

CERIAS Tech Report 2003-19

PROVING OWNERSHIP OVER
CATEGORICAL DATA

by Radu Sion

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

Proving Ownership over Categorical Data ∗

Radu Sion
Computer Sciences and The Center for Education and Research

in Information Assurance and Security, Purdue University
West Lafayette, IN, 47907, USA

sion@cs.purdue.edu

Abstract

This paper introduces a novel method of rights
protection for categorical data through watermarking.
We discover new watermark embedding channels
for relational data with categorical types. We
design novel watermark encoding algorithms and
analyze important theoretical bounds including mark
vulnerability. While fully preserving data quality
requirements, our solution survives important attacks,
such as subset selection and data re-sorting. Mark
detection is fully “blind” in that it doesn’t require the
original data, an important characteristic especially
in the case of massive data. We propose various
improvements and alternative encoding methods. We
perform validation experiments by watermarking the
outsourced Wal-Mart sales data available at our
institute. We prove (experimentally and by analysis)
our solution to be extremely resilient to both alteration
and data loss attacks, for example tolerating up to 80%
data loss with a watermark alteration of only 25%.

1 Introduction

The relational data framework would benefit from
an intrinsic method of rights protection especially in
scenarios where sensitive, valuable content is to be
sold or made directly accessible. Good examples
are data mining applications (e.g. sales database, oil

∗Portions of this work were supported by Grants EIA-9903545,
ISS-0219560, IIS-9985019 and IIS-9972883 from the National
Science Foundation, N00014-02-1-0364 from the Office of Naval
Research, and by sponsors of the Center for Education and
Research in Information Assurance and Security.

drilling data, financial data), where a set of data is
usually produced/collected by a data collector and then
sold in pieces to parties specialized in mining that
data. Other applications include scenarios such as
online B2B interactions (e.g. airline reservation and
scheduling portals) in which data is made available for
direct, inter-active use.

Different avenues for rights protection are avail-
able, each with its own advantages and drawbacks.
Enforcement by legal means is usually ineffective
in preventing theft of copyrighted works, unless
augmented by a digital counter-part. Watermarking
provides one avenue for rights protection. The main
purpose of Digital Watermarking is to protect a certain
content from unauthorized duplication and distribution
by enabling provable ownership over the content.
Digital Watermarking has traditionally [3] [4] relied
upon the availability of a large noise domain within
which the object can be altered while retaining its
essential properties. For example, the least significant
bits of image pixels can be arbitrarily altered with little
impact on the visual quality of the image (as perceived
by a human). In fact, much of the “bandwidth” for
inserting watermarks in multi-media Works (such as
in the least significant bits) is due to the inability of
human sensory system (especially sight and hearing)
to detect certain changes.

More recently, the focus of watermarking for
digital rights protection is shifting toward different
data domains such as natural language text [1], and
software [2] [7]. Since these data types often
have very well defined semantics (as compared to
those of images, video, or music) and may be
designed for machine ingestion, the identification of

the available “bandwidth” for watermarking is as
important a challenge as the algorithms for inserting
the watermarks themselves.

Watermarking works by deploying resilient infor-
mation hiding techniques to [11] insert an indelible
mark in the data such that (i) the insertion of the mark
does not destroy the value of the data (i.e. the data
is still useful for the intended purpose); and (ii) it is
difficult for an adversary to remove or alter the mark
beyond detection without destroying the value of the
data. Clearly, the notion of value or utility of the data
is central to the watermarking process. This value is
closely related to the type of data and its intended use.
For example, in the case of software the value may
be in ensuring equivalent computation, and for text it
may be in conveying the same meaning (i.e. synonym
substitution is acceptable). Similarly, for a collection
of numbers, the utility of the data may lie in the actual
values, in the relative values of the numbers, or in the
distribution (e.g. normal with a certain mean).

An important point about watermarking should be
noted. By its very nature, a watermark modifies
the item being watermarked. If the data to be
watermarked cannot be modified then a watermark
cannot be inserted. The critical issue is not to avoid
changing the data, but to limit the change to acceptable
levels with respect to the intended use of the data.
Clearly, one can always identify some use of the data
that is affected by even a minor change to the any
portion of the data. It is therefore necessary that the
intended purpose of the data that should be preserved
be identified during the watermarking process.

Existing related research [6] [12] explores the
issue of watermarking numeric relational content.
[5] provides theoretical constructs linking query
preservation to allowable data alteration bounds.

Here we propose and analyze the issue of rights
protection for categorical relational content through
watermarking. Important new challenges are as-
sociated with this domain. One cannot rely on
‘small” alterations to the data in the embedding
process. Any alteration is going to necessarily be
significant. The discrete characteristics of the data
require discovery of fundamentally new bandwidth
channels and associated encoding algorithms. Our
solution proves to be resilient to various important
classes of attacks, including data re- shuffling/sorting,

massive subset selection, linear data changes, random
item(s) alterations etc. The main contributions of
this paper include: (i) the proposal and definition of
the problem of watermarking categorical data, (ii) the
discovery and analysis of new watermark embedding
channels for relational data with categorical types, (iii)
the design of novel associated encoding algorithms.

