CERIAS Tech Report 2003-14

AUTHENTICATION OF LZ-77
COMPRESSED DATA

by Mikhail J. Atallah and Stefano Lonardi
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907

Authentication of LZ-77 compressed data

Mikhail J. Atallah
CERIAS & Dept. of Computer Sciences
Purdue University
West Lafayette, IN 47907

mja@cs.purdue.edu

ABSTRACT

The formidable dissemination capability allowed by the
current network technology makes it increasingly im-
portant to devise new methods to ensure authenticity.
Nowadays it is common practice to distribute docu-
ments in compressed form. In this paper, we propose
a simple variation on the classic LZ-77 algorithm that
allows one to hide, within the compressed document,
enough information to warrant its authenticity. The de-
sign is based on the unpredictability of a certain class of
pseudo-random generators, in such a way that the hid-
den data cannot be retrieved in a reasonable amount
of time by an attacker (unless the secret bit-string key
is known). Since it can still be decompressed by the
original LZ-77 algorithm, the embedding is completely
“transparent”. Preliminary experiments show also the
degradation in compression due to the embedding is al-
most negligible.

Keywords

Authentication, integrity, data compression, LZ-77, frag-
ile watermark

1. INTRODUCTION

The growing concern about authenticity, confiden-
tiality, and the protection of intellectual property on
the Internet has recently raised the interest in informa-
tion hiding. The main areas of research in information
hiding are steganography and watermarking. Whereas
steganography is the science of concealing the existence
of secret messages within larger ones from an external
observer, watermarking can be thought as a stronger
version of steganography, since it usually requires ro-
bustness against attacks aimed at removing the water-
mark (for an introduction see, e.g., [3, 11, 15, 23, 12]).

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseor
republishto poston senersor to redistritute to lists, requiresprior specific

permissiorand/ora fee.
SAC 2003,Melbourne Florida,USA.
Copyright 2003ACM 1-58113-624-2/03/03%5.00.

Stefano Lonardi
Dept. of Computer Science and Engineering
University of California
Riverside, CA 92521

stelo@cs.ucr.edu

A new type of watermark, called fragile has been re-
cently proposed for digital images [20, 9, 13]. A fragile
watermark is designed to ensure that the document can-
not be changed without destroying the watermark. The
most immediate application is document authenticity.
The watermark becomes some sort of a “witness” to
the authenticity of the document.

So far, most of the research in watermarking has been
focused on multimedia (images, audio, video) and source
code. Techniques that hide messages in English texts
range from line-shifting, word-shifting and font encod-
ing (see, e.g., [5, 14, 6]) to natural language processing
approaches (see, e.g., [1]). Whereas the first groups of
techniques are particularly sensitive to attacks by opti-
cal character recognition, the second ones change subtly
the text and that may not be tolerable for some applica-
tions. In general, the problem of watermarking English
text appears to be quite challenging.

The difficulty in hiding information in textual data is
justified in the literature by the following consideration
(3], page 332)

. text is in many ways the most difficult
to hide data ... due largely to the relative
lack of redundant information in a text file as
compared with a picture or a sound file . ..

also repeated in [12] (page 36)

. unlike noisy data, written text contains
less redundant information which could be
used for secret communication . ..

Any practitioner of lossless data compression knows that
texts can be lossless-compressed equally or sometimes
even more than an image or an audio file. This ob-
servation sparked our initial idea of hiding information
within a compressed representation of text.

To the best of our knowledge, the work by Cachin [7]
is the only one which combines information hiding and
textual data compression. He modifies Willems’ algo-
rithm [22] to illustrate a steganographic system which
he proves to achieve asymptotically perfect security.

The scheme by Lempel and Ziv [25] (LZ-77) imple-
mented in the popular gzip/zip family of archivers has
became nowadays a standard. Files are distributed over
the Internet commonly in compressed form. In Section 2
we first consider the problem of hiding a secret mes-

sage M within the Lempel-Ziv compressed representa-
tion of a document. The objective is to make sure that
M cannot be retrieved by the attacker in any reason-
able amount of time (unless the secret bit-string key is
known). The security of the system is the topic of Sec-
tion 3. In Section 4 we describe how to use our findings
for document authentication. Some preliminary exper-
iments are reported in Section 5.

