00, PS93, IV02, IK00, TH01, TH02] in which notions of covariant fields

were added to type systems in order to type check more programs, and yetnoneof those

papers have a bottom type in their type systems. Pierce [Pie02] discusses ways in which

adding a bottom type to a type system complicates matters considerably, particularly in

systems with bounded quantification. Based on these observations, we feel that even though

adding a bottom type simplifies type inference, it is well justified to study a type system

without a bottom type,

3.1.4 Examples

We now present two examples that give a taste of the definitions and techniques that

are used later in the chapter. We invite the reader to revisit the examples after reading the

technical part of the chapter. In the first example we return to the program with Man and

Batman. We use the program to illustrate the reduction of the type inference problem to

a constraint problem. In the abstract syntax of an Abadi-Cardelli object calculus, we can

write the program as follows:

Man = [id = ς(x)x]

Batman = [id = ς(y)y, secretid= ς(z)z]

Phone = [dial = ς(d)Man]

Batphone = Phone.dial⇐ ς(e)Batman.id.secretid

Main = Batphone.dial.id

We can use the rules in Section 3.4.1 to generate constraints in Figure 3.1. In the left column

are all occurrences of subterms in the program; in the right column are the constraints

generated for each occurrence. We useA ≡ B to denote the pair of constraints(A,B) and

(B,A).

The constraint set in Figure 3.1 is solvable and a solution can be found by running our

constraint solving algorithm. The solution that will be generated was displayed earlier in

this section; it corresponds to the following type derivation. Define the typesP,Q and the
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Occurrence Constraints

x (Ux, Vx)

Man ([id0 : Vx], VMan)

Ux ≡ [id0 : Vx]

y (Uy, Vy)

z (Uz, Vz)

Batman ([id0 : Vy, secretid0 : Vz], VBatman)

Uy ≡ [id0 : Vy, secretid0 : Vz]

Uz ≡ [id0 : Vy, secretid0 : Vz]

Phone ([dial0 : VMan], VPhone)

Ud ≡ [dial0 : VMan]

Batphone (VPhone, VBatphone)

VPhone ≡ Ue

(VPhone, [dial0 : VBatman.id.secretid])

Batman.id (VBatman, [id
+ : VBatman.id])

Batman.id.secretid(VBatman.id, [secretid+ : VBatman.id.secretid])

Batphone.dial (VBatphone, [dial+ : VBatphone.dial])

Batphone.dial.id (VBatphone.dial, [id
+ : VBatphone.dial.id])

Figure 3.1. Constraints for the example program
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environmentsE,F :

P = [id+ : [ ]]

Q = [id0 : [secretid+ : P ], secretid0 : P ]

E = ∅[d : [dial0 : P ]]

F = ∅[e : [dial0 : P ]].

We can derive∅ ` Batphone.dial.id: [ ] as follows, using the type rules to be presented in

Section 3. The number to the right of each horizontal line indicates which type rule was

used.

E[x : [id0 : [ ]]] ` x : [id0 : [ ]]

E[x : [id0 : [ ]]] ` x : [ ]
(3.5)

E ` Man : [id0 : [ ]]
(3.2)

E ` Man : P
(3.5)

∅ ` Phone: [dial0 : P ]
(3.2)

F ` Batman.id.secretid: P
(3.3)

∅ ` Batphone: [dial0 : P ]

∅ ` Batphone.dial: P
(3.3)

∅ ` Batphone.dial.id: [ ]
(3.3)

(3.4)

Also,

F [y : Q] ` y : Q

F [y : Q] ` y : [secretid+ : P ]
(3.5)

F [z : Q] ` z : Q

F [z : Q] ` z : P
(3.5)

F ` Batman: Q

F ` Batman: [id+ : [secretid+ : P ]]

F ` Batman.id: [secretid+ : P ]
(3.3)

(3.5)
(3.2)

F ` Batman.id.secretid: P
(3.3)

Notice the five uses of subsumption:

[id0 : [ ]] ≤ [ ]

[id0 : [ ]] ≤ P

Q ≤ [secretid+ : P ]

Q ≤ P

Q ≤ [id+ : [secretid+ : P ]].



80

Satisfaction-closure ofR (excerpt) Lower-bound relation (excerpt)

(U , [`+ : [`+ : [m+ : [ ]]]]) ( [`+ : [`0 : W ]] , [`+ : [`+ : [m+ : [ ]]]] )

(U , [`+ : [`0 : W ]]) ( [`0 : W ] , [`+ : [m+ : [ ]]] )

(W , [m+ : [ ]]).

Figure 3.2. The satisfaction-closure (excerpt) of two constraints

Our second example illustrates our algorithm for solving constraints, particularly the role

of the closure operation. LetR consist of the following two constraints:

(U, [`+ : [`+ : [m+ : [ ]]]])

(U, [`+ : [`0 : W ]]),

whereU,W are type variables and̀,m are labels of fields. The satisfaction-closure ofR

and the accompanying lower-bound relation are shown in Figure 3.2 A pair(A,B) is in the

lower-bound relation when it has been deduced thatA andB must have a lower bound in

the subtype ordering.

Let us now explain how the rules for satisfaction-closure (Definition 3.5.1) generate

the constraints in the table above. Since both(U, [`+ : [`0 : W ]]) and (U, [`+ : [`+ :

[m+ : [ ]]]]) are in the sat-closure ofR, we have from Lemma 3.5.3, Property(C), that

([`+ : [`0 : W ]], [`+ : [`+ : [m+ : [ ]]]]) is in the lower bound relation, and hence, from

sat-closure rule (vii), we have that also([`0 : W ], [`+ : [m+ : [ ]]]) is in the lower-bound

relation. Finally, since([`0 : W ], [`+ : [m+ : [ ]]]) is in the lower-bound relation, we

have from sat-closure rule (viii) that(W, [m+ : [ ]]) is in the sat-closure ofR. Given

the sat-closure ofR, call it R′, our algorithm checks for satisfaction-inconsistency, that is,

subtyping constraints that obviously are unsatisfiable. In this case, the satisfaction-closure

is satisfaction-consistent, and our algorithm then constructs the following solutionSR′:

SR′(U) = [`+ : [`0 : [m+ : [ ]]]]

SR′(W ) = [m+ : [ ]].
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One might try to devise a constraint solving algorithm that would be an alternative to ours.

The constraint setR is a good benchmark: it seems nontrivial to derive(W, [m+ : [ ]])

without the help of a lower-bound relation.

Paper overview In Section 3.2, we define types and subtyping, and we give a decision

procedure for subtyping. In Section 3.3 we present an extension of an Abadi-Cardelli object

calculus, and in Section 3.4 we show that the type inference problem for that calculus is

equivalent to a constraint problem. In Section 3.5 we give anO(n3)-time algorithm for

solving constraints, and in Section 3.6 we show that the constraint problem is P-hard.

3.2 Types and subtyping

We will work with recursive types, and we choose to represent them by possibly infinite

trees.

3.2.1 Defining types as infinite trees

We useU , V to range over the setT V of type variables; we usek, `, m to range over

labels drawn from some possibly infinite setLabels of method names; and we usev to range

over the setVariances = {0,+} of variance annotations. Variance annotations are ordered

by the partial orderv such that0 v +, 0 v 0, and+ v +.

The alphabetΣ of our trees is defined

Σ = T V ∪ {σ ⊆ Labels× Variances | (`, v), (`, v′) ∈ σ ⇒ v = v′}.

A path is a finite sequenceα ∈ Labels∗ of labels, with juxtaposition for concatenation of

paths, andε for the empty sequence. Atypeor treeA is a partial function from paths into

Σ, whose domain is nonempty and prefix closed, and such that(`, v) ∈ A(α) for some

v ∈ Variances if and only ifA(α`) is defined. We useA, B, C to range over the setT (Σ)

of trees. Notice that types can contain type variables as leaves. We could simplify the

development by restricting ourselves to ground types. For example, the notions of subtype-

consistency and satisfaction-consistency would then coincide. However, we feel that it is

important to show how to handle type variables and therefore we do that in detail.

Note that trees need not be finitely branching or regular. Of course, we will be partic-
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ularly interested in two subsets ofT (Σ), the finite treesTfin(Σ) and the finitely branching

and regular treesTreg(Σ). Some definitions, results, and proofs are given in terms ofT (Σ),

in such a way that they immediately apply toTfin(Σ) andTreg(Σ). In particular, we will

state conditions on whether one tree is a subtype of another that result in analgorithm in

case both trees are inTfin(Σ) or Treg(Σ).

An example tree is given below, representing the nonregular type

[`+1 : U1, `
+ : [`+2 : U2, `

+ : [`+3 : U3, [`
+ : . . .]]]].

{(`1,+), (`,+)}
`1

ppppppp `
TTTTTTTT

U1 {(`2,+), (`,+)}
`2

jjjjjjjjjjjj `
TTTTTTTT

U2 {(`3,+), (`,+)}
`3

jjjjjjjjjjjj `

MMMMMMM

U3
.. .

We now introduce some convenient notation. We writeA(α) = ↑ if A is undefined on

α. If for all i ∈ I, Bi is a tree,̀ i is a distinct label, andvi ∈ Variances, then[`vi
i : B i∈I

i ]

is the treeA such that

A(α) =


{(`i, vi) | i ∈ I} if α = ε

Bi(α
′) if α = `iα

′ for somei ∈ I

↑ otherwise.

We abuse notation and writeU for the treeA such thatA(ε) is the type variableU and

A(α) = ↑ for all α 6= ε.

3.2.2 Defining subtyping via simulations

Definition 3.2.1. A relationR overT (Σ) is called asimulationif, whenever(A,A′) ∈ R,

we have the following conditions.

• For allU , A = U if and only ifA′ = U .

• For all`, v′,B′, if A′ = [`v
′
: B′, . . .], then there existv,B such thatA = [`v : B, . . .],

v v v′, and
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(B,B′) ∈ R, and

v′ = 0 implies(B′, B) ∈ R.

2

For example, the empty relation onT (Σ) and the identity relation onT (Σ) are both

simulations. Simulations are closed under unions and intersections, and there is a largest

simulation, which we call≤:

≤ =
⋃
{R | R is a simulation}.

Alternately,≤ can be seen as the maximal fixed point of a monotone function onP(T (Σ)×

T (Σ)). Then we immediately have the following result.

Lemma 3.2.2.A ≤ A′ if and only if

• For all U , A = U if and only ifA′ = U .

• For all `, v′,B′, if A′ = [`v
′
: B′, . . .], then there existv,B such thatA = [`v : B, . . .],

v v v′, and

B ≤ B′, and

v′ = 0 impliesB′ ≤ B.

All of these results are standard in concurrency theory, and have easy proofs, cf. [Mil90].

Similarly, it is easy to show that≤ is a preorder. Our simulations differ from the simula-

tions typically found in concurrency in that they are all anti-symmetric (again, the proof is

easy).

Lemma 3.2.3.≤ is a partial order.

Proof. See Appendix A.3. 2

We may apply the principle ofco-inductionto prove that one type is a subtype of

another:

Co-induction: To showA ≤ B, it is sufficient to find a simulationR such that

(A,B) ∈ R.
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3.2.3 An algorithm for subtyping

The co-induction principle results in an easy algorithm for subtyping onTfin(Σ) and

Treg(Σ). SupposeR is a relation on types, and we want to know whetherA ≤ B for every

(A,B) ∈ R. By co-induction this is equivalent to the existence of a simulation containing

R. And since simulations are closed under intersection, this is equivalent to the existence

of a smallestsimulation containingR. We can characterize this smallest simulation as

follows.

Definition 3.2.4. We say a relationR on types issubtype-closedif it satisfies the following

two properties.

• If ([`v : B, . . .], [`v
′
: B′, . . .]) ∈ R andv v v′, then(B,B′) ∈ R.

• If ([`0 : B, . . .], [`0 : B′, . . .]) ∈ R, then(B′, B) ∈ R.

2

Note that the subtype-closed relations on types are closed under intersection; therefore

for any relationR on types, we may define itssubtype-closureto be the smallest subtype-

closed relation containingR. Every simulation is subtype-closed, and subtype-closure is a

monotone operation.

Definition 3.2.5. We say a relationR on types issubtype-inconsistentif any of the follow-

ing cases hold.

• (U,A) ∈ R or (A,U) ∈ R for some distinctU andA.

• ([`+ : B, . . .], [`0 : B′, . . .]) ∈ R for somè ,B,B′.

• ([`vi
i : B i∈I

i ], [`v : B, . . .]) ∈ R for some`, v, B, and`i, vi, Bi for i ∈ I; and

furthermorè 6= `i for all i ∈ I.

We sayR is subtype-consistentiff R is not subtype-inconsistent. 2

Note that every simulation is subtype-consistent, and moreover, any subset of a subtype-

consistent set is subtype-consistent.
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Lemma 3.2.6.LetR be a relation on types. The following statements are equivalent.

i) A ≤ B for every(A,B) ∈ R.

ii) The subtype-closure ofR is a simulation.

iii) The subtype-closure ofR is subtype-consistent.

Proof.

• (ii) ⇒ (i): Suppose(A,B) ∈ R and letR′ be the subtype-closure ofR. We have

(A,B) ∈ R ⊆ R′ and thatR′ is a simulation, so by co-induction we have thatA ≤ B.

• (i) ⇒ (iii): R is a subset of≤, so by monotonicity and the fact that≤ is subtype-

closed, the subtype-closure ofR is a subset of≤. Then since≤ is subtype-consistent,

its subset, the subtype-closure ofR, is subtype-consistent.

• (iii) ⇒ (ii): Let R′ be the subtype-closure ofR, and suppose(A,A′) ∈ R′.

If A = U , by subtype-consistencyA′ = U ; and similarly, ifA′ = U , thenA = U .

If A′ = [`v
′

: B′, . . .], by subtype-consistencyA must be of the form[`v : B, . . .],

wherev v v′. Fromv v v′ andR′ being subtype-closed, we have(B,B′) ∈ R′. If

v′ = 0, then fromv v v′ we havev = 0, so fromR′ being subtype-closed, we have

(B′, B) ∈ R′.

2

This immediately suggests an algorithm for testing whetherA ≤ B forA,B ∈ Treg(Σ):

construct the subtype-closure of{(A,B)} and test whether it is subtype-consistent. Ifn is

the number of distinct subtrees ofA andB, then the subtype-closure of{(A,B)} is of size

at most the maximum number of pairs of subtrees fromA andB, that is,n2, and can be

constructed inn2 time. Consistency checking is linear, so the algorithm runs in timeO(n2).

Theorem 3.2.7.Subtyping onTreg(Σ) is decidable inO(n2) time.

In the remainder of the chapter, we only consider types inTreg(Σ).
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3.3 An Abadi-Cardelli Object Calculus

We now present an extension of an Abadi-Cardelli object calculus [AC96a] and a static

type system.

We usex, y to range over term variables. Expressions are defined by the following

grammar.

a, b, c ::= x variable

| [`vi
i = ς(xi)b

i∈1..n
i ] object (̀ i distinct)

| a.` field selection / method invocation

| (a.`⇐ ς(x)b) field update / method update

An object[`vi
i = ς(xi)b

i∈1..n
i ] has method names̀i and methodsς(xi)bi. The order of the

methods does not matter. Each methodς(x)b binds a namex which denotes the smallest

enclosing object, much like “this” in Java. Those names can be chosen to be different,

so within a nesting of objects, one can refer to any enclosing object. Each method name

`i is annotated with a variance annotationvi ∈ {0,+} which in the case of 0 indicates

that the method is both readable/invocable and writable/updateable, while it in the case of

+ indicates that the method is only readable/invocable. As syntactic sugar, we will allow

variance annotations to be omitted, and in such cases the default is 0. With this default, our

calculus is an extension of an Abadi-Cardelli calculus [AC96a]: a term in an Abadi-Cardelli

calculus is also a term in our calculus, namely one where all variance annotations implicitly

are 0. Avalueis of the form[`vi
i = ς(xi)b

i∈1..n
i ]. A programis a closed expression.

A confluent, small-step operational semantics is defined by the following rules:

• If a = [`vi
i = ς(xi)b

i∈1..n
i ], then, forj ∈ 1..n,

a.`j ; bj[xj := a], and

if vj = 0, then(a.`j ⇐ ς(y)b) ; a[`j ← ς(y)b].

• If b ; b′, thena[b] ; a[b′].

Here,bj[xj := a] denotes the expressionbj with a substituted for free occurrences ofxj

(renaming bound variables to avoid capture); anda[`j ← ς(y)b] denotes the expression
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a with the `j field replaced byς(y)b, preserving the variance annotation. Acontextis an

expression with one hole, anda[b] denotes the term formed by replacing the hole of the

contexta[·] by the termb (possibly capturing free variables inb).

An expressionb is stuckif it is not a value and there is no expressionb′ such thatb ; b′.

An expressionb goes wrongif ∃b′ : b ;∗ b′ andb′ is stuck.

A type environment is a partial function with finite domain which maps term variables

to types inTreg(Σ). We useE to range over type environments. We useE[x : A] to denote

a partial function which mapsx toA, and mapsy, wherey 6= x, toE(y).

The typing rules below allow us to derive judgments of the formE ` a : A, whereE is

a type environment,a is an expression, andA is a type inTreg(Σ).

E ` x : A (providedE(x) = A) (3.1)

E[xi : A] ` bi : Bi ∀i ∈ 1..n

E ` [`vi
i = ς(xi)b

i∈1..n
i ] : A

(whereA = [`i : B i∈1..n
i ]) (3.2)

E ` a : A

E ` a.` : B
(whereA ≤ [`+ : B]) (3.3)

E ` a : A E[x : A] ` b : B

E ` a.`⇐ ς(x)b : A
(whereA ≤ [`0 : B]) (3.4)

E ` a : A

E ` a : B
(whereA ≤ B) (3.5)

The first four rules express the typing of each of the four constructs in the object calculus

and the last rule is the rule of subsumption. We say that a programa is well-typed if

∅ ` a : A is derivable for someA. The following result can be proved by a well-known

technique [Nie89, WF94].

Theorem 3.3.1. (Type Soundness)Well-typed programs cannot go wrong.

The type inference problem for our extension of an Abadi-Cardelli calculus is: given a

terma, find a type environmentE and a typeA such thatE ` a : A, or decide that this is

impossible.
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3.4 Type Inference is equivalent to Constraint Solving

A substitutionS is a finite partial function from type variables to types inTreg(Σ),

written {U1 := A1, . . . , Un := An}. The set{U1, . . . , Un} is called thedomainof the

substitution. We identify substitutions with their graphs, and write(S1 ∪ S2) for the union

of two substitutionsS1 andS2; by convention, we assume thatS1 andS2 agree on variables

in their common domain, so(S1 ∪ S2) is a substitution. Substitutions are extended to total

functions from types to types in the usual way.

A relationR overTreg(Σ) is solvable if and only if there is a substitutionS such that for

all (A,B) ∈ R, we haveS(A) ≤ S(B). In the remainder of the chapter, we useR to range

over finite relations onTreg(Σ). We will refer to each(A,B) ∈ R as a constraint, and to

R as a set of constraints. For a finite relationR onTreg(Σ), the size ofR is the sum of the

sizes of occurrences of types inR. The size of a typeA is the number of distinct subtrees

of A.

We now prove that the type inference problem is logspace-equivalent to solving con-

straints.

3.4.1 From Type Inference to Constraint Solving

We first prove that the type inference problem is logspace-reducible to solving con-

straints.

We writeE ′ ≤ E if, wheneverE(x) = A, there is anA′ ≤ A such thatE ′(x) = A′.

Notice that the definition ofE ′ ≤ E allows E ′ to have a larger domain thatE. The

following standard result can be proved by induction on typings.

Lemma 3.4.1 (Weakening).If E ` c : C andE ′ ≤ E, thenE ′ ` c : C.

By a simple induction on typing derivations, we obtain the following syntax-directed

characterization of typings. The proof uses only the reflexivity and transitivity of≤.

