CERIAS Tech Report 2003-20

TYPE MATCHING AND TYPE INFERENCE FOR
OBJECT-ORIENTED SYSTEMS

by Tan Zhao
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907

TYPE MATCHING AND TYPE INFERENCE FOR OBJECT-ORIENTED SYSTEMS

A Thesis
Submitted to the Faculty
of
Purdue University
by

Tian Zhao

In Partial Fulfillment of the
Requirements for the Degree
of

Doctor of Philosophy

August 2002

To my parents.

ACKNOWLEDGMENTS

| would like to express my most sincere appreciation to my adviser, Professor Jens
Palsberg, who has given me patient guidance in conducting research and generous financial
support to continue my study for the past three and half years. | could not have finished
this thesis without the countless late-night discussions with Professor Jens Palsberg where
he shared his invaluable insights with me so generously.

| would like to thank my co-authors whose collaborations made this thesis possible.
Chapter 2 of this thesis is based on joint work [PZ01, JPZ02] with Professor Somesh Jha
(University of Wisconsin at Madison) and Professor Jens Palsberg. Chapter 3 is based on
joint work [PZJ02] with Professor Jens Palsberg and Dr. Trevor Jim (AT&T research lab).
Chapter 4 is based on joint work [PZ02] with Professor Jens Palsberg.

| am also thankful to my other committee members, Professor Jan Vitek, Dr. Jakob
Rehof (Microsoft Research), Professor Mikhail Atallah, and Professor Antony Hosking for
providing valuable suggestions to improve the thesis. | thank the classmates of the Secure
Software Systems Lab who make my graduate life much more enjoyable.

Finally, I would like to thank my parents for the lifelong guidance, encouragement, and
unconditioned love; and | thank my sister who helps me both financially and spiritually. |

would like to thank Yin Wen who is always by my side for the past three years.

TABLE OF CONTENTS

LISTOFFIGURES
ABSTRACT
1 Introduction
1.1 TypeSystems.
1.2 Object-Oriented Systems
1.3 TypeMatching.
1.3.1 Component Retrieval in Software Libraries.

1.3.2 Generating Bridge Code for Multi-language Systems.

1.3.3 Type Matching Algorithms.

1.4 Typelnference
1.41 CovariantRead-OnlyFields.

1.4.2 Type Systems for Record Concatenation.

1.4.3 Type-Inference Algorithms.

1.5 OverviewoftheThesis.,

2 Efficient and Flexible Matching of Recursive Types.
2.1 Introduction
211 Background.

212 TheProblem

213 OurResult

2.1.4 Implementation.

2.1.5 ChapterOverview

22 Example.
23 RelatedWork

Page

viii

© N o M~ N P

19

2.4 BasicDefinitions oo 30
241 Terms. 31
242 TermAutomata. 31

25 TypeEquality 33
251 RecursiveTypes 33
25.2 BipartiteGraphs 34
2.5.3 Monotone Functions and Fixed Points 36
254 TypeEquality. 38
2.5.5 A Characterization of Type Equality. 40
2.5.6 Algorithmand Complexity 43

2.6 Equality of Intersectionand Union Types. a7

2.7 An Efficient Algorithm for Type Equivalence 52

2.8 Implementation. 60

2.9 Subtyping of Recursive Types. 62

2.10 Conclusion 65

3 Automatic Discovery of Covariant Read-Only Fields. 67

3.1 Introduction 67
3.1.1 Background. 67
312 OurResults. 74
3.1.3 RelatedWork. 75
314 Examples. 77

3.2 Typesandsubtyping 81
3.2.1 Defining types as infinitetrees. 81
3.2.2 Defining subtyping via simulations 82
3.2.3 Analgorithm for subtyping. 84

3.3 An Abadi-Cardelli Object Calculus. 86

3.4 Type Inference is equivalent to Constraint Solving. 88
3.4.1 From Type Inference to Constraint Solving. 88

3.4.2 From Constraint Solving to Type Inference. 93

5

Vi

3.5 SolvingConstraints. 97
3.5.1 Satisfaction-closure 97
3.5.2 Satisfaction-consistency. 101
353 MainResult. o 102

3.6 P-hardness 111

3.7 Conclusion 112

Efficient Type Inference for Record Concatenation and Subtyping 113

4.1 Introduction L 113
4.1.1 Background. 113
412 OurResult 115
41.3 Example. 117

4.2 Typesand Subtyping. 121
4.2.1 Defining types as infinitetrees. 121
4.2.2 Defining Subtyping via Simulations. 123
4.2.3 Acharacterization of subtyping 124

4.3 The Abadi-Cardelli Object Calculus. 126

4.4 From Type Inference to Constraint Solving. 128

4.5 SolvingConstraints. 134
45.1 Satisfaction-closure 135
45.2 Satisfaction-consistency. 137
453 MainResult. 138

46 NP-hardness 147
4.6.1 FromConstraintstoTypes. 147
4.6.2 Solving Simple ConstraintsisNP-hard. 153

4.7 Conclusion 156

Summary and Future Work. 158

5.1 Summary 158

52 FutureWork. 158

LISTOFREFERENCES o 160

vii

APPENDIX o 167
A.1 Proof of the first half of Theorem258 167
A.2 Proofof Theorem?25.9. 168
A.3 Proofof Lemma3.2.3. 170
A.4 NotationforChapter2 172
A.5 Notation for Chapters3and4 174

Figure
1.1
1.2
1.3
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
3.1
3.2

viii

LIST OF FIGURES

Page
Syntax of an Abadi-Cardellicalculus 6
Example of an untypable program in the type syste@mf.., 13
Part of the syntax of Glew’s target language for object and class encoding
Interfaced; andl, 23
Interfaces/; and.Jy 23
Trees forinterface§ and/ls 24
Trees forinterfaceg, and.J, 24
Bipartite graphs after the 2nd, 3rd and 4th iterations. 26
Too - o o e 28
Set of rules for reducing non-recursive types into normal forms. . 29
Tr o« 29
TRAC. o e 39
Blocksoftypes 60
Schematic diagram for the implementatian. 61
Screen shot of the implementation 62
Interfaced; and Ky 63
Constraints for the example program 78

The satisfaction-closure (excerpt) of two constraints. 80

15

ABSTRACT

Zhao, Tian. Ph.D., Purdue University, August, 2002. Type Matching and Type Inference
for Object-Oriented Systems. Major Professor: Jens Palsberg.

Type systems in object-oriented systems are useful tools to ensure correctness, safety,
and integration of programs. This thesis studies the matching of recursive interface types
for the purpose of software-system integration and type inference for object types to help

reduce bulky type information for programs with flexible type systems.

We explore the problem of equality and subtyping of recursive types. Potential appli-
cations include automatic generation of bridge code for multi-language systems and type-
based retrieval of software modules from libraries. We present efficient decision procedures
for a notion of type equality that includes unfolding of recursive types, and associativity
and commutativity of product types. Advocated by Auerbach, Barton, and Raghavachari,

these properties enable flexible matching of recursive types.

We also present results on type inference for object-oriented languages with flexible

type systems including features such as read-only field and record concatenation.

Read-only fields are useful in object calculi, pi calculi, and statically-typed intermediate
languages because they admit covariant subtyping, unlike updateable fields. For example,
Glew’s translation of classes and objects to an intermediate calculus places the method
tables of classes into read-only fields; covariant subtyping on the method tables is required
to ensure that subclasses are translated to subtypes. In programs that use updateable fields,
read-only fields can be either specified or discovered. For both cases, we will show that

type inference is equivalent to solving type constraints and computable in polynomial time.

Record concatenation, multiple inheritance, and multiple-object cloning are closely

related and part of various language designs. For example, in Cardelli's untyped Obliq

language, a new object can be constructed from several existing objects by cloning fol-
lowed by concatenation; an error is given in case of field name conflicts. We will present a
polynomial-time type inference algorithm for record concatenation, subtyping, and recur-
sive types. Our example language is the Abadi-Cardelli object calculus extended with a
concatenation operator. Our algorithm enables efficient type checking of Obliq programs

without changing the programs at all.

1. Introduction

This thesis studies type-equivalence and type-inference problems in object-oriented sys-
tems in order to enhance the interoperability of software components and to infer types
for flexible type systems. Type systems are often integral parts of modern programming
languages. A fundamental purpose of a type system is to prevent the occurrences of exe-
cution errors. Type systems can also increase the efficiency of program execution, allow
easier debugging, enable modular code development, and help improve orthogonality of
language features. To take advantage of these benefits, researchers need to study the prob-
lems related to formal type systems which include, but are not limited to, type equivalence,

type inference, and type soundness.

The integration of multi-language systems becomes increasingly important in the area
of software systems where large amounts of legacy code exists. With the help of inter-
face types of objects and functions, we are able to connect software components written
in different programming languages. In this thesis, we study the type-matching problem
during the integration of multi-language systems. We also present type-inference algo-
rithms for type systems with variance annotations. Types with variance annotations allow
more flexible subtyping and they are useful for typing object calculi, mobile processes,
and statically-typed intermediate languages. We also deal with annotated types that help

support concatenation of objects.

In the rest of this chapter, we first give a brief introduction to type systems in general
and to types in object-oriented systems; and we later explain the applicable areas of type
equivalence including component retrieval in software libraries and generating bridge code
for multi-language systems; and lastly, we explain the applications of type inference for

object-oriented systems.

1.1 Type Systems

Type systems promote safety at runtime and help eradicate evasive errors which other-
wise may go unnoticed during program execution. Some runtime errors of a program such
as dividing by zero can cause the execution to be halted. Other errors such as improper
access to memory locations may not be detected and consequently cause the program to
behave incorrectly. Type systems are designed to catch some of these evasive errors before
runtime by statically checking the consistency between type declarations and their associ-
ated programs. When there are errors that cannot be detected statically, dynamic checks
are often needed to ensure safety of program execution. Well-designed type systems can
eliminate more of the runtime errors, hence, less dynamic checks are needed and programs
execute more efficiently. Also, with a large fraction of errors automatically detected by

typechecking methods, programmers can be more efficient in debugging their programs.

Besides detecting runtime errors, type systems are also important tools for modular
compilation of programs and essential for collaborative programming in large software sys-
tems. Type information of software components can be arranged in the form of interfaces.
Interface types can characterize much of the interdependencies of components and mod-
ules such that they interact with each other only through their interfaces. While maintaining
relatively stable interface types, programmers are able to modify, debug, and compile com-
ponents and modules independently. Moreover, typechecking algorithms can automatically
verify whether software components have followed the specifications described in the inter-
face types. Hence, developing software systems may become more efficient with suitable

definitions of interface types.

In order for type systems to be useful, types should have precise definitions and proofs
of their formal properties. For instance, the proof of type soundness checks the consistency
between the type definitions and the semantics of a programming language. The property
of type-soundness guarantees that well-typed programs compute without execution errors.
Furthermore, type systems should have decidable typechecking algorithms, should make
it straightforward for programmers to identify type errors, and type declarations should be

checked statically as much as possible.

To formalize a type system, we need to describe the syntax, scoping rules, semantics,
and type rules of the associated programming language. The syntax of a languages usually
consists of syntax for types and terms. Types set the upper bounds of the ranges of values
that program variables can assume during program execution, and terms are expressions
and statements in program fragments. The scoping rules of a language associate occur-
rences of identifiers to the locations where they are declared. These rules specify the way
in which free variables in a program fragment are substituted with terms. Semantics of a
language relate terms in program fragments to a set of values. Independent of semantics,
the type rules of a language identify a teerwith a type A in the forme : A, relate two
types with a subtyping relation in the formh < B, and associate types that are equivalent
in the formA = B. Sometimes we have type variables that need to be associated with their
definitions. This information is contained in static type environments. For instance, the
type equivalence rule - A = B has static type environmehtwhich may contain type
definitions forA, B.

Type equivalence and subtyping can be either by structure or by name. Structural equiv-
alence and subtyping have the advantage of being precise when defined by type rules and
being independent of naming schemes. However, structural type equivalence and subtyp-
ing become nontrivial when recursion is involved. We will explain in Section 1.3 why
determining structural equivalence of types is important for the interoperability of software

components.

We can prove a type soundness theorem by showing that if two terms are semantically
equivalent, then they have the same type. Thus, if a type system is sound and decidable,
then we can use typechecking algorithm to determine whether a program is well-typed and
consequently whether it will execute without errors. To formally prove type soundness
or show that a program is well-typed, we can employ a formal language of type systems
including judgments, type rules, and type derivations. A judgment is an assgditailed
by static type environmeiitin the form of[" - ¢. A typing judgment of the form' - e : A
asserts that in environmehtthe expressiom has typeA. A type rule asserts the validity

of a certain judgment - ¢ by assuming the validity other judgmentst ¢;,7 € {1, ..n}.

. r, - NV R
Type rules are usually in the form of ¢1’F - 7(15 ¢

tree of judgments constructed by applying type rules. The leaves of a judgment tree should

. A derivation of a judgment is a

be known to be valid without assuming the validity of any other judgments.

A terme is well typed in an environment if there exists a typel such that the judg-
mentl’ - e : A can be obtained at the root of a derivation. Thus, typechecking a program is
in fact the discovery of type derivations for all the terms in the program. The type-inference
problem in this thesis, which may be called typability or type reconstruction in other lit-
erature, is the process of finding a tyde and an environmerit for an untyped ternz
such thatl' - e = A is valid. In section 1.4, we will explain type-inference problems
for object-oriented systems. In particular, we consider type systems with variance anno-
tations so that more flexible subtyping and object concatenation are supported. Subtyping
is almost ubiquitous in typed object-oriented languages which we briefly discuss in next

section.

1.2 Object-Oriented Systems

Object-oriented approaches emulate the properties and behaviors of physical entities.
Unlike functions or procedures, software objects are not designed to have a specific func-
tionality; they may contain a collection of methods that operate on themselves and they may
contains a collection of fields that describe the properties of the objects . Object-oriented
languages have the advantages of being resilient to modifications and being reusable by

allowing flexible replacement of objects and methods.

The abstraction of objects allows programmers to factor out implementation of com-
putation to methods and organize object definitions in ways more suitable for application
designs. Modifications to a particular implementation are therefore usually localized to

some methods and have less effects on the whole organization of the application.

More reusable components can be written in object-oriented languages because objects
and methods are more interchangeable than functions and procedures. Replacement of
objects and methods do not require exact matching of types or interfaces unlike replacing

modules written in procedural languages. This is due to the prevalent use of subsumption

or subtyping in object-oriented systems. For instance, object replacement only requires
that the new object has at least the same set of fields and methods as the one to be replaced.
Also, methods can be either reused by inheritance or replaced by overriding. The new
methods have to conform to the type signatures of the old ones but with some degrees of
flexibility. Replacement of methods also leads to objects that have dynamic sets of methods
associated with them. In order for a method to access the rest of fields and methods in the

host object, often a notion aklfis used to identify the host object.

Object-oriented languages can be either object-based or class-based such as C++ and
Java. Classes serve as object templates, and objects are instantiated from classes via an
operator such asew. Inheritance of classes creates class hierarchies and also enables
reuse of methods. A subclass is a class that inherits from other classes and subclassing
usually implies subtyping. For instance, suppose that clésa subclass af and objects
0,0 are instances af andc respectively. In languages such as C++ and Java, the type of
o is a subtype of the type af. Also, objecto can assume the type of as well, which
implies that if there is a variable of the type ofo’, then we can assignto v and this is
known as subsumption. Because of subsumption and overriding, when we invoke a method
on an object in variable, we cannot be sure which method will be invoked until runtime

and this is known as dynamic dispatch.

Object-based languages are less popular than class-based languages, though they can
be simpler and more flexible. Object-based languages emulate behaviors in class-based
languages with simpler mechanisms. Without classes as object templates, object-based
languages create new objects by cloning prototypes. Also method-updates are used in

place of method overriding.

The object-type systems that we are concerned with in Section 1.4 are derived from
an Abadi-Cardelli object calculus [AC96a], which is an untyped first-order object calculus
with subtyping and recursion, and the syntax of which with some variations is shown in
Figure 1.1. Object calculi are further decompositions of object-based languages. Only
limited features such as method invocation and method update are built-in for the Abadi-

Cardelli object calculus. The object types are a collection of fields with distinct labels

AB = types
X type variable
[4; : B, "€+ object type (; distinct)
w(X)A recursive type
a,b = terms
x variable
[0; = s(x;)b; 1" object ¢; distinct)
a.l method invocation
a.l <= ¢(z)b method update.

Figure 1.1. Syntax of an Abadi-Cardelli calculus

and one type for each field. The largest object type, denoted |bys an object type
without any fields. If a typed contains at least the set of fields in type then B is the
subtype ofA, which is called width subtyping. For instandé, : B, ““*-"*™] is a subtype
of [¢; : B, ""]. The type system for the object calculus in Figure 1.1 has only width

subtyping and recursive types.

Even though type-checking can help eliminate programs with runtime errors, it can also
rule out sound programs as well. In fact, there are some limitations of the type systems
such as the one in Figure 1.1 that render some sound programs untypable. We will discuss
this problem in Section 1.4. In Section 1.3, we are mainly interested in interface types of
object-oriented languages such as Java, where only type signatures of methods and static

data types are defined in interfaces.

1.3 Type Matching

Much of the study of type isomorphisms (equivalence) is motivated by the component-

retrieval problem and generation of bridge code for multi-language applications.

1.3.1 Component Retrieval in Software Libraries

Types have been used as search keys in retrieving suitable components from a software
library. Many functions or components that fit the specification of users do not always have
the exact same type as the one the user provided. We therefore need to somehow relate
types isomorphic to the query type.

In some cases, function types are good search keys since non-recursive types are easy
to compare and most function libraries contains the types of their components.

Consider a type system with the following terms.
T=vy | nm—m | 1 X7

The symboly ranges over base types such as integer and boolean. The symlzoisl
x denote the function type constructor and the product type (or record type) constructor
respectively.
A type of a function can be written as — 7, whereo is the type of arguments and
7 is the return type of the function. Suppose we are looking for a fundétionthat takes
two arguments of typelsooleanandintegerrespectively and returns a pair consisting of a

boolean and an integer, and the typdaa can be written as
(bool x int) — (bool x int).

So how do we decide that two types are actually matched? We may require the matched
function to have exactly the same type, that is, the argument types are in the same order
and so are the return types. This is too restrictive as it turns out. Some functions may have
similar types which can be converted into the sought type via simple transformations such

as argument reordering or currying. For instance, functions with the following types
(int x bool) — (bool x int) or bool— (int — (bool x int))

can be converted ttoo by reordering the argument or an uncurry transformation. Fur-
thermore, a function that returns a pair can be translated into two functions that return the

components of the pair. The following type may be what we want as well.

((int x bool) — bool) x ((int x bool) — int)

In fact, we consider these similar types to belong to an equivalence class consisting of
types isomorphic to the type &bo. Informally, two typess andr are isomorphic if there
exist conversion from terms of to terms ofr and vice versa, where the compositions of

the two conversions in both orders are the identity mappings.

Rittri [Rit91] noted the use of types as query keys for searching functional libraries.
To allow flexible retrieval of desired functions, he defined a notion of isomorphism via
the functions of a\gn-calculus with surjective pairing. He also gave a semantics and
an axiomatic characterization of isomorphism with the axiom rules shown in Figure 2.6.
Rittri noted that these isomorphisms also hold in all Cartesian Closed Categories. (An
introduction to category theory can be found in [Gol79]). This type system was proved
complete for models of the simply typedcalculus with surjective pairing and terminal
objects by Bruce, Di Cosmo and Longo [BCL92]. Di Cosmo [Cos95] gave a more detailed
treatment of type isomorphism including systems involving second order types. He also

mentioned as future work to incorporate recursive types into the system of isomorphism.

Zaremski and Wing [ZW95] have done similar work in signature matching for retriev-
ing components from an ML-like functional library. Unlike others, rather than reasoning
about a complete set of rules, Zaremski and Wing emphasized the flexibility of combin-
ing those rules with generalized, specialized or unified matching. They also included user

defined type operators suchles in the matching.

When users attempt to retrieve specific functions from the library, usually, more gener-
alized functions will suffice as well. They can instantiate the retrieved functions to get what
they need. In addition, it is difficult for a user to guess the most general type of a function.
Generalized matching allows users to query the most general type with more specific ones.
As shown in [NPS93], generalized matching is NP-complete with the isomorphism defined

in Figure 2.6.

Once the desired function is retrieved, programmers may want to convert the interface
of the retrieved function into a certain preferred form. It is easy to modify the retrieved
function so that the type is preserved under isomorphism. However, if the programmers use

a language different from the one that the retrieved function is written in, the translation of

the interface becomes an non-trivial task. Preferably, we would like to automatically con-
vert a component interface written in one language into an interface for another language
under type isomorphism. This is essential for generating bridge code for multi-language

applications.
1.3.2 Generating Bridge Code for Multi-language Systems

Large and complex software applications often contain modules written in different
programming languages. This may be due to the need for reusing legacy components or
because certain languages are more suitable for particular application areas. In addition,
programmers for distributed applications may want to provide interfaces to facilitate in-
teroperability with other programs already written in several different languages. In any
case, mechanisms are needed to glue these multi-lingual components together. CORBA
[OMG99], PolySpin [BKW96] and Mockingbird [ACC97, ABCCR99], etc. are systems
designed to overcome this difficulty.

In multi-language applications, software modules can be considered to be of two kinds,
object and client. Objects must include public interfaces to allow access from clients writ-
ten in different languages. CORBA-style approaches utilize a separate interface definition
language called IDL. The objects are wrapped with language-independent interfaces de-
fined in IDL, and the wrappers are translated into interfaces in the languages that clients
are using so that clients can invoke methods in these objects via the interfaces. Exact types
are preserved as the method invocations cross the language boundaries, because both the

client and object adhere to the common interfaces for interaction.

Since interfaces defined in IDL must be able to be translated into many different lan-
guages, the type system in IDL has to be the intersection of the type systems of all the
programming languages that CORBA supports. As a result, declarations in IDL lack ex-
pressive power and may not be convenient for local computation. Client code has to switch
between its own type system for local computation and IDL-derived types for remote oper-
ation on objects. In addition, common object types are not transparent to software modules.
Consequently, program modules implemented in a language with a more flexible type sys-

tem have to be modified and retrofitted to use the IDL-based interfaces.

10

The PolySpin and Mockingbird projects offer alternatives to defining interfaces in a
common interface language. In both approaches, clients and objects are written within their
own type systems and remote operation across language boundary is supported automati-
cally by compiler-generated bridge code or by modifying object method implementations.
Because object interfaces are not defined in a common type system, we must be able to
convert an object interface into a compatible form in other languages. PolySpin employed

an isomorphism framework similar to Zaremski and Wing [ZW95].

In PolySpin interoperability support is divided into four parts: locator, language arbitor,
communicator, and type matcher. A locator is the name management component used to
locate objects by their language-neutral name. A language arbitor associates language
information with objects as part of the name-object binding. A communicator achieves
inter-language invocation by automatically modifying the implementation of object meth-
ods. Modified methods consult the language arbitor at each invocation and decide whether
to make a local method call or a generated inter-language call. Modification done to object
methods is dependent on whether the interface type of the object is compatible with inter-
face types defined in other languages. A type matcher checks type compatibility based on

arelaxedcriteria of type isomorphism.

The implementation of PolySpin takes the type definitions of a set of clients and objects
written in multiple languages and modifies the type implementations after checking the
compatibility of these types. The modified objects then are ready to accept method calls
from clients written in other languages. Users have to supply the type definitions that are

matched semantically for PolySpin to do any useful work.

A type matcher only considers abstract object types whose properties are captured com-
pletely in the signatures of methods. Signatures of methods are matched with operations
including renaming, argument reordering and currying. Two object types are considered as
matched if either all methods or a subset of methods in the objects are matched in method

signatures. It seems that PolySpin did not consider recursive types.

The Mockingbirdproject is similar to CORBA in that they both make use of an inter-

mediate interface language. A key difference is that Mockingbird automatically generates

11

interfaces, provided some annotations in the source code. Compared with PolySpin, Mock-
ingbird allows more flexible translation of types across languages. Besides abstract data
types such as object, non-abstract types such as records, linked lists and arrays are also
considered when generating interfaces. As in PolySpin, inter-language method calls does
not preserve exact types, that is, data values can be transported across language boundary
if the interfaces of the data object are compatible. Two interfaces in different languages
are compatible if the types of the interface are inter-convertible, which means that there is
an invertible mapping from one type to the other. Tihigr-convertibilityof types follows

the ideas of structure-based type isomorphism. Because certain information is stored struc-
turally via inter-object references, the types of interfaces could be recursive. Determining
whether two recursive types are isomorphic with all the rules in Figure 2.6 turns out to be
guite a hard problem. In fact, Mockingbird used some conservative heuristics to determine

the inter-convertibility and to find invertible mappings between types.

The Mockingbird system consists of four elements: extractor, analyzer, synthesizer, and
emitter. Extractors extract the data-type definitions from annotated source languages. Ana-
lyzers generate an intermediate interface in the Mockingbird Signature Language (MockSL)
based on the type definitions. The annotations in source code are some formatted type in-
formation provided by programmers. Synthesizers interact with the programmer to decide
the type compatibilities of interfaces and generate declarations in clients’ languages. In the

end, the emitters produce marshaling stubs for each language from MockSL.

The improvement of PolySpin and Mockingbird over CORBA largely rests on the abil-
ity to use native type systems in defining operations across programming languages. In
PolySpin, interoperability of interfaces are judged by the compatibility of abstract types
under non-recursive type isomorphism. The Mockingbird project aims to extend definition
of type isomorphism to recursive types and more, and thereby to automate the translation

of non-abstract types.

The structure-based type isomorphism of the Mockingbird project seems non-trivial to
relate to any formal theory however. Auerbach, Barton, and Raghavachari [ABR98] defined

a theory of type isomorphism composed of the axioms of a theory of type isomorphism (see

12

Figure 2.6) and the axioms of a theory of equality for recursive types (see Figure 2.8). The
decidability of each in isolation has been proven. Auerbach, Barton and Raghavachari
raised the question of whether the combination of the two set of axioms is consistent and
decidable. It turns out that the combination is in faxtonsistensince all types can be

proven equal in this case. Thus, the isomorphism problem of recursive types cannot simply
be defined by the union of two systems and we have to set out finding a new definition that

is consistent and decidable.

1.3.3 Type Matching Algorithms

In this thesis, we study the problem of matching recursive types with a subset of the
isomorphism rules in Figure 2.6. We are interested in equivalence rules that include as-
sociativity and commutativity of product types because they are more useful for current
software systems. Even though it is straightforward to given an exponential-time algorithm
for the matching problem, it is non-trivial to find a polynomial time solution. Using an
iterative approach, we discovered@in?) algorithm [PZ01] for matching recursive types
with flexible equality rules characterized by a definition of bisimulation. The algorithm de-
pends on a monotone function constructed from the definition of a bisimulation and from an
initial relation on potentially equivalent types. Matched types, if any, should be contained
in the greatest fixed point of the monotone function. The time complexity of algorithm was
further improved ta@)(n log n) time [JPZ02] by reducing the fixed-point computation of the
monotone function to the problem of finding the coarsest size-stable partition-refinement
of a graph. We have implemented the second algorithm in Java and the implementation
allows users to compare interface types with the option to exclude some type equalities

when multiple matches exist.

1.4 Type Inference

Type inference automatically discovers type information from untyped or partially typed
programs. The problems we study in this thesis are type inference for untyped object cal-
culi with variance annotations where both width and depth subtyping are allowed and where
object concatenation is supported. For object types of the forns, . . .|, there are several

design choices. Abadi and Cardelli [AC96a] explain that if the fieddn be both read and

13

Point = [move= ¢(z)x]
ColorPoint = [move= ¢(y)y, setcolor= ¢(z)z]
Circle = [center= ¢(d)Point

ColorCircle = Circle.center< ¢(e)ColorPointmovesetcolor

Main = ColorCirclecentermove

Figure 1.2. Example of an untypable program in the type syste@bef.,

updated, thed must beinvariant, that is, if[¢ : A,...] is a subtype of¢ : B,..], then
A = B. This is the case for a type system with syntax in Figure 1.1. However, invariant
subtyping turns out to too restrictive for some programs.

For example, in Figure 1.2 is a program written in a variant of the Abadi-Cardelli object
calculus [AC96a] with syntax shown in Figure 1.1. Each meth@db binds a name:
which denotes the smallest enclosing object, much like “this” in Java. We apologize in
advance that the methods do not exhibit any useful behavior; the method were chosen to
make them difficult to type check. The "Main” program of this example should execute

without run-time errors because of the following reductions.

ColorCirclecentermove
— ((ColorPointmove).setcoloj.move
— (ColorPointsetcoloy.move
— ColorPointmove

— ColorPoint

Palsberg and Jim [PJ97] noted that this progranoitypable in Abadi and Cardelli’s type
systemOb, .., which has recursive types, width subtyping for object types, and only in-

variant fields. The key reason for the untypability is that the body o€CihlerCircle s

14

center method force€olorPoint to have a type which isota subtype of the type of

Point , intuitively as follows.

Point : p(X)[move: X|
ColorPoint : u(X)[move setcolor: X]|

u(X)[move setcolor: X|] £ p(X)[move: X]

Moreover,ColorCircle .center .move is not typable. Nonetheless, the example in

Figure 1.2 is typable in more flexible type systems, which we will study in Chapter 3.

1.4.1 Covariant Read-Only Fields

Variance annotations distinguish fields of an object as covariant, contravariant and in-
variant. A covariant read-only field (CROF) is a field which enjoys covariant subtyping and
which cannot be updated. Similarly, a contravariant field is write-only and cannot be read.
An invariant field can be either read or updated.

Following Abadi and Cardelli, we use the notatigh: B, ...] to denote an object type
with an invariant field’; and we use the notatidm™ : B, ...] to denote an object type with
a covariant fieldn. Covariance implies that {in™ : A,...] is a subtype ofm™ : B,..],
thenA is a subtype of3, a weaker condition thad = B.

Variant subtyping of object types increases the expressiveness of type system. Some
sound programs that fail to type check with only width subtyping and recursive types are
typable with variant subtyping. Variance annotations can also be used for typing and sub-
typing for mobile processes [PS93] to enforce that some communication channels are for
input only or for output only. Read-only fields are useful in statically-typed intermediate
languages because they admit covariant subtyping and can be used to type method-table
fields in the Glew’s encoding of classes and objects [Gle00]. The target language used
in the encoding has a super-set of the type syntax shown in Figure 1.3 which is slightly
modified to be consistent with the notations in the rest of the thesis. Notice that there are
two kinds of variance annotatiorsand ¢ in Figure 1.3. We first discuss the variance
¢ for annotating fields of a record typeéNotice that we use record type and object type

interchangeably here.

15

Type o u= .| [P ENe |
Variances ¢ == + | 0
e = 0|—-

Figure 1.3. Part of the syntax of Glew’s target language for object and class encoding

CROFs play an essential role in Glew’s translation of objects and classes to a typed
intermediate language. Like most implementations of object-oriented languages, Glew’s
translation uses method tables. One of Glew’s insights is that the method table can conve-
niently be placed in a CROF. For example,detndb be two source-language objects such
that the type ob is a subtype of the type af The type system for the source language sup-
ports thath may havemoremethods thai (width subtyping). This means that the method

table in the translation dfwill be longerthan the method table in the translatiomof

translation(a) = ...[mt=m,,..]...

translation(b) = ...[mt=my,..|...

where mt is the field name for the method table. Glew’s translation of b has a subtype of
the type of his translation of a; he makes mt a CROF, and he gives the following types to

the translations of andb:

type-of (translation(a)) = ...[mt" : type-of(m,),..]...

type-of (translation(b)) = ...[mt" : type-of (m;),..]...

Glew’s translation produces typed intermediate code, including the annotataoms:-.
1.4.2 Type Systems for Record Concatenation

While covariant subtyping increases the flexibility of subtyping for fields of an object,
type annotations that restrict width subtyping for some object types are useful for the pur-
pose of record concatenation. In Glew’s type system, the variansee Figure 1.3) is

used to annotate a record type so that there are two forms of record types. The variance

16

annotatiory, as in
[& . BZ iel..n]07
denotes that records of that typanbe concatenated, and that subtypaanotbe used.

The variance annotation:, as in
. €l.n1—
[0; - B, """,

denotes that records of that typannotbe concatenated, and that subtypaam be used.

For example, if we have

[1:5,m:true] : [I:int,m : bool]

n:7 : [n:int]
then for the concatenation (denoted-byof the two records we would get

[[:5,m:true] +n:7] : [l:int,m: bool]’ ® [n : int]°

= [l :int,m : bool,n : int]°.

where® is the symmetric concatenation operation on record types which is only defined
when the labels sets are disjoint and the two types both have the variance annotation 0. The
idea is that if an object has typg : ¢,;]°, then we know exactly which fields are in the
object, and hence we know which other fields we can safely add without introducing a field
name conflict. The more flexible typés : B; ““"]~ can be used to type objects that will
not be concatenated with other objects.

This kind of type annotation can be useful for Cardelli's untyped language n@ivlegl
[Car95], where the operation

clone(ay, ..., a,)

creates a new object that contains the fields and methods of all the argument objects
ai,...,a,. This is done by first cloning each af,...,a,, and then concatenating the
clones. An error is given in case of field name conflicts, that is, in case at least two of

ai,...,a, have a common field. Cardelli notes that useful idioms are:

clone(a,{l : v})

17
to inherit the fields ofi and add a new fieldwith initial valuev, and:
clone(ay, as)

to multiply inherit froma; anda,. Oblig’s multiple-object cloning is an instance of the idea
of concatenating two records of data. In a similar fashion, languages such as C++ [Str93]
and Borning and Ingalls’ [BI82] version of Smalltalk allow multiple inheritance of classes.

For languages such as Oblig, concatenation is a run-time operation and where a field
name conflict is considered an error; such concatenation is knowynasetric concate-
nation There are several ways of handling field name conflicts. One idea is to do run-time
checking, and thereby add some overhead to the execution time. Another idea, which we
study in this thesis, is to statically detect field name errors by a type system. The main chal-
lenge for such a type system is to find out which objects will eventually be concatenated
and give them types that support concatenation.

Writing programs with variance annotations adds extra burden to programmers and
on some occasions, having types with variance notations is just too bulky for programs
such as those written in intermediate languages. It is therefore interesting to find type
inference algorithm for an implicitly-typed version of Glew’s intermediate language and
for languages such as Oblig. Such an algorithm would make it possible to omit bulky type

annotations, and to automatically discover the CROFs and support record concatenation.

1.4.3 Type-Inference Algorithms

In this thesis, we study the problem of inferring object types with variance annotations.
We have found an algorithm of type inference for the object expressions with covariant
read-only fields [PZJ02]. We apply the algorithm to a variation of Abadi-Cardelli object
calculus where some of the object fields can be specified as read-only. Type inference
is equivalent to solving type constraints, which in turn is P-complete and computable in
O(n?) time. We have also developed a NP-time algorithm for inferring annotated types to
support record concatenation. Both type-inference problems deal with type systems with
type annotations which either restrict or relax subtyping relations for fields of an object or

arecord. The proof structures in Chapter 3 and 4 are quite similar and they follow the style

18

of [JP97]. Therefore, we will emphasize some of the similarities and differences between

the reasonings in Chapter 3 and those in Chapter 4.