2. HIDING MESSAGESIN LZ-77

The typical cryptographic protocol involves two par-
ties, traditionally named Alice and Bob. We call T the
document that Alice wants to send to Bob, and M the
secret message. We assume 1" over an alphabet X, and
M over the alphabet {0, 1}. The text T" should be “long
enough” to accommodate M, as explained below.

When we decompose the text 1" in uwvw, i.e., T' = uvw
where u,v and w are strings over %, strings w, v and w
are called substrings, u is called a prefix of T', and w is
called a suffiz of T. Given a string 7', the number of
symbols in 7" defines the length |T'| of T. Throughout
this document, we assume |7'| =t and |M| = m.

We write T}, 1 < 4 < ¢t to indicate the i-th sym-
bol in 7. We use 7Tj; ;; shorthand for the substring
Ty Tji4q) - - - T15) where 1 < i < j < t, with the con-
vention that Tj; 5 = Tj;. Substrings in the form Tj; ;
corresponds to the prefixes of x, and substrings in the
form 1j; 4 to the suffixes of x.

We denote by H a one-way cryptographic hash func-
tion (for example, MD5 [16]).

Suppose that our two friends, Alice and Bob, want
to exchange 1" and they want to ensure that what they
receive is authentic and integral. They want to estab-
lish some proof of authorship that cannot be forged or
reused. Sitting between Alice and Bob, there is Mal-
lory. Mallory is eavesdropping on the conversation and
devising a plan on how to tamper with 1.

Before starting the exchange of documents, Alice and
Bob agreed upon (and memorized) a secret key k. We
suppose that the key k is the only parameter unknown
to Mallory, as the Kerckhoffs’ principle dictates. The
idea is that even if Mallory understood the internals of
the system, he should never be able to change 7" and
get away with it without knowing k. In fact, we want
to ensure that Mallory is completely prevented from re-
trieving the secret message M from the compressed text.

When Alice decides to send (T, M) to Bob, she com-
presses the text 71" with a modified version of LZ-77,
called LZS-77 (“S” for secret), which secretly embeds
M. A description of the original LZ-77 is in order, fol-
lowed by the one for LZS-77.

The LZ-77 algorithm [25] processes the data on-line
as it is read, i.e., parses the file sequentially left to right
and looks into the sequence of past symbols to find a
match with the longest prefix of the string starting at
the current position. The longest prefix is substituted
with a pointer, which is a triple composed of (position,
length, symbol). Several variations on LZ-77 have been
proposed (see, e.g., [2] and references therein), but the
basic principle remains the same.

history current position

[Tem=] [eox | [emOw | [eox |

lem=x]

Figure 1: The multiplicity of the next phrase is
four (¢ = 4). Choosing one of the four possible
pointers hides two bits of the secret message

Let us suppose that the first ¢ — 1 symbols of the
string 1" have been already parsed in n — 1 phrases, i.e.,
Ti1,i—1] = Y1Y2 - . . Yn—1. To identify the n-th phrase, LZ-
77 looks for the longest prefix of 1j;4 that matches a
substring of Tjy ;_1j. If T{; j41—1j, j < i is the substring
that matches the longest prefix, then the next phrase
is yn = Tls,441-1)- The algorithm issues the pointer
(4,1, Tti+y) and updates the current position i to i+I41.
The reason we need 1[;4;) is to be able to advance when
I = 0, which is common in the very beginning.

In the LZS-77 algorithm, we slightly modify the LZ-77
encoding to be able to embed M. We define a position
i in the text corresponding to the beginning of a new
phrase to have multiplicity g if there exists exactly ¢
matches for the longest prefix that starts at position
i of T'. 'The positions with multiplicity ¢ > 1 are the
places where we embed some bits of the secret message
M. Specifically, the next log,(q) bits of M will secretly
drive the selection of one particular pointer out of the ¢
choices (see Figure 1).