The paper is structured as follows. In Section 2 we
present our main data and adversary models. Section 3
introduces the main solution and outlines alternatives.
Section 4 analyzes aspects of our algorithms and
proposes improvements for particular scenarios. It also
discusses the inherent algorithm vulnerability to data
altering attacks. Section 5 outlines our experimental
setup and results. Section 6 concludes.

2 Model

We choose to keep our model concise but repre-
sentative. Our data schema includes a set of discrete
attributes {A,B} and a primary data key K , not
necessarily discrete. Any attribute X in{A,B} can
yield a value out of nX possibilities. (e.g. city names,
airline names). Thus our schema is (K,A,B).

2.1 Notation

Let the number of tuples in the database be N . By
notation, for any entity X (e.g. relation attribute),
let b(X) be the number of bits required for its
representation and msb(X, b) the most significant b

bits. If b(X) < b we left-pad X with (b−b(X)) zeroes
to form a b-bit result.For any categorical attribute X

we naturally have b(nX) ≤ b(X). Let Tj(X) be the
value of attribute X in tuple j. Let {a1, ..., anA

} the
discrete values of attribute A. These are distinct and
can be sorted (e.g. by ASCII value). Let fA(aj) be the
normalized (to 1.0) occurrence frequency of value aj

in attribute A. fA(aj) models the de-facto occurrence
probability of value aj in attribute A. Let wm be a
|wm|-bit watermark to be embedded, wm[i] the i-th
bit of wm. In any following mathematical expression
the symbol “&” signifies a bit-AND operation. Also,
let set bit(d, a, b) be a function that returns d with the
bit position a set to value b.

2.2 One-Way Hashing

In fighting court-time exhaustive key search claims,
we are leveraging a special de-facto secure construct,
the one-way cryptographic hash. Let crypto hash()
be a cryptographic secure one-way hash. In our
solution we are using the fact that there exists
an assumption that it is computationally unfeasible,
for a given value V ′ to find a V such that
crypto hash(V) = V ′. This assumption of
one-wayness lies at the heart of many current security
protocols. Examples of potential candidates for
crypto hash() are the MD5 or SHA hash. For
more details on cryptographic hashes consult [9]. By
notation, let H(V, k) = crypto hash(k;V ; k) (where
“;” denotes concatenation).

2.3 The Adversary

There is a set of attacks that can be performed
by evil Mallory with the purpose of defeating the
watermark while preserving the value in the data.
More-over these perceived attacks may be the result
of normal use of the data by the intended user. In
order to be effective, the watermarking technique has
to consider these scenarios and be able to survive them.
In [12] we outlined attacks in the numeric relational
data framework. Here we present a summary and
discuss challenges associated with categorical data.

A1. Horizontal Data Partitioning Mallory can
randomly select and use a subset of the original data set
that might still provide value for its intended purpose.

A2. Subset Addition Mallory adds a set of tuples
to the original data. This addition is not to significantly
alter the useful (from Mallory’s perspective) properties
of the initial set versus the resulting set.

A3. Subset Alteration Altering a subset of
the items in the original data set such that there is
still value associated with the resulting set. In the
categorical data framework, subset alteration is intu-
itively quite expensive from a data-value preservation
perspective. One has also to take into account semantic
consistency issues that become immediately visible
because of the discrete nature of the data.

A4. Subset Re-sorting If a certain order can be
imposed on the data then watermark retrieval/detection

should be resilient to re-sorting attacks and should not
depend on this predefined ordering.

A5. Vertical Data Partitioning In this attack,
a valuable subset of the attributes are selected (by
vertical partitioning) by Mallory. The mark has to be
able to survive this partitioning. The encoding method
has to feature a certain attribute-level property that
could be recovered in such a vertical partition of the
data. We believe that while vertical data partitioning
attacks are possible and also very likely in certain
scenarios, often value is to be found in the association
between a set of relation attributes. These attributes
are highly likely to survive such an attack, as the final
goal of the attacker is to produce a still-valuable result.

A6. Attribute Remapping If data semantics allow
it, re-mapping of relation attributes can amount to a
powerful attack that should be carefully considered.
In other words, if Mallory can find an, at least
partial, value-preserving mapping from the original
attribute data domain to a new domain, a watermark
should hopefully survive such a transformation. The
difficulty of this challenge is increased by the fact
that there naturally are an infinity of transformations
available for a specific data domain. Determining
a value-yielding one is both data and consumer
dependent. This is thus an intractable task for
the generic case. One special case is primary key
re-mapping. In Section 4.5 we discuss the particular
case of bijective mappings.

Given the attacks above, several properties of a
successful solution surface. For immunity against
A1, the watermark has to be embedded in overall
data properties that survive subset selection. If the
assumption is made that the attack alterations do
not destroy the value of the data, then A3 should
be defeat-able by embedding the primitive mark in
resilient global data properties. Since it adds new data
to the set, defeating A2 seems to be the most difficult
task, as it implies the ability to identify potential uses
of the data (for the attacker). This is especially so
in the case of categorical data where we suspect the
main attack will focus not as much on expensive data
alterations but more on data addition.

2.4 Embedding Limits

By its very nature, watermarking modifies its input.
If data constraints on the input - output relation-ship
are too restrictive and do not allow enough change,
watermarking could potentially fail due to lack of
bandwidth. While it is necessary that the intended
purpose of the data should be identified and preserved
during the watermarking process, sometimes this is not
possible.

