

CERIAS Tech Report 2003-16

PARALLEL ALGORITHMS FOR
MAXIMUM MATCHING IN COMPLEMENTS OF
INTERVAL GRAPHS AND RELATED PROBLEMS

by M. G. Andrews, M. J. Atallah,

D. Z. Chen, and D. T. Lee

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

DOI: 10.1007/s004539910013

Algorithmica (2000) 26: 263–289 Algorithmica
© 2000 Springer-Verlag New York Inc.

Parallel Algorithms for Maximum Matching in
Complements of Interval Graphs and Related Problems1

M. G. Andrews,2 M. J. Atallah,3 D. Z. Chen,4 and D. T. Lee5

Abstract. Given a set ofn intervals representing an interval graph, the problem of finding a maximum
matching between pairs of disjoint (nonintersecting) intervals has been considered in the sequential model.
In this paper we present parallel algorithms for computing maximum cardinality matchings among pairs of
disjoint intervals in interval graphs in the EREW PRAM and hypercube models. For the general case of the
problem, our algorithms compute a maximum matching inO(log3 n) time usingO(n/ log2 n) processors on
the EREW PRAM and usingn processors on the hypercubes. For the case of proper interval graphs, our
algorithm runs inO(logn) time usingO(n) processors if the input intervals are not given already sorted and
usingO(n/ logn) processors otherwise, on the EREW PRAM. Onn-processor hypercubes, our algorithm for
the proper interval case takesO(logn log logn) time for unsorted input andO(logn) time for sorted input. Our
parallel results also lead to optimal sequential algorithms for computing maximum matchings among disjoint
intervals. In addition, we present an improved parallel algorithm for maximum matching between overlapping
intervals in proper interval graphs.

Key Words. Parallel algorithms, Maximum matching problems, Interval graphs, Complement graphs, EREW
PRAM, Hypercubes.

1. Introduction. Consider a set of intervals,I = {I1, I2, . . . , In}, on thex-axis, where
interval Ii = [le(i), re(i)] is specified by its two endpoints: the left endpoint,le(i),
and the right endpoint,re(i), with le(i) < re(i). Two intervalsIi = [le(i), re(i)] and
I j = [le(j), re(j)] are disjoint (to each other) ifre(i) < le(j) or re(j) < le(i); oth-
erwise theyoverlap. A graphG is called aninterval graphif there exists a setIG of
intervals such that there is a one-to-one correspondence between the vertices ofG and
the intervals inIG and such that any two vertices inG are connected by an edge if
and only if their corresponding intervals inIG overlap. Such an interval setIG is called

1 Part of this research was done while the authors were visiting the Leonardo Fibonacci Institute in Trento,
Italy, in the summer of 1992. The second author’s research was supported in part by the National Science
Foundation under Grant CCR-9202807 and by the sponsors of the COAST Laboratory. The third author’s
research was supported in part by the National Science Foundation under Grant CCR-9623585. The fourth
author’s research was supported in part by the National Science Foundation under Grants CCR-8901815,
CCR-9309743, and CDA-9703228, and by the Office of Naval Research under Grants No. N00014-95-1-1007
and No. N00014-97-1-0514. The fourth author is on leave from the Department of Electrical and Computer
Engineering, Northwestern University, Evanston, IL 60208, USA.
2 AT&T Bell Laboratories, 2000 N. Naperville Road, Naperville, IL 60566, USA. m.g.andrews@att.com.
3 Department of Computer Sciences, Purdue University, West Lafayette, IN 47907, USA. mja@cs.purdue.edu.
4 Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
chen@cse.nd.edu.
5 Institute of Information Science, Academia Sinica, Nankang, Taiwan 11529. dtlee@iis.sinica.edu.tw.

Received November 20, 1995; revised September 3, 1998. Communicated by M. Y. Kao.

264 M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee

an interval modelof G. An interval graphG is said to beproper if and only if there
is an interval modelIG of G such that no interval inIG is contained within any other
interval in IG. Interval graphs find applications in many areas, such as VLSI design,
scheduling, biology, traffic control, and archeology [17]. In this paper we assume that
an interval model of the corresponding interval graph is already given. We will refer
to interval Ii , intervali , interval [le(i), re(i)], and vertexi (corresponding to intervali)
interchangeably.

A matchingin a graphG is a subsetM of the edges ofG such that no two distinct edges
in M are incident to the same vertex. The problem of computing maximum matchings
in graphs has many applications and has received a lot of attention [12]. However, no
deterministic parallel algorithm for computing maximum matchings in general graphs
is known that takes polylogarithmic time using a polynomial number of processors [19].

In this paper we consider the following matching problem on a setI of n intervals:
Find a maximum cardinality matchingM in I such that two intervals can be matched
in M only if they are disjoint. This problem, in fact, is that of computing a maximum
cardinality matching in the complement graph of the corresponding interval graphG
of I . An O(n logn) time sequential algorithm for this matching problem was given by
Andrews and Lee [3]. A related problem on matching in interval graphs was considered
by Moitra and Johnson [26], who gave a sequential and a parallel algorithm for finding
maximum cardinality matchings in interval graphs where twooverlapping intervals
can be matched. To the best of our knowledge, there was no previously known efficient
parallel algorithm (i.e., in polylogarithmic time using a polynomial number of processors)
for finding maximum matchings in the complement graphs of interval graphs. Here we
study the graph-theoretical problems of computing in parallel maximum cardinality
matchings in the complement graphs of interval graphs and interval graphs, provided
that their interval models are already available.

We present the first efficient parallel algorithms for computing maximum cardinality
matchings in interval models in which only disjoint intervals can be matched. For the
general case of the problem, our algorithms compute a maximum matching inO(log3 n)
time usingO(n/ log2 n) processors on the EREW PRAM and usingn processors on the
hypercubes. For the case of proper interval graphs, our algorithm runs inO(logn) time
usingO(n) processors if the intervals are not given already sorted and usingO(n/ logn)
processors otherwise, on the EREW PRAM. Onn-processor hypercubes, our algorithm
for the proper interval case takesO(logn log logn) time for unsorted input andO(logn)
time for sorted input. The approaches of our parallel algorithms are very different from
the seemingly inherently sequentialplane sweepingmethod used in [3], and are based
on new characterizations of this matching problem. In fact, by simulating sequentially
our EREW PRAM algorithm, we can immediately give an optimal sequentialO(n logn)
time algorithm for computing maximum matchings among disjoint intervals for arbitrary
intervals. Furthermore, if the endpoints of the input intervals are given sorted, we can
make our sequential algorithm for computing maximum matchings among arbitrary dis-
joint intervals run in linear time, as follows: A key subproblem in our parallel algorithms
for computing maximum matchings among disjoint intervals is that of finding maximum
matchings in convex bipartite graphs, which can be solved sequentially in linear time
[15], [25]; by using the optimal sequential algorithm for computing maximum match-
ings in convex bipartite graphs [15], [25] and by simulating sequentially the rest of our

Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 265

EREW PRAM algorithm, a maximum matching among arbitrary disjoint intervals can
be obtained in linear time. Such a sequential algorithm is very different from the plane
sweeping algorithm of Andrews and Lee [3] (which still takesO(n logn) time for sorted
input intervals).

We also give an EREW PRAM algorithm for maximum matching betweenover-
lapping intervals in proper interval graphs, improving the processor complexity of the
previously best known CREW PRAM algorithm for this problem [26] by a factor of
n/ logn.

The computational models we use are the EREW PRAM and hypercubes. The PRAM
is a synchronous parallel model in which all processors share a common memory and
each processor can access any memory location in constant time [19]. The EREW
PRAM does not allow more than one processor to access the same memory address
simultaneously. We also refer to the CREW PRAM model, which allows simultane-
ous accesses to the same memory location by multiple processors only if all such
concurrent accesses are for reading data only. The CREW PRAM is obviously more
powerful than the EREW PRAM. Our hypercube model is the standard one: It has
n processors, each withO(1) local memory, and with one-port communication. For
a detailed discussion of the hypercube model, the reader is referred to the book by
Leighton [24].

The rest of the paper is organized as follows. Section 2 gives some notation and
preliminary results we need. In Section 3 we present parallel algorithms for the matching
problem among arbitrary disjoint intervals. In Section 4 we present parallel algorithms for
the matching problem among disjoint proper intervals. Our improved parallel algorithm
for the matching problem on overlapping proper intervals is given in Section 5.

2. Preliminaries. The input consists of a set ofn intervals I = {I1, I2, . . . , In}. To
avoid cluttering the exposition, we assume without loss of generality that no two input
intervals have the same endpoint (i.e., the 2n endpoints are distinct). Our algorithms can
easily be modified for the general case.

We first sort the 2n endpoints ofI from left to right if they are not given sorted. This
sorting can be done inO(logn) time usingO(n) processors on the EREW PRAM [10]
and inO(logn log logn) time onn-processor hypercubes [13]. From now on, we assume
that the 2n endpoints ofI are available in this sorted order. On the EREW PRAM, these
endpoints are stored in an array; on ann-processor hypercube, each processorPEi stores
two endpoints, with the sorted order of the endpoints corresponding to the increasing
order of the processor indices. We also assume without loss of generality that the intervals
in I have been relabeled such thati < j implies le(i) occurs beforele(j) in the sorted
array of endpoints. In the case of proper intervals,i < j also impliesre(i) occurs before
re(j) in the sorted array of endpoints. This relabeling can be easily carried out by a
parallel prefix computation. The parallel prefix operation can be performed inO(logn)
time usingO(n/ logn) processors on the EREW PRAM [22], [23] and inO(logn) time
onn-processor hypercubes [24].

Given a matchingM in I , we say that an intervali is in M if i is matched byM . We
say that an intervalmatches left(resp.,right), denoted by a left (resp., right) arrow, if it
is matched inM with an interval to its left (resp., right). An interval isfree, denoted by

266 M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee

a circle, if it is unmatched with respect toM . Intervali matching withj in M is denoted
asmateM(i) = j .