1.5 Overview of the Thesis

This chapter has provided a brief summary of our research areas and introduced some
motivating examples for the problems that we study in this thesis. In Chapter 2, we present
solutions to the type matching problem for recursive types with a notion of flexible equality
and also briefly discuss our implementation. Chapter 3 gives the solution and implementa-
tion for the type inference problem of discovering covariant read-only fields for an untyped
object calculus. In Chapter 4 we solve the type inference problem for record concatena-
tion, subtyping, and recursive types. Finally, Chapter 5 summarizes the thesis and discusses

some future directions.

19

2. Efficient and Flexible Matching of Recursive Types

2.1 Introduction

Much of the previous work on type equality focuses on non-recursive types [BCL92,
Cos95, NPS93, Rit90, Rit91, Rit93, Sol83, ZW95]. In this chapter we consider equality of

recursive types.
2.1.1 Background

Potential applications of flexible type equality include automatic generation of bridge
code for multi-language systems [ABR98, BKW96], and type-based retrieval of software

modules from libraries [Rit90, Rit91, Rit93, ZW95].

Software engineers often look into a software library to find reusable components for
their applications. A large library can be hard to search, however. It may be organized in
alphabetical order or coarsely sorted according to some structure. Beyond the structural
information of the library, the only thing that we can rely on is the component name to
retrieve the code we need. Component names are difficult to guess. So, it makes sense
to search by the type of the components. A component that fits the specification of a
programmer does not always have the exact same type as the one the user is using as search

key. That is why we need a flexible notion of type equality.

Designing and maintaining a multi-language application often calls for bridge code for
components written in various programming languages such as C, C++ and Java. The con-
version of values of isomorphic (equivalent) types is essential. The foundation of deciding
whether a conversion makes sense at all is a flexible notion of type equality. An alternative
might be to start with just one type, and then translate it into a type in a different language
[Gay94]. Such a translation may be helpful when building a new software component that

should be connected to an existing one. However, when faced with connecting two exist-

20

ing software components, programmers may find type matching and automatic bridge code
generation more helpful.

In object-oriented languages such as C++ and Java, many types are recursive. Thus,
to be useful for such languages, a flexible notion of type equality should be able to handle
recursive types.

2.1.2 The Problem

Equality and subtyping of recursive types have been studied in the 1990s by Amadio
and Cardelli [AC93]; Kozen, Palsberg, and Schwartzbach [KPS95]; Brandt and Henglein
[BHO7]; Jim and Palsberg [JP97]; and others. These papers concentrate on the case where
two types are considered equal if their infinite unfoldings are identical. Type equality can
be decided irO(na(n)) time, and a notion of subtyping defined by Amadio and Cardelli
[AC93] can be decided it (n?) time [KPS95].

If we allow a product-type constructor to be associative and commutative, then two
recursive types may be considered equihout their infinite unfoldings being identical.
Alternatively, think of a product type as a multiset, by which associativity and commuta-
tivity are obtained for free. Such flexibility has been advocated by Auerbach, Barton, and
Raghavachari [ABR98].

Until now, there are no efficient algorithmic techniques for deciding type equality in
this case. One approach would be to guess an ordering and a bracketing of all products,
and then use a standard polynomial-time method for checking that the infinite unfoldings
of the resulting types are identical. For types without infinite products, such an algorithm
runs in NP time. One of the inherent problems with allowing the product-type constructor

to be associative and commutative is that

AxAxB = AxBxA,
while AxAxB # AxBXxB.

Notice the significance of the multiplicity of a type in a product. One could imagine that
an algorithm for deciding type equality would begin by determining the multiplicities of

all components of product types, or even order the components. However, it seems like

21

this would have to rely on being able to decide type equality for the component types, and

because the types may be recursive, this seems to lead to a chicken-and-egg problem.

2.1.3 Our Result

We have developed an efficient decision procedure for a notion of type equality that
includes unfolding of recursive types, and associativity and commutativity of product types,
as advocated by Auerbach et al. For two types of size at mostir algorithm directly
based on our definition of type equivalence decides equalify(itf) time. The main data
structure is a set of type pairs, where each pair consists of two types that potentially are
equal. Initially, all pairs of subtrees of the input types are deemed potentially equal. The
algorithm iteratively prunes the set of type pairs, and eventually it produces a set of pairs
of equal types. The algorithm takéxn) iterations each of which take&g(n) time, for a
total of O(n?) time.

We also present a@(n logn) time algorithm for deciding type equivalence. The al-
gorithm works by reducing the type matching problem to the well-understood problem of
finding a size-stable partition of a graph [PT87].

2.1.4 Implementation

We have implemented a type-matching tool based on our second algorithm. The tool is
for matching Java interfaces. It supports a notion of equality for which interface names and
method names do not matter, and for which the order of the methods in an interface and the
order of the arguments of a method do not matter. When given two Java interfaces, our tool
will determine whether they are equivalent, and if they are, it will present the user with a
textual representation of all possible ways of matching them. In case there is more one way
of matching the interfaces, the user can input some restrictions, and invoke the matching
algorithm again. These restrictions may come from non-structural information known to
the user such as the semantics of the methods. In this way, the user can interact with the

tool until a unique matching has been found.
2.1.5 Chapter Overview

In the following section we give an overview of our techniques by way of an example.

This example will be used later in the chapter for illustrative purposes. In Section 2.3

22

we summarize related work. Section 2.4 gives an excerpt of the definitions of terms and
automata from [KPS95] which we will use in later sections. In Section 2.5 we present the
definitions and properties of types and type equivalence and we explain in detxihan
algorithm for deciding type equivalence based on our definitions. In Section 2.6 we show
an extension to intersection and union types. In Section 2.7, we introdate g n)
algorithm to decide type equivalence. An implementation of the algorithm is discussed in
Section 2.8. Subtyping of recursive types is discussed in Section 2.9. Concluding remarks

appear in Section 2.10.

2.2 Example

The purpose of this section is to give a gentle introduction to the algorithm and some
of the definitions in Section 2.5. We do that by walking through a run of our algorithm
on a simple example. While the example does not require all of the sophistication of our
algorithm, it may give the reader a taste of what follows in Section 2.5.

This example which will be used throughout the chapter. It is straightforward to map a
Java type to a recursive type of the form considered in this chapter. A collection of method
signatures can be mapped to a product type, a single method signature can be mapped to a
function type, and in case a method has more than one argument, the list of arguments can
be mapped to a product type. Recursion, direct or indirect, is expressed witlogezator.

This section provides an example ofJafva interfaces and provides an illustration of our
algorithm.

Suppose we are given the two sets of Java interfaces shown in Figures 2.1 and 2.2. We
would like to find out whether interfacg is structurally equal to interfacé,. We want
a notion of equality for which interface names and method names do not matter, and for
which the order of the methods in an interface and the order of the arguments of a method
do not matter.

Notice that interfacd, is recursively defined. The methed, takes an argument of
type I; and returns a floating point number.In the following, we use names of interfaces
and methods to stand for their type structures. The type of methathn be expressed as

I, — float. The symbol— stands for the function type constructor. Similarly, the type of

23

interfacel; { interfacel, {
float my (I a); I my(float a);
it ma(ly a); Iy my(float a);
} }

Figure 2.1. Interface$, and/,

interfaceJ; { interfaceJs {
J1 ni(float a); int ns(Jya);
Jo na(float a); float ny(Js a);
} }

Figure 2.2. Interfaceg; and.J,

mo IS Iy — int. We can then capture the structure/pfwith conventional.-notation for
recursive types:

I = pa.(a — float) x (Is — int)

The symbol« is the type variable bound to the tyge by the symbolu. The interface
type [, is a product type with the symbal as the type constructor. Since we think of the

methods of interfacé, as unordered, we could also write the structuré, afs
I, = pa.(Iy —int) x (a — float) ,
I, = upB.(float — Iy) x (float — 3) .

In the same way, the structures of the interfages/; are:

J1 = pd (float — ') x (float — Jy)

Jo = ppB.(Jp —int) x (8" — float).
The unfolding rule for recursive types says that

poT = Tla = pa.t],

24

Il I2
/X\ /X\
SN SN NN
I float Iy int float I; float Iy

Figure 2.3. Trees for interfacds and I,

Jl JZ
/X\ /X\
SN N N N
float Jy float Jy Jioant Jy float

Figure 2.4. Trees for interfaces and.J;

which means that the recursive type.r is equivalent tor where every free occurrence
of ain 7 is replaced by:«a.7. Infinite unfolding of a recursive type will result in a regular

tree, that is, a tree with a finite number of distinct subtrees.

Trees corresponding to the two types are shown in Figures 2.3 and 2.4. The interface
types/y, J; are equal iff there exists a bijection from the methodg;ito the methods in
J> such that each pair of methods in the bijection relation have the same type. The types of

two methods are equal iff the types of the arguments and the return types are equal.

The equality of the interface typésand./; can be determined by trying out all possible
orderings of the methods in each interface and comparing the two types in the form of finite
automata. In this case, there are few possible orderings. However, if the number of methods
is large and/or some methods take many arguments, the above approach becomes time
consuming because the number of possible orderings grows exponentially. An efficient

algorithm for determining equality of recursive types will be given later in the chapter.
Our approach is related to the pebbling concept used by Dowling and Gallier [DG84].

We propagate information about inequality from the type pairs known to be unequal toward

the ones we are interested in.

25

We will use the concepts diipartite graphsand perfect matchingA bipartite graph
is an undirected graph where the vertices can be divided into two sets such that no edge
connects vertices in the same set. A perfect matching is a matching, or subset of edges

without common vertices, of a graph which touch all vertices exactly once.

We organize the types of interfaces, methods, and base types (suct) ago a bi-
partite graph(V, W, R), whereV represents the types in interfacBsZ, and W repre-
sents the types in interfacds, J,. Thatis,V = {I, I, my, ms, m3, my, int, float}, and
W = {Jy, Jo, n1, ng,n3, ny, int, float}. The set of edgeR represents “hoped-for” equal-
ity of types.

We initialize R as(V x W), that is, we treat every pair of types as equivalent types at
the start. The idea is that by iteration, we remove edges between types that are not equal.
When no more edges can be removed, the algorithm stops. The types connected in the final

graph are equal.

First, we remove the edges between types that are obviously not equal. For example, an
interface type and a method type are not equal; and a base type and a method type are not
equal. We remove edges that connect interface types and method types, and edges between

method types and base types.

In the iterations that follow, we remove edges between types that are not equal based
on the information known from previous iterations. For example, we can determine that
the method typesn; andn, are not equal because the argument typewofis 7; while
the argument type of;, is float, and the edge betweeh and float is removed in the

preceding iteration. Therefore, we remove the edge betwgeandn; .

The interesting part is to determine whether the types of two interfaceswitithods
each are not equal based on information from previous iterations. This subproblem is
equivalent to the perfect matching problem of a bipartite g@phiv’, R’), wherelV’ and
W' are the sets of methods in each interface, and there is an edge between two methods iff
the types of the two methods have not been determined unequal in the previous iterations.
If the set of edges’ is arbitrary, then the complexity of the perfect matching problem is
O(n°/?) (see [HK73)).

26

I Ji I Ji L A
I Jo I >< Jo I >< Jo
mq nq mi ni my n
iy No Mo Na ma na
ms ns ms n3 ms ns
My Ty My Ny my Ty
int int nt int nt nt
float float float———float float float

Figure 2.5. Bipartite graphs after the 2nd, 3rd and 4th iterations

However, the graphiV, W, R) has a coherence property: if a vertexlincan reach a
vertex inV/, then there is an edge between these two vertices. Coherence both enables us

to perform each iteration efficiently, and guarantees that the whole algorithm will terminate

within [V| 4 || iterations.

The resulting bipartite graphs after the second, the third, and the fourth iterations are
given in Figure 2.5. In the third iteration, we examine the edges between interface types
and determine whether we should remove some of the edges. For the types of interfaces
I, and J; to be equal, there must exist a bijection frdmu,, ms} to {n;, ny} such that
the pair of methods in the bijection relation are connected in the bipartite graph after the
second iteration. It is clear that the types of interfacand./; are not equal since there is
no edge betweem, m, andny, n, at all. Thus, the edge betweénand./; is removed.

Similarly, we remove the edge betwesrand.J;.

By the same steps, we are able to remove the edge betwgandn;, and the edge
betweenm, andn, in the fourth iteration. After that, we cannot remove any more edges
from the graph. Now the algorithm terminates and we can conclude that intdifage
equal to interfacel,. If we compare two types that can be represented with two automata
each of size at most, then the above algorithm will sperél») time in each iteration and

will terminate withinO(n) iterations, for a total 0o (n?) time.

27

The simple example above does not reveal how the coherence property of an edge
set can help speed up an iteration. This is because interfacks.J;, Jo only have two

methods each. In the Section 2.5 we present an efficient algorithm for the general case.

2.3 Related Work

Problems of type isomorphism can be divided into three categories: word problems,
matching problems and unification problems. A word problem is to decide the equality of
two types via a theory of isomorphism. The types could be finite or infinite and they may
contain types variables. A matching problem is to decide for given a(paiy of types
(the pattern and the subject), whether there exists a substitmtguch thatpo is equal
to s. Similarly, a unification problem is about the existencerafuch thatpo andsc are
equal. Notice that matching is a generalization of the word problem while a special case
of unification. Ifp ands do not contain type variables, then the matching and unification
problems reduce to word problem.

The axiom systenT¢ in Figure 2.6 gives a sound and complete axiomatization of
isomorphism of types in Cartesian Closed categories [Sol83, BCL92]. If we exclude
Rules (DSTRIB— x), (UNIT), then the remaining axiom system, dendiéd,, gives a
sound and complete axiomatization of isomorphism (cdlleshr isomorphism) of types
in Symmetric Monoidal Closed categories [Sol93]. Rittri [Rit90, Rit91, Rit93] used both
kinds of isomorphism in his work on using types as search keys. The following table sum-

marizes some decidability results 6 andT'syc.

Axioms | Word problem Matching problem Unification problem
Tee n?log(n) [Con00]| NP-hard, decidable [NPS93]Undecidable [NPS93]
Tsye | nlog®(n) [AS97] | NP [NPS93] NP-complete [NPS93]

One approach to deciding whether two types are isomorphigdnis based on reduc-
ing both types to normal forms. Bruce, Di Cosmo and Longo defined a notion of normal
form and proved its properties. The idea is to repeatedly apply the set of reductioRrules

in Figure 2.7 until it no longer applies. Isomorphism of types in normal form is defined by

28

A ox7Tt=7x0 (COMX)
AbFox(txn)=(cxT1)xn (ASSOCX)
AF(oxT1)—=n=0— (1t —1n) (CURRY)

AFo— (txn)=(0c—71)x(c—n) (DISTRIB— X)

AFoxT =0 (IDENT x)

AFoc—-T=T (UNIT)

AFT —-o0=0 (IDENT—)

AFo=0 (REF
AFo=n AFn=r
AFo=rT1
ArFo=rT1
pym—
AFor=1 AF oy =1
AFoy —o9=17 — 7
AFor=1 Aoy =1
AbF oy Xoy=T] X Ty

(TRANS)
(Sym)

(CoNG—)

(CoNGx)

Figure 2.6.7¢¢

associativity and commutativity of. Letnf(r) be the normal form of type such that

T, or a base type, or a function type, or
nf(r) =

T1 X Ty X ... X Ty

where ther;’s are in normal form. We can use the abbreviafiih, 7; for ry x » x ... x 7,

to emphasize that the order of thgs is not important; a product in normal form can

be viewed a bag (multi-set) of factors. We can decide equality of two types in normal
form with a straightforward recursive algorithm which applies a bag-equality algorithm

whenever it encounters a pair of product types. Notice that such an algorithm would not

work for recursive types; it would not terminate.

29

c—=(r—=n) = (ox7)—=0n
oc—(rxn) = (0—71)x(c—mn)
Txrt = 71
R =
TxT = 71
T—7 = 71
7T—-T = T

Figure 2.7. Set of rules for reducing non-recursive types into normal forms.

AF po.t =7lpa.t/al (UNFOLD/FOLD)
Ajo=1,AFo=71 (HYP)

AFo=0 (REF
AFo=n AkFn=r1

ey (TRANS)
ArFo=r1
AFT=0 (Svm)

Aoy —oa=T1 > Tto =11 Ao —>0y=T1 > Tatoy="7 (ARROW/FIX)

AFoy —o9=17 — 7

A70'1X0'2:7'1><7'2|_O'1:7'1 A,O’1><0'2:7'1><7'2|_0'2:7'2

(CrOSIFIX)

A|_0'1XO'2:T1><7'2

Figure 2.8.7x

30

Equality and subtyping of recursive types have been studied in the 1990s by Amadio
and Cardelli [AC93]; Kozen, Palsberg, and Schwartzbach [KPS95]; Brandt and Henglein
[BH97]; Jim and Palsberg [JP97]; and others. These papers concentrate on the case where
two types are considered equal if and only if their infinite unfoldings are identical. This
can be formalized using bisimulation [JP97, Par81]. Sound and complete axiomatizations
have been presented by Amadio and Cardelli [AC93], and Brandt and Henglein [BH9I7].
Related axiomatizations have been presented by Milner [Mil84] and Kozen [Koz94]. This
notion of type equality can be decidediina(n)) time, and a notion of subtyping defined
by Amadio and Cardelli [AC93] can be decided(in?) time [KPS95].

The axiomatization by Brandt and Henglein [BH97], here denotefipof? for Recur-
sive), is shown in Figure 2.8. Auerbach, Barton, and Raghavachari [ABR98], in a quest
for a foundation of the Mockingbird system, raised the question of whétherJ Tk is
consistent and decidable. They later discovered that this combined system is inconsistent,
see also [AF96]. Thus, the isomorphism problem of recursive types cannot simply be de-
fined byTcc U Tr. Moreover, it seems like reduction B may not terminate, for some

recursive types.

In the following section we consider a notion of type equality where two types can be
equal even if their infinite unfoldings are different. Intuitively, our notion of type equality
is

TrU{ (Comx), (Assocx) }.

A related system has been studied by Thatte [Tha96]. We will present several equivalent
definitions of type equality, including one based on the axiomatization of Brandt and Hen-

glein [BH97], and one based on the bisimulation approach of Jim and Palsberg [JP97].

2.4 Basic Definitions

In Section 2.5, we will use the notions of terms and term automata defined in [KPS95].
For the convenience of the reader, this section provides an excerpt of the relevant material
from [KPS95]. Our algorithm relies on that the types to be matched are represented as term

automata.

31

2.4.1 Terms

Here we give a general definition of (possibly infinite) terms over an arbitrary and finite
ranked alphabet. Such terms are essentially labeled trees, which we represent as partial
functions labeling strings over (the natural numbers) with elementsof

Let X, denote the set of elements &f of arity n. Let w denote the set of natural
numbers and let* denote the set of finite-length strings ower

A termover is a partial function

with domainD(t) satisfying the following properties:
e D(t) is nonempty and prefix-closed;
o if t(a) € X, then{i | ai € D(t)} ={0,1,...,n—1}.
Lett be aterm andr € w™. Define the partial function| o : w* — 3 by
tla(B) = tap).

If ¢ | o has nonempty domain, then it is a term, and is calledsth®erm ot at positiona.
A term ¢ is said to beregular if it has only finitely many distinct subterms,e., if

{tla] a € w*}is afinite set.

2.4.2 Term Automata

Every regular term over a finite ranked alphakéhas a finite representation in terms

of a special type of automaton calledesm automaton
Definition 2.4.1. Let X be a finite ranked alphabet. t&rm automatoroverX: is a tuple
M = (Q, %, q, 9, ()
where:
e () is afinite set oktates

® ¢y € Q) is thestart state

32

e) : () xw— @ Iis a partial function called thigansition function and
e /: () — X is a (total)labeling function
such that for any statge Q, if /(q) € ¥, then
{i|d(q,i) isdefined = {0,1,...,n—1}.
We decoraté), 9, etc. with the superscript where necessary. O

Let M be a term automaton as in Definition 2.4.1. The partial functicextends

naturally to a partial function

inductively as follows:

o(q i) = 0((q,),9).

For anyq € @, the domain of the partial functioha.é(q,a) is nonempty (it always
containse) and prefix-closed. Moreover, because of the condition on the existenee of

successors in Definition 2.4.1, the partial function
Aa.l(6(q, @)
is a term.
Definition 2.4.2. Let M be a term automaton. The temgpresented byM is the term
tm = Al(6(qo,) .
Atermt is said to beepresentabléf ¢t = t,, for someM. O

Intuitively, t,((«) is determined by starting in the start stajeand scanning the input
«, following transitions ofM as far as possible. If it is not possible to scan alkdfecause
somei-transition along the way does not exist, then(«) is undefined. If on the other

handM scans the entire input and ends up in statg thent () = ¢(q).

33

Lemma 2.4.3.Lett be a term. The following are equivalent:

() tisregular;
(if) tis representable;

(i) tis described by a finite set of equations involving theperator.

2.5 Type Equality

In this section, we define a notion of type equality where the product-type constructor
is associative and commutative, and we present an efficient decision procedure.

In Section 2.5.1 we define our notion of type, and in Sections 2.5.2 and 2.5.3 we give
some preliminaries about bipartite graphs and fixed points needed later. In Section 2.5.4 we
present our notion of type equality, in Section 2.5.5 we show a convenient characterization

of type equality, and in Section 2.5.6 we present an efficient decision procedure.
2.5.1 Recursive Types

A type is a regular term over the ranked alphabet
S=T U {=} U{][.n>2},

wherel is a set of base types; is binary, and[]" is of arity n. With the notation of
Appendix 2.4, the root symbol of a types writtent(e).

We impose the restriction that given a typ@nd a pathy, if o(«) = IT", theno(ai) €
I' U {—}, foralli € {1.n}. The set of types is denoté&d. Given a type, if o(¢) =—,
0(0) = oy, ando(l) = o9, then we write the type as;, — o,. If o(¢) = [I" and
o(i) = 0;41 Vi € {0,1,...,n — 1}, then we write the type asI];", o;.

Intuitively, our restriction means that products cannot be immediately nested, that is,
one cannot form a product one of whose immediate components is again a product. We

impose this restriction for two reasons:
i) it effectively rules out infinite products such a&.(int x «), and

ii) it ensures that types are in a “normal form” with respect to associativity, that is,

the issue of associativity is reduced to a matter of the order of the components in a

H:‘L:1 o; type.

34

Currently, we are unable to extend our algorithm to handle infinite products. Types without
infinite products can easily be “flattened” to conform to our restriction.

For Java interfaces, our restriction has no impact. We model interfaces using one kind
of product-type constructor, we model argument-type lists uaimgherkind of product-
type constructor, and we model method types using the function-type constructor. The
syntax of Java interfaces ensures that a straightforward translation of a Java interface to our
representation of types will automatically satisfy our restriction.
2.5.2 Bipartite Graphs

A bipartite graphV, W, R) is given by two set¥’, W of vertices, andasdt C V' x W
of undirected edges.

For our application, we will only be interested in bipartite graphs where the edge sets

arecoherent A relation R is coherent iff
if (a,c),(b,c),(b,d) € R, then(a,d) € R.

It can be illustrated by the following picture,

a

where the edges, ¢), (b, ¢), and(b, d) imply the existence of the edde, d).

Lemma 2.5.1. Suppos&j = (V, W, R) is a bipartite graph where? is coherent. Iz € V'
can reachd € W, then(a, d) € R.

Proof. Suppose: € V can reachl € W in k steps. Since all the edges are betw&en
andW, each step will move from one set to the other. Thereforaust be an odd number
andletk =2*xn+4+1,n > 0.

We proceed by induction om.

(n = 0) We have that: can reachl in one step, s¢a, d) € R.

Suppose the Lemma holds for=m > 0

35

(n = m+1) We have that can reachl in 2xm + 3 steps. Let andb be the(2«m + 1)th
and(2 x m + 2)th nodesu reaches along the path & then(b, ¢), (b,d) € R. By
the induction hypothesiga, c) € R. Consequently(a,d) € R by the coherence
property ofR.

g

Definition 2.5.2. Suppos€[]? , o;, [, 7; are two types and? is a relation on types.
The matching functionmatch (1T, o4, 17, 7:, R) is true iff there exists a bijectiornt :

{1.n} — {1..n} such thatvi, (0;, 73(;)) € R. O

Lemma 2.5.1 enables a simple algorithm foutch([1, o;, [17, i, R) whereR is
coherent and finite. LeV, W be two finite sets such that < V, for alli € {1..n},
7, € W,foralli € {1.n}, andR C V x W. Let N = |V| + |[W|. The bipartite
graph(V, W, R) has at mosfV connected componentB;, B, ..., and we label them with
numbers starting at 1. Thus, all the numbers are in th¢lsev}.

Define a functiory : (VUW) — {1..N}, wherel (o) = iiff 0 € B,. Two typess and
T are in the same connected componentiffan reach in (V, W, R). Thus, by Lemma
2.5.1, we havgo, 7) € Riff I(c) = I(7).

Let [.| denotes a multi-set of elements.

Lemma 2.5.3. match(IT7, 04, [T\, 7, R) is trueiff

[I(01),I(02), ... I(0,)] = [I(11), I(72), .., I(T5)].

Proof. If [I(01), I(02), .., [(0,)] = [I(11), I(72), .., I(7,)], then there exists bijectian:
{1.n} — {1..n}, such that/i, I(0;) = I (7). By the definition ofl, vertexo; can reach
vertexr,;); thus, by Lemma 2.5.1¢;, 7;(;)) € R, Vi. Thereforematch(IT;_, o, [7=; i, R)
is true.

Supposenatch([1;-, 0;, [T;—, 7, R) istrue. There exists bijectionsuch thato;, 7,;)) €
R,Vi. Thus,I(0;) = I(7y;)) sinceos; andr;) are connected. Singé(r,), I (), .., I(7,)] =
(1)), I(Ta(2)), -, L(Ty(ny)], We havelI(oy), I(02), .., I(0)] = [I(11), I(72), .., I(1,)]. O

36

2.5.3 Monotone Functions and Fixed Points

We now recall the notion of a greatest fixed point of a monotone function, and we prove
three basic results about greatest fixed points that will be needed in Section 2.5.5.

Let P denote the unary operator which maps a set to its power-set. Consider the lattice

(P(Z),C) and a function
F : PZ)—P2).

We say thatF' is monotone iff ifz; C 2y, thenF(z;) C F(z,). If F'is monotone, then

Tarski’s fixed point theorem [Tar55] gives th&thas a greatest fixed poinf’ given by:
vF = | {X | XCFX)}.

Suppose-’ is monotone, an& C Z. In Section 2.5.5, we will be particularly interested in

a case wher€ is finite andZ is infinite. Define

H e P(Z)—PE2)

Lemma254.vH CvFNZ.
Proof.

vH = | J{X | XCHX)}
= U{X | XCFX)nZ}
= ({X | XCFX)nz})nZ
C (x| XcFX)Hn2

= vFN2Z.

The converse of Lemma 2.5.4 may be false. For example, consider

Z = {1,2)

37

z = {1}
F({1,2}) = {12}
F({1}) = F({2}) = FO) = 0.

We have that’ is monotoney F' = {1,2}, andvH = (). We conclude thatF' N Z =
{,2}n{1} ={1} € 0 = vH.

We now give a sufficient condition under which the converse of Lemma 2.5.4 is true.

Lemma 2.5.5. Suppose that i\ C F(X), thenF(X)n Z C F(X N Z). We have
vFNZCvH.

Proof. From X C F(X) we have
XNZCFX)NZCF(XN2Z2).
Now we can calculate as follows:

vFNnz = J{X | XCFX)}nZ
= WHY | 3X:(Y=XNZ)A(XCF(X))}
CWH{Y |3IX:Y=XNZIANXNZCFXNZ))}
— Y | 3X: (Y =XNZ)A(Y CF(Y))}
— WY | (vC2)A(Y CFY))}
= Y | YCFY)nZ}
= H{Y | YCH(Y)}

= vH.

If S'is finite, then a well-known characterization:of’ is given by:

- ﬁ Fi(s)

38

Lemma 2.5.6.1f H is a monotone function frofP (V' x W), C) to itself, where/, W are
finite andN = |V| + |IW|, and if for all non-negative integeris H*(V x W) is coherent,
thenvH = HY(V x W).

Proof. Let X = (V x W). SinceH is monotone H (X)) C H'(X) Vi > 0.

If HH(X) = H(X), thenH*(X) is a fixed point ofH andH’(X) = H'(X),V j > 1.
Otherwise, ifH(X) Cc H(X), thenH"(X) C...Cc HY(X) C X.

SupposeH (X)) ¢ HY(X) and(v,w) € (HY(X) N -H"(X)). We construct the
bipartite graptg’ = (V, W, H'(X)). Each connected component@fcorresponds to one
or more connected component@!, because any set of vertices that are connected in
G are connected ig’ as well.

Since(v,w) € H(X), v, w are in the same connected componer‘ofFrom(v, w) €
-H"(X) and Lemma 2.5.1y cannot reachw in G"*'. Thereforep andw are in sepa-
rate connected components@fl. ConsequentlyG‘*! has at least one more connected
component thag®.

Consider{ H!(X)}*_, such thatH*(X) c ... ¢ H(X) C X. Then the bipartite
graphG* has at least connected components. Howevgf,can have at mosV connected
components, which is the case when there is no edge in the graph and each vertex forms a
connected component. Thus< N and HY(X) = HV1(X).

We conclude that H = N2, H'(X) = NY, H{(X) = HY(X). O

2.5.4 Type Equality
We now give three equivalent definitions of type equality. They will be denB@dR., v F'.
The first definition is based on the rule §&t,~ (R for Recursive A for Associative,
and C' for Commutative) in Figure 2.9. The rul@]/Fix) entails that the product-type

constructor is associative and commutative. Define
EQ = {(o,7) | 0Fo=171}.

The second definition of type equality is based on the idea of bisimilarity. A rel&tion

types is called disimulationif it satisfies the following three conditions:

Ajo=1,AFo=71 (HYP)

AFo=0 (REF

Aov—o=n—onkto=n Ao —-o=n—-nkto=mn (—IFIX)
H
A|_0'1—>0'2:7'1H7—2
ATl 0 =115 7 b oi = Ty, @ € {L.n} (IT/Fix)

A l_ H?:l o; = ?:1 Ti
wheret : {1..n} — {1..n} is a bijection

Figure 2.9.Tz ¢

(C) If (o,7) € R, theno(e) = 7(e).
(P1) If (61 — 09,71 — ™) € R, then(oy, 1) € Rand(oy, 2) € R.

(P2) If (IT7 04, [T, =) € R, thenmatch([T}, o, [T}, 7, R) is true.

bisimulation

R = |J{R | Risabisimulation}.

F € P(TxT)—P(TxT)
F = AMRA{(o,7) | 0,7 are base types ande) = 7(¢) }
U{ (o1 = 09,1 = 1) | (01,71),(02,2) € R}

U { (H?ZIO-i?H?:lTi) ’ matCh(H?:la-%H?:lTiv R) }

Notice thatF' is monotone so it has a greatest fixed poiAt

39

A relation R is said to beconsistentf it satisfies property’’, and it is said to belosedif

it satisfiesP1, P2. Bisimulations are closed under union, therefore, there exists a largest

The third definition of type equality is based on the notion of greatest fixed points. Define

40
Lemma 2.5.7. R is a bisimulation iffR C F(R).

Proof. Suppose first thaR is a bisimulation. For every type paiv, 7) € R, if 0,7
are base types, ther(¢) = 7(€), so(o,7) € F(R). If 0 = 01 — 09, 7 = 71 — T, then
(01,m), (02, 72) € R,s0(0,7) € F(R). Similarly foroc =/, oy, 7 = 1", s

Conversely, suppose th&t C F(R). Itis straightforward to prove that is a bisimu-

lation; we omit the details. O
Theorem 2.5.8.EQ =R = vF.
Proof. For a proof ofEQ = R, see Appendix A.1. From Lemma 2.5.7 we have

R = |J{ R | Risabisimulation}
— U{R | RCF(R)}=vF.

O

We may apply the principle afo-inductionto prove that two types are related7 That

is, to show(o, 7) € R, itis sufficient to find a bisimulatio® such thaio, 7) € R.

Theorem 2.5.9.R is a congruence relation.
Proof. By co-induction, see appendix A.2. O

Theorem 2.5.9 implies th& is an equivalence relation. Two typesandr,; are said to be
equivalentdenoted by =) iff (11, 72) € R.
2.5.5 A Characterization of Type Equality

In this section we prove that type equality can be decided by an iterative method (The-
orem 2.5.15). To prove this result, we need five lemmas which establish that coherence is
preserved by one step of iteration (Lemmas 2.5.10, 2.5.11, 2.5.12), and that it is sufficient

to concentrate on the types that are subtrees of the input types (Lemmas 2.5.13, 2.5.14).

41

Lemma 2.5.10.If R C (7 x T) is coherent, thed'(R) is coherent.

Proof. First, notice that if o, 7) € F'(R), theno(e) = 7(¢) by the definition ofF'.
Suppos€a, ¢), (b, c), (b,d) € F(R), we want to show thafa,d) € F(R). There are

three cases.
i) a..d are base types. We hawée) = c(e) = b(e) = d(¢), s0(a,d) € F(R).

i) a..d are — types. Suppose = a; — az, b = by — by, ¢ = ¢; — ¢, and
d = d; — dy. We have(a;, ¢;), (b;, ¢;) and(b;, d;) € R, 1 = 1,2. SinceR is coherent,
(a;,d;) € R,i=1,2, which meanga,d) € F(R).

i) a..d are product types. Suppose= I[,a;, b = [I'1b;, ¢ = [[-, ¢, and
d =TI, d;. We have(a,c) € R andmatch([T" a;, [T}~ ¢;, R) is true. The same
applies to(b, ¢) and(b, d). Therefore3 bijectionss, t, u from {1..n} to {1..n} such
that (a;, ¢s(5)), (bi, cay), (bi, du@i)) € R, Vi. Let bijectionv = wo ¢! o s, we have
(a;,dys)) € R Vi, sinceR is coherent. Thuspatch([T;_, a;, [1i-, d;, R) is true. and
(a,d) € F(R).

Foro € T, define

V, ={7 | Tisasubtermob }.

Giveno, 7, define

H € PV,xV,)—PV,xV,)
H = MR.(F(R)N(V, xV,)).

Lemma 2.5.11.If R C (V, x V;) is coherent, therd (R) is coherent.

Proof. By the definition ofH, we haveH (R) = F(R) N (V, x V;).

SinceR C (V, x V;) C (7 x T), by Lemma 2.5.10F(R) is coherent. Thus, if
(a,c), (b,c), (b,d) € F(R) n (V, x V,), then(a,d) € F(R) and(a,d) € (V, x V;)
because € V, andd € V,. Therefore(a,d) € F(R) N (V, xV,), andH (R) is coherent.

|

42

Lemma 2.5.12.For all n, H"(V, x V;) is coherent.

Proof. We proceed by induction om.

Forn = 0, we haveH(V, x V,) = (V, x V,). If (a,¢), (b, ¢), (b,d) € (V, x V,), then
(a,d) € (V, x V) sincea € V, andd € V.

Suppose{™(V, x V.) is coherent. Sincél"(V, x V) C (V, x V,), we know that
H(H"(V, x V)) is coherent, by Lemma 2.5.11. O

Lemma 2.5.13.F(R) N (V, x V;) C F(RN (V, x V})).
Proof. Let Z = (V, x V,).