The extreme case occurs when any alterations are
allowed to the data. In this case the available band-
width is directly related to the data entropy. As this
requirement is becoming increasingly restrictive, the
watermark is necessarily becoming more vulnerable.
Often we can express the available bandwidth as
an increasing function of allowed alterations. In
Section 4.4 we discuss the relation-ship between attack
vulnerability and embedding bandwidth.

3 Categorical Data

The discrete nature of our data domain results in
an inherent limitation in the associated entropy. In
order to enable watermarking, we first aim to discover
appropriate embedding channels. Next, we propose
new encoding methods, able to leverage the newly
discovered bandwidth.

3.1 Bandwidth Channels

If the discrete attribute A has a finite set of possible
values (nA), unless this value is really high, the
associated log2(nA) bits entropy is not going to be
enough for direct-domain embedding of a reasonable
watermark length/convince-ability. For example in the
case of departure cities, a value of nA = 16000 is
going to yield only 14 bits.

In the case of categorical data however (and not
necessarily in any other continuous data domain) there
exists a natural, solid semantic association between
A, the rest of the schema’s categorical attributes (e.g.
B) and the data’s primary key K . This association
derives from the fact that in most cases there exists no
concept of “minor” changes. Any change is going to
necessarily be significant (e.g. change departure city
from “Chicago” to “San Jose”). A comparatively large

potential encoding bandwidth can be found in these
associations between categorical attributes (including
possibly the primary key). We propose to make use of
it in our embedding algorithm.

Additionally, while direct-domain embedding does
not seem to have enough entropy potential, we will
leverage a related dimension, the value occurrence
frequency-transform, (attribute frequency histogram)
as an additional (or alternate) encoding channel.

Our next objective is to provide an embedding
method that is able to resiliently hide information
in the attribute association outlined above (while
preserving guaranteed data distortion bounds) and
then, if necessary, augment it with a direct-domain
watermark.

3.2 Algorithms

Surviving vertical partitioning attacks is important
and requires a careful consideration of the attribute
association used in the embedding process. Selecting
the appropriate attributes is challenging as one has to
determine many possible valuable features to be found
in the data that would still be preserved after vertical
partitioning.

This is why we propose an initial user-level
assessment step in which a set of attributes are selected
that are likely to survive vertical partitioning attacks
(see Section 3.3 for an extended discussion). In the
extreme case (i), just one attribute and the primary
key are going to survive. A milder alternative (ii)
assumes that several (e.g. two) categorical attributes
and the primary key survive the partitioning process.
Apparently, a watermarking method for (i) presents the
disadvantage of a direct primary key-dependency. In
Section 3.3 we further expand on this.

Let us propose an encoding method for (i), in which
we encode a watermark in the bandwidth derived
from the association between the primary key and a
categorical attribute A. In Section 4 we analyze (ii).

3.2.1 Mark Encoding

At mark encoding time we assume the following input:
a relation with at least a categorical type attribute A

(to be watermarked), a watermark wm and a set of
secret keys (k1, k2) and other parameters (e.g. e) used

wm embed(K,A,wm,k1,k2,e,ECC)
wm data← ECC.encode(wm,wm.length)
for (j ← 1; j < N ; j ← j + 1)

if (H(Tj(K), k1)) mod e = 0) then
t← set bit(H(Tj(K), k1), 0,

wm data[H(Tj(K), k2)])
Tj(A)← at

wm embed alternate(K,A,wm,k1,e,ECC)
wm data← ECC.encode(wm,wm.length)
idx← 0
for (j ← 1; j < N ; j ← j + 1)

if (H(Tj(K), k1) mod e = 0) then
t← set bit(H(Tj(K), k1), 0, wm data[idx])
Tj(A)← at

embedding map[Tj(K)]← idx

idx← idx + 1
return embedding map

Figure 1. (a) Embedding Algorithm (b) Alternative
using embedding map (bit size adjustments left out
for formatting purposes)

in the embedding process. The algorithm starts by
discovering a set of “fit” tuples determined directly by
the association between A and the primary relation key
K. These tuples are considered for mark encoding.

We say that a tuple Ti is “fit” for encoding
iff H(Ti(K), k1) mod e = 0, where e is an
adjustable encoding parameter determining the per-
centage of considered tuples 1 and k1 is a secret
max(b(N), b(A))-bit key. In other words, a tuple is
considered “fit” if its primary key attribute satisfies a
certain secret criteria 2.

Error Correction. Because often the available
embedding bandwidth N

e
is greater than the watermark

bit-size |wm|, we can afford the deployment of an
error correcting code (ECC) that, upon embedding
takes as input a desired watermark wm and produces
as output a string of bits wm data of length N

e

containing a redundant encoding of the watermark,
tolerating a certain amount of bit-loss, wm data =

1The set of fit tuples contains roughly N
e

elements. The
parameter e can be controlled at embedding time to adjust the
trade-off between the level of data alteration and mark resilience.
See Section 4.4 for a more detailed analysis.

2Similar criteria are found in various frameworks, such as [6].

