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Complements of Interval Graphs and Related Problems

M. G. Andrews? M. J. Atallah3 D. Z. Chen* and D. T. Leé

Abstract.  Given a set oh intervals representing an interval graph, the problem of finding a maximum
matching between pairs of disjoint (nonintersecting) intervals has been considered in the sequential model.
In this paper we present parallel algorithms for computing maximum cardinality matchings among pairs of
disjoint intervals in interval graphs in the EREW PRAM and hypercube models. For the general case of the
problem, our algorithms compute a maximum matchin@itiog® n) time usingO(n/ log? n) processors on

the EREW PRAM and using processors on the hypercubes. For the case of proper interval graphs, our
algorithm runs inO(logn) time usingO(n) processaors if the input intervals are not given already sorted and
usingO(n/ logn) processors otherwise, on the EREW PRAM.®processor hypercubes, our algorithm for

the proper interval case tak€glogn log logn) time for unsorted input an@ (log n) time for sorted input. Our
parallel results also lead to optimal sequential algorithms for computing maximum matchings among disjoint
intervals. In addition, we present an improved parallel algorithm for maximum matching between overlapping
intervals in proper interval graphs.

KeyWords. Parallel algorithms, Maximum matching problems, Interval graphs, Complementgraphs, EREW
PRAM, Hypercubes.

1. Introduction. Considerasetofintervals,= {l4, Io, ..., I}, onthex-axis, where
interval I; = [le(i), re(i)] is specified by its two endpoints: the left endpoilei ),
and the right endpointe(i), with le(i) < re(i). Two intervalsl; = [le(i), re(i)] and

l; = [le(j), re(j)] aredisjoint (to each other) ife(i) < le(j) orre(j) < le(i); oth-
erwise theyoverlap A graphG is called aninterval graphif there exists a selg of
intervals such that there is a one-to-one correspondence between the verGcanaaf
the intervals inlg and such that any two vertices & are connected by an edge if
and only if their corresponding intervals Ig overlap. Such an interval skt is called
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aninterval modelof G. An interval graphG is said to beproper if and only if there

is an interval modelg of G such that no interval ing is contained within any other
interval in |g. Interval graphs find applications in many areas, such as VLSI design,
scheduling, biology, traffic control, and archeology [17]. In this paper we assume that
an interval model of the corresponding interval graph is already given. We will refer
to intervall;, intervali, interval [le(i), re(i)], and vertex (corresponding to interva)
interchangeably.

A matchingn a graphG is a subseM of the edges o6 such that no two distinct edges
in M are incident to the same vertex. The problem of computing maximum matchings
in graphs has many applications and has received a lot of attention [12]. However, no
deterministic parallel algorithm for computing maximum matchings in general graphs
is known that takes polylogarithmic time using a polynomial number of processors [19].

In this paper we consider the following matching problem on d s#tn intervals:

Find a maximum cardinality matchingl in | such that two intervals can be matched

in M only if they are disjoint. This problem, in fact, is that of computing a maximum
cardinality matching in the complement graph of the corresponding interval gaph

of 1. An O(nlogn) time sequential algorithm for this matching problem was given by
Andrews and Lee [3]. A related problem on matching in interval graphs was considered
by Moitra and Johnson [26], who gave a sequential and a parallel algorithm for finding
maximum cardinality matchings in interval graphs where twerlappingintervals

can be matched. To the best of our knowledge, there was no previously known efficient
parallel algorithm (i.e., in polylogarithmic time using a polynomial number of processors)
for finding maximum matchings in the complement graphs of interval graphs. Here we
study the graph-theoretical problems of computing in parallel maximum cardinality
matchings in the complement graphs of interval graphs and interval graphs, provided
that their interval models are already available.

We present the first efficient parallel algorithms for computing maximum cardinality
matchings in interval models in which only disjoint intervals can be matched. For the
general case of the problem, our algorithms compute a maximum matchingrig® n)
time usingO(n/ log? n) processors on the EREW PRAM and usingrocessors on the
hypercubes. For the case of proper interval graphs, our algorithm rigag n) time
usingO(n) processors if the intervals are not given already sorted and @singlog n)
processors otherwise, on the EREW PRAM. ®processor hypercubes, our algorithm
for the proper interval case tak€glog n log logn) time for unsorted input an@® (log n)
time for sorted input. The approaches of our parallel algorithms are very different from
the seemingly inherently sequentidane sweepingnethod used in [3], and are based
on new characterizations of this matching problem. In fact, by simulating sequentially
our EREW PRAM algorithm, we can immediately give an optimal seque@tiallog n)
time algorithm for computing maximum matchings among disjoint intervals for arbitrary
intervals. Furthermore, if the endpoints of the input intervals are given sorted, we can
make our sequential algorithm for computing maximum matchings among arbitrary dis-
jointintervals run in linear time, as follows: A key subproblem in our parallel algorithms
for computing maximum matchings among disjoint intervals is that of finding maximum
matchings in convex bipartite graphs, which can be solved sequentially in linear time
[15], [25]; by using the optimal sequential algorithm for computing maximum match-
ings in convex bipartite graphs [15], [25] and by simulating sequentially the rest of our
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EREW PRAM algorithm, a maximum matching among arbitrary disjoint intervals can
be obtained in linear time. Such a sequential algorithm is very different from the plane
sweeping algorithm of Andrews and Lee [3] (which still tak&e log n) time for sorted
input intervals).

We also give an EREW PRAM algorithm for maximum matching betweesr-
lappingintervals in proper interval graphs, improving the processor complexity of the
previously best known CREW PRAM algorithm for this problem [26] by a factor of
n/logn.

The computational models we use are the EREW PRAM and hypercubes. The PRAM
is a synchronous parallel model in which all processors share a common memory and
each processor can access any memory location in constant time [19]. The EREW
PRAM does not allow more than one processor to access the same memory address
simultaneously. We also refer to the CREW PRAM model, which allows simultane-
ous accesses to the same memory location by multiple processors only if all such
concurrent accesses are for reading data only. The CREW PRAM is obviously more
powerful than the EREW PRAM. Our hypercube model is the standard one: It has
n processors, each wit® (1) local memory, and with one-port communication. For
a detailed discussion of the hypercube model, the reader is referred to the book by
Leighton [24].

The rest of the paper is organized as follows. Section 2 gives some notation and
preliminary results we need. In Section 3 we present parallel algorithms for the matching
problem among arbitrary disjointintervals. In Section 4 we present parallel algorithms for
the matching problem among disjoint proper intervals. Our improved parallel algorithm
for the matching problem on overlapping proper intervals is given in Section 5.

2. Preliminaries. The input consists of a set ofintervalsl = {l4, 1,,...,1,}. To
avoid cluttering the exposition, we assume without loss of generality that no two input
intervals have the same endpoint (i.e., theeBdpoints are distinct). Our algorithms can
easily be modified for the general case.

We first sort the & endpoints ofl from left to right if they are not given sorted. This
sorting can be done i@(logn) time usingO(n) processors on the EREW PRAM [10]
and inO(lognloglogn) time onn-processor hypercubes [13]. From now on, we assume
that the 2 endpoints ofl are available in this sorted order. On the EREW PRAM, these
endpoints are stored in an array; omaprocessor hypercube, each proce$36r stores
two endpoints, with the sorted order of the endpoints corresponding to the increasing
order of the processor indices. We also assume without loss of generality that the intervals
in | have been relabeled such that j impliesle(i) occurs beforde(j) in the sorted
array of endpoints. In the case of proper intervialg, j also impliege(i) occurs before
re(j) in the sorted array of endpoints. This relabeling can be easily carried out by a
parallel prefix computation. The parallel prefix operation can be performédloyg n)
time usingO(n/ logn) processors on the EREW PRAM [22], [23] anddr{logn) time
on n-processor hypercubes [24].

Given a matchindM in |, we say that an intervalisin M if i is matched byM. We
say that an intervahatches leffresp. right), denoted by a left (resp., right) arrow, if it
is matched inM with an interval to its left (resp., right). An interval ilee denoted by
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a circle, if itis unmatched with respect k. Intervali matching withj in M is denoted
asmatey (i) = j.

An intervali is said to beo the left(resp. right) of a vertical lineL if re(i) < x(L)
(resp.le(i) > x(L)), wherex(L) denotes the-coordinate of_.