F(R)n 2

= {(¢',7") € Z | ¢',7" are base types and(¢) = 7'(¢) }
U{(o1r—o09,m1—1m)€Z | (01,11), (02,72) €ER}
U { I e;, 0 7)€ 2 | match(Il} oy, I 75, R) }

= {(o',7") € Z | ¢',7" are base types and(¢) = 7'(¢) }
U{ (o1 = 09,11 —m)€EZ| (01,m1),(02,2) €E RNZ)}
u{ (0,0 7)€ Z2 | match(Il}_,0;, II_;7;, RNZ) }

C {(d/,7) | o', 7" are base types and(¢) = 7'(¢) }
U{(og — 09,11 — 1) | (61,71),(02,2) E RN Z) }
U { (0,00 7) | match(Il_,0;, II_7;, RNZ) }

= F(RNZ);

Lemma 2.5.14.vH = vF N (V, x V).

Proof. By Lemma 2.5.4, we haveH C vF N (V, x V;). By Lemma 2.5.13F(R) N
(Vo x Vo) € F(RN (V, x V;)). Therefore, by Lemma 2.5.5, we also hax& D vIF' N
(Vo x V).

43
Theorem 2.5.15.(0, 7) € R iff (0,7) € HN(V, x V,), whereN = |V, |+ |V;].

Proof. From (o, 7) € (V, x V) we have thato,7) € Riff (o,7) € RN (V, x V).

Moreover, from Theorem 2.5.8 and Lemma 2.5.14 we have
RNV, xV.)=vFNn(V, xV,)=vH.

Finally, Lemma 2.5.12 shows that'(V,, x V;) is coherent for all, so by Lemma 2.5.6,
vH = HN(V, x V,). O

2.5.6 Algorithm and Complexity

We can use Theorem 2.5.15 to give an algorithm for deciding type equality. Given a
type pair(o,7), we can decidéo, 7) € R by deciding(c,7) € HY(V, x V,), where
N = |V,| + |V;|. To do this, we need to applyf at mostN times. In each round,
according to Lemma 2.5.1Z will be applied to a coherent relatioR, where H(R) is
also coherent. Thus, we only need to represent coherent relations. We will now present
such a representation scheme, and we will show that given a representaitpmefcan
efficiently compute a representationB{ R).

Given a coherent relatioR, we represenk by a function
I:(V,uV,)— {1.N},

where(o’, 7') € Riff I(¢') = I(7"). The existence of such a representation was established
in Section 2.5.2. The abstraction functiebs maps a functior to the relation represented
by I:

abs(I) = { (o, 7') € (Vo x V) | (") = I(~') }.

Since! represents?, we want to defing<(/) as a representation &f (R). The function

'H has the following properties:

44

& (o) =1(m) N(o2) = 1(1)
H((ILG03) = H)ILG7)

s [L(o1),... . L(on)] = [L(11),...,1(T0)],

whereo’, ' are base types.
Any such functionH satisfies the following lemma 2.5.16, which states that we can

compute a representation of the result of applyihdo the relation represented ky by

computingH (7).

Lemma 2.5.16.H(abs(I)) = abs(H(I)).

Proof. Supposéo’, 7') € H(abs(I)). We haver'(¢) = 7'(¢) by definition of H and F.

There are three cases.

i) o',7" are base types. SincK(I)(o') = H()(7") & o'(e) = 7'(¢), we have
(o', 7") € abs(H(I)).

i) o/,7" are — types. Suppose that = o, — o, and7 = 1 — 7. We have
(01,71), (02, 72) € abs(I). By the definition ofabs(I), I(cy) = I(7y) and(o3) =
I(m2). HenceH(I)(oy — 02) = H(I)(71 — =) and(o’, ') € abs(H(I)).

iif) o', 7" are product types. Suppose that= []',0; and7 = [, ;.. We have
match(o’, 7', abs(I)) true. By Lemma 2.5.3 and the definition @fs(7), we have
[I(01),...,1(0n)] = [I(11),...,I(r,)]. Therefore,H(I)(I11,0;) = H(I)(TI~,7),
and(o’,7') € abs(H(I)).

Conversely, if(o’, ") € abs(H(I)), we haveH(I)(c') = H(I)(7'). Itis straightfor-
ward to show thato’, ') € H(abs(I)) by a case analysis as above. We omit the details.
O

Here is a particular definition of @& which satisfies the three properties. Givenve

defineH(!) in three steps:

45

i) Define C on (V, U V;) to be the smallest preorder which includes the following

definitions. First,

n
FCo—oC]][n
=1

for all base type$’, all function typesr; — o9, and all product typeB[;"_, 7;. Next,

we choose some arbitrary linear ordering of the base types. Finally, wé tese
further sort the function types, and to further sort the product types. The idea of
the further sorting is to define a lexicographical order based. daiven a string of

k numbersm, ...my, the notationsort(m, ...my) denotes a string of the sanke

numbers but now in increasing order.
o1 — 09 E 1 — niff I(07)I(09) is lexicographically less thah(r)I(7)

P oy CIIR, 7 iff sort(I(oy)...1(0,)) is lexicographically less than
sort(I(my) ... 1(1,))-

i) Notice thatC can be viewed as a directed graph. Number the strongly connected

components of- in ascending order.

i) Define H(I)(o) to be the number of the strongly connected component to which

belongs.

It is straightforward to show that the resultirig(/) satisfies the three properties listed

earlier.

Let us now restate the definition &f(/) in a more algorithmic style. The main task is

to sort the elements df, U V. by C. This is done in two steps:
i) generate a string of numbers for each element,of V;:

e for each base type, generate a one-character string;
e for each function type; — o, generatd (o)1 (02); and

e for each product typg[}, o;, generateort(I(oy)...1(c,)), and

46

i) sort the generated strings by lexicographical order.

We will now consider the complexity of computirig(7).

Let o be represented by the term automaton
MO‘ = (VCH 27 q0, 57 g)

Notice that we can construct a directed gréph, E,), where(q,¢') € E, iff §(q,i) = ¢,
for somei € {0,1,...,n — 1} and/(q) € %,. Similarly, for typer, we can construct a
directed graphiV;, E,). Let M = |E,| + |E.|.

We now show that we can computg 1) in O(M) time.

The size ofl andH(I) is N. For each product typH:*, o; € (V,, U V;), we compute
sort[I(oy),1(09), .., I(0,,)] in O(n;) time using @UNTING SORT [CLR90].

In graph(V, E,), the vertex [, o; hasn, outgoing edges. Suppose there Arsuch

vertices in the graph, then_,n, < |E,|. Similarly, for the product typeH;™* 7, in graph
(V;, E,), we havex!’ m, < |E,|, whereK’ is the total number of product types 5.
SinceM = |E,| + |E;

types isO(M).

, the total amount of time for computingrt(.) for all product

To order all the— types and products types, we need to lexicographically order strings
of numbers. Using RDIX SoRT [CLR90], the ordering of all strings can be computed
in time linear in the total size of the strings. The size of the string corresponding to type
[1*, 0; € V, is ng, which is equal to the number of outgoing edges$[éf, o, in (V,, E,).
The size of the string correspondingap— o, € V, is 2, which is equal to the number of
outgoing edges aof; — o9 in (V,, E,). Therefore, the total size of strings corresponding
to — types and product types I, is equal to E,, |. Similarly, the total size of strings cor-
responding to— types and product types . is equal to| £, |. Thus, the lexicographical
ordering of all strings cost9 () time.

In conclusion, our decision procedure for membershiRiis given byO(N) iterations

each of which take® (M) time. Thus, we have shown the following result.

Theorem 2.5.17.Type equality as defined i can be decided i® (N x M) time.

a7

2.6 Equality of Intersection and Union Types

Palsberg and Paviopoulou [PP98] defined a type system with intersection and union
types, together with a notion of type equality. An intersection type is writteno;, and
a union type is writtenv/}_,0;. Their notion of equality of intersection types is the same
as our notion of equality of product types. Their notion of equality of union types has the
distinguishing features that vV ¢ = ¢, and that there is a special base typeuch that
cVL = 1Vo = o.

The goal of this section is to demonstrate that our framework is sufficiently robust to
handle union types with only minor changes to the algorithm and correctness proof. We
will present the definitions and theorems in the same order as in Section 2.5. We do not
show the proofs; they are similar to the ones in Section 2.5.

Palsberg and Pavlopoulou [PP98] define a set of types, where, intuitively, each type is

of one of the forms:

<=

A it (o = o)

<.
Il

<3

(

A (o — 0iy)) Vint.
1

(2

In the case where the unions are empty, the first form can be simplifiegaiod the second
form can be simplified tant.

A type is a regular term over the ranked alphabet
Y={int,L,—} U{A" n>2} U {V"'n>2}

whereint, 1 are nullary,— is binary, andv”, A™ aren-ary operators.

Palsberg and Pavlopoulou [PP98] impose the restrictions that given a eypet a path
a, if o(a) = Vv, theno(ai) € {int, L,—} U {A",n > 2}, foralli € {l1..n}, and
if o(a) = A", theno(ai) =—, for all i € {1..n}. Intuitively, the restrictions mean that
neither union types nor intersection types can be immediately nested, that is, one cannot
form a union type one of whose immediate components is again a union type, and similarly
for intersection types. Moreover, a union type cannot be an immediate component of an

intersection type. The set of types is dencfed

48

Given a typeo, if o(¢) =—, (1) = oy, ando(2) = o, then we write the type as
o1 — o0y If 0(e) = A" ando(i) = o; Vi € {1,2,...,n}, then we write the type as
Ao If o(e) = v ando (i) = o; Vi € {1,2,...,n}, then we write the type asV?_,o;.

If o(e) = L, then we write the type as. If o(e) = int, then we write the type am.

Definition 2.6.1. The functionmatch (A}, 0:, Aj_, 75, R) is true iff there exists a bijection

t:{l.n} — {l.n} suchthatforali € {1..n} : (0;,7(»)) € R. O

Palsberg and Pavlopoulou [PP98] define type equality as follows. A relRtisrcalled

abisimulationif it satisfies the following six conditions:
) If (Viiyo4, ViL 75) € R, then

e foralli € {1..n}, whereo;(¢) # L: there existg € {1..m} : (0;,7;) € R, and

e forall j € {1..m}, wherer;(e) # L, there exists € {1..n} : (0;,7;) € R.
i) If 7(¢) € {int, L, =} U{A™,m > 2}, and(V} ,0;,7) € R, then,

e foralli € {1..n}, whereo;(¢) # L: (0y,7) € R, and

e if 7(€) # L, then there existsc {1..n} : (0;,7) € R,
iii) If 7(e) € {int, L, =} U{A™, m > 2}, and(r, VI_,0;) € R, then,

e foralli € {1..n}, whereo;(¢) # L: (r,0;) € R, and

o if 7(¢) # L, then there existse {1..n} : (1,0;) € R.
V) If (Al 00, Aj_175) € R, thenmatch(A 04, Nj_ 75, R).
V) If (07 — 09,71 — T2) € R, then(oy,71) € Rand(oz, 12) € R.
vi) If (o,7) € R, then either

o(e) = 7(e) € {int,L,—} U {A",n >2}, or
o(e) € {V",n > 2}, or

T(e) € {V",n > 2}.

49
Bisimulations are closed under union, therefore, there exists a largest bisimulation
& =|J{ R | Risabisimulation.

The setf is Palsberg and Pavlopoulou’s notion of type equality. It is straightforward to
show, by co-induction, that

cV,l = 1Vo =o0cVo = o.

We now reformulate the above definition of bisimulation to make it better fit the framework
of Section 2.5.

Definition 2.6.2. Defineo ~p 7 iff
o o(e) =71(e) € {unt, L, =} U{A™, m > 2},
o if o =01y — 0 andr =1, — 7, then(oy, 1) € Rand(o, 72) € R, and
o if o = AL o, andr = AL 7, thenmatch(AL,0i, Nj_; 75, R).
The functionmatch(o, 7, R) is true iff
i) if o =Vi_,0;andT = V7L, 7;, then
e foralli € {1..n}, whereo;(e) # L: there existg € {1..m} : 0; ~g 7;, and
e forall j € {1..m}, wherer;(e) # L, there exists € {1..n} : 0, ~p 7;.
i) if o =V!,0;,andr(e) € {int, L,—}U{A™,m > 2}, then,

e foralli € {1..n}, whereo;(¢) # L: 0, ~¢ 7, and

o if 7(¢) # L, then there existsc {1..n} : 0, ~p 7.
iii) if 7=V 7, ando(e) € {int, L, =} U{A™, m > 2}, then,

e foralli € {1..n}, wherer;(¢) # L: 0 ~¢ 7;, and

o if o(e) # L, thenthere existsc {1.n} : 0 ~p 7.

50
O

Lemma 2.6.3.1f R is a bisimulation andr(¢), 7(¢) # V", wheren > 2, then(o,7) € R

iff o ~p 7.

The following is an equivalent definition of bisimulation. A relatifins called a bisim-

ulation if it satisfies the following four conditions:
i) If (0,7) € R, thenmatch(o, 7, R).
i) If (ANLyoi, AJ_y75) € R, thenmatch(AZ 04, AJLy 75, R).
i) If (07 — 09,71 — 7) € R, then(oy, 1) € Rand(o,, 1) € R.
iv) If (o,7) € R, then either

o(e) = 7(e) € {int, L,—} U {A",n >2}, or
o(e) e {V",n > 2}, or

T(e) € {V",n > 2}.

Define

esh
M

P(T xT)— P(T xT)

= ARA{ (0,7) | 0,7 are base types ande) = 7(¢) }
U { (o1 = 09,71 — 1) | (01,71),(02,72) E R}
U { (AR

u{(o

—10i, N\ 17'z') ’ match(1‘7”/\?:172‘7}{)}

7) | match(o, 7, R) }
Notice that' is monotone so it has a greatest fixed poift
Theorem 2.6.4.€ = VF.

Theorem 2.6.5.€ is a congruence relation.

51

Giveno, 7, define

H ¢ PV, xV,) =PV, xV;)

A

H = MR(F(R)N(V, x V})).
Theorem 2.6.6. (0, 7) € Eiff (o,7) € HY(V, x V,), whereN = |V, | + |V4|.
Given a coherent relatioR, we represenk by a function
I:(V,uV,)—{1.N},
where(o’,7') € Riff I(c') = I(7').
The abstraction functionbs maps a functior to the relation represented by
abs(I) ={ (o',7") € (Vo x V) | I(0') = I(7') }.

If I representsk, then we want to defing((I) as a representation éf(R). The function

H should have the following properties:

H(I)(o') = HU)(T)

& o'(e) =1'(e)

H(I)(o1 = 02) = H(I)(n —)
& (o) =1(m) N(o2) = 1(12)
H()(Nyoi) = HI)(ALT)
& [Lon),... . L(on)] = [I(1),. ... 1(7)]

HI)(Vio) = HI)(ViT)
)

{R(D)(), ..., D) (m)}\ {HT)(L)}-
H(I)(Vitor) = HI)(7)
& {HI)(01), .. . HI)(@m)} \ {H)(L)} =
{H(D)(O\ {HT)(L)}.
whereo’, 7’ are base types, ande) € {int, L, —} U {A",m > 2}.

Any such functiorf{ satisfies the following lemma.

52

Lemma 2.6.7. H(abs(I)) = abs(H(I)).

We can define the functiol much the same way &g except for the union types. Once
H is defined for base types; types, and intersection types, we can deftador union
types the following way. We first compute the $¢v" ;) = {H(I)(c1), ..., H(I)(om)}\
{H(I)(L)} for every union typev™ o;. If S(V™ 0;) = 0, then we letH(I)(V™,0;) =
H(I)(L). If S(vi,0;) = {k}, then we letH(I)(V",0;) = k. We then order the rest of
the union types lexicographically by the sét§) and assign unused integers to the union
types according to their ranking.

Given a type paifo, 7), let N = |V, | + |V;|, andM = |E,| + | E;|. It is now straight-
forward to show, using the techniques that were applied in Section 2.5, that our decision
procedure for membership i is given byO(V) iterations each of which take3(\/)

time. Thus, we have shown the following result.
Theorem 2.6.8.Type equality as defined 8ycan be decided i®(N x M) time.

2.7 An Efficient Algorithm for Type Equivalence

In this section, we will present a slightly more efficient algorithm for the type-matching
problem. We have shown that matched types can be found by computing the greatest fixed
point of a monotone function constructed from a definition of bisimulation and an initial set
of type pairs that are potentially equivalent. By reducing the fixed-point computation of the
monotone function to the problem of finding the coarsest size-stable partition refinement
of a graph, we are able to reduce the time complexity of type matchi@gridog n).

Assume that we are given two typasandr, that are represented as two term automata
M; and M,. Lemma 2.7.1 proves that = n, (or (71,72) € R) if and only if there
is a reflexive bismulatiod’ betweenM; and M, such that the initial states of the term
automataM; and M, are related by’. Lemma 2.7.3 essentially reduces the problem of
finding a reflexive bisimualtio' betweenM; and M, to finding a size-stable coarsest
partition [PT87]. Theorem 2.7.4 uses the algorithm of Paige and Tarjan to determine in
O(nlogn) time (n is the sum of the sizes of the two term automata) whether there exists a

reflexive bisimulatiorC' betweenM; and M.

53

Throughout this section, we will us&t,, M, to denote two term automata over the

alphabet::

M, = (Q1,27QO1,517€1)
My = (Q2727QO27627€2)-

We assume thaf); N Q, = (. Define@ = @, U Q,. Define alsad : Q x w — Q
whered = 6, @ 6y, and? : Q — X, wherel = (; & (,, where® denotes disjoint union
of two functions. We say thai1,, M, arebisimularif and only if there exists a relation

C C @ x @Q, called a bisimulation betweei; and.M,, such that:
e if (¢,¢') € C, thenl(q) = {(q')
e if (¢.¢') € C and{(q) =—, then(d(q,0),0(¢’,0)) € C and(é(¢,1),d(¢', 1)) € C

e if (¢,¢') € Candl(q) = IT", then there exists a bijectian {0..n—1} — {0..n—1}
such that/i € {0..n — 1}: (d(q,7),0(¢,t(7))) € C.

Notice that the bisimulations betwegrl; and M, are closed under union, therefore, there
exists a largest bisimulation betwe@r; and M,. It is straightforward to show that the
identity relation ony is a bisimulation, and that any reflexive bisimulation is an equivalence

relation. Hence, the largest bisimulation is an equivalence relation.

Lemma 2.7.1.For typesr;, 7, that are represented by the term automatg , M., respec-
tively, we haver, 7o) € R if and only if there is a reflexive bisimulatiari betweenM,

and M, such that(go, go2) € C.

Proof. Supposér, 7») € R. Define:

C = {(04)€QxQ | (Al(d(g.)). r.bt(3(¢) € R }.

It is straightforward to show that' is a bisimulation betweewM; and M, and that

(qo1, qo2) € C, we omit the details.

54

Conversely, leC be a reflexive bisimulation betwee(; andM, such thatqo:, go2) €
C'. Define:

R = {(o1,00) | (¢.4)€C A oy =Xl(6(q,a)) N o5 = A.l(6(q,a))}

From (qo1,902) € C, we have(r;,) € R. ltis straightforward to prove thak is a
bisimulation, we omit the details. Frotr;,») € R and R being a bisimulation, we

conclude thatr,) € R. O

A partitioned graphis a 3-tuple(U, E, P), whereU is a set of nodesly C U x U is
an edge relation, ang is apartition of U. A partition P of U is a set of pairwise disjoint
subsets ot/ whose union is all ot/. The elements of are called itdblocks If P andS
are partitions ot/, thenS is arefinemenbdf P if and only if every block ofS is contained
in a block of P.

A partition S of a setU can be characterized by an equivalence relatioon U such
that each block of' is an equivalence class &f. If U is a set andx is an equivalence
relation onU, then we usé//K to denote the partition df’ into equivalence classes for
K.

A partition S is size-stablavith respect ta? if and only if for all blocksB,, B, € S, and
forallz,y € B,,wehavg E(z)NBs| = |E(y)N B,

, WhereE (z) is the sefy|(z,y) € E}.
If E is clear from the context, we will simply use size-stable. We will repeatedly use the

following characterization of size-stable partitions.

Lemma 2.7.2.For an equivalence relatiok’, we have that// K is size-stable if and only
if forall (u,v') € K, there exists a bijection : F(u) — E(u’) such that for alk; € E(u),

we haVE('LLl, F(Ul)) e K.

Proof. Suppose that// K is size-stable. Letu,u') € K. Let B; be the block of
U/K which contains: andu’. For each blockB, of U/ K, we have thatE(u) N By| =
|E(u") N Bsy|. So, for each blockB3, of U/ K, we can construct a bijection frofi(u) N B,
to E(u') N By, such that for alky, € E(u)N By, we have(u,, 7(uy)) € K. These bijections

can then be merged to single bijection F(u) — E(u’) with the desired property.

55

Conversely, suppose that for &ll, v') € K, there exists a bijection : E(u) — E(u)
such that for allu; € E(u), we have(u,n(u;)) € K. Let By,B, € U/K, and let
x,y € B;. We have thatz,y) € K, so there exists a bijectian: E(z) — F(y) such that
forall u; € E(x), we have(u,, (uy)) € K. Each element of’(z) N B is mapped byr to
an element of/(y) N B,. Moreover, each element éf(y) N B, must be the image under
7 of an element of/(x) N By. We conclude that restricted tol'(x) N By is a bijection to
E(y) N By, SO|E(z) N Ba| = |E(y) N Bs. O

Given two term automata1,, M., we define a partitioned gragl/, £, P):

U = QuU{{qi) | ¢€Q A d(q,i)is defined }

= { (¢, {q,%)) | 6(q,i)is defined}

U { ({g,4),0(q,4)) | 6(g.4)is defined}
L = {(¢d)€@xQ | &g =L(d)}

U { ({g,9), (¢,i)) | £(q) = €(¢') and ifé(q) =, theni =i’ }
P = U/L.

The graph contains one node for each state and transitidgninM,. Each transition in
My, M, is mapped to two edges in the graph. This construction ensures that if a node in
the graph corresponds to a state labdlgdthen that node will have distinct successors
in the graph. This is convenient when establishing a bijection between the successors of
two nodes labeled[".

The equivalence relatioh creates a distinction between the two successors of a node
that corresponds to a state labeled This is done by ensuring that(fq, i), (¢,i')) € L
and/(q) =—, theni = ¢'. This is convenient when establishing a bijection between the

successors of two nodes labeled

Lemma 2.7.3. There exists a reflexive bisimulatian betweenM; and M, such that
(qo1,q02) € C if and only if there exists a size-stable refinem&ndf P such thatg,; and

qo2 belong to the same block 6t

56

Proof. Let C C @) x () be a reflexive bisimulation betweent; and M, such that

(qo1,902) € C. Define an equivalence relatidti C U x U such that:

K = C
U { ({g,9):(d.9) | (¢.4) €C N Ug) =L(q) ==}
U {({g,9).(d.7) | (a.d) €C N ((g,9),0(¢,7)) € C
ANL(q) =LUq) N Ug) #—}
S = U/K.

From (qo1, q02) € C, we have(qo1, qo2) € K, SOqo1 andgg, belong to the same block 6f.
We will now show thatS is a size-stable refinement 6f
Let(u,u') € K. From Lemma 2.7.2 we have that it is sufficient to show that there exists
a bijectionr : E(u) — E(u'), such thatfor all;, € E(u), we have(u,, 7(u;)) € K. There
are three cases.

First, supposéu, u’) € C. We have

E(u) = {{u,i) | 6(u,i)is defined}
EW@) = { &) | 6@, 7)is defined }.

Let us consider each of the possible cases ahdu'. If ((u) = ¢(u') € T, thenE(u) =

E(v') = 0, and the desired bijection exists trivially. Next/{fu) = ¢(u") =—, then

Ew) = {(u,0),(u,1)}
E(u/) = { <ulvo>> <u/’ 1> }7
so the desired bijection is : E(u) — E(u'), wherer({u,0)) = («/,0) and7((u, 1)) =

(u', 1), becausé(u,0), (v',0)) € K and((u, 1), (v/,1)) € K. Finally, if £(u) = ¢(u)
1%, then

E(uw) = {{(u,i) | 6(u,i)is defined}
E@) = {4 | 6(u,7)is defined }.

57

From (u,u) € C, we have a bijectiort : {0.n — 1} — {0..n — 1} such thatvi €
{0.n — 1} : (6(u,d),6(u/,t(d))) € C. From that, the desired bijection can be constructed.
Second, suppose = (q,7) andu’ = (¢, i), where(q,q’) € C, andl(q) = {(¢') =—.

We have

Ew) = {d(g,9)}
E@) = {d(d4)},

and from(q, ¢') € C we have(d(q,i),0(¢’,7)) € C C K, so the desired bijection exists.
Third, suppose: = (q,i) andv’ = (¢, '), where(q,q') € C, (§(q,i),0(¢,7)) € C,
l(q) = L(¢'), andl(q) #—. We have

Eu) = {d(q,9) }
E(u) = {d(d,i)},

and(d(q,7),0(¢,i")) € C C K, so the desired bijection exists.
Conversely, letS be a size-stable refinement Bfsuch thatyy; andqg; belong to the

same block ofS. Define:

K = {(u,u)€eUxU | u,u belong to the same block ¢f }
C = Kn(@QxQ).

Notice that(qo;, q02) € C and thatC is reflexive. We will now show that' is a bisimulation
betweenM and M'.
First, supposéq,q’) € C. FromS being a refinement o we have(q,q’) € L, so

t(q) = ().
Second, suppoge, ¢') € C and/(q) =—. From the definition o2 we have

E(q) = {{3,0),{(¢;1) }
E(d) = {(d.0),(d,1) }.

From S being size-stabldyg, ¢') € C' C K, and Lemma 2.7.2 we have that there exists a

bijectionr : E(q) — E(¢') such that for all: € E(q) we have thatu, 7(u)) € K. From

58

K C L and/(q) =— we have that there is only one possible bijection

m((¢,0)) = (d’,0)
m((¢,;1)) = (d.1),

so ({q,0),(¢’,0)) € K and({q,1),(¢,1)) € K. From the definition off we have, for
i€ {0,1},

E({q,7)) = 0(q,7)
E((d,7) = o(d,9),
and sinceS is size-stable, we have, forc {0,1}, (d(¢,%),6(¢’,7)) € K. Moreover, for

i€{0,1}, (0(g,1),d(¢,1)) € Q x Q; therefore we concludéj(q,i),0(¢, 7)) € C.
Third, supposéq, ¢') € C and{(q) = [T". From the definition oz we have

E(q) = {{g,i) | 6(q,1) is defined}
E(d) = {{d,i) | 4(¢,1)is defined}.

Notice that|E(q)| = |E(¢')| = n. FromS being size-stable(q,¢') € ¢ C K, and
Lemma 2.7.2, we have that there exists a bijection F(q) — FE(¢') such that for all
u € E(q) we have thatu, 7(u)) € K. Fromr we can derive a bijection: {0..n — 1} —
{0..n — 1} such thatvi € {0..n — 1}: ({(q,1), (¢, t(:))) € K. From the definitions of
andE’ we have that fo € {0..n — 1},

E({g,7) = {dlg1)}
E(d,i) = {0},
and sinces is size-stable, and, for all € {0..n — 1}, ((q,1), (¢, t(i))) € K, we have

(0(q,1),0(q,t(2))) € K. Moreover,(d(q,1),0(q,t(7))) € Q x Q; therefore, we conclude
(6(q,7),0(q',1(2))) € C. 0

The sizeof a term automata\t = (Q, %, o, ,1) is |Q|+ | |9], i.e., the sum of the

number of states and transitions in the automata.

59

Theorem 2.7.4.For typesr, 7, that can be represented by term automath , M, of size

at mostn, we can decidér;,) € R in O(nlogn) time.

Proof. From Lemma 2.7.1 we have that, 2) € R if and only if there is a reflexive
bisimulationC' betweenM; and M, such that(q, g02) € C. Fromc Lemma 2.7.3 we
have that there exists a reflexive bisimulat@metweenM; and M, such thatqg, go2) €
C if and only if there exists a size-stable refinemgnif P such thatyy; andgg; belong to
the same block of.

Paige and Tarjan [PT87] give an(m log p) algorithm to find the coarsest size-stable
refinement ofP, wherem is the size ofE’ andp is the size of the univergé.

Our algorithm first constructd/, E, P) from M; and.M,, then runs the Paige-Tarjan
algorithm to find the coarsest size-stable refinenseot P, and finally checks whetheg;
andgqg; belong to the same block of.

If M; and M, are of size at most, then the size off is at most2n, and the size of
U is at mostn, so the total running time of our algorithmds(2n log(2n)) = O(nlogn).

O

Next, we illustrate how our algorithm determines that equivalence between the types.
Details of the algorithm can be found in [PT87]. Consider two typesnd./; defined in

Section 2.2. The set of types corresponding to the two interfaces are:

{1, I, my1, ma, m3, my, int, float}

{Jl, Jg, ny, Na, N3, Nyg, int, ﬂoat}

Figure 2.10 shows various steps of our algorithm. For simplicity, the figure only shows the
blocks of actual types, but not the blocks of the extra nodes of the fgrih. The blocks

in the first row are based on labels, e.g., states labeledxviine in the same block. In

the next step, the block containing the methods are split based on the type of the result of
the method, e.g.. methods;, andn, both returnfloat, so they are in the same block. In

the next step (corresponding to the third row) the bloek I, J;, Jo} are split. The final

partition, where blocKms, m4, ny,no} is split, is shown in the fourth row.

60

l11537 J9 My My Mg My Yy Ny Ng My float int
| LN
11537 Jo miy || M| Mgmyn ny float int
/_\ | | |
l1do][12d1[| MYy || M| [Mgmun 1y float int
| L | [\
L1 do|| 12 d1 || MYy || MIg || Mab || My float int

Figure 2.10. Blocks of types

Our algorithm can be tuned to take a specific user needs into account. This is done
simply by modifying the definition of the equivalence relatibnFor example, suppose a
user cares about the order of the arguments to a method. This means that the components of
the product type that models the argument list should not be allowed to be shuffled during
type matching. We can prevent shuffling by employing the same technique that the current
definition of L uses for function types. The idea is to insist that two component types may
only be matched when they have the same component index.

Another example of the tunability of our algorithm involves the modifierSama .
Suppose a programmer is developing a product that is multi-threaded. In this case the
programmer may only want to matefinchronized = methods with othesynchronized
methods. This can be handled easily in our framework by changswgh that two method
types may only be matched when they are both synchronized. On the other hand if the user
is working on a single-threaded product, the keywsonethronized can be ignored. The

same observation applies to other modifiers suchas

2.8 Implementation

We have implemented our algorithm Java and the current version is based on the
code written by Wanjun Wang. The implementation has a graphical user interface so that
users may input type definitions written in a file and also may specify restrictions on type
isomorphism. The implementation and documentation are available at

http://www.cs.purdue.edu/homes/tzhao/matching/matching.htm

61

Graphical Interface Parsers for
-input file window -input file
-restriction window -restrictions
-output window

-focus window

Refine the W (Transform
partitions with type sets into
lelgr?t-gr%”an L partitions

Figure 2.11. Schematic diagram for the implementation

Suppose we are given the following file with falava interfaces.

interfacel; { interfacel, {

float my (I a,intd); Jo mgy (floata);

int my (I3 a); I, my (floata);
ki ¥
interfaceJ; { interfaceJ, {

I, ny (floata); int ng (J; a);

Jo ny (floata); float ny (inta, s b);
} h

The implementation, as illustrated in the Figure 2.11, will read and parse the input file
and then transform the type definitions into partitions of numbers with each type definition
and dummy type assigned a unique number. The partitions will be refined by Paige-Tarjan
algorithm until it issize-stableas defined in this chapter. Finally, we will be able to read
the results from the final partitions. Two types are isomorphic if the numbers assigned to

them are in the same patrtition. The implementation will give the following output:

L=J, , L=J

62

Current File: examplel

T

Load Interfaces

File: 41z=1
|
examplel || Browse... 3]
Load Interfaces ‘ i 1zm3 = j1n1
i 11.m1 = J2.n4
Restrictions il 12.m4 = 1l.nz
il 11.m2 = j2.n3

1Z.m3 = |1.nl

i -Focus

Match 12 | = |J1 |

¢||\5tatus: match (one-to-one match for methods)

Figure 2.12. Screen shot of the implementation

IQ.mg == Ig.m4 = Jl.nl = Jl.nz

[1.m1 = :]2.71/4 y Il.mg = Jg.ng .

We can see that the types of interfadesand J; are isomorphic and moreover, all
method types ofl,, J; match. Suppose that we have additional information about the
method types such that only methed, andn; should have isomorphic types. We can
restrict the type matching by addirdg.ms; = J;.n, to therestrictionswindow of the user
interface. The new matching result is illustrated by the screen shot in figure 2.12.

Note that we are able to focus on the matching of two interface types sugh/ass in
thefocuswindows of Figure 2.12, wherk, .J; are matched and their methods are matched

one to one.

2.9 Subtyping of Recursive Types

In this section we discuss subtyping and formalize it using a simulation relation. We
also discuss reasons why the algorithm given in Section 2.7 is not applicable to subtyping of

of recursive types. Consider the interfa¢gésand K, shown in Figure 2.13, and suppose a

63

interfacek; { interfaceK, {
K; m (floata,booleand); K, m (int i, booleanb);

booleanp (K j);

Figure 2.13. Interface&’; and K,

user is looking fork,. The interfaceg(; and K, can be mapped to the following recursive

types:

71 = pa.((float x boolean) — «) X (av — boolean)

7 = pB.(int X boolean) — (3)

Assuming thatint is a subtype offloat (we can always coerce integers into floats) we
have thatr, is a subtype of,. Therefore, the user can use the interféCe There are
several points to notice from this example. In the context of subtyping, we need two kinds
of products: one that models a collection of methods and another that models sequence
of parameters. In our example, the user only specified a type corresponding to method
m. Therefore, during the subtyping algorithm methoshould be ignored. However, the
parameters of methad are also modeled using products and none of these can be ignored.
Therefore, we consider two types of product type constructors in our type systems and the
subtyping rule for these two types of products are different.

As stated before, a type is a regular term, in this case over the ranked alphabet
Y = TUu{=}uU{][.n>2}u{x",n>2}

Roughly speaking][" and x™ will model collection of parameters and methods respec-
tively. Also assume that we are given a subtyping relation on the baseltygés; is a
subtype ofr,, we will write it asm, < 7. A relation R is called asimulationon types if it

satisfies the following conditions:

e if (0,7) € Rando(e) € T, thent(e) € I ando(e) < 7(e).

64
o if (0,7) € Rando(e) € ({—} U {II",n > 2}), theno(e) = 7(e).
o if (0, — 09,71 — ™) € R, then(r,0,) € Rand(oy, ™) € R.

o if (II'<y 04, 1=y ™) € R, then there exists a bijectian {0...n—1} — {0...n—

1} such that for ali € {0...n — 1}, we have(o;, 7,;)) € R.

n—1

e Suppose(o,7) € R, o(e) = x", ando = x"Jo;. If 7(e) & {x™ m > 2},
then there exists g€ {0...n — 1} such thato;, 7) € R. Otherwise, assume that

7(€) = x™, wherem < nandr = x;'7;. Inthis case, then there exists an injective

1=

functions : {0...m — 1} — {0...n — 1} such thatforalt € {0...m — 1}, we

have(o,q), 7;) € R. Notice that this rule allows ignoring certain components of

As is the case with bisimulations, simulations are closed under union, therefore there
exists a largest simulation (denotedBY.