Suppose again that the initial portion of T', say Tj1 ;_1j,
has been already parsed. Let {(po, 1, T};+q1), (1,1, Thitn),

ooy (Pg—1,1,T5341))}, ¢ = 1 be the set of feasible point-
ers for the longest prefix of Tj; 4, where [> 1, and
1<p <iforall 0 <[] < qg—1. In particular, we con-
sider the positions with multiplicity ¢ > 1. When ¢ =1
we simply skip to the next phrase.

When ¢ > 1, we first generate a random permutation
of the set S = {0,1,...,q — 1} as follows. We store S
in a balanced data structure which supports the opera-
tion EXTRACT(S, n) in time O(log q), such as a 2-3 tree
(there are tree schemes that achieve O(loglogq) per-
formance, but they are of mostly theoretical interest).
The operation EXTRACT(S,n) returns and simultane-
ously removes the n-th smallest element in S. We gen-
erate a pseudo-random sequence ai,as,... using BBS
[4], with seed ap = H(k,i,po,p1,-..,Pg—1). Then, for
each j =¢—1,¢—2,...,1,0 we set b; = EXTRACT(S,
aj mod (j+1)). It is easy to prove that {bo,b1,...bg—1}
is a uniformly distributed permutation of S. We use the
random permutation to re-order the pointers as R =
{(pbos l7 T[i+l])7 (pb] ; ly T[‘H—l])a RN (pbq,1 3 la T[l+l])}

We assign now a unique binary code to each pointer
by building the tree of the optimal binary prefix code of

VANS OAl OAL

q=6

Figure 2: The trees for =5 and ¢ =6

a uniform distribution on ¢ symbols. We first write the
multiplicity ¢ in binary notation as gx—1 . ..q1qo where
K = [log,(¢)| + 1 and ¢ = 35" 27¢;. We build a
complete binary tree B of height K, where each node
has a unique code identified by the path from the root
to the node, using the convention that going to a left
child corresponds to a ’0’ and going to a right child
corresponds to a ’1’. At the end of the process described
next each pointer will be assigned to a node of the tree
B and hence it will have a unique binary label. We
initially assign the first 25! pointers of the set R to
the nodes at level K — 1 of tree B. If there remain
unlabeled pointers, that is if ¢ > 257", we consider the
g — 2E~1 leftmost nodes at level K — 1. For each of
these, we “move” the pointer down to its left child and
we assign the next unlabeled pointer to the right child.
Figure 2 shows the two trees for the cases ¢ = 5 and
q = 6.

Finally, we use the next bits of M to choose one of the
q pointers. Suppose that the first » — 1 bits of M have
already embedded. We traverse the tree B using the
longest prefix of M, ,,,) that ends up in a node marked
with a pointer, say ps;. We then emit (ps,, I, Tj;411), we
move the current position to i+[/+1, and we increment r
by the length of the code of py;. 'T'he complete algorithm
is summarized in Figure 3.

We want to stress that these changes do not affect
the internal structure of LZ-77 encoding, other than a
possible re-shuffling of the pointers. A file compressed
with LZS-77 can still be decompressed by a standard
LZ-77 algorithm. Moreover, the compression is still on-
line, i.e., the file is not required to be stored entirely in
primary memory.

An important parameter for any watermarking tech-
nique is the capacity of the watermarking channel. We
studied the capacity of LZS-77 channel both theoret-
ically and experimentally (see Section 5). From the
theoretical perspective, we conjecture that the average
multiplicity tends to a constant as the size of the text
tends to infinity [19]. This conjecture is confirmed by
our preliminary experiments. The details of the analysis
will be reported in the full version of this paper.