An interval i is said to beto the left(resp.,right) of a vertical lineL if re(i) < x(L)
(resp.,le(i) > x(L)), wherex(L) denotes thex-coordinate ofL.

DEFINITION 2.1. A middle line V is a vertical line that divides the set of 2n endpoints
of I into two subsets, with one subset to each side ofV , such that every subset has
exactlyn endpoints. Those intervals ofI that are intersected by a middle lineV are
calledcut-intervals.

LEMMA 2.1. For any middle line V, the number b of intervals not cut by V lying to
the left of V is the same as the number of intervals not cut by V lying to the right of V.
Furthermore, b≤ |M |, where M is a maximum matching of I.

PROOF. The fact that the numbers of intervals inI not cut byV lying on each side
of V are the same follows immediately from the definition ofV . Since a matching can
be obtained in such a way that each interval to the left ofV is matched with a distinct
interval to the right ofV , b≤ |M | follows.

The following problem, defined by Kim [20], plays an important role in our algorithms.

DEFINITION 2.2. Given a set of points on thex-axis, some colored red and the other
colored blue, suppose that a red pointr can be matched with a blue pointb if x(r) < x(b).
The red–blue matching problemis to find a maximum matching between the red and
blue points.

Kim [20] presented an EREW PRAM algorithm for the red–blue matching problem
with sorted input which takesO(logn) time usingn/ logn processors. On ann-processor
hypercube, the red–blue matching problem with sorted input can be solved inO(logn)
time, as follows: First apply Kim’s reduction [20] to reduce the problem to theall nearest
smaller values problem[5] (this reduction takesO(logn) time on the hypercube since it
mainly performs parallel prefix); then use the optimal hypercube algorithms by Chen [9]
and Kravets and Plaxton [21] to solve the all nearest smaller values problem inO(logn)
time.

Our interval matching algorithms also make use of convex bipartite graphs which are
reviewed next.

DEFINITION 2.3. A convex bipartite graphG = (A, B, E) is a bipartite graph whereA
andB are respectively sequences of vertices(a1,a2, . . . ,am) and(b1,b2, . . . ,bn), and
E is the set of edges. An edge(a,b) ∈ E implies thata ∈ A andb ∈ B, and furthermore,
(ai ,bj) ∈ E if and only if fi ≤ j ≤ l i , where fi (resp.,l i) is the index of the first (resp.,
last) vertex inB to whichai is connected.

Maximum cardinality matchings in convex bipartite graphs can be computed sequen-
tially either by combining the linear time algorithm of Gabow and Tarjan [15] for a

Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 267

special union-find problem with the algorithm of Lipski and Preparata [25] for com-
puting maximum matchings in convex bipartite graphs, or by using theO(n logn) time
algorithm of Gallo [16]. Dekel and Sahni [14] presented a parallel algorithm for comput-
ing maximum cardinality matchings in convex bipartite graphs inO(log2 n) time using
O(n) EREW PRAM processors, and Atallah et al. [4] showed that the problem can be
solved inO(logn) time by usingO(n3) EREW PRAM processors.

The next lemma is needed by our PRAM algorithms. It shows that the processor
bound of Dekel and Sahni’s parallel algorithm [14] can be improved by a factor of logn.

LEMMA 2.2. For every convex bipartite graph G= (A, B, E) with |A| ≤ n and|B| ≤
n, a maximum cardinality matching M∗cb of G can be obtained in O(log2 n) time using
O(n/ logn) EREW PRAM processors.

PROOF. The basic idea is to apply Brent’s theorem [7] to simulate the parallel algorithm
of Dekel and Sahni [14] for computing maximum cardinality matchings in convex bipar-
tite graphs. Note that Dekel and Sahni’s algorithm [14] computes a maximum cardinality
matching in a convex bipartite graph inO(log2 n) time usingO(n) EREW PRAM pro-
cessors. The algorithm in [14] consists of two passes, each pass traversing a complete
binary tree ofn leaves level by level. At each level, the algorithm in [14] essentially
performs a constant number of parallel merges, and the number of operations performed
by the algorithm at each level isO(n). The total number of operations performed by the
algorithm of Dekel and Sahni [14], therefore, isO(n logn). By applying Brent’s theo-
rem [7] and by using an optimal EREW PRAM merge algorithm [6], [8], [18], we can
easily simulate the algorithm [14] inO(log2 n) time usingO(n/ logn) EREW PRAM
processors.

3. Maximum Matching among Arbitrary Disjoint Intervals. Section 3.1 gives the
key observations for our matching algorithms. Section 3.2 presents the basic idea and
main algorithmic steps for finding a maximum matching between disjoint intervals in
general complement interval graphs. Sections 3.3 and 3.4 show the details of our EREW
PRAM and hypercube algorithms, respectively.

3.1. Useful Observations. Our algorithms for the general case of disjoint interval
matching are based on the following observations.

LEMMA 3.1. There exists an optimal matching M∗ such that either the matched inter-
vals in M∗ that are to the left of a middle line V all have right arrows(i.e.,match right),or
the matched intervals in M∗ that are to the right of V all have left arrows(i.e.,match left).

PROOF. Let M be an optimal matching. Suppose that there arekl (resp.,kr) intervals in
M that are to the left (resp., right) ofV and have left (resp., right) arrows. Without loss
of generality, assumekl ≤ kr . If kl = 0, then we are done (M∗ = M). So assumekl > 0.
Now swap, in their matching pairs, thekl intervals that are to the left ofV and have left
arrows with anykl intervals that are to the right ofV and have right arrows. For example,

268 M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee

let i l (resp.,i r) be an interval that is to the left (resp., right) ofV and has a left (resp., right)
arrow inM ; swappingi l with i r means obtaining, from the two pairs(i l ,mateM(i l)) and
(i r ,mateM(i r)), the two new pairs(i r ,mateM(i l)) and(i l ,mateM(i r)). Clearly, such a
swapping is always possible. The matchingM∗ thus obtained has the same size asM ,
and it is easy to see that no interval to the left ofV matches left inM∗.

LEMMA 3.2. There exists an optimal matching M∗ such that any middle line V cuts all
free intervals with respect to M∗.

PROOF. Let M be an optimal matching that has the property stated in Lemma 3.1.
Clearly, there cannot be free intervals to both the left and right ofV (otherwise,M
would have not been an optimal matching). So without loss of generality, assume that
there arek > 0 free intervals to the left ofV . We shall obtainM∗ from M .

We first do the following: Remove from our consideration all the intervals to the left
of V that match intervals to the right ofV in M , and do the same thing on the right
side ofV . Note thatV is still a middle line in the setI ′ of the remaining intervals thus
obtained. Furthermore, there are at leastk intervals of I ′ to the right ofV that are all
matched inM .

There are two cases to consider.

Case1: The matched intervals to the right of V all have left arrows. There must be
at leastk such intervals to the right ofV , and since they all have left arrows but do not
match inM with intervals to the left ofV , they must match with intervals cut byV .
Swap anyk matched intervals cut byV with the k free intervals to the left ofV . The
resulting matching is such an optimal matchingM∗.

Case2: Not all the matched intervals to the right of V have left arrows. Let i ′ be an
interval to the right ofV that has a right arrow and matches withi ′′ in M (obviously,i ′′

is also to the right ofV). Then we claim thatk must be 1. Proof of the claim: Ifk > 1,
then M would have not been an optimal matching because we could have swappedi ′

and i ′′ with two free intervals to the left ofV to increase the size of the matching, a
contradiction. SinceV is the middle line and there are at least two intervals (i.e.,i ′ and
i ′′) to the right ofV , there must be an intervali of I ′ to the left ofV such thati matches
with an interval j of I ′. Since the optimal matchingM satisfies Lemma 3.1 and sincei ′

(to the right ofV) matches right, all matched intervals ofI ′ to the left ofV must match
right. Becausei does not match inM with any interval to the right ofV , j must be an
interval cut byV . Let the only free interval to the left ofV be f . Perform a swap among
{ f, i, i ′, i ′′} so that(f, i ′) and(i, i ′′) are paired andj becomes free. The resulting optimal
matching isM∗.

COROLLARY 3.1. There exists an optimal matching M∗ such that either all noncut
intervals of I to the left of V match right or vice versa, and such that all noncut intervals
are matched.

PROOF. Follows from Lemmas 3.1 and 3.2.

Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 269

Fig. 1.The form and pair types of an optimal matching as defined in Corollary 3.1.

Consider an optimal matchingM∗ as defined in Corollary 3.1. For all the cut-intervals,
some of them match left (let the number of these bel), some of them match right (let the
number of these ber), and maybe some of them are free (let the number of these bef).
Without loss of generality, assume that all the noncut intervals to the right ofV match
left; this implies thatr ≥ l . Then there are precisely|r − l | intervals lying to the left of
V which are paired with each other inM∗. Denote this set asC′. Since the intervals of
C′ are paired, this implies that|r − l | must be a multiple of 2. Then, the form ofM∗

is as shown in Figure 1(a), andM∗ consists of four different types of matched pairs as
illustrated in Figure 1(b).

1. Type 1 matches an interval to the left ofV with one to the right ofV .
2. Type 2 matches an interval to the left ofV with an interval cut byV .
3. Type 3 matches an interval to the right ofV with an interval cut byV .
4. Type 4 matches two intervals on the same side ofV .

From Lemma 2.1, we know that the numberb of intervals on each side ofV is the
same. We number the intervals to the left (resp., right) ofV from 1 tob (resp., fromb+1
to 2b) by thedecreasing x-coordinates of theright (resp.,left) endpoints and store them in
an arrayX (resp.,Y). See Figure 2 for an example. LetU denote the set of intervals cut by
V . Consider an intervalu ∈ U . The set of possible candidates foru to “match left” is the
subset of intervalsk, k+1, . . . ,bof X, wherek is the interval such thatre(k) < le(u) and
re(k) is closest tole(u) from the left (ifle(u)≤ re(b), then this set is empty). Similarly, the

270 M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee

Fig. 2.The candidates for matching with an intervalu ∈ U , with (fu, lu) = (4,10).

set of possible candidates foru to “match right” is a subset of intervalsb+1,b+2, . . . , l
of Y, wherel is the interval such thatre(u) < le(l) andle(l) is closest tore(u) from the
right (if re(u) ≥ le(b+ 1), then this set is empty). We can combine these two sets foru
into a single range of intervals (k, k + 1, . . . ,b,b+ 1, . . . , l), and represent this range
as (fu, lu), with fu = k andlu = l . Note that this representation of all possible matching
pairs betweenU andX ∪ Y = I −U is that of a convex bipartite graph.