Let M, M, denote two term automata over

M, = (Q1727901,517£1)
My = (Q2727QO27527£2)-

We assume thad, N Q, = 0. DefineQ) = @, U Q,. Define alsd : Q x w — @ where
0 = 01 g, andl : Q — X, wherel = (; ® {5, whered denotes disjoint union of two
functions. We say thaM, simulatesM; (denoted byM; < M.) if and only if there

exists a relatiorD C) x @, called asimulation relatiorbetweenM,; and.M,, such that:

e if (¢,¢') € Dandl(q) € T, thenl(¢') € " and{(q) = ¢(¢')).
e if (¢,¢') € Dandl(q) € ({—} U{II",n > 2}), thenl(q) = ¢(¢).
e if (¢,¢), € Dand{(q) =—, then(d(q,0),4(¢,0)) € Dand(6(¢’,1),0(q,1)) € D.

o if (¢,¢'),€ D and/l(q) = II", then there exists a bijectian: {0...n — 1} —
{0...n—1}suchthatforali € {0...n — 1}, we have(d(q,),0(¢,t(i)) € D.

65

e Suppos€q,q’) € D and/(q) = x™. If {(¢") & {x™,m > 2}, then there exists a
j €1{0...n— 1} such thaté(q,j),q¢') € D. Otherwise, assume théty') = x,
wherem < n and in this case, there exists an injective functio0...m — 1} —

{0...n— 1} suchthatforali € {0---m — 1}, we have(d(q, s(7)),0(¢,i)) € D.

Notice that the simulations betweewit; and M, are closed under union, therefore,
there exists a largest simulation betweeh and M. The proof of Lemma 2.9.1 is similar

to the proof of Lemma 2.7.1 and is omitted.

Lemma 2.9.1.For typesry, 7» that are represented by the term automatf , M., respec-
tively, we havér, 75) € R if and if only there is a reflexive simulation betweenM\; and
M, such that(qoy, go2) € D.

The largest simulation between the term autordetaand. M is given by the follow-
ing greatest fixed point
vD.sim(q,q’, D).

whereD C Q; x Q, and the predicateim(q, ¢', D) is the conjunction of the five conditions
which appear in the definition of the simulation relation between two automata. ded

m be the size of the term automata; and M, respectively. Sincexmn is a bound on

the size ofD, the number of iterations in computing the greatest fixed point is bounded by
nm. In general, the relatiof (or for that matter the simulation relation) is not symmetric.

On the other hand, the bisimulation relation was an equivalence relation, and so could
be represented as a partition on the @etJ @)-, or in other words, partitions give us a
representation of an equivalence relation that is linear in the sum of the sizes of the set
of states(); and(,. The Paige-Tarjan algorithm uses the partition representation of the
equivalence relation. Sinck is not symmetric (and thus not an equivalence relation), it
cannot be represented by a partition. This is the crucial reason why our previous algorithm

cannot be used for subtyping.

2.10 Conclusion

In this chapter, we addressed the problem of matching recursive types with flexible

equality rules. We characterized the equivalence of recursive types by a definition of bisim-

66

ulation. The decision procedure for type equivalence depends on the computation of the
greatest fixed point of a monotone function constructed from the definition of bisimulation
and from an initial relation on potentially equivalent types. A straightforward implementa-
tion of this approach resulted in @(n?) algorithm.

An algorithm withO(nlogn) time complexity was found by reducing the fixed-point
computation to the problem of finding the coarsest size-stable partition of a graph. To our
knowledge, this is the most efficient algorithm for this problem. Our results are applica-
ble to the problem of matching signatures of software components and to the integration of
multi-language systems. We showed an extension of our decision procedure to the intersec-
tion and union types and issues related to subtyping of recursive types were also addressed.

Remark: A natural next step is to investigate how to automatically generate bridge
code for a multi-language system. We would also like to find out whether our notion of
type equality is sound and complete for some class of models of recursive types. On the
implementation side, we want to make connections to work on multiset discrimination
[CP95] and chaotic fixed-point iteration [Cou81].

When dealing with building bridge code between interfaces, there are interesting equiv-
alences involving currying and uncurrying at the interface level [AC96b, ABR98]. Recall

that currying is usually expressed with the rule
01— (09 — 03) = (01 X 09) — 03.
Consider the type
o = po.(int — «).
When uncurrying is alloweds is equivalent to a number of types containing product types
of different sizes, such as:
o = po.((int X int) — «)
4

= ([T~)

where, for alli € 1..4, 7, = int. Notice tk:;ua does not contain any product types, while

the second type contains a binary product type, and the third type contains a 4-ary product

type. It remains an open problem to decide this notion of type equality.

67

3. Automatic Discovery of Covariant Read-Only Fields

3.1 Introduction
3.1.1 Background

In the quest for more expressive type systems, subtyping has become a common means
for flexible matching of types. For example, in an assignmemat we can allowr ande to
have different types, provided that the typeco$ a subtype of the type af. This relieves
the programmer from having to insert coercions.

Subtyping comes in many flavors. For object types of the fgrmB, . . .|, wherel : B
denotes a field of type B, there are several design choices. Abadi and Cardelli [AC96a]
explain that if the fieldl can be both read and updated, tifemust beinvariant in the
subtype ordering, that is, |f : A,...] is a subtype of¢ : B,...], thenA = B. Following
Abadi and Cardelli, we will use the notatidff : B, ...] where the superscript O denotes
that the object type has an invariant fiéld

A covariant read-only field (CROF) is a field which enjoys covariant subtyping and
which cannot be updated. Again following Abadi and Cardelli, we will use the notation
[m* : B,...] where the superscript denotes that the object type has a covariant field
Covariance means thatfii™ : A,...] is a subtype ofm™ : B, ..], thenA is a subtype of
B, a weaker condition thad = B.

CROFs are a useful addition to type systems. For example, Glew has given a nice
translation of classes and objects into an intermediate calculus in which the method tables
of classes are placed in CROFs; covariant subtyping on the method table fields is needed
to ensure that subclasses are translated to subtypes. We will discuss Glew’s translation in
more detail later in the chapter.

First, however, we illustrate some of the central technical difficulties of CROFs with a

much simpler, more whimsical example. Our program is written in a variant of an Abadi-

68

Cardelli object calculus [AC96a]. Each meth@i(x) b binds a nhame: that denotes the
smallest enclosing object, much like Java’s “this.” The program declares four objects, then

makes two successive method calls:

let
Man = [id = @(X)X]
Batman = [id = @(y)y secretid = @(z)z]
Phone = [dial = @(d)Man]
Batphone = update Phone.dial <=
@(e) call (call Batman.id).secretid
in

call (call Batphone.dial).id

Here is the intuition behind the example. Man has an identity (himself)Batman
has an identity too, and he also has a secret identity. By dialingllo@e you can reach
Man, and by dialing théBatphone you can reactBatman : the definition ofBatphone
is equivalent tddial = @(e)Batman]
Some fairly powerful type systems cannot handle this example: Palsberg and Jim [PJ97]
noted that this program isot typable in Abadi and Cardelli’'s type syste@b, .., which
has recursive types, width subtyping for object types, and only invariant fields. The reason

is that in this calculusBatman is not a subtype oMan

Man : p(X)fid°: X] (from the definition oMan)
Batman : pu(Y)[id % secretid °:Y] (from the definition oBatman)
w(Y)fid © secretid °:Y] £ p(X)[id?: X] (from the definition of subtyping)

Theid field of Batman hasBatman’s type, and thed field of ManhasMaris type,

so by invariant subtyping, the two types are not related. The only common tyypercind

Batman is |], so we have

Phone : [dial °:[]]

Batphone : [dial °:[]]

69

In conclusiongall (call Batphone.dial).id is nottypable.
To increase expressiveness, we can add CROBW10., such that each field can be

either invariant or covariant:
Ob,..,+ = Ob,..,, UCROFs

This is sufficient to make the above program type check with the following types:

Man Cfid %[
Batman . [id ©: [secretid T: [id *: []]]; secretid O id [1M
Phone : [dial % [id tf: [N

Batphone : [dial O id LM

These types were produced by our implementation of the algorithm presented in this chap-
ter. Notice that the program (the input to our algorithm) does not mention whether a field

is read-only, or whether it can both be read and updated. It turns out that this information
does not make the problem of type inference any easier, so our algorithm automatically
discoverswhich fields should be CROFs.

The types produced by our algorithm are intended to be minimal-shape types, in the
sense of [KPS94, PWQO97], although proving that is left to future work. The idea of minimal
shape is that the inferred types exhibit exactly the amount of structure of objects that the
program exploits. For example, we haman : [id ° : []] because there is no usage
of Man.id , so the return type oMan.id need not have any features at all. Note that
minimal-shape types need not be principal types. If principal types are desired, then the
best known approach is to output a representation of the type constraints used by the type
inference algorithm, possibly in a simplified form [Pot96]. In the worst case, such a set of
constraints has a size that is linear in the size of the program.

One can achieve a degree of modularity by letting the programmer specify types at, say,
module boundaries. Those types then become part of the input to the type inference algo-
rithm, so, in effect, the algorithm determines whether there is a typing which is consistent

with the specified types. Without any such declared types, the inferred types can be quite

70

different for two programs that use their objects in slightly different ways. This may not
be desirable for large-scale software development. Similarly, slightly different programs
may have quite different inferred annotations of the fields of the object types. It remains
an open problem to find a convenient mechanism to explain to a programmer why a certain
field ended up being a CROF.

The above program is also typable with the so-called simple self-types of Palsberg
and Jim [PJ97]. Bugliesi and Pericas-Geertsen [BPG02] observed that any program that
can be typed with simple self-types can also be type®n..,.. Perhaps interestingly,
their encoding of simple self-types uses recursive types to type the above program, while
our more direct algorithm produces nonrecursive types in this case. More importantly, type
inference with simple self-types is NP-complete [PJ97], while our type inference algorithm
for the more expressive type systéb, .., runs in polynomial time.

In our implementation, a programmer can specify that some of the fields are read-only.
For example, in the above program, a programmer may specify thaetnetid field

is read-only by inserting & annotation:

let
Man = [id = @(x)X]
Batman = [id = @(y)y secretid'+ = @(z)z]
Phone = [dial = @(d)Man]

Batphone = update Phone.dial <=
@(e) call (call Batman.id).secretid
in
call (call Batphone.dial).id

For this program, our implementation produces the following types:

Man o fid %1
Batman . [id °: [secretid *to[id *: []]]; secretid hd 0
Phone : [dial % [id tf: [N

Batphone : [dial O id LM

71

Notice that the second occurrencesgfcretid in the type forBatman now has the
annotationt instead of0.

If, in addition, the program were changed to makedi®@ method ofPhone read-
only, then our implementation would correctly decide that the resulting program is not
typable (becauséial is updated irBatphone).

As we have mentioned, adding annotations, such as the orsefoetid , seems
not to make the type inference problem easier. In this chapter, we show that even if all
fields are explicitly specified as either updateable or read-only, the type inference problem
is P-complete. If the programmer leaves a field unspecified (or, equivalently, gives the
annotation 0), then our algorithm wiliscoverwhether it is advantageous to make it read-
only. The “discovery” process takes place at the type level: a field which was annotated as

read-write may be implicitly turned into a read-only field at any time via subsumption.

Glew's type system Glew’s translation of objects and classes to a typed intermediate
language [Gle00] is an important motivation for our work on CROFs. Like most imple-
mentations of object-oriented languages, Glew’s translation uses method tables. One of
Glew’s insights is that the method table can conveniently be placed in a CROF. For exam-
ple, leta andb be two source-language objects such that the tygei®f subtype of the

type ofa. The type system for the source language supportd timaty havemoremethods

thana (width subtyping). This means that the method table in the translatiorwdf be

longerthan the method table in the translation:of

translation(a) = ...[mt=m,,..]...

translation(b) = ...[mt=my,...|...

where mt is the field name for the method table. Glew’s translation of b has a subtype of
the type of his translation of a; he makes mt a CROF, and he gives the following types to

the translations of andb:

type-of (translation(a)) = ...[mt" : type-of(m,),..]...

type-of (translation(b)) = ...[mt" : type-of (my),...]...

72

Glew’s translation produces typed intermediate code, including the annotatmust-.

Is type inference possible for an implicitly-typed version of Glew’s intermediate lan-
guage? Our work shows that type inference is possible for a fragment of Glew’s type sys-
tem. Glew's type system also features function types, bounded universal polymorphism,
and self types, as well as a special variance annotation for record types which indicates
whether subtyping can be applied at all. Our long-term goal is to extend the algorithm to
cover a larger fragment of Glew’s system. Such an algorithm would make it possible to

omit bulky type annotations, and to automatically discover the CROFs.

Constraint solving A O(n?) time type inference algorithm for Abadi and Cardelli's type
systemOb; ., (only invariant fields) was given by Palsberg [Pal95]; laterCHn?) time
algorithm for the same problem was given by Henglein [Hen97]. There is a sifhjtat)

type inference algorithm for the calculus with only CROFs (only covariant fields). Surpris-
ingly, there seems to be no easy way to “merge” the two algorithms to obtain an algorithm
for the combined type syster®@b; ..,,... Both algorithms work by reducing type inference

to the problem of solving a set obnstraints A constraint is a paifA, B), whereA andB

are types that may contain type variables; and the goal is to find a substitusioch that

for each constraintA, B), we haveS(A) < S(B) where< is the subtype order. We will
useR to range over sets of constraints; we will often refeft@s a relation on types. A

key theorem about both algorithms states:
Theorem A set of constraints is solvable if and only if its closure is consistent.

Here, “closure” means that certain syntactic consequences of the constraints have been
added to the constraint set, and “consistent” means that there are no obviously unsatisfiable
constraints (e.g{[|, [¢° : []])). Both algorithms construct a solution from a closed, con-
sistent constraint set. This framework has been used for solving subtype constraints for a
variety of types [Pal95, KPS94, PWO97, PO95, PS96].

Finding an algorithm thus rests on finding a correct definition of “closure.” For the type
system with only covariant fields, there are three closure rules, all operating on a constraint

setR:

73

e if (A,B) € R,then(A, A),(B,B) € R (reflexivity);
e if (A,B),(B,C) € R,then(A,C) € R (transitivity);

o if (¢ :B,..],[(": B',...]) € R, then(B,B’) € R (propagation of subtyping
to fields).

Computing the closure také¥(n?) time. ForOb, .., (only invariant fields), there are also

three closure rules:
e if (A,B) € R,then(A, A),(B,B) € R (reflexivity);
o if (A,B),(B,C) € R,then(A,C) € R (transitivity);

o if (A,[(°:B,..]),(A,[°: B, ...]) € R, then(B, B") € R (propagation of subtyp-
ing to fields).

Notice that the last rule also can be used to i#& B), so it actually forces3 and B’ to

be unified. Now, can we solve constraints over the typ&3lan. .., by taking the union of

the two sets of closure rules? As it happens, a notion of closure based on the union of the
rules doesot support the result mentioned above. For example, consider the constraint set

that consists of the following two constraints:
(V.[em:B]) (V,[¢7: BY)

whereV is a type variableB = [m" : []], andB’ = [m° : [m" : []]]. The key property of

B, B’ is that they don’t have a common lower bound. Apart from reflexivity, this constraint
set is closed under the four closure rules above. Moreover, the constraint set is consistent:
there are no obviously unsatisfiable constraints. So, if there was a theorem of the form
mentioned above, this constraint set should be solvable. However, it is not solvable. To
see that, consider the following informal argument. In any solufibmust be assigned a

type of the form[/* : A, ..], for someA. (Actually, it might also be possible to annotate

¢ with 0, but that will not help). Now, becaugas a CROF, we must be able to satisfy the

constraints:

(A,B) (A,B")

74

This is not possible: there is no subtype of bdhand B’ in this system. With only
covariant fields, the set of types form a lattice. Once invariant fields are introduced, not all
pairs of types have lower bounds. In our setting with both covariant and invariant fields, all
pairs of types have a least upper bound. Conclusion: either there are too few closure rules,
or else there is something wrong with the notion of consistency.

The example suggests that in a setting with both covariant and invariant fields, a new
technique is called for.
3.1.2 Our Results

We present the design and implementation of a type inference algorith@bfor,,., .
The algorithm automatically discovers CROFs. It is based on a theorem of the form dis-
cussed above, with a new notion of closure and a traditional notion of consistency. Type
inference is equivalent to solving type constraints, which in turn is P-complete and com-
putable inO(n?) time. The novel aspect of our definition of closure is that it keeps track of
both subtype relations and which pairs of types must have a lower bound. For the example
constraint set above, our closure rules will note that sjice: B] and[¢* : B’] must
have a lower bound, it must also be the case thaind B’ have a lower bound, which is
obviously false. Our nine closure rules describe the interaction between a set of subtype
constraints and a set of lower-bound constraints. In our proof of the main theorem (of the
form mentioned above), we use a technique that employs a convenient characterization of
the subtyping order (Lemma 3.2.6). The characterization uses notions of subtype-closure
and subtype-consistency that are different, yet closely related, to the already-mentioned no-
tions of what we for clarity will call satisfaction-closure and satisfaction-consistency. The
result that type inference is P-hard indicates there are no fast NC-class parallel algorithms
for the type inference problem, unless NC = P.

Our prototype implementation, already showcased above, works with a version of an

Abadi-Cardelli object calculus. The implementation is freely available from:
http://www.cs.purdue.edu/homes/tzhao/type-inference/inference.htm

Future work includes the addition of atomic subtyping [Mit91, Tiu92, HM95, Fre97,

75

Ben94].
3.1.3 Related Work

One of the first uses of annotations such-asften calledvariance annotationscan be
found in Pierce and Sangiorgi's paper [PS93] on typing and subtyping for mobile processes.
They used annotations of types in a type system forrttoalculus to enforce that some
channels are for input only or for output only.

The variance annotation-" is sometimes used to denote that a field is contravariant
and write-only. We know of no easy way of extending the results of this chapter to cover
“—". The main problem is that for a system with invariant, covariant, and contravariant

fields, not all pairs of types have least upper bounds. For example, consider the types

C = [A4
C' = [I':B]
=]

= [m":[]]

Notice thatB < A. Here are two incomparable upper bound€’of":

[1*: A
([~ : B

However, there is neeastupper bound o€, C’. So, with both covariant and contravariant
fields, the types daotform lattice.

Rémy [Rem98] used covariant and contravariant fields in a calculus with object exten-
sion, and depth and width subtyping. His language is explicitly typed.

Igarashi and Viroli [IV02] used variance annotations to control subtyping between dif-
ferent instantiations of a generic class, and to specify the visibility of fields and methods.
Their example language is explicitly typed.

Igarashi and Kobayashi [IKOO] showed how to infer types with annotations about the

usesof communication channels in concurrent programs. A use is either 0 (never used),

76

1 (used at most once), ar (used arbitrarily). The set of uses forms an algebra with op-
erations such as+ 1 = 1. Depending on the use annotations of a record type, the fields
may enjoy covariant or contravariant subtyping. Their approach differs from ours in the
use of variance variables (callede variabley whose value determines whether a channel
type is contravariant, covariant or invariant. Because these are variables, structural decom-
position (closure) is sometimes be suspended until some of these variables receive values,
which requires a form of conditional constraints. Our approach does not use conditional
constraints and therefore appear simpler. Another notable difference between their type
inference problem and ours is that their type inference problem uses finite types without
width subtyping and with all of covariance, contravariance, and invariance, while ours uses
recursive types and width subtyping, but only covariance and invariance. It remains to
be seen whether it is possible to extend their techniques to handle width subtyping and

recursive types.

Tang and Hofmann [THO1] studied type inference for a logic of Abadi and Leino, for
the purpose of helping with automatic generation of verification conditions [TH02]. They
use a subtyping relation for object types in which fields are invariant and methods are
covariant. Thus, in their type inference problem it is explicitly specified what is read-only
and what is updateable. The two most notable differences between their type inference
problem and ours are that (1) they consider finite types while we study recursive types and
(2) we enable automatic discovery of CROFs. Their work was carried out independently
of ours; the technical approaches have some basic ideas in common. In particular, most of
our nine rules for satisfaction-closure seems to have counterparts in Tang and Hofmann'’s

approach.

Our type system does not contain a bottom type, that is, a least type. Adding a bottom
type would make the set of types form a lattice, rather than a semilattice, and it would
make more programs type check [WOP95]. Type inference with bottom types have been
investigated for various type systems [PWO97, PO95, PS96, BPGO02], and in each case type
inference can be done in cubic time in the size of the program. Thus, we can expect type

inference for our type system extended with a bottom type do be in cubic time. However,

77

bottom types seem not to be popular. Java does have a top type, that is, a greatest type,
called Object, but it does not have a bottom type. Above, we discussed a range of previous
work [AC96a, Gle00, PS93, IV02, IKOO, THO1, THO2] in which notions of covariant fields
were added to type systems in order to type check more programs, andnesif those
papers have a bottom type in their type systems. Pierce [Pie02] discusses ways in which
adding a bottom type to a type system complicates matters considerably, particularly in
systems with bounded quantification. Based on these observations, we feel that even though
adding a bottom type simplifies type inference, it is well justified to study a type system
without a bottom type,
3.1.4 Examples

We now present two examples that give a taste of the definitions and techniques that
are used later in the chapter. We invite the reader to revisit the examples after reading the
technical part of the chapter. In the first example we return to the program with Man and
Batman. We use the program to illustrate the reduction of the type inference problem to
a constraint problem. In the abstract syntax of an Abadi-Cardelli object calculus, we can

write the program as follows:

Man = [id = ¢(x)x]
Batman = [id = ¢(y)y, secretid= ¢(z)z]
Phone = [dial = ¢(d)Man|
Batphone = Phonedial < ¢(e)Batmanid.secretid

Main = Batphonedial.id

We can use the rules in Section 3.4.1 to generate constraints in Figure 3.1. In the left column
are all occurrences of subterms in the program; in the right column are the constraints
generated for each occurrence. We dse B to denote the pair of constraintd, B) and
(B, A).

The constraint set in Figure 3.1 is solvable and a solution can be found by running our
constraint solving algorithm. The solution that will be generated was displayed earlier in

this section; it corresponds to the following type derivation. Define the typésand the

78

Occurrence Constraints

x (Uy, Vi)
Man ([id° : V,], Visan)
U, = [id”: V]
y Uy, V)
z (U, V2)

Batman ([id? : V,, secretid : V., Vaatman)
U, = [id° : V,, secretid : V]
U, = [id’ : V,, secretid : V]
Phone ([dial’ : Visan], Vehone)
Uy = [dial : Vazen]
Batphone (Vpnone, VBatphone)
Vehone = Ue

VPhoney [dlal VBatman id. secretidD

Batman.id VBatmmu [VBatman ’Ld])

(
(
Batman.id.secretid (Vs atman.ia; [SECrEtid : Viatman.id.seceretid])
Batphone.dial (Vaatphone [dial" : Viaphone.diall)
(

Batphone-dial-id VBatphone dial s [d : VBatphone.dial.id])

Figure 3.1. Constraints for the example program

79

environmentsy, F

= [id": []]
[id® : [secretid : P], secretid : P]

= ([d: [dial : P]]

Ny O v
I

= Qe [dial : P]].

We can derivé) - Batphone.dial.id [] as follows, using the type rules to be presented in
Section 3. The number to the right of each horizontal line indicates which type rule was
used.

E[x:[ido:[]]]l—x:[idoz[]](
Elr: [id: []]]Fz:[] (3:5)

(3.2
E+Man: [id: []] ‘)@m
EFMan: P - (3.2) (3.3)
¢ - Phone: [dial’ : P] *% F I Batman.id.secretid P~ (3.4)
a0 . \<
¢ - Batphone [dial’ : P]{3_3>

0 - Batphone.dial P """,

(- Batphone.dial.id [] (3:3)
Also,
Fly:QlFy:@Q (3.5) Flz: Q- Q,35)
Fly: Q]+ y : [secretid : P]*" Flz:Q|Fz: P~ (3.9
F I Batman: (3.5) (3.2)
F F Batman: [id™ : [secretid : Pl 3)\ '
F + Batman.id: [secretid : P] " (3.3)
F + Batman.id.secretid P e
Notice the five uses of subsumption:
[id”: []] < []
id:[]] < P
Q < [secretid : P]
Q <P
Q < [id": [secretid : P]].

80

Satisfaction-closure aR (excerpt) Lower-bound relation (excerpt)
U e m - [(ler[e-wi , fer et fm*: []]])
U, e e-wi) ([e=w] e m*:[])])

Figure 3.2. The satisfaction-closure (excerpt) of two constraints

Our second example illustrates our algorithm for solving constraints, particularly the role

of the closure operation. Lét consist of the following two constraints:
(O, [e7 [0 [m™ = []]]])
(O, [= [0 - W),

whereU, W are type variables andm are labels of fields. The satisfaction-closure/of
and the accompanying lower-bound relation are shown in Figure 3.2 Apal?) is in the
lower-bound relation when it has been deduced thahd B must have a lower bound in
the subtype ordering.

Let us now explain how the rules for satisfaction-closure (Definition 3.5.1) generate
the constraints in the table above. Since b@th[¢* : [¢° : W]]) and (U, [¢* : [¢T :
[m™ : []]]]) are in the sat-closure dt, we have from Lemma 3.5.3, Propeii@), that
([eF : [0 - W), [er : [¢F - [m™ : []]]) is in the lower bound relation, and hence, from
sat-closure rule (vii), we have that algg® : W}, [¢* : [m* : []]]) is in the lower-bound
relation. Finally, sincg[¢° : W], [¢* : [m™ : []]]) is in the lower-bound relation, we
have from sat-closure rule (viii) thatV, [m™ : []]) is in the sat-closure oR. Given
the sat-closure oR, call it R’, our algorithm checks for satisfaction-inconsistency, that is,
subtyping constraints that obviously are unsatisfiable. In this case, the satisfaction-closure

is satisfaction-consistent, and our algorithm then constructs the following sokjion
Sp(U) = [F [0 [m" - []]]
Sp(W) = [m*:[]].

81

One might try to devise a constraint solving algorithm that would be an alternative to ours.
The constraint seR is a good benchmark: it seems nontrivial to derfVe, [m™ : []])

without the help of a lower-bound relation.

Paper overview In Section 3.2, we define types and subtyping, and we give a decision
procedure for subtyping. In Section 3.3 we present an extension of an Abadi-Cardelli object
calculus, and in Section 3.4 we show that the type inference problem for that calculus is
equivalent to a constraint problem. In Section 3.5 we giveDan®)-time algorithm for

solving constraints, and in Section 3.6 we show that the constraint problem is P-hard.

3.2 Types and subtyping

We will work with recursive types, and we choose to represent them by possibly infinite
trees.
3.2.1 Defining types as infinite trees

We useU, V to range over the sé&tfV of type variables; we usk, ¢, m to range over
labels drawn from some possibly infinite $abels of method names; and we uséo range
over the seVariances = {0, +} of variance annotations. Variance annotations are ordered
by the partial ordeE- such that) C +, 0 C 0, and+ C +.

The alphabekE of our trees is defined
¥ =TV U{o C Labels x Variances | (¢,v), ((,v") € 0 = v =1"}.

A pathis a finite sequence € Labels™ of labels, with juxtaposition for concatenation of
paths, and for the empty sequence. #peor tree A is a partial function from paths into

Y., whose domain is nonempty and prefix closed, and such(that € A(a) for some

v € Variances if and only if A(af) is defined. We usel, B, C to range over the sét ()

of trees. Notice that types can contain type variables as leaves. We could simplify the
development by restricting ourselves to ground types. For example, the notions of subtype-
consistency and satisfaction-consistency would then coincide. However, we feel that it is
important to show how to handle type variables and therefore we do that in detail.

Note that trees need not be finitely branching or regular. Of course, we will be partic-

82

ularly interested in two subsets @f(X), the finite trees/;, (X) and the finitely branching
and regular tree$..(X). Some definitions, results, and proofs are given in termg(af),
in such a way that they immediately apply Ig,(X) and 7., (X). In particular, we will
state conditions on whether one tree is a subtype of another that resulaigaithmin
case both trees are i, (X) or T (X).

An example tree is given below, representing the nonregular type
[(0F U 00 [0 - Ug 07 2 [0 - Us, [0 2.)]

&%—), (¢, +)}\e

‘ {(627 _'_)7 (6, _'_)} ’
/2 \
Uz

‘s {(E?n +)> (6%

We now introduce some convenient notation. We w#iter) = 7 if A is undefined on

U

Us

a. Ifforall i € I, B; is atree/; is a distinct label, and; € Variances, then[(}* : B,]

is the treed such that
{(&,UJIZEI} if a=¢
Ala) = ¢ By(d) if « = {;0/ for somei € 1

) otherwise.

We abuse notation and writé for the treeA such thatA(e) is the type variablé/ and
A(a) = 1 forall o # e.
3.2.2 Defining subtyping via simulations

Definition 3.2.1. A relation R over7 () is called asimulationif, whenever(A, A") € R,

we have the following conditions.
e ForallU,A=Uifandonlyif A" =U.

e Forall(, o', B',if A/ =[¢*" : B',..], thenthere exist, B suchthatd = [¢* : B,..],

v C 2/, and

83

» (B,B') € R, and
» v’ =0 implies(B’, B) € R.
O

For example, the empty relation ah(X) and the identity relation off (X) are both
simulations. Simulations are closed under unions and intersections, and there is a largest

simulation, which we calK:
< =|J{R | Ris asimulation.

Alternately,< can be seen as the maximal fixed point of a monotone functign(@n %) x

7 (X)). Then we immediately have the following result.
Lemma 3.2.2. A < A’ if and only if
e ForallU,A=UifandonlyifA’ =U.
e Forall¢,o/, B',if A" = [¢" : B,..], thenthere exist, Bsuchthatd = [¢* : B, ..],
v C o/, and
= B< B/, and
= v/ = 0impliesB’ < B.
All of these results are standard in concurrency theory, and have easy proofs, cf. [Mil90].
Similarly, it is easy to show that is a preorder. Our simulations differ from the simula-

tions typically found in concurrency in that they are all anti-symmetric (again, the proof is

easy).

Lemma 3.2.3.< is a partial order.
Proof. See Appendix A.3. O

We may apply the principle ofo-inductionto prove that one type is a subtype of

another:

Co-induction: To showA < B, itis sufficient to find a simulatiok such that
(A, B) € R.

84

3.2.3 An algorithm for subtyping

The co-induction principle results in an easy algorithm for subtyping@i>) and
Ties(X). SupposeR is a relation on types, and we want to know whetHex B for every
(A, B) € R. By co-induction this is equivalent to the existence of a simulation containing
R. And since simulations are closed under intersection, this is equivalent to the existence
of a smallestsimulation containing?. We can characterize this smallest simulation as

follows.

Definition 3.2.4. We say a relatior on types issubtype-closed it satisfies the following

two properties.
e If ([(v:B,..],[t":B,...]) € Randv C ¢/, then(B, B') € R.
o If ((°:B,..],[(°: B',...]) € R, then(B', B) € R.
O

Note that the subtype-closed relations on types are closed under intersection; therefore
for any relationR on types, we may define isgibtype-closuréo be the smallest subtype-
closed relation containing. Every simulation is subtype-closed, and subtype-closure is a

monotone operation.

Definition 3.2.5. We say a relatiorz on types issubtype-inconsistemtany of the follow-

ing cases hold.
e (UA)e Ror(A,U) € R for some distinc/ and A.
e ([(t:B,..],[°: B,...]) € Rforsomel, B, B'.

o ([¢(y : B, *“',[¢* : B,...]) € R for somel, v, B, and{;, v;, B; for i € I; and
furthermore? # ¢; forall i € 1.

We sayR is subtype-consisternif R is not subtype-inconsistent. a

Note that every simulation is subtype-consistent, and moreover, any subset of a subtype-

consistent set is subtype-consistent.

85

Lemma 3.2.6.Let R be a relation on types. The following statements are equivalent.
i) A< Bforevery(A,B) € R.
i) The subtype-closure @t is a simulation.

lii) The subtype-closure @t is subtype-consistent.

Proof.

e (ii) = (i): Suppose(A, B) € R and letR’' be the subtype-closure @t. We have

(A, B) € R C R andthatR’ is a simulation, so by co-induction we have that B.

e (i) = (iii): R is a subset oK, so by monotonicity and the fact that is subtype-
closed, the subtype-closure Bfis a subset o&. Then since< is subtype-consistent,

its subset, the subtype-closure®fis subtype-consistent.
e (iii) = (ii): Let R’ be the subtype-closure &f, and supposéA, A') € R'.
If A= U, by subtype-consistency = U; and similarly, if A’ = U, thenA = U.

If A = [¢*" : B',..], by subtype-consistency must be of the form¢” : B, ..],
wherev C v'. Fromv C v" and R’ being subtype-closed, we havB, B') € R'. If
v = 0, then fromv C " we havev = 0, so fromR’ being subtype-closed, we have

(B',B) € R.

O

This immediately suggests an algorithm for testing whethet B for A, B € T, (X):
construct the subtype-closure oA, B)} and test whether it is subtype-consistenta I§
the number of distinct subtrees dfand B, then the subtype-closure §fA, B)} is of size
at most the maximum number of pairs of subtrees frérand B, that is,n?, and can be

constructed im? time. Consistency checking is linear, so the algorithm runs in éé).
Theorem 3.2.7.Subtyping or¥,., (%) is decidable inDO(n?) time.

In the remainder of the chapter, we only consider type&dnY).

86

3.3 An Abadi-Cardelli Object Calculus

We now present an extension of an Abadi-Cardelli object calculus [AC96a] and a static
type system.
We usez, y to range over term variables. Expressions are defined by the following

grammar.

a,bc = variable
| [67 = ()b, €%"] object ¢; distinct)
| al field selection / method invocation

| (a.l < <(x)b) field update / method update

An object[(} = ¢(z;)b; ‘"] has method names and methods(z;)b;. The order of the
methods does not matter. Each metkd)b binds a name: which denotes the smallest
enclosing object, much like “this” in Java. Those names can be chosen to be different,
so within a nesting of objects, one can refer to any enclosing object. Each method name
¢; is annotated with a variance annotatione {0,+} which in the case of 0 indicates

that the method is both readable/invocable and writable/updateable, while it in the case of
+ indicates that the method is only readable/invocable. As syntactic sugar, we will allow
variance annotations to be omitted, and in such cases the default is 0. With this default, our
calculus is an extension of an Abadi-Cardelli calculus [AC96a]: a term in an Abadi-Cardelli
calculus is also a term in our calculus, namely one where all variance annotations implicitly
are 0. Avalueis of the form[¢}* = ¢(z;)b; “'-"]. A programis a closed expression.

A confluent, small-step operational semantics is defined by the following rules:

o If a=[0] =q(x;)b;

(2

«€l-n] then, forj € 1..n,

» a.l; ~ bjlz; = al, and

w if v; =0, then(a.l; <= <(y)b) ~ all; — s(y)b].
o If b~ ¥/, thena[b] ~ ab'].