DerINITION 2.1.  Amiddle line Vis a vertical line that divides the set ofi 2ndpoints
of I into two subsets, with one subset to each sid& pkuch that every subset has
exactlyn endpoints. Those intervals ¢fthat are intersected by a middle live are
calledcut-intervals

LEMMA 2.1. For any middle line \ the number b of intervals not cut by V lying to
the left of V is the same as the number of intervals not cut by V lying to the right of V
Furthermore b < |M|, where M is a maximum matching of |

PrROOF The fact that the numbers of intervals limot cut byV lying on each side
of V are the same follows immediately from the definitionvafSince a matching can
be obtained in such a way that each interval to the leff 6§ matched with a distinct
interval to the right oV, b < |M| follows. O

The following problem, defined by Kim [20], plays animportantrole in our algorithms.

DEFINITION 2.2.  Given a set of points on theaxis, some colored red and the other
colored blue, suppose that ared poinan be matched with a blue polnif x(r) < x(b).
The red—blue matching problens to find a maximum matching between the red and
blue points.

Kim [20] presented an EREW PRAM algorithm for the red—blue matching problem
with sorted input which take® (log n) time usingn/ log n processors. On arprocessor
hypercube, the red—blue matching problem with sorted input can be soledagn)
time, as follows: First apply Kim’s reduction [20] to reduce the problem t@theearest
smaller values probleifb] (this reduction take® (log n) time on the hypercube since it
mainly performs parallel prefix); then use the optimal hypercube algorithms by Chen [9]
and Kravets and Plaxton [21] to solve the all nearest smaller values problegoign)
time.

Our interval matching algorithms also make use of convex bipartite graphs which are
reviewed next.

DEFINITION 2.3. A convex bipartite grap = (A, B, E) is a bipartite graph whera
andB are respectively sequences of verti¢as ay, ..., an) and(by, by, ..., by), and
E isthe setof edges. Anedge, b) € E implies thata € Aandb € B, and furthermore,
(a,bj) € Eifand only if f; < j <I;, wheref; (resp.};) is the index of the first (resp.,
last) vertex inB to whichg; is connected.

Maximum cardinality matchings in convex bipartite graphs can be computed sequen-
tially either by combining the linear time algorithm of Gabow and Tarjan [15] for a
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special union-find problem with the algorithm of Lipski and Preparata [25] for com-
puting maximum matchings in convex bipartite graphs, or by using@tfrelogn) time
algorithm of Gallo [16]. Dekel and Sahni [14] presented a parallel algorithm for comput-
ing maximum cardinality matchings in convex bipartite graph®iiog? n) time using
O(n) EREW PRAM processors, and Atallah et al. [4] showed that the problem can be
solved inO(logn) time by usingO(n®) EREW PRAM processors.

The next lemma is needed by our PRAM algorithms. It shows that the processor
bound of Dekel and Sahni’s parallel algorithm [14] can be improved by a factor of log

LEMMA 2.2. For every convex bipartite graph & (A, B, E) with|A] <n and|B| <
n, a maximum cardinality matching }of G can be obtained in @og?n) time using
O(n/logn) EREW PRAM processars

PROOE The basic idea is to apply Brent's theorem [7] to simulate the parallel algorithm
of Dekel and Sahni [14] for computing maximum cardinality matchings in convex bipar-
tite graphs. Note that Dekel and Sahni’s algorithm [14] computes a maximum cardinality
matching in a convex bipartite graph @(log? n) time usingO(n) EREW PRAM pro-
cessors. The algorithm in [14] consists of two passes, each pass traversing a complete
binary tree ofn leaves level by level. At each level, the algorithm in [14] essentially
performs a constant number of parallel merges, and the number of operations performed
by the algorithm at each level 3(n). The total number of operations performed by the
algorithm of Dekel and Sahni [14], therefore,dgnlogn). By applying Brent's theo-

rem [7] and by using an optimal EREW PRAM merge algorithm [6], [8], [18], we can
easily simulate the algorithm [14] i®(log? n) time usingO(n/logn) EREW PRAM
processors. O

3. Maximum Matching among Arbitrary Disjoint Intervals. ~ Section 3.1 gives the

key observations for our matching algorithms. Section 3.2 presents the basic idea and
main algorithmic steps for finding a maximum matching between disjoint intervals in
general complement interval graphs. Sections 3.3 and 3.4 show the details of our EREW
PRAM and hypercube algorithms, respectively.

3.1. Useful Observations Our algorithms for the general case of disjoint interval
matching are based on the following observations.

LEMMA 3.1. There exists an optimal matching*Much that either the matched inter-
valsin M* that are to the left of a middle line V all have right arrofi®., match righ}, or
the matched intervals in Mthat are to the right of V all have left arrowise., match lef}.

PROOF Let M be an optimal matching. Suppose that therekafeesp. k; ) intervals in

M that are to the left (resp., right) & and have left (resp., right) arrows. Without loss
of generality, assumie < k;. If k = 0, then we are doneM* = M). So assumk > 0.
Now swap, in their matching pairs, theintervals that are to the left & and have left
arrows with anyk; intervals that are to the right & and have right arrows. For example,
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leti) (resp.j;) be aninterval thatis to the left (resp., right\dofind has a left (resp., right)
arrow inM; swapping, with i; means obtaining, from the two paifis, matey (i;)) and
(ir, matey (ir)), the two new pairgi,, mate, (i;)) and(i;, mate, (i;)). Clearly, such a
swapping is always possible. The matchig thus obtained has the same sizeMhs
and it is easy to see that no interval to the lefi/ofnatches left inv*. O

LEMMA 3.2, There exists an optimal matching*Much that any middle line V cuts all
free intervals with respect to M

PrOOF Let M be an optimal matching that has the property stated in Lemma 3.1.
Clearly, there cannot be free intervals to both the left and righ¥ dbtherwise,M

would have not been an optimal matching). So without loss of generality, assume that
there arek > O free intervals to the left 0f . We shall obtairM* from M.

We first do the following: Remove from our consideration all the intervals to the left
of V that match intervals to the right &f in M, and do the same thing on the right
side ofV. Note thatV is still a middle line in the set’ of the remaining intervals thus
obtained. Furthermore, there are at Idagttervals ofl’ to the right ofV that are all
matched inM.

There are two cases to consider.

Casel: The matched intervals to the right of V all have left arrow3here must be
at leastk such intervals to the right of , and since they all have left arrows but do not
match inM with intervals to the left ofV, they must match with intervals cut by.
Swap anyk matched intervals cut by with thek free intervals to the left o¥/. The
resulting matching is such an optimal matchig.

Case2: Not all the matched intervals to the right of V have left arrowgeti’ be an
interval to the right oV that has a right arrow and matches within M (obviously,i”

is also to the right o¥/). Then we claim thak must be 1. Proof of the claim: K > 1,
then M would have not been an optimal matching because we could have swidpped
andi” with two free intervals to the left 0¥/ to increase the size of the matching, a
contradiction. Sinc& is the middle line and there are at least two intervals (i.@nd

i”) to the right ofV, there must be an intervabf |’ to the left of V such thai matches
with an intervalj of I’. Since the optimal matchinigl satisfies Lemma 3.1 and since
(to the right ofVV) matches right, all matched intervalsidfto the left ofV must match
right. Becausé does not match itM with any interval to the right o¥/, j must be an
interval cut byV. Let the only free interval to the left &f be f. Perform a swap among
{f,i,i’,i”}sothat(f,i’) and(i, ") are paired ang becomes free. The resulting optimal
matching isM*. O

COROLLARY 3.1. There exists an optimal matching *Msuch that either all noncut
intervals of | to the left of V match right or vice versand such that all noncut intervals
are matched

ProoFr Follows from Lemmas 3.1 and 3.2. O
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Fig. 1. The form and pair types of an optimal matching as defined in Corollary 3.1.

Consider an optimal matching* as defined in Corollary 3.1. For all the cut-intervals,
some of them match left (let the number of thesé)bsome of them match right (let the
number of these he), and maybe some of them are free (let the number of the$¢.be
Without loss of generality, assume that all the noncut intervals to the rigtitroatch
left; this implies that > |. Then there are preciselly — || intervals lying to the left of
V which are paired with each other M*. Denote this set a8’. Since the intervals of
C’ are paired, this implies that — || must be a multiple of 2. Then, the form &f*
is as shown in Figure 1(a), arM* consists of four different types of matched pairs as
illustrated in Figure 1(b).