Lemma 3.4.2 (Characterization of Typings).E ` c : C if and only if one of the following

cases holds:

• c = x andE(x) ≤ C;
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• c = a.`, and for someA, E ` a : A, A ≤ [`+ : C];

• c = [`vi
i = ς(xi)b

i∈1..n
i ], and for someA, and someBi, for i ∈ 1..n, E[xi : A] ` bi :

Bi, andA = [`i : B i∈1..n
i ] ≤ C; or

• c = (a.` ⇐ ς(x)b), and for someA andB, E ` a : A, E[x : A] ` b : B,

A ≤ [`0 : B], andA ≤ C.

Definition 3.4.3. Let c be an expression in which all free and bound variables are pairwise

distinct. We defineXc, Yc, Ec, andC(c) as follows.

• Xc is a set of fresh type variables. It contains a type variableUx for every term

variablex appearing inc.

• Yc is a set of fresh type variables. It contains a type variableVc′ for each occurrence of

a subtermc′ of c. (If c′ occurs more than once inc, thenVc′ is ambiguous. However,

it will always be clear from context which occurrence is meant.)

• Ec is a type environment, defined by

Ec = {x : Ux | x is free inc}.

• C(c) is the set of the following constraints overXc andYc:

For each occurrence inc of a variablex, the constraint

(Ux, Vx). (3.6)

For each occurrence inc of a subterm of the forma.`, the constraint

(Va, [`
+ : Va.`]) (3.7)

For each occurrence inc of a subterm of the form[`vi
i = ς(xi)b

i∈1..n
i ], the

constraint

([`vi
i : Vbi

i∈1..n], V[`
vi
i =ς(xi)b

i∈1..n
i ]) (3.8)

and for eachj ∈ 1..n, the constraints

Uxj
≡ [`vi

i : Vbi
i∈1..n]. (3.9)
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For each occurrence inc of a subterm of the form(a.`⇐ ς(x)b), the constraints

(Va, V(a.`⇐ς(x)b)) (3.10)

Va ≡ Ux (3.11)

(Va, [`
0 : Vb]). (3.12)

2

In the definition ofC(c), each equalityA ≡ B denotes the two constraints(A,B) and

(B,A).

Our definition of constraint generation is “global.” One can also specify constraint

generation in a local way, using inference rules and using existential quantifiers to represent

local (“fresh”) types variables, see, e.g., [SMZ99]. However, for the type system in this

chapter, there is no serious disadvantage to using the global approach.

Theorem 3.4.4.E ` c : C if and only if there is a solutionS of C(c) such thatS(Vc) = C

andS(Ec) ⊆ E.

Each direction of the theorem can be proved separately. However, the proofs share a

common structure, so for brevity we will prove them together. The two directions follow

immediately from the two parts of the next lemma.

Lemma 3.4.5.Let c0 be an expression. For every subtermc of c0,

i) if E ` c : C, then there is a solutionSc of C(c) such thatSc(Vc) = C andSc(Ec) ⊆

E; and

ii) if S is a solution ofC(c0), thenS(Ec) ` c : S(Vc).

Proof. The proof is by induction on the structure ofc. In (ii), we will often use the fact

that any solution toC(c0) (in particular,S) is a solution toC(c) ⊆ C(c0).

• If c = x, thenEc = {x : Ux} andC(c) = {(Ux, Vx)}.



91

i) Define Sc = {Ux := E(x), Vx := C}. ThenSc(Vc) = Sc(Vx) = C, and

Sc(Ec) = {x : E(x)} ⊆ E.

Furthermore, by Lemma 3.4.2,E(x) ≤ C, soSc is a solution toC(c).

ii) By (3.1), S(Ec) ` c : S(Ux).

And sinceS(Ux) ≤ S(Vx) = S(Vc), we haveS(Ec) ` c : S(Vc) by (3.5).

• If c = a.`, thenEc = Ea andC(c) = C(a) ∪ {(Va, [`+ : Va.`])}.

i) By Lemma 3.4.2, for someA, E ` a : A, A ≤ [`+ : C].

By induction there is a solutionSa of C(a) such thatSa(Va) = A andSa(Ea) ⊆

E.

DefineSc = Sa ∪ {Va.` := C}. ThenSc solvesC(c), Sc(Vc) = Sc(Va.`) = C,

andSc(Ec) = Sa(Ea) ⊆ E.

ii) By induction,S(Ea) ` a : S(Va).

SinceS(Va) ≤ S([`+ : Va.`]), by (3.5) we haveS(Ea) ` a : S([`+ : Va.`]).

Then by (3.3),S(Ea) ` a.` : S(Va.`).

SinceS(Va.`) = S(Vc), we haveS(Ea) ` a.` : S(Vc).

Finally,Ec = Ea andc = a.`, soS(Ec) ` c : S(Vc) as desired.

• If c = [`vi
i = ς(xi)b

i∈1..n
i ], thenEc =

⋃
i∈1..n(Ebi\xi), and

C(c) = { ([`vi
i : Vbi

i∈1..n], Vc) }

∪ { Uxj
≡ [`vi

i : Vbi
i∈1..n] | j ∈ 1..n }

∪ (
⋃
i∈1..n C(bi)).

i) By Lemma 3.4.2, for someA, and someBi for i ∈ 1..n, we haveE[xi : A] `

bi : Bi andA = [`vi
i : B i∈1..n

i ] ≤ C.

By induction, for everyi ∈ 1..n there is a substitutionSbi such thatSbi solves

C(bi), Sbi(Vbi) = Bi, andSbi(Ebi) ⊆ E[xi : A].

Let Sc = (
⋃
i∈1..n Sbi) ∪ {Vc := C} ∪ {Uxi

:= A | i ∈ 1..n}.
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Clearly, if Sc is well-defined, then it is a solution toC(c), Sc(Vc) = C, and

Sc(Ec) ⊆ E.

To show thatSc is well-defined, we first assume that the domain of anySbi is

Xbi ∪ Ybi (else restrictSbi to this set).

Then it suffices to show that for any distinctj, k ∈ 1..n, the substitutionsSbj

andSbk agree on all type variables in their common domain. And ifU is in the

domain of bothSbj andSbk , it must have the formUy for some term variabley

free in bothbj andbk.

Theny must be assigned a type byE, so the conditionsSbj(Ebj) ⊆ E[xj :

A] andSbk(Ebk) ⊆ E[xk : A] guarantee thatSbj(Uy) = E(y) = Sbk(Uy).

ThereforeSc is well-defined, as desired.

ii) By induction,S(Ebj) ` bj : S(Vbj) for all j ∈ 1..n.

By weakening,S(Ec ∪ {xj : Uxj
}) ` bj : S(Vbj) for all j ∈ 1..n.

SinceS solvesC(c), S(Uxj
) = S([`vi

i : Vbi
i∈1..n]) for all j ∈ 1..n.

Then by (3.2),S(Ec) ` c : S([`vi
i : Vbi

i∈1..n]).

Finally S([`vi
i : Vbi

i∈1..n]) ≤ S(Vc), so we haveS(Ec) ` c : S(Vc) by (3.5).

• If c = (a.`⇐ ς(x)b), thenEc = Ea ∪ (Eb\x), and

C(c) = C(a) ∪ C(b) ∪ {(Va, Vc), Va ≡ Ux, (Va, [`
0 : Vb])}.

i) By Lemma 3.4.2, for someA andB,E ` a : A,E[x : A] ` b : B,A ≤ [`0 : B],

andA ≤ C.

By induction there is a solutionSa of C(a) such thatSa(Va) = A andSa(Ea) ⊆

E, and a solutionSb of C(b) such thatSb(Vb) = B andSb(Eb) ⊆ E[x : A].

Let Sc = Sa ∪ Sb ∪ {Vc := C,Ux := A}. (We omit a proof thatSc is well-

defined; this can be shown just as in the previous case.)

ThenSc is a solution toC(c), Sc(Vc) = C, andSc(Ec) ⊆ E.

ii) By inductionS(Ea) ` a : S(Va) andS(Eb) ` b : S(Vb).
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By weakening,S(Ec) ` a : S(Va) andS(Ec[x : Ux]) ` b : S(Vb).

Then by (3.4),S(Ec) ` c : S(Va), and by (3.5),S(Ec) ` c : S(Vc).

2

3.4.2 From Constraint Solving to Type Inference

The following result is proved by a method similar to the one used by Palsberg [Pal95]

and Palsberg and Jim [PJ97].

Lemma 3.4.6.Solvability of constraints is logspace-reducible to the type inference prob-

lem.

Proof. It is straightforward to show that any constraint set overTreg(Σ) can be sim-

plified, in a solution-preserving way, such that each constraint is of the form(W,W ′)

whereW andW ′ are of the formsV or [`vi
i : V i∈1..n

i ], wherevi ∈ {0,+}, and where

V, V1, . . . , Vn are variables. The advantage of this simplification is that object types are not

nested syntactically. LetR be such a simplified constraint set. Define

aR = [ `0V = ς(x)(x.`V )

for each variableV in R

`0Q = ς(x)[`vi
i = ς(y)(x.`Vi

) i∈1..n]

for eachQ in R of the form[`vi
i : V i∈1..n

i ]

m0
Q,`j

= ς(x)((x.`Vj
⇐ ς(y)(x.`Q.`j)).`Q)

for eachQ in R of the form[`vi
i : V i∈1..n

i ]

and for eachj ∈ 1..n

k0
Q,`j

= ς(x)((x.`Q).`j ⇐ ς(y)(x.`Vj
))

for eachQ in R of the form[`vi
i : V i∈1..n

i ]

and for eachj ∈ 1..n with vj = 0

`0(W,W ′) = ς(x)((x.`W ′ ⇐ ς(y)(x.`W )).`W )

for each constraint(W,W ′) ∈ R

]

Notice thataR can be generated in log space.
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We first prove that ifR is solvable thenaR is typable. SupposeR has solutionS. Define

A = [ `0V : S(V ) for each variableV in R

`0Q : S(Q) for eachQ in R of the form[`vi
i : V i∈1..n

i ]

m0
Q,`j

: S(Q) for eachQ in R of the form[`vi
i : V i∈1..n

i ]

and for eachj ∈ 1..n

k0
Q,`j

: S(Q) for eachQ in R of the form[`vi
i : V i∈1..n

i ]

and for eachj ∈ 1..n with vj = 0

`0(W,W ′) : S(W ) for each constraint(W,W ′) ∈ R

]

It is straightforward to show that∅ ` aR : A is derivable.

We now prove that ifaR is typable, thenR is solvable. SupposeaR is typable. From

Theorem 3.4.4 we get a solutionS of C(aR).

Notice that each method inaR binds a variablex. Each of these variables corresponds

to a distinct type variable inC(aR). SinceS is a solution ofC(aR), andC(aR) contains

constraints of the formUx = [. . .] for each method inaR (from rule (3.9)), all those type

variables are mapped byS to the same type. Thus, we can think of all the bound variables

of methods ofaR as being related to the same type variable, which we will write asUx.

Notice also that most methods inaR bind a variabley. None of these variables are used

in aR, and each of them corresponds to a distinct type variable inC(aR). They will not play

any role in the rest of the proof. ForA = [`v : B, . . .], we defineA↓` = B.

Define

SR(V ) = S(Ux)↓`V for each variableV in R.

The definition is justified by Property 1 below.

• Property 1 If V is a variable inR, thenS(Ux)↓`V is defined.

• Property 2 For eachQ in R of the form[`vi
i : V i∈1..n

i ], we haveS(Ux)↓`Q = [`vi
i :

(S(Ux)↓`Vi
) i∈1..n].

We will proceed by first showing the two properties and then showing thatR has solution

SR.
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To see Property 1, notice that in the body of the method`V we have the expression

x.`V . SinceS is a solution ofC(aR), we have from the rules (3.6) and (3.7) thatS satisfies

(Ux, Vx) and(Vx, [`
+
V : Vx.`V ]),

so

S(Ux)↓`V ≤ S(Vx.`V ) (3.13)

We conclude that sinceS(Vx.`V ) is defined, alsoS(Ux)↓`V is defined.

To see Property 2, letQ be an occurrence inR of the form [`vi
i : V i∈1..n

i ]. For each

j ∈ 1..n, in the body of the methodmQ,`j , we have the expressionx′.`Vj
⇐ ς(y)(x.`Q.`j)

where we, for clarity, have written the first occurrence ofx asx′. SinceS is a solution of

C(aR), we have from the rules (3.6), (3.7), and (3.12), thatS satisfies

(Ux , Vx′) and (Vx′ , [`0Vj
: Vx.`Q.`j ]) (3.14)

(Ux , Vx) and (Vx , [`+Q : Vx.`Q ]) (3.15)

(Vx.`Q , [`+j : Vx.`Q.`j ]) (3.16)

Thus,

S(Ux)↓`Q ≤ S(Vx.`Q) from (3.15)

≤ [`+j : S(Vx.`Q.`j)] from (3.16)

= [`+j : (S(Ux)↓`Vj
)] from (3.14)

Therefore,

S(Ux)↓`Q ↓`j ≤ S(Ux)↓`Vj
(3.17)

In the body of the method̀Q we have the expression[`vi
i = ς(y)(x.`Vi

) i∈1..n]. SinceS

is a solution ofC(aR), we have from the rules (3.8) and (3.9) thatS satisfies

([`vi
i : Vx.`Vi

i∈1..n] , V[`
vi
i =ς(y)(x.`Vi

) i∈1..n]) (3.18)

Ux ≡ [. . . `0Q : V[`
vi
i =ς(y)(x.`Vi

) i∈1..n] . . .] (3.19)

Thus, from (3.18) and (3.19) we have

[`vi
i : S(Vx.`Vi

) i∈1..n] ≤ S(V[`
vi
i =ς(y)(x.`Vi

) i∈1..n]) = S(Ux)↓`Q, (3.20)

so
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S(Ux)↓`Vj
≤ S(Vx.`Vj

) from (3.13)

≤ S(Ux)↓`Q ↓`j from (3.20).

From that and (3.17) we conclude:

S(Ux)↓`Q ↓`j = S(Ux)↓`Vj
. (3.21)

For eachj ∈ 1..n with vj = 0, in the body of the methodkQ,`j , we have the expression

((x′.`Q).`j ⇐ ς(y)(x.`Vj
)) where we, for clarity, have written the first occurrence ofx as

x′. SinceS is a solution ofC(aR), we have from the rules (3.6), (3.7), and (3.12) thatS

satisfies

(Ux , Vx′) and (Vx′ , [`+Q : Vx′.`Q ]) (3.22)

(Vx′.`Q , [`0j : Vx.`Vj
]) (3.23)

Thus,

S(Ux)↓`Q ≤ S(Vx′.`Q) from (3.22)

≤ [`0j : S(Vx.`Vj
)] from (3.23)

From that and (3.20) we have that

• for eachj ∈ 1..n with vj = 0, the variance annotation of the`j field of S(Ux)↓`Q is

0, and

• for eachj ∈ 1..n with vj = +, the variance annotation of the`j field of S(Ux) ↓ `Q
is +.

Therefore, by (3.21), we have thatS(Ux)↓`Q = [`vi
i : (S(Ux)↓`Vi

) i∈1..n], that is, Property

2.

We can summarize Property 1 and 2 as follows.

• Property 3 If W is a left-hand side or a right-hand side of a constraint inR, then

S(Ux)↓`W is defined andSR(W ) = S(Ux)↓`W .
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We will now show thatR has solutionSR.

Consider a constraint(W,W ′) in R. The body of the method̀(W,W ′) contains the

expressionx′.`W ′ ⇐ ς(y)(x.`W ) where we, for clarity, have written the first occurrence of

x asx′. SinceS is a solution ofC(aR), we have from the rules (3.6), (3.12), (3.6) and (3.7)

thatS satisfies

(Ux , Vx′) and (Vx′ , [`0W ′ : Vx.`W ]) (3.24)

(Ux , Vx) and (Vx , [`+W : Vx.`W ]) (3.25)

We conclude

SR(W ) = S(Ux)↓`W from Property 3

≤ S(Vx.`W ) from (3.25)

= S(Ux)↓`W ′ from (3.24)

= SR(W ′) from Property 3

2

3.5 Solving Constraints

In this section we present an algorithm for deciding whether a relationR is solvable. We

first define the notions of satisfaction-closure (Section 3.5.1) and satisfaction-consistency

(Section 3.5.2), and then we prove that a relationR is solvable if and only its satisfaction-

closure is satisfaction-consistent (Theorem 3.5.12).

3.5.1 Satisfaction-closure

Definition 3.5.1. If R is a relation on types, we sayR is satisfaction-closed(abbreviated

sat-closed) if there exists relationL on types such that

i) if (A,B) ∈ R, then(A,A), (B,B) ∈ R.

ii) if (A,B), (B,C) ∈ R, then(A,C) ∈ R;

iii) if (A,B) ∈ R, then(A,B) ∈ L;

iv) if (A,B) ∈ L, then(B,A) ∈ L;
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v) if (A,B) ∈ L, and(B,C) ∈ R, then(A,C) ∈ L;

vi) if ([`+ : B, . . .], [`+ : B′, . . .]) ∈ R, then(B,B′) ∈ R;

vii) if ([`+ : B, . . .], [`+ : B′, . . .]) ∈ L, then(B,B′) ∈ L;

viii) if ([`0 : B, . . .], [`+ : B′, . . .]) ∈ L, then(B,B′) ∈ R;

ix) if ([`0 : B, . . .], [`0 : B′, . . .]) ∈ L, then(B,B′) ∈ R.

2

Notice that for a given relationR, we can construct a sat-closed relationR′ that includes

R, by lettingR′ consist of all pairs of subtrees of types that occur inR.

Notice also that the intersection of a family of sat-closed relations is itself sat-closed.

From that we have that for a given relationR, there is the smallest sat-closed relation that

includesR; we call that sat-closed relation thesat-closureof R.

Notice also that for a given sat-closed relationR, there is the smallest relationL such

that the sat-closure rules forR andL are satisfied; we callL the lower-bound relation for

R.

For a relationR, notice that the sat-closure ofR and the lower bound relation for the

sat-closure ofR are the pairwise-⊆-smallest pair(R′, L) that contains(R, ∅) such that

R′ is sat-closed. We can computeR′ andL by a straightforward fixed-point computation

that uses the sat-closure rules to monotonically add elements to the two relations. We

can analyze the complexity of the fixed-computation using a technique and a theorem of

McAllester [McA02], as follows. McAllester [McA02, Section 10] presents a technique for

encoding record types, such as the ones we use here, without using elipses. The encoding

entails a slight reformulation of the rules for sat-closure; however, the transitivity rule forR

(sat-closure rule (ii)) remains the key source of complexity. We can then apply a theorem

of McAllester [McA02, Theorem 1] to get that the fixed-point computation takesO(n3)

time wheren is the size ofR.

Define that(R,L) is solvable iff there exists a mappingS such that
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• if (A,B) ∈ R, thenS(A) ≤ S(B), and

• if (A,B) ∈ L, then there exists a typeC, such thatC ≤ S(A) andC ≤ S(B).

Lemma 3.5.2.A relation and its sat-closure have the same set of solutions.

Proof. Since the sat-closure of a relationR containsR, it follows that any solution of

the sat-closure ofR is also a solution ofR.

To prove the converse, we will prove the following more general property:

Any solution ofR is also a solution of the pairwise-⊆-smallest pair(R′, L)

that contains(R, ∅) such thatR′ is sat-closed.

We proceed by induction on the fixed-point computation of(R′, L) from (R, ∅). Each

iteration begins with a pair(R1, L1), and at the end of an iteration step, some pairs may

have been added toR1 andL1. We need to show that after each iteration, any solution ofR

is also a solution of the resulting pair of relations.

In the base case, we have that any solution ofR is also a solution of(R, ∅).

In the induction step, suppose(R1, L1) has a solutionS. For each of the nine sat-closure

rules, we need to show that the rules will only add pairs toR1 andL1 that have solutionS:

• Assume rule (i) has been used. The relation≤ is reflexive, soS(A) ≤ S(A) and

S(B) ≤ S(B), soS is still a solution.

• Assume rule (ii) has been used. From the induction hypothesis, we haveS(A) ≤

S(B) andS(B) ≤ S(C). The relation≤ is transitive, soS(A) ≤ S(C), soS is still

a solution.