Here,b;[z; := a] denotes the expressidn with a substituted for free occurrences of

(renaming bound variables to avoid capture); af@j — <(y)b] denotes the expression

87

a with the ¢; field replaced by (y)b, preserving the variance annotation.céntextis an
expression with one hole, andb] denotes the term formed by replacing the hole of the
contexta[-] by the termb (possibly capturing free variables o

An expressiom is stuckif it is not a value and there is no expressivsuch thab ~ b'.
An expressior goes wrongf 3b : b ~* 1’ and¥' is stuck.

A type environment is a partial function with finite domain which maps term variables
to types inZ,.,(X). We useF to range over type environments. We usg : A] to denote
a partial function which mapsto A, and mapg, wherey # z, to E(y).

The typing rules below allow us to derive judgments of the fdf a : A, whereFE is

a type environment is an expression, and is a type inZ,., ().

EFxz:A (providedE(x) = A) (3.1)

ngﬁ :[Z;"] Z ?(xfgz :ff] 1An (Whered = [¢; : B, "€"]) (3.2)
M (whereA < [¢* : B)) (3.3)

b P;F‘;l gji[i:(;)X]bfj: B wherea < [: B)) (3.4)
M (whereA < B) (3.5)

The first four rules express the typing of each of the four constructs in the object calculus
and the last rule is the rule of subsumption. We say that a progranwell-typedif

) F a : Ais derivable for somel. The following result can be proved by a well-known
technique [Nie89, WF94].

Theorem 3.3.1. (Type Soundnesd)ell-typed programs cannot go wrong.

The type inference problem for our extension of an Abadi-Cardelli calculus is: given a
terma, find a type environment and a typeA such thatF' - a : A, or decide that this is

impossible.

88

3.4 Type Inference is equivalent to Constraint Solving

A substitutionS' is a finite partial function from type variables to typesdp,(X),
written {U; := Ay,...,U, = A,}. The set{U;,...,U,} is called thedomainof the
substitution. We identify substitutions with their graphs, and widteU S,) for the union
of two substitutionsS; andSs; by convention, we assume th&atand.S, agree on variables
in their common domain, s@5; U S) is a substitution. Substitutions are extended to total
functions from types to types in the usual way.

Arelation R over7,.,(X) is solvable if and only if there is a substitutidisuch that for
all (A, B) € R, we haveS(A) < S(B). In the remainder of the chapter, we us¢o range
over finite relations or?,.,(X). We will refer to each'A, B) € R as a constraint, and to
R as a set of constraints. For a finite relatiBron 7., (X), the size ofR is the sum of the
sizes of occurrences of types it The size of a typel is the number of distinct subtrees
of A.

We now prove that the type inference problem is logspace-equivalent to solving con-

straints.

3.4.1 From Type Inference to Constraint Solving

We first prove that the type inference problem is logspace-reducible to solving con-
straints.

We write £/ < F if, wheneverE(z) = A, there is and’ < A such thatt’(z) = A'.
Notice that the definition o’ < E allows E’ to have a larger domain thd. The

following standard result can be proved by induction on typings.
Lemma 3.4.1 (Weakening).lf E+c¢: CandE’ < E,thenE' Fc: C.

By a simple induction on typing derivations, we obtain the following syntax-directed

characterization of typings. The proof uses only the reflexivity and transitivity. of

Lemma 3.4.2 (Characterization of Typings).E I ¢ : C'if and only if one of the following

cases holds:

e c=zandFE(zx) < C;

89

e c=al,andforsomed, Eta: A, A< [(T:C);

o c= [l = ¢(x;)b; *€*"], and for somed, and someB;, fori € 1..n, Elx; : A] - b; :

B;,andA = [(; : B;"€t"] < C; or

e ¢ = (al < ¢(x)b), and for somed and B, E + a : A, E[x : Al - b : B,
A<[°:B],andA < C.

Definition 3.4.3. Let ¢ be an expression in which all free and bound variables are pairwise
distinct. We defineX,, Y., E., andC(c) as follows.

e X_. is a set of fresh type variables. It contains a type varidbldor every term

variabler appearing irc.

e Y_is asetof fresh type variables. It contains a type vari&pléor each occurrence of
a subterm’ of c. (If ¢ occurs more than once inthenV,, is ambiguous. However,

it will always be clear from context which occurrence is meant.)
e F.is atype environment, defined by
E.={z:U, | zisfreeinc}.
e C(c) is the set of the following constraints ov&r. andY.:
= For each occurrence inof a variabler, the constraint
(Us, V). (3.6)
» For each occurrence inof a subterm of the form./, the constraint
(Ve [Vadl) 3.7)

= For each occurrence inof a subterm of the formi¢}" = ¢(z;)b, ““*-"], the
constraint
(67 Vi M7 Vi o, ierm) (3.8)

and for eacly € 1..n, the constraints

Uy, = [0 : Vy, <0, (3.9)

90

= For each occurrence inof a subterm of the fornfu./ < ¢(x)b), the constraints

(Va, Viates(@pp)) (3.10)
V,=U, (3.11)
(Va, [VA)). (3.12)
O

In the definition ofC(c), each equalityA = B denotes the two constraintd, B) and
(B, A).

Our definition of constraint generation is “global.” One can also specify constraint
generation in a local way, using inference rules and using existential quantifiers to represent
local (“fresh”) types variables, see, e.g., [SMZ99]. However, for the type system in this

chapter, there is no serious disadvantage to using the global approach.

Theorem 3.4.4.E + ¢ : C if and only if there is a solutioy of C(c) such thatS(V,) = C
andS(E,) C E.

Each direction of the theorem can be proved separately. However, the proofs share a
common structure, so for brevity we will prove them together. The two directions follow

immediately from the two parts of the next lemma.
Lemma 3.4.5.Letcy be an expression. For every subtetrof ¢,

i) if B c: C,then thereis a solutiof. of C(c) such thatS.(V.) = C and S.(E,) C
E;and

i) if Sis a solution oC(cy), thenS(E.) - c: S(V.).

Proof. The proof is by induction on the structure®fin (ii), we will often use the fact

that any solution t@(c,) (in particular,S) is a solution taC(c) C C(co).

o If c =z, thenE, = {z : U,} andC(c) = {(U,, V,)}.

91

i) Define S, = {U, := E(x),V, := C}. ThenS.(V.) = S.(V,) = C, and
S.(E.)={z:E(x)} CE.
Furthermore, by Lemma 3.4.Z,(z) < C, soS. is a solution taC(c).

i) By (3.1), S(E.) b c: S(U,).
And sinceS(U,) < S(V,) = S(V,), we haveS(E,) F ¢ : S(V.) by (3.5).

o If ¢ = a.l, thenE, = E, andC(c) = Cla) U {(Va, [(* : V).

i) By Lemma 3.4.2, forsomd, Eta: A, A< [(T:C].

By induction there is a solutiofi, of C(a) such thatS,(V,) = A andS,(E,) C
E.

DefineS. = S, U {V,, := C}. ThenS, solvesC(c), S.(V.) = S.(Va,r) = C,
andS.(E.) = S,(E,) C E.

ii) By induction, S(E,) Fa: S(V,).
SinceS(V,) < S([¢* : V,4]), by (3.5) we haveS(E,) Fa : S([(T : V,4]).
Then by (3.3)S(E,) F a.l: S(V,,).
SinceS(V,¢) = S(V.), we haveS(E,) - a.l : S(V,).
Finally, £. = E, andc = a./, SOS(E.) - ¢ : S(V.) as desired.

o If c = [0} = ¢(x;)b; "], thenE, = U,cy n(Ep, \z:), and

Cle) = { ({6 : Vb, """ Vo) }
U{ Uy, =[6: Vo, " | j€ln}
U (Uier..n C(b2)).
i) By Lemma 3.4.2, for somel, and someB, for i € 1..n, we haveE|z; : A] -

b : BiandA = [¢}' : B, "] < C.
By induction, for everyi € 1..n there is a substitutiof§;,, such thatsS,, solves
C(b;), Sy, (Vy,) = By, andS,, (Ey,) C Elz; : Al.
LetS. = (Uic1.n Sp,) U{V.:=C}U{U,, := A|i€ l.n}.

92

Clearly, if S. is well-defined, then it is a solution t©(c), S.(V.) = C, and
Se(Ee) € E.

To show thatS. is well-defined, we first assume that the domain of &pyis
Xy, UY,, (else restricts,, to this set).

Then it suffices to show that for any distinctk € 1..n, the substitutions,
andsS,, agree on all type variables in their common domain. And i6 in the
domain of bothS, andsS,,, it must have the fornd/, for some term variable

free in bothb; andby.
Theny must be assigned a type Wy, so the conditionsS; (E;,) C Elx; :
A] and Sy, (Ey,) € Elzy : A] guarantee thaby, (U,) = E(y) = Sy, (U,).
ThereforesS, is well-defined, as desired.
i) By induction, S(Ey,;) = b; : S(V,) forall j € 1..n.
By weakeningS(E, U {z; : Uy, }) - b; : S(V,) forall j € 1..n.
SinceS solvesC(c), S(U,,) = S([¢;" : V;, *""]) forall j € 1..n.
Thenby (3.2),S(E.) Fc: S([6) : Vi, “€47)).
Finally S([¢% : V,, ")) < S(V,), so we haves(E,) - ¢ : S(V,) by (3.5).

7

o If ¢ = (a.l < ¢(2)b), thenE, = E, U (E,\x), and
Cc) = C(a) UC(b) U{(Va, Vo), Va = Uy, (Va, [0 Vi) }.

i) ByLemma3.4.2,forsomd andB, Eta: A, Elx: AJFb: B,A<[{’: B,
andA < C.

By induction there is a solutiofi, of C(a) such thatS,(V,) = AandS,(E,) C
E, and a solutiorp, of C(b) such thatS,(V,) = B andSy(E;) C Elx : A].

LetS. = S, US, U{V. := C,U, := A}. (We omit a proof thafS.. is well-

defined; this can be shown just as in the previous case.)
ThenS, is a solution tcC(c), S.(V.) = C, andS.(E.) C E.

ii) By inductionS(E,) Fa: S(V,) andS(E,) Fb: S(V4).

93

By weakeningS(E,) Fa: S(V,) andS(E [z : U,]) F b : S(Vj).
Then by (3.4)S(E.) +c: S(V,),and by (3.5)S(E.) F c¢: S(V,).

3.4.2 From Constraint Solving to Type Inference

The following result is proved by a method similar to the one used by Palsberg [Pal95]
and Palsberg and Jim [PJ97].

Lemma 3.4.6. Solvability of constraints is logspace-reducible to the type inference prob-

lem.

Proof. It is straightforward to show that any constraint set o¥gg(X) can be sim-
plified, in a solution-preserving way, such that each constraint is of the foriril”’)
wherelW and W’ are of the forms/ or [¢;* : V, ““*"], wherev; € {0,+}, and where
V,Vi,...,V, are variables. The advantage of this simplification is that object types are not

nested syntactically. Le® be such a simplified constraint set. Define

a= [& = s(z)(z.ty)
for each variablé/ in R
@ = @)= sy wly) €
for eachQ in R of the form[¢}" : V, *€1-7]
mge, = @) (zly, < <) (@.Lg.4;))-Lo)

for eachQ in R of the form[¢}" : V, i€1-"]
and for eacly € 1..n

koo = s@)((2.lo) Ly <= <(y)(a.by))
for eachQ in R of the form[¢}" : V, i€1-"]
and for eacly € 1..n withv; =0

Gy = s@)((@Llw: <= <(y)(z.bw)).bw)
for each constraintiV, W’) € R

]

Notice thata® can be generated in log space.

94

We first prove that if? is solvable them® is typable. SupposB has solutiorS. Define
A= [&, : S(V) for each variablé” in R

0 :S(Q) for eachQ in R of the form[¢}" : V, "€1-7]

me,. S(Q) foreachQ in R of the form[¢;* : V; *<17]
and foreacly € 1..n

ko, :S(Q) foreachQ in R of the form[¢} - V, *€1-7]
and for eacly € 1..n withv; =0

Cwwn = S(W) for each constraintiV, W’) € R

]

It is straightforward to show thdkl- o : A is derivable.

We now prove that it is typable, thenR is solvable. Suppose” is typable. From
Theorem 3.4.4 we get a solutichof C(a').

Notice that each method if* binds a variabler. Each of these variables corresponds
to a distinct type variable i (a”). SincesS is a solution ofC(a’), andC(a®) contains
constraints of the forni/, = |...] for each method im” (from rule (3.9)), all those type
variables are mapped I#/to the same type. Thus, we can think of all the bound variables
of methods of:* as being related to the same type variable, which we will writ€,as

Notice also that most methodsdff bind a variable,. None of these variables are used
in o', and each of them corresponds to a distinct type varialf¢dfi). They will not play
any role in the rest of the proof. Fer= [¢" : B, .. .], we defined | ¢/ = B.

Define
Sr(V) = S(U,) |ty foreach variablé/ in R.
The definition is justified by Property 1 below.
e Property 1 If V' is a variable inR, thenS(U,) | ¢y is defined.

e Property 2 For each) in R of the form[¢* : V, “<'-"], we haveS(U,) | g = [¢}" :
(S(Uz) Lbv,) "<t

We will proceed by first showing the two properties and then showingRHas solution
Sk.

95

To see Property 1, notice that in the body of the methodve have the expression

x.ly. SinceS is a solution ofC(a’?), we have from the rules (3.6) and (3.7) titasatisfies
(Uxa ‘/;U) and(‘/ra w; : ‘/;c.fv])v

SO
SU) Lty < S(Vasy) (3.13)

We conclude that sinc&(V,.,,,) is defined, als&(U.,) | ¢y is defined.

To see Property 2, lgD be an occurrence iR of the form[¢]* : V, “*-"]. For each
J € 1..n, in the body of the methoth, ,,, we have the expressian.ly, < ¢(y)(x.lg.{;)
where we, for clarity, have written the first occurrencerasz’. SincesS is a solution of

C(a™), we have from the rules (3.6), (3.7), and (3.12), thatatisfies

(U, . Va) and (Vi , (6 : Visge)) (3.14)
Uz, Vi) and (Vi . [0 Vigy)) (3.15)
Veig » 0 Vi) (3.16)
Thus,
SU)llg < S(Viuy) from (3.15)
< 5 S(Vauga,)] from (3.16)
= [(S(Us) L 0y,)] from (3.14)
Therefore,

SWUz) Lo lt; < S(U:) 1Ly, (3.17)
In the body of the method, we have the expressidff’ = ¢(y)(z.0y,) *“*"]. SinceS

is a solution o’ (a'?), we have from the rules (3.8) and (3.9) tisasatisfies

(1 Ve, 47 Viei—ety)(@oty,) i€rm]) (3.18)

Ux = [.. e% . ‘/[gz’izg(y)(x_evi) i€14.n] ..] (3.19)

Vi

Thus, from (3.18) and (3.19) we have
[+ S (Vew,) "] < S(Vigiceyoatny) serm) = S(U2) L, (3.20)

SO

96

IN

S(V;;,gvj) from (3.13)
< S(U;)llgle; from (3.20).

From that and (3.17) we conclude:
SU) LegLt; = S(UL) Loy, (3.21)

For eachj € 1..n with v; = 0, in the body of the methokl, ,,, we have the expression
((2'.Lg).t; <= s(y)(z.Ly;)) where we, for clarity, have written the first occurrencerafs
2’. SinceS is a solution ofC(a”), we have from the rules (3.6), (3.7), and (3.12) that

satisfies
U Vi) and (Vi , [0 Vi) (3.22)
(Vireg 105 : Vi) (3.23)
Thus,
SW) g < S(Vasy) from (3.22)

J

< [9:5(Vaw,,)) from (3.23)

From that and (3.20) we have that

e for eachj € 1..n with v; = 0, the variance annotation of tiiefield of S(U,) | (g is
0, and

e for eachj € 1..n with v; = +, the variance annotation of tife field of S(U,) | {q

is +.

Therefore, by (3.21), we have thatU,) | (g = [6;" : (S(U,) [by;,) €], thatis, Property
2.

We can summarize Property 1 and 2 as follows.

e Property 3 If W is a left-hand side or a right-hand side of a constrainkjrthen
S(U,) | bw is defined andbr(W) = S(U,) | by .

97

We will now show thatR has solutionS.

Consider a constraint/V, W’) in R. The body of the methody,+) contains the
expression’ .y < s(y)(x.ly) where we, for clarity, have written the first occurrence of
x asx’. SinceS is a solution o’ (a*), we have from the rules (3.6), (3.12), (3.6) and (3.7)

that .S satisfies

U: » Vi) and (Vo [Gy: Vi) (3.24)

(U, , Vi) and (V. , [0 : Vi) (3.25)
We conclude

Sp(W) = S(U,) |ty from Property 3

IN

SVt) from (3.25)
= S(U,) |ty from (3.24)
= Sgr(W’) from Property 3

3.5 Solving Constraints

In this section we present an algorithm for deciding whether a rel&tisrsolvable. We
first define the notions of satisfaction-closure (Section 3.5.1) and satisfaction-consistency
(Section 3.5.2), and then we prove that a relafidis solvable if and only its satisfaction-

closure is satisfaction-consistent (Theorem 3.5.12).
3.5.1 Satisfaction-closure

Definition 3.5.1. If R is a relation on types, we sdy is satisfaction-closedabbreviated

sat-closed) if there exists relatidnon types such that
i) if (4, B) € R, then(A, A), (B, B) € R.
i) if (A4,B),(B,C) € R,then(A,C) € R;
i) if (A,B) € R,then(A,B) € L;

iv) if (A,B) € L,then(B, A) € L;

98
V) if (A, B) € L,and(B,C) € R, then(A,C) € L;
vi) if ([¢+:B,..],[¢*:B,..]) € R, then(B, B') € R;
vii) if ([¢*:B,..,[(*: B,..]) € L, then(B, B') € L;
vii) if ([(°: B,..],[¢*: B',..]) € L, then(B, B') € R;
i) if ((°:B,..],[(°: B',..]) € L,then(B, B') € R.
O

Notice that for a given relatioR, we can construct a sat-closed relati®tthat includes
R, by letting R’ consist of all pairs of subtrees of types that occuRin

Notice also that the intersection of a family of sat-closed relations is itself sat-closed.
From that we have that for a given relatiéh) there is the smallest sat-closed relation that
includesR; we call that sat-closed relation teat-closureof R.

Notice also that for a given sat-closed relati@nthere is the smallest relatidn such
that the sat-closure rules fét and L are satisfied; we call the lower-bound relation for
R.

For a relationR, notice that the sat-closure &f and the lower bound relation for the
sat-closure ofR are the pairwisg=-smallest pair(k', L) that contains(R, ()) such that
R’ is sat-closed. We can compul and L by a straightforward fixed-point computation
that uses the sat-closure rules to monotonically add elements to the two relations. We
can analyze the complexity of the fixed-computation using a technique and a theorem of
McAllester [McAQ02], as follows. McAllester [McAO02, Section 10] presents a technique for
encoding record types, such as the ones we use here, without using elipses. The encoding
entails a slight reformulation of the rules for sat-closure; however, the transitivity rule for
(sat-closure rule (ii)) remains the key source of complexity. We can then apply a theorem
of McAllester [McAO2, Theorem 1] to get that the fixed-point computation takés®)
time wheren is the size ofR.

Define that R, L) is solvable iff there exists a mappirtgsuch that

99

o if (A, B) € R,thenS(A) < S(B), and
e if (A, B) € L, then there exists a tygé, such thatC < S(A) andC < S(B).

Lemma 3.5.2. A relation and its sat-closure have the same set of solutions.

Proof. Since the sat-closure of a relatidhcontainsR, it follows that any solution of
the sat-closure oR is also a solution of?.

To prove the converse, we will prove the following more general property:

Any solution of R is also a solution of the pairwise-smallest painR’, L)

that containg R, () such that®’ is sat-closed.

We proceed by induction on the fixed-point computation Bf, L) from (R,). Each
iteration begins with a paifR,, L), and at the end of an iteration step, some pairs may
have been added #®, andL;. We need to show that after each iteration, any solutioR of
is also a solution of the resulting pair of relations.

In the base case, we have that any solutiok @& also a solution of R, 0).

In the induction step, Suppo$8&;, L) has a solutiory. For each of the nine sat-closure

rules, we need to show that the rules will only add pair&i@nd L, that have solutiorb

e Assume rule (i) has been used. The relations reflexive, soS(A) < S(A) and

S(B) < S(B), soS is still a solution.

e Assume rule (i) has been used. From the induction hypothesis, wed{alje <
S(B) andS(B) < S(C). The relation< is transitive, sa5(A) < S(C), soS is still

a solution.

e Assume rule (iii) has been used. From the induction hypothesis, we${ale <
S(B), so a commork-lower bound forS(A) and S(B) is S(A), so S is still a

solution.

e Assume rule (iv) has been used. From the induction hypothesis, we havg that
and S(B) have a commor<-lower bound, so5(B) and S(A) have a commor<-

lower bound, sa& is still a solution.

100

e Assume rule (v) has been used. From the induction hypothesis, we havg(that
andS(B) have a commor<-lower boundD, and thatS(B) < S(C'). The relation
< is transitive, saD < C, and henceD is a commor<-lower bound forS(A) and

S(C); soS is still a solution.

e Assume rule (vi) has been used. From the induction hypothesis, we haJétthat
S(B),...] < [¢*t:S(B')]. From Lemma 3.2.2 we hav&(B) < S(B’), soS is still

a solution.

e Assume rule (vii) has been used. From the induction hypothesis, we hajéfthat
S(B),...]and[(* : S(B")] have a commor-lower boundD. From Lemma 3.2.2
we have thatD = [V : A] whereA < S(B) andA < S(B’), soA is a common

<-lower bound forS(B) andS(C); so S is still a solution.

e Assume rule (viii) has been used. From the induction hypothesis, we haé’that
S(B),...]and[(* : S(B')] have a commor<-lower boundD. From Lemma 3.2.2
we have thaD = [¢(° : A]whereA = S(B)andA < S(B’),s0S(B) = A< S(B);

so S is still a solution.

e Assume rule (ix) has been used. From the induction hypothesis, we haé’that
S(B),...] and[(° : S(B’)] have a commor<-lower boundD. From Lemma 3.2.2
we have thaD = [(° : A whereA = S(B) andA = S(B’),s0S(B) = A= S(B'),
and thereforeS(B) < S(B'); so S is still a solution.

O

A sat-closed relation has the five properties that are expressed in the following lemma.
Lemma 3.5.3. Supposer is sat-closed, and let be the lower-bound relation fak.
(A)If([¢*: B,...],[¢" : B',..]) € L, then(B,B’) € L.
B)If (A, A") € Land(A, Ay), (A, As) € R, thenthen A, As) € L.

(C) If (A, Ay), (A, As) € R, then(A,, 4,) € L.

101

D)If ([¢v: B,...],[¢" : B,...]) € Randv C ¢/, then(B, B') € R.
(E)If([(°: B,..],[(°: B,..]) € R, then(B', B) € R.

Proof. For Property(A) there are four cases. #f= +,v' = +, then from sat-closure
rule (vii) we have(B,B’) € L. If v = 0,v" = +, orv = 0,7 = 0, then from sat-
closure rules (viii) or (ix), we havéB, B’') € R, and then from sat-closure rule (iii) we
have (B, B’) € L. Finally, if v = +,v" = 0, then from sat-closure rule (iv) we have
([¢"" : B',..],[t" : B,...]) € L, so from sat-closure rule (viii) we ha\é’, B) € R, so
from sat-closure rule (iii) we have3’, B) € L, and hence from sat-closure rule (iv) we
have(B, B') € L. So, in all case$B, B') € L.

For Property(B), notice that from sat-closure rule (W4, A’) € L, and(A’, A;) € R,
we have(A, A;) € L. From sat-closure rule (iv) ani, A;) € L, we have(Ay, A) € L.
From sat-closure rule (V] Az, A) € L, and(A, A;) € R, we have(A,, A;) € L, so from
sat-closure rule (iv) we haved;, As) € L.

For Property(C), notice that from sat-closure rule (i) afd, A;) € Rwe havg A, A) €
R, so from sat-closure rule (iii) we hayel, A) € L. From PropertyB), (A4, A) € L, and
(A, A1), (A, A2) € Rwe conclude thatA;, As) € L.

For Property(D) there are three cases.lf= +, v = +, then from sat-closure rule (vi)
we have(B,B’) € R. If v = 0,v' = 4, orv = 0,v" = 0, then from sat-closure rule (iv)
and([(* : B,..,[¢*" : B',..]) € R, we have([¢* : B,...],[¢" : B',..]) € L, so from

sat-closure rules (viii) or (ix), we havg3, B’) € R.

For Property(E), we have from sat-closure rule (iii) thg¢° : B,...],[(°: B',..]) €
L, so from sat-closure rule (iv), we havg® : B',...],[° : B,...]) € L, so from sat-
closure rule (ix), we haveB’, B) € R. O

From Lemma 3.5.3, Properti€d) and(E), we have that if a relation is sat-closed, then
it is also subtype-closed.
3.5.2 Satisfaction-consistency
Definition 3.5.4. We sayR is satisfaction-inconsistergabbreviated sat-inconsistent) if any

of the following two cases hold.

102

e ([(t:B,..],[°: B,...]) € Rforsomel, B, B'.

o ([¢(y : B, *“1,[¢* : B,...]) € R for some/, v, B, and{;, v;, B; fori € I, and
furthermorel #£ ¢; for all i € 1.

We sayR is sat-consisteniff R is not sat-inconsistent. O
Notice that if a relation is subtype-consistent, then it is also sat-consistent.
Lemma 3.5.5.1f R is solvable, therR is sat-consistent.
Proof. Immediate. O

3.5.3 Main Result
We first list the terminology used in the later definitions. Recall hat>) is the set
of recursive types considered in this chapter.
Types = Ti(X)
States = P(Types)
RelTypes = P(Types x Types)

RelStates = P(States x States)
To define the solutiory'r, we will need the following notation. We ugsgh to range

over sets of types. Then we make the following definitions.
gt = {B|3Ae€g. A=[t":B,...]}.
abover(g) = {B|3JA€yg. (A B) € R}.
ABOVER(R) = {(abover({A}),abover({B})) | (A, B) € R'}.
Var(g, /) = M{v|3JA€g. ({,v) € A(e)}.
In the last definition[7 is the greatest lower bound of a nonempty set of variaricéss

undefined.

The types of the above definitions are

g.l : States — States

abovep : States — States
ABOVEg : RelTypes — RelStates

Var : States x Labels — Variances

103

We definelV : States — P(Labels x Variances) such that for any set of types we have
thatLLV(g) is the labels and variances implied pynamely

LV(g) = {(£,v) | v = Var(g, 0)}.

For a relation? we build an automaton with states consisting of sets of types appearing
in R, and the following one-step transition function:
aboveg(g.0) if gl #0
undefined otherwise.

or(9)(€) = {

We write State§R) for the set of states of the automaton, and gsk to range over

states.

The one-step transition function is extended to a many-step transition function in the

usual way.

or(9)(e) = g,
0r(9)(la) = 0g(9r(9)(0))(@).
Any stateg defines a typeTyper(g), and any relatiorR on StategR) defines a relation
on typesTYPER(R), as follows:
Typer(g)(a) = LV(0g(9)(a)),
TYPER(R) = {(Typeg(g), Typeg(h)) | (g9,h) € R}.

We have that
Typep : States — Types
TYPER : RelStates — RelTypes
The following lemma expresses a fundamental propertiygfe .

Lemma 3.5.6. Type(g)(¢ar) = Type(da(g)(£))(a).
Proof.

Typer(g)(la) = LV(05(g9)(la)) (Definition of Typep)
= LV(65,(0r(g9)(¢))(c)) (Definition ofdy)
= Typer(dr(9)(¢))(c) (Definition of Typep)

104

For any relationk on types, we definé to be the least substitution such that for every
U appearing inkR we have

Sr(U) = Typeg(abover({U})).

We claim that ifR is sat-closed and sat-consistent, ti$gnis a solution toR.
To illustrate the definition ofy, let us go into detail of the construction 6f; for the
sat-closed and sat-consistent constraintset Figure 3.2.

From Lemma 3.5.6, we have thatliV(g) = {(¢,v)}, then

Typeg(g) = [t : Typer(0r(9)(€))] = [: Typeg(abover(g.£))]. (3.26)
Let us now consider the relatid® in Figure 3.2 and first note that we have:
abover({U}) = { U [0 [¢":[m® [, [¢" = [W]] }
abover({W}) = {W,[m":[]] }.
Next, let us calculaté (1W):

Sr(W) = Typeg(abover({WW})) (Definition of Sg)
= Typepg({ W,[m* :[]]}) (Definition ofaboveg)
= [m*:[]] (From 3.26)

Finally, let us calculat&z(U):

Sr(U) = Typeg(abover({U})) (Definition of Sg)
= Typer({ U, [(T: [¢T : [mT:[]]]),[¢":[¢°: W] }) (Definition ofaboveg)
= [¢* : Typeg(abover({ [(* : [m™ : []I][¢" : W] }))] (From 3.26)
= [07: Typegp({ [(*: [m™ : [J]]], [€* : W] })] (Definition ofabover,)
= [¢T:[(°: Typeg(abover({ [m™ : [], W }))]] (From 3.26)
= [¢F:[0°: Typep({ [m™ : [],W })]] (Definition of aboveg)
= [[0 m* L] (From 3.26)

The first step in proving thaty is a solution toR is to develop a connection between
subtype-closure andl Define the functiond : RelTypes — RelTypes by (A, B) € A(R)

iff one of the following conditions holds:

105

e (A,B) €R.

/

e For some/, v, v/, such that C v/, we have([¢V : A,...],[¢V : B,...]) € R.

e For some/, we have([(° : B,...],[(": A,..]) € R.

Note, the subtype-closure of a relatiéns the least fixed point ofl containingR.
Define the function3; : RelStates — RelStates by (g,h) € Bgr(R) iff one of the

following conditions holds:
e (9.h) ER.

e Forsome&and(¢’, ') € R, suchthat Vafy', ¢) C Var(l', ¢), we havey = dx(g') (),
h = 0r(h)(£).

e For somef and(h/, ¢') € R, we haveg = dr(¢')(£), h = dr(h')(¢), Var(g', () = 0,
and Va(h', () = 0.

The next two lemmas (Lemma 3.5.7 and Lemma 3.5.8) are key ingredients in the proof
of Lemma 3.5.9. Lemma 3.5.7 states fundamental relationship betWeex ;, .4, and
Br. The intuition behind Lemma 3.5.7 is that it doesn’t matter whether we propagate
information about subtype relationships (usifig and.4) before or after we collapse the

sets of types in each state to single types (USINGE).

Lemma 3.5.7. The following diagram commutes:

RelStates — ", RelTypes

|8r |4
RelStates — ", RelTypes
Proof. To proveTYPERg o Br C A o TYPER, supposeR € RelStates and(A, B) €
TYPER o Br(R). There must be a pair of statgg i) € Br(R) such thatd = Typey(g)
andB = Typeg(h). We reason by cases on hdw h) € Br(R). From the definition of
Br we have that there are three cases.
First, supposég, h) € R. We have(Type(g), Type(h)) € TYPER(R), so from the

definition of A we have(Type(g), Type(h)) € Ao TYPER(R).

106

Second, suppose for somand(¢’, k') € R, such that Vafy', /) C Var(h', £), we have
g =90r(¢")(¢) andh = ég(R')(¢). From(¢',h') € R, we have(Typeg(q'), Typeg(h')) €
TYPER(R). From Lemma 3.5.6 ang= dz(¢’)(¢), we have

Typer(g')(la) = Typegr(dr(g)(¢))(a) (From Lemma 3.5.6)
= Typeg(g)(a) (From the definition ofj)
= A(a) (From the definition of4)

so there must existy = Var(¢', ¢) such that
Type(g') = [¢"4 : A, ..].
Similarly, there must existz = Var(h/, ¢) such that
Type(h') = [(*® : B,...].

From the characterizations @fype(¢') andTypey(h'), and from the definition ofd, we
have(A, B) € Ao TYPER(R).

Third, suppose for soméand (%', ¢') € R, we haveg = dr(g')(¢), h = dr(R')(¥),
Var(¢',¢) = 0, and Vatr', ¢) = 0. From(%/, ¢') € R, we have(Typeg(h'), Typeg(g')) €
TYPER(R). From the definition ofType, we haveTypeg(¢') = [(° : A,...] and
Typeg(R') = [(° : B,..], so, by the definition ofd, we have(A4, B) € Ao TYPER(R).

To prove A o TYPER C TYPER o Bgr, SUPpOSER € RelStates and (A, B) € Ao
TYPER(R). We reason by cases on hgw, B) € A o TYPER(R). From the definition
of A we have that there are three cases.

First, supposéA, B) € TYPER(R). There must exisj andh such thatd = Typey(g),
B = Typeg(h), and(g,h) € R. From(g, h) € R and the definition o3, we have that
(9,h) € Br(R),so(A, B) € TYPEg o Bg.

Second, suppose for sordgv, andv’, such thaw C +/, we have([¢” : A,...],[¢* :
B,...]) € TYPER(R). There must exis§’ andh’ such thatl'ypey(g') = [¢ : A,..],
Typeg(h') = [¢* : B,..], (¢,h') € R, Var(g’,f) = v, and Vafr’,{) = v'. Then
g = 0r(g")(¢) andh = dr(Rh')(¢) are well defined, andg, h) € Br(R) by the definition

107

of Br. And by the definition ofl'ype,, A = Typep(g) andB = Typeg(h), S0(A, B) €
TYPER o Bg(R) as desired.

Third, suppose for som& we have([¢’ : B,...|,[(° : A,...]) € TYPER(R). There
must existy’ and k' such thatTypeg(g') = [(° : A,...], Typer(h') = [(° : B,..],
and(h',¢") € R. By the definition ofTypeg, Var(¢’,¢) = 0 and Va(h',¢) = 0. Then
g = dr(¢")(¢) andh = dx(h')(¢) are well defined, andg, h) € Br(R) by the definition
of Bg. And by the definition oflypey,, A = Typeg(g) andB = Typeg(h), SO(A, B) €
TYPER o Bg(R) as desired. O

Lemma 3.5.8.Supposer is sat-closed. For alk, we have thatifg, h) € BioABOVER(R),
theng D h.

Proof. Let L be the lower-bound relation fak. We will prove the following more

general property:

For all n,
if (g,h) € BE o ABOVER(R), then

e g D h,and

o if Al,Ag € g, then(Al,AQ) e L.

We proceed by induction an In the base case of= 0, supposég, h) € ABOVEg(R).
From the definition oABOVEx we have that we can choosk B such that A, B) € R,
g = abover({A}), andh = abover({B}). To proveg 2 h, suppos&” € h. We have
(B,C) € R, and together wit{ A, B) € R and transitivity of R (sat-closure rule (ii)),
we have(A,C) € R, soC € g, and hencgy O h. Supposed;, A, € g. We have
(A, Ay), (A, As) € R, so from Lemma 3.5.3, PropertZ), we have thatA;, As) € L.

In the induction step, suppose, h) € Bit' o ABOVER(R). From the definition of
Br we have that there are three cases. First, supfgoge € B% o ABOVER(R). From
the induction hypothesis we have that the two desired properties are satisfied.