In practice, if Alice finds that there are not enough
positions with multiplicity ¢ > 1 to encode M, she sim-
ply has to append some more irrelevant data to 7'. Vice
versa, if the text is longer than she needs, she can in-
crease the security by distributing the bits of the mes-
sage in a subset of the set of positions with multiplicity

LZS-77 (T, M, k)

1 let i,r,t,m «— 0,0,|T|, | M|

2 whilei <t do

3 let 17; ;) < the longest prefix of 1j; 4 that
matches a substring in Tj; ;1

4 let R — {(pOal7T[i+l])7-“a(pq717l7T[i+l])}
be the set of feasible pointers for Tj; ;

5 if ¢ > 1 then
6 initialize the BBS generator with seed
ao = H(k7 ivpoﬂpla e apq—l)
7 for j—1,...,9—1do
8 let aj «— BBS(aj,l)
9 let S~ {0,1,...,q—1}
10 for j<—q—1,...,1,0do
11 let b; «— EXTRACT(S, a;j mod (5 + 1))
12 let B « tree for the optimal binary prefix
code of a uniform distribution on ¢ symbols
13 let py, < pointer stored in a leaf of B at

the end of a path which begins at the root of B
and spells out the longest prefix of M,

14 emit (pbj ’ la T[I-H])

15 let r — 1+ [log,(q)]

16 else

17 emit (pg—1,!, T[iJrl])

18 leti«—i+1

Figure 3: The algorithm for the encoder. 7T is
the text, M is the secret message and k is the
secret key

g > 1. Let L = {l1,l2,...ls} be the set of positions
with multiplicity ¢ > 1, as collected in a full scan of
the LZ parsing. She can select a random permutation
of a subset of L by using the same algorithm described
above, using H (k,l1,l2,...,ls) as a seed. The message
is embedded only in the subset obtained by the ran-
dom sequence. For all the positions with multiplicity
q > 1 not used, she randomly chooses one of the possi-
ble pointers. Note however, that now the algorithm is
not on-line anymore.

To decrypt the message, Bob runs his LZS-77 decom-
pressor. Bob decodes the file by expanding one after an-
other the pointers with their respective substring. How-
ever, at each expansion Bob also checks whether there
are other possible pointers that could have been used to
encode the current phrase, thereby identifying positions
with multiplicity ¢ > 1. In this case, some of the bits
of the message could have been encoded. Bob builds
the permutation {bo, b1,...bq—1} and the binary tree of
height [log,(¢)] +1 in the same way Alice did. The path
from the root to the pointer chosen by Alice reveals the
next bits of the message.

3. SECURITY

Other than tampering with the document, Mallory
may try to retrieve the secret message, the key, or both.
We show that if the adversary could determine some bits
of the secret message then he would be able to break a
crypto-secure pseudo-random generator (e.g., BBS [4]),
which is extremely unlikely (hence it is just as unlikely

that the adversary can get the secret message bits).

Suppose that the adversary knows an algorithm A to
retrieve the watermarks from the LZS-77 compressed
text. We now describe how to design a method that
correctly guesses the next bit of a BBS generator using
A as a subroutine. We set T'=ababab, and compress
it with LZS-77, starting from the last copy of ab. The
multiplicity of the pointer is two: we have one copy of
ab at position 1 and one copy at position 3.

We initialize the seed a9 = H(k,5,1,3), and S =
{0,1}. We run BBS to get the next random number
a1 and we set by = EXTRACT(S,a1 mod 2) and by =
EXTRACT(S,1). Since A is supposedly able to retrieve
the watermark, it would be also able to obtain b;. The
latter is equivalent to the ability to guess the next bit
for a cryptographically-secure pseudo-random genera-
tor, which cannot be done in a reasonable amount of
computing time.

The security of the key k is based primarily on the
one-way hash-function H. We recall that we use the
key only to compute the seed aop = H (k, %, po, D1 ---,Pq)-
However, as the example above illustrates, ao is not di-
rectly used in the construction of the permutation. The
element bg is always the last elements left in S after all
the other ¢ — 1 elements have been randomly chosen.
Even in the very unlikely scenario in which the adver-
sary would be able to obtain ag from bg, b1, b2, ..., bg_1,
he should still have the hard task to invert the one-way
function H.