1. Type 1 matches an interval to the left\iwith one to the right ol/.
2. Type 2 matches an interval to the left\6fwith an interval cut byv.
3. Type 3 matches an interval to the right\bfwith an interval cut byv.
4. Type 4 matches two intervals on the same side .of

From Lemma 2.1, we know that the numlieof intervals on each side of is the
same. We number the intervals to the left (resp., righty &fom 1 tob (resp., fronb + 1
to 2b) by thedecreasing xcoordinates of theght (resp. Jeft) endpoints and store them in
an arrayX (resp.Y). See Figure 2 for an example. llé¢tdenote the set of intervals cut by
V. Consider aninterval € U. The set of possible candidates @oto “match left” is the
subsetofintervalk, k+1, ..., bof X, wherekis the interval such thage(k) < le(u) and
re(k) is closest tde(u) from the left (ifle(u) < re(b), then this setis empty). Similarly, the
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Fig. 2. The candidates for matching with an interua& U, with (fy, Iy) = (4, 10).

set of possible candidates foto “match right” is a subset of intervalis+ 1, b+2, .. ., |
of Y, wherel is the interval such thae(u) < le(l) andle(l) is closest tae(u) from the
right (if re(u) > le(b + 1), then this set is empty). We can combine these two sets for

into a single range of interval&,(k + 1,...,b,b+1,...,1), and represent this range
as (fy, 1y), with f, = kandl, = I. Note that this representation of all possible matching
pairs betweet andX UY = | — U is that of a convex bipartite graph.

To determine the intervals o which are used by an optimal matchiNg* as defined
in Corollary 3.1, we construct a convex bipartite grapk= (A, B, E) suchthatA = U,
B = XUY,andforany € A= U, the edgdu, by) € E ifand only if f, < b, <I,.
As shown by the next lemma, a maximum cardinality match¥jg of G is useful to
finding M*.

LEMMA 3.3. Let M}, be any given maximum cardinality matching of the convex bipar-
tite graph G= (U, X UY, E). Then there is an optimal matching*Nin | as defined

in Corollary 3.1that uses only the intervals in }jland XU Y. That is for any interval

u € U not matched in N, there is an optimal matching Mas defined in Corollarg.1
such that u is not matched in'M

PROOF Let M’ be an optimal matching ih as defined in Corollary 3.1. Consider any
intervalu € U such thatu is not matched irMZ, but is matched irM’. We want to
show that there is another optimal matchidg in | as defined in Corollary 3.1 such
thatu is not matched irM* (and hencel can be ignored in computing such an optimal
matchingM*).

Let M” be a collection of edges containing the interval p&irsb) such that either
(a,b) € M3, or (a,b) € M" but(a, b) ¢ M, N M’. Consider the subgragBm- (1) on
| that is induced by” (i.e., the vertices o6y~ (1) are the intervals of in M” and the
edges ofGy (1) are those inM”). Then it is easy to see th&ty-(l) consists of a set
of connected components each of which is either a path or an even-length cycle whose
edges are alternating with respectMd, andM’ (thelengthof a path is the number of
edges on it). In particulay is a vertex oGy~ (1), and furthery is an end-vertex of such
a path inGw- (1) (sinceu is not matched irM}, and is matched itM’). Denote that
path inGy-(l) starting au by P,. Figure 3 gives an example &%, where the edges of
Py in Mg, (resp.,M’) are dotted (resp., solid), the arrow on each edge indicates the left
or right matching of a noncut interval i, or M’, and the cut intervals (resp., noncut
intervals) are denoted by solid (resp., open) circles.
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Fig. 3. lllustrating the proof of Lemma 3.3.

Note that, likeu, the other end-vertexof the pathP, is matched in eithel, or M’
but not both. We now show first that the lengthRyfmust be even. Suppose this is not the
case (i.e., the length &%, is odd). Then we can exchangeMy, the edges oM} N P,
with the edges oM’ N P, thus increasing the size &l by one, a contradiction to
the optimality ofM}, in the convex bipartite grapg = (U, X UY, E). In Figure 3 this
would happen ifw (instead ofz) were the other end-vertex ;. Now that the length of
P, is even (as in Figure 3), we can then exchang®lirthe edges oM’ N P, with the
edges oM, N Py, obtaining another optimal matchirid* in |. Note that inM*, all
noncut intervals are matched and the matching direction of each noncut interal on
remains the same asM’. Hence the form oM* is as defined in Corollary 3.1. Further,
u is clearly not matched iiv*. O

The following operation involving red—blue matching is needed by our algorithms.
Given a setS of red points and a s& of blue points on the-axis, we first perform
a red-blue matching to obtain a maximum matchiigg of the red points to the blue
points. We then include more red poin&J and run the red—blue matching algorithm to
get a new optimal matchinil;g on the setss U §;, andSs. We claim that it is possible
to convertMyg to another optimal matchinyl;g (for Ss U §; and ) such that every
red point in& that is matched iMMgg is also matched iMgg.

LEMMA 3.4. Forevery red pointre S which is matched in Mg but notin Mg, there
exists a distinct red point(p) € S that is to the right of r and is matched in .

PROOF Letb; be the blue point which is matcheditan Mgg. By definition,x(r) <
x(b;). Based on Kim’s parallel algorithm for red-blue matching [20], we can de-
fine acanonical formof the optimal matchingMrg obtained by that algorithm, as
follows.

e For any red—blue paifr, b) in Mgg, there is no unassigned (unmatched) pajrg
S U S such thak(r) < x(q) < x(b).

This is because the parallel algorithm [20] simulates the sequential algorithm which
scans the points by the increasixgoordinates. When a red point is encountered, it is
pushed onto a stack. When a blue point is encountered, a red point (if any) is removed
from the stack [20].
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Letr’ be the red point matched b in Mig. There are two cases to consider.

1. r’ € . Because of the canonical form ddj;g, we knowx(r’) > x(r). Thus,
x(by) > x(r), wherely is the mate of’ in Mgg. Now, by must be inM; ; (otherwise,
the matchingVi, g would not be optimal since we could then add one more matched
pair (r, br/) to M;g). There are two subcases to consider here.
(a) by is matched to” € S;. In this casex(r”) > x(r), else the canonical form of
Mgg is violated.
(b) b is matched to” € . Then we repeat the above argument (for finitely many
times) until we get a blue pointwhich is matched ta S; suchthak(j) > x(r).
Let p(r) € S be the red point determined by the above two subcases.
2. 1’ € S. Because of the canonical formify;, we knowx(r’) > x(r). Letp(r) =r'.

Applying repeatedly the argument given above to every poird Sg which is
matched inMgg but not in Mg, to find the distinct poinp(r) € S;, the lemma is then
proved. O

Therefore, to conveml;g to Mg such that every red pointe Sg which is matched
in Mgg is also matched iMgg, we need to find, for every which is matched iVirg
but unmatched Mg, a corresponding poir(r) € S that is matched itM;g and is
to the right ofr. To perform this conversion in parallel for alle (S N Mgg) — Mgg,
we use red-blue matching. There are two sets of points, & Sk such thatr e
Mgg butr & Mgg, and (ii)r’ € S such thatr’ € Mgg. We want to find a pairing
(matching) between andr’ such that is to the left ofr’. Clearly, this is an instance
of a red-blue matching with the first set of points as red and the second set of points as
blue.

3.2. Matching Algorithm among Arbitrary Disjoint Intervals We begin with a general
discussion of the basic idea of our algorithms, and then describe the main algorithmic
steps.

3.2.1. Basic Idea Let M* be an optimal matching ih in the form defined by Corol-
lary 3.1. Then all intervals not cut by are inM*. Hence we can start with an initial
matchingM which consists ob matched pairs formed by matching each interval to
the left of V with a distinct interval to the right of/. (Of course, any interval to the
left of V can match with any interval to the right ®.) We then try to increase the
size of the matching by pairing intervals cut bywith intervals inM, as described
below. LetU be the set of unmatched intervals (i.e., all cut intervals) with respect
to M.

From Lemma 3.2, we know that all free intervals with respedtitoare cut byV.
Thus, it is not hard to see that it will yield an optimal matching in the form defined by
Corollary 3.1 if we achieve the following optimality criterion:

OPTIMALITY CRITERION. Matching the maximum number of cut-intervals (i.e., in the
setU) while simultaneously retaining all noncut intervals in the matching.
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Based on the optimality criterion, we can increase the cardinality of the match-
ing (from the size ofM) by matching the intervals dfl in one of the following two
ways.

1. For anintervaj € U which can match left (resp., right), find anothére U which
can match right (resp., left).

2. For two intervalg, j’ € U both of which can match left (resp., right), find a type-4
interval pair (see Figure 1(b)) to the right (resp., left)\of Note that it takes two
intervals ofU to match left (resp., right) for every type-4 pair to the right (resp.,
left) of V. Consider the pairs formed withand j’ (say,(i, j), (i’, j’), with bothi
andi’ to the left of V). These pairs would belong fd* if we are able to find two
intervals to the right o¥/ to create a type-4 pair (such a type-4 pair does not have to
be (matey (i), matgy (i’)) because any interval to the left ¥f can match with any
interval to the right o).