To determine the intervals inU which are used by an optimal matchingM∗ as defined
in Corollary 3.1, we construct a convex bipartite graphG = (A, B, E) such thatA = U ,
B = X ∪ Y, and for anyu ∈ A = U , the edge(u,bu) ∈ E if and only if fu ≤ bu ≤ lu.
As shown by the next lemma, a maximum cardinality matchingM∗cb of G is useful to
finding M∗.

LEMMA 3.3. Let M∗cb be any given maximum cardinality matching of the convex bipar-
tite graph G= (U, X ∪ Y, E). Then there is an optimal matching M∗ in I as defined
in Corollary 3.1 that uses only the intervals in M∗cb and X∪ Y. That is, for any interval
u ∈ U not matched in M∗cb, there is an optimal matching M∗ as defined in Corollary3.1
such that u is not matched in M∗.

PROOF. Let M ′ be an optimal matching inI as defined in Corollary 3.1. Consider any
interval u ∈ U such thatu is not matched inM∗cb but is matched inM ′. We want to
show that there is another optimal matchingM∗ in I as defined in Corollary 3.1 such
thatu is not matched inM∗ (and henceu can be ignored in computing such an optimal
matchingM∗).

Let M ′′ be a collection of edges containing the interval pairs(a,b) such that either
(a,b) ∈ M∗cb or (a,b) ∈ M ′ but (a,b) /∈ M∗cb ∩ M ′. Consider the subgraphGM ′′(I) on
I that is induced byM ′′ (i.e., the vertices ofGM ′′(I) are the intervals ofI in M ′′ and the
edges ofGM ′′(I) are those inM ′′). Then it is easy to see thatGM ′′(I) consists of a set
of connected components each of which is either a path or an even-length cycle whose
edges are alternating with respect toM∗cb andM ′ (the lengthof a path is the number of
edges on it). In particular,u is a vertex ofGM ′′(I), and further,u is an end-vertex of such
a path inGM ′′(I) (sinceu is not matched inM∗cb and is matched inM ′). Denote that
path inGM ′′(I) starting atu by Pu. Figure 3 gives an example ofPu, where the edges of
Pu in M∗cb (resp.,M ′) are dotted (resp., solid), the arrow on each edge indicates the left
or right matching of a noncut interval inM∗cb or M ′, and the cut intervals (resp., noncut
intervals) are denoted by solid (resp., open) circles.

Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 271

Fig. 3. Illustrating the proof of Lemma 3.3.

Note that, likeu, the other end-vertexz of the pathPu is matched in eitherM∗cb or M ′

but not both. We now show first that the length ofPu must be even. Suppose this is not the
case (i.e., the length ofPu is odd). Then we can exchange inM∗cb the edges ofM∗cb∩ Pu

with the edges ofM ′ ∩ Pu, thus increasing the size ofM∗cb by one, a contradiction to
the optimality ofM∗cb in the convex bipartite graphG = (U, X ∪Y, E). In Figure 3 this
would happen ifw (instead ofz) were the other end-vertex ofPu. Now that the length of
Pu is even (as in Figure 3), we can then exchange inM ′ the edges ofM ′ ∩ Pu with the
edges ofM∗cb ∩ Pu, obtaining another optimal matchingM∗ in I . Note that inM∗, all
noncut intervals are matched and the matching direction of each noncut interval onPu

remains the same as inM ′. Hence the form ofM∗ is as defined in Corollary 3.1. Further,
u is clearly not matched inM∗.

The following operation involving red–blue matching is needed by our algorithms.
Given a setSR of red points and a setSB of blue points on thex-axis, we first perform
a red–blue matching to obtain a maximum matchingMRB of the red points to the blue
points. We then include more red points (S′R) and run the red–blue matching algorithm to
get a new optimal matchingM ′RB on the setsSR∪ S′R andSB. We claim that it is possible
to convertM ′RB to another optimal matchingM ′′RB (for SR ∪ S′R andSB) such that every
red point inSR that is matched inMRB is also matched inM ′′RB.

LEMMA 3.4. For every red point r∈ SR which is matched in MRB but not in M′RB, there
exists a distinct red point p(r) ∈ S′R that is to the right of r and is matched in M′RB.

PROOF. Let br be the blue point which is matched tor in MRB. By definition,x(r) <
x(br). Based on Kim’s parallel algorithm for red–blue matching [20], we can de-
fine a canonical formof the optimal matchingMRB obtained by that algorithm, as
follows.

• For any red–blue pair(r,b) in MRB, there is no unassigned (unmatched) pointq ∈
SR ∪ SB such thatx(r) < x(q) < x(b).

This is because the parallel algorithm [20] simulates the sequential algorithm which
scans the points by the increasingx-coordinates. When a red point is encountered, it is
pushed onto a stack. When a blue point is encountered, a red point (if any) is removed
from the stack [20].

272 M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee

Let r ′ be the red point matched tobr in M ′RB. There are two cases to consider.

1. r ′ ∈ SR. Because of the canonical form ofM ′RB, we know x(r ′) > x(r). Thus,
x(br ′) > x(r), wherebr ′ is the mate ofr ′ in MRB. Now,br ′ must be inM ′RB (otherwise,
the matchingM ′RB would not be optimal since we could then add one more matched
pair (r,br ′) to M ′RB). There are two subcases to consider here.
(a) br ′ is matched tor ′′ ∈ S′R. In this case,x(r ′′) > x(r), else the canonical form of

M ′RB is violated.
(b) br ′ is matched tor ′′ ∈ SR. Then we repeat the above argument (for finitely many

times) until we get a blue point which is matched toj ∈ S′R such thatx(j) > x(r).
Let p(r) ∈ S′R be the red point determined by the above two subcases.

2. r ′ ∈ S′R. Because of the canonical form ofM ′RB, we knowx(r ′) > x(r). Let p(r) = r ′.

Applying repeatedly the argument given above to every pointr ∈ SR which is
matched inMRB but not inM ′RB, to find the distinct pointp(r) ∈ S′R, the lemma is then
proved.

Therefore, to convertM ′RB to M ′′RB such that every red pointr ∈ SR which is matched
in MRB is also matched inM ′′RB, we need to find, for everyr which is matched inMRB

but unmatched inM ′RB, a corresponding pointp(r) ∈ S′R that is matched inM ′RB and is
to the right ofr . To perform this conversion in parallel for allr ∈ (SR ∩ MRB)− M ′′RB,
we use red–blue matching. There are two sets of points, (i)r ∈ SR such thatr ∈
MRB but r 6∈ M ′RB, and (ii) r ′ ∈ S′R such thatr ′ ∈ M ′RB. We want to find a pairing
(matching) betweenr andr ′ such thatr is to the left ofr ′. Clearly, this is an instance
of a red–blue matching with the first set of points as red and the second set of points as
blue.

3.2. Matching Algorithm among Arbitrary Disjoint Intervals. We begin with a general
discussion of the basic idea of our algorithms, and then describe the main algorithmic
steps.

3.2.1. Basic Idea. Let M∗ be an optimal matching inI in the form defined by Corol-
lary 3.1. Then all intervals not cut byV are in M∗. Hence we can start with an initial
matchingM which consists ofb matched pairs formed by matching each interval to
the left of V with a distinct interval to the right ofV . (Of course, any interval to the
left of V can match with any interval to the right ofV .) We then try to increase the
size of the matching by pairing intervals cut byV with intervals in M , as described
below. Let U be the set of unmatched intervals (i.e., all cut intervals) with respect
to M .

From Lemma 3.2, we know that all free intervals with respect toM∗ are cut byV .
Thus, it is not hard to see that it will yield an optimal matching in the form defined by
Corollary 3.1 if we achieve the following optimality criterion:

OPTIMALITY CRITERION. Matching the maximum number of cut-intervals (i.e., in the
setU) while simultaneously retaining all noncut intervals in the matching.

Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 273

Based on the optimality criterion, we can increase the cardinality of the match-
ing (from the size ofM) by matching the intervals ofU in one of the following two
ways.

1. For an intervalj ∈ U which can match left (resp., right), find anotherj ′ ∈ U which
can match right (resp., left).

2. For two intervalsj, j ′ ∈ U both of which can match left (resp., right), find a type-4
interval pair (see Figure 1(b)) to the right (resp., left) ofV . Note that it takes two
intervals ofU to match left (resp., right) for every type-4 pair to the right (resp.,
left) of V . Consider the pairs formed withj and j ′ (say,(i, j), (i ′, j ′), with both i
and i ′ to the left ofV). These pairs would belong toM∗ if we are able to find two
intervals to the right ofV to create a type-4 pair (such a type-4 pair does not have to
be (mateM(i),mateM(i ′)) because any interval to the left ofV can match with any
interval to the right ofV).

Observe that the above two ways correspond to the two basic types of augment-
ing paths with respect toM that begin and end with free intervals all of which are
in U .

To determine from the intervals ofU the candidate intervals forM∗, we compute a
maximum matching between the intervals ofU and the intervals ofM (i.e., a maximum
convex bipartite matching), and letU ′ denote the subset of intervals ofU involved in
this maximum matching. Note thatU ′ is a maximum subset of the intervals inU that
can be matched with those inM , and by Lemma 3.3, all intervals inU − U ′ need
not be considered forM∗. In this matching betweenU and M , every interval inU ′ is
paired with a distinct interval inM . We partitionU ′ into two subsets:L (resp.,R), the
subset of intervals ofU ′ which are paired with some intervals ofM to the left (resp.,
right) of V . We refer to the intervals inM not paired with any interval inL ∪ R as
unassigned. Observe that ifL andR are equal in size, then we are done. This is because
the matching formed by the intervals ofL ∪ R with their mates inM and by the pairs
of unassigned intervals inM from both sides ofV is optimal based on the optimality
criterion. If L and R are not equal in size, say|L| > |R|, then there are two cases to
consider:

(1) The sizes ofL andR can be made equal (by doing some adjustment).
(2) The sizes ofL andR cannot be made equal.