4. AUTHENTICITY AND INTEGRITY

Our solution to the problem of ensuring authenticity
and integrity is to use LZS-77 to hide as part of the wa-
termark the digest of the document 7' using a one-way
cryptographic hash function H (for example, MD5 [16]
which produces a 128 bits digest). It is also good prac-
tice to add a certified time-stamp to the watermark to
increase the resilience to certain types of attacks (see,
e.g., [18]).

The watermark has to contain the digest of the text T',
because otherwise Mallory could easily change the text
and reuse the watermark for 7' in the different text.
For example, a simple way to do it would be to re-
map the symbols of the alphabet of T' to a completely
different alphabet. This would preserve the structure of
the parsing and therefore the watermark would be still
valid.

The scheme has some minor advantages over the public-
key cryptography-based digital signatures (PKC) [8].
First, we are not sending any additional data other than
the compressed text itself. Aslong as Bob keeps the text
received from Alice on his storage in compressed form,
the authentication is inseparably bound to the content
and the text remains protected against tampering. This
features clearly simplifies the logistics of file manipula-
tion. On the contrary, the digital signature is naturally
a distinct entity that risks to be separated from the file
it was supposed to protect.

A second advantage is that our technique is much
more general and it allows us to embed any secret mes-

Tanersavs o pomers iy ——

Figure 4: The average value of the pointer mul-
tiplicity ¢ for increasing portions of paper2 (left),
and news (right) of the Calgary corpus

sage. For example, one could think of some sort of self-
embedding of the text in order to give Bob the oppor-
tunity to know where the text has been tampered with.
Although it is not clear how to achieve this for texts,
the idea has been explored for digital images [10].

The third and final advantage is that a casual observer
would hardly imagine that a standard LZ-77 compressed
file which (1) does not contain any suspicious-looking
data and (2) can be decompressed by any common LZ-
77 implementation, is actually protected against tamper-
proofing. This could be used as a “bait” in situations
where we want to test the sophistication of the attacker.

The non-casual attacker has a way to detect the pres-
ence of the watermark. Mallory can decompress the
text, and recompress it again with the standard LZ-77.
By comparing Alice’s compressed text with his own, he
may discover the re-shuffling of the pointers. He may
realize that something unusual is going on, but our de-
sign will prevent him from recovering the content or
reproducing the watermark for a different text.

For the reason mentioned above, this scheme cannot
be used for robust watermarking and /or steganography.
It appears impossible to achieve robust watermarking
and /or steganography on LZ-77 compressed files. Once
that Mallory has figured out the Alice is messing with
the pointers, he just need to recompress the text with
the standard LZ-77 and send that instead of the com-
pressed file received from Alice. Mallory can get rid of
the message without even bothering to study the inter-
nals of LZS-77.

5. EXPERIMENT AL RESULTS

First, we illustrate that in practice there are plenty
of positions with multiplicity ¢ > 1 in structured texts,
like English documents or software source code. We ran
a few experiments on some files of the Calgary corpus,
which is the standard benchmark in data compression.
As a comparison, we also included a non-structured doc-
ument, called mito, which contains the mitochondrial
DNA of the yeast.

We instrumented an implementation of LZ-77 based
on suffix trees [17], and we kept track of the multiplicity
q for each phrase of the LZ-77 parsing, when the length
of the phrase is greater than 2. The average value of ¢ is
shown in Figure 4, for increasing lengths of the prefixes.
Note that for both graphs, the average for ¢ appears to
converge asymptotically to some constant.