Observe that the above two ways correspond to the two basic types of augment-
ing paths with respect té1 that begin and end with free intervals all of which are
inU.

To determine from the intervals &f the candidate intervals fov1*, we compute a
maximum matching between the intervaldbfind the intervals o (i.e., a maximum
convex bipartite matching), and Iet’ denote the subset of intervals df involved in
this maximum matching. Note thél’ is a maximum subset of the intervalslihthat
can be matched with those M, and by Lemma 3.3, all intervals id — U’ need
not be considered faM*. In this matching betweedd and M, every interval inU’ is
paired with a distinct interval ifM. We partitionU’ into two subsetst (resp.,R), the
subset of intervals of)” which are paired with some intervals bf to the left (resp.,
right) of V. We refer to the intervals itM not paired with any interval i U R as
unassignedObserve that it. andR are equal in size, then we are done. This is because
the matching formed by the intervals bfu R with their mates inM and by the pairs
of unassigned intervals iM from both sides o/ is optimal based on the optimality
criterion. If L and R are not equal in size, sd¥| > |R|, then there are two cases to
consider:

(1) The sizes of. andR can be made equal (by doing some adjustment).
(2) The sizes of. andR cannot be made equal.

If (say)|L| > |R|, then we first attempt to make the sizes of the two sets equal. Thisis
done by finding from the larger sktthe intervals which can be paired with unassigned
intervals ofM to the right ofV (i.e., for such intervals df , change the direction of their
matching). If the sizes of andR can be made equal, then clearly we have an optimal
matching by the optimality criterion.

If IL| > |R| andL and R cannot be made equal in size, then we need to match
the maximum number of intervals &f (this in consequence will match the maximum
number of intervals o)’ and hence will yield an optimal matchirig*). Note that if
a matching in the form defined in Corollary 3.1 were obtained straightforwardly from
M and the current versions &f andR, then|L| — |R] intervals ofL would have to be
excluded from the matching. We include as many intervals of M* as possible, by
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doing the following:

(i) Move as many intervals as possible franmo R (to minimize|L|—|R|), by changing
the matching direction of these intervals. Note that after this step, the resulted convex
bipartite matching betwedd andM is still optimal and hence Lemma 3.3 applies
to this setting.

(i) Find type-4 pairs from the intervals d¥l to the right ofV such that these type-4
pairs do not take away any matches wih

Note that finding type-4 pairs on the left side\bfwill not help match more intervals of
L. Hence, it is safe to assume thatNt¥, all the intervals to the left o match right
(Corollary 3.1).

We need to find at most(|L| — |R|)/2] type-4 pairs from the intervals to the right
of V. Thus wherL| — |R] is not a multiple of 2, one interval df will necessarily be
excluded fromM*. We form a set of intervals which help find such type-4 pairs to the
right of V. LetC = RU Y be this interval set, wher¥ is the set of intervals to the
right of V. For the seC, we compute (recursively) its optimal matchiMy, and then
retain inM all the intervals ofR (because the type-4 pairs ¥fshould not be made at
the price of reducing the matches wi). As to be shown by Lemmas 3.6 and 3.7, the
optimal matching\ in C thus obtained contains the maximum number of type-4 pairs
to the right ofV for helping match the intervals &f U R.

Let m be the number of type-4 pairs in the resulted match¥fjg If m > [(|L| —
IR])/2], then we take[(|L| — |R[)/2] type-4 pairs fromM{ and add them tav*;
otherwise, we add all the type-4 pairs f to M*, and delete any|L| — |R]) — 2m
intervals fromL. For each remaining € L, there is a distinct interval to the left &f
with which | is paired, and we add thesk| pairs toM*. For eaclr € R, there is a
distinct interval to the right o¥ with whichr is paired, and we add thegR| pairs to
M*. Finally, there ars unassigned intervals (Figure 1(a)) remaining on both the left and
right sides ofV; form s pairs from those intervals and add thenM6. M* thus obtained
is an optimal matching in the input interval deas defined in Corollary 3.1.

3.2.2. Main Algorithmic Steps We now discuss in detail the various algorithmic steps
for computing an optimal matchingl* in | in the form defined in Corollary 3.1.

To determine the initial matchiniyl, we sort the 8 endpoints ofl and find the
location of a middle lineg/. Then by Lemma 2.1, the numbeof intervals to the left of
V is the same as the number of intervals to the right ofdentify these intervals and
store them in an array of sizé&2or M. The remaining intervals are all cut Byand are
stored in the array.

Next, we determine, for all intervals i, whether they can be matched with intervals
in M. First, for everyu € U, we find the range of the intervals M with which u is
disjoint, as follows. Store the intervals to the left (resp., rightyoh an arrayX (resp.,

Y) in decreasing order of their right (resp., left) endpoints and assign a new index to each
interval from 1 tob (resp., fromb + 1 to 2b). For eachu € U, find from the intervals in

the arrayX (resp.,Y) the right (resp., left) endpoinf, (resp.].), closest tde(u) (resp.,

re(u)) from the left (resp., right). Then by using the new indiceg,1.., 2b, express

the intervals inX U'Y with whichu is disjoint as a rangef(, |,) of intervals. Construct

a convex bipartite grap = (A, B, E),wthA=U,B=M=XUY =1 -U,and



Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 275

the edge seE = {(&, b)) |a e U,bj e M, Ty < b <y, fy.l5 € M}. Compute a
maximum matchingV§, in G. As a result, each € U which is a candidate fok* is
assigned (according ) to a distincti € M, and all unmatched intervals bf with
respect toM %, need not be considered any further M (Lemma 3.3). Depending on
the side ofV on whichi lies, u either matches left or matches rightiy,. Denote the
subset oJ which matches left (resp., right) i, asL (resp.,R). The intervals oM
which are paired (resp., not paired)Mg, with intervals inL U R are said to bassigned
(resp.,unassignejl

There are three possible cases depending on the valyesafd|R|: (1) |L| > |R|
(the most difficult case), (AL | < |R| (the second difficult case), and (3)| = |R| (the
easy case). IfL| = |R], then by the optimality criterion, we know bothandR are in
M*, and can easily create a representatiorMdér Thus, we only need to further discuss
the first two cases.

Note that the parallel convex bipartite matching algorithm we use (the algorithm
in [14] plus Lemma 2.2) assigns matches using the lowest indexed vertice4irst.
Therefore, if|lL| > |R|, we must determine whether ahye L can instead be made
match right in a maximum matching @ (so as to makeéL| = |R|). If |[L| < |R],
knowing that no interval iR can be “moved” td. because of the way matches are made
by the algorithm for Lemma 2.2, we proceed to computing theCstitat contains the
intervals to the left o which are candidates for type-4 pairs.

Clearly, whenL|+|R]| is an odd integer, it is impossible to makg = |R|. Hence in
this situation, at least one interval bfu R must be excluded from the optimal matching
M* (as defined in Corollary 3.1). Furthermore, wheh— |R| = 1 or|R|—|L| = 1, the
size of M* is known (since one interval from the larger set does not beloMyfo Thus
we can easily create a representation Nbt (by ignoring an arbitrary interval in the
larger set). Henceforth, we, without loss of generality, assjime- |R| ¢ {—1, 0, 1},
even after the attempt of balancing the size& @ndR.