If (say)|L| > |R|, then we first attempt to make the sizes of the two sets equal. This is
done by finding from the larger setL the intervals which can be paired with unassigned
intervals ofM to the right ofV (i.e., for such intervals ofL, change the direction of their
matching). If the sizes ofL andR can be made equal, then clearly we have an optimal
matching by the optimality criterion.

If |L| > |R| and L and R cannot be made equal in size, then we need to match
the maximum number of intervals ofL (this in consequence will match the maximum
number of intervals ofU ′ and hence will yield an optimal matchingM∗). Note that if
a matching in the form defined in Corollary 3.1 were obtained straightforwardly from
M and the current versions ofL andR, then|L| − |R| intervals ofL would have to be
excluded from the matching. We include as many intervals ofL in M∗ as possible, by

274 M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee

doing the following:

(i) Move as many intervals as possible fromL to R (to minimize|L|−|R|), by changing
the matching direction of these intervals. Note that after this step, the resulted convex
bipartite matching betweenU andM is still optimal and hence Lemma 3.3 applies
to this setting.

(ii) Find type-4 pairs from the intervals ofM to the right ofV such that these type-4
pairs do not take away any matches withR.

Note that finding type-4 pairs on the left side ofV will not help match more intervals of
L. Hence, it is safe to assume that inM∗, all the intervals to the left ofV match right
(Corollary 3.1).

We need to find at mostb(|L| − |R|)/2c type-4 pairs from the intervals to the right
of V . Thus when|L| − |R| is not a multiple of 2, one interval ofL will necessarily be
excluded fromM∗. We form a set of intervals which help find such type-4 pairs to the
right of V . Let C = R ∪ Y be this interval set, whereY is the set of intervals to the
right of V . For the setC, we compute (recursively) its optimal matchingM∗c , and then
retain inM∗c all the intervals ofR (because the type-4 pairs ofY should not be made at
the price of reducing the matches withR). As to be shown by Lemmas 3.6 and 3.7, the
optimal matchingM∗c in C thus obtained contains the maximum number of type-4 pairs
to the right ofV for helping match the intervals ofL ∪ R.

Let m be the number of type-4 pairs in the resulted matchingM∗c . If m ≥ b(|L| −
|R|)/2c, then we takeb(|L| − |R|)/2c type-4 pairs fromM∗c and add them toM∗;
otherwise, we add all the type-4 pairs ofM∗c to M∗, and delete any(|L| − |R|) − 2m
intervals fromL. For each remainingl ∈ L, there is a distinct interval to the left ofV
with which l is paired, and we add these|L| pairs toM∗. For eachr ∈ R, there is a
distinct interval to the right ofV with which r is paired, and we add these|R| pairs to
M∗. Finally, there ares unassigned intervals (Figure 1(a)) remaining on both the left and
right sides ofV ; form s pairs from those intervals and add them toM∗. M∗ thus obtained
is an optimal matching in the input interval setI as defined in Corollary 3.1.

3.2.2. Main Algorithmic Steps. We now discuss in detail the various algorithmic steps
for computing an optimal matchingM∗ in I in the form defined in Corollary 3.1.

To determine the initial matchingM , we sort the 2n endpoints ofI and find the
location of a middle lineV . Then by Lemma 2.1, the numberb of intervals to the left of
V is the same as the number of intervals to the right ofV . Identify these intervals and
store them in an array of size 2b for M . The remaining intervals are all cut byV and are
stored in the arrayU .

Next, we determine, for all intervals inU , whether they can be matched with intervals
in M . First, for everyu ∈ U , we find the range of the intervals inM with which u is
disjoint, as follows. Store the intervals to the left (resp., right) ofV in an arrayX (resp.,
Y) in decreasing order of their right (resp., left) endpoints and assign a new index to each
interval from 1 tob (resp., fromb+ 1 to 2b). For eachu ∈ U , find from the intervals in
the arrayX (resp.,Y) the right (resp., left) endpoint,fu (resp.,lu), closest tole(u) (resp.,
re(u)) from the left (resp., right). Then by using the new indices 1,2, . . . ,2b, express
the intervals inX ∪ Y with whichu is disjoint as a range (fu, lu) of intervals. Construct
a convex bipartite graphG = (A, B, E), with A = U , B = M = X ∪ Y = I −U , and

Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 275

the edge setE = {(ai ,bj) | ai ∈ U,bj ∈ M, fai ≤ bj ≤ lai , fai , lai ∈ M}. Compute a
maximum matchingM∗cb in G. As a result, eachu ∈ U which is a candidate forM∗ is
assigned (according toM∗cb) to a distincti ∈ M , and all unmatched intervals ofU with
respect toM∗cb need not be considered any further forM∗ (Lemma 3.3). Depending on
the side ofV on whichi lies,u either matches left or matches right inM∗cb. Denote the
subset ofU which matches left (resp., right) inM∗cb asL (resp.,R). The intervals ofM
which are paired (resp., not paired) inM∗cb with intervals inL ∪ Rare said to beassigned
(resp.,unassigned).

There are three possible cases depending on the values of|L| and|R|: (1) |L| > |R|
(the most difficult case), (2)|L| < |R| (the second difficult case), and (3)|L| = |R| (the
easy case). If|L| = |R|, then by the optimality criterion, we know bothL andR are in
M∗, and can easily create a representation forM∗. Thus, we only need to further discuss
the first two cases.

Note that the parallel convex bipartite matching algorithm we use (the algorithm
in [14] plus Lemma 2.2) assigns matches using the lowest indexed vertices ofB first.
Therefore, if|L| > |R|, we must determine whether anyl ∈ L can instead be made
match right in a maximum matching inG (so as to make|L| = |R|). If |L| < |R|,
knowing that no interval inRcan be “moved” toL because of the way matches are made
by the algorithm for Lemma 2.2, we proceed to computing the setC that contains the
intervals to the left ofV which are candidates for type-4 pairs.

Clearly, when|L|+|R| is an odd integer, it is impossible to make|L| = |R|. Hence in
this situation, at least one interval ofL ∪ R must be excluded from the optimal matching
M∗ (as defined in Corollary 3.1). Furthermore, when|L|− |R| = 1 or |R|− |L| = 1, the
size ofM∗ is known (since one interval from the larger set does not belong toM∗). Thus
we can easily create a representation forM∗ (by ignoring an arbitrary interval in the
larger set). Henceforth, we, without loss of generality, assume|L| − |R| 6∈ {−1,0,1},
even after the attempt of balancing the sizes ofL andR.

If |L| > |R|, then we first try to “balance” the sizes ofL and R. To determine
the maximum subset of intervals ofL which can be made match right, we compute a
maximum matching between the intervals inL∪Rand the intervals inY. In this matching,
j ∈ L∪Rcan be matched withi ∈ Y if and only if re(j) < le(i). Thus, we can transform
this into an instance of red–blue matching. We color the right endpoints of the intervals
in L∪R red and the left endpoints of the intervals inY blue, and then perform a red–blue
matching. LetM∗RB be the maximum matching betweenL ∪ R andY thus obtained. If
|M∗RB| > |R|, then some intervals ofL which formerly matched left inM∗cb are now
matched right. However,M∗RB need not include all the intervals ofR. Fortunately, as
shown in Lemma 3.4, we can convertM∗RB into another optimal matchingM∗

′
RB between

L∪RandY by performing another red–blue matching (with the red points being the right
endpoints of the intervals ofR−M∗RB and the blue points being the right endpoints of the
intervals ofL∩M∗RB). If |M∗′RB|−|R| ≥ b(|L|−|R|)/2c, thenL andRcan be made equal
in size (provided that|L| + |R| is an even integer), by moving fromL b(|L| − |R|)/2c
intervals that match inM∗

′
RB to R; the optimal matchingM∗ can then be easily obtained

from such “balanced”L and R. Otherwise (i.e.,|M∗′RB| − |R| < b(|L| − |R|)/2c), we
move all l ∈ L in M∗

′
RB from L to R, but after this is done, we still have|L| > |R|.

Hence, the only way for including more intervals ofL in the optimal matchingM∗ is to
look for type-4 pairs from intervals inY (i.e., those to the right ofV).

276 M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee

Assume|L| > |R| still holds after the size-balancing step onL and R. We then
form the interval setC for obtaining type-4 pairs from intervals to the right ofV , such
that these type-4 pairs enable us to match the maximum number of intervals ofL in
M∗. Let C = R∪ Y. Next, we compute recursively a maximum matchingM∗c among
disjoint intervals inC. Clearly,|M∗c | ≥ |R|. However, possibly not every intervalr ∈ R
is included inM∗c , and it is necessary to retain in an optimal matchingM∗

′
c of C (which

we obtain fromM∗c) all the intervals ofR.
Before we proceed further, we shall point out that such a maximum matchingM∗

′
c

in C contains the needed type-4 pairs inY that help match the maximum number of
intervals of L ∪ R in M∗ (this will be proved later by Lemmas 3.6 and 3.7). Also,
because|L| > |R| and|X| = |Y|, |C| = |R∪Y| < n/2= |I |/2. This is important since
the recursive computation ofM∗c in C is then on an interval set of significantly smaller
size.

We must be careful not to create type-4 pairs from the intervals inC at the expense
of excluding some intervals ofR, since this will not increase the matching size inI
(based on the optimality criterion). We need to show the following: For every interval
r ∈ R which is not inM∗c , it is always possible to putr into a matching inC through a
swapping operation; furthermore, the swapping can be done in such a way that the size
of the resulted matching inC is the same as|M∗c |. In particular, we claim that for every
r ∈ R− M∗c , there exists a distinct interval inM∗c of one of the following three types,
with which r can be swapped:

1. A formerly unassigned interval ofY which is now the left mate of a type-4 pair in
M∗c .

2. An interval which inM∗
′

RB was the right mate of anr ′ ∈ R (r ′ is not necessarily equal
to r) and which is now the left mate of a type-4 pair inM∗c .