Second, suppose for som@nd(¢’, k') € B} o ABOVER(R), such that Vafy', ¢) T
Var(h',¢), we haveg = 6z(¢')(¢) andh = Jégr(h')(¢). From the induction hypothesis we

108

haveg’ O h'. Fromg' O h' and the definition ony it is immediate thay © h. Suppose
Ay, Ay € g. Fromg = dr(¢')(¢) and the definition obr, we have that there exisf&’ :
Al [AL] € g and(A, Ay, (A, Ay) € R. From the induction hypothesis we
have([¢v : A,,...],[¢" : A, ..]) € L, so from Lemma 3.5.3, proper{), we have that
(A}, AL) € L. From Lemma 3.5.3, Proper(B), (A}, A,) € L, (A}, A1), (A}, As) € Rwe
have(A;, A;) € L.

Third, suppose for soméand(#/, ¢') € B}, o ABOVEg(R), we havey = dr(g')(¢),
h = 0gr(h')(¢), Var(¢',£) = 0,and Vafh', ¢) = 0. From the definition of; and Valy’, () =
0, we have that there exists at least one tyfie A, ...] € ¢’. From the induction hypoth-
esis we havé)’ O ¢. Thus,[(° : A,...] € k. To proveg O h, supposeB € h. By
the definition ofdz and Vafh’,¢) = 0, there must exist a typg® : B’,...] € k' such
that (B’, B) € R. From the induction hypothesis af : A,...],[(° : B',...] € I/, we
have([¢° : A,...],[¢° : B',...]) € L. From sat-closure rule (ix), we havel, B') € R.
Therefore, from the transitivity oR (sat-closure rule (ii)) andA, B'), (B, B) € R, we
have(A, B) € R, soB € g, and hencey O h. The property that “ifA;, A, € g, then
(A1, A2) € L” can be proved in the same way as in the previous case.

O

Lemma 3.5.9.1f R is sat-closed, then the subtype-closurélafPE o ABOVER(R) is

subtype-consistent.
Proof.

The subtype-closure &fYPER o ABOVEg(R)
= |(J A"oTYPERoABOVEg(R) (Definition of subtype-closute

0<n<oo
= |J TYPEgoBjoABOVEgR(R) (Lemma3.5.7
0<n<oo
= U {(Typeg(g), Typeg(h))} (Definition of TYPER).

0<n<oo (g,h)EBELOABOVER(R)

From Lemma 3.5.8 we have that(if, h) € B}, o ABOVEg(R), theng D h. If g D h, then
it is immediate from the definition dl'ypey that {(Typeg(g), Typeg(h))} is subtype-
consistent. Thus, the subtype-closurélafPEr o ABOVER(R) is the union of a family

109

of subtype-consistent relations. Since the union of a possibly infinite family of subtype-
consistent relations is itself subtype-consistent, we conclude that the subtype-closure of
TYPER o ABOVEg(R) is subtype-consistent. O

The following lemma is a key ingredient in the proof of Lemma 3.5.11. The two lem-
mas 3.5.10 and 3.5.11 are the two places where it is needed that a relation is satisfaction-

consistent.

Lemma 3.5.10.1f A = [¢* : B,...] appears inR and R is sat-closed and sat-consistent,

then

aboveg((abover({A})).£) = abover({B}).

Proof. To prove the directior®, notice that from sat-closure rule (i) andappearing
in R, we have(A, A) € R, S0OA € abover({A}), henceB € (abover({A})).¢, and thus

aboveg((abover({A})).f) D abover({B}).

To prove the directior, suppose’ € aboveg((abover({A})).¢). From that we have
there existg”’ € (abover({A})).£ such thafC’,C') € R. From(C’ € (aboveg({A}))./
we have that there exisfg” : C’,...] such that(A, [¢* : C’,...]) € R. From sat-
consistency andA4, [¢*" : C’,...]) € R, we have thaty C . From Lemma 3.5.3,
Property(D), (A, [¢" : C',..]) € R, andv C ¢/, we have tha{B,C’) € R. From
transitivity of R (sat-closure rule (ii)) andB, C"), (C',C) € R, we have(B,C) € R, so
C € aboveg({B}). O

Recall that for any relatio® on types, we have definegt); to be the least substitution

such that for every/ appearing ink, we haveSg(U) = Typeg(abover({U})).
Lemma 3.5.11.If R is sat-closed and sat-consistent, then
i) for any typeA appearing inR, Sg(A) = Typey o abover({A}); and

110

Proof. The second property is an immediate consequence of the first property.

To prove the first property, we will, by induction an show that for alky, for all A
appearing inR, Sg(A)(«) = Typey o abover({A})(«).

If « = eandA is atype variable, the result follows by definition &.

If « = eandA = [¢;" : B}"], thenSg(A)(a) = {(¢;,v;) | ¢ € 1..n} and Typey, o
abover({A})(a) = LV(abover({A})). From sat-closure rule (i) and appearing inkR,
we have(A, A) € R, S0A € abover({A}). FromA € aboveg({A}) and sat-consistency,
we havelV (abover({A})) = LV({A}) = {(¢;,v;) | ¢ € 1..n}, as desired.

If « = ¢a’ and A is a type variable, the result follows by definition. .

If « = /4o’ andA = [¢*: B,..], then

Sr(A)(@)

= Sr(B)(c/) (Definition of Sg)

= Typeg o abover({B})(a’) (Induction hypothesis)
= LV (0 (abover({B}))(c’)) (Definition of Typep)
= LV (85 (abover((abover({A})).0))(¢’)) (Lemma 3.5.10)
= LV (0% (0r(abover({A}))(¢))(«/)) (Definition of i)

= LV (0 (abover({A}))(¢a')) (Definition of 7,)

= Typeg o abover({A})(«) (Definition of Type, anda = 4d/).

If « = ¢a’ and A is a record without ad field, thenSz(A)(«) is undefined. By sat-
consistency, n@' € abover({A}) has ary field, so from the definition of'ype we have

thatTypey o aboveg({A})(¢a’) is undefined, as desired. O

We are now ready to prove the main result of this section.

Theorem 3.5.12.R is solvable if and only if its sat-closure is sat-consistent.

Proof. If R is solvable, then we have from Lemma 3.5.2 that the sat-closufeisf

solvable, so from Lemma 3.5.5 we have the sat-closure isfsat-consistent.

111

Conversely, letR’ be the sat-closure d, and assume that’ is sat-consistent. From
Lemma 3.5.9 and Lemma 3.5.11, we have that the subtype-clos$ig (@) is subtype-
consistent, so from Lemma 3.2.6, we have tRatas solutiort'z/, and so from Lemma 3.5.2

we have thai? has solutionSg.. O

In summary, to solve a constraint et we proceed as follows. First, we compute the
sat-closurd?’ of R (this takesD(n?) time wheren is the size ofR). Next, theR’ is checked
for sat-consistency (this také¥n) time). If R’ is sat-inconsistent, theR is not solvable,

otherwiseSy is an example of a solution dt. Thus, we have shown the following result.
Corollary 3.5.13. Satisfiability of a constraint set is decidabledrn?) time.

3.6 P-hardness

Theorem 3.6.1.Solvability of constraints is P-hard.

Proof. An SC-system (simple constraint set) is a finite set of constraints of the forms

vV =V
A

Notice that any SC-system is a constraint set. Thus it is sufficient to prove that solvability
of SC-systems ovef,.,(X) is P-hard. We will do that by reducing a closely related P-hard
problem to this problem.

Let 7.2, (%) be the subset df..,(3) where all variance annotations are 0. In [Pal95] it

is proved that solvability of SC-systems ovE}, (¥) is P-hard.
Let R be an SC-system. It is sufficient to prove tifats solvable ovefZ,.,(X) if and

only if it is solvable over7? ().

reg

It is immediate that ifR is solvable oveZ?, (3) then it is solvable ove¥,., ().

reg
Conversely, suppose thatis solvable ovel,,(X), and letR’ be the sat-closure ak.
We have thafSy is a solution ofR’, and therefore, by Lemma 3.5.2 is also a solution

of R. By Lemma 3.6.25x maps all variables i to elements of% (3), O

reg

112

Lemma 3.6.2.Let R be an SC-system, and |Bt be the sat-closure ak. If R is solvable
overZs(X), thenSg (V) € 70,(X) forall Vin R.

reg

Proof. From the sat-closure rules, it follows th&t is an SC-system as well. 1t is
clear from the definition thatbover produces only types iﬁ;gg(E). Also by definition,
Typer (9)(a) = LV(d5(g9)(«)), and, by the definition obx/, we have thavy, (g)(«)
is a set of types ir7;,(X) for any type sely and patha. Thus, the functiorilype
produces only types iff,2, (3). SinceSg (V) = Typeg (abover ({V})), we have that

reg

Sr(V) € T2, (%). a

reg

3.7 Conclusion

We can do type inference in polynomial time for objects with both covariant and invari-
ant fields. Covariant read-only fields can be either explicitly specified or discovered by our
algorithm. Perhaps surprisingly, specifying read-only fields explicitly seems not to make
type inference easier.

It may be possible to represent types as feature trees and thereby build a connection to
solving feature constraints [MNPOO]; this is left to future work.

An interesting idea for an alternative approach to type inference that may be able to
handle all variance§0, +, —} was suggested by one of the anonymous reviewers. The idea
is to define a metrid(A, B) on the types, and show that it is a complete metric space and
all the constructions are contractive (or non-expansive). Then with the Banach Fixpoint
Theorem, we may be able show that there is a solution if the closure is consistent. This

approach is similar to [MPS86, AW93] and is an interesting idea for future work.

113

4. Efficient Type Inference for Record Concatenation and Subtyping

4.1 Introduction
4.1.1 Background
In Cardelli’'s untyped Obliq language [Car95], the operation

clone(ay, ..., a,)

creates a new object that contains the fields and methods of all the argument objects
ai,...,a,. Thisis done by first cloning each af,...,a,, and then concatenating the
clones. An error is given in case of field name conflicts, that is, in case at least two of

ai, ..., a, have a common field. Cardelli notes that useful idioms are:
clone(a,{l : v})
to inherit the fields ot and add a new fieltdlwith initial valuev, and:
clone(ay, az)

to multiply inherit froma; andas.

Oblig’s multiple-object cloning is an instance of the idea of concatenating two records
of data. In a similar fashion, languages such as C++ [Str93] and Borning and Ingalls’
[B182] version of Smalltalk allow multiple inheritance of classes.

In this chapter, we focus on languages such as Obliq where concatenation is a run-
time operation and where a field name conflict is considered an error; such concatenation
is known assymmetric concatenatiohere are several ways of handling field name con-
flicts. One idea is to do run-time checking, and thereby add some overhead to the execution
time. Another idea, which we pursue here, is to statically detect field name errors by a type
system. The main challenge for such a type system is to find out which objects will even-

tually be concatenated and give them types that support concatenation.

114

Type systems for record concatenation have been studied by Wand [Wan91], Harper
and Pierce [HP91], Remy [Rem92], Shields and Meijer [SMO01], Tsuiki [Tsu94], Zwanen-
burg [Zwa95, Zwa96] and others. These type systems use ideas such as row variables,
present-fields and absent-fields, type-indexed rows, second-order types, and intersection
types. More recently, Sulzmann [Sul97] and Pottier [Pot00] have studied type inference
with the combination of record concatenation and subtyping. None of these algorithms are,
as far as we are aware, known to run in polynomial time.

In this chapter, we investigate the idea of using variance annotations [PS93, AC96a]
together with subtyping and recursive types as the basis for typing record concatenation.
Following Glew [Gle00], we will use two forms of record types. The variance annotation
0,asin

[Ez . BZ iel..n][)7

denotes that records of that typan be concatenated, and that subtypaannotbe used.

The variance annotatioss, as in
L
[gl . Bz 1€ n] ’

denotes that records of that typannotbe concatenated, and that subtypaam be used.

For example, if we have
[1:5,m:true] : [l:int,m : boolean]’
n:7 : [n:int]’

then for the concatenation (denoted-byof the two records we would get

[1:5,m:true]+[n:7] : [l:int,m: boolean]’ @ [n : int]°

= [l :int,m : boolean,n : int]°.

where® is the symmetric concatenation operation on record types which is only defined
when the labels sets are disjoint and the two types both have the variance annotation 0. The

idea is that if an object has typg : ¢;]°, then we know exactly which fields are in the

object, and hence we know which other fields we can safely add without introducing a field

115

name conflict. The more flexible typés : B, ‘"]~ can be used to type objects that will
not be concatenated with other objects.

We restrict our attention to width-subtyping for types with variance annotatipand
we allow subtyping from variance annotatiorio —. Going from0 to — is in effect to
forget that a record of that type can be concatenated with other records. Our type system is
simpler and less expressive than some previous type systems for record concatenation. Our
goal is to analyze the computational complexity of type inference. That complexity may
well be less than the complexity of type inference for some of the more expressive type
systems.

4.1.2 Our Result

We present the design of a type inference algorithm for the Abadi-Cardelli object cal-
culus extended with a concatenation operator. The type system supports subtyping and
recursive types. Our algorithm enables type checking of Oblig programs without changing
the programs at all; extending our results to Obliq is left for future work. We prove that the
type inference problem is NP-complete.

Our NP algorithm works by reducing type inference to the problem of solving a set of
constraints A constraint is a paifA, B), whereA and B are types that may contain type
variables and the concatenation operatorand the goal is to find a substitutigh such
that for each constrairit4, B), we haveS(A) < S(B) where< is the subtype order. We
will use R to range over sets of constraints; we will often refeftas a relation on types.

A key theorem states:

Theorem A set of constraints is solvable if and only there exists a closed su-

perset which is consistent.

Here, “closure” means that certain syntactic consequences of the constraints have been
added to the constraint set, and “consistent” means that there are no obviously unsatisfiable
constraints (e.g{[m : V]° [l : U]°)). The algorithm constructs a solution from a closed,
consistent constraint set. To solve a constraintsgenerated from a program we first

guess a supersdl’ of R. Next we check thaf?’ is closed and consistent; this can be

116

done in polynomial time. This framework has been used for solving subtype constraints
for a variety of types [Pal95, KPS94, PWO0O97, PO95, PS96, PZJ02]. A key difference from
these papers is that our constraint problem does not adsmid#lestclosed superset which

is consistent. As a reflection of that, the algorithms in [Pal95, KPS94, PWO97, PO95,
PS96, PZJ02] all run in polynomial time, while the type inference problem considered here

is NP-complete. This is because in the referenced papers, the smallest closed superset of a
given constraint set can be computed in polynomial time, while our algorithm has to guess

a closed superset.

All type-inference algorithms based on this framework, including the one in this chap-
ter, can be viewed as whole-program analyses because they use a constraint set generated
from the whole program. A whole-program analysis can be made modular in several ways
[CCO02]. For example, we can generalize to type inference with respect to a fixed (non-
empty) typing environment. One would start the algorithm with an initial set of constraints
for program variables, derived from that fixed environment. Thus, one could collect (or
constrain) the substitution provided by a run of the algorithm as an interface to a further
program fragment that uses the first one as a library.

Our algorithm uses a new notion of closure and a traditional notion of consistency.
Our seven closure rules capture various aspects of the subtyping order. For example, one

closure rule ensures that if

VeV [1:U0]7)

is a constraint, then eithéf or V' must be forced to have drfield, as illustrated in the ex-
ample below. That closure rule highlights why the type inference problem is NP-complete:
there is a choice which possibly later has to be undone.

In our proof of the main theorem we use the technique of Palsberg, Zhao, and Jim
[PZJ02] that employs a convenient characterization of the subtyping order (Lemma 4.2.6).
The characterization uses notions of subtype-closure and subtype-consistency that are dif-
ferent, yet closely related, to the already-mentioned notions of what we for clarity will call
satisfaction-closure and satisfaction-consistency. The chapter 3 (see also [PZJ02]) con-

cerns type inference with both covariant and invariant fields, and for types that all allow

117

width-subtyping. In the present chapter, all fields are invariant, but some types (those with
the variance-annotation 0) do not admit non-trivial subtyping. While the type inference
algorithms reported in the two chapters are entirely different, their correctness proofs have

the same basic structure.

4.1.3 Example

We now present an example that gives a taste of the definitions and techniques that are

used later in the chapter. Our example prograhas two methodsandm:

a = [l=¢@)(xl+x.m).k, m=q(y)y.ml.

When running our type inference algorithm by hand on this program, the result isithat

typable with type

a : [l:palk:al®,m:[]9°

The goal of this section is to illustrate how the algorithm arrives at that conclusion.

We can use the rules in Section 4.4 to generate the following set of constraints, called
R. In the left column are all occurrences of subterms in the program; in the right column

are the constraints generated for each occurrence. Wel useB to denote the pair of

constraintg A, B) and(B, A).

Occurrence

118

Constraints

X

Y

a

(xl+x.m).k

zl+xm

x.l

Uz, Va)
Uy V)
(s Viedramy ks m 2 Vym]®, Vo)
Ur =1 Vigtrzmyks M Vil

Uy = [l : ‘/(J?-l-‘ra?.m).k;, m : ‘/ym]o

U (z.l4+z.m).k> Vv(zl+mm)k)

V;vl@%m7v;6l+zm)

(

(

(

(Vo [Una] ™)
Uz, Vi)

(Vs [m: Uzn] ™)
(Uzms Vem)
(Vy, [m - Uym] ™)
(Uy.ms Vi)

Notice that, for each bound variable we have a type variablg,. Moreover, for each

occurrence oft, we have a type variablg,.

Intuitively, U, stands for the type aof in

the type environment, whil&, stands for the type of an occurrencexoéfter subtyping.

Similarly, U,

x.l after subtyping.

Next, our type inference algorithm will guess a so-called satisfaction-closed sugérset

of R. We will here display and motivate some of the interesting constraints in a particular

R'. First, from the constraints

and transitivity, we have

. Stands for the type of./ before subtyping, whilé&’,; stands for the type of

119

in R'. Second, from that constraint and
U = [l Vzl+zm)k7 m: ‘/;/m]
and the observation that fields have invariant subtyping, we have

(‘/(x.l+x.m).k7 le)

in R'. Third, from the constraints

(va.l N> ‘/z.ma ‘/:I:.l—l—ar.m)

(sz.l—i-z.ma [k : U(:c.l+:c.m).k]—>>

and transitivity, we have
(‘/z.l S¥) ‘/m.mv [k : U(xl—i—xm)k]*))

in R'. At this point there is a choice. We can force eithgf or V. ,,, to be mapped to a type
with a k-field. Since there are no other significant constraints on eitheor V, ,,,, both

choices will be fine. Our algorithm chooses the first one, and so we have the constraint

(Vx_[, [kj . U(lerxm)k]_))

in R'. After this constraint has been added, we can apply transitivity three times to:

(Uwitzm)kes Viwitam) k)
(Vwatam) ks Uzi)

Uz, Vaa)

Ve, [k 2 Uaremy k])

so we have
(U(x.ler.m).ka [k : U(ml+mm)k]_))

in R'. The last constraint makes it apparent that recursive types are needed to solve the

constraint system and therefore to type the example program.

120

Note that the choice we made in applying closure rul€¥1o®V, ., [k : Uwitaom)s))

implies that sometimes there is no unique solution to our type-inference problem.

Thus, if we want to do type inference for a program fragment without an initial type en-
vironment, the best we can do is to generate the constraints, perhaps simplify them [Pot96],
and delay solving them until the constraints for the other program fragments become avail-

able.

Once our type inference algorithm has guessed a sat-clgsédchecks whetheR' is
sat-consistent, that is, whether there is at least one constraint which obviously is unsolvable,
e.g.,([m: V]°, [l : U]"). If R'is not sat-consistent, theR has no solution. In the case of
the example progran®’ is sat-consistent, and our type inference algorithm then derives

the following solution fromR'. Define

P = palk:al®

Q = [l:Pm:[])
E = 0z Q)
Fo=0y:qQ)

where P, () are types, andv, F' are type environments. Note that we use so-called equi-
recursive types that satisfy a certain equation, rather than the kind of recursive types that

have to be explicitly folded and unfolded.

We can derive) I a : Q as follows.

Et (xl+zm):[k:P]° Fry:Q
EF(xl+zxzm):[k: P~ Fry:[m:[]|~
Et (zl+xm)k:P Frym:[]°
0Fa:Q

Notice the two uses of subsumption:

k:P° < [k:P]”
Q

IA
B
=

!

121

We can deriveF - (2.l +z.m) : [k : P]° as follows. Notice thafk : P]° = [k : P]° & []°.

ErFx:Q Err:Q
Ertxz:[l:[k:P]°~ Etraz:[m:[]°]~
Eraxl:[k:P|° Etrxzm:[]°

Et(zl+xm):[k:P]°

Notice the two uses of subsumption:

Q
Q < [m:[]""

N
B
)
=

1

We derive the first of these inequalities using the unfolding rule for recursive types to get
P=ypalk:al’=[k:palk:a]’)’=[k: P,
and therefore
Q=[:Pm: [’ =[l:[k: PP, m:[]°]

Here is an alternative typing, which arises from forcirig, to be mapped to a type
with a k-field:

OFa:[:[]°m:[k:[]°°°

4.2 Types and Subtyping

We will work with recursive types, and we choose to represent them by possibly infinite
trees.
4.2.1 Defining types as infinite trees

We uselU, V to range over the sé&t) of type variables; we usk, ¢, m to range over
labels drawn from some possibly infinite $abels of method names; and we uséo range
over the seVariances = {0, —} of variance annotations. Variance annotations are ordered
by the smallest partial ordér such that) C—.

The alphabekE of our trees is defined

Y. =TV U (P(Labels) x Variances).

122

A pathis a finite sequence € Labels* of labels, with juxtaposition for concatenation of
paths, and for the empty sequence. #peor tree A is a partial function from paths into
¥, whose domain is nonempty and prefix closed, and suchdf@t = ({¢; | i € I},) if
and only ifVi, A(at;) is defined. We usé, B, C' to range over the séf(X) of trees.

Note that trees need not be finitely branching or regular. A regular tree has finitely
many distinct subtrees [Cou83]. Of course, we will be particularly interested in two sub-
sets of7 (X)), the finite trees/;;,(X) and the finitely branching and regular tregs, ().
Some definitions, results, and proofs are given in terni @), in such a way that they
immediately apply td/;,(X) and 7., ().

An example tree is given below.

81({61’ 6}7 0) P
yd
Uy ({E%E}vo)
2 \g
0w (162.13.0

l3 \K
Us -
We now introduce some convenient notation. We witer) = 1 if A is undefined on

a. Ifforall i € I, B; is atree/; is a distinct label, and € Variances, then[¢; : B,

f iEI]v

is the treeA such that
({t;|iellv) ifa=e¢
Ala) = Bi(a)) if « = ¢;a/ for somei € I
T otherwise.
We abuse notation and writé for the treeA such thatA(e) is the type variablé/ and
A(a) = Tforall a # e.
Recursive types are regular trees, and they can be presenteexpressions [Cou83,

AC93] generated by the following grammar:

AB == UV type variable
| [¢;: B, "] object type (s distinct,¢ ::= 0 |—)
| wpU.A recursive type

123

We can now define the concatenation operatotf
A = [4;: B, <"
A = [t B0
and/ N I' = (, then
Ag A =t : B, ieIUI’}Oy

and otherwised & A’ is undefined.
4.2.2 Defining Subtyping via Simulations
Our subtyping order supports width subtyping but not depth subtyping.

Definition 4.2.1. A relation R over7 () is called asimulationif for all (A, A") € R, we

have the following conditions.
e ForallU,A=Uifandonlyif A’ =U.
e Forallt;,iel',B],if A" =1[(;: B, "GI']Q’, then there exisB; such that
A= : B, I'ClI, ¢ 3¢
(B;,B),(B.,B))€R, ¢/ =0=1=1.
O

Notice that a simulation can contain pairs suckjas|’, [...] ™), butnot([.. .| 7, [. . .]9).
Notice also that the last line of Definition 4.2.1 enforces no depth subtyping.

For example, the empty relation @h(X) and the identity relation o (X) are both
simulations. Simulations are closed under unions and intersections, and there is a largest

simulation, which we calKk and use as our subtyping order:
< =|J{R| Ris asimulation. (4.1)

Alternately,< can be seen as the maximal fixed point of a monotone functign(@n %) x

7 (X)). Then we immediately have the following result.

124

Lemma4.2.2. A < A’ if and only if
e ForallU,A=UifandonlyifA’ = U.
e Forall ¢;, Bl,i € I',and¢/, if A’ = [(; : B, 'I']?, then there exisB;, such that

A=1[::B"°, I'C I, ¢/ 3¢, and

Viel,Bi=B, ¢ =0=1=1.

All of these results are standard in concurrency theory, and have easy proofs, c.f. [Mil90].
Similarly, it is easy to show that is a preorder. Our simulations differ from the simula-
tions typically found in concurrency in that they are all anti-symmetric (again, the proof is

easy).

Lemma 4.2.3. < is a partial order.
Proof. See Appendix A.3. O

We may apply the principle ofo-inductionto prove that one type is a subtype of

another:

Co-induction: To showA < B, itis sufficient to find a simulatiok such that

(A,B) € R.

4.2.3 A characterization of subtyping

We now give a characterization of subtyping (Lemma 4.2.6) which will be used in the
proof of the main theorem (Theorem 4.5.15). SuppBsie a relation on types, and we
want to know whethed < B for every(A, B) € R. By co-induction this is equivalent
to the existence of a simulation containiiy And since simulations are closed under
intersection, this is equivalent to the existence shallestsimulation containingz. We

can characterize this smallest simulation as follows.

Definition 4.2.4. We say a relation? on types is subtype-closed (¢ : B,...]?, [(:
B',..]%) € Rimplies(B, B'), (B',B) € R. m

125

Note that the subtype-closed relations on types are closed under intersection; therefore
for any relationR on types, we may define igibtype-closur¢o be the smallest subtype-
closed relation containing. Every simulation is subtype-closed, and subtype-closure is a

monotone operation.

Definition 4.2.5. We say a relatiorz on types is subtype-consistentdf : B, “<]*, [¢; :

B! €'Y € R, implies
o if ¢/ =0,thenp =0and/ =TI,
o if ¢/ =—,thenl D I'.
O

Note that every simulation is subtype-consistent, and moreover, any subset of an subtype-

consistent set is subtype-consistent.
Lemma 4.2.6.Let R be a relation on types. The following statements are equivalent.

i) A< Bforevery(A,B) € R.
i) The subtype-closure @t is a simulation.

lii) The subtype-closure @t is subtype-consistent.
Proof.
e (ii) = (i): Immediate by co-induction.

e (i) = (iii): R is a subset oK, so by monotonicity and the fact that is subtype-
closed, the subtype-closure Bfis a subset o&. Then since< is subtype-consistent,

its subset, the subtype-closure®fis subtype-consistent.
e (iii) = (ii): Let R’ be the subtype-closure &f, and supposéA, A') € R'.
If A= U, by subtype-consistency = U; and similarly, ifA’ = U, thenA = U.
If A = [¢;: B,)¢, by subtype-consistency must be of the forni¢; : B, €7]¢,

where¢ C ¢'. And sinceR’ is subtype-closed,B;, B)), (B}, B;) € R’ andl’ C I,

and¢’ = 0= I' = I, as desired.

126

4.3 The Abadi-Cardelli Object Calculus

We now present an extension of the Abadi-Cardelli object calculus [AC96a] and a type
system. The types are recursive types as defined in the previous section.

We usez, y to range over term variables. Expressions are defined by the following
grammar.

a,bc = variable

[6; = ()b, €1-"] object ¢; distinct)

|
| al field selection / method invocation
| (al <= <(2)b) field update / method update

|

a; + ag object concatenation

An object[(; = ¢(z;)b; ““*"] has method name% and methods (z;)b;. The order of

the methods does not matter. Each method binds a namleich denotes the smallest
enclosing object, much like “this” in Java. Those names can be chosen to be different, so
within a nesting of objects, one can refer to any enclosing objectaldeis of the form

[6; = ¢(;)b; “*-"]. A programis a closed expression.

A small-step operational semantics is defined by the following rules:
o If a=[l; =c(z;)b; "], then, forj € 1..n,
= al; ~ bjlx; = al,
= (aly <= <(y)b) ~ all; —<(y)b].
o If ay = [0; = ()b, "], ay = [l; = <(x;)b; “<"], andI, N I, = (), then
ay +ay ~ [0 = ¢(x;)b; €Y.
o If b~ b thena[b] ~ a[b/].

Here,b;[z; := a] denotes the-termb; with a substituted for free occurrences of (re-

naming bound variables to avoid capture); afld < <(y)b] denotes the expressiarwith

127

the ¢, field replaced by (y)b. A contextis an expression with one hole, anf] denotes
the term formed by replacing the hole of the contextby the termb (possibly capturing
free variables im).

An expressiom is stuckif it is not a value and there is no expressiosuch that ~ b'.
An expressior goes wrongf 3b' : b ~™ b andl’ is stuck.

A type environment is a partial function with finite domain which maps term variables
to types inZ,.,(X). We useE to range over type environments. We usg : A] to denote
a partial function which mapsto A, and mapg, wherey # z, to E(y).

The typing rules below allow us to derive judgments of the fdf a : A, whereFE is

a type environment is an expression, and is a type inZ,., ().

Etrxz:A (providedE(z) = A) (4.2)
Elx; Al b;: B, Yiel.n :
: —— hereA = [¢; : B; *<"")° 4.3
EF[l; = c(z;)b, "] : A (whereAd = [6; : B, P (4.3)
ErFa:A
—_— <|l:B|]” .
Fal B (whereA < [¢: B]7) (4.4)
EFta:A Elz:A+-b:B (whereA < [¢: B") 4.5)

Eral<<g(z)b: A
El—aI:Al EI_GQ:AQ

El—a1+a2:A1@A2 (46)
EFra:A
Tra B (whereA < B) 4.7)

The first five rules express the typing of each of the four constructs in the object calculus
and the last rule is the rule of subsumption. We say that adeswell-typedf £ - a : Ais
derivable for somé’ andA. The following result can be proved by a well-known technique
[Nie89, WF94].

Theorem 4.3.1. (Type Soundnesd)ell-typed programs cannot go wrong.

The type inference problem for our extension of the Abadi-Cardelli calculus is: given a
terma, find a type environment and a typeA such thatF' - a : A, or decide that this is

impossible.

128

4.4 From Type Inference to Constraint Solving

A substitutionS is a finite partial function from type variables to typesdp,(X),
written {U; := Ay,...,U, = A,}. The set{U;,...,U,} is called thedomainof the
substitution. We identify substitutions with their graphs, and wifteU S,) for the union
of two substitutionsS; andSs; by convention, we assume th&atand.S, agree on variables
in their common domain, s@5; U S,) is a substitution. Substitutions are extended to total

functions from types to types in the usual way.

Definition 4.4.1. A relation R is solvable if and only if there is a substitutiGhsuch that
forall (A, B) € R, we haveS(A) < S(B). O

Definition 4.4.2. We will here focus on so-called C-relations (which we also refer to as

constraint sefswhich contain only pair$ A, B), whereA, B are of the forms
o [0:V,..]%,
o V, or
o V1 Vs,
whereV, V;, V; are type variables, antle {0. —}. O

While V; & V5 is not a type, it will become a type once we apply a substitution and get
S(V1) @ S(V,), provided the concatenation is defined. Note thatifp V4 is in R, and
R is solvable, then the solution, s&y must makesS(V;) @ S(V2) well-defined. To avoid
introducing special terminology for the left-hand sides and right-hand sides of constraints,
we will abuse the word type and cal] ¢ V; a type in the remainder of the chapter.

We now prove that the type inference problem is equivalent to solving constraints in the
form of C-relations.

We write E’ < E if, wheneverE(x) = A, there is anA’ < A such thatF'(z) = A'.

The following standard result can be proved by induction on typings.

Lemma 4.4.3 (Weakening)If E+c: CandE’ < E,thenE' ¢ : C.

129

By a simple induction on typing derivations, we obtain the following syntax-directed
characterization of typings. The proof uses only the reflexivity and transitivity which

can be derived from Lemma 4.2.2.

Lemma 4.4.4 (Characterization of Typings).E I ¢ : C'if and only if one of the following

cases holds:

e c=zxandE(x) <C;

c¢=al,andforsomed andB, EFa: A, A<[(:B]”,andB < C;

c = [l; = ¢(x;)b; "], and for somed, and someB; for i € 1..n, Elx; : A| F b; :
Bj,andA = [(; : B, "€t")° < C; or

¢ = (a.l < ¢(x)b), and for somed and B, E F a : A, Ejx : A] - b : B,
A<|[¢:B]”,andA < C.

® Cc=ay + asg, and fOI‘ Some41,A2, EF aq - Al! E+ Q9 AQ, andA1 D A2 S C.
We now show how to generate a C-relation from a given program.

Definition 4.4.5. Let ¢ be a¢-term in which all free and bound variables are pairwise
distinct. We defineX,, Y., E., andC(c) as follows.

e X, Is a set of fresh type variables. It consists of a type variéhléor every term

variablex appearing in.

e Y. is asetof fresh type variables. It consists of a type varigbl®r each occurrence
of a subterm’ of ¢, and a type variabl&, for each occurrence of a select subterm
¢ = a.l of c. (If ¢ occurs more than once i) thenU,. andV, are ambiguous.

However, it will always be clear from context which occurrence is meant.)

e [is atype environment, defined by

E.={x:U, | zisfreeinc}.

130

e C(c) is the set of the following constraints ov&t. andY..:
» For each occurrence inof a variablez, the constraint
(Us, V). (4.8)
» For each occurrence inof a subterm of the form./, the two constraints
(Va, [€: Uad]) (4.9)

(Uats Vae). (4.10)

= For each occurrence in of a subterm of the form¢; = ¢(z;)b, ‘<*"], the
constraint

([f, : %Z iel..n]O’ ‘/Y[eizg(zi)bi iEl..n]) (411)

and for eacly € 1..n, the constraints
_ . 1€1..n10
Up, = [6; : Vy, <" (4.12)

= For each occurrence irof a subterm of the fornu./ < ¢(z)b), the constraints

(Vm ‘/(a.k:g(:r)b)) (413)
V,=U, (4.14)
(Va, [€: V3] 7). (4.15)

= For each occurrence inof a subterm of the fornia; + a»), the constraint
(Vay © Vay, Viay taz)) (4.16)
a

In the definition ofC(c), each equalityd = B denotes the two inequalitig€s!, B) and
(B, A).

Theorem 4.4.6.F + ¢ : C if and only if there is a solutioty’ of C(c) such thatS(V,) = C
andS(E.) C E.

131

Each direction of the theorem can be proved separately. However, the proofs share a
common structure, so for brevity we will prove them together. The two directions follow

immediately from the two parts of the next lemma.
Lemma 4.4.7.Letc, be a¢-term. For every subtermof ¢,

i) if £+ c: C,then there is a solutiof. of C(c) such thatS.(V.) = C'and S.(E,) C
E;and

i) if S'is a solution ofC(cy), thenS(E.) ¢ : S(V.).

Proof. The proof is by induction on the structureofin (2), we will often use the fact

that any solution t@(c) (in particular,S) is a solution taC(c) C C(co).
o If c=z,thenE. = {z:U,} andC(c) = {(U,, Vi) }.

i) Define S, = {U, = E(x),V, := C}. ThenS.(V.) = S.(V,) = C, and
Se(Ee) ={xz: E(z)} C E.
Furthermore, by Lemma 4.4.&(z) < C, soS. is a solution taC(c).

i) By (4.2),S(E.) b c:S(U,).
And sinceS(U,) < S(V,) = S(V,), we haveS(E,) F ¢ : S(V.) by (4.7).

o If c = a.l, thenE, = E, andC(c) = C(a) U {(V, [0 : Uns]™), (Uas, Vio)}.

i) By Lemma 4.4.4, forsomd andB, E+Fa: A, A<[(:B]”,andB < C.