ECC.encode(wm, N
e
). At decoding time, the

ECC takes as input (a potentially altered) wm data

and produces the (most likely) corresponding wm,
wm = ECC.decode(wm data, |wm|). There are a
multitude of error correcting codes to choose from. As
this does not constitute the main contribution of this
research, in our implementation we deploy majority
voting codes. Let wm data[i] be the i-th bit of
wm data. Thus, before embedding, our algorithm
starts by deploying the error correcting code first
to compute the bits to be embedded wm data =
ECC.encode(wm, N

e
).

For each “fit” tuple Ti, we encode one bit
by altering Ti(A) to become Ti(A) = at

where t = set bit(msb(H(Ti(K), k1), b(nA)), 0,
wm data[msb(H(Ti(K), k2), b(

N
e
))]) , where k2 is a

secret key k2 6= k1. In other words, we are generating
a secret value of b(nA) bits (depending on the primary
key and k1) and then force its least significant bit
to a value according to a corresponding (random,
depending on the primary key and k2) position in
wm data.

The use of a second different key here ensures that
there is no correlation between the selected tuples for
embedding (selected also by k1) and the corresponding
bit value positions in wm data (selected by k2). Such
a correlation would potentially cause certain bits to
be never considered in the embedding process. In
summary, the new attribute value is selected by the
secret key k1, the associated relational primary key
value and a corresponding bit from the watermark data
wm data.

The “fitness” selection step provides several ad-
vantages. On the one hand this ensures the secrecy
and resilience of our method, on the other hand,
it effectively “modulates” the watermark encoding
process to the actual attribute-primary key association.
Additionally, this is the place where the cryptographic
safety of the hash one-wayness is leveraged to defeat
court-time attacks in which Mallory claims that the
data in dispute is not actually watermarked but that
rather certain values for k1,k2 were searched for to
yield the watermark.

Note: When computing t (i.e. selecting a new value
for Ti(A)) there can be (arguably rare) cases when we
select the same wm data bit to embed The pseudo-
random nature of H(Ti(K), k2) guarantees on average

that a large majority of the bits in wm data are going
to be embedded at least once. The ulterior step of error
correction can tolerate such small changes.

Alternately, we could keep an on-the-fly hash-
table/mapping (with (N

e
) entries, See Figures 1 (b) and

2 (b)) between Ti(K) values and the actual considered
bit index in wm data. This mapping can be used at
detection time to accurately detect all wm data bits.
In this case, also we do not require an extra watermark
bit selection key (k2). Although we use this alternative
in our implementation, for simplicity and conciseness
reasons we are not going to discuss it here.

The advantage of using H(Ti(K), k2) in selecting
the wm data bit to embed becomes clear when we
discuss data loss alterations. Because the selected
bit is directly related only to the currently considered
tuple, this method naturally survives subset selection
and data addition attacks. More on this in section 5.

While it does a good job in watermark embedding,
data alteration is an expensive operation because it
effectively destroys valuable data. There are also other
data transformations that we can make use of, each
with a different degree of associated data distortion and
benefits. For a discussion on an alternative (i.e. data
addition) see Section 4.6.

3.2.2 Mark Decoding

In the decoding phase we assume the following input:
the potentially watermarked data, the secret keys k1,
k2 and e. We then use the same criteria for discovering
“fit” tuples. That is, we say that a tuple Ti is “fit” for
encoding iff H(Ti(K), k1) mod e = 0.

The first aim of the decoding algorithm is to
discover the embedded wm data bit string. For
each “fit” tuple Ti, with Ti(A) = at, we set
wm data[msb(H(Tj(K), k2), b(

N
e
))] = t&1.

Once wm data (possibly altered) is available, the
error correcting mechanism is invoked to generate the
(“closest”, most likely) corresponding watermark wm,
wm = ECC.decode(wm data, |wm|).

3.3 Multiple Attribute Embeddings

We introduced a watermarking method making use
of the bandwidth present in the association between
the primary key and the categorical type attribute A.

wm decode(K,A,k1,k2,e,ECC)
for (j ← 1; j < N ; j ← j + 1)

if (H(Tj(K), k1) mod e = 0) then
determine t such that Tj(A) = at

wm data[msb(H(Tj(K), k2), b(
N
e
))] = t&1

wm← ECC.decode(wm data,wm.length)
return wm

wm decode alternate(K,A,k1,e,ECC,embedding map)
for (j ← 1; j < N ; j ← j + 1)

if (H(Tj(K), msb(k, b(K))) mod e = 0) then
determine t such that Tj(A) = at

wm data[embedding map[Tj(K)]] = t&1
wm← ECC.decode(wm data,wm.length)
return wm

Figure 2. (a) Decoding Algorithm (b) Alternative
using embedding map

This method did not touch the primary key attribute
but rather relied on modulating A through minor
alterations (and data additions, see Section 4.6).

In the following we extend this algorithm to provide
more generality and resilience, in particular to attacks
of the type A5 (vertical data partitions). In a possible
attack scenario Mallory partitions the data in such a
way as to preserve only two attributes and no primary
key. Moreover, if one of the remaining attributes can
act as a primary key, this partitioning results in no
duplicates-related data loss (in the two attributes).