• Assume rule (iii) has been used. From the induction hypothesis, we haveS(A) ≤

S(B), so a common≤-lower bound forS(A) andS(B) is S(A), so S is still a

solution.

• Assume rule (iv) has been used. From the induction hypothesis, we have thatS(A)

andS(B) have a common≤-lower bound, soS(B) andS(A) have a common≤-

lower bound, soS is still a solution.
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• Assume rule (v) has been used. From the induction hypothesis, we have thatS(A)

andS(B) have a common≤-lower boundD, and thatS(B) ≤ S(C). The relation

≤ is transitive, soD ≤ C, and henceD is a common≤-lower bound forS(A) and

S(C); soS is still a solution.

• Assume rule (vi) has been used. From the induction hypothesis, we have that[`+ :

S(B), . . .] ≤ [`+ : S(B′)]. From Lemma 3.2.2 we haveS(B) ≤ S(B′), soS is still

a solution.

• Assume rule (vii) has been used. From the induction hypothesis, we have that[`+ :

S(B), . . .] and[`+ : S(B′)] have a common≤-lower boundD. From Lemma 3.2.2

we have thatD = [`v : A] whereA ≤ S(B) andA ≤ S(B′), soA is a common

≤-lower bound forS(B) andS(C); soS is still a solution.

• Assume rule (viii) has been used. From the induction hypothesis, we have that[`0 :

S(B), . . .] and[`+ : S(B′)] have a common≤-lower boundD. From Lemma 3.2.2

we have thatD = [`0 : A] whereA = S(B) andA ≤ S(B′), soS(B) = A ≤ S(B′);

soS is still a solution.

• Assume rule (ix) has been used. From the induction hypothesis, we have that[`0 :

S(B), . . .] and[`0 : S(B′)] have a common≤-lower boundD. From Lemma 3.2.2

we have thatD = [`0 : A] whereA = S(B) andA = S(B′), soS(B) = A = S(B′),

and thereforeS(B) ≤ S(B′); soS is still a solution.

2

A sat-closed relation has the five properties that are expressed in the following lemma.

Lemma 3.5.3.SupposeR is sat-closed, and letL be the lower-bound relation forR.

(A) If ([`v : B, . . .], [`v
′
: B′, . . .]) ∈ L, then(B,B′) ∈ L.

(B) If (A,A′) ∈ L and(A,A1), (A
′, A2) ∈ R, then then(A1, A2) ∈ L.

(C) If (A,A1), (A,A2) ∈ R, then(A1, A2) ∈ L.
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(D) If ([`v : B, . . .], [`v
′
: B′, . . .]) ∈ R andv v v′, then(B,B′) ∈ R.

(E) If ([`0 : B, . . .], [`0 : B′, . . .]) ∈ R, then(B′, B) ∈ R.

Proof. For Property(A) there are four cases. Ifv = +, v′ = +, then from sat-closure

rule (vii) we have(B,B′) ∈ L. If v = 0, v′ = +, or v = 0, v′ = 0, then from sat-

closure rules (viii) or (ix), we have(B,B′) ∈ R, and then from sat-closure rule (iii) we

have(B,B′) ∈ L. Finally, if v = +, v′ = 0, then from sat-closure rule (iv) we have

([`v
′
: B′, . . .], [`v : B, . . .]) ∈ L, so from sat-closure rule (viii) we have(B′, B) ∈ R, so

from sat-closure rule (iii) we have(B′, B) ∈ L, and hence from sat-closure rule (iv) we

have(B,B′) ∈ L. So, in all cases(B,B′) ∈ L.

For Property(B), notice that from sat-closure rule (v),(A,A′) ∈ L, and(A′, A2) ∈ R,

we have(A,A2) ∈ L. From sat-closure rule (iv) and(A,A2) ∈ L, we have(A2, A) ∈ L.

From sat-closure rule (v),(A2, A) ∈ L, and(A,A1) ∈ R, we have(A2, A1) ∈ L, so from

sat-closure rule (iv) we have(A1, A2) ∈ L.

For Property(C), notice that from sat-closure rule (i) and(A,A1) ∈ Rwe have(A,A) ∈

R, so from sat-closure rule (iii) we have(A,A) ∈ L. From Property(B), (A,A) ∈ L, and

(A,A1), (A,A2) ∈ R we conclude that(A1, A2) ∈ L.

For Property(D) there are three cases. Ifv = +, v′ = +, then from sat-closure rule (vi)

we have(B,B′) ∈ R. If v = 0, v′ = +, or v = 0, v′ = 0, then from sat-closure rule (iv)

and([`v : B, . . .], [`v
′
: B′, . . .]) ∈ R, we have([`v : B, . . .], [`v

′
: B′, . . .]) ∈ L, so from

sat-closure rules (viii) or (ix), we have(B,B′) ∈ R.

For Property(E), we have from sat-closure rule (iii) that([`0 : B, . . .], [`0 : B′, . . .]) ∈

L, so from sat-closure rule (iv), we have([`0 : B′, . . .], [`0 : B, . . .]) ∈ L, so from sat-

closure rule (ix), we have(B′, B) ∈ R. 2

From Lemma 3.5.3, Properties(D) and(E), we have that if a relation is sat-closed, then

it is also subtype-closed.

3.5.2 Satisfaction-consistency

Definition 3.5.4. We sayR is satisfaction-inconsistent(abbreviated sat-inconsistent) if any

of the following two cases hold.
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• ([`+ : B, . . .], [`0 : B′, . . .]) ∈ R for somè ,B,B′.

• ([`vi
i : B i∈I

i ], [`v : B, . . .]) ∈ R for some`, v, B, and`i, vi, Bi for i ∈ I; and

furthermorè 6= `i for all i ∈ I.

We sayR is sat-consistentiff R is not sat-inconsistent. 2

Notice that if a relation is subtype-consistent, then it is also sat-consistent.

Lemma 3.5.5. If R is solvable, thenR is sat-consistent.

Proof. Immediate. 2

3.5.3 Main Result

We first list the terminology used in the later definitions. Recall thatTreg(Σ) is the set

of recursive types considered in this chapter.

Types = Treg(Σ)

States = P(Types)

RelTypes = P(Types × Types)

RelStates = P(States × States)
To define the solutionSR, we will need the following notation. We useg, h to range

over sets of types. Then we make the following definitions.

g.` = {B | ∃A ∈ g. A = [`v : B, . . .]}.

aboveR(g) = {B | ∃A ∈ g. (A,B) ∈ R}.

ABOVER(R′) = {(aboveR({A}), aboveR({B})) | (A,B) ∈ R′}.

Var(g, `) = u{v | ∃A ∈ g. (`, v) ∈ A(ε)}.

In the last definition,u is the greatest lower bound of a nonempty set of variances;u∅ is

undefined.

The types of the above definitions are

g.` : States→ States

aboveR : States→ States

ABOVER : RelTypes→ RelStates

Var : States× Labels→ Variances
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We defineLV : States→ P(Labels× Variances) such that for any setg of types we have

thatLV(g) is the labels and variances implied byg, namely

LV(g) = {(`, v) | v = Var(g, `)}.

For a relationR we build an automaton with states consisting of sets of types appearing

in R, and the following one-step transition function:

δR(g)(`) =

 aboveR(g.`) if g.` 6= ∅

undefined otherwise.

We write States(R) for the set of states of the automaton, and useg, h to range over

states.

The one-step transition function is extended to a many-step transition function in the

usual way.

δ∗R(g)(ε) = g,

δ∗R(g)(`α) = δ∗R(δR(g)(`))(α).

Any stateg defines a type,TypeR(g), and any relationR on States(R) defines a relation

on typesTYPER(R), as follows:

TypeR(g)(α) = LV(δ∗R(g)(α)),

TYPER(R) = {(TypeR(g),TypeR(h)) | (g, h) ∈ R}.

We have that
TypeR : States→ Types

TYPER : RelStates→ RelTypes

The following lemma expresses a fundamental property ofTypeR.

Lemma 3.5.6.TypeR(g)(`α) = TypeR(δR(g)(`))(α).

Proof.

TypeR(g)(`α) = LV(δ∗R(g)(`α)) (Definition ofTypeR)

= LV(δ∗R(δR(g)(`))(α)) (Definition of δ∗R)

= TypeR(δR(g)(`))(α) (Definition ofTypeR)

2



104

For any relationR on types, we defineSR to be the least substitution such that for every

U appearing inR we have

SR(U) = TypeR(aboveR({U})).

We claim that ifR is sat-closed and sat-consistent, thenSR is a solution toR.

To illustrate the definition ofSR, let us go into detail of the construction ofSR for the

sat-closed and sat-consistent constraint setR in Figure 3.2.

From Lemma 3.5.6, we have that ifLV(g) = {(`, v)}, then

TypeR(g) = [`v : TypeR(δR(g)(`))] = [`v : TypeR(aboveR(g.`))]. (3.26)

Let us now consider the relationR in Figure 3.2 and first note that we have:

aboveR({U}) = { U, [`+ : [`+ : [m+ : [ ]]]], [`+ : [`0 : W ]] }

aboveR({W}) = { W, [m+ : [ ]] }.

Next, let us calculateSR(W ):

SR(W ) = TypeR(aboveR({W})) (Definition ofSR)

= TypeR({ W, [m+ : [ ]] }) (Definition ofaboveR)

= [m+ : [ ]] (From 3.26).

Finally, let us calculateSR(U):

SR(U) = TypeR(aboveR({U})) (Definition ofSR)

= TypeR({ U, [`+ : [`+ : [m+ : [ ]]]], [`+ : [`0 : W ]] }) (Definition ofaboveR)

= [`+ : TypeR(aboveR({ [`+ : [m+ : [ ]]], [`0 : W ] }))] (From 3.26)

= [`+ : TypeR({ [`+ : [m+ : [ ]]]], [`0 : W ] })] (Definition ofaboveR)

= [`+ : [`0 : TypeR(aboveR({ [m+ : [ ]],W }))]] (From 3.26)

= [`+ : [`0 : TypeR({ [m+ : [ ]],W })]] (Definition ofaboveR)

= [`+ : [`0 : [m+ : [ ]]]] (From 3.26)

The first step in proving thatSR is a solution toR is to develop a connection between

subtype-closure andδ. Define the functionA : RelTypes → RelTypes by (A,B) ∈ A(R)

iff one of the following conditions holds:
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• (A,B) ∈ R.

• For somè , v, v′, such thatv v v′, we have([`v : A, . . .], [`v
′
: B, . . .]) ∈ R.

• For somè , we have([`0 : B, . . .], [`0 : A, . . .]) ∈ R.

Note, the subtype-closure of a relationR is the least fixed point ofA containingR.

Define the functionBR : RelStates → RelStates by (g, h) ∈ BR(R) iff one of the

following conditions holds:

• (g, h) ∈ R.

• For somè and(g′, h′) ∈ R, such that Var(g′, `) v Var(h′, `), we haveg = δR(g′)(`),

h = δR(h′)(`).

• For somè and(h′, g′) ∈ R, we haveg = δR(g′)(`), h = δR(h′)(`), Var(g′, `) = 0,

and Var(h′, `) = 0.

The next two lemmas (Lemma 3.5.7 and Lemma 3.5.8) are key ingredients in the proof

of Lemma 3.5.9. Lemma 3.5.7 states fundamental relationship betweenTYPER, A, and

BR. The intuition behind Lemma 3.5.7 is that it doesn’t matter whether we propagate

information about subtype relationships (usingBR andA) before or after we collapse the

sets of types in each state to single types (usingTYPER).

Lemma 3.5.7.The following diagram commutes:

RelStates
TYPER−−−−−−→ RelTypesyBR

yA
RelStates

TYPER−−−−−−→ RelTypes

Proof. To proveTYPER ◦ BR ⊆ A ◦ TYPER, supposeR ∈ RelStates and(A,B) ∈

TYPER ◦ BR(R). There must be a pair of states(g, h) ∈ BR(R) such thatA = TypeR(g)

andB = TypeR(h). We reason by cases on how(g, h) ∈ BR(R). From the definition of

BR we have that there are three cases.

First, suppose(g, h) ∈ R. We have(Type(g),Type(h)) ∈ TYPER(R), so from the

definition ofA we have(Type(g),Type(h)) ∈ A ◦ TYPER(R).
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Second, suppose for some` and(g′, h′) ∈ R, such that Var(g′, `) v Var(h′, `), we have

g = δR(g′)(`) andh = δR(h′)(`). From(g′, h′) ∈ R, we have(TypeR(g′),TypeR(h′)) ∈

TYPER(R). From Lemma 3.5.6 andg = δR(g′)(`), we have

TypeR(g′)(`α) = TypeR(δR(g′)(`))(α) (From Lemma 3.5.6)

= TypeR(g)(α) (From the definition ofg)

= A(α) (From the definition ofA)

so there must existvA = Var(g′, `) such that

Type(g′) = [`vA : A, . . .].

Similarly, there must existvB = Var(h′, `) such that

Type(h′) = [`vB : B, . . .].

From the characterizations ofTypeR(g′) andTypeR(h′), and from the definition ofA, we

have(A,B) ∈ A ◦ TYPER(R).

Third, suppose for somèand(h′, g′) ∈ R, we haveg = δR(g′)(`), h = δR(h′)(`),

Var(g′, `) = 0, and Var(h′, `) = 0. From(h′, g′) ∈ R, we have(TypeR(h′),TypeR(g′)) ∈

TYPER(R). From the definition ofTypeR we haveTypeR(g′) = [`0 : A, . . .] and

TypeR(h′) = [`0 : B, . . .], so, by the definition ofA, we have(A,B) ∈ A ◦ TYPER(R).

To proveA ◦ TYPER ⊆ TYPER ◦ BR, supposeR ∈ RelStates and(A,B) ∈ A ◦

TYPER(R). We reason by cases on how(A,B) ∈ A ◦ TYPER(R). From the definition

of A we have that there are three cases.

First, suppose(A,B) ∈ TYPER(R). There must existg andh such thatA = TypeR(g),

B = TypeR(h), and(g, h) ∈ R. From(g, h) ∈ R and the definition ofBR, we have that

(g, h) ∈ BR(R), so(A,B) ∈ TYPER ◦ BR.

Second, suppose for some`, v, andv′, such thatv v v′, we have([`v : A, . . .], [`v
′

:

B, . . .]) ∈ TYPER(R). There must existg′ andh′ such thatTypeR(g′) = [`v : A, . . .],

TypeR(h′) = [`v
′

: B, . . .], (g′, h′) ∈ R, Var(g′, `) = v, and Var(h′, `) = v′. Then

g = δR(g′)(`) andh = δR(h′)(`) are well defined, and(g, h) ∈ BR(R) by the definition
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of BR. And by the definition ofTypeR, A = TypeR(g) andB = TypeR(h), so(A,B) ∈

TYPER ◦ BR(R) as desired.

Third, suppose for somè, we have([`0 : B, . . .], [`0 : A, . . .]) ∈ TYPER(R). There

must existg′ andh′ such thatTypeR(g′) = [`0 : A, . . .], TypeR(h′) = [`0 : B, . . .],

and(h′, g′) ∈ R. By the definition ofTypeR, Var(g′, `) = 0 and Var(h′, `) = 0. Then

g = δR(g′)(`) andh = δR(h′)(`) are well defined, and(g, h) ∈ BR(R) by the definition

of BR. And by the definition ofTypeR, A = TypeR(g) andB = TypeR(h), so(A,B) ∈

TYPER ◦ BR(R) as desired. 2

Lemma 3.5.8.SupposeR is sat-closed. For alln, we have that if(g, h) ∈ BnR◦ABOVER(R),

theng ⊇ h.

Proof. Let L be the lower-bound relation forR. We will prove the following more

general property:

For all n,

if (g, h) ∈ BnR ◦ ABOVER(R), then

• g ⊇ h, and

• if A1, A2 ∈ g, then(A1, A2) ∈ L.

We proceed by induction onn. In the base case ofn = 0, suppose(g, h) ∈ ABOVER(R).

From the definition ofABOVER we have that we can chooseA,B such that(A,B) ∈ R,

g = aboveR({A}), andh = aboveR({B}). To proveg ⊇ h, supposeC ∈ h. We have

(B,C) ∈ R, and together with(A,B) ∈ R and transitivity ofR (sat-closure rule (ii)),

we have(A,C) ∈ R, soC ∈ g, and henceg ⊇ h. SupposeA1, A2 ∈ g. We have

(A,A1), (A,A2) ∈ R, so from Lemma 3.5.3, Property(C), we have that(A1, A2) ∈ L.

In the induction step, suppose(g, h) ∈ Bn+1
R ◦ ABOVER(R). From the definition of

BR we have that there are three cases. First, suppose(g, h) ∈ BnR ◦ ABOVER(R). From

the induction hypothesis we have that the two desired properties are satisfied.

Second, suppose for some` and(g′, h′) ∈ BnR ◦ ABOVER(R), such that Var(g′, `) v

Var(h′, `), we haveg = δR(g′)(`) andh = δR(h′)(`). From the induction hypothesis we
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haveg′ ⊇ h′. Fromg′ ⊇ h′ and the definition onδR it is immediate thatg ⊇ h. Suppose

A1, A2 ∈ g. Fromg = δR(g′)(`) and the definition ofδR, we have that there exists[`v :

A′1, . . .], [`
v′ : A′2, . . .] ∈ g′, and(A′1, A1), (A

′
2, A2) ∈ R. From the induction hypothesis we

have([`v : A′1, . . .], [`
v′ : A′2, . . .]) ∈ L, so from Lemma 3.5.3, property(A), we have that

(A′1, A
′
2) ∈ L. From Lemma 3.5.3, Property(B), (A′1, A

′
2) ∈ L, (A′1, A1), (A

′
2, A2) ∈ R we

have(A1, A2) ∈ L.

Third, suppose for somèand(h′, g′) ∈ BnR ◦ ABOVER(R), we haveg = δR(g′)(`),

h = δR(h′)(`), Var(g′, `) = 0, and Var(h′, `) = 0. From the definition ofδR and Var(g′, `) =

0, we have that there exists at least one type[`0 : A, . . .] ∈ g′. From the induction hypoth-

esis we haveh′ ⊇ g′. Thus, [`0 : A, . . .] ∈ h′. To proveg ⊇ h, supposeB ∈ h. By

the definition ofδR and Var(h′, `) = 0, there must exist a type[`0 : B′, . . .] ∈ h′ such

that (B′, B) ∈ R. From the induction hypothesis and[`0 : A, . . .], [`0 : B′, . . .] ∈ h′, we

have([`0 : A, . . .], [`0 : B′, . . .]) ∈ L. From sat-closure rule (ix), we have(A,B′) ∈ R.

Therefore, from the transitivity ofR (sat-closure rule (ii)) and(A,B′), (B′, B) ∈ R, we

have(A,B) ∈ R, soB ∈ g, and henceg ⊇ h. The property that “ifA1, A2 ∈ g, then

(A1, A2) ∈ L” can be proved in the same way as in the previous case.

2

Lemma 3.5.9. If R is sat-closed, then the subtype-closure ofTYPER ◦ ABOVER(R) is

subtype-consistent.

Proof.

The subtype-closure ofTYPER ◦ ABOVER(R)

=
⋃

0≤n<∞
An ◦ TYPER ◦ ABOVER(R) (Definition of subtype-closure)

=
⋃

0≤n<∞
TYPER ◦ BnR ◦ ABOVER(R) (Lemma 3.5.7)

=
⋃

0≤n<∞

⋃
(g,h)∈Bn

R◦ABOVER(R)

{(TypeR(g),TypeR(h))} (Definition ofTYPER).

From Lemma 3.5.8 we have that if(g, h) ∈ BnR ◦ABOVER(R), theng ⊇ h. If g ⊇ h, then

it is immediate from the definition ofTypeR that {(TypeR(g),TypeR(h))} is subtype-

consistent. Thus, the subtype-closure ofTYPER ◦ ABOVER(R) is the union of a family
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of subtype-consistent relations. Since the union of a possibly infinite family of subtype-

consistent relations is itself subtype-consistent, we conclude that the subtype-closure of

TYPER ◦ ABOVER(R) is subtype-consistent. 2

The following lemma is a key ingredient in the proof of Lemma 3.5.11. The two lem-

mas 3.5.10 and 3.5.11 are the two places where it is needed that a relation is satisfaction-

consistent.