3. An intervalr ′ ∈ R∩ M∗c (hence, the necessity of swapping is reduced tor ′).

Figure 4 illustrates the various cases of swappingr . For simplicity, in Figure 4, the
notationm(r) is used to denotemateM∗′RB

(r). In discussing these cases, we letu denote

Fig. 4. Illustrating the cases of swappingr with matched pairs inM∗c .

Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 277

any formerly unassigned interval ofY; also, we assume thatr, r ′, r ′′, r ′′′, . . . , are all in
R, butr 6∈ M∗c .

CaseI: mateM∗′RB
(r) is the left mate of u in M∗c . Clearly we can swapr andmateM∗′RB

(r).

CaseII: mateM∗′RB
(r) is the right mate of u in M∗c . Clearly we can swapr andu.

CaseIII: mateM∗′RB
(r) is the right mate of mateM∗′RB

(r ′) in M∗c . Thenr ′ must be inM∗c
(otherwiseM∗c is not maximum inC). There are two subcases:

(a) If r ′ is matched withu in M∗c , then we can swapr andmateM∗′RB
(r ′).

(b) If r ′ is matched withmateM∗′RB
(r ′′) in M∗c , thenr ′′must be inM∗c (otherwiseM∗c is not

maximum inC). If r ′′ is matched withu in M∗c , then we can swapr andmateM∗′RB
(r ′).

If r ′′ is matched withmateM∗′RB
(r ′′′) in M∗c , then we use the same argument as before.

In any case,r can be swapped withmateM∗′RB
(r ′).

CaseIV: mateM∗′RB
(r) is the left mate of mateM∗′RB

(r ′) in M∗c . Thenr ′ must be inM∗c
(otherwiseM∗c is not maximum inC). There are two subcases:

(a) If r ′ is matched withu in M∗c , then we can swapr andmateM∗′RB
(r).

(b) If r ′ is matched withmateM∗′RB
(r ′′) in M∗c , then by using the same argument as in

Case III(b),r can be swapped withmateM∗′RB
(r).

CaseV: mateM∗′RB
(r) is the right mate of r′ in M∗c . ThenmateM∗′RB

(r ′) must be inM∗c
(otherwiseM∗c is not maximum inC). There are three subcases:

(a) If mateM∗′RB
(r ′) is matched withu in M∗c , then we first swapr andr ′ to obtain the

pair (r,mateM∗′RB
(r)); we then obtain another pair by matchingr ′ with eitheru or

mateM∗′RB
(r ′), as in Case I or II.

(b) If mateM∗′RB
(r ′) is matched withmateM∗′RB

(r ′′) in M∗c for somer ′′ 6= r ′, thenr ′′must be

in M∗c (otherwiseM∗c is not maximum inC). We first swapr andr ′ to obtain the pair
(r,mateM∗′RB

(r)); we then obtain another pair by matchingr ′ with eithermateM∗′RB
(r ′)

or mateM∗′RB
(r ′′), as in Case III or IV.

(c) If mateM∗′RB
(r ′) is the right mate ofr ′′ in M∗c for somer ′′ 6= r ′, thenmateM∗′RB

(r ′′)
must be inM∗c (otherwiseM∗c is not maximum inC). We swapr andr ′ to obtain the
pair (r,mateM∗′RB

(r)). Case V is then applicable tor ′.

Thus givenM∗c , we can convert it into another optimal matchingM∗
′

c in C, such
that all r ∈ R are matched inM∗

′
c . Note that the above case analysis immediately

gives a sequential procedure for convertingM∗c into M∗
′

c . To obtain M∗
′

c in parallel
straightforwardly based on the above case analysis, one could use a procedure relying
on parallel list-ranking [1], [11]. Such a list-ranking-based procedure, although would
give an efficient EREW PRAM algorithm, would not lead to a hypercube algorithm as
efficient as the one we claimed. Our parallel algorithms avoid using list-ranking and
instead are based on the following lemma.

278 M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee

LEMMA 3.5. It is possible to convert the optimal matching M∗c in C into another optimal
matching M∗

′
c in C, such that every interval r∈ R is matched in M∗

′
c , in O(logn) time

on an O(n/ logn)-processor EREW PRAM and on an n-processor hypercube.

PROOF. We use the following two-step procedure to perform the conversion ofM∗c
into M∗

′
c .

(i) For everyr ∈ R, color its right endpoint red. LetR′ = R∩M∗c (i.e., the intervals
of R that are matched inM∗c). For everyr ′ ∈ R′, color the left endpoint ofmateM∗c (r

′)
blue. Note thatR′ ⊆ R and hence|R′| ≤ |R|. Perform a red–blue matching on these two
sets of colored points, to obtain a matchingMt

RB. It is obvious that|Mt
RB| = |R′|. Let Mt

c
be the matching inC that consists of all type-4 pairs inM∗c and all pairs inMt

RB. Then
Mt

c is an optimal matching inC and there are|R| − |R′| intervals inR still unmatched
in Mt

c.
(ii) For all the intervals ofR that are unmatched inMt

c, color their right endpoints as
red. For all the right mates of the type-4 pairs inMt

c, color their left endpoints as blue.
Perform a red–blue matching on these two sets of colored points, to obtain a matching
Ms

RB. Let Ms
c be the matching inC obtained by replacing the type-4 pairs inMt

c whose
right mates occur inMs

RB by the pairs inMs
RB. We claim that the resulting matchingMs

c
is the desired optimal matchingM∗

′
c in C.

It is clear that we only need to show the correctness of step (ii). First, note that
the case analysis preceding this lemma is applicable to the optimal matchingMt

c in
C obtained in step (i). Also, observe that the matchingMt

RB, obtained by a red–blue
matching [20] among the right endpoints ofR (red) and the left endpoints of the right
mates of the intervals ofR′ in M∗c (blue), has the canonical form as defined in the proof
of Lemma 3.4.

We now claim that every intervalr of R that is not matched inMt
c can be matched

with the right mate of a distinct type-4 pair inMt
c.

PROOF OF THECLAIM . Let r ∈ R be an unmatched interval inMt
c. Then inMt

c, when
Case I, II, III, or IV holds forr , clearly the claim is true. When Case V holds forr ,
mateM∗′RB

(r) is the right mate ofr ′ in Mt
c for somer ′ ∈ R. By the canonical form of

the red–blue matching forMt
RB [20], we havere(r) < re(r ′), and this implies that

re(r) < le(mateM∗′RB
(r ′)), as shown in Figure 5(a). (The notation of Figure 5 is the same

as Figure 4.) Hence, if Case V(a) or V(b) holds forr , thenr certainly can be swapped
with the left mate ofmateM∗′RB

(r ′) in Mt
c (e.g., Figure 5(b)). If Case V(c) holds forr , then

mateM∗′RB
(r ′) is the right mate ofr ′′ in Mt

c for somer ′′ ∈ R. Fromre(r) < le(mateM∗′RB
(r ′))

and the canonical form of the red–blue matching forMt
RB, we havere(r) < re(r ′′) and

re(r) < le(mateM∗′RB
(r ′′)) (see Figure 5(c)). By inductively using this argument, the claim

is proved.

The claim proved above implies thatM∗
′

c (= Ms
c) thus obtained includesR and is

optimal inC. Since the endpoints of all the intervals are sorted, the parallel complexity
bounds of the above conversion procedure are the same as those of the parallel algorithms
for red–blue matching that we discuss in Section 2.

Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 279

Fig. 5. Illustrating the claim in the proof of Lemma 3.5.

Thus, after computingM∗c , we perform the red–blue matching twice to obtain
M∗

′
c , such that allr ∈ R are matched inM∗

′
c . We show below thatM∗

′
c indeed con-

tains type-4 interval pairs ofY that help match the maximum number of intervals of
L ∪ R.

LEMMA 3.6. Let M′ be a maximum matching in the interval set Y∪ L ∪ R. Then
|M ′| = |M∗′c |.

PROOF. We first prove, by contradiction, that|M ′| ≤ |M∗′c |. Assume that|M ′| > |M∗′c |
(i.e., the maximum matchingM ′ in Y ∪ L ∪ R is of a bigger size than the maximum
matchingM∗

′
c in C = R ∪ Y). Recall thatM∗

′
c contains all the intervals ofR and R

is a maximum subset of intervals ofU ′ = L ∪ R that can match with the intervals
of Y.

Consider the graphG′ defined by the disjoint intervals inY ∪ L ∪ R. Clearly,M∗
′

c is
a matching inG′ (sinceC = R∪Y is a subset ofY∪ L ∪ R). Because|M ′| > |M∗′c |, by
Theorem 9.1 in [27], there is at least one augmenting path inG′ with respect toM∗

′
c . Let

P be such an augmenting path inG′. ThenP begins and ends with free intervals (say,i
and j) of G′ with respect toM∗

′
c . Note that all interior vertices ofP (i.e., the intervals

of P that are not at the beginning and end ofP) are inM∗
′

c . Also, bothi and j are not
in R. There are two cases.

(i) Both i and j are in Y. Then by replacing those matches ofM∗
′

c in M∗
′

c ∩ P by the
matches defined byP − M∗

′
c , the resulted matchingM∗

′′
c involves only the intervals in

R∪ Y but the size ofM∗
′′

c is bigger than|M∗′c | by one, a contradiction to the optimality
of M∗

′
c in R∪ Y.

(ii) At least one of i and j is in L. Then by replacing those matches ofM∗
′

c in M∗
′

c ∩ P
by the matches defined byP − M∗

′
c , the resulted matchingM∗

′′′
c in Y ∪ L ∪ R still

contains all the intervals ofR (since all interior vertices ofP remain inM∗
′′′

c). Further,
M∗

′′′
c contains at least one more interval (i or j) from L, a contradiction to thatR

is a maximum subset of intervals ofU ′ = L ∪ R that can match with the intervals
of Y.