Defeating this scenario leads to a natural extension.
Instead of relying on the association between the
primary key and A, the extended algorithm considers
all pairs 3 of attributes and embed a watermark
separately in each of these associations. In other
words, if the original watermarking method read
mark(K,A) for a schema composed of the primary
key K and A, in the case of a (K,A,B) schema
we apply the watermark several times, for example
mark(K,A); mark(K,B); mark(A,B). In each
case, we treat one of the attributes as a primary
key in Section 3.2, while maintaining the rest of the
algorithm in place. This provides protection against

3For simplicity we consider pairs for now, but believe that an
arbitrary number of attributes could be considered.

A5 attacks and allows for more resilience in the rest
of the scenarios (as there are more rights “witnesses”
to testify). In addition, this effectively “breaks” the
previous algorithm’s dependency of the primary key.

Several issues need to be resolved. One apparent
problem is the issue of interference. If we watermark
the pair (K,A) and then aim to watermark (K,B)
everything seems to work out fine as the modified
attributes A,B are different. With the exception of
semantic consistency issues that would need to be
handled (as they would also be in the initial case, see
Section 4) the two encodings seem to be independent.
But in the case of additionally watermarking the pair
(A,B), modifying B suddenly interferes with the
modifications occurred in the (K,B) case.

Although the level of interference is likely to
be very low 4, there exists a solution to this
problem. Maintaining a hash-map at watermarking
time, “remembering” modified tuples in each marking
pass, allows the algorithm (extended accordingly)
to avoid tuples and/or values that were already
considered.

Additionally, when considering the association be-
tween two attributes A,B as an encoding channel for a
watermark, if values in B were already altered during a
previous encoding, instead of deploying mark(A,B)
(which would result in further alterations to B), we
propose the deployment of mark(B,A). While still
encoding the mark in the association between A and B,
by modifying A (assumed un-modified yet, otherwise
it doesn’t matter anyway) we effectively “spread” the
watermark throughout the entire data, increasing its
level of resilience.

Moreover, if data constraints allow, we propose
watermarking each and every attribute pair by first
building a closure for the set of attribute pairs over the
entire schema that minimizes the number of encoding
interferences while maximizing the number of pairs
watermarked. Due to limited space constraints we are
not elaborating on this here.

Note: The discrete nature of categorical attributes
complicates the watermarking process of a pair (A,B)
in which a categorical attribute A is used as a primary
key (in the initial algorithm). In the extreme case, A

4As the probability of the same tuple to be considered again
in the second encoding is low, especially in large data sets, see
Section 4.4 for a related analysis.

can have just one possible value which would upset
the “fit” tuple selection algorithm. It remains to be
investigated if a pair-closure can be constructed over
the schema such that no categorical attributes are going
to be used as primary key place-holders.

4 Discussion

4.1 On-the-fly Quality Assessment

In the relational framework it is important to
preserve structural and semantic properties of the data.
Because by its very nature, watermarking alters its
input, we have to provide a mechanism ensuring that
these alterations are not degrading the data beyond
usability. Preserving data quality requires the ability
to express and enforce data constraints. Sometimes
it is undesirable or even impossible to directly map
higher level semantic constraints directly into low level
(combined) change tolerances for individual tuples or
attributes 5. The practically infinite set of potential
semantic constraints that can be desired/imposed on
a given data set makes it such that versatile, “data
goodness” (i.e. semantically) assessment method is
required. Thus, we propose to extend the marking
algorithm with semantic data constraints awareness.
We introduced and successfully analyzed this idea
in [12]. Each property of the database that needs
to be preserved is written as a constraint on the
allowable change to the dataset. The watermarking
algorithm is then applied with these constraints as
input and re-evaluates them continuously for each
alteration. A rollback log (see Figure 3) is kept to
allow undo operations in case certain constraints are
violated by the current watermarking step. Due to
space considerations, we are not going to elaborate on
this further. In the following we are going to focus on
the encoding method itself.

4.2 Frequency Domain Encoding

While most vertical partitioning attacks can be
handled by a multiple attribute embedding solution as

5It should be noted that not all constraints of the database
need to be specified. A practical approach would be to begin
by specifying a upper bound on the percentage of allowable data
alterations. Further semantic or structural constraints that the user
would like to preserve can be added to these basic constraints.

usability
metrics
plugin

handler

usability metric
plugin A

usability metric
plugin B

usability metric
plugin C JDBC

WM

evaluate usermark

key

alteration rollback log

attributes

A1 A2 A3 A4 A5 A6

DBMS

Figure 3. Data quality is continuously evalu-
ated. A rollback log aids undo operations in
cases where the watermark embedding would
violate quality constraints.

described in Section 3.3, consider an extreme vertical
partitioning attack scenario in which Mallory only
preserves a single (categorical) attribute A.

An intuitive assumption is that nA (the number of
possible values in A) is much smaller than N , thus
A (by itself) is naturally containing many duplicate
values. Because there is probably very little value
associated with knowing the set of possible values of
{a1, ..., anA

}, the main value of A (in Mallory’s eyes)
is (arguably) to be found in one of the only remaining
characteristic properties, namely the value occurrence
frequency distribution [fA(ai)]i∈(1,nA). If we could
devise an alternative watermark encoding method for
this set we would be able to associate rights also to
this aspect of the data, thus surviving this extreme
partitioning attack.

Note: If the data value occurrences are uniformly
distributed (often unlikely, imagine airport or product
codes) distinguishing among these values will not
work and (arguably) there is nothing one can do to
watermark that result.