Lemma 3.5.10.If A = [`v : B, . . .] appears inR andR is sat-closed and sat-consistent,

then

aboveR((aboveR({A})).`) = aboveR({B}).

Proof. To prove the direction⊇, notice that from sat-closure rule (i) andA appearing

in R, we have(A,A) ∈ R, soA ∈ aboveR({A}), henceB ∈ (aboveR({A})).`, and thus

aboveR((aboveR({A})).`) ⊇ aboveR({B}).

To prove the direction⊆, supposeC ∈ aboveR((aboveR({A})).`). From that we have

there existsC ′ ∈ (aboveR({A})).` such that(C ′, C) ∈ R. FromC ′ ∈ (aboveR({A})).`

we have that there exists[`v
′

: C ′, . . .] such that(A, [`v
′

: C ′, . . .]) ∈ R. From sat-

consistency and(A, [`v
′

: C ′, . . .]) ∈ R, we have thatv v v′. From Lemma 3.5.3,

Property(D), (A, [`v
′

: C ′, . . .]) ∈ R, andv v v′, we have that(B,C ′) ∈ R. From

transitivity ofR (sat-closure rule (ii)) and(B,C ′), (C ′, C) ∈ R, we have(B,C) ∈ R, so

C ∈ aboveR({B}). 2

Recall that for any relationR on types, we have definedSR to be the least substitution

such that for everyU appearing inR, we haveSR(U) = TypeR(aboveR({U})).

Lemma 3.5.11.If R is sat-closed and sat-consistent, then

i) for any typeA appearing inR, SR(A) = TypeR ◦ aboveR({A}); and

ii) SR(R) = TYPER ◦ ABOVER(R).



110

Proof. The second property is an immediate consequence of the first property.

To prove the first property, we will, by induction onα, show that for allα, for all A

appearing inR, SR(A)(α) = TypeR ◦ aboveR({A})(α).

If α = ε andA is a type variable, the result follows by definition ofSR.

If α = ε andA = [`vi
i : B1..n

i ], thenSR(A)(α) = {(`i, vi) | i ∈ 1..n} andTypeR ◦

aboveR({A})(α) = LV(aboveR({A})). From sat-closure rule (i) andA appearing inR,

we have(A,A) ∈ R, soA ∈ aboveR({A}). FromA ∈ aboveR({A}) and sat-consistency,

we haveLV(aboveR({A})) = LV({A}) = {(`i, vi) | i ∈ 1..n}, as desired.

If α = `α′ andA is a type variable, the result follows by definition ofSR.

If α = `α′ andA = [`v : B, . . .], then

SR(A)(α)

= SR(B)(α′) (Definition ofSR)

= TypeR ◦ aboveR({B})(α′) (Induction hypothesis)

= LV(δ∗R(aboveR({B}))(α′)) (Definition ofTypeR)

= LV(δ∗R(aboveR((aboveR({A})).`))(α′)) (Lemma 3.5.10)

= LV(δ∗R(δR(aboveR({A}))(`))(α′)) (Definition of δR)

= LV(δ∗R(aboveR({A}))(`α′)) (Definition of δ∗R)

= TypeR ◦ aboveR({A})(α) (Definition ofTypeR andα = `α′).

If α = `α′ andA is a record without aǹ field, thenSR(A)(α) is undefined. By sat-

consistency, noC ∈ aboveR({A}) has aǹ field, so from the definition ofTypeR we have

thatTypeR ◦ aboveR({A})(`α′) is undefined, as desired. 2

We are now ready to prove the main result of this section.

Theorem 3.5.12.R is solvable if and only if its sat-closure is sat-consistent.

Proof. If R is solvable, then we have from Lemma 3.5.2 that the sat-closure ofR is

solvable, so from Lemma 3.5.5 we have the sat-closure ofR is sat-consistent.



111

Conversely, letR′ be the sat-closure ofR, and assume thatR′ is sat-consistent. From

Lemma 3.5.9 and Lemma 3.5.11, we have that the subtype-closure ofSR′(R′) is subtype-

consistent, so from Lemma 3.2.6, we have thatR′ has solutionSR′, and so from Lemma 3.5.2

we have thatR has solutionSR′. 2

In summary, to solve a constraint setR, we proceed as follows. First, we compute the

sat-closureR′ ofR (this takesO(n3) time wheren is the size ofR). Next, theR′ is checked

for sat-consistency (this takesO(n) time). If R′ is sat-inconsistent, thenR is not solvable,

otherwiseSR′ is an example of a solution ofR. Thus, we have shown the following result.

Corollary 3.5.13. Satisfiability of a constraint set is decidable inO(n3) time.

3.6 P-hardness

Theorem 3.6.1.Solvability of constraints is P-hard.

Proof. An SC-system (simple constraint set) is a finite set of constraints of the forms

V ≡ V ′

(V , [`0i : V i∈1..n
i ]).

Notice that any SC-system is a constraint set. Thus it is sufficient to prove that solvability

of SC-systems overTreg(Σ) is P-hard. We will do that by reducing a closely related P-hard

problem to this problem.

Let T 0
reg(Σ) be the subset ofTreg(Σ) where all variance annotations are 0. In [Pal95] it

is proved that solvability of SC-systems overT 0
reg(Σ) is P-hard.

Let R be an SC-system. It is sufficient to prove thatR is solvable overTreg(Σ) if and

only if it is solvable overT 0
reg(Σ).

It is immediate that ifR is solvable overT 0
reg(Σ) then it is solvable overTreg(Σ).

Conversely, suppose thatR is solvable overTreg(Σ), and letR′ be the sat-closure ofR.

We have thatSR′ is a solution ofR′, and therefore, by Lemma 3.5.2,SR′ is also a solution

of R. By Lemma 3.6.2,SR′ maps all variables inR to elements ofT 0
reg(Σ), 2
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Lemma 3.6.2.LetR be an SC-system, and letR′ be the sat-closure ofR. If R is solvable

overTreg(Σ), thenSR′(V ) ∈ T 0
reg(Σ) for all V in R.

Proof. From the sat-closure rules, it follows thatR′ is an SC-system as well. It is

clear from the definition thataboveR′ produces only types inT 0
reg(Σ). Also by definition,

TypeR′(g)(α) = LV(δ∗R′(g)(α)), and, by the definition ofδR′, we have thatδ∗R′(g)(α)

is a set of types inT 0
reg(Σ) for any type setg and pathα. Thus, the functionTypeR′

produces only types inT 0
reg(Σ). SinceSR′(V ) = TypeR′(aboveR′({V })), we have that

SR′(V ) ∈ T 0
reg(Σ). 2

3.7 Conclusion

We can do type inference in polynomial time for objects with both covariant and invari-

ant fields. Covariant read-only fields can be either explicitly specified or discovered by our

algorithm. Perhaps surprisingly, specifying read-only fields explicitly seems not to make

type inference easier.

It may be possible to represent types as feature trees and thereby build a connection to

solving feature constraints [MNP00]; this is left to future work.

An interesting idea for an alternative approach to type inference that may be able to

handle all variances{0,+,−} was suggested by one of the anonymous reviewers. The idea

is to define a metricd(A,B) on the types, and show that it is a complete metric space and

all the constructions are contractive (or non-expansive). Then with the Banach Fixpoint

Theorem, we may be able show that there is a solution if the closure is consistent. This

approach is similar to [MPS86, AW93] and is an interesting idea for future work.
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4. Efficient Type Inference for Record Concatenation and Subtyping

4.1 Introduction

4.1.1 Background

In Cardelli’s untyped Obliq language [Car95], the operation

clone(a1, . . . , an)

creates a new object that contains the fields and methods of all the argument objects

a1, . . . , an. This is done by first cloning each ofa1, . . . , an, and then concatenating the

clones. An error is given in case of field name conflicts, that is, in case at least two of

a1, . . . , an have a common field. Cardelli notes that useful idioms are:

clone(a, {l : v})

to inherit the fields ofa and add a new fieldl with initial valuev, and:

clone(a1, a2)

to multiply inherit froma1 anda2.

Obliq’s multiple-object cloning is an instance of the idea of concatenating two records

of data. In a similar fashion, languages such as C++ [Str93] and Borning and Ingalls’

[BI82] version of Smalltalk allow multiple inheritance of classes.

In this chapter, we focus on languages such as Obliq where concatenation is a run-

time operation and where a field name conflict is considered an error; such concatenation

is known assymmetric concatenation. There are several ways of handling field name con-

flicts. One idea is to do run-time checking, and thereby add some overhead to the execution

time. Another idea, which we pursue here, is to statically detect field name errors by a type

system. The main challenge for such a type system is to find out which objects will even-

tually be concatenated and give them types that support concatenation.
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Type systems for record concatenation have been studied by Wand [Wan91], Harper

and Pierce [HP91], Remy [Rem92], Shields and Meijer [SM01], Tsuiki [Tsu94], Zwanen-

burg [Zwa95, Zwa96] and others. These type systems use ideas such as row variables,

present-fields and absent-fields, type-indexed rows, second-order types, and intersection

types. More recently, Sulzmann [Sul97] and Pottier [Pot00] have studied type inference

with the combination of record concatenation and subtyping. None of these algorithms are,

as far as we are aware, known to run in polynomial time.

In this chapter, we investigate the idea of using variance annotations [PS93, AC96a]

together with subtyping and recursive types as the basis for typing record concatenation.

Following Glew [Gle00], we will use two forms of record types. The variance annotation

0, as in

[`i : B i∈1..n
i ]0,

denotes that records of that typecanbe concatenated, and that subtypingcannotbe used.

The variance annotation→, as in

[`i : B i∈1..n
i ]→,

denotes that records of that typecannotbe concatenated, and that subtypingcanbe used.

For example, if we have

[l : 5,m : true] : [l : int,m : boolean]0

[n : 7] : [n : int]0

then for the concatenation (denoted by+) of the two records we would get

[l : 5,m : true] + [n : 7] : [l : int,m : boolean]0 ⊕ [n : int]0

= [l : int,m : boolean, n : int]0.

where⊕ is the symmetric concatenation operation on record types which is only defined

when the labels sets are disjoint and the two types both have the variance annotation 0. The

idea is that if an object has type[li : ti]
0, then we know exactly which fields are in the

object, and hence we know which other fields we can safely add without introducing a field
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name conflict. The more flexible types[`i : B i∈1..n
i ]→ can be used to type objects that will

not be concatenated with other objects.

We restrict our attention to width-subtyping for types with variance annotation→, and

we allow subtyping from variance annotation0 to→. Going from0 to→ is in effect to

forget that a record of that type can be concatenated with other records. Our type system is

simpler and less expressive than some previous type systems for record concatenation. Our

goal is to analyze the computational complexity of type inference. That complexity may

well be less than the complexity of type inference for some of the more expressive type

systems.

4.1.2 Our Result

We present the design of a type inference algorithm for the Abadi-Cardelli object cal-

culus extended with a concatenation operator. The type system supports subtyping and

recursive types. Our algorithm enables type checking of Obliq programs without changing

the programs at all; extending our results to Obliq is left for future work. We prove that the

type inference problem is NP-complete.

Our NP algorithm works by reducing type inference to the problem of solving a set of

constraints. A constraint is a pair(A,B), whereA andB are types that may contain type

variables and the concatenation operator⊕; and the goal is to find a substitutionS such

that for each constraint(A,B), we haveS(A) ≤ S(B) where≤ is the subtype order. We

will useR to range over sets of constraints; we will often refer toR as a relation on types.

A key theorem states:

Theorem A set of constraints is solvable if and only there exists a closed su-

perset which is consistent.

Here, “closure” means that certain syntactic consequences of the constraints have been

added to the constraint set, and “consistent” means that there are no obviously unsatisfiable

constraints (e.g.,([m : V ]0, [l : U ]0)). The algorithm constructs a solution from a closed,

consistent constraint set. To solve a constraint setR generated from a programa, we first

guess a supersetR′ of R. Next we check thatR′ is closed and consistent; this can be
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done in polynomial time. This framework has been used for solving subtype constraints

for a variety of types [Pal95, KPS94, PWO97, PO95, PS96, PZJ02]. A key difference from

these papers is that our constraint problem does not admit asmallestclosed superset which

is consistent. As a reflection of that, the algorithms in [Pal95, KPS94, PWO97, PO95,

PS96, PZJ02] all run in polynomial time, while the type inference problem considered here

is NP-complete. This is because in the referenced papers, the smallest closed superset of a

given constraint set can be computed in polynomial time, while our algorithm has to guess

a closed superset.

All type-inference algorithms based on this framework, including the one in this chap-

ter, can be viewed as whole-program analyses because they use a constraint set generated

from the whole program. A whole-program analysis can be made modular in several ways

[CC02]. For example, we can generalize to type inference with respect to a fixed (non-

empty) typing environment. One would start the algorithm with an initial set of constraints

for program variables, derived from that fixed environment. Thus, one could collect (or

constrain) the substitution provided by a run of the algorithm as an interface to a further

program fragment that uses the first one as a library.

Our algorithm uses a new notion of closure and a traditional notion of consistency.

Our seven closure rules capture various aspects of the subtyping order. For example, one

closure rule ensures that if

(V ⊕ V ′, [l : U ]→)

is a constraint, then eitherV or V ′ must be forced to have anl-field, as illustrated in the ex-

ample below. That closure rule highlights why the type inference problem is NP-complete:

there is a choice which possibly later has to be undone.

In our proof of the main theorem we use the technique of Palsberg, Zhao, and Jim

[PZJ02] that employs a convenient characterization of the subtyping order (Lemma 4.2.6).

The characterization uses notions of subtype-closure and subtype-consistency that are dif-

ferent, yet closely related, to the already-mentioned notions of what we for clarity will call

satisfaction-closure and satisfaction-consistency. The chapter 3 (see also [PZJ02]) con-

cerns type inference with both covariant and invariant fields, and for types that all allow
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width-subtyping. In the present chapter, all fields are invariant, but some types (those with

the variance-annotation 0) do not admit non-trivial subtyping. While the type inference

algorithms reported in the two chapters are entirely different, their correctness proofs have

the same basic structure.

4.1.3 Example

We now present an example that gives a taste of the definitions and techniques that are

used later in the chapter. Our example programa has two methodsl andm:

a = [l = ς(x)(x.l + x.m).k, m = ς(y)y.m].

When running our type inference algorithm by hand on this program, the result is thata is

typable with type

a : [l : µα.[k : α]0,m : [ ]0]0.

The goal of this section is to illustrate how the algorithm arrives at that conclusion.

We can use the rules in Section 4.4 to generate the following set of constraints, called

R. In the left column are all occurrences of subterms in the program; in the right column

are the constraints generated for each occurrence. We useA ≡ B to denote the pair of
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constraints(A,B) and(B,A).

Occurrence Constraints

x (Ux, Vx)

y (Uy, Vy)

a ([l : V(x.l+x.m).k, m : Vy.m]0, Va)

Ux ≡ [l : V(x.l+x.m).k, m : Vy.m]0

Uy ≡ [l : V(x.l+x.m).k, m : Vy.m]0

(x.l + x.m).k (Vx.l+x.m, [k : U(x.l+x.m).k]
→)

(U(x.l+x.m).k, V(x.l+x.m).k)

x.l + x.m (Vx.l ⊕ Vx.m, Vx.l+x.m)

x.l (Vx, [l : Ux.l]
→)

(Ux.l, Vx.l)

x.m (Vx, [m : Ux.m]→)

(Ux.m, Vx.m)

y.m (Vy, [m : Uy.m]→)

(Uy.m, Vy.m)

Notice that, for each bound variablex, we have a type variableUx. Moreover, for each

occurrence ofx, we have a type variableVx. Intuitively, Ux stands for the type ofx in

the type environment, whileVx stands for the type of an occurrence ofx after subtyping.

Similarly,Ux.l stands for the type ofx.l before subtyping, whileVx.l stands for the type of

x.l after subtyping.

Next, our type inference algorithm will guess a so-called satisfaction-closed supersetR′

of R. We will here display and motivate some of the interesting constraints in a particular

R′. First, from the constraints

(Ux, Vx)

(Vx, [l : Ux.l]
→)

and transitivity, we have

(Ux, [l : Ux.l]
→)
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in R′. Second, from that constraint and

Ux ≡ [l : V(x.l+x.m).k, m : Vy.m]0

and the observation that fields have invariant subtyping, we have

(V(x.l+x.m).k, Ux.l)

in R′. Third, from the constraints

(Vx.l ⊕ Vx.m, Vx.l+x.m)

(Vx.l+x.m, [k : U(x.l+x.m).k]
→)

and transitivity, we have

(Vx.l ⊕ Vx.m, [k : U(x.l+x.m).k]
→)

inR′. At this point there is a choice. We can force eitherVx.l orVx.m to be mapped to a type

with a k-field. Since there are no other significant constraints on eitherVx.l or Vx.m, both

choices will be fine. Our algorithm chooses the first one, and so we have the constraint

(Vx.l, [k : U(x.l+x.m).k]
→)

in R′. After this constraint has been added, we can apply transitivity three times to:

(U(x.l+x.m).k, V(x.l+x.m).k)

(V(x.l+x.m).k, Ux.l)

(Ux.l, Vx.l)

(Vx.l, [k : U(x.l+x.m).k]
→)

so we have

(U(x.l+x.m).k, [k : U(x.l+x.m).k]
→)

in R′. The last constraint makes it apparent that recursive types are needed to solve the

constraint system and therefore to type the example program.
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Note that the choice we made in applying closure rules to(Vx.l⊕Vx.m, [k : U(x.l+x.m).k]
→)

implies that sometimes there is no unique solution to our type-inference problem.

Thus, if we want to do type inference for a program fragment without an initial type en-

vironment, the best we can do is to generate the constraints, perhaps simplify them [Pot96],

and delay solving them until the constraints for the other program fragments become avail-

able.

Once our type inference algorithm has guessed a sat-closedR′, it checks whetherR′ is

sat-consistent, that is, whether there is at least one constraint which obviously is unsolvable,

e.g.,([m : V ]0, [l : U ]0). If R′ is not sat-consistent, thenR has no solution. In the case of

the example program,R′ is sat-consistent, and our type inference algorithm then derives

the following solution fromR′. Define

P ≡ µα.[k : α]0

Q ≡ [l : P,m : [ ]0]0

E ≡ ∅[x : Q]

F ≡ ∅[y : Q],

whereP,Q are types, andE,F are type environments. Note that we use so-called equi-

recursive types that satisfy a certain equation, rather than the kind of recursive types that

have to be explicitly folded and unfolded.

We can derive∅ ` a : Q as follows.

E ` (x.l + x.m) : [k : P ]0

E ` (x.l + x.m) : [k : P ]→

E ` (x.l + x.m).k : P

F ` y : Q

F ` y : [m : [ ]0]→

F ` y.m : [ ]0

∅ ` a : Q

Notice the two uses of subsumption:

[k : P ]0 ≤ [k : P ]→

Q ≤ [m : [ ]0]→.
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We can deriveE ` (x.l + x.m) : [k : P ]0 as follows. Notice that[k : P ]0 = [k : P ]0 ⊕ [ ]0.

E ` x : Q

E ` x : [l : [k : P ]0]→

E ` x.l : [k : P ]0

E ` x : Q

E ` x : [m : [ ]0]→

E ` x.m : [ ]0

E ` (x.l + x.m) : [k : P ]0

Notice the two uses of subsumption:

Q ≤ [l : [k : P ]0]→

Q ≤ [m : [ ]0]→.

We derive the first of these inequalities using the unfolding rule for recursive types to get

P = µα.[k : α]0 = [k : µα.[k : α]0]0 = [k : P ]0,

and therefore

Q = [l : P,m : [ ]0]0 = [l : [k : P ]0,m : [ ]0]0.

Here is an alternative typing, which arises from forcingVx.m to be mapped to a type

with ak-field:

∅ ` a : [l : [ ]0,m : [k : [ ]0]0]0.