The fact that|M ′| ≥ |M∗′c | simply follows from thatR∪ Y ⊂ Y ∪ L ∪ R. Hence the
lemma is proved.

280 M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee

LEMMA 3.7. For any partition of the set U′ into subsets L′ and R′ such that the intervals
in L ′ (resp., R′) match with the intervals of X(resp., Y), let C′ = R′ ∪ Y and M∗

′
c′

be a maximum matching in C′ such that M∗
′

c′ contains all the intervals of R′. Then
|M∗′c′ | ≤ |M∗

′
c |.

PROOF. SinceC′ = R′ ∪ Y ⊂ Y ∪U ′ = Y ∪ L ∪ R, we have|M∗′c′ | ≤ |M ′|, whereM ′

is a maximum matching inY ∪U ′. Thus the lemma follows from Lemma 3.6.

For a partition ofU ′ into L ′ and R′ such that the intervals inL ′ (resp.,R′) match
with the intervals ofX (resp.,Y) and such that|R′| ≤ |R| (and hence|L ′| ≥ |L|), let
C′ = R′ ∪ Y and M∗

′
c′ be a maximum matching inC′ such thatM∗

′
c′ contains all the

intervals ofR′. Further, assume thatM∗
′

c′ provides the maximum number of type-4 pairs
in Y for helping match the intervals ofU ′. Let h = |R| − |R′| = |L ′| − |L|. Then there
areh = |L ′|− |L|more intervals inL ′ thanL that need to match with intervals ofX. On
the other hand, by Lemma 3.7,M∗

′
c′ is of a size≤ |M∗′c |, and hence can provide at most

h = |R| − |R′| more type-4 pairs inY thanM∗
′

c . Therefore, any optimal matching inI
based on the partitionL ′ andR′ of U ′ can have a size at most as big as the one produced
by L, R, andM∗

′
c . In fact, for some partitions ofU ′ into L ′ andR′ such that|L ′| − |R′|

is not minimized (i.e.,|L ′| − |R′| > |L| − |R|), it is possible to have|M∗′c′ | < |M∗
′

c | (i.e.,
M∗

′
c′ does not provideh = |R| − |R′| more type-4 pairs ofY thanM∗

′
c for matching the

intervals ofL ′). Figure 6 gives such an example ofL ′, R′, andM∗
′

c′ . Therefore,M∗
′

c indeed
contains type-4 interval pairs ofY that help match the maximum number of intervals of
L ∪ R.

We should also note that Lemmas 3.6 and 3.7 play a key role not only in proving
the correctness of our algorithms, but also in achieving the efficiency of our algorithms.
They allow our algorithms to compute recursively on the setC = R ∪ Y with |C| <
|I |/2= n/2. One could have recursively computed a maximum matching inY ∪ L ∪ R
(instead of a maximum matching inC) and used such a matching to find the needed
type-4 interval pairs ofY, but there is no guarantee on|Y∪ L ∪ R| ≤ cn for any positive
constantc < 1.

Let m denote the number of type-4 pairs inM∗
′

c . If m ≥ b(|L| − |R|)/2c, then
we takeb(|L| − |R|)/2c type-4 pairs fromM∗

′
c and add them toM∗. All other type-

4 pairs of M∗
′

c are ignored (these intervals will be paired with intervals on the other
side of V). If m < b(|L| − |R|)/2c, we add all the type-4 pairs ofM∗

′
c to M∗ and

delete any(|L| − |R|) − 2m intervals fromL. For eachr ∈ R, there is a distinct

Fig. 6. For |L ′| = 6 and|R′| = 0, M∗′c′ has two type-4 pairs, but, for|L| = 4 and|R| = 2, M∗′c also has two
type-4 pairs.

Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 281

interval to the right ofV with which r is paired; we add these|R| pairs to M∗. For
each remainingl ∈ L, there is a distinct interval to the left ofV with which l is paired;
we add these|L| pairs toM∗. Finally, there ares unassigned intervals remaining on
each of the left and right sides ofV which form s pairs, and we add them toM∗.
The matchingM∗ thus obtained is a desired optimal matching in the input interval
set I .

If |L| < |R|, then due to the nature of the parallel convex bipartite matching algorithm
(Lemma 2.2), we cannot perform any further “balancing”, and hence must proceed
directly to computing the setC = L ∪ X, such thatC contains the candidates for type-4
pairs to the left ofV (which help match the maximum number of intervals ofR). The
computation for this case is similar to the case of|L| > |R|.

The formal description of our parallel algorithms is now given. The implementa-
tion details on the EREW PRAM and on hypercubes are described in the following
subsections.

Algorithm G-Disj-Match(I , A, B)

Input: A set I = {I1, I2, . . . , In} of n intervals, each specified by its two
endpoints.

Output: A set, A, of the left elements of the pairs of an optimal matching
M∗ in I and a set,B, of the right elements of the pairs ofM∗, listed in a
corresponding order.

1. Sort by thex-coordinates of the left and right endpoints inI and relabel
the intervals so thati < j if le(i) < le(j), if the endpoints are not given
already sorted.

2. Compute the location of a middle lineV and the setU of intervals cut by
V . Let b be the number of intervals to the left (resp., right) ofV .

3. Obtain the subsetX of the intervals to the left ofV and maintain them
in the order of decreasing right endpoints. Assign these intervals a label
from 1 tob such thati < j if re(i) > re(j).

4. Obtain the subsetY of the intervals to the right ofV and maintain them
in the order of decreasing left endpoints. Assign these intervals a label
from b+ 1 to 2b such thati < j if le(i) > le(j).

5. For eachu ∈ U , compute the range of intervals inI−U (i.e.,X∪Y) which
are possible candidates for matching withu, using the labels assigned in
Steps 3 and 4. Express this range foru as (first, last) (i.e.,(fu, lu)).

6. Construct a representation for a convex bipartite graphG = (U, I−U, E)
with the edge setE = {(ai ,bj) | ai ∈ U, fai ≤ bj ≤ lai ,bj , fai , lai ∈
I −U }, by using the values offu andlu computed in Step 5. Compute a
maximum matchingM∗cb in G. Each intervalu ∈ U ∩ M∗cb is assigned to
an interval ofI −U numbered from 1 to 2b. If the assigned interval is in
the range [1, . . . ,b], thenu matches left, otherwise it matches right. Let
L (resp.,R) be the subset of intervals ofU that match left (resp., right)
in M∗cb. If |L| = |R|, then return asM∗ the matched pairs fromL andR

282 M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee

and the matched pairs formed by the remaining intervals inI −U . Else,
continue.

7. If |L| > |R|, let Red= {re(j) | j ∈ (L ∪ R)}, Blue = {le(j) | j ∈
Y}. Perform a red–blue matching to find out how many intervals ofL
can also match right. LetM∗RB denote the resulting maximum red–blue
matching. For each red pointr ∈ L ∪ R in M∗RB, there is a blue point
b ∈ Y assigned. If not everyr ∈ R is included inM∗RB, then perform
another red–blue matching withRed= {re(j) | j ∈ R − M∗RB} and
Blue= {re(j) | j ∈ L ∩ M∗RB} to transform it (Lemma 3.4) toM∗

′
RB. If

|M∗′RB| − |R| ≥ b(|L| − |R|)/2c, then addb(|L| − |R|)/2c intervals ofL
that are inM∗

′
RB to R and remove them fromL. If |L| − |R| = 1, then

delete one interval from the larger set. At this point,|L| = |R|. Return
M∗ which is obtained as in Step 6. If|M∗′RB| − |R| < b(|L| − |R|)/2c,
then continue (with|L| 6= |R|).

8. If |M∗′RB| − |R| < b(|L| − |R|)/2c, then add any|M∗′RB| − |R| intervals of
L that are inM∗

′
RB to R and delete them fromL.

9. At this point, either|L| > |R| (from Step 8) or|R| > |L| (Steps 7 and 8
not executed). If|L| > |R|, then letC = R∪ Y. If |R| > |L|, then let
C = L ∪ X.

10. If |C| > 2, then letM∗c = G-Disj-Match(C, A′, B′); else, compute
M∗c = (A′, B′) in a straightforward manner.

11. If |L| > |R|, then examine the intervals inA′ to see whether all intervals
r ∈ R have been retained inM∗c . If not, convert the optimal matchingM∗c
in C to another optimal matchingM∗

′
c in C, such that all the intervals of

R are matched inM∗
′

c (by using Lemma 3.5). UpdateA′ according to the
pairs inM∗

′
c .

12. If |R| > |L|, then examine the intervals inB′ to see whether all intervals
l ∈ L have been retained inM∗c . If not, convert the optimal matchingM∗c
in C to another optimal matchingM∗

′
c in C, such that all the intervals of

L are matched inM∗
′

c (by using Lemma 3.5). UpdateB′ according to the
pairs inM∗

′
c .

13. Identify the type-4 pairs in(A′, B′) and delete all other pairs (which are
pairs involving intervals inR or L).

14. Letw = b(|L|− |R|)/2c. If |A′| < w, then remove intervals fromL or R
(whichever is larger) so that|R| = |L|+2|A′| (resp.,|L| = |R|+2|A′|).
If |A′| ≥ w, then delete(|A′| − w) pairs from(A′, B′). M∗ contains the
remaining pairs in(A′, B′), the matched pairs fromRandL, and the pairs
from the remaining intervals inX and inY. Return.

THEOREM3.1. Given a set I of n intervals, algorithmG-Disj-Match solves the maxi-
mum matching problem between disjoint intervals in O(log3 n) time using O(n/ log2 n)
processors on the EREW PRAM and using n processors on the hypercubes.

PROOF. The correctness of the algorithms follows from the discussions in Sections 3.2.1
and 3.2.2. The time and processor bounds follow from the descriptions given in the next
two subsections.

Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 283

3.3. EREW PRAM Implementation and Analysis. This subsection gives the implemen-
tation and analysis details of the EREW PRAM algorithm.

Step 1 takesO(logn) time andO(n) processors for sorting [10]. Relabeling can be
done by parallel prefix [22], [23] inO(logn) time andO(n/ logn) processors. In Step 2
the middle line can be found easily inO(logn) time andO(n/ logn) processors. The set
U can be determined by parallel prefix. Identifying the setsX andY in Steps 3 and 4 and
relabeling them can all be done with parallel prefix inO(logn) time andO(n/ logn)
processors.

In Step 5, for every intervalu∈U , we use the original list of sorted endpoints and find
the first right endpoint to the left ofle(u) and the first left endpoint to the right ofre(u).
Each of these two endpoints foru, for all u ∈ U , can be computed by parallel prefix
(either along the left-to-right order or the right-to-left order of the sorted endpoint list).

In Step 6 a maximum matching in a convex bipartite graph can be obtained in
O(log2 n) time andO(n/ logn) processors (Lemma 2.2).

In Step 7 red–blue matching takesO(logn) time andO(n/ logn) processors [20]. In
the original sorted list of endpoints, we keep the right endpoints of the intervals inL ∪ R
and the left endpoints of the intervals inY, and relabel them in increasing order of the
x-coordinates using parallel prefix. We then label all the intervals inL ∪ R red and all
the intervals inY blue and compute the red–blue matching. If we need to do a second
red–blue matching, in the original sorted list we keep the right endpoints ofL in M∗RB
and of R not in M∗RB. We relabel in increasing order of thex-coordinates, then color
those ofL in M∗RB blue, those ofR not in M∗RB red, and compute the red–blue matching.

Step 8 can be easily done inO(logn) time andO(n/ logn) processors.
In Step 9 the setC can be easily formed by parallel prefix. Note that|C| < |I |/2 =

n/2.
In Step 10 we make a recursive call on the input setC. In each recursive call, the

number of input intervals is less than half that of the previous one.
Steps 11 and 12 can be done inO(logn) time usingO(n/ logn) processors (by

Lemma 3.5).
In Step 13 we can identify all non-type-4 pairs in(A′, B′) in constant time, and

compute a compressed list of the type-4 pairs using parallel prefix inO(logn) time.
Step 14 can be done by parallel prefix to build the compressed lists of(A′, B′), R,

L, and the pairs of unassigned intervals ofX andY. This step takesO(logn) time and
O(n/ logn) processors.

The time and processor bounds for all nonrecursive steps discussed above areO(log2 n)
andO(n/ logn), respectively. LetT(n) andW(n) denote the complexity bounds of the
time and total number of operations taken by the algorithm, respectively. Then the re-
currence relations forT(n) andW(n) are as follows:

T(n) ≤
{

T(n/2) + c1 log2 n if n > 2,
c2 if n ≤ 2,

W(n) ≤
{

W(n/2) + c3n logn if n > 2,
c4 if n ≤ 2,

wherec1, c2, c3, andc4 are all positive constants. It is very easy to show thatT(n) =
O(log3 n) andW(n) = O(n logn). Hence the EREW PRAM algorithm takesO(log3 n)

284 M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee

time and performsO(n logn) operations. By Brent’s theorem [7], the algorithm can be
made run inO(log3 n) time usingO(n/ log2 n) EREW PRAM processors.

3.4. Hypercube Implementation and Analysis. This subsection gives the implementa-
tion and analysis details of the algorithm on ann-processor hypercube.

Step 1 takesO(logn log logn) time for sorting [13]. Relabeling can be done by
parallel prefix [24] inO(logn) time. In Step 2 the middle line can be found easily by
ranking the endpoints inO(logn) time. In Steps 3 and 4 the setsU , X, andY can all
be obtained as on the EREW PRAM by using translation and parallel prefix inO(logn)
time [24].

In Step 5 for every intervalu ∈U , we use parallel prefix to find the first right endpoint
to the left of le(u) and the first left endpoint to the right ofre(u) (either along the
left-to-right order or the right-to-left order of the sorted endpoint list).

In Step 6 a maximum matching in a convex bipartite graph can be obtained in
O(log2 n) time by using Andrews’ algorithm [2].

In Step 7 red–blue matching takesO(logn) time (by using the hypercube algorithm
discussed in Section 2). In the original sorted list of endpoints, we use parallel prefix
and concentration [24] to extract the right endpoints of the intervals inL ∪ R and the left
endpoints of the intervals inY, and relabel them in increasing order of thex-coordinates
using parallel prefix. We then label all the intervals inL ∪ R red and all the intervals in
Y blue. If we need to do a second red–blue matching, in the original sorted list we use
parallel prefix and concentration to extract the right endpoints ofL in M∗RB and of R
not in M∗RB. We relabel in increasing order of thex-coordinates by using parallel prefix.
Then color those ofL in M∗RB blue, those ofR not in M∗RB red, and perform the red-blue
matching, inO(logn) time.

Step 8 can be done by parallel prefix and broadcasting inO(logn) time.
In Step 9 the setC can be easily formed by parallel prefix. Note that|C| < |I |/2 =

n/2.
In Step 10 we make a recursive call on the input setC. In each recursive call, the

number of input intervals is less than half that of the previous one. Hence, there are
altogetherO(logn) recursive calls for the algorithm.

Steps 11 and 12 can be done inO(logn) time (by Lemma 3.5).
In Step 13 we can identify all non-type-4 pairs in(A′, B′) in constant time, and

compute a compressed list of the type-4 pairs using parallel prefix and concentration, in
O(logn) time.

Step 14 can be done by using parallel prefix and concentration to build the compressed
lists of (A′, B′), R, L, and the pairs of unassigned intervals ofX andY. The time of this
step isO(logn).

The dominating time complexity among all the nonrecursive steps isO(log2 n). Since
the algorithm makeO(logn) recursive calls, the worst case time bound of the algorithm
on ann-processor hypercube isO(log3 n).

4. Matching among Disjoint Proper Intervals. We first give some useful observa-
tions for in the next subsection. Section 4.2 then presents the algorithms for maximum
matching among disjoint proper intervals.

Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 285

Fig. 7.The form of an optimal matching among proper intervals.

4.1. Useful Observations. Our algorithms for maximum matching among disjoint
proper intervals are based on the following observations.

LEMMA 4.1. Given the model of a proper interval graph in sorted order, there exists
an optimal matching M∗, of cardinality k, for the disjoint proper intervals such that
with respect to M∗, the first k intervals I1, I2, . . . , Ik match right, the last k intervals
In−k+1, In−k+2, . . . , In match left, and all the intervals Ik+1, Ik+1, . . . , In−k are free(i.e.,
M∗ has the form as illustrated in Figure7, in which free intervals are denoted by unfilled
circles).

PROOF. Suppose that we are given an optimal matchingM with k matches such that
the leftmost left arrow (matching left) is ati < n − k + 1. Then, there must be some
interval j > i such that eitherj is unmatched orj is a right arrow (matching right). Let
j be the smallest such interval.

Case1: j is unmatched. j > i meansle(j) > le(i) andre(j) > re(i). Then eitherj
overlaps withi or j lies to the right ofi . In either case, we can perform a swap to obtain
a new optimal matchingM ′, so that j becomes matched inM ′ with mateM(i) andi is
free inM ′. Since,re(mateM(i)) < le(i) andle(j) > le(i), clearly j can be matched with
mateM(i).

Case2: j matches right. By definition,re(j) < le(mateM(j)). Either j overlaps with
i or j lies to the right ofi . In either case, sincere(i) < re(j), we can pair(i,mateM(j)).
Also, sincele(i) < le(j), we can pair(mateM(i), j). Now j matches left andi matches
right.

By repeatedly performing this swapping operation, one can make thek rightmost
intervals match left and thek leftmost intervals match right (this is done by first moving
thek left arrows to thek rightmost intervals, and then moving thek right arrows to the
k leftmost intervals).

LEMMA 4.2. Suppose it is known that the size of an optimal matching is k. Then the
following pairs of intervals form an actual maximum matching M∗: {(i,n− k+ i) | i =
1,2, . . . , k}.

PROOF. Let M∗ be an optimal matching in the form defined in Lemma 4.1. Because of
the proper interval graph condition, for anyi ≤ k, if i cannot be matched withn− k+ i ,
(i.e., i andn − k + i are not disjoint), then there is noi ′ with i < i ′ < n − k + i that
does. Hence,i would have to match with some intervalj > n− k+ i . This would give
a maximum matching whose size is less thank, a contradiction.

286 M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee

Without loss of generality, we assume thatn is a multiple of 2. Given the form of the
optimal matchingM∗ as specified in Lemmas 4.1 and 4.2, we know that there exists an op-
timal matching in which all intervals which match right are in the range [I1, I2, . . . , In/2]
and all intervals which match left are in the range [In/2+1, In/2+2, . . . , In].

4.2. Matching Algorithm for Disjoint Proper Intervals. The outline of our algorithms
and the implementation details are described in this subsection.

Algorithm P-Disj-Match(I)

Input: A set I = {I1, I2, . . . , In} of n proper intervals, each specified by its
two endpoints.

Output: A list of pairs of intervals which form a maximum matchingM∗

in I .

1. Check the input list of endpoints of the intervals inI to see whether it is
already in sorted order. If the endpoint list is not in sorted order, then sort
the endpoints ofI .

2. Compute the size of a maximum matchingM between the intervals in
{I1, I2, . . . , In/2} which are candidates to match right and the intervals in
{In/2+1, In/2+2, . . . , In} which are candidates to match left.

3. Compute the maximum matchingM∗ in I , which is of size|M |.

THEOREM4.1. Given a set I of n proper intervals, algorithmP-Disj-Match solves the
maximum matching problem in O(logn) time on the EREW PRAM using O(n/ logn)
processors if the set of endpoints of I is given sorted and using O(n) processors
otherwise.

PROOF. The correctness and the time and processor bounds follow from the discussion
below.