In [10] we introduced a watermarking method for
numeric sets that is able to minimize the absolute
data alteration in terms of distance from the original
data set. We propose to apply this method here to
embed a mark in the occurrence frequency distribution
domain. One concern we should consider is the
fact that in the categorical domain we are usually
interested in minimizing the number of data items
altered whereas in the numeric domain we aim to

minimize the absolute data change. It is surprising
and fortunate that, because [fA(ai)]i∈(1,nA) are values
modeling occurrence frequency, a solution minimizing
absolute data change in this (frequency) domain
naturally minimizes the number of items changed
in the categorical value domain. Other concerns
include issues such as mark interference (with the
other encodings), which can be solved by an approach
similar to the one in Section 3.3 using embedding
markers.

4.3 Blindness and Incremental Updates

Our watermarking method is blind, in that it doesn’t
require the original data in the detection process. This
is important, because it is un-realistic to assume the
original data available after a longer time elapses,
especially in the case of massive data sets. Also, our
method supports incremental updates naturally. As
updates occur to the data, the resulting tuples can be
evaluated on the fly for “fitness” and watermarked
accordingly.

4.4 Attack Vulnerability

In order to fight false-positive claims in court we
ask: What is the probability of a given watermark of
length |wm| to be detected in a random data set of
size N ? The assumption is of course that |wm| < N

e

(enough bandwidth).
It is easy to prove that this probability is (1

2)|wm|.
In case multiple embeddings are used (e.g. majority
voting) and all available bits are utilized, this
probability decreases even more to (1

2)
N
e . For

example, in the case of a data set with N =
6000 tuples and with e = 60, this probability is
approximately 7.8 × 10−31.

In the absence of additional information, Mallory,
faced with the issue of destroying the watermark
while preserving the value of the data, has only one
alternative available, namely a random attack (Here
we are concerned with data alteration attacks). We
ask: what is the probability of success of such an
attack ? In other words, if an attacker randomly
alters a total number of a data tuples and succeeds
in each case to flip the embedded watermark bit with
a success rate p, what is the probability of success

of altering at least r, r < a watermark bits in the
result, P (r, a) ? It can be shown that P (r, a) =
∑a

i=r [aCi] × pa × (1 − p)a−i.
Remember that only every e-th tuple (on average) is

watermarked, thus Mallory effectively attacks only an
average of a

e
tuples actually watermarked. If r > a

e

then P (r, a) = 0. In the case of r < a
e

we have we
have the corrected version

P (r, a) =

(a
e
)

∑

i=r

C
a
e

i × p(a
e
) × (1 − p)(

a
e
)−i (1)

Consider r = 15, p = 70% (it is quite likely that when
Mallory alters a watermarked tuple, it will destroy
the embedded bit), a = 1200 (20% of the tuples are
altered by the attacker6 , |wm| = 10 and e = 60
(|wm data| = 100).

Because we have an effectively binomial distribu-
tion experiment with Xi = 1, with probability p

and Xi = 0, with probability 1 − p. E[Xi] = p,
var(Xi) = E[X2

i]− (E[Xi])
2 = ... = p× (1− p), by

using the central limit theorem [8], we can derive that
f(

∑

Xi), where

f(
∑

Xi) =

∑

Xi − a
e
× p

√

a
e
× p × (1 − p)

(2)

effectively behaves like a normal distribution N(0, 1)
(when a

e
× p ≥ 5 and a

e
× (1 − p) ≥ 5). In other

words, the probability that (
∑

Xi) > r (attack altering
at least r bits) can be rewritten as the probability of
f(Xi) > f(r). Because of the normal behavior of
f(x) (we know f(r)) we can estimate this probability
by normal distribution table lookup. Thus, we get
P (15, 1200) ≈ 31.6%.

If we assume that the error correcting code tolerates
an average of tecc = 5% alterations to the underlying
data and that the alteration propagation is uniform and
stable 7 then the final watermark is going to incur only
an average fraction of

(
r
N
e

− tecc) ×
|wm|

|wm data|
6This is likely a highly value-damaging operation overall. Such

an attack is unlikely because Mallory cannot afford destroying the
data beyond use. We present it for illustration purposes.

7These are intuitive terms we use to denote the fact that if
one bit in wm data is altered above the tecc bound then a stable
average of |wm|

|wm data|
are altered in the resulting error corrected

watermark wm = ECC.decode(wm data, |wm|).

alteration. In our case this is only 1.0%, corresponding
to an average of 1.0 bit in the watermark. Thus in
order to modify one bit in the watermark Mallory has
to alter at least 20% of the data and even then has
only a success rate of 31.6% ! This analysis was done
in a highly attack-favorable scenario in which error
correction can only handle 5% alterations in wm data.

Because data alteration is expensive, naturally
we aim to minimize the number of altered tuples
in the watermarking process. If we define attack
vulnerability as the probability P (r, a)1 to succeed
in altering one bit in the final watermark (wm), and
the number of altered tuples is defined by the ratio
N
e

, we ask: what is the relationship between the
required number of fit tuple encodings (i.e. available
bandwidth) and attack vulnerability ? In other words,
what is the minimum number of alterations we have
to allow (and perform) in the watermarking phase
that would guarantee a certain upper bound on the
overall attack vulnerability. While this relationship is
somewhat defined by equation (1), we are interested
here in an actual estimate for a likely scenario.