If |IL| > |R|, then we first try to “balance” the sizes &f and R. To determine
the maximum subset of intervals bf which can be made match right, we compute a
maximum matching between the interval&in Rand the intervalsily. In this matching,

j € LURcan be matched withe Y ifand onlyifre(j) < le(i). Thus, we can transform
this into an instance of red—blue matching. We color the right endpoints of the intervals
in L U Rred and the left endpoints of the intervalsvilblue, and then perform a red—blue
matching. LetMz; be the maximum matching betweeru R andY thus obtained. If
IMZgl > |R|, then some intervals df which formerly matched left irM7, are now
matched right. HoweveiM}g need not include all the intervals &. Fortunately, as
shown in Lemma 3.4, we can convéd;; into another optimal matchinil;; between
LURandY by performing another red—blue matching (with the red points being the right
endpoints of the intervals & — Mg and the blue points being the right endpoints of the
intervals ofL NMg). If Mgl — Rl > [(IL|—|R|)/2], thenL andR can be made equal

in size (provided thatlL | + |R| is an even integer), by moving froin | (|[L| — |R])/2]
intervals that match irM;;/B to R; the optimal matchingM* can then be easily obtained
from such “balancedL and R. Otherwise (i.e.JM;{B| —|R] < L(IL] = |RD/2]), we
move alll € L in M;'B from L to R, but after this is done, we still hay&| > |R|.
Hence, the only way for including more intervalslofn the optimal matchindv* is to

look for type-4 pairs from intervals i (i.e., those to the right 0¥).
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Assume|L| > |R| still holds after the size-balancing step tnand R. We then
form the interval se€ for obtaining type-4 pairs from intervals to the right\éf such
that these type-4 pairs enable us to match the maximum number of intenalgnof
M*. LetC = RUY. Next, we compute recursively a maximum matchig among
disjoint intervals inC. Clearly,|M| > |R|. However, possibly not every intervale R
is included inM, and it is necessary to retain in an optimal matchimg’ of C (which
we obtain fromM;) all the intervals ofR.

Before we proceed further, we shall point out that such a maximum matéhing
in C contains the needed type-4 pairs¥nthat help match the maximum number of
intervals ofL U R in M* (this will be proved later by Lemmas 3.6 and 3.7). Also,
becaus¢L| > |Rjand|X| = |Y|,|C| = |RUY]| < n/2 = [l |/2. This is important since
the recursive computation &fl# in C is then on an interval set of significantly smaller
size.

We must be careful not to create type-4 pairs from the intervals & the expense
of excluding some intervals dR, since this will not increase the matching sizelin
(based on the optimality criterion). We need to show the following: For every interval
r € Rwhich is not inM}, it is always possible to putinto a matching irC through a
swapping operation; furthermore, the swapping can be done in such a way that the size
of the resulted matching i@ is the same agM|. In particular, we claim that for every
r e R— Mg, there exists a distinct interval i of one of the following three types,
with whichr can be swapped:

1. A formerly unassigned interval &f which is now the left mate of a type-4 pair in
M.

2. Aninterval which inM’,_f{’B was the right mate of arf € R (r’ is not necessarily equal
tor) and which is now the left mate of a type-4 pairMy.

3. Anintervalr’ € RN M} (hence, the necessity of swapping is reduced)to

Figure 4 illustrates the various cases of swappingor simplicity, in Figure 4, the
notationm(r) is used to denoteatg,. (r). In discussing these cases, weueadenote
RB

r r! r! r
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Fig. 4. lllustrating the cases of swappingvith matched pairs itM.
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any formerly unassigned interval ¥f, also, we assume thatr’,r”,r”, ..., are all in
R, butr ¢ M.

Casdl: matqv,;/B(r) is the left mate of u in [f1  Clearly we can swap andmatqm;rB(r).
Casell: matqv];/B(r) is the right mate of u in §I. Clearly we can swap andu.

Caselll: mat(—:;VI (r) is the right mate of ma;;,ak (r'yin M. Thenr’ must be inM}
(otherwiseM/ i is not maximum inC). There are two subcases:

(a) Ifr”is matched withu in M, then we can swap andmatq,, (r’)

(b) Ifr’is matched wnhnatq,, (r”) in Mg, thenr” must be inM* (otherW|seM* is not
maximum inC). If r” is matched withuin M, then we can swapandmateMEB(r’).
If r” is matched withnatqv];rB(r "y in M7, then we use the same argument as before.
In any caser can be swapped Wilimatq\,lérB ).

CaselV: matg,. (r) is the left mate of majg (r') in Mf. Thenr’ must be inM¢
RB RB
(otherwiseM¢ is not maximum inC). There are two subcases:

(@) Ifr”is matched wittu in M, then we can swapandmatq\,l;rB(r).
(b) If r’ is matched withnatq,l;g(r”) in Mg, then by using the same argument as in
Case lll(b),r can be swapped Wi“"‘at%;’B r).

CaseV: matg,. (r) is the right mate of rin M. Thenmatg,. (r') must be inMg
RB RB
(otherwiseM/ is not maximum inC). There are three subcases:

@) If matqvléfs(r’) is matched withu in M, then we first swap andr’ to obtain the
pair (r, mate,\,I (r))' we then obtain another pair by matchingwith eitheru or
matq,, (r’) as in Case |l or Il

(b) If matg\,I (r ) is matched wnhnatqv, (r”) in M for somer” # r’, thenr” must be
in M (otherW|seM* is not maX|mum irC). We first swap andr’ to obtain the pair
(r, matq,lé/B (r)); we then obtain another pair by matchirigvith eithermatqv,;g(r’)
or matqw;/B(r”), asin Case lll or IV.

(c) If matqw;/s(r’) is the right mate of” in M for somer” # r’, thenmatq,lég(r”)
must be inM7 (otherwiseM¢ is not maximum irC). We swap andr’ to obtain the
pair (r, matqwé/B (r)). Case V is then applicable to.

Thus givenM?, we can convert it into another optimal matchiM’ in C, such
that allr € R are matched irM*. Note that the above case analysis immediately
gives a sequential procedure for convertilig into M. To obtainM;" in parallel
straightforwardly based on the above case analysis, one could use a procedure relying
on parallel list-ranking [1], [11]. Such a list-ranking-based procedure, although would
give an efficient EREW PRAM algorithm, would not lead to a hypercube algorithm as
efficient as the one we claimed. Our parallel algorithms avoid using list-ranking and
instead are based on the following lemma.
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LEMMA 3.5. Itis possible to convertthe optimal matching M C into another optimal
matching M’ in C, such that every interval £ R is matched in i, in O(logn) time
on an Q(n/ log n)-processor EREW PRAM and on an n-processor hypercube

PrROOF We use the following two-step procedure to perform the conversiod bf
into M.

(i) Foreveryr € R, color its right endpoint red. L&R = RN M (i.e., the intervals
of Rthat are matched iM7). For everyr’ € R/, color the left endpoint ofmatey: (r')
blue. Note thaR' € Rand hence¢R'| < |R|. Perform a red—blue matching on these two
sets of colored points, to obtain a matchMgg. Itis obvious thatMfg| = |R'|. Let M{
be the matching i€ that consists of all type-4 pairs M} and all pairs inM%g. Then
M! is an optimal matching i€ and there ar¢R| — |R'| intervals inR still unmatched
in ML

(ii) For all the intervals ofR that are unmatched iMl, color their right endpoints as
red. For all the right mates of the type-4 pairshity, color their left endpoints as blue.
Perform a red-blue matching on these two sets of colored points, to obtain a matching
Mgg. Let M$ be the matching i€ obtained by replacing the type-4 pairsM} whose
right mates occur iMg3g by the pairs inM3g. We claim that the resulting matchind?
is the desired optimal matchirg; in C.

It is clear that we only need to show the correctness of step (ii). First, note that
the case analysis preceding this lemma is applicable to the optimal matetiing
C obtained in step (i). Also, observe that the matchMjg, obtained by a red—blue
matching [20] among the right endpoints Rf(red) and the left endpoints of the right
mates of the intervals d®’ in M (blue), has the canonical form as defined in the proof
of Lemma 3.4.

We now claim that every interval of R that is not matched iM{ can be matched
with the right mate of a distinct type-4 pair M_.

PROOF OF THECLAIM. Letr € R be an unmatched interval M_. Then inM{, when
Case |, II, lll, or IV holds forr, clearly the claim is true. When Case V holds for
matq\,lé/s(r) is the right mate of’ in Mé for somer’ € R. By the canonical form of
the red-blue matching foMyg [20], we havere(r) < re(r’), and this implies that
re(r) < le(mate,~ (r')), as shown in Figure 5(a). (The notation of Figure 5 is the same
as Figure 4.) HeRr?ce, if Case V(a) or V(b) holds fothenr certainly can be swapped
with the left mate ofmate, (r') in M{ (e.g., Figure 5(b)). If Case V(c) holds forthen
matg,~ () is the right maRtBe of”in M forsomer” € R. Fromre(r) < le(matg,. (r'))
and thRé canonical form of the red—blue matchinng, we havere(r) < re(rF’e’B) and
re(r) < le(matg,. (r”)) (see Figure 5(c)). By inductively using this argument, the claim
is proved. * O

The claim proved above implies thit? (= MS) thus obtained includeR and is
optimal inC. Since the endpoints of all the intervals are sorted, the parallel complexity
bounds of the above conversion procedure are the same as those of the parallel algorithms
for red—blue matching that we discuss in Section 2. O
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Fig. 5. lllustrating the claim in the proof of Lemma 3.5.