Checking whether the input endpoint list ofI is already in sorted order is done
by comparing every two consecutive values of the input list. For example, if there is
one pair of consecutive values in the list “out of order” (e.g., thei th value is larger
than the(i + 1)th value), then the list is not sorted in increasing order. If no two
consecutive values in the list are “out of order” for the increasing (resp., decreas-
ing) order, then the list is already sorted in increasing (resp., decreasing) order. The
checking can be easily done by parallel prefix inO(logn) time and O(n/ logn)
processors.

To compute|M |, we have two sets of intervals, and the intervals in the first set
can only match right and the intervals in the second set can only match left. An in-
terval j can match left with an intervali if and only if re(i) < le(j). This implies
that we only need to use the right (resp., left) endpoints of the intervals in the first
(resp., second) set. Therefore, we represent each interval ofI by a single point (ei-
ther its right or left endpoint, depending on whether it is in the first or second set).
Then a match can occur between an intervali of the first set{I1, I2, . . . , In/2} and

Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 287

an interval j of the second set{In/2+1, In/2+2, . . . , In} if and only if re(i) < le(j).
To solve this matching problem, we transform it into a red–blue matching. We color
the right endpoints of intervalsI1, I2, . . . , In/2 red and the left endpoints of intervals
In/2+1, In/2+2, . . . , In blue, and compute the red–blue matchingM on these colored
points.

Let d = |M |. Then the maximum matching,M∗, is of sized. By Lemma 4.2,M∗

consists of the followingd interval pairs ofI : {(i,n− d + i) | i = 1,2, . . . ,d}.
Red–blue matching on sorted points can be done inO(logn) time with O(n/ logn)

processors on the EREW PRAM by using Kim’s algorithm [20]. Thus, the total time
for computing a maximum matching between disjoint proper intervals isO(logn) time
with O(n/ logn) processors with sorted input, andO(n) processors otherwise, on the
EREW PRAM.

THEOREM4.2. Given a set I of n proper intervals in sorted order, algorithmP-Disj-
Match solves the maximum matching problem in O(logn) time on n-processor hyper-
cubes.

PROOF. The main operations of the hypercube algorithm are ranking the endpoints,
concentration, parallel prefix, and red–blue matching. The ranking, concentration, and
parallel prefix can all be done inO(logn) time [24]. Given the interval endpoints already
sorted, the red–blue matching can be performed also inO(logn) time by using the
hypercube algorithm discussed in Section 2.

5. Improved Overlapping Matching Algorithm on Proper Intervals. Moitra and
Johnson [26] presented parallel algorithms for the related problem of finding a maxi-
mum cardinality matching between pairs of overlapping intervals. LetG be a proper
interval graph withn vertices andIG be its interval model. For the proper interval
case, the algorithm in [26] is based on the CREW PRAM and takesO(logn) time
andO(n2/ logn) processors. It computes a depth-first search tree,T = (V, E′), where
E′ = {(i,parent(i)) | parent(i) 6= 0}. Here,parent(i) is the interval overlapping with
i which ends first after the end ofi , if such an interval exists. AssumeG is connected
and IG is sorted. Then for each intervali , parent(i) = i + 1 (except the last interval).
Each internal node in the tree has only one child and the root of the tree islast(IG) = n
(i.e., re(n) = max{re(k) | k ∈ I }). If there is more than one connected component,
then it is still true thatparent(i) = i + 1. However, there will be one intervali with
parent(i) = 0 for each connected component.last(IG) will be the root of only one
of the unary spanning trees. Moitra and Johnson show that the selection of all the
odd labeled edges in each spanning tree constitutes a maximum matching. Comput-
ing the functionparent(i) is the dominating step in terms of the time and processor costs
in [26].

Kim [20] has shown that computingparent(i) can be done inO(logn) time with
O(n/ logn) processors on the EREW PRAM, if the endpoints of the intervals are al-
ready sorted. Since each internal node in the spanning trees has only one child, we
can treat the trees as lists. The initial node of the first list isI1. For the other lists, the
initial nodes are{ j | parent(j − 1) = 0}. We can then apply the extended parallel

288 M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee

list ranking of Cole and Vishkin [11]. In the extended list ranking problem, there is
more than one list and the problem is to compute the rank of each entry in its own
list. This can be done inO(logn) time usingO(n/ logn) EREW PRAM processors.
Therefore, with sorted input, a maximum matching between overlapping proper inter-
vals can be computed inO(logn) time usingO(n/ logn) processors on the EREW
PRAM.

6. Conclusion. We have given parallel algorithms in the EREW PRAM and hypercube
models for the problem of computing a maximum cardinality matching between pairs of
disjoint intervals in an interval model. Previously there was no efficient parallel algorithm
known for this problem. For the general case of the problem, our algorithms compute
a maximum matching inO(log3 n) time usingO(n/ log2 n) processors on the EREW
PRAM and usingn processors on the hypercubes. For the case of proper interval graphs,
our algorithm runs inO(logn) time on the EREW PRAM usingO(n) processors if
the intervals are not given sorted and usingO(n/ logn) processors otherwise. Onn-
processor hypercubes, our algorithm for the proper interval case takesO(logn log logn)
time for unsorted input andO(logn) time for sorted input.

We have also improved the parallel algorithm for maximum matching between over-
lapping intervals in a proper interval graph. Our algorithm runs inO(logn) time on
the EREW PRAM usingO(n) processors if the input intervals are not given sorted and
usingO(n/ logn) processors otherwise. The best previously known parallel algorithm
for this problem [26] takesO(logn) time usingO(n2/ logn) processors in the (stronger)
CREW PRAM model. Hence our algorithm improves the processor bound while using
a less powerful computational model.

Acknowledgment. The authors would like to thank the anonymous referees for care-
fully reading the manuscript and making helpful suggestions that considerably improved
the presentation of this paper.

References

[1] R. Anderson and G. L. Miller, Deterministic Parallel List Ranking,Algorithmica, 6 (1991),
859–868.

[2] M. G. Andrews, Efficient Parallel Graph Algorithms on the Hypercube Network Model, Ph. D. Thesis,
Northwestern University, December 1992.

[3] M. G. Andrews and D. T. Lee, An Optimal Algorithm for Matching in Interval Graphs, manuscript
(1992).

[4] M. J. Atallah, M. T. Goodrich, and S. R. Kosaraju, On the Parallel Complexity of Evaluating Some
Sequences of Set Manipulation Operations,J. Assoc. Comput. Mach., 41 (1994), 1049–1088.

[5] O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin, Highly Parallelizable Problems,Proc.
21st Annual ACM Symp. on Theory of Computing, 1989, pp. 309–319.

[6] G. Bilardi and A. Nicolau, Adaptive Bitonic Sorting: An Optimal Parallel Algorithm for Shared-Memory
Machines,SIAM J. Comput., 18 (1989), 216–228.

[7] R. P. Brent, The Parallel Evaluation of General Arithmetic Expressions,J. Assoc. Comput. Mach., 21(2)
(1974), 201–206.

Parallel Algorithms for Maximum Matching in Complements of Interval Graphs 289

[8] D. Z. Chen, Efficient Parallel Binary Search on Sorted Arrays, with Applications,IEEE Trans. Parallel
Distrib. Systems, 6(4) (1995), 440–445.

[9] D. Z. Chen, Optimal Hypercube Algorithms for Triangulating Classes of Polygons and Related Prob-
lems,Proc. 7th Internat. Conf. on Parallel and Distributed Computing Systems, Las Vegas, NV, 1994,
pp. 174–179.

[10] R. Cole, Parallel Merge Sort,SIAM J. Computing, 17 (1988), 770–785.
[11] R. Cole and U. Vishkin, Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking,

Inform. and Control, 70 (1986), 32–53.
[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms, McGraw-Hill, New York,

1990.
[13] R. Cypher and C. G. Plaxton, Deterministic Sorting in Nearly Logarithmic Time on the Hypercube and

Related Computers,J. Comput. System Sci., 47 (1993), 501-548.
[14] E. Dekel and S. Sahni, A Parallel Matching Algorithm for Convex Bipartite Graphs,Proc. International

Conf. on Parallel Processing, 1982, pp. 178–184.
[15] H. N. Gabow and R. E. Tarjan, A Linear-Time Algorithm for a Special Case of Disjoint Set Union,

J. Comput. System Sci., 30 (1985), 209–221.
[16] G. Gallo, AnO(n logn) Algorithm for the Convex Bipartite Matching Problem,Oper. Res. Lett, 3(1)

(1984), 31–34.
[17] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,

1980.
[18] T. Hagerup and C. Rub, Optimal Merging and Sorting on the EREW PRAM,Inform. Process. Lett., 33

(1989), 181–185.
[19] J. JáJá,An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.
[20] S. K. Kim, Optimal Parallel Algorithms on Sorted Intervals,Proc. 27th Annual Allerton Conf. on

Communication, Control, and Computing, Monticello, IL, 1989, pp. 766–775.
[21] D. Kravets and C. G. Plaxton, Optimal Hypercube Algorithm for the All-Nearest Smaller Values Prob-

lem,Proc. 6th IEEE Symp. on Parallel and Distributed Processing, Dallas, TX, 1994.
[22] C. P. Kruskal, L. Rudolph, and M. Snir, The Power of Parallel Prefix,IEEE Trans. Comput., 34(10)

(1985), 965–968.
[23] R. E. Ladner and M. J. Fischer, Parallel Prefix Computation,J. Assoc. Comput. Mach., 27 (1980),

831–838.
[24] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays–Trees–Hypercubes,

Morgan Kaufmann, San Mateo, CA, 1992.
[25] W. Lipski, Jr., and F. P. Preparata, Efficient Algorithms for Finding Maximum Matchings in Convex

Bipartite Graphs and Related Problems,Acta Inform., 15 (1981), 329–346.
[26] A. Moitra and R. C. Johnson, A Parallel Algorithm for Maximum Matching in Interval Graphs,Proc.

Int. Conf. on Parallel Processing, 1989, Vol. III, pp. 114–120.
[27] R. E. Tarjan,Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1983.