If we assume that Mallory cannot afford to modify
more than 10% of the data items (a = 600) and we set
a maximum tolerable threshold τ = 10% for P (r, a)1

(P (r, a)1 < τ), let us compute the minimum required
e to guarantee these bounds (the other values are as
above). By using equation (2) and doing a normal
distribution table lookup we derive that (for τ = 10%)

we have to satisfy
r−a

e
×p√

a
e
×p×(1−p)

= 1.28, which results

in e ≈ 23. In other words, we have to alter only
≈ 4.3% of the data to guarantee these bounds !

4.5 Bijective Attribute Re-mapping

Consider the scenario of an attack in which the
categorical attribute A is re-mapped through a bijective
function to a new data domain. In other words, the
{a1, ..., anA

} values are going to be mapped into a
different set {a′

1, ..., a
′
nA

}. The assumption here is that
from Mallory’s perspective, the re-mapped data still
features enough value that can be banked upon 8.

The problem of remapping becomes clear in
the mark detection phase when, after tuple fitness

8Even more, Mallory could sell a secret secure black-box
“reverse mapper” together with the re-mapped data to third parties,
still producing revenue

selection, the bit decoding mechanism will fail, being
unable to determine t such that Tj(A) = at. It
will instead determine a t value that maps to the
{a′1, ..., a′nA

} value set. Thus our main challenge is to
discover the mapping (or a major part of it) and apply
its inverse in the detection phase.

Unless the items in the initial set {a1, ..., anA
}

feature a peculiar distinguishing property, intuitively
this task is impossible for the general case, as
there are a large number of possible mappings.
Nevertheless, over large data sets we argue that a such
distinguishing property might exist, namely the value
occurrence frequency for the items in {a1, ..., anA

}.
We propose to sample this frequency in the suspected
(remapped) dataset and compare the resulting esti-
mates (E[fA(a′j)]j∈(1,nA)) with the known occurrence
frequencies ((fA(aj))j∈(1,nA)). Next, we sort both
sets and associate items by comparing their values.
For example if the closest value to E[fA(a′i)] (in
the set E[fA(a′j)]j∈(1,nA)) is fA(aj) (in the set
(fA(aj))j∈(1,nA)), then we add i → j to the inverse
mapping to be used at watermark decoding time.

4.6 Data Addition

While it does a good job in watermark embedding,
data alteration is an expensive operation because it
effectively destroys valuable data. There are also other
data transformations that we can make use of, each
with a different degree of associated data distortion
and benefits. In particular, data addition seems to
be a promising candidate. Intuitively it features a
much lower data distortion rate (no actual alterations)
and thus presents potentially higher benefits. On
the other hand there likely exists an upper bound
on the number of tuples that can be added to the
data. Let padd be the upper bound on the allowed
additional percentage of tuples to be added. We
propose that in addition to the initial data-altering
step, we artificially “inject” watermarked tuples that
conform to the “fitness” criteria (while conforming
to the overall data distribution, in order to preserve
stealthiness).

But isn’t data addition of “fit” tuples inhibited by
the one-way nature of the used cryptographic hash ?
Not exactly. Because c effectively “reduces” the fitness
criteria testing space to a cardinality of c, we can afford

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 30 40 50 60 70 80

m
ar

k
al

te
ra

tio
n

(%
)

attack size (%)

e=65
e=35

Figure 4. The watermark degrades gracefully
with increasing attack size (e = 65).

to massively produce random tuple values (within
the appropriate attribute data domain) and test for
“fitness”. On average (depending on the randomness
of the tuple producing mechanism), one in every c

tuples should conform (as the values are evaluated
modulo c).

If a percentage of padd artificially produced tuples
are to be added to the data, the watermark is effectively
enforced with an additional padd×N bits. See Section
4.4 for an analysis on the impact of watermark bits on
the encoding resilience.

5 Experiments

We implemented a Java proof-of-concept of the
watermarking algorithm and deployed it on categorical
attributes in the Wal-Mart Sales Database. The
Wal-Mart Sales Database contains most of the
information regarding item sales in Wal-Mart stores
nationwide. In the following we present some of
our experiments in watermarking categorical attributes
within this database. Our experimental setup included
access to the 4 TBytes Wal-mart data, (formerly)
hosted on a NCR Teradata machine, one 1.6GHz CPU
Linux box with Sun JDK 1.4 and 384MB RAM.
The amount of data available is enormous. For
example, the ItemScan relation contains over 840
million tuples. For testing purposes, we deployed
our algorithm on a randomly selected subset of size
equal to a small percentage of the original data size
(e.g. just a maximum of 141000 tuples for relation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200

m
ar

k
al

te
ra

tio
n

(%
)

e

attack size 55%
attack size 20%

Figure 5. More available bandwidth (decreas-
ing e) results in a higher attack resilience.

UnivClassTables.ItemScan). The relational schema
included the attributes:

Visit_Nbr INTEGER PRIMARY KEY,
Item_Nbr INTEGER NOT NULL

To illustrate and test our watermarking algorithm
we choose Item Nbr, a categorical attribute, uniquely
identifying a finite set of products. The watermark
considered was 10 bits long, all the presented data is
the result of an averaging process with 15 passes (each
seeded with a different key), aimed at smoothing out
data-dependent biases and singularities.