Thus, after computingV¥, we perform the red—blue matching twice to obtain
M, such that alk € R are matched itM*". We show below thaM; indeed con-
tains type-4 interval pairs of that help match the maximum number of intervals of
LUR.

LEMMA 3.6. Let M’ be a maximum matching in the interval setyL U R. Then
M| = M.

PROOF  We first prove, by contradiction, theyl’| < [M¥|. Assume thafM'| > |M;"|
(i.e., the maximum matchiny” in Y U L U R is of a bigger size than the maximum
matchingM;" in C = RUY). Recall thatM?" contains all the intervals oR and R

is a maximum subset of intervals &F = L U R that can match with the intervals
of Y.

Consider the grap@’ defined by the disjoint intervals M U L U R. Clearly,M;" is
amatching inG’ (sinceC = RUY is a subset of UL U R). Becaus¢M’| > |M}|, by
Theorem 9.1 in [27], there is at least one augmenting paBf imith respect tav;” . Let
P be such an augmenting path@i. ThenP begins and ends with free intervals (say,
and j) of G’ with respect tav. Note that all interior vertices dP (i.e., the intervals
of P that are not at the beginning and endRjfare inM?". Also, bothi and j are not
in R. There are two cases.

(i) Bothiand jareinY Then by replacing those matches\f in M;' N P by the
matches defined bl — M, the resulted matchinyl¥" involves only the intervals in
RUY but the size oM?" is bigger thariM;’| by one, a contradiction to the optimality
of M¥ in RUYY.

(i) Atleastoneofiand jisinL Then by replacing those matches\f in M} N P
by the matches defined by — M, the resulted matching!?” in Y U L U R still
contains all the intervals dR (since all interior vertices oP remain inM*"). Further,
MZ" contains at least one more intervaldqr j) from L, a contradiction to thaR
is a maximum subset of intervals &F = L U R that can match with the intervals
of Y.

The fact thafM’| > |M§'| simply follows fromthatRUY C Y U L U R. Hence the
lemma is proved. O
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LEMMA 3.7. Forany partition of the set Uinto subsets Land R such that the intervals
in L’ (resp, R) match with the intervals of Xresp, Y),letC’' = R UY and l\/g‘/
be a maximum matching in’Guch that M contains all the intervals of RThen
IMZ] < IMZ].

PROOF SinceC’'=R UY CcYUU’'=YULUR, we have Mg‘,/| < |M’|, whereM’
is a maximum matching ity U U’. Thus the lemma follows from Lemma 3.6. O

For a partition ofU’ into L’ and R’ such that the intervals ih’ (resp.,R’) match
with the intervals ofX (resp.,Y) and such thatR'| < |R| (and hencelL’| > |L|), let
C’ = R UY and M be a maximum matching i€ such thatM; contains all the
intervals ofR'. Further, assume thMg,/ provides the maximum number of type-4 pairs
in Y for helping match the intervals &f’. Leth = |R| — |[R'| = |[L’| — |L|. Then there
areh = |L’| — |L| more intervals irL’ thanL that need to match with intervals &f. On
the other hand, by Lemma 3.IY/1§' is of a size< |M§'|, and hence can provide at most
h = |R| — |R'| more type-4 pairs itY thanM?". Therefore, any optimal matching In
based on the partitioh’ andR’ of U’ can have a size at most as big as the one produced
by L, R, and M;". In fact, for some partitions df’ into L’ andR’ such thafL’| — |R/|
is not minimized (i.e.|L’'| — [R'| > |L| — |RY), itis possible to haveM?| < M| (i.e.,

M;’ does not providé = |R| — |R’| more type-4 pairs oY than M;" for matching the
intervals ofL"). Figure 6 gives such an exampleldf R, andM? . ThereforeM? indeed
contains type-4 interval pairs &f that help match the maximum number of intervals of
LUR.

We should also note that Lemmas 3.6 and 3.7 play a key role not only in proving
the correctness of our algorithms, but also in achieving the efficiency of our algorithms.
They allow our algorithms to compute recursively on theGet RU Y with |C| <
[11/2 =n/2. One could have recursively computed a maximum matchiivgirL U R
(instead of a maximum matching @) and used such a matching to find the needed
type-4 interval pairs oY, but there is no guarantee priu L U R| < cnfor any positive
constant < 1.

Let m denote the number of type-4 pairs M;’. If m > [(JL| — |R])/2], then
we take|(|L| — |R[)/2] type-4 pairs fromM;" and add them tdv*. All other type-

4 pairs of M;" are ignored (these intervals will be paired with intervals on the other
side of V). If m < [(|L]| — |R])/2], we add all the type-4 pairs dﬂg" to M* and
delete any(|L| — |R]) — 2m intervals fromL. For eachr € R, there is a distinct

Uy
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1
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'V

Fig. 6. For|L’'| = 6 and|R'| = 0, Mé‘,/ has two type-4 pairs, but, fob| = 4 and|R| = 2, Mé‘/ also has two
type-4 pairs.
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interval to the right ofV with whichr is paired; we add thesdR| pairs toM*. For
each remaining € L, there is a distinct interval to the left & with whichl is paired;

we add theseéL | pairs toM*. Finally, there ares unassigned intervals remaining on
each of the left and right sides & which form s pairs, and we add them tvl*.
The matchingM* thus obtained is a desired optimal matching in the input interval
setl .

If IL| < |R]|, then due to the nature of the parallel convex bipartite matching algorithm
(Lemma 2.2), we cannot perform any further “balancing”, and hence must proceed
directly to computing the s& = L U X, such thaCC contains the candidates for type-4
pairs to the left ofv (which help match the maximum number of intervalsR)f The
computation for this case is similar to the case¢ldf> |R|.

The formal description of our parallel algorithms is now given. The implementa-
tion details on the EREW PRAM and on hypercubes are described in the following
subsections.

Algorithm G-Disj-Match( I, A, B)

Input A setl = {lIy, I,, ..., 14} of nintervals, each specified by its two
endpoints.

Output A set, A, of the left elements of the pairs of an optimal matching
M*in | and a setB, of the right elements of the pairs M*, listed in a
corresponding order.

1. Sort by thex-coordinates of the left and right endpointslimnd relabel
the intervals so that < j if le(i) < le(j), if the endpoints are not given
already sorted.

2. Compute the location of a middle lintand the set) of intervals cut by
V. Letb be the number of intervals to the left (resp., rightMaf

3. Obtain the subseX of the intervals to the left of/ and maintain them
in the order of decreasing right endpoints. Assign these intervals a label
from 1 tob such that < j if re(i) > re(j).

4. Obtain the subseéf of the intervals to the right 0¥ and maintain them
in the order of decreasing left endpoints. Assign these intervals a label
fromb+ 1to 2o suchthat < jif le(i) > le(j).

5. Foreachu € U, compute the range of intervalslin-U (i.e.,XUY)which
are possible candidates for matching withusing the labels assigned in
Steps 3 and 4. Express this rangedas (irst, last) (i.e., (fy, ly)).

6. Constructarepresentation foraconvex bipartite giaph (U, | —U, E)
with the edge seE = {(a;,bj) | & € U, Ty < by <ly,b;, fa,l5 €
| — U}, by using the values of, andl, computed in Step 5. Compute a
maximum matchingvl, in G. Each intervali e U N M}, is assigned to
an interval ofl —U numbered from 1 tol2 If the assigned interval is in
the range [1.. ., b], thenu matches left, otherwise it matches right. Let
L (resp.,R) be the subset of intervals &f that match left (resp., right)
in M%,. If [L| = |R], then return ad1* the matched pairs fromh andR
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and the matched pairs formed by the remaining intervals-nU . Else,
continue.

7. If IL| > |R|, letRed= {re(j) | ] € (LUR)}, Blue={le(j) | j €
Y}. Perform a red—blue matching to find out how many interval& of
can also match right. Le¥1%; denote the resulting maximum red—blue
matching. For each red pointe L U Rin Mgg, there is a blue point
b € Y assigned. If not every € R is included inMpg, then perform
another red-blue matching wifRed = {re(j) | j € R — Mjg} and
Blue = {re(j) | j € L N Mjg} to transform it (Lemma 3.4) tM;/B. If
|M,§'B| —|R] > L(JL] = IR} /2], thenadd (|L| — |R])/2] intervals ofL
that are inMj;; to R and remove them from. If |L| — |R| = 1, then
delete one interval from the larger set. At this poijht} = |R|. Return
M* which is obtained as in Step 6. |IIR/I;;’B| —|Rl < (L] = |RD/2],
then continue (withL| # |R|).