We also measured log,(q), which corresponds to the

e

Figure 5: The number of bits embedded in
paper2 (top-left), progc (top-right), news (lower-
left) and mito (lower-right) of the Calgary corpus
(for larger and larger prefixes of the files)

of bits length of the # of bits length of the
embedded | prefix of paper2 embedded | prefix of progc
128 1,149 128 863
256 1,692 256 1,729
1,024 4,778 1,024 4,401
of bits length of the # of bits length of the
embedded | prefiz of news embedded | prefiz of mito
128 1,115 128 1,488
256 1,825 256 3,078
1,024 5,195 1,024 14,310

Table 1: The minimum length of the prefixes of
texts paper2, progc, news and mito necessary to
embed a given number of bits

number of bits we could potentially embed. We plotted
the results in Figure 5. As the figure clearly demon-
strates, the number of bits that we can embed in the
text T' grows linearly with |T'|. In particular we want to
attract the attention of the reader to Table 1 where we
report how many bytes one should compress to be able
to encode 128, 256, and 1024 bits.

In our opinion it is truly remarkable that one can
easily store 256 bits of a secret message in a less than a
page of text (which is about 2,000 characters). Only for
non-structured texts, such as DNA, we need a longer
text. In any case, about 1,000 characters are enough to
store an MD5 hash digest.

Next, we modified the code of gzip-1.2.4 to evaluate
the impact of our method on compression performance.
gzip is an optimized implementation of the sliding win-
dow variant of LZ-77. gzip is slightly different from the
formal description of LZ-77 given in the previous sec-
tion. gzip does not issue pointers in the entire history of
past symbols, but only in a fixed-size window preceding
the current position. This implies that the “position”
field of the pointers is a fixed size binary number (for ex-
ample, fifteen bits for the typical window of 32 Kbytes).
For the “length” field, gzip employs eight bits which

file size gzip gzipS file bytes embedded
111,261 39,473 39,511 bib 1,721
768,771 333,776 336,256 | bookl 14,524
610,856 228,321 228,242 | Dbook2 10,361
102,400 69,478 71,168 geo 4,101
377,109 155,290 156,150 news 5,956
21,504 10,584 10,783 obji1 353
246,814 89,467 89,757 obj2 3,628
53,161 20,110 20,204 | paperil 937
82,199 32,529 32,507 | paper2 1,551
46,526 19,450 19,567 | paper3 893
13,286 5,853 5,898 | paper4 249
11,954 5,252 5,294 | paperb 210
38,105 14,433 14,506 | paper6 738
513,216 62,357 61,259 pic 3,025
39,611 14,510 14,660 | progc 736
71,646 18,310 18,407 | progl 1,106
49,379 12,532 12,572 | progp 741
93,695 22,178 22,098 | trans 1,201

Table 2: The compression of “gzip -3” versus
“gzipS -3” for the files of the Calgary corpus; the
last column shows the bits embedded by gzipS

correspond to strings from 3 to 258 symbols. Strings
smaller than 3 characters are encoded as literals.

In the presence of multiple choices gzip always chooses
the most “recent” occurrence of the longest prefix. The
documentation explains that

... the hash chains are searched starting with
the most recent strings, to favor small dis-
tances and thus take advantage of the Huff-
man encoding . . .

In fact, the stream of LZ-77 pointers is encoded with
Huffman. Choosing always the most recent occurrence
has the effect of producing frequent short displacements
that get shorter representations in the Huffman tree.

The compression performance of the gzipS (which im-
plements LZS-77) with respect to the original gzip is
illustrated in Table 2 on the Calgary corpus dataset.
As one can expect, the embedding of the secret message
degrades the compression performance. The degrada-
tion, however, is quite limited, in the order of 1% 2%
on average for the files in the Calgary corpus. It is
worth noting that the difference in length between the
files produced by gzip and gzipS is smaller than the
numbers of bytes embedded.

6. CONCLUSIONS

We have shown how a simple modification of LZ-77
could “upgrade” your favorite archiver with some quite
powerful authentication capabilities. The basic idea is
to drive the selection of the pointers according to the
bits of the fragile watermark. The security of the sys-
tem is based on the unpredictability of a certain class
of pseudo-random generators. The preliminary results
show that the degradation in compression performance
is marginal, and surprisingly it turns out to be smaller
than the number of bits of the embedded message.