In the first experiment we analyzed the behavior of
the embedded watermark in the presence of massive
data alterations. As the attack size grows (random
alterations to the data), the watermark distortion
increases. The error correction mechanism (majority
voting in this case) does a good job in error recovery.
This is particularly so in the case of random alterations
to the underlying data, the only available data altering
attack option as discussed in Section 4.4. Figure 4,
depicts this phenomena for two values of e.

The next experiment aims at exploring the relation-
ship between the amount of alterations required in
the watermarking phase and a minimum guaranteed
watermark resilience. It can be seen in Figure 5
that as e increases (decreasing number of encoding
alterations) the vulnerability to random alteration
attacks increases accordingly. This illustrates the
trade-off between the requirement to be resilient and
the preservation of data quality (e.g. fewer alterations).

 0 10 20 30 40 50 60 70 80
attack alterations(%) 0

 50
 100

 150
 200

e

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

mark loss(%)

Figure 6. The watermark alteration surface
with varying c and attack size a. Note the
lower-left to upper-right tilt.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80

m
ar

k
al

te
ra

tio
n

(%
)

data loss (%)

Figure 7. The watermark degrades almost
linearly with increasing data loss.

Figure 6 represents the composite surface for both
experiments.

An experiment analyzing resilience to data loss
is depicted in Figure 7. We observe here the
compensating effect of error correction. Compared
to data alteration attacks, the watermark survives even
better with respect to the attack size (in this case loss
of data).

6 Conclusions

In this paper we defined the problem of water-
marking categorical data. We proposed a solution
and analyzed it both in theory and in practice. We

outlined a set of extensions (e.g. an alternative for
occurrence frequency encoding to survive extreme
vertical partitioning attacks) and discussed main
associated attacks and challenges. We implemented
a proof-of-concept for our algorithm and deployed
it in experiments on real Wal-Mart sales data. Our
method proves (experimentally and by analysis) to
be extremely resilient to both alteration and data loss
attacks, for example tolerating up to 80% data loss
with a watermark alteration of only 25%.

Various issues remain to be explored. Additive
watermark attacks need to be analyzed and handled.
Also, while the concept of on-the-fly quality as-
sessment (see Section 4.1) has a good potential to
function well, as confirmed also by experiments in
[12], another interesting avenue for further research
would be to augment the encoding method with direct
awareness of semantic consistency (e.g. classification
and association rules). This would likely result in
an increase in available encoding bandwidth, thus in
a higher encoding resilience. One idea would be to
define a generic language (possibly subset of SQL)
able to naturally express such constraints and their
propagation at embedding time.

Acknowledgments

We would like to thank Murat Kantarcioglu for the
useful insights and discussions.

References

[1] M.J. Atallah, V. Raskin, C. F. Hempelmann,
M. Karahan, R. Sion, K. E. Triezenberg, and
U. Topkara. Natural language watermarking and
tamperproofing. In Lecture Notes in Computer
Science, Proc. 5th International Information
Hiding Workshop 2002. Springer Verlag, 2002.

[2] Christian Collberg and Clark Thomborson.
Software watermarking: Models and dynamic
embeddings. In Principles of Programming
Languages, San Antonio, TX, January 1999.

[3] Ingemar Cox, Jeffrey Bloom, and Matthew
Miller. Digital watermarking. In Digital
Watermarking. Morgan Kaufmann, 2001.

[4] Stefan Katzenbeisser (editor) and Fabien Petitco-
las (editor). Information hiding techniques for
steganography and digital watermarking. In In-
formation Hiding Techniques for Steganography
and Digital Watermarking. Artech House, 2001.

[5] D. Gross-Amblard. Query-preserving water-
marking of relational databases and xml doc-
uments. In Proc. Nineteenth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of
Database Systems, 2003.

[6] J. Kiernan and R. Agrawal. Watermarking
relational databases. In Proceedings of the
28th International Conference on Very Large
Databases VLDB, 2002.

[7] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma,
Q. Shao, and Y. Zhang. Experience with software
watermarking. In Proceedings of ACSAC,
16th Annual Computer Security Applications
Conference, pages 308–316, 2000.

[8] Sheldon Ross. A first course in probability. In A
First Course in Probability. Prentice Hall, 2001.

[9] Bruce Schneier. Applied cryptography: Proto-
cols, algorithms and source code in c. In Applied
Cryptography. John Wiley and Sons, 1996.

[10] Radu Sion, Mikhail Atallah, and Sunil Prabhakar.
On watermarking numeric sets. In Proceedings of
IWDW 2002, Lecture Notes in Computer Science,
CERIAS TR 2001-60. Springer-Verlag, 2002.

[11] Radu Sion, Mikhail Atallah, and Sunil Prabhakar.
Power: Metrics for evaluating watermarking
algorithms. In Proceedings of IEEE ITCC 2002,
CERIAS TR 2001-55. IEEE Computer Society
Press, 2002.

[12] Radu Sion, Mikhail Attalah, and Sunil Prabhakar.
Rights protection for relational data. In CERIAS-
TR 2002-28, Proceedings of ACM SIGMOD,
2003.