8. If IMigl — IRl < L(IL| — |R])/2], then add anyM/;;| — | R| intervals of
L that are inM; to R and delete them frorh.

9. At this point, eithefL| > |R| (from Step 8) ofR| > |L| (Steps 7 and 8
not executed). IfL| > |RJ|, thenletC = RUY. If |R| > |L|, then let
C=LUX.

10. If |C| > 2, then letM} = G-Disj-Match(C, A, B'); else, compute
Mg = (A, B') in a straightforward manner.

11. If|L| > |R|, then examine the intervals N to see whether all intervals
r e Rhave been retained ;. If not, convert the optimal matchind?
in C to another optimal matchinyl¥ in C, such that all the intervals of
R are matched iM (by using Lemma 3.5). Upda®' according to the
pairs inM}’.

12. If |R| > |L|[, then examine the intervals B to see whether all intervals
| € L have been retained ;. If not, convert the optimal matchingl?
in C to another optimal matchiny¥ in C, such that all the intervals of
L are matched iM* (by using Lemma 3.5). Upda®' according to the
pairs inM}’.

13. Identify the type-4 pairs inA’, B’) and delete all other pairs (which are
pairs involving intervals irR or L).

14. Letw = [(JL|—|R])/2]. If |A| < w, then remove intervals fror or R
(whichever is larger) so thaR| = |L| + 2| A'| (resp.,|L| = |R| + 2| A']).

If |A'| > w, then delet&| A'| — w) pairs from(A’, B’). M* contains the
remaining pairsifA’, B'), the matched pairs frofR andL, and the pairs
from the remaining intervals iX and inY. Return.

THEOREM3.1. Given aset | of n intervalalgorithm G-Disj-Match solves the maxi-
mum matching problem between disjoint intervals ila@® n) time using @n/ log? n)
processors on the EREW PRAM and using n processors on the hypercubes

PrOOF The correctness of the algorithms follows from the discussions in Sections 3.2.1
and 3.2.2. The time and processor bounds follow from the descriptions given in the next
two subsections. O
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3.3. EREW PRAM Implementation and Analysig his subsection gives the implemen-
tation and analysis details of the EREW PRAM algorithm.

Step 1 take©(logn) time andO(n) processors for sorting [10]. Relabeling can be
done by parallel prefix [22], [23] i®© (log n) time andO(n/ log n) processors. In Step 2
the middle line can be found easily@(logn) time andO(n/ logn) processors. The set
U can be determined by parallel prefix. Identifying the séendY in Steps 3 and 4 and
relabeling them can all be done with parallel prefixGrilogn) time andO(n/ logn)
processors.

In Step 5, for every interval € U, we use the original list of sorted endpoints and find
the first right endpoint to the left dé(u) and the first left endpoint to the right cé(u).
Each of these two endpoints far for all u € U, can be computed by parallel prefix
(either along the left-to-right order or the right-to-left order of the sorted endpoint list).

In Step 6 a maximum matching in a convex bipartite graph can be obtained in
O(log? n) time andO(n/ logn) processors (Lemma 2.2).

In Step 7 red—blue matching takéglog n) time andO(n/ logn) processors [20]. In
the original sorted list of endpoints, we keep the right endpoints of the intervals iR
and the left endpoints of the intervalsYh and relabel them in increasing order of the
x-coordinates using parallel prefix. We then label all the intervals inR red and all
the intervals inY blue and compute the red—blue matching. If we need to do a second
red—blue matching, in the original sorted list we keep the right endpoiritsinfM}g
and of R not in M%g. We relabel in increasing order of thecoordinates, then color
those ofL in Mg blue, those oR not in Mj; red, and compute the red—blue matching.

Step 8 can be easily done @(logn) time andO(n/ log n) processors.

In Step 9 the se€ can be easily formed by parallel prefix. Note that < |1]/2 =
n/2.

In Step 10 we make a recursive call on the input@etn each recursive call, the
number of input intervals is less than half that of the previous one.

Steps 11 and 12 can be done@ylogn) time usingO(n/logn) processors (by
Lemma 3.5).

In Step 13 we can identify all non-type-4 pairs (A, B') in constant time, and
compute a compressed list of the type-4 pairs using parallel pre@(limg n) time.

Step 14 can be done by parallel prefix to build the compressed lig&'oB’), R,

L, and the pairs of unassigned interval9oindY. This step take® (logn) time and
O(n/logn) processors.

The time and processor bounds for all nonrecursive steps discussed abDiegfa)
andO(n/logn), respectively. Lef (n) andW(n) denote the complexity bounds of the
time and total number of operations taken by the algorithm, respectively. Then the re-
currence relations fof (n) andW(n) are as follows:

T(n/2) + cilog?n if n>2,
T = { Co if n<2,
W) < W(n/2) + csnlogn !f n> 2,
Ca if n<2,

wherec,, ¢, C3, andc, are all positive constants. It is very easy to show that) =
O(log® n) andW(n) = O(nlogn). Hence the EREW PRAM algorithm tak€xlog® n)
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time and perform®©(nlogn) operations. By Brent's theorem [7], the algorithm can be
made run inO(log® n) time usingO(n/ log? n) EREW PRAM processors.

3.4. Hypercube Implementation and AnalysisThis subsection gives the implementa-
tion and analysis details of the algorithm onraprocessor hypercube.

Step 1 takeD(lognloglogn) time for sorting [13]. Relabeling can be done by
parallel prefix [24] inO(logn) time. In Step 2 the middle line can be found easily by
ranking the endpoints i®(logn) time. In Steps 3 and 4 the sdfis X, andY can all
be obtained as on the EREW PRAM by using translation and parallel prefixlog n)
time [24].

In Step 5 for every interval € U, we use parallel prefix to find the first right endpoint
to the left ofle(u) and the first left endpoint to the right eé(u) (either along the
left-to-right order or the right-to-left order of the sorted endpoint list).

In Step 6 a maximum matching in a convex bipartite graph can be obtained in
O(log? n) time by using Andrews’ algorithm [2].

In Step 7 red-blue matching tak€glogn) time (by using the hypercube algorithm
discussed in Section 2). In the original sorted list of endpoints, we use parallel prefix
and concentration [24] to extract the right endpoints of the intervdls.irR and the left
endpoints of the intervals i, and relabel them in increasing order of theoordinates
using parallel prefix. We then label all the intervalditu R red and all the intervals in
Y blue. If we need to do a second red—blue matching, in the original sorted list we use
parallel prefix and concentration to extract the right endpoints of Mg and of R
not in Mgg. We relabel in increasing order of tiecoordinates by using parallel prefix.
Then color those of in Mjg blue, those oR not in Mjg red, and perform the red-blue
matching, inO(logn) time.

Step 8 can be done by parallel prefix and broadcastir@(ing n) time.

In Step 9 the se€ can be easily formed by parallel prefix. Note that < |1]/2 =
n/2.

In Step 10 we make a recursive call on the inputGetn each recursive call, the
number of input intervals is less than half that of the previous one. Hence, there are
altogetherO(log n) recursive calls for the algorithm.

Steps 11 and 12 can be donelrlogn) time (by Lemma 3.5).

In Step 13 we can identify all non-type-4 pairs (&', B) in constant time, and
compute a compressed list of the type-4 pairs using parallel prefix and concentration, in
O(logn) time.

Step 14 can be done by using parallel prefix and concentration to build the compressed
lists of (A, B), R, L, and the pairs of unassigned intervalscéndY. The time of this
step isO(logn).

The dominating time complexity among all the nonrecursive stepsglisg® n). Since
the algorithm maké (log n) recursive calls, the worst case time bound of the algorithm
on ann-processor hypercube @(log®n).

4. Matching among Disjoint Proper Intervals. We first give some useful observa-
tions for in the next subsection. Section 4.2 then presents the algorithms for maximum
matching among disjoint proper intervals.
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Fig. 7. The form of an optimal matching among proper intervals.

4.1. Useful Observations Our algorithms for maximum matching among disjoint
proper intervals are based on the following observations.

LEmmA 4.1. Given the model of a proper interval graph in sorted ordbere exists
an optimal matching M, of cardinality k for the disjoint proper intervals such that
with respect to M, the first k intervals {, I, ..., Ix match right the last k intervals
In—k+1, In—k+2, ..., In match leftand all the intervalsd. 1, lx.1, ..., In_k are free(i.e.,
M* has the form as illustrated in Figurg in which free intervals are denoted by unfilled
circles).