4.2 Types and Subtyping

We will work with recursive types, and we choose to represent them by possibly infinite

trees.

4.2.1 Defining types as infinite trees

We useU , V to range over the setT V of type variables; we usek, `, m to range over

labels drawn from some possibly infinite setLabels of method names; and we usev to range

over the setVariances = {0,→} of variance annotations. Variance annotations are ordered

by the smallest partial orderv such that0 v→.

The alphabetΣ of our trees is defined

Σ = T V ∪ (P(Labels)× Variances).
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A path is a finite sequenceα ∈ Labels∗ of labels, with juxtaposition for concatenation of

paths, andε for the empty sequence. Atypeor treeA is a partial function from paths into

Σ, whose domain is nonempty and prefix closed, and such thatA(α) = ({`i | i ∈ I}, v) if

and only if∀i, A(α`i) is defined. We useA,B, C to range over the setT (Σ) of trees.

Note that trees need not be finitely branching or regular. A regular tree has finitely

many distinct subtrees [Cou83]. Of course, we will be particularly interested in two sub-

sets ofT (Σ), the finite treesTfin(Σ) and the finitely branching and regular treesTreg(Σ).

Some definitions, results, and proofs are given in terms ofT (Σ), in such a way that they

immediately apply toTfin(Σ) andTreg(Σ).

An example tree is given below.

({`1, `}, 0)
`1

vvvvv `
OOOOOO

U1 ({`2, `}, 0)
`2

oooooooo `
OOOOOO

U2 ({`3, `}, 0)
`3

oooooooo `
GGG

GGG

U3
...

We now introduce some convenient notation. We writeA(α) = ↑ if A is undefined on

α. If for all i ∈ I, Bi is a tree,̀ i is a distinct label, andv ∈ Variances, then[`i : B i∈I
i ]v

is the treeA such that

A(α) =


({`i | i ∈ I}, v) if α = ε

Bi(α
′) if α = `iα

′ for somei ∈ I

↑ otherwise.

We abuse notation and writeU for the treeA such thatA(ε) is the type variableU and

A(α) = ↑ for all α 6= ε.

Recursive types are regular trees, and they can be presented byµ-expressions [Cou83,

AC93] generated by the following grammar:

A,B ::= U, V type variable

| [`i : B i∈1..n
i ]φ object type (̀i’s distinct,φ ::= 0 |→)

| µU.A recursive type
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We can now define the concatenation operator⊕. If

A = [`i : B i∈I
i ]0

A′ = [`i : B i∈I′
i ]0

andI ∩ I ′ = ∅, then

A⊕ A′ = [`i : B i∈I∪I′
i ]0,

and otherwiseA⊕ A′ is undefined.

4.2.2 Defining Subtyping via Simulations

Our subtyping order supports width subtyping but not depth subtyping.

Definition 4.2.1. A relationR overT (Σ) is called asimulationif for all (A,A′) ∈ R, we

have the following conditions.

• For allU , A = U if and only ifA′ = U .

• For all `i, i ∈ I ′,B′
i, if A′ = [`i : B′ i∈I′

i ]φ
′
, then there existBi such that

A = [`i : B i∈I
i ]φ, I ′ ⊆ I, φ′ w φ

(Bi, B
′
i), (B

′
i, Bi) ∈ R, φ′ = 0⇒ I ′ = I.

2

Notice that a simulation can contain pairs such as([. . .]0, [. . .]→), but not([. . .]→, [. . .]0).

Notice also that the last line of Definition 4.2.1 enforces no depth subtyping.

For example, the empty relation onT (Σ) and the identity relation onT (Σ) are both

simulations. Simulations are closed under unions and intersections, and there is a largest

simulation, which we call≤ and use as our subtyping order:

≤ =
⋃
{R | R is a simulation}. (4.1)

Alternately,≤ can be seen as the maximal fixed point of a monotone function onP(T (Σ)×

T (Σ)). Then we immediately have the following result.
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Lemma 4.2.2.A ≤ A′ if and only if

• For all U , A = U if and only ifA′ = U .

• For all `i,B′
i, i ∈ I ′, andφ′, if A′ = [`i : B′ i∈I′

i ]φ
′
, then there existBi, such that

A = [`i : B i∈I
i ]φ, I ′ ⊆ I, φ′ w φ, and

∀i ∈ I, Bi = B′
i, φ′ = 0⇒ I ′ = I.

All of these results are standard in concurrency theory, and have easy proofs, c.f. [Mil90].

Similarly, it is easy to show that≤ is a preorder. Our simulations differ from the simula-

tions typically found in concurrency in that they are all anti-symmetric (again, the proof is

easy).

Lemma 4.2.3.≤ is a partial order.

Proof. See Appendix A.3. 2

We may apply the principle ofco-inductionto prove that one type is a subtype of

another:

Co-induction: To showA ≤ B, it is sufficient to find a simulationR such that

(A,B) ∈ R.

4.2.3 A characterization of subtyping

We now give a characterization of subtyping (Lemma 4.2.6) which will be used in the

proof of the main theorem (Theorem 4.5.15). SupposeR is a relation on types, and we

want to know whetherA ≤ B for every(A,B) ∈ R. By co-induction this is equivalent

to the existence of a simulation containingR. And since simulations are closed under

intersection, this is equivalent to the existence of asmallestsimulation containingR. We

can characterize this smallest simulation as follows.

Definition 4.2.4. We say a relationR on types is subtype-closed if([` : B, . . .]φ, [` :

B′, . . .]φ
′
) ∈ R implies(B,B′), (B′, B) ∈ R. 2
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Note that the subtype-closed relations on types are closed under intersection; therefore

for any relationR on types, we may define itssubtype-closureto be the smallest subtype-

closed relation containingR. Every simulation is subtype-closed, and subtype-closure is a

monotone operation.

Definition 4.2.5. We say a relationR on types is subtype-consistent if[`i : B i∈I
i ]φ, [`i :

B′ i∈I′
i ]φ

′
) ∈ R, implies

• if φ′ = 0, thenφ = 0 andI = I ′,

• if φ′ =→, thenI ⊇ I ′.

2

Note that every simulation is subtype-consistent, and moreover, any subset of an subtype-

consistent set is subtype-consistent.

Lemma 4.2.6.LetR be a relation on types. The following statements are equivalent.

i) A ≤ B for every(A,B) ∈ R.

ii) The subtype-closure ofR is a simulation.

iii) The subtype-closure ofR is subtype-consistent.

Proof.

• (ii) ⇒ (i): Immediate by co-induction.

• (i) ⇒ (iii): R is a subset of≤, so by monotonicity and the fact that≤ is subtype-

closed, the subtype-closure ofR is a subset of≤. Then since≤ is subtype-consistent,

its subset, the subtype-closure ofR, is subtype-consistent.

• (iii) ⇒ (ii): Let R′ be the subtype-closure ofR, and suppose(A,A′) ∈ R′.

If A = U , by subtype-consistencyA′ = U ; and similarly, ifA′ = U , thenA = U .

If A′ = [`i : B′
i
i∈I′ ]φ

′
, by subtype-consistencyA must be of the form[`i : B i∈I

i ]φ,

whereφ v φ′. And sinceR′ is subtype-closed,(Bi, B
′
i), (B

′
i, Bi) ∈ R′ andI ′ ⊆ I,

andφ′ = 0⇒ I ′ = I, as desired.
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2

4.3 The Abadi-Cardelli Object Calculus

We now present an extension of the Abadi-Cardelli object calculus [AC96a] and a type

system. The types are recursive types as defined in the previous section.

We usex, y to range over term variables. Expressions are defined by the following

grammar.

a, b, c ::= x variable

| [`i = ς(xi)b
i∈1..n

i ] object (̀ i distinct)

| a.` field selection / method invocation

| (a.`⇐ ς(x)b) field update / method update

| a1 + a2 object concatenation

An object [`i = ς(xi)b
i∈1..n

i ] has method names̀i and methodsς(xi)bi. The order of

the methods does not matter. Each method binds a namex which denotes the smallest

enclosing object, much like “this” in Java. Those names can be chosen to be different, so

within a nesting of objects, one can refer to any enclosing object. Avalue is of the form

[`i = ς(xi)b
i∈1..n

i ]. A programis a closed expression.

A small-step operational semantics is defined by the following rules:

• If a ≡ [`i = ς(xi)b
i∈1..n

i ], then, forj ∈ 1..n,

a.`j ; bj[xj := a],

(a.`j ⇐ ς(y)b) ; a[`j ← ς(y)b].

• If a1 ≡ [`i = ς(xi)b
i∈I1

i ], a2 ≡ [`i = ς(xi)b
i∈I2

i ], andI1 ∩ I2 = ∅, then

a1 + a2 ; [`i = ς(xi)b
i∈I1∪I2

i ].

• If b ; b′ thena[b] ; a[b′].

Here,bj[xj := a] denotes theς-term bj with a substituted for free occurrences ofxj (re-

naming bound variables to avoid capture); anda[`j ← ς(y)b] denotes the expressiona with
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the `j field replaced byς(y)b. A contextis an expression with one hole, anda[b] denotes

the term formed by replacing the hole of the contexta[·] by the termb (possibly capturing

free variables inb).

An expressionb is stuckif it is not a value and there is no expressionb′ such thatb ; b′.

An expressionb goes wrongif ∃b′ : b ;∗ b′ andb′ is stuck.

A type environment is a partial function with finite domain which maps term variables

to types inTreg(Σ). We useE to range over type environments. We useE[x : A] to denote

a partial function which mapsx toA, and mapsy, wherey 6= x, toE(y).

The typing rules below allow us to derive judgments of the formE ` a : A, whereE is

a type environment,a is an expression, andA is a type inTreg(Σ).

E ` x : A (providedE(x) = A) (4.2)

E[xi : A] ` bi : Bi ∀i ∈ 1..n

E ` [`i = ς(xi)b
i∈1..n

i ] : A
(whereA = [`i : B i∈1..n

i ]0) (4.3)

E ` a : A

E ` a.` : B
(whereA ≤ [` : B]→) (4.4)

E ` a : A E[x : A] ` b : B

E ` a.`⇐ ς(x)b : A
(whereA ≤ [` : B]→) (4.5)

E ` a1 : A1 E ` a2 : A2

E ` a1 + a2 : A1 ⊕ A2

(4.6)

E ` a : A

E ` a : B
(whereA ≤ B) (4.7)

The first five rules express the typing of each of the four constructs in the object calculus

and the last rule is the rule of subsumption. We say that a terma is well-typedif E ` a : A is

derivable for someE andA. The following result can be proved by a well-known technique

[Nie89, WF94].

Theorem 4.3.1. (Type Soundness)Well-typed programs cannot go wrong.

The type inference problem for our extension of the Abadi-Cardelli calculus is: given a

terma, find a type environmentE and a typeA such thatE ` a : A, or decide that this is

impossible.
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4.4 From Type Inference to Constraint Solving

A substitutionS is a finite partial function from type variables to types inTreg(Σ),

written {U1 := A1, . . . , Un := An}. The set{U1, . . . , Un} is called thedomainof the

substitution. We identify substitutions with their graphs, and write(S1 ∪ S2) for the union

of two substitutionsS1 andS2; by convention, we assume thatS1 andS2 agree on variables

in their common domain, so(S1 ∪ S2) is a substitution. Substitutions are extended to total

functions from types to types in the usual way.

Definition 4.4.1. A relationR is solvable if and only if there is a substitutionS such that

for all (A,B) ∈ R, we haveS(A) ≤ S(B). 2

Definition 4.4.2. We will here focus on so-called C-relations (which we also refer to as

constraint sets) which contain only pairs(A,B), whereA,B are of the forms

• [` : V, . . .]φ,

• V , or

• V1 ⊕ V2,

whereV, V1, V2 are type variables, andφ ∈ {0.→}. 2

While V1 ⊕ V2 is not a type, it will become a type once we apply a substitution and get

S(V1) ⊕ S(V2), provided the concatenation is defined. Note that ifV1 ⊕ V2 is in R, and

R is solvable, then the solution, sayS, must makeS(V1) ⊕ S(V2) well-defined. To avoid

introducing special terminology for the left-hand sides and right-hand sides of constraints,

we will abuse the word type and callV1 ⊕ V2 a type in the remainder of the chapter.

We now prove that the type inference problem is equivalent to solving constraints in the

form of C-relations.

We writeE ′ ≤ E if, wheneverE(x) = A, there is anA′ ≤ A such thatE ′(x) = A′.

The following standard result can be proved by induction on typings.

Lemma 4.4.3 (Weakening).If E ` c : C andE ′ ≤ E, thenE ′ ` c : C.
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By a simple induction on typing derivations, we obtain the following syntax-directed

characterization of typings. The proof uses only the reflexivity and transitivity of≤ which

can be derived from Lemma 4.2.2.

Lemma 4.4.4 (Characterization of Typings).E ` c : C if and only if one of the following

cases holds:

• c = x andE(x) ≤ C;

• c = a.`, and for someA andB, E ` a : A, A ≤ [` : B]→, andB ≤ C;

• c = [`i = ς(xi)b
i∈1..n

i ], and for someA, and someBi for i ∈ 1..n, E[xi : A] ` bi :

Bi, andA = [`i : B i∈1..n
i ]0 ≤ C; or

• c = (a.` ⇐ ς(x)b), and for someA andB, E ` a : A, E[x : A] ` b : B,

A ≤ [` : B]→, andA ≤ C.

• c = a1 + a2, and for someA1, A2, E ` a1 : A1, E ` a2 : A2, andA1 ⊕ A2 ≤ C.

We now show how to generate a C-relation from a given program.

Definition 4.4.5. Let c be a ς-term in which all free and bound variables are pairwise

distinct. We defineXc, Yc, Ec, andC(c) as follows.

• Xc is a set of fresh type variables. It consists of a type variableUx for every term

variablex appearing inc.

• Yc is a set of fresh type variables. It consists of a type variableVc′ for each occurrence

of a subtermc′ of c, and a type variableUc′ for each occurrence of a select subterm

c′ = a.` of c. (If c′ occurs more than once inc, thenUc′ andVc′ are ambiguous.

However, it will always be clear from context which occurrence is meant.)

• Ec is a type environment, defined by

Ec = {x : Ux | x is free inc}.



130

• C(c) is the set of the following constraints overXc andYc:

For each occurrence inc of a variablex, the constraint

(Ux, Vx). (4.8)

For each occurrence inc of a subterm of the forma.`, the two constraints

(Va, [` : Ua.`]
→) (4.9)

(Ua.`, Va.`). (4.10)

For each occurrence inc of a subterm of the form[`i = ς(xi)b
i∈1..n

i ], the

constraint

([`i : Vbi
i∈1..n]0, V[`i=ς(xi)b

i∈1..n
i ]) (4.11)

and for eachj ∈ 1..n, the constraints

Uxj
≡ [`i : Vbi

i∈1..n]0. (4.12)

For each occurrence inc of a subterm of the form(a.`⇐ ς(x)b), the constraints

(Va, V(a.`⇐ς(x)b)) (4.13)

Va ≡ Ux (4.14)

(Va, [` : Vb]
→). (4.15)

For each occurrence inc of a subterm of the form(a1 + a2), the constraint

(Va1 ⊕ Va2 , V(a1+a2)), (4.16)

2

In the definition ofC(c), each equalityA ≡ B denotes the two inequalities(A,B) and

(B,A).

Theorem 4.4.6.E ` c : C if and only if there is a solutionS of C(c) such thatS(Vc) = C

andS(Ec) ⊆ E.
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Each direction of the theorem can be proved separately. However, the proofs share a

common structure, so for brevity we will prove them together. The two directions follow

immediately from the two parts of the next lemma.

Lemma 4.4.7.Let c0 be aς-term. For every subtermc of c0,

i) if E ` c : C, then there is a solutionSc of C(c) such thatSc(Vc) = C andSc(Ec) ⊆

E; and

ii) if S is a solution ofC(c0), thenS(Ec) ` c : S(Vc).

Proof. The proof is by induction on the structure ofc. In (2), we will often use the fact

that any solution toC(c0) (in particular,S) is a solution toC(c) ⊆ C(c0).

• If c = x, thenEc = {x : Ux} andC(c) = {(Ux, Vx)}.

i) Define Sc = {Ux := E(x), Vx := C}. ThenSc(Vc) = Sc(Vx) = C, and

Sc(Ec) = {x : E(x)} ⊆ E.

Furthermore, by Lemma 4.4.4,E(x) ≤ C, soSc is a solution toC(c).

ii) By (4.2), S(Ec) ` c : S(Ux).

And sinceS(Ux) ≤ S(Vx) = S(Vc), we haveS(Ec) ` c : S(Vc) by (4.7).

• If c = a.`, thenEc = Ea andC(c) = C(a) ∪ {(Va, [` : Ua.`]
→), (Ua.`, Va.`)}.

i) By Lemma 4.4.4, for someA andB, E ` a : A, A ≤ [` : B]→, andB ≤ C.

By induction there is a solutionSa of C(a) such thatSa(Va) = A andSa(Ea) ⊆

E.

DefineSc = Sa ∪ {Ua.` := B, Va.` := C}. ThenSc solvesC(c), Sc(Vc) =

Sc(Va.`) = C, andSc(Ec) = Sa(Ea) ⊆ E.

ii) By induction,S(Ea) ` a : S(Va).

SinceS(Va) ≤ S([` : Ua.`]
→), by (4.7) we haveS(Ea) ` a : S([` : Ua.`]

→).

Then by (4.4),S(Ea) ` a.` : S(Ua.`).
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SinceS(Ua.`) ≤ S(Va.`) = S(Vc), by (4.7) we haveS(Ea) ` a.` : S(Vc).

Finally,Ec = Ea andc = a.`, soS(Ec) ` c : S(Vc) as desired.

• If c = [`i = ς(xi)b
i∈1..n

i ], thenEc =
⋃
i∈1..n(Ebi\xi), and

C(c) = { ([`i : Vbi
i∈1..n]0, Vc )}

∪ { Uxj
≡ [`i : Vbi

i∈1..n]0 | j ∈ 1..n }

∪ (
⋃
i∈1..n C(bi)).

i) By Lemma 4.4.4, for someA, and someBi for i ∈ 1..n, we haveE[xi : A] `

bi : Bi andA = [`i : B i∈1..n
i ]0 ≤ C.

By induction, for everyi ∈ 1..n there is a substitutionSbi such thatSbi solves

C(bi), Sbi(Vbi) = Bi, andSbi(Ebi) ⊆ E[xi : A].

We first assume that the domain of anySbi isXbi ∪ Ybi (else restrictSbi to this

set). LetSc = (
⋃
i∈1..n Sbi) ∪ {Vc := C}

Clearly, if Sc is well-defined, then it is a solution toC(c), Sc(Vc) = C, and

Sc(Ec) ⊆ E.

To show thatSc is well-defined, it suffices to show that for any distinctj, k ∈

1..n, the substitutionsSbj andSbk agree on all type variables in their common

domain. And ifU is in the domain of bothSbj andSbk , it must have the form

Uy for some term variabley free in bothbj andbk.

Theny must be assigned a type byE, so the conditionsSbj(Ebj) ⊆ E[xj :

A] andSbk(Ebk) ⊆ E[xk : A] guarantee thatSbj(Uy) = E(y) = Sbk(Uy).

ThereforeSc is well-defined, as desired.

ii) By induction,S(Ebj) ` bj : S(Vbj) for all j ∈ 1..n.

By weakening,S(Ec[xj : Uxj
]) ` bj : S(Vbj) for all j ∈ 1..n.

SinceS solvesC(c), S(Uxj
) = S([`i : Vbi

i∈1..n]0) for all j ∈ 1..n.

Then by (4.3),S(Ec) ` c : S([`i : Vbi
i∈1..n]0).

Finally, sinceS solvesC(c), S([`i : Vbi
i∈1..n]0) ≤ S(Vc), so we haveS(Ec) `

c : S(Vc) by (4.7).
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• If c = (a.`⇐ ς(x)b), thenEc = Ea ∪ (Eb\x), and

C(c) = C(a) ∪ C(b) ∪ {(Va, Vc), Va ≡ Ux, (Va, [` : Vb]
→)}.

i) By Lemma 4.4.4, for someA andB, E ` a : A, E[x : A] ` b : B, A ≤ [` :

B]→, andA ≤ C.