By induction there is a solutiofi, of C(a) such thatS,(V,) = A andS,(E,) C
E.

DefineS. = S, U {U,, := B,V,, := C}. ThenS, solvesC(c), S.(V.) =
Se(Vae) = C,andS.(E,) = S.(E,) C E.

ii) By induction,S(E,) Fa:S(V,).
SinceS(V,) < S([€: Uag™), by (4.7) we haveS (E,) Fa : S([0: Uyy|™).
Then by (4.4)S(E,) - a.l : S(U,,).

132

SinceS(U,r) < S(Vae) = S(Ve), by (4.7) we haveS (E,,) - a.l : S(V.).
Finally, £. = E, andc = a.f, SOS(E.) - ¢ : S(V.) as desired.

o If ¢ = [(; = ¢(z;)b; *€'-"], thenE, = Ujey (B, \z;), and

Cle) = { ([ti: V3, =70,V)}
U{ U, = [l Vs, 0 j e ln}
U (Uic1.n C(b:))-

i) By Lemma 4.4.4, for somel, and someB; for i € 1..n, we haveE|z; : A]
bi: B;andA = [(; : B, €+ < C.
By induction, for everyi € 1..n there is a substitutios§;,, such thatS,, solves
C(b;), Sy, (Vi,) = B, andsS,, (Ey,) C Elx; : Al.
We first assume that the domain of asiy is X;, U Y;, (else restrictS;, to this
set). LetS. = (Ujc1.n Sp,) U{V. :=C}
Clearly, if S. is well-defined, then it is a solution ©(c), S.(V.) = C, and
Se(Ee) € E.
To show thatS. is well-defined, it suffices to show that for any distinick €
1..n, the substitutions),, and.S;, agree on all type variables in their common
domain. And ifU is in the domain of bottt,, andS;, , it must have the form
U, for some term variablg free in bothb; andb,.
Theny must be assigned a type Wy, so the conditionsS; (E;,) C Elx; :
A] and Sy, (Ey,) € Elzy : A] guarantee thaby, (U,) = E(y) = Sy, (U,).
ThereforeS, is well-defined, as desired.

i) By induction, S(Ey,;) = b; : S(V4,) forall j € 1..n.
By weakeningS(E.[x; : Uy]) - b; : S(V,) forall j € 1..n.
SinceS solvesC(c), S(U,,) = S([¢; : Vi, "€"]%) forall j € 1..n.
Then by (4.3),S(E.) F c: S([t; : Vi, "]°).
Finally, sinceS solvesC(c), S([¢; : V,, <'"]°%) < S(V.), so we haveS(E.) -
c:S(V.) by (4.7).

133

o If c = (a.l < ¢(x)b), thenE,. = E, U (E,\x), and
C(e) = C(a) U C(B) U {(Vin Vi), Vi = Us, (Vi [0 Vil ™)}

i) By Lemma 4.4.4, forsomél andB, EFa: A, Elz : AJ]-b: B, A< [(:
B]~,andA < C.
By induction there is a solutiofi, of C(a) such thatS,(V,) = AandS,(E,) C
E, and a solutiorb,, of C(b) such thatS,(V,) = B andSy(E,) C Elx : Al.
LetS. = S, US,U{V. := C,U, := A}. (We omit a proof thafS.. is well-
defined; this can be shown just as in the previous case.)
ThensS. is a solution taC(c), S.(V.) = C, andS.(E.) C E.

i) SinceS solvesC(c), S(V,) < S[l : V4]~. By inductionS(E,) - a : S(V,) and
S(Ep) Eb: S(Vy).
By weakeningS(E.) F a : S(V,) andS(E,[x : U,]) F b: S(V}).
Then by (4.5)S(E.) + ¢: S(V,), and by (4.7)S(E,) F ¢ : S(V,).

o If c= (a1 + GQ), thenEc = Ea1 U Ea2 and
C(C) = C(al) U C(CLQ) U {(Val D ‘/;12, ‘/c)}

1) By Lemma 4.4.4, for somel; and A, £ + a; : Ay, E F ay : Ay, and
A @ Ay < C.
By induction there is a solutio®,, of C(a;) such thatS,,(V,,) = A;, and
Sa;(Eq;) C E, fori=1,2.
Let S. = S,, U S, U{V. := C}. (We omit a proof thatS, is well-typed;
this can be shown as above.) Thgnis a solution toC(c), S.(V.) = C, and
Se(Ee) € E.

i) By induction S(E,,) F a1 : S(V,,) andS(E,,) F as : S(Vay,).
By weakeningS(E,) F a; : S(V,,) andS(E.) F as : S(Va,).
Then by (4.6)S(E.) Fc: S(V,,) @ S(Va,), and by (4.7)S(E,) - c: S(Ve).

|

134

4.5 Solving Constraints

In this section we present an algorithm for deciding whether a C-relatisrsolvable.

We first list the terminology used in the later definitions.

Types = the set of types

States = P(Types)
RelTypes = P(Types x Types)
RelStates = P(States x States)

We use7 to range over sets of types. For any typsuch thatd(e) = (.5, ¢), we write
labs(A) = S. For any typed and labell, A.¢is Bif A= [¢: B...]? and is undefined

otherwise. Notice thatl(/a) = (A.f)(«). We also make the following definitions.

T4 = {B|3AcT. A=(:B,..]°}.
abover(7) = {B|3JAe€T. (A, B) € R}.
ABOVER(R') = {(abover({A}),abover({B}))| (4, B) € R’}

We define function Vaf such that
o if type A is of the form|[...]?, then Vai(A) = ¢;
o Varg(V e V') =0;
o if VeV orV'& VisinR, then Vai(V) = 0; and
e Vargr(7) =rm{Varg(A) | AT},

wherer is the greatest lower bound of a nonempty set of varianagss undefined.

The types of the above definitions are

T.0/ : States — States
abover : States — States
ABOVEg : RelTypes — RelStates

Varp : States — Variances

135

For any setZ of types we defindV : States — P(Labels), the labels implied by,
by
LV(T) = | labs(A(e))

AeT
In the rest of the section, we first define the notions of satisfaction-closure (Section 4.5.1)

and satisfaction-consistency (Section 4.5.2), and we then prove that a C-rélascolv-
able if and only if there exists a satisfaction-closed superset which is satisfaction-consistent
(Theorem 4.5.15).

45.1 Satisfaction-closure

Definition 4.5.1. A C-relation R on types is satisfaction-closed (abbreviated sat-closed) if

and only if the following are true:
0if type A of the form[¢ : U, .. .]? isin R, then(A,[(: U]™) € R.
Aif (A, B),(B,C) € R,then(A,C) € R;
Bif (A,B) € R,then(A, A),(B,B) € R;
Cif (A,B) € R, and Vai(B) = 0, then(B, A) € R;
Dif (A, [¢:U]7), (A [¢:U]") € R, then(U,U’) € R;
Eif (V,[(:U]”)e RandV & V'isinR,then(V & V' [¢:U]”) € R.

Fforall (V& V' [¢:U]”) € R, we have eithe(V,[¢ : U]~) or (V',[¢: U]7)in R.

Notice that ruleD is symmetric in the two hypotheses.

Lemma 4.5.2.For every solvable C-relatio®, there exists a solvable, sat-closed superset
R’ of R.

Proof. For a substitutiort, define a function

Gs : RelTypes — RelTypes (4.17)

136

Gs(R) =R (4.18)
{(A]:U]7) | typeAoftheform[¢: U,...|]?isinR} (4.19)

{(4,0) | (AB),(B,C)eR} (4.20)
{(4,4),(B,B) | (A,B)e R} (4.21)
U{(B,A) | (A,B)e RAVarg(B) =0} (4.22)
{OU) | (AU (AL U]7) e R} (4.23)
((VeV.,[:U") | (V,E:U")eR A VaVisinR} (4.24)
{WV,[e:U7) | VeV, [£:U7)eR A S(V)hasar/field} (4.25)
{(Ve:07) | (VeoV [£:U7”)e R A S(V') has ar/-field} (4.26)

Given a C-relation? with solution.S, defineR’ as follows:

- U
n=0

It is straightforward to show tha® C R’ and thatR’ is sat-closed. It remains to be shown
that R’ is solvable. It is sufficient to show théti(R) has solutions, for all n. We proceed
by induction omn. In the base of. = 0, we haveG%(R) = R and thatR has solutionS by
assumption.

In the induction step, suppo&&,(R) has solutiors. We will now show thatG™ (R) =
Gs(G%(R)) has solutionS. We proceed by case analysis on the definitiotyof

Let R, = G%(R) andR,,, = G%"'(R). We have from the definition af's that the
constraints inR,, 1\ R, belongs to the union of the sets (4.19) to (4.26). For each of the
sets, we need to show that the constraints in it preservestisad solution. In each casg,

is preserved because:

(4.19) Straightforward from the definition of.

(4.20) If (A, B),(B,C) € R,, then by induction hypothesis, we hag¢Ad) < S(B) <
S(C) and since the< is transitive, we havé(A) < S(C'). Hence,S is a solution to
{(4,0)}

(4.21) Since the< is reflexive, we haveS(A) < S(A) andS(B) < S(B). Hence,S is a
solution to{(A, A), (B, B)}.

137

(4.22) If (A, B) € R, and Vag, (B) = 0, then by induction hypothesis,(4) < S(B)
and by definition ok, we haveS(A) = S(B) as well, which impliesS(B) < S(A).
Hence,S is a solution to{ (B, A)}.

(4.23)If (A,[¢:U]7), (A [¢:U]") € Ry, then by induction hypothesis,(A) < S([¢ :
Ul7)andS(A) < S([¢ : U']”). By definition of <, 3B, such thatS(A4) = [¢ :
B,...]?and B = S(U) = S(U’), which impliesS(U) < S(U’). Hence,S is a
solution to{ (U, U")}.

(4.24) If (V,[¢ : U]™) € R,, then by induction hypothesis,(V) < S([¢ : U]~). From
the definition ofV” & V', we haveS(V & V').{; = S(V).4;,¥¢; € LV(S(V)). Since
S(V) < S([¢:U]7),wehaveS(V @ V') < S([¢: U]”). Hence,S is a solution to
{(VeVv,[e:U7)}

(4.25) Sincel € LV(S(V)), there existsB such thatS(V) = [¢ : B,...]°. By definition
of <andS(V) @ S(V') < [¢: S(U)]~, we have thaB = S(U) andS(V) < [¢ :
S(U)|~. Therefore S is a solution to{ (V. [¢ : U|™)}.

(4.26) The proof is similar to the previous case.

4.5.2 Satisfaction-consistency

Definition 4.5.3. A C-relationR on types is satisfaction-consistent (abbreviated sat-consistent)

if and only if the following are true:
i) if ([U, €12 (¢, - UL €)%Y € R, thenI D I' andg C ¢/;
i) if ([¢:U,..]°,V)e R,andV @& V'isin R, theng = 0;

iii) if V@ V'isin R, thenLV (abover({V})) NLV(abover({V'})) = 0;

Lemma 4.5.4.1f a C-relation R is solvable, therR is sat-consistent.

Proof. Immediate. O

138

45.3 Main Result

In this section, we will show that if a C-relation is sat-closed and sat-consistent, then it
is solvable.
For a C-relation? we build an automaton with states consisting of sets of types appear-

ing in R, and the following one-step transition function:

abover(T.0) fT.L#0

undefined otherwise.

or(T)(l) = {

We write State§R) for the set of states of the automaton, and gsk to range over
states.
The one-step transition function is extended to a many-step transition function in the

usual way.

or(9)(e) = g,
r(9)(la) = OR(r(g)(0))(e).

Any g defines a typeTypeg(g), and any relatiorik on State&R) defines a constraint set
on typesI'YPER(R), as follows:

Typer(g9)(a) = (LV,Varg)(dr(g)(a)),
TYPER(R) = {(Typeg(g), Typer(h)) | (g,h) € R}

Notice that we us¢LV, Varg)(g) to denotgLV(g), Varg(g)). We have that

Typep : States — Types
TYPER : RelStates — RelTypes

Lemma 4.5.5.1f g = dr(¢')(¢), thenTypeg(g) = Typeg(g').L.
Proof.

(Typeg(g).0)(a) = Typeg(g')(la)

139

= (LV, Varg)(x(g') ()
= (LV, Varg)(6x(dr(9')(0) ()
= (LV,Varg)(0k(9)(a))
(

= Typeg(g)(@).

Definition 4.5.6. For any C-relation? on types, we defin@ to be the least substitution

such that for every/ appearing inR we have
Sr(U) = Typeg(abover({U})).
Note thatifA = [¢: U,...]?, thenSg(A) = [¢ : Sr(U),..]°. O

We claim that ifR is sat-closed and sat-consistent, ti$gnis a solution toR.
To prove this claim, the first step is to develop a connection between subtype-closure
andé. Define the functiond : RelTypes — RelTypes by (A, B) € A(R) if and only if one

of the following conditions holds:
e (A,B) € R.

e For some/, ¢, and¢’, we have([(: A,..)%, [(: B,...]*) e R,or([(: B,...]¢ [¢:
A ..]%) eR.

Note, the subtype-closure (Definition 4.2.4) of a C-relatidrs the least fixed point ol
containingR.
Define the functiorBy : RelStates — RelStates by (g, h) € Br(R), whereg, h # 0, if

and only if one of the following conditions holds:
e (g,h) €R.

e Forsome/ and(¢’,h') or (W, g") € R, we havey = dr(¢')(£), h = dr(R') ().

140

The next four lemmas (Lemma 4.5.7, 4.5.8, 4.5.10, and 4.5.11) are key ingredients
in the proof of Lemma 4.5.12. Lemma 4.5.7 states the fundamental relationship between

TYPEg, A, andBg. We will use the notation

fog(z) = flg(x)).

Lemma 4.5.7. The following diagram commutes:

RelStates — 08 RelTypes

|5 |
RelStates — 1, RelTypes

Proof. SupposeR < RelStates. To proveTYPER o Bg C A o TYPER, suppose
(A,B) € TYPEg o Bg(R). There must be a pair of statég, h) € Br(R) such that
A = Typeg(g) and B = Typeg(h). We reason by cases on hdw h) € Br(R). From

the definition ofBz we have that there are three cases.

i) suppose(g,h) € R. We have(Typeg(g), Typegr(h)) € TYPER(R), so from the
definition of A we have(Typey(g), Typeg(h)) € Ao TYPER(R).

ii) suppose for somé and(¢’,h') € R, we haveg = 0r(¢')(¢) andh = Jr(h')(¢).
From(g¢',h') € R, we have(Typeg(¢'), Typer(h')) € TYPER(R). We have, from
Lemma 4.5.5,

(Typegr(g').£)(a) = Typegr(g)(a) = A(a),

so Typeg(g').¢ = A. Similarly, Typeg(h'). = B. From these two observations,
and(Typeg(¢'), Typegr(h')) € TYPER(R), and the definition of4, we conclude
(A, B) € Ao TYPER(R).

iif) Suppose for soméand (', ¢') € R, we havey = dg(¢')(¢) andh = dr(h')(¢). The

proof is similar to the previous case.

To proveAo TYPER C TYPER o Bg, suppos€A, B) € Ao TYPER(R). We reason
by cases on howA, B) € A o TYPER(R). From the definition ofA we have that there

are three cases.

141

i) supposg A, B) € TYPER(R). There must exis§ andh such thatd = Typey(g),
B = Typeg(h), and(g, h) € R. From(g, h) € R and the definition o8, we have
that(g,h) € Br(R), so(A, B) € TYPEg o Bg.

i) suppose for somé, ¢, ¢', we have([(: A,...]? [(: B,...]*) € TYPER(R). There
must existy’ andh’ such thaflypep(¢') = [(: A,...]?, Typer(h') = [(: B,..]*,
and(¢’,h') € R. Theng = 6r(¢’)(¢) andh = Jdr(h')(¢) are well defined, and
(g9,h) € Br(R) by the definition ofBg. From Typeg(¢') = [(: A,...]?, g =
dr(¢")(¢), and Lemma 4.5.5, we havByper(g) = Typeg(¢').¢ = A. Similarly,
Typeg(h) = B, s0(A, B) € TYPER o Bg(R) as desired.

iii) Suppose for soméand(h',¢') € R, we havey = dr(¢')(¢) andh = dx(h')(¢). The

proof is similar to the previous case.

Lemma 4.5.8. Supposer is sat-closed. Ifg, h) € ABOVER(R), theng D h.

Proof. Supposd g, h) € ABOVER(R). From the definition oABOVER we have that
we can choosel, B such that 4, B) € R, g = abover({A}), andh = abover({B}). To
proveg O h, supposé&’ € h. We have(B, (), (A, B) € R. SinceR is sat-closed and by
closure RuléA, we have(A, ') € RandC € g. Henceg D h. O

The following lemma reflects that does not support depth subtyping. As a conse-
quence, we have designed the sat-closure rules such that, intuitiely, B') € R andR

is sat-closed, then the types constructed ffoth} and{ B’} have the saméfield type.

Lemma 4.5.9.1f R is sat-closed(A4’, B') € R, andaboveg(abover({B'}).f) # 0, then
aboveg(abover({A'}).0) = aboveg(abover({B'}).0).

Proof. From (A’, B') € R and Lemma 4.5.8, we haw®over({A'}) D abover({B'}),
soaboveg(abover({A'}).0) D aboveg(abover({B'}).0).

142

To proveaboveg(abover({A’}).¢) C abover(abover({B'}).¢), supposel € abover(abover({A’}).
So, there exist : Uy, .. .]%* such that

(A [:U,.. ") € R
(U;,A) € R.

From aboveg(abover({B'}).f) # 0, we haveB € aboveg(abover({B'}).f). So, there

exists[(: Uy, .. .]%2 such that

(B',[(:U,,..]") € R
(U, B) € R.

From(4’, B'),(B',[¢ : Us,...]*?) € R, and closure rulé (transitivity), we havg A, [¢ :
Us,...]??) € R. From

(A [(:U,..]") € R
(A [0:Us,..]") € R,

and closure rul®,A,D, we have(U,,U;) € R. From(U,,U;), (U1, A) € R and closure
rule A (transitivity), we haveU,, A) € R. From

(B',[(:Uy,..]*”) € R
(U, A) € R,

we haveA € aboveg(abover({B'}).0).

Lemma 4.5.10.If (g,h) € (B} o ABOVER(R))\ABOVEg(R), theng = h, Vn > 1,

whereR is sat-closed.

Proof. We proceed by induction om.
In the base case of = 1, suppos€y, h) € (B0 ABOVER(R))\ABOVEg(R). From

the definition of35, there are two cases.

143

e Suppose for soméand(g¢’, ') € ABOVEg(R), we haveg = dz(¢’)(¢) andh =
dr(h)(¢). By the definition ofABOVEg, there exist types!’, B’ such thaty’ =
abover({A'}), b’ = abover({B'}), and(A4’, B") € R. We have

abovegr(abover({B'}).f) = dg(abover({B'}))(()
= Or(M)(0)
— B,

and from(g, h) € (B% o ABOVER(R)), and the definition o3z, we haveh # ().
From(A’, B') € R, aboveg(abover({B'}).f) # (), and Lemma 4.5.9, we have

g = aboveg(abover({A'}).0)
= aboveg(abover({B'}).0) = h.

e Suppose for soméand (', ¢’) € ABOVEg(R), we haveg = dr(¢')(¢) andh =

dr(h')(¢). The proof is similar as in the previous case.

In the induction step, suppose
(g,h) € (BE™ o ABOVER(R))\ABOVEg(R).

From the definition of35, there exist such that

(¢',n)or(h',g") € (BEoABOVER(R))\ABOVER(R) andg = dr(¢')(£), h = dr(R')(£).
From the induction hypothesis, we haye= h'. From the definition oby, it is immediate
thatg = h. O

Lemma 4.5.11.SupposeR is sat-closed. Ifg, h) € ABOVEg(R), thenVarg(h) = 0 =
LV(g) = LV(h).

Proof. Supposé g, h) € ABOVEg(R). From the definition oABOVEg, 3A, B such
thatg = abover({A}),h = abover({B}) and(A, B) € R. ThereforevA’' € g, B’ € h,
we have(A, A'), (A, B') € R. Since Vag(h) = 0, there exists a typ®&” € h such that
Varg(B”) = 0. From closure rulé\, we have thal.V(abover{A’'}) C LV (abovegr{A});

144

and from closure ruleC, we have thatLV(aboveg{A}) C LV(abover{B"}). Hence,
LV(g) C LV (abover({B"})) C LV(h).

From Lemma 4.5.8, we hawge O h which implies thatLV(g) O LV(h). Therefore,
LV(g) = LV(h). O

Lemma 4.5.12.If R is sat-closed, then the subtype-closurddfPE; o ABOVER(R) is

subtype-consistent.

Proof.

The subtype-closure &fYPEr o ABOVER(R)
= |J A"oTYPEgo ABOVEg(R) (Definition of subtype-closupe

0<n<oo
= |J TYPEgoB},0cABOVER(R) (Lemma4.5.y
0<n<oo
= U U {(Typegr(9), Typeg(h))} (Definition of TYPER).

0<n<oco (g,h)EBROABOVER(R)

Suppos€g, h) € B} o ABOVEg(R). From Lemma 4.5.8 and Lemma 4.5.10, and a
case analysis on whiy, h) is in BY, o ABOVEg(R), we have thay O h. From Lemma
4.5.11 and Lemma 4.5.10, and a case analysis on(w) is in B}, o ABOVEg(R), we
have that Vag(h) = 0 = LV(g) = LV(h). Thus, it is immediate from the definition of
Typey that{(Typeg(g), Typeg(h))} is subtype-consistent.

Thus, the subtype-closure Y PE o ABOVER(R) is the union of a family of subtype-
consistent C-relations. Since the union of a family of subtype-consistent C-relations is it-
self subtype-consistent, we conclude that the subtype-closur& Bz o ABOVER(R)

is subtype-consistent. a

The following lemma is a key ingredient in the proof of Lemma 4.5.14. Lemma 4.5.14

is the place where it is needed that a relation is satisfaction-consistent.

Lemma 4.5.13.1f A of the form[¢: B,...]? isin R and R is sat-closed, then

aboveg((abover({A})).£) = abover({B}).

145

Proof. To prove the directiorD, notice that from sat-closure ru and A appearing
in R, we have(A, A) € R, s0A € abovegr{A}, henceB € (abover({A})).£, and thus
aboveg((abover({A})).£) 2 abover({B}).

To prove the directiorC, suppose’’ € aboveg((abover({A})).¢). From that we have
there exists”’ € (abover({A})).£ such thaf{C’,C') € R. From(C’ € (aboveg({A})).¢
we have that there exists type D of the foifn C’, .. .]*" such that A, D) € R. Together
with closure rule0, A, B, andD, we have thatB,C’) € R. From transitivity of R (sat-
closure ruleA) and (B, "), (C',C) € R, we have(B,C) € R, andC € abovegr({B}).

O

Lemma 4.5.14.1f R is sat-closed and sat-consistent, then
i) for any typeA appearing inR, Sg(A) = Typey o abover({A}); and

Proof. The second property is an immediate consequence of the first property.

To prove the first property, we will, by induction an show that for ally, for all A
appearing inR, Sg(A)(«) = Typeg o abover({A})(«).

If « = e andA is an ordinary type variable, the result follows by definitionSaf

If o = e andA is of the formV @ V', Sp(V) = [(; : B, "<']°, Sp(V") = [¢; : B, "<"']°,
and Typey o abover({A}) = [(; : B; *°’]°, we need to show thal = T U I’, B; =
B/,Vi € J,andI N I' = (). From R being sat-closed and closure rulgsE, we have
LV (abover({V,V'})) C LV (abover({A})). FromR being sat-closed and closure ru@es
F, we havel.V (abover({A})) C LV (abover({V,V’'})). We concludd.V (abover({A})) =
LV (abover({V,V'})). Thus,J = I U I’ and by sat-consistency rule 3, we have I’ = ().
Because of closure rul€s D, E, andF, we have thaB,; = B., Vi € J.

If o = eandA = [¢; : B, ""™]? thenSk(A)(a) = ({6 | i € 1.n},¢) and
Typegoabover({A})(a) = (LV(abover({A})), ¢). From closure rul® and A appearing
in R, we have(A,A) € R, sSOA € abover({A}). From A € abover({A}), we have
LV({A}) C LV(abover({A})). FromA € abover({A}) and sat-consistency rules 1 and

146

2, we havelV (abover({A})) € LV({A}). We concludd.V ({A}) = LV (abover({A})).
From the definition of Vag, we have that Vas(A) = ¢. By sat-consistency rule 1, we have
Varg(abover({A}) = ¢, as desired.
If « = (o’ andA is a type variable, the result follows by definition $#.
If « = ¢a’ and A is of the formV & V', then eitherSg(V) or Sg(V’) has arv field.
Suppose it isSg(V') that has ar field:
Sr(A) (o) = (Sg(V)® Sr(V"))(a) (Definition of Sg)
= Sp(V)(«) (Sr(V) has arv field)
= Typeg o abover({V})(a) (Definition of Sg)
= Typegoabover({V,V'})(a) (Sr(V’) has no/ field)
= Typey o abover({A}) (). (from the proof of the base case)

The case where it iSg(V"’) that has arf field is similar, we omit the details.
If « =¢a’andA = [(: B,...]%, then
Sr(A)(@)
= Sp(B)(«/) (Definition of Sg)
= Typeg o abover({B})(c’) (Induction hypothesis)
= (LV, Varg)(d5(abover({B}))(«')) (Definition of Typey)

)(OR(
= (LV, Varg) (65 (aboveg((abover({A})).0))(/)) (Lemma 4.5.13)
(LV, Varg) (05 (dr(abover({A}))(£))(«/)) (Definition of i)
= (LV, Varg) (0% (abover({A}))(¢a’)) (Definition of 03;)
= Typey o abover({A})(a) (Definition of Typey anda = (o).
If a = ¢/ and A is a record without ar field, thenSz(A)(«) is undefined. By sat-
consistency rule 1, n@ € abover({A}) has arv¢ field, so from the definition ofl'ypej

we have thafl'ypey o abover({A})(¢a’) is undefined, as desired.
O

Theorem 4.5.15.R is solvable if and only if there exists a sat-closed supefSeif R,

such thatR’ is sat-consistent.

147

Proof. If R is solvable, then we have from Lemma 4.5.2 that there exists solvable,
sat-closed supersét of R, so from Lemma 4.5.4, we have thatis sat-consistent.

Conversely, letR’ be a sat-closed superset Bf and assume thdt’ is sat-consistent.
From Lemma 4.5.12 and Lemma 4.5.14, we have that the subtype-closdre(&f) is
subtype-consistent. From the subtype-closuresgf R') being subtype-consistent and
Lemma 4.2.6, we havel < B for every (A, B) € Sr/(R'), sOSg(A’) < Sg(B’) for
every(A’, B') € R/, and hencd?’ has solutionSi.. FromR C R’ and thatR’ is solvable,

we have thaf? is solvable. O
Theorem 4.5.16.The type inference problem is in NP.

Proof. From Theorem 4.4.6 we have the type inference problem is polynomial-time
reducible to the constraint problem. To solve a constrainfsgenerated from a program
a, we first guess a supersit of R. Notice that we only need to consider & which
has a size which is polynomial in the size ©f Next we check thak’ is sat-closed and

sat-consistent. It is straightforward to see that this can be done in polynomial timeJ

4.6 NP-hardness

In this section we prove that the type inference problem is NP-hard. We do this in two
steps. First we prove that solvability of so-called simple constraints can be reduced to the

type inference problem, and then we prove that solving simple constraints is NP-hard.

4.6.1 From Constraints to Types

For anys-terme, the the constraint s€X(c) is defined as follows.

Definition 4.6.1. Given a denumerable set of variablessimpleconstraint set is a finite

set of constraints of the forms

(V 7 [Ez : ‘/@ iEl..n]O)
(V @ V/ , [Ez : V; iel..n]O)

whereV, V' . Vi,...,V, are variables. a

148

Lemma 4.6.2. Solvability of simple constraint sets is polynomial-time reducible to the type

inference problem.

Proof. Let C be a simple constraint set. Define

a“= [ly = ¢(z)(x.ly)
for each variablé” in C
e = <(@)[li = <(y)(a-by;) <]
for eachQ in C of the form[¢; : V; “<1-"]°
mae, = s@)(@ly, < o(y)@lo-L)-L)

for eachQ in C of the form[¢; : V, “€1-n]0

)

and foreaclj € 1..n

ko = s(@)(w-lo +[1)
for eachQ in C of the form([¢; : V; *€t-7]0
lvg = s@)((zly = <(y)(@by)).ty)

for each constraintV, @) in C
whereQ is of the form[¢; : V, *€1-"]0

lvevig = s(@)((xly <= sy)(z.by +xlyr)).Lg)
for each constraintV’ @ V', Q) in C

whereQ is of the formg¢; : V; !0

]

Notice that: can be generated in polynomial time.

We first prove that it is solvable thenC is typable. Supposé has solutionS. Define

149

A= [by . (V) for each variablé/ in C
e : S(Q) for eachQ in C of the form[¢; : V; €1-n]0
mQ.e, . S(Q) for eachQ in C of the form[¢; : V;, *€1-"]0
and for eachy € 1..n
ko . S(Q) for eachQ in C of the form[¢; : V; €1-n]0
lv<q . S(V) for each constraintV, Q) in C

whereQ is of the form[¢; : V, ‘€-"]0
lyevi<g :S(Q) foreach constraintV & V', Q)inC
whereQ is of the form[¢; : V, ‘€*-"]°
]0

Clearly() I- a¢ : A is derivable.

We now prove that if:¢ is typable, therC is solvable. Supposé’ is typable. From
Theorem 4.4.6 we get a solutishof C(a®). Notice that each method it binds a variable
x. Each of these variables corresponds to a distinct type variatdléaffy. SincesS is a
solution ofC(a®), andC(a®) contains constraints of the forth, = [...]° for each method
in a¢ (from rule (4.12)), all those type variables are mappedtig the same type. Thus,
we can think of all the bound variables of methods:0fas being related to the same type
variable, which we will write ag/,.

The solutionS has the following two properties.

e Property 1 If V' is a variablesirt, thenS(U,) | ¢y is defined.

e Property 2 For each in C of the form[¢; : V; “<'-"]° we haveS(U,) | lg = [¢; :
(S(Uz) Lby;) *<Hm.

To see Property 1, notice that in the body of the methogve have the expressian/y,.

SinceS is a solution o (a®), we have from the rules (4.8) and (4.9) tisasatisfies
(U, V) and(Vy, [Cy = Upo])-

We conclude thas (U,,) | ¢y = S(U.,.,) is defined.

To see Property 2, l&) be an occurrence i@ of the form[¢; : V, “€*"]9. For each

(2

J € 1..n, in the body of the methoth, ,,, we have the expressian.ly, < ¢(y)(x.lg.{;)

150

where we, for clarity, have written the first occurrenceradsz’. SinceS is a solution
of C(a®), we have from the rules (4.8), (4.15), (4.8), (4.9), (4.10), (4.9), and (4.10pthat

satisfies
(Ux) ‘/£E/> and (V’l"’ [6‘/3 . V:E.ZQ.ZJ‘]*)) (4'27)
(Us 5 V) and(Va, [lg : Useol™) (4.28)
Usg » Vauo) (4.29)
(Vz.IZQ) [éj : UI.fQ.(j}—}) (430)
(Urtgt; > Vaigu;) (4.31)
Thus,
S(U)llg = S(Usiy,) from (4.28) and Lemma 4.2.2
< S(Vauy) from (4.29)
< [l S(Urug;)|~ from (4.30)
SUz)Lglt; = S(Usrioe;) from Lemma 4.2.2
< S(Vaug,) from (4.31)
= SU:lty,) from (4.27) and Lemma 4.2.2

In the body of the metho#l,, we have the expressidn./g + []). SinceS is a solution of
C(a®), we have from the rules (4.8), (4.9), (4.10), and (4.16) thaatisfies

U, , Vi)and(Vy, [lg : Ussy]™) (4.32)
(‘/x.KQ @ ‘/[} 9 ‘/I.KQ+[}) (434)

Thus, from (4.32), Lemma 4.2.2, (4.33), (4.34) and the definitiop,ofre have

S(Ua) Llg = S(Uriy) < S(Vaio) = 1.]° (4.35)

£

In the body of the method, we have the expressidfy = ¢(y)(z.¢y;) ““*"]. SinceS
is a solution ofC(a®), we have from the rules (4.8), (4.9), (4.10), (4.11) and (4.12) $hat

151

satisfies
Vji€ln, (U, , Vi) and(Vi, [ty : Upe, |7) (4.36)
W, Vaur,) (4.37)
(w? . V;U-fvi iel‘.n]O , ‘/[Zi:dy)(%@vq;) 7161“71,]) (438)
Uz = [.. ﬁQ . ‘/[ﬁi:C(y)(w-ﬁvi) iel..n] .. .]0 (439)

Thus, from (4.38) and (4.39), we have
(62 S(Veny,) " < SMectmy oty =11) = S(Ua) Leg
and together with (4.36), Lemma 4.2.2 and (4.37), we have

i€ ln, S(WU.) Ly, = S(Uss,) < S(Ver,) = S(WU.) Lo L1

Ly,

Since we have both

SWa)llolt; > S(U) L1y,
we have

S(U)Llglt; = S(UL) Ly, (4.40)

and together (4.40) and (4.35) give thiatU,) | (o = [; = S(U,) | £,/5+"]°, that is,
Property 2.

From Property 1 we have that we can define
Se(V) = S(U,) |ty foreach variabld” inC. (4.41)

With this definition, we can restate Property 2 as
Se(Q) = S(U.)Llg whereQ = [(;: V; €470, (4.42)

We will now show thatC has solutionSg.

152

Consider first a constrainil/, @) in C, where@ = [¢; : 'V,

]

1110 - The body of the
method/(y,) contains the expressiarl.ly < <(y)(z.fv) where we, for clarity, have
written the first occurrence of asz’. SincesS is a solution ofC(a‘), we have from the
rules (4.8), (4.15), (4.8), (4.9), and (4.10) tisasatisfies

(Uz s Vx’) and (‘/x/, [KQ : V;U-KV]_)) (443)
(U, , Vi) and (V, [by : Upe,]”) (4.44)
(UI.EV Y Vxév) (445)
We conclude
Se(V) = SU,)]ty from(4.41)
= S(Ugs,) from (4.44) and Lemma 4.2.2
< S(Vie,) from (4.45)

l
U,)llg from (4.43) and Lemma 4.2.2
) from (4.42).