PROOFE Suppose that we are given an optimal matcHhihgvith k matches such that
the leftmost left arrow (matching left) is at< n — k + 1. Then, there must be some
interval j > i such that eithef is unmatched of is a right arrow (matching right). Let
j be the smallest such interval.

Casel: j isunmatched | > i meande(j) > le(i) andre(j) > re(i). Then eitherj
overlaps with or j lies to the right of . In either case, we can perform a swap to obtain
a new optimal matching/’, so thatj becomes matched M’ with matey (i) andi is
freeinM’. Sincere(matey (i)) < le(i) andle(j) > le(i), clearlyj can be matched with

matey (i).

Case2: | matches right By definition,re(j) < le(matey (j)). Either j overlaps with
i or j liesto the right of . In either case, sinae(i) < re(j), we can paili, mate, (j)).
Also, sincele(i) < le(j), we can paifmate, (i), j). Now j matches left and matches
right.

By repeatedly performing this swapping operation, one can maké tightmost
intervals match left and theleftmost intervals match right (this is done by first moving
thek left arrows to thek rightmost intervals, and then moving theight arrows to the
k leftmost intervals). O

LEMMA 4.2. Suppose it is known that the size of an optimal matching &hkn the
following pairs of intervals form an actual maximum matching:Mi,n—k+i) | i =
1,2,...,k}.

PROOE Let M* be an optimal matching in the form defined in Lemma 4.1. Because of
the proper interval graph condition, for any k, if i cannot be matched with— k +1i,
(i.e.,i andn — k + i are not disjoint), then there is nobwithi < i’ < n—k+i that
does. Hencd, would have to match with some intervab- n — k + i. This would give

a maximum matching whose size is less tkaa contradiction. O
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Without loss of generality, we assume thas a multiple of 2. Given the form of the
optimal matchingV* as specified in Lemmas 4.1 and 4.2, we know that there exists an op-
timal matching in which all intervals which match right are in the rarigglp, .. ., In/2]
and all intervals which match left are in the randg 41, In/242, . - ., Inl.

4.2. Matching Algorithm for Disjoint Proper Intervals The outline of our algorithms
and the implementation details are described in this subsection.

Algorithm P-Disj-Match( I)

Input Asetl = {I, I, ..., I} of n proper intervals, each specified by its
two endpoints.

Output A list of pairs of intervals which form a maximum matching*
inl.

1. Check the input list of endpoints of the intervald ito see whether it is
already in sorted order. If the endpoint list is not in sorted order, then sort
the endpoints of .

2. Compute the size of a maximum matchilgbetween the intervals in
{11, I, ..., Inj2} which are candidates to match right and the intervals in
{In/241, Inj242, . .., In} which are candidates to match left.

3. Compute the maximum matchimg* in |, which is of siz¢ M|.

THEOREM4.1. Given aset | of n proper intervalalgorithmP-Disj-Match solves the
maximum matching problem in (@gn) time on the EREW PRAM using(Q logn)
processors if the set of endpoints of | is given sorted and usiig) @rocessors
otherwise

PrROOF The correctness and the time and processor bounds follow from the discussion
below. O

Checking whether the input endpoint list bfis already in sorted order is done
by comparing every two consecutive values of the input list. For example, if there is
one pair of consecutive values in the list “out of order” (e.qg., ittevalue is larger
than the(i + 1Lth value), then the list is not sorted in increasing order. If no two
consecutive values in the list are “out of order” for the increasing (resp., decreas-
ing) order, then the list is already sorted in increasing (resp., decreasing) order. The
checking can be easily done by parallel prefix @{logn) time and O(n/logn)
processors.

To compute|M|, we have two sets of intervals, and the intervals in the first set
can only match right and the intervals in the second set can only match left. An in-
terval j can match left with an intervdl if and only if re(i) < le(j). This implies
that we only need to use the right (resp., left) endpoints of the intervals in the first
(resp., second) set. Therefore, we represent each interndabgfa single point (ei-
ther its right or left endpoint, depending on whether it is in the first or second set).
Then a match can occur between an inteiivalf the first set{ly, I, ..., In2} and
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an interval j of the second sefly 241, Inj212, ..., In} if and only if re(i) < le(j).
To solve this matching problem, we transform it into a red—blue matching. We color
the right endpoints of interval, I», ..., Iy red and the left endpoints of intervals
Inj2+1, Inj242, . ., In blue, and compute the red-blue matchikigon these colored
points.

Letd = |M|. Then the maximum matching/*, is of sized. By Lemma 4.2 M*
consists of the followingl interval pairs ofl: {(i,n—d +i)|i =12, ...,d}.

Red-blue matching on sorted points can be don@ (logn) time with O(n/ logn)
processors on the EREW PRAM by using Kim’s algorithm [20]. Thus, the total time
for computing a maximum matching between disjoint proper interval(legn) time
with O(n/logn) processors with sorted input, al@i(n) processors otherwise, on the
EREW PRAM.

THEOREM4.2. Given a set | of n proper intervals in sorted ordatgorithm P-Disj-
Match solves the maximum matching problem ild n) time on n-processor hyper-
cubes

PrROOF The main operations of the hypercube algorithm are ranking the endpoints,
concentration, parallel prefix, and red—blue matching. The ranking, concentration, and
parallel prefix can all be done @(log n) time [24]. Given the interval endpoints already
sorted, the red-blue matching can be performed als®@(ogn) time by using the
hypercube algorithm discussed in Section 2. O

5. Improved Overlapping Matching Algorithm on Proper Intervals. Moitra and
Johnson [26] presented parallel algorithms for the related problem of finding a maxi-
mum cardinality matching between pairs of overlapping intervals.G.&te a proper
interval graph withn vertices andlg be its interval model. For the proper interval
case, the algorithm in [26] is based on the CREW PRAM and t&kdegn) time
andO(n?/logn) processors. It computes a depth-first search fee, (V, E’), where

E’ = {(i, parenti)) | parenti) # 0}. Here,parenti) is the interval overlapping with

i which ends first after the end of if such an interval exists. Assunt& is connected
andlg is sorted. Then for each interviglparenti) = i + 1 (except the last interval).
Each internal node in the tree has only one child and the root of the tigsi(ilk;) = n
(i.e.,re(n) = maxre(k) | k € 1}). If there is more than one connected component,
then it is still true thaparenti) = i + 1. However, there will be one intervalwith
parenti) = 0 for each connected componelast(lg) will be the root of only one

of the unary spanning trees. Moitra and Johnson show that the selection of all the
odd labeled edges in each spanning tree constitutes a maximum matching. Comput-
ing the functiorparenti) is the dominating step in terms of the time and processor costs
in [26].

Kim [20] has shown that computingarenti) can be done irO(logn) time with
O(n/logn) processors on the EREW PRAM, if the endpoints of the intervals are al-
ready sorted. Since each internal node in the spanning trees has only one child, we
can treat the trees as lists. The initial node of the first li$i.ig-or the other lists, the
initial nodes aregfj | paren{j — 1) = 0}. We can then apply the extended parallel
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list ranking of Cole and Vishkin [11]. In the extended list ranking problem, there is
more than one list and the problem is to compute the rank of each entry in its own
list. This can be done iI©(logn) time usingO(n/logn) EREW PRAM processors.
Therefore, with sorted input, a maximum matching between overlapping proper inter-
vals can be computed i®(logn) time usingO(n/logn) processors on the EREW
PRAM.

6. Conclusion. We have given parallel algorithms in the EREW PRAM and hypercube
models for the problem of computing a maximum cardinality matching between pairs of
disjointintervals in aninterval model. Previously there was no efficient parallel algorithm
known for this problem. For the general case of the problem, our algorithms compute
a maximum matching if©(log® n) time usingO(n/ log? n) processors on the EREW
PRAM and using processors on the hypercubes. For the case of proper interval graphs,
our algorithm runs inO(logn) time on the EREW PRAM usin@(n) processors if
the intervals are not given sorted and usi@gn/logn) processors otherwise. Qn
processor hypercubes, our algorithm for the proper interval case@kagn log logn)
time for unsorted input an®(log n) time for sorted input.

We have also improved the parallel algorithm for maximum matching between over-
lapping intervals in a proper interval graph. Our algorithm run®igiogn) time on
the EREW PRAM using(n) processors if the input intervals are not given sorted and
using O(n/ logn) processors otherwise. The best previously known parallel algorithm
for this problem [26] take® (log n) time usingO(n?/ logn) processors in the (stronger)
CREW PRAM model. Hence our algorithm improves the processor bound while using
a less powerful computational model.
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