By induction there is a solutionSa of C(a) such thatSa(Va) = A andSa(Ea) ⊆

E, and a solutionSb of C(b) such thatSb(Vb) = B andSb(Eb) ⊆ E[x : A].

Let Sc = Sa ∪ Sb ∪ {Vc := C,Ux := A}. (We omit a proof thatSc is well-

defined; this can be shown just as in the previous case.)

ThenSc is a solution toC(c), Sc(Vc) = C, andSc(Ec) ⊆ E.

ii) SinceS solvesC(c), S(Va) ≤ S[l : Vb]
→. By inductionS(Ea) ` a : S(Va) and

S(Eb) ` b : S(Vb).

By weakening,S(Ec) ` a : S(Va) andS(Ec[x : Ux]) ` b : S(Vb).

Then by (4.5),S(Ec) ` c : S(Va), and by (4.7),S(Ec) ` c : S(Vc).

• If c = (a1 + a2), thenEc = Ea1 ∪ Ea2 and

C(c) = C(a1) ∪ C(a2) ∪ {(Va1 ⊕ Va2 , Vc)}.

i) By Lemma 4.4.4, for someA1 andA2, E ` a1 : A1, E ` a2 : A2, and

A1 ⊕ A2 ≤ C.

By induction there is a solutionSai
of C(ai) such thatSai

(Vai
) = Ai, and

Sai
(Eai

) ⊆ E, for i = 1, 2.

Let Sc = Sa1 ∪ Sa2 ∪ {Vc := C}. (We omit a proof thatSc is well-typed;

this can be shown as above.) ThenSc is a solution toC(c), Sc(Vc) = C, and

Sc(Ec) ⊆ E.

ii) By inductionS(Ea1) ` a1 : S(Va1) andS(Ea2) ` a2 : S(Va2).

By weakening,S(Ec) ` a1 : S(Va1) andS(Ec) ` a2 : S(Va2).

Then by (4.6),S(Ec) ` c : S(Va1)⊕ S(Va2), and by (4.7),S(Ec) ` c : S(Vc).

2
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4.5 Solving Constraints

In this section we present an algorithm for deciding whether a C-relationR is solvable.

We first list the terminology used in the later definitions.

Types = the set of types

States = P(Types)

RelTypes = P(Types × Types)

RelStates = P(States × States)

We useT to range over sets of types. For any typeA such thatA(ε) = (S, φ), we write

labs(A) = S. For any typeA and label̀ , A.` is B if A = [` : B . . .]φ, and is undefined

otherwise. Notice thatA(`α) = (A.`)(α). We also make the following definitions.

T .` = {B | ∃A ∈ T . A = [` : B, . . .]φ}.

aboveR(T ) = {B | ∃A ∈ T . (A,B) ∈ R}.

ABOVER(R′) = {(aboveR({A}), aboveR({B})) | (A,B) ∈ R′}

We define function VarR such that

• if typeA is of the form[. . .]φ, then VarR(A) = φ;

• VarR(V ⊕ V ′) = 0;

• if V ⊕ V ′ or V ′ ⊕ V is inR, then VarR(V ) = 0; and

• VarR(T ) = u{VarR(A) | A ∈ T },

whereu is the greatest lower bound of a nonempty set of variances;u∅ is undefined.

The types of the above definitions are

T .` : States→ States

aboveR : States→ States

ABOVER : RelTypes→ RelStates

VarR : States→ Variances



135

For any setT of types we defineLV : States → P(Labels), the labels implied byT ,

by

LV(T ) =
⋃
A∈T

labs(A(ε))

In the rest of the section, we first define the notions of satisfaction-closure (Section 4.5.1)

and satisfaction-consistency (Section 4.5.2), and we then prove that a C-relationR is solv-

able if and only if there exists a satisfaction-closed superset which is satisfaction-consistent

(Theorem 4.5.15).

4.5.1 Satisfaction-closure

Definition 4.5.1. A C-relationR on types is satisfaction-closed (abbreviated sat-closed) if

and only if the following are true:

0 if typeA of the form[` : U, . . .]φ is inR, then(A, [` : U ]→) ∈ R.

A if (A,B), (B,C) ∈ R, then(A,C) ∈ R;

B if (A,B) ∈ R, then(A,A), (B,B) ∈ R;

C if (A,B) ∈ R, and VarR(B) = 0, then(B,A) ∈ R;

D if (A, [` : U ]→), (A, [` : U ′]→) ∈ R, then(U,U ′) ∈ R;

E if (V, [` : U ]→) ∈ R andV ⊕ V ′ is inR, then(V ⊕ V ′, [` : U ]→) ∈ R.

F for all (V ⊕ V ′, [` : U ]→) ∈ R, we have either(V, [` : U ]→) or (V ′, [` : U ]→) in R.

2

Notice that ruleD is symmetric in the two hypotheses.

Lemma 4.5.2.For every solvable C-relationR, there exists a solvable, sat-closed superset

R′ ofR.

Proof. For a substitutionS, define a function

GS : RelTypes→ RelTypes (4.17)
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GS(R) = R (4.18)

∪ { (A, [` : U ]→) | typeA of the form[` : U, . . .]φ is in R } (4.19)

∪ { (A,C) | (A,B), (B,C) ∈ R } (4.20)

∪ { (A,A), (B,B) | (A,B) ∈ R } (4.21)

∪ { (B,A) | (A,B) ∈ R ∧ VarR(B) = 0 } (4.22)

∪ { (U,U ′) | (A, [` : U ]→), (A, [` : U ′]→) ∈ R } (4.23)

∪ { (V ⊕ V ′, [` : U ]→) | (V, [` : U ]→) ∈ R ∧ V ⊕ V ′ is in R} (4.24)

∪ { (V, [` : U ]→) | (V ⊕ V ′, [` : U ]→) ∈ R ∧ S(V ) has aǹ -field } (4.25)

∪ { (V ′, [` : U ]→) | (V ⊕ V ′, [` : U ]→) ∈ R ∧ S(V ′) has aǹ -field} (4.26)

Given a C-relationR with solutionS, defineR′ as follows:

R′ =
∞⋃
n=0

Gn
S(R).

It is straightforward to show thatR ⊆ R′ and thatR′ is sat-closed. It remains to be shown

thatR′ is solvable. It is sufficient to show thatGn
S(R) has solutionS, for all n. We proceed

by induction onn. In the base ofn = 0, we haveG0
S(R) = R and thatR has solutionS by

assumption.

In the induction step, supposeGn
S(R) has solutionS. We will now show thatGn+1

S (R) =

GS(G
n
S(R)) has solutionS. We proceed by case analysis on the definition ofGS.

Let Rn = Gn
S(R) andRn+1 = Gn+1

S (R). We have from the definition ofGS that the

constraints inRn+1\Rn belongs to the union of the sets (4.19) to (4.26). For each of the

sets, we need to show that the constraints in it preserve thatS is a solution. In each case,S

is preserved because:

(4.19) Straightforward from the definition of≤.

(4.20) If (A,B), (B,C) ∈ Rn, then by induction hypothesis, we haveS(A) ≤ S(B) ≤

S(C) and since the≤ is transitive, we haveS(A) ≤ S(C). Hence,S is a solution to

{(A,C)}.

(4.21) Since the≤ is reflexive, we haveS(A) ≤ S(A) andS(B) ≤ S(B). Hence,S is a

solution to{(A,A), (B,B)}.
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(4.22) If (A,B) ∈ Rn and VarRn(B) = 0, then by induction hypothesis,S(A) ≤ S(B)

and by definition of≤, we haveS(A) = S(B) as well, which impliesS(B) ≤ S(A).

Hence,S is a solution to{(B,A)}.

(4.23) If (A, [` : U ]→), (A, [` : U ′]→) ∈ Rn, then by induction hypothesis,S(A) ≤ S([` :

U ]→) andS(A) ≤ S([` : U ′]→). By definition of≤, ∃B, such thatS(A) = [` :

B, . . .]φ andB = S(U) = S(U ′), which impliesS(U) ≤ S(U ′). Hence,S is a

solution to{(U,U ′)}.

(4.24) If (V, [` : U ]→) ∈ Rn, then by induction hypothesis,S(V ) ≤ S([` : U ]→). From

the definition ofV ⊕ V ′, we haveS(V ⊕ V ′).`i = S(V ).`i,∀`i ∈ LV(S(V )). Since

S(V ) ≤ S([` : U ]→), we haveS(V ⊕ V ′) ≤ S([` : U ]→). Hence,S is a solution to

{(V ⊕ V ′, [` : U ]→)}.

(4.25) Since` ∈ LV(S(V )), there existsB such thatS(V ) = [` : B, . . .]0. By definition

of ≤ andS(V ) ⊕ S(V ′) ≤ [` : S(U)]→, we have thatB = S(U) andS(V ) ≤ [` :

S(U)]→. Therefore,S is a solution to{(V, [` : U ]→)}.

(4.26) The proof is similar to the previous case.

2

4.5.2 Satisfaction-consistency

Definition 4.5.3.A C-relationR on types is satisfaction-consistent (abbreviated sat-consistent)

if and only if the following are true:

i) if ([`i : U i∈I
i ]φ, [`i : U ′ i∈I

′
i ]φ

′
) ∈ R, thenI ⊇ I ′ andφ v φ′;

ii) if ([` : U, . . .]φ, V ) ∈ R, andV ⊕ V ′ is inR, thenφ = 0;

iii) if V ⊕ V ′ is inR, thenLV(aboveR({V })) ∩ LV(aboveR({V ′})) = ∅;

2

Lemma 4.5.4. If a C-relationR is solvable, thenR is sat-consistent.

Proof. Immediate. 2
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4.5.3 Main Result

In this section, we will show that if a C-relation is sat-closed and sat-consistent, then it

is solvable.

For a C-relationR we build an automaton with states consisting of sets of types appear-

ing inR, and the following one-step transition function:

δR(T )(`) =

 aboveR(T .`) if T .` 6= ∅

undefined otherwise.

We write States(R) for the set of states of the automaton, and useg, h to range over

states.

The one-step transition function is extended to a many-step transition function in the

usual way.

δ∗R(g)(ε) = g,

δ∗R(g)(`α) = δ∗R(δR(g)(`))(α).

Any g defines a type,TypeR(g), and any relationR on States(R) defines a constraint set

on typesTYPER(R), as follows:

TypeR(g)(α) = (LV,VarR)(δ∗R(g)(α)),

TYPER(R) = {(TypeR(g),TypeR(h)) | (g, h) ∈ R}

Notice that we use(LV,VarR)(g) to denote(LV(g),VarR(g)). We have that

TypeR : States→ Types

TYPER : RelStates→ RelTypes

Lemma 4.5.5. If g = δR(g′)(`), thenTypeR(g) = TypeR(g′).`.

Proof.

(TypeR(g′).`)(α) = TypeR(g′)(`α)
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= (LV,VarR)(δ∗R(g′)(`α))

= (LV,VarR)(δ∗R(δR(g′)(`))(α))

= (LV,VarR)(δ∗R(g)(α))

= TypeR(g)(α).

2

Definition 4.5.6. For any C-relationR on types, we defineSR to be the least substitution

such that for everyU appearing inR we have

SR(U) = TypeR(aboveR({U})).

Note that ifA = [` : U, . . .]φ, thenSR(A) = [` : SR(U), . . .]φ. 2

We claim that ifR is sat-closed and sat-consistent, thenSR is a solution toR.

To prove this claim, the first step is to develop a connection between subtype-closure

andδ. Define the functionA : RelTypes→ RelTypes by (A,B) ∈ A(R) if and only if one

of the following conditions holds:

• (A,B) ∈ R.

• For somè , φ, andφ′, we have([` : A, . . .]φ, [` : B, . . .]φ
′
) ∈ R, or ([` : B, . . .]φ

′
, [` :

A, . . .]φ) ∈ R.

Note, the subtype-closure (Definition 4.2.4) of a C-relationR is the least fixed point ofA

containingR.

Define the functionBR : RelStates→ RelStates by (g, h) ∈ BR(R), whereg, h 6= ∅, if

and only if one of the following conditions holds:

• (g, h) ∈ R.

• For somè and(g′, h′) or (h′, g′) ∈ R, we haveg = δR(g′)(`), h = δR(h′)(`).
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The next four lemmas (Lemma 4.5.7, 4.5.8, 4.5.10, and 4.5.11) are key ingredients

in the proof of Lemma 4.5.12. Lemma 4.5.7 states the fundamental relationship between

TYPER,A, andBR. We will use the notation

f ◦ g(x) = f(g(x)).

Lemma 4.5.7.The following diagram commutes:

RelStates
TYPER−−−−−−→ RelTypesyBR

yA
RelStates

TYPER−−−−−−→ RelTypes

Proof. SupposeR ∈ RelStates. To proveTYPER ◦ BR ⊆ A ◦ TYPER, suppose

(A,B) ∈ TYPER ◦ BR(R). There must be a pair of states(g, h) ∈ BR(R) such that

A = TypeR(g) andB = TypeR(h). We reason by cases on how(g, h) ∈ BR(R). From

the definition ofBR we have that there are three cases.

i) suppose(g, h) ∈ R. We have(TypeR(g),TypeR(h)) ∈ TYPER(R), so from the

definition ofA we have(TypeR(g),TypeR(h)) ∈ A ◦ TYPER(R).

ii) suppose for somè and (g′, h′) ∈ R, we haveg = δR(g′)(`) andh = δR(h′)(`).

From(g′, h′) ∈ R, we have(TypeR(g′),TypeR(h′)) ∈ TYPER(R). We have, from

Lemma 4.5.5,

(TypeR(g′).`)(α) = TypeR(g)(α) = A(α),

so TypeR(g′).` = A. Similarly, TypeR(h′).` = B. From these two observations,

and(TypeR(g′),TypeR(h′)) ∈ TYPER(R), and the definition ofA, we conclude

(A,B) ∈ A ◦ TYPER(R).

iii) Suppose for somè and(h′, g′) ∈ R, we haveg = δR(g′)(`) andh = δR(h′)(`). The

proof is similar to the previous case.

To proveA◦TYPER ⊆ TYPER ◦BR, suppose(A,B) ∈ A◦TYPER(R). We reason

by cases on how(A,B) ∈ A ◦ TYPER(R). From the definition ofA we have that there

are three cases.
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i) suppose(A,B) ∈ TYPER(R). There must existg andh such thatA = TypeR(g),

B = TypeR(h), and(g, h) ∈ R. From(g, h) ∈ R and the definition ofBR, we have

that(g, h) ∈ BR(R), so(A,B) ∈ TYPER ◦ BR.

ii) suppose for somè, φ, φ′, we have([` : A, . . .]φ, [` : B, . . .]φ
′
) ∈ TYPER(R). There

must existg′ andh′ such thatTypeR(g′) = [` : A, . . .]φ, TypeR(h′) = [` : B, . . .]φ
′
,

and (g′, h′) ∈ R. Theng = δR(g′)(`) andh = δR(h′)(`) are well defined, and

(g, h) ∈ BR(R) by the definition ofBR. From TypeR(g′) = [` : A, . . .]φ, g =

δR(g′)(`), and Lemma 4.5.5, we haveTypeR(g) = TypeR(g′).` = A. Similarly,

TypeR(h) = B, so(A,B) ∈ TYPER ◦ BR(R) as desired.

iii) Suppose for somè and(h′, g′) ∈ R, we haveg = δR(g′)(`) andh = δR(h′)(`). The

proof is similar to the previous case.

2

Lemma 4.5.8.SupposeR is sat-closed. If(g, h) ∈ ABOVER(R), theng ⊇ h.

Proof. Suppose(g, h) ∈ ABOVER(R). From the definition ofABOVER we have that

we can chooseA,B such that(A,B) ∈ R, g = aboveR({A}), andh = aboveR({B}). To

proveg ⊇ h, supposeC ∈ h. We have(B,C), (A,B) ∈ R. SinceR is sat-closed and by

closure RuleA, we have(A,C) ∈ R andC ∈ g. Hence,g ⊇ h. 2

The following lemma reflects that≤ does not support depth subtyping. As a conse-

quence, we have designed the sat-closure rules such that, intuitively, if(A′, B′) ∈ R andR

is sat-closed, then the types constructed from{A′} and{B′} have the samèfield type.

Lemma 4.5.9. If R is sat-closed,(A′, B′) ∈ R, andaboveR(aboveR({B′}).`) 6= ∅, then

aboveR(aboveR({A′}).`) = aboveR(aboveR({B′}).`).

Proof. From(A′, B′) ∈ R and Lemma 4.5.8, we haveaboveR({A′}) ⊇ aboveR({B′}),

soaboveR(aboveR({A′}).`) ⊇ aboveR(aboveR({B′}).`).
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To proveaboveR(aboveR({A′}).`) ⊆ aboveR(aboveR({B′}).`), supposeA ∈ aboveR(aboveR({A′}).`).

So, there exists[` : U1, . . .]
φ1 such that

(A′, [` : U1, . . .]
φ1) ∈ R

(U1, A) ∈ R.

From aboveR(aboveR({B′}).`) 6= ∅, we haveB ∈ aboveR(aboveR({B′}).`). So, there

exists[` : U2, . . .]
φ2 such that

(B′, [` : U2, . . .]
φ2) ∈ R

(U2, B) ∈ R.

From (A′, B′), (B′, [` : U2, . . .]
φ2) ∈ R, and closure ruleA (transitivity), we have(A′, [` :

U2, . . .]
φ2) ∈ R. From

(A′, [` : U1, . . .]
φ1) ∈ R

(A′, [` : U2, . . .]
φ2) ∈ R,

and closure rule0,A,D, we have(U2, U1) ∈ R. From (U2, U1), (U1, A) ∈ R and closure

ruleA (transitivity), we have(U2, A) ∈ R. From

(B′, [` : U2, . . .]
φ2) ∈ R

(U2, A) ∈ R,

we haveA ∈ aboveR(aboveR({B′}).`).

2

Lemma 4.5.10. If (g, h) ∈ (BnR ◦ ABOVER(R))\ABOVER(R), theng = h, ∀n ≥ 1,

whereR is sat-closed.

Proof. We proceed by induction onn.

In the base case ofn = 1, suppose(g, h) ∈ (B1
R ◦ABOVER(R))\ABOVER(R). From

the definition ofBR, there are two cases.
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• Suppose for somè and(g′, h′) ∈ ABOVER(R), we haveg = δR(g′)(`) andh =

δR(h′)(`). By the definition ofABOVER, there exist typesA′, B′ such thatg′ =

aboveR({A′}), h′ = aboveR({B′}), and(A′, B′) ∈ R. We have

aboveR(aboveR({B′}).`) = δR(aboveR({B′}))(`)

= δR(h′)(`)

= h,

and from(g, h) ∈ (BnR ◦ ABOVER(R)), and the definition ofBR, we haveh 6= ∅.

From(A′, B′) ∈ R, aboveR(aboveR({B′}).`) 6= ∅, and Lemma 4.5.9, we have

g = aboveR(aboveR({A′}).`)

= aboveR(aboveR({B′}).`) = h.

• Suppose for somè and(h′, g′) ∈ ABOVER(R), we haveg = δR(g′)(`) andh =

δR(h′)(`). The proof is similar as in the previous case.

In the induction step, suppose

(g, h) ∈ (Bn+1
R ◦ ABOVER(R))\ABOVER(R).

From the definition ofBR, there exist̀ such that

(g′, h′) or (h′, g′) ∈ (BnR ◦ABOVER(R))\ABOVER(R) andg = δR(g′)(`), h = δR(h′)(`).

From the induction hypothesis, we haveg′ = h′. From the definition ofδR, it is immediate

thatg = h. 2

Lemma 4.5.11.SupposeR is sat-closed. If(g, h) ∈ ABOVER(R), thenVarR(h) = 0 ⇒

LV(g) = LV(h).