Consider next a constraifi’ © V', Q) in C, whereQ is of the form[¢; : V; *€-*|°. The
body of the methody ¢y ¢y contains the expression.(g < <(y)(x.ly + x.fy/) where
we, for clarity, have written the first occurrencesofisz’. SincesS is a solution ofC(a®),
we have from the rules (4.8), (4.15), (4.8), (4.9), (4.10), and (4.16)SIsatisfies

(U V) and (Vi [lg : Vaieytas,]) (4.46)

(Us , Vi) and (Vi, [by : Upe,]7) (4.47)

Uz, Vi) and (Va, [byr 2 Usy,]”) (4.48)

Uety 5 Very) (4.49)

(Uzeyr 5 Very) (4.50)

Veoy © Vauyo » Varysaiy) (4.51)

We conclude

153

Se(V) = SU,) 1ty from (4.41)
= S(Uzs,) from (4.47) and Lemma 4.2.2
= SVie) from (4.49) and (4.51)
Se(V") = S(U,) | by from (4.41)
= S(Use,) from (4.48) and Lemma 4.2.2
= (Vae,,) from (4.50) and (4.51)
Se(V)@Se(V') = SViw,)®S(Viy,) fromabove
< S(Verysaty,) from (4.51)
= S(U,) 1Ly from (4.46) and Lemma 4.2.2
= Se(Q) from (4.42).

4.6.2 Solving Simple Constraints is NP-hard
In this section we show that solving simple constraint systems is NP-hard.

Suppose we are given a Boolean expression
V= N (lin Vg Vig)

where X, is the set of variables occurring in, and each literal,; is of the formz or z,
wherex € X,. We will use the notatior,, for the set of positions:j) for whichl;; = «
orl;; = z. Furthermore, if;; = z orl;; = z, then we us€;; to denotel,. We will use the
abbreviations

False =[] True=[q:[]""

Their only significance is thdalse # True. We will construct a simple constraint system

C,, over the variables

{U$7Uia‘/$7‘/%c7TwaTi7R$ | ':UeXl/)}
U {P; |i€el.unjel.3}

The constraint systei}, consists of:

154

o for eachz € X, the constraints

(U ®@Us , [k:R]%) (4.52)
U.eT, , [k:Vi]") (4.53)
U eTy , [k:Vi]") (4.54)

(R [mi : A D5) (4.55)
(Vao Vi, [my: A7) (4.56)

e foralli € 1.n and for allj € 1..3, the constraints:

(Vlij ®F; , [mij : Ai(j—l)a My gr - A-/j(-fj)e[ij\(ij)]o) (4.57)

e forall i € 1..n, the constraints:
(A , False)
(Ais , True).
In the last constraint, we use the abbreviat{ohs, True) to denote the two constraints
(Ais, [q: B]), (B,[]°), whereB is a fresh variable.
Lemma 4.6.3. Solving simple constraint systems is NP-hard.

Proof. Given that 3-SAT is NP-hard, it is sufficient to show thais satisfiable if and
only if Cy is solvable.
Suppose first that has solutionf. Here is a mapping; from the variables of,, to

types. If f(x) is true, then we have:

v Si(v)

U []°

Us [k Ss(R,))°
Ve [I°

Vi Sy(Rs)

T, [k:[]°

T [

155

If f(x)is false, then we have:

v Sf(v)

Us [k Sp(R)]°

Uz []°

Ve Sp(R.)

Ve [)°

T, [I°

T [k [

R, [mi;: Sy(Ay) DER]0.

Fori € 1..n andj € 1..3, define

[m” . Sf(AZ(jfl)), mi’j’ : Sf(Al’]’) (ilj/)elij\(ij)]o f(lz_]) |S true

[1° otherwise.

Si(Py) = {

Define the functiong from Booleans to{False, True} such thatg(false) = False and
g(true) = True. Fori € 1..n,

v Sp(v)

A,y False

Ain go f(li)

Aip go f(lix Vo)

Az True.

It is straightforward to check thai; is a solution to the constraints @, of the forms
(4.52)—(4.56), we omit the details. Here we will focus on showing #jais a solution
to the constraints i€, of the form (4.57). Suppose we are giverg 1..n and;j € 1..3.
There are two cases. First, f{l;;) is true, thenS;(Py;) = [my; : Sp(Aij-1)), mijr
St(Ayy) Dl and Sy (V;,,) = []°. Hence, the constraint (4.57) is satisfied.

Second, iff(1;;) is false, thenS;(P;;) = []° andS;(V;,,) = S¢(Ry,,). Hence, we must
show thatS;(A;;) = S(A;j—1)). There are three cases.

156

o If j =2,thenS;(Ai) = go f(lia Vi) = go(f(la)V f(li)) = go(f(lir)VTalsg =
go f(lin) = Sy(An).

o If j =3, thenS;(A;3) = True. Sincey is satisfiable andgf(;5) is false, we have that
f(lin V1) istrue, saS¢(Ajz) = go f(li V li2) = g(true) = True. We conclude that
Sr(Ajz) = True = Sy(Asp).
Conversely, supposgis a solution taC,,.
Property 1: For everyz € X, we have eithe6(V,) = S(R,) andS(Vz) = []°, or
we haveS(V,) =[] andS(V;) = S(R,).

To prove Property 1, notice that from (4.52) we have exactly on8(éf,) = [k :
S(R,)]~ or S(Uz) = [k : S(R,)]~. From that and (4.53)—(4.54), we have that either
S(V,) = S(R,) or S(Vz) = S(R,). From that and (4.56) we get Property 1.

Define

false S(V,) = S(R.)
fs(x) = ,
true otherwise
Going for a contradiction, let us suppose tlfiatdoes not satisfyy. That means that must
existi such that, for allj € 1..3, fs(l;;) = false. From the definition ofs and Property 1
we have that, foj € 1..3, there is a variable such that(ij) € I, andS(V},.) = S(R,).

From that and (4.55) and (4.57), we conclude

False = S(A;p) = S(Ain) = S(Ai) = S(Ai3) = True,
a contradiction. O
Theorem 4.6.4.The type inference problem is NP-complete.

Proof. We have that type inference is in NP from Theorem 4.5.16. NP-hardness follows

from Lemma 4.6.2 and Lemma 4.6.3. O

4.7 Conclusion

Type inference with record concatenation, subtyping, and recursive types is NP-complete.
Future work includes implementing the algorithm for a language such as Oblig, and to at-
tempt to combine our technique with our algorithm for type inference with both covariant

and invariant fields [PZJ02].

157

The construction used in our NP-hardness proof may be applicable to other types sys-
tems. In particular, our notion of simple constraint systems may be reducible to even more

restrictive type inference problems than the one we have considered.

158

5. Summary and Future Work

5.1 Summary

In this thesis, we have studied type-matching and type-inference problems for object-
oriented systems. In the introductory chapter, we briefly explained formal type systems
and their applications; we also discussed class-based, object-based languages and object
calculi. We surveyed the applicable areas of type matching which include retrieval of
software components and generating bridge code for multi-language systems. Moreover,
we listed some of the motivations of type inference for object-type systems with variance

annotations.

In Chapter 2, we presented the solutions to the type matching problem for object inter-
face types with flexible equality rules. Our solution is based on a definition of bisimulation.
A straightforward implementation of the solution results in@m?) time algorithm and
the time complexity was further improved € logn) by a reduction to the problem of
finding the coarsest size-stable refinement of a graph. We implemented the last algorithm in
Java. The implementation allows users to input definitions of two interfaces and generates

matched types if any exist.

In Chapter 3, we developed type inference algorithm for automatically discovering co-
variant read-only fields for an invariant of Abadi-Cardelli object calculus. Covariant read-
only fields are applicable to object calculi, mobile processes and typed intermediate lan-
guages. In Chapter 4, we developed algorithm of type inference for type systems with

record concatenations which are useful in untyped object-based languages such as Oblig.

5.2 Future Work

We have demonstrated that type matching and type inference can be valuable methods

for improving software integration and programming efficiency. More work can be done to

159

make these methods more practical. For instance, it may be interesting to find out whether
one could infer principal types based on the type equality rules used in type matching. The
existence and decidability of such principal types in type assignment systems for objects
or functions could help component-software writers to omit some of the interface types in
their applications. One other future direction is to support interoperability by automatically
generating a converter from data in one language to data of an equivalent type in another
language. Since data conversion may require types such as linked lists and arrays, a union
type operator denoted by may be needed in the set of type-equality rules that we consider.
Sincex operator is distributive over, the existing approaches may no longer apply.

To make our type-inference approach more practical, we would like to find out whether
it is possible to combine the type-inference algorithms in Chapter 3 and 4 to cover a larger
fragment of the type system in [Gle00]. Such an algorithm can be helpful for enabling the
omission of excessive type annotations. We are also interested in finding a type-inference

algorithm for objects with both read-only and write-only fields.

LIST OF REFERENCES

160

LIST OF REFERENCES

[ABCCR99] Joshua Auerbach, Charles Barton, Mark Chu-Carroll, and Mukund

[ABROS]

[AC93]

[AC96a]
[AC96b]

[ACC97]

[AF96]

[AS97]

[AW93]

[BCL92]

[Ben94]

Raghavachari. Mockingbird: Flexible stub compilation from pairs of decla-
rations. InProceedings of the 19th International Conference on Distributed
Computing Systempages 393—-402, June 1999.

Joshua Auerbach, Charles Barton, and Mukund Raghavachari. Type isomor-
phisms with recursive types. Research report RC 21247, IBM Research Di-
vision, T. J. Watson Research Center, Yorktown Heights, New York, August
1998.

Roberto M. Amadio and Luca Cardelli. Subtyping recursive typA&M
Transactions on Programming Languages and Systeb$4):575-631,
1993. Also in Proceedings of the 19th ACM Symposium on Principles of
Programming Languages.

Marin Abadi and Luca CardellA Theory of ObjectsSpringer-Verlag, 1996.

Maria-Virginia Aponte and Roberto Di Cosmo. Type isomorphisms for mod-
ule signatures. IfProceedings of Eighth International Symposium on Pro-
gramming Languages, Implementations, Logics, and Prograages 334—
346. Springer-VerlagtlNCS1140), 1996.

Joshua Auerbach and Mark C. Chu-Carroll. The mockingbird system: A
compiler-based approach to maximally interoperable distributed program-
ming. Research report RC 20718, IBM Research Division, T. J. Watson
Research Center, Yorktown Heights, New York, February 1997.

Martin Abadi and Marcelo P. Fiore. Syntactic considerations on recursive
types. InProceedings of the 11th Annual IEEE Symposium on Logic in Com-
puter Sciencgpages 242—-252, 1996.

A. Andreev and S. Soloviev. A deciding algorithm for linear isomorphism

of types with complexityO(n log?(n)). Lecture Notes in Computer Science
1290:1971f, 1997.

Alexander Aiken and Edward Wimmers. Type inclusion constraints and type
inference. InProceedings of Conference on Functional Programming Lan-
guages and Computer Architectuypmages 31-41, 1993.

Kim B. Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomor-
phisms of types.Mathematical Structures in Computer Scien2€):231—
247, 1992.

Marcin Benke. Efficient type reconstruction in the presence of inheritance.
Manuscript, 1994.

[BHO7]

[B182]

[BKWO6]

[BPGO2]

[Car95]

[CCO2]

[CLR9O]

[Con00]
[Cos95]

[Cou81]

[Cou83]

[CP95]

[DG84]

[Fre97]

[Gay94]

161

Michael Brandt and Fritz Henglein. Coinductive axiomatization of recur-
sive type equality and subtyping. Rroceedings of the Third International
Conference on Typed Lambda Calculus and Applicati@897.

Alan H. Borning and Daniel H. H. Ingalls. Multiple inheritance in
Smalltalk80. InProceedings of the Second National Conference on Artifi-
cial Intelligence 1982.

Daniel J. Barrett, Alan Kaplan, and Jack C. Wileden. Automated support for
seamless interoperability in polylingual software systems.Proceedings

of the Fourth Symposium on the Foundations of Software Engineeseny
Francisco, California, October 1996.

Michele Bugliesi and Santiago Pericas-Geertsen. Type inference for variant
object typesinformation and Computatiqr2002.

Luca Cardelli. A language with distributed scopePtaceedings of the 22nd
ACM Symposium on Principles of Programming Langua@885.

Patrick Cousot and Radhia Cousot. Modular static program analysis. In
Proceedings of CC’02, International Conference on Compiler Construction
pages 159-178. Springer-VerldgNCS2304), 2002.

Thomas H Cormen, Charles E Leiserson, and Ronald L Rilrstsbduction
to Algorithms MIT Press and McGraw-Hill Book Company, Cambridge,
Massachusetts, 1990.

Jeffrey Considine. Deciding isomorphisms of simple types in polynomial
time. Manuscript, 2000.

Roberto Di Cosmdsomorphisms of Types: fromtcalculus to information
retrieval and language desigmirkhauser, 1995.

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick
and N.D. Jones, editor®rogram Flow Analysis: Theory and Applicatigns
chapter 10, pages 303-342. Prentice-Hall, Inc., Englewood Cliffs, New Jer-
sey, 1981.

Bruno Courcelle. Fundamental properties of infinite trébeoretical Com-
puter Science25(1):95-169, 1983.

Jiazhen Cai and Robert Paige. Using multiset discrimination to solve lan-
guage processing problems without hashiheoretical Computer Science
145(1-2)(1-2):189-228, 1995.

William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing
the satisfiability of propositional horn formuladournal of Logic Progam-
ming 1(3):267-84, October 1984.

Alexandre Frey. Satisfying systems of subtype inequalities in polynomial
space. IfProceedings of the Fourth International Static Analysis Sympasium
Springer-VerlagI(NC9, 1997.

David E. Gay. Interface definition language conversions: Recursive types.
ACM SIGPLAN Notice9(8):101-110, August 1994.

[Gle00]

[Gol79]

[Hen97]

[HK73]

[HM95]

[HPO1]

[1KOO]

[IVO2]

[JPO7]

[JPZ02]

[K0z94]

[KPS94]

[KPS95]

162

Neal Glew. An efficient class and object encoding?taceedings of the 15th
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applicationpages 311-324, Minneapolis, Minnesota, October
2000.

Robert Goldblatt.Topoi: The Categorical Analysis of Logigolume 98 of
Studies in Logic and the Foundation of Mathematibkorth-Holland, Ams-
terdam, 1979.

Fritz Henglein. Breaking through thé barrier: Faster object type inference.
In The Fourth International Workshop on Foundations of Object-Oriented
Languages1997. http://www.cs.williams.edu/ kim/FOOL/index.html.

John E. Hopcroft and Richard M. Karp. Awr/? algorithm for maximum
matchings in bipartite graphsSIAM Journal on Computing2(4):225-231,
1973.

My Hoang and John C. Mitchell. Lower bounds on type inference with sub-
types. InProceedings of the 22nd Annual SIGPLAN-SIGACT Symposium on
Principles of Programming Languaggsages 176-185, 1995.

Robert Harper and Benjamin Pierce. A record calculus based on symmetric
concatenation. IiRroceedings of the 18th Annual ACM Symposium on Prin-
ciples of Programming Languages, Orlangmages 131-142. ACM, 1991.

Atsushi Igarashi and Naoki Kobayashi. Type reconstruction for linear pi-
calculus with 1/0 subtyping. Journal of Information and Computation
161(1):1-44, 2000. An extended abstract appeared irPtbeeedings of
SAS '97LNCS 1302.

Atsushi Igarashi and Mirko Viroli. On variance-based subtyping for para-
metric types. InProceedings of ECOOP’02, 16th European Conference on
Object-Oriented Programmingpain, June 10-14 2002.

Trevor Jim and Jens Palsberg. Type inference in systems of recursive types
with subtyping. Manuscript, 1997.

Somesh Jha, Jens Palsberg, and Tian Zhao. Efficient type matching. In
Proceedings of the Fifth Foundations of Software Science and Computation
Structures Grenoble, France, April 2002.

Dexter Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events.Information and Computatign10(2):366—390, 1 May
1994.

Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient infer-
ence of partial typesJournal of Computer and System Scieneéxg2):306—

324, 1994. Preliminary version in Proceedings of the 33rd IEEE Symposium
on Foundations of Computer Science, pages 363-371, Pittsburgh, Pennsyl-
vania, October 1992.

Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recur-
sive subtypingMathematical Structures in Computer Scieffefd):113—-125,
1995. Preliminary version in Proceedings of the 20th Annual SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 419—
428, Charleston, South Carolina, January 1993.

[MCAO2]

[Mil84]

[Mil90]

[Mit91]

[MNPOO]

[MPS86]

[Nieg9]

[NPS93]

[OMG99]

[Pal95]

[Par81]

[Pie02]
[PJO7]

[PO95]

163

David McAllester. On the complexity analysis of static analysksirnal of
the ACM 49(4):512-537, 2002.

Robin Milner. A complete inference system for a class of regular behaviors.
Journal of Computer and System Scien@&3):439-466, June 1984.

Robin Milner. Operational and algebraic semantics of concurrent processes.
In J. van Leewen, editoHandbook of Theoretical Computer Scieneglume

B: Formal Models and Semantics, chapter 19, pages 1201-1242. The MIT
Press, New York, 1990.

John C. Mitchell. Type inference with simple subtypésurnal of Functional
Programming 1:245-285, 1991.

Martin Muller, Joachim Niehren, and Andreas Podelski. Ordering constraints
over feature treesConstraints, an International Journab(1-2):7-42, Jan-
uary 2000.

David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for re-
cursive polymorphic typeslnformation and Computatiqry1(1/2):95-130,
October/November 1986.

Flemming Nielson. The typed lambda-calculus with first-class processes.
In Proceedings of the Second International Parallel Architectures and Lan-
guages Europe Conferengeages 357-373, April 1989.

Paliath Narendran, Frank Pfenning, and Richard Statman. On the unifica-
tion problem for Cartesian closed categories.Phoceedings of the Eighth
Annual IEEE Symposium on Logic in Computer Sciepages 57—-63. IEEE
Computer Society Press, 1993.

OMG. The common object request broker: Architecture and specification.
Technical report, Object Management Group, 1999. Version 2.3.1.

Jens Palsberg. Efficient inference of object typedgormation and Com-
putation 123(2):198-209, 1995. Preliminary version in Proceedings of the
Nineth Annual IEEE Symposium on Logic in Computer Science, pages 186—
195, Paris, France, July 1994.

D.M.R. Park. Concurrency and automata on infinite sequenc&sodeed-
ings of the Fifth Gl Conferen¢gages 15-32. Springer-VerlagNCS104),
1981.

Benjamin C. Piercelypes and Programming LanguagédIT Press, 2002.

Jens Palsberg and Trevor Jim. Type inference with simple selftypes is NP-
complete.Nordic Journal of Computingd(3):259-286, Fall 1997.

Jens Palsberg and Patrick M. O’Keefe. A type system equivalent to flow
analysis. ACM Transactions on Programming Languages and Systems
17(4):576-599, July 1995. Preliminary version in Proceedings of the 22nd
Annual SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 367-378, San Francisco, California, January 1995.

[P0t96]

[Pot00]

[PP98]

[PS93]

[PS96]

[PT87]
[PWO97]

[PZ01]

[PZ02]

[PZJ02]

[Rem92]
[RéMIO8]

[Rit90]

[Rit91]

[Rit93]

164

Francois Pottier. Simplifying subtyping constraintsPhceedings of ACM
SIGPLAN International Conference on Functional Programmit@p6.

Francois Pottier. A 3-part type inference engine. In Gert Smolka, eeitor,
ceedings of the 2000 European Symposium on Programmahgme 1782,
pages 320-335. Springer Verlag, 2000.

Jens Palsberg and Christina Pavlopoulou. From polyvariant flow informa-
tion to intersection and union types. Rroceedings of the 25th Annual
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
pages 197-208, San Diego, California, January 1998.

Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile
processes. IRroceedings of the Eighth Annual Symposium on Logic in Com-
puter Sciencgpages 376—385, 1993.

Jens Palsberg and Scott Smith. Constrained types and their expressiveness.
ACM Transactions on Programming Languages and Systd®&):519—
527, September 1996.

Robert Paige and Robert Tarjan. Three partition refinement algorigivs
Journal on Computingl6(6):973-989, December 1987.

Jens Palsberg, Mitchell Wand, and Patrick M. O’Keefe. Type inference with
non-structural subtyping-ormal Aspects of Computing:49-67, 1997.

Jens Palsberg and Tian Zhao. Efficient and flexible matching of recursive
types. Information and Computatiqri71:364—-387, 2001. Preliminary ver-
sion in Proceedings of the Fifteenth Annual IEEE Symposium on Logic in
Computer Science, pages 388—398, Santa Barbara, California, June 2000.

Jens Palsberg and Tian Zhao. Efficient type inference for record concatena-
tion and subtyping. IfProceedings of the Seventeenth Annual IEEE Sympo-
sium on Logic in Computer Sciengeopenhagen, Denmark, July 2002.

Jens Palsberg, Tian Zhao, and Trevor Jim. Automatic discovery of covari-
ant read-only fields. IiProceedings of the Ninth International Workshop on
Foundations of Object-Oriented LanguagPBsrtland, Oregon, January 2002.

Didier Remy. Typing record concatenation for freeAGM Symposium on
Principles of Programming Languaggsages 166—-176, 1992.

Didier Rmy. From classes to objects via subtypingelmopean Symposium
On ProgrammingSpringer-Verlagl(NCS1381), March 1998.

Mikael Rittri. Retrieving library identifiers via equational matching of types.
In M. E. Stickel, editorProceedings of the 10th International Conference on
Automated Deductigrvolume 449 ofLNAI, pages 603—-617, Kaiserslautern,
FRG, July 1990. Springer Verlag.

Mikael Rittri. Using types as search keys in function libraridsurnal of
Functional Programmingl1(1):71-89, 1991.

Mikael Rittri. Retrieving library functions by unifying types modulo linear
isomorphism.RAIRO Theoretical Informatics and ApplicatiQry (6):523—
540, 1993.

165

[SMO1] Mark Shields and Erik Meijer. Type-indexed rows.Sgmposium on Princi-
ples of Programming Languaggsages 261-275, 2001.

[SMZ99] Martin Sulzmann, Martin Nller, and Christoph Zenger. Hindley/Milner
style type systems in constraint form. Technical report, University of South
Australia, 1999. Technical Report ACRC-99-009.

[Sol83] Sergei V. Soloviev. The category of finite sets and cartesian closed categories.
Journal of Soviet Mathematic22:1387-1400, 1983.

[Sol93] Sergei Soloviev. A complete axiom system for isomorphism of types in
closed categories. pages 380—392. Springer-VellNg\[(698), 1993.

[Stro3] Bjarne StroustrupA History of C++: 1979-19911993. Manuscript.

[Sul97] Martin Sulzmann. Designing Record Systems. Research Report
YALEU/DCS/RR-1128, Yale University, Department of Computer Science,
April 1997.

[Tar55] Alfred Tarski. A lattice-theoretical fixed point theorem and its applications.

Pacific Journal of Mathematic®$:285-309, 1955.

[THO1] Francis Tang and Martin Hofmann. Type inference for objects with base
types. Draft, 2001.

[THOZ2] Francis Tang and Martin Hofmann. Generation of verification conditions for
abadi and leino’s logic of objects. Proceedings of the Ninth International
Workshop on Foundations of Object-Oriented Languagestland, Oregon,
January 2002.

[Tha96] Satish Thatte. Automated synthesis of interface adapters for reusable classes.
In Proceedings of the 23nd Annual SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languaggsages 174-185, 1996.

[Tiu92] Jerzy Tiuryn. Subtype inequalities. Froceedings of the Seventh Annual
IEEE Symposium on Logic in Computer Sciemages 308-315, 1992.

[Tsu94] Hideki Tsuiki. On typed calculi with a merge operator. Houndations
of Software Technology and Theoretical Computer Scignages 101-112,
1994.

[Wan91] Mitchell Wand. Type inference for record concatenation and multiple inher-
itance.Information and Computatiqr93(1):1-15, 1991.

[WF94] Andrew Wright and Matthias Felleisen. A syntactic approach to type sound-
ness.Information and Computatiqri15(1):38-94, 1994.

[WOP95] Mitchell Wand, Patrick M. O’Keefe, and Jens Palsberg. Strong normaliza-
tion with non-structural subtypingMathematical Structures in Computer
Science5(3):419-430, 1995.

[ZW95] A. M. Zaremski and J. M. Wing. Signature matching: a tool for using soft-
ware libraries. ACM Transactions on Software Engineering MethodoJogy
4(2):146-170, April 1995.

[Zwa95]

[Zwa96]

166

Jan Zwanenburg. Record concatenation with intersection types. Technical
Report 95-34, Eindhoven University of Technology, 1995.

Jan Zwanenburg. A type system for record concatenation and subtyping.
In Kim Bruce and Giuseppe Longo, editotaformal proceedings of Third
Workshop on Foundations of Object-Oriented Langua696.

APPENDIX

167

APPENDIX

A.1 Proof of the first half of Theorem 2.5.8
Theorem A.1.1. EQ = R.

Proof. First we proveEQ C R (soundnesgs Suppose)\ is a derivation tree fob - o =
7. Let R be the set of type pairs that are foundAron the right-hand side of, except for
applications of the rule (Mp). It is straightforward to see that all other type pairgNrare
elements of?. Notice that(o, 7) € R. Itis straightforward to show that C F'(R). From
that and Lemma 2.5.7 we have thais a bisimulation, so, by co-inductiofy, 7) € R.

Next we proveR C EQ (completenegs Supposdo, 7) € R. Choose a bisimulation
R’ such that(o, 7) € R'. DefineR = R' N (V, x V,). Notice thatR is a finite set, and
(o,7) € R. Let us show thaR is a bisimulation. First, fronR’ being a bisimulation and
Lemma 2.5.7R C F(R'). Itfollows thatR' n (V, x V;) C F(R") N (V, x V;). ¢From
Lemma 2.5.13 we have(R') N (V, x V,) C F(R'n (V, x V;)),soR' N (V, x V) C
F(R' N (V, x V;)), thatis,R C F(R). Thus, by Lemma 2.5.73 is a bisimulation.

From R, we can now construct a derivation tree fo- ¢ = 7. The functionS, see
below, is a recursive function that takes as inputs (1) an environrheand (2) a type pair

(o, 7). The callS(A, (o, 7)) returns a suggestion for a derivation tree for o = 7.

S (A, (o,7)) =
o If o, 7 are base types, then retutht- o = 7
olf (0,7) € A, thenreturnAFo =1

elf c =0y — 09,7 =7 — 79, thenreturn
S((A,0=71),(0s,7)) Vie{l,2}
Aro=r
olf o =11 0;,,7 =1II" 7, then return

168

S((A,0=7),(0i,m(3))) Vie{l.n}
Abo=r7
where(o;, 74(;)) € R and

t is a bijection from{1..n} to {1..n}.

Consider the call(0, (o, 7)). Itis straightforward to see that in every recursive calfto

all type pairs in the arguments are elementgiofSinceR is a bisimulation, this ensures
that the rules irEQ_,H apply. Moreover, every timé is called, the size ofl will increase

by one, since otherwise we could use the second case in the definitioto @void further
recursive calls. This limits the depth of the recursion to the number of elemeRtsSihce

R is finite, we conclude tha® (0, (o, 7)) has a finite depth of recursion and that the size of

the resulting derivation tree fért- o = 7 is finite. O

A.2 Proof of Theorem 2.5.9

Theorem A.2.1. R is a congruence relation.

Proof. We will show thatR is reflexive, symmetric, transitive, and a congruence in the

— and]] constructors.

(Reflexivity) Supposey is a base type. Construct the relation
R ={(0,0) | oisabase type}.

We have(v,~) € R, andR is closed and consistent. Henéejs a bisimulation, and,

by co-induction,v,v) € R.

(Symmetry) Suppos€o,7) € R. Choose a bisimulatio® such that(c,7) € R, and

construct fromR the relation:
R ={(o,0') | (¢',0) € R}

From(o,7) € R, we have(T,0) € R'. R'is bisimulation because the conditions for
being a bisimulation are symmetric with respect to the two components of a type pair.

So, by co-induction(r, o) € R.

169

(Transitivity) Supposéo,d), (6, 7) € R. Choose bisimulation®;, R, such that, §) €

Ry, (0,7) € Ry, and construct fronk the relation
R={(01,03) | (01,02) € Ry,(02,03) € Ry }.

From(o,6) € Ry, (6,7) € Ry, we have(o, 7) € R.

For any(oy,02) € Ry, (092,03) € Rs, We haveo;(e¢) = os(c), 02(e) = o3(€), SO
o1(€) = o3(¢€), and thereforer is consistent.

If 0 = 01 — 09,0 = 0 — 09, @andT = 71 — 7y, then, for every € {1, 2}, we have
(0:,0;) € Ry, (0;, 7)) € Re, S0(0y,7;) € R, and therefordR is closed under condition
P1.

If o =11, 04 0 =, 9, andr = [[_, 7, then there exist bijections,, v such
that, for everyi € {1..n}, we have(o,), ;) € Ry, (0v(i), 7i) € R2, SO(0v(3), i) € R,
where,t = u o v, and therefore? is closed under conditioR2.

We conclude thaf is a bisimulation, and, by co-inductiofs, 7) € R.

(Congruence in—) Suppos€oy, 1), (02, 2) € R, ando = 0, — 09,7 = 71 — To,
Choose bisimulation®;, R, such that(oy,) € Ry, (02,72) € Rs, and construct
from Ry, R, the relation

R=A{(o,7)} UR; URs.

We have(o, 7) € R by construction.

Since bisimulation is closed under unid®,U R, is a bisimulation. Moreovet;(e) =
7(e) =—, and(oy,71), (02, 72) € R, SOR is a bisimulation, and, by co-induction,

(o,7) € R.

(Congruence in[]) Suppose, for everye {1..n}, that(o;, 7;,) € R, wheret is a bijection
from {1..n} to {1..n}, ando = [}~ 0y, 7 = [[, ;. For eachi € {1..n}, choose a
bisimulationR; such thai;, 7;;)) € R;, and construct the relation

n

R={(0,1)}U(UR,).

=1

We have(o, 7) € R by construction.

170

Since bisimulation is closed under unigtf, , R; is a bisimulation. Moreovet;(e) =
[T" = 7(e), and for every; € {1..n}, we have(o,;, 7,) € R, SOR is a bisimulation,

and, by co-induction(o, 7) € R.

A.3 Proof of Lemma 3.2.3

Here we give a full proof thak is a partial order. First< is reflexive because the
identity on7 (X) is a simulation. The compositiof? o R') of binary relationsk? and R’

over a setX is defined in the usual way:
(z,2') € (RoR') & 32" € X. (z,2") € R, (2",2") € R
Lemma A.3.1. If R is a reflexive simulation, thef? o R) is a simulation.

Proof. Supposé A, A’) € (Ro R). Thus,3A” such that A, A”), (A", A’) € R.
o If A =1U,thenA” = U since(A”, A’) € R; and thenAd = U since(A, A”) € R.
e Similarly, if A= U, thenA’ = U.
e OtherwiseA’ = [¢* : B',...]. Then sinceR is a simulation, we have
« A=V B.],
» A=[(":B,..],
n g C 0" T,
» (B",B') € R,
» ' =0= (B,B") €R,
» (B,B") € R, and
» 0" =0= (B",B) € R.
SinceL is transitive we have C v'. We have(B, B”) € R, (B”, B') € R; that s,

(B,B') € (RoR). If v/ = 0, then fromv” C + we have” = 0, and sq B’, B”) € R,
(B",B) € R, thatis,(B’, B) € (Ro R), as desired.

171

Corollary A.3.2. <is transitive.

Proof. Just note that is reflexive, andk D (< o <) because< is the largest simula-

tion. O
Lemma A.3.3. Every simulation is antisymmetric.

Proof. Let R be a simulation. We prove the following statement by inductiopn

If (A, A") € Rand(A’, A) € R, thenA = A, thatis,A(a) = A'(«) for every

Q.

e If o =¢, we showA(a) = A’(«) by cases on the structure df

= If A= U, then by the definition of simulation)’ = U. ThereforeA(«) = U =
A(a).

» If Ais arecord type, then by the definition of simulation and the antisymmetry
of C, A’ is a record type with exactly the same labels and variances; that is,
A= [0 B;"*"" and A" = [¢}" : B! ""]. ThereforeA(a) = {¢}" : i €

l.n} = A'(«) as desired.
o If o« = /o', we consider two cases.

= If A(¢) is undefined, then eithet = U for someU, or A is a record type with no
¢field. In the first cased’ = U becauséA’, A) € R. In the second casel’ has
no ¢ field (otherwise(A, A’) € R would imply A has ar¥ field, contradiction).

In either caseA’(¢) is undefined, so botH («) and A’(«) are undefined.

« If A =[¢": B,...], then by the definition of simulation and the antisymmetry
of C, we haved’ = [(* : B',...] and(B, B'), (B, B) € R. Then by induction,
B(a/) = B'(d/). SOA(«a) = B(') = B'(«) = A'(«) as desired.

A.4 Notation for Chapter 2

function type constructor and product type constructor of arity

type variable

transition function

a set of base types
labeling function

the set of natural number
finite ranked alphabet
types

static type environment

blocks in a partition of a graph

function that maps integer function such/a® relation on types

relations on states

the largest bisimulations on types
relation on nodes of a graph

functions on power-sets

function on integer functions such as
function that maps types to integers
index

equivalence relations on nodes of graph
matching function

unary operator that maps a set to its power-set
partitions of a graph

finite set of states

state

relation on types

the largest simulation on types

term automaton

172

t,m

7.V, W

X, Y, Z, Z

Unit type

bijections

sets of types

set of nodes of a graph

generic sets

173

abovep

ABOVEjR

C(a), Eq, Xa, Yo

A.5 Notation for Chapters 3 and 4

variances

largest simulation

path (element ofabels™)

the empty path

one-step transition function

the alphabet of trees

element o

types

symbol ofX at patha in type A
subtree of typed at patha

type A with U replaced byB
function fromRel Types to Rel Types
function fromRelStates to RelStates
terms

context with one hole

contexta[-] with hole filled by termb
update field’ of a with ¢(z)b

terma with x replaced by

term whose typability is equivalent &

terma rewrites to ternmd
function fromStates to States

function fromRel Types to RelStates

system equivalent to typability of term

174

E type environment
Elz : A] type environment with updated binding for
F\x type environment with binding far removed

g,h states or sets of types

175

I index set

iy indices

k, ¢, m labels

Labels the set of labels

LV function fromStates to P(Labels x Variances)
n index bound

P power set

Q elements of constraints

R relation on types also known as set of constraints
R relation on sets of types

RelTypes relations of types

RelStates relations of sets of types

S substitution

States sets of types

T set of types

T function fromStates to States

TV set of type variables

T(2), Tan(X), Teg(X) type tree, finite type tree, and regular type tree

Typeg function fromStates to Types
TYPER function fromRelStates to Rel Types
Types the set of types

u,v type variables

Var function fromStates x Labels to Variances
Variances the set of variances

v variance (element dfariances)

X generic set

x,y term variables

< our subtyping relation

c, U ordering and lub oVariances

VITA

176

VITA

Tian Zhao was born in JingDeZhen, JiangXi Province, P.R. China, in 1974. He received
a Bachelor of Science in international trade and finance from ZhongShan University in July
1994. After working for a year in a direct-investment firm, he decided to go to graduate
school. He first went to Louisiana State University to study economics in 1995. One year
later, he transferred to Purdue University to continue his study in economics. During the
period from 1996 to 1999, he had taken courses in a variety of areas including computer
science and electrical engineering. In January 1999, he formally transferred to the computer
science department and started to pursue Ph.D. degree in computer science. He received a
Master of Science in economics in May 1998, a Master of Science in computer science in
May 1999, and a Master of Science in Electrical and Computer Engineering in May 2001.

He received the degree of Doctor of Philosophy in computer science in August 2002.