Proof. Suppose(g, h) ∈ ABOVER(R). From the definition ofABOVER, ∃A,B such

thatg = aboveR({A}), h = aboveR({B}) and(A,B) ∈ R. Therefore,∀A′ ∈ g,B′ ∈ h,

we have(A,A′), (A,B′) ∈ R. Since VarR(h) = 0, there exists a typeB′′ ∈ h such that

VarR(B′′) = 0. From closure ruleA, we have thatLV(aboveR{A′}) ⊆ LV(aboveR{A});
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and from closure ruleC, we have thatLV(aboveR{A}) ⊆ LV(aboveR{B′′}). Hence,

LV(g) ⊆ LV(aboveR({B′′})) ⊆ LV(h).

From Lemma 4.5.8, we haveg ⊇ h which implies thatLV(g) ⊇ LV(h). Therefore,

LV(g) = LV(h). 2

Lemma 4.5.12.If R is sat-closed, then the subtype-closure ofTYPER ◦ ABOVER(R) is

subtype-consistent.

Proof.

The subtype-closure ofTYPER ◦ ABOVER(R)

=
⋃

0≤n<∞
An ◦ TYPER ◦ ABOVER(R) (Definition of subtype-closure)

=
⋃

0≤n<∞
TYPER ◦ BnR ◦ ABOVER(R) (Lemma 4.5.7)

=
⋃

0≤n<∞

⋃
(g,h)∈Bn

R◦ABOVER(R)

{(TypeR(g),TypeR(h))} (Definition ofTYPER).

Suppose(g, h) ∈ BnR ◦ ABOVER(R). From Lemma 4.5.8 and Lemma 4.5.10, and a

case analysis on why(g, h) is in BnR ◦ ABOVER(R), we have thatg ⊇ h. From Lemma

4.5.11 and Lemma 4.5.10, and a case analysis on why(g, h) is in BnR ◦ ABOVER(R), we

have that VarR(h) = 0 ⇒ LV(g) = LV(h). Thus, it is immediate from the definition of

TypeR that{(TypeR(g),TypeR(h))} is subtype-consistent.

Thus, the subtype-closure ofTYPER◦ABOVER(R) is the union of a family of subtype-

consistent C-relations. Since the union of a family of subtype-consistent C-relations is it-

self subtype-consistent, we conclude that the subtype-closure ofTYPER ◦ ABOVER(R)

is subtype-consistent. 2

The following lemma is a key ingredient in the proof of Lemma 4.5.14. Lemma 4.5.14

is the place where it is needed that a relation is satisfaction-consistent.

Lemma 4.5.13.If A of the form[` : B, . . .]φ is inR andR is sat-closed, then

aboveR((aboveR({A})).`) = aboveR({B}).
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Proof. To prove the direction⊇, notice that from sat-closure ruleB andA appearing

in R, we have(A,A) ∈ R, soA ∈ aboveR{A}, henceB ∈ (aboveR({A})).`, and thus

aboveR((aboveR({A})).`) ⊇ aboveR({B}).

To prove the direction⊆, supposeC ∈ aboveR((aboveR({A})).`). From that we have

there existsC ′ ∈ (aboveR({A})).` such that(C ′, C) ∈ R. FromC ′ ∈ (aboveR({A})).`

we have that there exists type D of the form[` : C ′, . . .]φ
′
such that(A,D) ∈ R. Together

with closure rule0, A, B, andD, we have that(B,C ′) ∈ R. From transitivity ofR (sat-

closure ruleA) and(B,C ′), (C ′, C) ∈ R, we have(B,C) ∈ R, andC ∈ aboveR({B}).

2

Lemma 4.5.14.If R is sat-closed and sat-consistent, then

i) for any typeA appearing inR, SR(A) = TypeR ◦ aboveR({A}); and

ii) SR(R) = TYPER ◦ ABOVER(R).

Proof. The second property is an immediate consequence of the first property.

To prove the first property, we will, by induction onα, show that for allα, for all A

appearing inR, SR(A)(α) = TypeR ◦ aboveR({A})(α).

If α = ε andA is an ordinary type variable, the result follows by definition ofSR.

If α = ε andA is of the formV ⊕ V ′, SR(V ) = [`i : B′
i
i∈I ]0, SR(V ′) = [`i : B′

i
i∈I′ ]0,

and TypeR ◦ aboveR({A}) = [`i : Bi
i∈J ]0, we need to show thatJ = I ∪ I ′, Bi =

B′
i,∀i ∈ J , andI ∩ I ′ = ∅. FromR being sat-closed and closure rules0, E, we have

LV(aboveR({V, V ′})) ⊆ LV(aboveR({A})). FromR being sat-closed and closure rules0,

F, we haveLV(aboveR({A})) ⊆ LV(aboveR({V, V ′})). We concludeLV(aboveR({A})) =

LV(aboveR({V, V ′})). Thus,J = I ∪ I ′ and by sat-consistency rule 3, we haveI ∩ I ′ = ∅.

Because of closure rules0, D, E, andF, we have thatBi = B′
i, ∀i ∈ J .

If α = ε andA = [`i : B
i∈{1..n}

i ]φ, thenSR(A)(α) = ({`i | i ∈ 1..n}, φ) and

TypeR◦aboveR({A})(α) = (LV(aboveR({A})), φ). From closure ruleB andA appearing

in R, we have(A,A) ∈ R, soA ∈ aboveR({A}). FromA ∈ aboveR({A}), we have

LV({A}) ⊆ LV(aboveR({A})). FromA ∈ aboveR({A}) and sat-consistency rules 1 and
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2, we haveLV(aboveR({A})) ⊆ LV({A}). We concludeLV({A}) = LV(aboveR({A})).

From the definition of VarR, we have that VarR(A) = φ. By sat-consistency rule 1, we have

VarR(aboveR({A}) = φ, as desired.

If α = `α′ andA is a type variable, the result follows by definition ofSR.

If α = `α′ andA is of the formV ⊕ V ′, then eitherSR(V ) or SR(V ′) has aǹ field.

Suppose it isSR(V ) that has aǹ field:

SR(A)(α) = (SR(V )⊕ SR(V ′))(α) (Definition ofSR)

= SR(V )(α) (SR(V ) has aǹ field)

= TypeR ◦ aboveR({V })(α) (Definition ofSR)

= TypeR ◦ aboveR({V, V ′})(α) (SR(V ′) has nò field)

= TypeR ◦ aboveR({A})(α). (from the proof of the base case)

The case where it isSR(V ′) that has aǹ field is similar, we omit the details.

If α = `α′ andA = [` : B, . . .]φ, then

SR(A)(α)

= SR(B)(α′) (Definition ofSR)

= TypeR ◦ aboveR({B})(α′) (Induction hypothesis)

= (LV,VarR)(δ∗R(aboveR({B}))(α′)) (Definition ofTypeR)

= (LV,VarR)(δ∗R(aboveR((aboveR({A})).`))(α′)) (Lemma 4.5.13)

= (LV,VarR)(δ∗R(δR(aboveR({A}))(`))(α′)) (Definition of δR)

= (LV,VarR)(δ∗R(aboveR({A}))(`α′)) (Definition of δ∗R)

= TypeR ◦ aboveR({A})(α) (Definition ofTypeR andα = `α′).

If α = `α′ andA is a record without aǹ field, thenSR(A)(α) is undefined. By sat-

consistency rule 1, noC ∈ aboveR({A}) has aǹ field, so from the definition ofTypeR

we have thatTypeR ◦ aboveR({A})(`α′) is undefined, as desired.

2

Theorem 4.5.15.R is solvable if and only if there exists a sat-closed supersetR′ of R,

such thatR′ is sat-consistent.



147

Proof. If R is solvable, then we have from Lemma 4.5.2 that there exists solvable,

sat-closed supersetR′ of R, so from Lemma 4.5.4, we have thatR′ is sat-consistent.

Conversely, letR′ be a sat-closed superset ofR, and assume thatR′ is sat-consistent.

From Lemma 4.5.12 and Lemma 4.5.14, we have that the subtype-closure ofSR′(R′) is

subtype-consistent. From the subtype-closure ofSR′(R′) being subtype-consistent and

Lemma 4.2.6, we haveA ≤ B for every (A,B) ∈ SR′(R′), soSR′(A′) ≤ SR′(B′) for

every(A′, B′) ∈ R′, and henceR′ has solutionSR′. FromR ⊆ R′ and thatR′ is solvable,

we have thatR is solvable. 2

Theorem 4.5.16.The type inference problem is in NP.

Proof. From Theorem 4.4.6 we have the type inference problem is polynomial-time

reducible to the constraint problem. To solve a constraint setR generated from a program

a, we first guess a supersetR′ of R. Notice that we only need to consider anR′ which

has a size which is polynomial in the size ofa. Next we check thatR′ is sat-closed and

sat-consistent. It is straightforward to see that this can be done in polynomial time.2

4.6 NP-hardness

In this section we prove that the type inference problem is NP-hard. We do this in two

steps. First we prove that solvability of so-called simple constraints can be reduced to the

type inference problem, and then we prove that solving simple constraints is NP-hard.

4.6.1 From Constraints to Types

For anyς-termc, the the constraint setC(c) is defined as follows.

Definition 4.6.1. Given a denumerable set of variables, asimpleconstraint set is a finite

set of constraints of the forms

(V , [`i : V i∈1..n
i ]0)

(V ⊕ V ′ , [`i : V i∈1..n
i ]0)

whereV, V ′, V1, . . . , Vn are variables. 2
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Lemma 4.6.2.Solvability of simple constraint sets is polynomial-time reducible to the type

inference problem.

Proof. Let C be a simple constraint set. Define

aC = [ `V = ς(x)(x.`V )

for each variableV in C

`Q = ς(x)[`i = ς(y)(x.`Vi
) i∈1..n]

for eachQ in C of the form[`i : V i∈1..n
i ]0

mQ,`j = ς(x)((x.`Vj
⇐ ς(y)(x.`Q.`j)).`Q)

for eachQ in C of the form[`i : V i∈1..n
i ]0

and for eachj ∈ 1..n

kQ = ς(x)(x.`Q + [ ])

for eachQ in C of the form[`i : V i∈1..n
i ]0

`(V,Q) = ς(x)((x.`Q ⇐ ς(y)(x.`V )).`V )

for each constraint(V,Q) in C

whereQ is of the form[`i : V i∈1..n
i ]0

`(V⊕V ′,Q) = ς(x)((x.`Q ⇐ ς(y)(x.`V + x.`V ′)).`Q)

for each constraint(V ⊕ V ′, Q) in C

whereQ is of the forms[`i : V i∈1..n
i ]0

]

Notice thataC can be generated in polynomial time.

We first prove that ifC is solvable thenaC is typable. SupposeC has solutionS. Define
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A = [ `V : S(V ) for each variableV in C

`Q : S(Q) for eachQ in C of the form[`i : V i∈1..n
i ]0

mQ,`j : S(Q) for eachQ in C of the form[`i : V i∈1..n
i ]0

and for eachj ∈ 1..n

kQ : S(Q) for eachQ in C of the form[`i : V i∈1..n
i ]0

`V≤Q : S(V ) for each constraint(V,Q) in C

whereQ is of the form[`i : V i∈1..n
i ]0

`V⊕V ′≤Q : S(Q) for each constraint(V ⊕ V ′, Q) in C

whereQ is of the form[`i : V i∈1..n
i ]0

]0

Clearly∅ ` aC : A is derivable.

We now prove that ifaC is typable, thenC is solvable. SupposeaC is typable. From

Theorem 4.4.6 we get a solutionS of C(aC). Notice that each method inaC binds a variable

x. Each of these variables corresponds to a distinct type variable inC(aC). SinceS is a

solution ofC(aC), andC(aC) contains constraints of the formUx = [. . .]0 for each method

in aC (from rule (4.12)), all those type variables are mapped byS to the same type. Thus,

we can think of all the bound variables of methods ofaC as being related to the same type

variable, which we will write asUx.

The solutionS has the following two properties.

• Property 1 If V is a variables inC, thenS(Ux)↓`V is defined.

• Property 2 For eachQ in C of the form[`i : V i∈1..n
i ]0, we haveS(Ux)↓ `Q = [`i :

(S(Ux)↓`Vi
) i∈1..n]0.

To see Property 1, notice that in the body of the method`V we have the expressionx.`V .

SinceS is a solution ofC(aC), we have from the rules (4.8) and (4.9) thatS satisfies

(Ux, Vx) and(Vx, [`V : Ux.`V ]).

We conclude thatS(Ux)↓`V = S(Ux.`V ) is defined.

To see Property 2, letQ be an occurrence inC of the form [`i : V i∈1..n
i ]0. For each

j ∈ 1..n, in the body of the methodmQ,`j , we have the expressionx′.`Vj
⇐ ς(y)(x.`Q.`j)
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where we, for clarity, have written the first occurrence ofx asx′. SinceS is a solution

of C(aC), we have from the rules (4.8), (4.15), (4.8), (4.9), (4.10), (4.9), and (4.10) thatS

satisfies

(Ux , Vx′) and(Vx′ , [`Vj
: Vx.`Q.`j ]

→) (4.27)

(Ux , Vx) and(Vx, [`Q : Ux.`Q ]→) (4.28)

(Ux.`Q , Vx.`Q) (4.29)

(Vx.`Q , [`j : Ux.`Q.`j ]
→) (4.30)

(Ux.`Q.`j , Vx.`Q.`j) (4.31)

Thus,

S(Ux)↓`Q = S(Ux.`Q) from (4.28) and Lemma 4.2.2

≤ S(Vx.`Q) from (4.29)

≤ [`j : S(Ux.`Q.`j)]
→ from (4.30)

S(Ux)↓`Q ↓`j = S(Ux.`Q.`j) from Lemma 4.2.2

≤ S(Vx.`Q.`j) from (4.31)

= S(Ux ↓`Vj
) from (4.27) and Lemma 4.2.2

In the body of the methodkQ, we have the expression(x.`Q + [ ]). SinceS is a solution of

C(aC), we have from the rules (4.8), (4.9), (4.10), and (4.16) thatS satisfies

(Ux , Vx) and(Vx, [`Q : Ux.`Q ]→) (4.32)

(Ux.`Q , Vx.`Q) (4.33)

(Vx.`Q ⊕ V[ ] , Vx.`Q+[ ]) (4.34)

Thus, from (4.32), Lemma 4.2.2, (4.33), (4.34) and the definition of⊕, we have

S(Ux)↓`Q = S(Ux.`Q) ≤ S(Vx.`Q) = [. . .]0. (4.35)

In the body of the method̀Q we have the expression[`i = ς(y)(x.`Vi
) i∈1..n]. SinceS

is a solution ofC(aC), we have from the rules (4.8), (4.9), (4.10), (4.11) and (4.12) thatS
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satisfies

∀j ∈ 1..n, (Ux , Vx) and (Vx, [`Vj
: Ux.`Vj

]→) (4.36)

(Ux.`Vj
, Vx.`Vj

) (4.37)

([`0i : Vx.`Vi

i∈1..n]0 , V[`i=ς(y)(x.`Vi
) i∈1..n]) (4.38)

Ux ≡ [. . . `Q : V[`i=ς(y)(x.`Vi
) i∈1..n] . . .]

0 (4.39)

Thus, from (4.38) and (4.39), we have

[`i : S(Vx.`Vi
) i∈1..n]0 ≤ S(V[`i=ς(y)(x.`Vi

) i∈1..n]) = S(Ux)↓`Q

and together with (4.36), Lemma 4.2.2 and (4.37), we have

∀j ∈ 1..n, S(Ux)↓`Vj
= S(Ux.`Vj

) ≤ S(Vx.`Vj
) = S(Ux)↓`Q ↓`j.

Since we have both

S(Ux)↓`Q ↓`j ≤ S(Ux)↓`Vj
and

S(Ux)↓`Q ↓`j ≥ S(Ux)↓`Vj
,

we have

S(Ux)↓`Q ↓`j = S(Ux)↓`Vj
(4.40)

and together (4.40) and (4.35) give thatS(Ux) ↓ `Q = [`i : S(Ux) ↓ ` i∈1..n
Vj

]0, that is,

Property 2.

From Property 1 we have that we can define

SC(V ) = S(Ux)↓`V for each variableV in C. (4.41)

With this definition, we can restate Property 2 as

SC(Q) = S(Ux)↓`Q whereQ = [`i : V i∈1..n
i ]0. (4.42)

We will now show thatC has solutionSC.
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Consider first a constraint(V,Q) in C, whereQ = [`i : V i∈1..n
i ]0. The body of the

method`(V,Q) contains the expressionx′.`Q ⇐ ς(y)(x.`V ) where we, for clarity, have

written the first occurrence ofx asx′. SinceS is a solution ofC(aC), we have from the

rules (4.8), (4.15), (4.8), (4.9), and (4.10) thatS satisfies

(Ux , Vx′) and (Vx′ , [`Q : Vx.`V ]→) (4.43)

(Ux , Vx) and (Vx, [`V : Ux.`V ]→) (4.44)

(Ux.`V , Vx.`V ) (4.45)

We conclude

SC(V ) = S(Ux)↓`V from (4.41)

= S(Ux.`V ) from (4.44) and Lemma 4.2.2

≤ S(Vx.`V ) from (4.45)

= S(Ux)↓`Q from (4.43) and Lemma 4.2.2

= SC(Q) from (4.42).

Consider next a constraint(V ⊕V ′, Q) in C, whereQ is of the form[`i : V i∈1..n
i ]0. The

body of the method̀(V⊕V ′,Q) contains the expressionx′.`Q ⇐ ς(y)(x.`V + x.`V ′) where

we, for clarity, have written the first occurrence ofx asx′. SinceS is a solution ofC(aC),

we have from the rules (4.8), (4.15), (4.8), (4.9), (4.10), and (4.16) thatS satisfies

(Ux , Vx′) and (Vx′ , [`Q : Vx.`V +x.`V ′ ]
→) (4.46)

(Ux , Vx) and (Vx, [`V : Ux.`V ]→) (4.47)

(Ux , Vx) and (Vx, [`V ′ : Ux.`V ′ ]
→) (4.48)

(Ux.`V , Vx.`V ) (4.49)

(Ux.`V ′ , Vx.`V ′ ) (4.50)

(Vx.`V ⊕ Vx.`V ′ , Vx.`V +x.`V ′ ) (4.51)

We conclude



153

SC(V ) = S(Ux)↓`V from (4.41)

= S(Ux.`V ) from (4.47) and Lemma 4.2.2

= S(Vx.`V ) from (4.49) and (4.51)

SC(V
′) = S(Ux)↓`V ′ from (4.41)

= S(Ux.`V ′ ) from (4.48) and Lemma 4.2.2

= S(Vx.`V ′ ) from (4.50) and (4.51)

SC(V )⊕ SC(V ′) = S(Vx.`V )⊕ S(Vx.`V ′ ) from above

≤ S(Vx.`V +x.`V ′ ) from (4.51)

= S(Ux)↓`Q from (4.46) and Lemma 4.2.2

= SC(Q) from (4.42).

2

4.6.2 Solving Simple Constraints is NP-hard

In this section we show that solving simple constraint systems is NP-hard.

Suppose we are given a Boolean expression

ψ = ∧ n
i=1(li1 ∨ li2 ∨ li3)

whereXψ is the set of variables occurring inψ, and each literallij is of the formx or x̄,

wherex ∈ Xψ. We will use the notationIx for the set of positions(ij) for which lij = x

or lij = x̄. Furthermore, iflij = x or lij = x̄, then we useIij to denoteIx. We will use the

abbreviations

False = [ ]0 True = [q : [ ]0]0.

Their only significance is thatFalse 6= True. We will construct a simple constraint system

Cψ over the variables

{ Ux, Ux̄, Vx, Vx̄, Tx, Tx̄, Rx | x ∈ Xψ }

∪ { Pij | i ∈ 1..n, j ∈ 1..3}

∪ { Aij | i ∈ 1..n, j ∈ 0..3}.

The constraint systemCψ consists of:
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• for eachx ∈ Xψ, the constraints

(Ux ⊕ Ux̄ , [k : Rx]
0) (4.52)

(Ux ⊕ Tx , [k : Vx]
0) (4.53)

(Ux̄ ⊕ Tx̄ , [k : Vx̄]
0) (4.54)

(Rx , [mij : A
(ij)∈Ix

ij ]0) (4.55)

(Vx ⊕ Vx̄ , [mij : A
(ij)∈Ix

ij ]0) (4.56)

• for all i ∈ 1..n and for allj ∈ 1..3, the constraints:

(Vlij ⊕ Pij , [mij : Ai(j−1), mi′j′ : A
(i′j′)∈Iij\(ij)

i′j′ ]0) (4.57)

• for all i ∈ 1..n, the constraints:

(Ai0 , False)

(Ai3 , True).

In the last constraint, we use the abbreviation(Ai3,True) to denote the two constraints

(Ai3, [q : B]0), (B, [ ]0), whereB is a fresh variable.

Lemma 4.6.3.Solving simple constraint systems is NP-hard.

Proof. Given that 3-SAT is NP-hard, it is sufficient to show thatψ is satisfiable if and

only if Cψ is solvable.

Suppose first thatψ has solutionf . Here is a mappingSf from the variables ofCψ to

types. Iff(x) is true, then we have:

v Sf (v)

Ux [ ]0

Ux̄ [k : Sf (Rx)]
0

Vx [ ]0

Vx̄ Sf (Rx)

Tx [k : [ ]0]0

Tx̄ [ ]0

Rx [mij : Sf (Aij)
(ij)∈Ix ]0.
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If f(x) is false, then we have:

v Sf (v)

Ux [k : Sf (Rx)]
0

Ux̄ [ ]0

Vx Sf (Rx)

Vx̄ [ ]0

Tx [ ]0

Tx̄ [k : [ ]0]0

Rx [mij : Sf (Aij)
(ij)∈Ix ]0.

For i ∈ 1..n andj ∈ 1..3, define

Sf (Pij) =

 [mij : Sf (Ai(j−1)), mi′j′ : Sf (Ai′j′)
(i′j′)∈Iij\(ij)]0 f(lij) is true

[ ]0 otherwise.

Define the functiong from Booleans to{False,True} such thatg(false) = False and

g(true) = True. For i ∈ 1..n,

v Sf (v)

Ai0 False

Ai1 g ◦ f(li1)

Ai2 g ◦ f(li1 ∨ li2)

Ai3 True.

It is straightforward to check thatSf is a solution to the constraints inCψ of the forms

(4.52)–(4.56), we omit the details. Here we will focus on showing thatSf is a solution

to the constraints inCψ of the form (4.57). Suppose we are giveni ∈ 1..n andj ∈ 1..3.

There are two cases. First, iff(lij) is true, thenSf (Pij) = [mij : Sf (Ai(j−1)), mi′j′ :

Sf (Ai′j′)
(i′j′)∈Iij\(ij)]0 andSf (Vlij) = [ ]0. Hence, the constraint (4.57) is satisfied.

Second, iff(lij) is false, thenSf (Pij) = [ ]0 andSf (Vlij) = Sf (Rlij). Hence, we must

show thatSf (Aij) = Sf (Ai(j−1)). There are three cases.

• If j = 1, thenSf (Ai1) = g ◦ f(li1) = g(false) = False = Sf (Ai0).



156

• If j = 2, thenSf (Ai2) = g ◦f(li1∨ li2) = g ◦ (f(li1)∨f(li2)) = g ◦ (f(li1)∨ false) =

g ◦ f(li1) = Sf (Ai1).

• If j = 3, thenSf (Ai3) = True. Sinceψ is satisfiable andf(li3) is false, we have that

f(li1 ∨ li2) is true, soSf (Ai2) = g ◦ f(li1 ∨ li2) = g(true) = True. We conclude that

Sf (Ai3) = True = Sf (Ai2).

Conversely, supposeS is a solution toCψ.

Property 1: For everyx ∈ Xψ, we have eitherS(Vx) = S(Rx) andS(Vx̄) = [ ]0, or

we haveS(Vx) = [ ]0 andS(Vx̄) = S(Rx).

To prove Property 1, notice that from (4.52) we have exactly one ofS(Ux) = [k :

S(Rx)]
→ or S(Ux̄) = [k : S(Rx)]

→. From that and (4.53)–(4.54), we have that either

S(Vx) = S(Rx) or S(Vx̄) = S(Rx). From that and (4.56) we get Property 1.

Define

fS(x) =

 false S(Vx) = S(Rx)

true otherwise.

Going for a contradiction, let us suppose thatfS does not satisfyψ. That means that must

existi such that, for allj ∈ 1..3, fS(lij) = false. From the definition offS and Property 1

we have that, forj ∈ 1..3, there is a variablex such that(ij) ∈ Ix andS(Vlij) = S(Rx).

From that and (4.55) and (4.57), we conclude

False = S(Ai0) = S(Ai1) = S(Ai2) = S(Ai3) = True,

a contradiction. 2

Theorem 4.6.4.The type inference problem is NP-complete.

Proof. We have that type inference is in NP from Theorem 4.5.16. NP-hardness follows

from Lemma 4.6.2 and Lemma 4.6.3. 2

4.7 Conclusion

Type inference with record concatenation, subtyping, and recursive types is NP-complete.

Future work includes implementing the algorithm for a language such as Obliq, and to at-

tempt to combine our technique with our algorithm for type inference with both covariant

and invariant fields [PZJ02].
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The construction used in our NP-hardness proof may be applicable to other types sys-

tems. In particular, our notion of simple constraint systems may be reducible to even more

restrictive type inference problems than the one we have considered.
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5. Summary and Future Work

5.1 Summary

In this thesis, we have studied type-matching and type-inference problems for object-

oriented systems. In the introductory chapter, we briefly explained formal type systems

and their applications; we also discussed class-based, object-based languages and object

calculi. We surveyed the applicable areas of type matching which include retrieval of

software components and generating bridge code for multi-language systems. Moreover,

we listed some of the motivations of type inference for object-type systems with variance

annotations.

In Chapter 2, we presented the solutions to the type matching problem for object inter-

face types with flexible equality rules. Our solution is based on a definition of bisimulation.

A straightforward implementation of the solution results in anO(n2) time algorithm and

the time complexity was further improved toO(n log n) by a reduction to the problem of

finding the coarsest size-stable refinement of a graph. We implemented the last algorithm in

Java. The implementation allows users to input definitions of two interfaces and generates

matched types if any exist.

In Chapter 3, we developed type inference algorithm for automatically discovering co-

variant read-only fields for an invariant of Abadi-Cardelli object calculus. Covariant read-

only fields are applicable to object calculi, mobile processes and typed intermediate lan-

guages. In Chapter 4, we developed algorithm of type inference for type systems with

record concatenations which are useful in untyped object-based languages such as Obliq.

5.2 Future Work

We have demonstrated that type matching and type inference can be valuable methods

for improving software integration and programming efficiency. More work can be done to
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make these methods more practical. For instance, it may be interesting to find out whether

one could infer principal types based on the type equality rules used in type matching. The

existence and decidability of such principal types in type assignment systems for objects

or functions could help component-software writers to omit some of the interface types in

their applications. One other future direction is to support interoperability by automatically

generating a converter from data in one language to data of an equivalent type in another

language. Since data conversion may require types such as linked lists and arrays, a union

type operator denoted by+ may be needed in the set of type-equality rules that we consider.

Since× operator is distributive over+, the existing approaches may no longer apply.

To make our type-inference approach more practical, we would like to find out whether

it is possible to combine the type-inference algorithms in Chapter 3 and 4 to cover a larger

fragment of the type system in [Gle00]. Such an algorithm can be helpful for enabling the

omission of excessive type annotations. We are also interested in finding a type-inference

algorithm for objects with both read-only and write-only fields.
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APPENDIX

A.1 Proof of the first half of Theorem 2.5.8

Theorem A.1.1.EQ = R.

Proof. First we proveEQ ⊆ R (soundness). Suppose∆ is a derivation tree for∅ ` σ =

τ . LetR be the set of type pairs that are found in∆ on the right-hand side of̀, except for

applications of the rule (HYP). It is straightforward to see that all other type pairs in∆ are

elements ofR. Notice that(σ, τ) ∈ R. It is straightforward to show thatR ⊆ F (R). From

that and Lemma 2.5.7 we have thatR is a bisimulation, so, by co-induction,(σ, τ) ∈ R.

Next we proveR ⊆ EQ (completeness). Suppose(σ, τ) ∈ R. Choose a bisimulation

R′ such that(σ, τ) ∈ R′. DefineR = R′ ∩ (Vσ × Vτ ). Notice thatR is a finite set, and

(σ, τ) ∈ R. Let us show thatR is a bisimulation. First, fromR′ being a bisimulation and

Lemma 2.5.7,R′ ⊆ F (R′). It follows thatR′ ∩ (Vσ × Vτ ) ⊆ F (R′) ∩ (Vσ × Vτ ). ¿From

Lemma 2.5.13 we haveF (R′) ∩ (Vσ × Vτ ) ⊆ F (R′ ∩ (Vσ × Vτ )), soR′ ∩ (Vσ × Vτ ) ⊆

F (R′ ∩ (Vσ × Vτ )), that is,R ⊆ F (R). Thus, by Lemma 2.5.7,R is a bisimulation.

FromR, we can now construct a derivation tree for∅ ` σ = τ . The functionS, see

below, is a recursive function that takes as inputs (1) an environmentA, and (2) a type pair

(σ, τ). The callS(A, (σ, τ)) returns a suggestion for a derivation tree forA ` σ = τ .

S (A, (σ, τ)) =

• If σ, τ are base types, then returnA ` σ = τ

• If (σ, τ) ∈ A, then returnA ` σ = τ

• If σ = σ1 → σ2, τ = τ1 → τ2, then return
S((A, σ = τ), (σi, τi)) ∀i ∈ {1, 2}

A ` σ = τ

• If σ = Πn
i=1σi, τ = Πn

i=1τi, then return
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S((A, σ = τ), (σi, τt(i))) ∀i ∈ {1..n}
A ` σ = τ

where(σi, τt(i)) ∈ R and

t is a bijection from{1..n} to {1..n}.

Consider the callS(∅, (σ, τ)). It is straightforward to see that in every recursive call toS,

all type pairs in the arguments are elements ofR. SinceR is a bisimulation, this ensures

that the rules inEQ→
∏ apply. Moreover, every timeS is called, the size ofA will increase

by one, since otherwise we could use the second case in the definition ofS to avoid further

recursive calls. This limits the depth of the recursion to the number of elements ofR. Since

R is finite, we conclude thatS(∅, (σ, τ)) has a finite depth of recursion and that the size of

the resulting derivation tree for∅ ` σ = τ is finite. 2

A.2 Proof of Theorem 2.5.9

Theorem A.2.1.R is a congruence relation.

Proof. We will show thatR is reflexive, symmetric, transitive, and a congruence in the

→ and
∏

constructors.

(Reflexivity) Supposeγ is a base type. Construct the relation

R = { (σ, σ) | σ is a base type}.

We have(γ, γ) ∈ R, andR is closed and consistent. Hence,R is a bisimulation, and,

by co-induction,(γ, γ) ∈ R.

(Symmetry) Suppose(σ, τ) ∈ R. Choose a bisimulationR such that(σ, τ) ∈ R, and

construct fromR the relation:

R′ = { (σ, σ′) | (σ′, σ) ∈ R }.

From(σ, τ) ∈ R, we have(τ, σ) ∈ R′. R′ is bisimulation because the conditions for

being a bisimulation are symmetric with respect to the two components of a type pair.

So, by co-induction,(τ, σ) ∈ R.
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(Transitivity) Suppose(σ, δ), (δ, τ) ∈ R. Choose bisimulationsR1, R2 such that(σ, δ) ∈

R1, (δ, τ) ∈ R2, and construct fromR the relation

R = { (σ1, σ3) | (σ1, σ2) ∈ R1, (σ2, σ3) ∈ R2 }.

From(σ, δ) ∈ R1, (δ, τ) ∈ R2, we have(σ, τ) ∈ R.

For any(σ1, σ2) ∈ R1, (σ2, σ3) ∈ R2, we haveσ1(ε) = σ2(ε), σ2(ε) = σ3(ε), so

σ1(ε) = σ3(ε), and thereforeR is consistent.

If σ = σ1 → σ2, δ = δ1 → δ2, andτ = τ1 → τ2, then, for everyi ∈ {1, 2}, we have

(σi, δi) ∈ R1, (δi, τi) ∈ R2, so(σi, τi) ∈ R, and thereforeR is closed under condition

P1.

If σ =
∏n
i=1 σi, δ =

∏n
i=1 δi, andτ =

∏n
i=1 τi, then there exist bijections,u, v such

that, for everyi ∈ {1..n}, we have(σu(i), δi) ∈ R1, (δv(i), τi) ∈ R2, so(σt(i), τi) ∈ R,

where,t = u ◦ v, and thereforeR is closed under conditionP2.

We conclude thatR is a bisimulation, and, by co-induction,(σ, τ) ∈ R.

(Congruence in→) Suppose(σ1, τ1), (σ2, τ2) ∈ R, andσ = σ1 → σ2, τ = τ1 → τ2,

Choose bisimulationsR1, R2 such that(σ1, τ1) ∈ R1, (σ2, τ2) ∈ R2, and construct

fromR1, R2 the relation

R = {(σ, τ)} ∪R1 ∪R2.

We have(σ, τ) ∈ R by construction.

Since bisimulation is closed under union,R1∪R2 is a bisimulation. Moreover,σ(ε) =

τ(ε) =→, and(σ1, τ1), (σ2, τ2) ∈ R, soR is a bisimulation, and, by co-induction,

(σ, τ) ∈ R.

(Congruence in
∏

) Suppose, for everyi ∈ {1..n}, that(σi, τti) ∈ R, wheret is a bijection

from {1..n} to {1..n}, andσ =
∏n
i=1 σi, τ =

∏n
i=1 τi. For eachi ∈ {1..n}, choose a

bisimulationRi such that(σi, τt(i)) ∈ Ri, and construct the relation

R = {(σ, τ)} ∪ (
n⋃
i=1

Ri).

We have(σ, τ) ∈ R by construction.
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Since bisimulation is closed under union,
⋃n
i=1Ri is a bisimulation. Moreover,σ(ε) =∏n = τ(ε), and for everyi ∈ {1..n}, we have(σi, τti) ∈ R, soR is a bisimulation,

and, by co-induction,(σ, τ) ∈ R.

2

A.3 Proof of Lemma 3.2.3

Here we give a full proof that≤ is a partial order. First,≤ is reflexive because the

identity onT (Σ) is a simulation. The composition(R ◦ R′) of binary relationsR andR′

over a setX is defined in the usual way:

(x, x′) ∈ (R ◦R′)⇔ ∃x′′ ∈ X. (x, x′′) ∈ R, (x′′, x′) ∈ R′.

Lemma A.3.1. If R is a reflexive simulation, then(R ◦R) is a simulation.

Proof. Suppose(A,A′) ∈ (R ◦R). Thus,∃A′′ such that(A,A′′), (A′′, A′) ∈ R.

• If A′ = U , thenA′′ = U since(A′′, A′) ∈ R; and thenA = U since(A,A′′) ∈ R.

• Similarly, if A = U , thenA′ = U .

• OtherwiseA′ = [`v
′
: B′, . . .]. Then sinceR is a simulation, we have

A′′ = [`v
′′

: B′′, . . .],

A = [`v : B, . . .],

v v v′′ v v′,

(B′′, B′) ∈ R,

v′ = 0⇒ (B′, B′′) ∈ R,

(B,B′′) ∈ R, and

v′′ = 0⇒ (B′′, B) ∈ R.

Sincev is transitive we havev v v′. We have(B,B′′) ∈ R, (B′′, B′) ∈ R; that is,

(B,B′) ∈ (R◦R). If v′ = 0, then fromv′′ v v′ we havev′′ = 0, and so(B′, B′′) ∈ R,

(B′′, B) ∈ R, that is,(B′, B) ∈ (R ◦R), as desired.

2
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Corollary A.3.2. ≤ is transitive.

Proof. Just note that≤ is reflexive, and≤ ⊇ (≤ ◦ ≤) because≤ is the largest simula-

tion. 2

Lemma A.3.3. Every simulation is antisymmetric.

Proof. LetR be a simulation. We prove the following statement by induction onα:

If (A,A′) ∈ R and(A′, A) ∈ R, thenA = A′, that is,A(α) = A′(α) for every

α.

• If α = ε, we showA(α) = A′(α) by cases on the structure ofA.

If A = U , then by the definition of simulation,A′ = U . ThereforeA(α) = U =

A′(α).

If A is a record type, then by the definition of simulation and the antisymmetry

of v, A′ is a record type with exactly the same labels and variances; that is,

A = [`vi
i : B i∈1..n

i ] andA′ = [`vi
i : B′ i∈1..n

i ]. ThereforeA(α) = {`vi
i : i ∈

1..n} = A′(α) as desired.

• If α = `α′, we consider two cases.

If A(`) is undefined, then eitherA = U for someU , orA is a record type with no

` field. In the first case,A′ = U because(A′, A) ∈ R. In the second case,A′ has

no ` field (otherwise(A,A′) ∈ R would implyA has aǹ field, contradiction).

In either case,A′(`) is undefined, so bothA(α) andA′(α) are undefined.

If A = [`v : B, . . .], then by the definition of simulation and the antisymmetry

of v, we haveA′ = [`v : B′, . . .] and(B,B′), (B′, B) ∈ R. Then by induction,

B(α′) = B′(α′). SoA(α) = B(α′) = B′(α′) = A′(α) as desired.

2
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A.4 Notation for Chapter 2

→,∏n function type constructor and product type constructor of arityn

α, β type variable

δ transition function

Γ a set of base types

` labeling function

ω the set of natural number

Σ finite ranked alphabet

σ, τ , η types

A static type environment

B blocks in a partition of a graph

abs function that maps integer function such asI to relation on types

C,D relations on states

E ,R the largest bisimulations on types

E relation on nodes of a graph

F ,H functions on power-sets

H function on integer functions such asI

I function that maps types to integers

i index

K,L equivalence relations on nodes of graph

match matching function

P unary operator that maps a set to its power-set

P , S partitions of a graph

Q finite set of states

q state

R relation on types

R̄ the largest simulation on types

M term automaton
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T Unit type

t, π bijections

T , V ,W sets of types

U set of nodes of a graph

X, Y , Z, Z generic sets
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A.5 Notation for Chapters 3 and 4

0,+ variances

≤ largest simulation

α path (element ofLabels∗)

ε the empty path

δR one-step transition function

Σ the alphabet of trees

σ element ofΣ

A,B, C,W types

A(α) symbol ofΣ at pathα in typeA

A ↓ α subtree of typeA at pathα

A[U := B] typeA with U replaced byB

A function fromRelTypes to RelTypes

BR function fromRelStates to RelStates

a, b, c terms

a[·] context with one hole

a[b] contexta[·] with hole filled by termb

a[`← ς(x)b] update field̀ of a with ς(x)b

a[x := b] terma with x replaced byb

aR term whose typability is equivalent toR

a ; b terma rewrites to termb

aboveR function fromStates to States

ABOVER function fromRelTypes to RelStates

C(a), Ea,Xa, Ya system equivalent to typability of terma

E type environment

E[x : A] type environment with updated binding forx

E\x type environment with binding forx removed

g, h states or sets of types
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I index set

i, j indices

k, `,m labels

Labels the set of labels

LV function fromStates toP(Labels× Variances)

n index bound

P power set

Q elements of constraints

R relation on types also known as set of constraints

R relation on sets of types

RelTypes relations of types

RelStates relations of sets of types

S substitution

States sets of types

T set of types

T .` function fromStates to States

T V set of type variables

T (Σ), Tfin(Σ), Treg(Σ) type tree, finite type tree, and regular type tree

TypeR function fromStates to Types

TYPER function fromRelStates to RelTypes

Types the set of types

U , V type variables

Var function fromStates× Labels to Variances

Variances the set of variances

v variance (element ofVariances)

X generic set

x, y term variables

≤ our subtyping relation

v, t ordering and lub onVariances
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