Despite the popularity gained by LZ-77 because of
the family of compressors zip/gzip and the image for-

mat PNG, several others textual compression methods
are widely used. For example, LZ-78 [26] (and its vari-
ant LZW [21]) are used in compress and GIF. The LZ-78
scheme appears less prone to the sort of treatment we
did here. The only “arbitrary choice” seems to be the
initial assignment of codes to the symbol of the alpha-
bet, which could hide a secret message. The size of the
message, however, would be limited by the cardinality
of the alphabet.

7. ACKNOWLEDGMENTS

The authors would like to thank W. Szpankowski for
helpful discussions on the asymptotic behavior of LZ-77.
The anonymous referees’ comments helped to improve
the paper.

Portions of this work were supported by Purdue Re-
search Foundation Grant 690-1398-3145, by Grants EIA-
9903545 and 1SS-0219560 from the National Science Foun-
dation, Contract N00014-02-1-0364 from the Office of
Naval Research, and by sponsors of the Center for Edu-
cation and Research in Information Assurance and Se-
curity.

8. REFERENCES

[1] M. J. Atallah, V. Raskin, M. Crogan,

C. Hempelmann, F. Kerschbaum, D. Mohamed,
and S. Naik. Natural language watermarking:
Design, analysis, and a proof-of-concept
implementation. In Proc. Int. Workshop on
Information Hiding, volume 2137 of Lecture Notes
in Computer Science, pages 185—199.
Springer-Verlag, Berlin, 2001.

[2] T. C. Bell, J. G. Cleary, and 1. H. Witten. Text
Compression. Prentice Hall, 1990.

[3] W. Bender, D. Gruhl, N. Morimoto, and A. Lu.
Techniques for data hiding. IBM Systems Journal,
35(3&4):313-336, 1996.

[4] L. Blum, M. Blum, and M. Shub. A simple
unpredictable pseudo-random number generator.
SIAM J. Comput., 15(2):364-383, May 1986.

[5] J. Brassil, S. Low, N. Maxemchuk, and
L. O’Gorman. Electronic marking and
identification techniques to discourage document
copying. IEEE Journal on Selected Areas in
Communications, 13(8):1495-1504, 1995.

[6] J. T. Brassil, S. Low, and N. F. Maxemchuk.
Copyright protection for the electronic
distribution of text documents. Proceedings of the
IEEE, 87(7):1181-1196, 1999.

[7] C. Cachin. An information-theoretic model for
steganography. In Proc. Workshop on Information
Hiding, volume 1525 of Lecture Notes in
Computer Science, pages 306 318.
Springer-Verlag, Berlin, 1998.

[8] W. Diffie and M. E. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, 1T-22(6):644-654, 1976.

[9] J. Fridrich. Image watermarking for tamper
detection. In Proceedings of the IEEE

[22]

[23]

[24]

[25]

[26]

International Conference on Image Processing,
volume 2, pages 404 408, 1998.

J. Fridrich and M. Goljan. Protection of digital
images using self embedding. In Symposium on
Content Security and Data Hiding in Digital
Media, 1999.

N. F. Johnson and S. Jajodia. Exploring
steganography: Seeing the unseen. IEEE
Computer, 31(2):26-34, 1998.

S. Katzenbeisser and F. Petitcolas. Information
Hiding: Techniques for steganography and digital
watermarking. Computer Security Series, Artech
House, 2000.

E. Lin and E. Delp. A review of fragile image
watermarks. In Proc. of the Multimedia and
Security Workshop (ACM Multimedia '99), pages
25-29, 1999.

S. Low, N. Maxemchuk, J. Brassil, and

L. O’Gorman. Document marking and
identification using both line and word shifting. In
Proceedings of IEEE INFOCOM, 1995.

F. A. P. Petitcolas, R. J. Anderson, and M. G.
Kuhn. Information hiding — a survey. Proceedings
of the IEEE, 87(7):1062-1078, 1999.

R. Rivest. The MDb5 message-digest algorithm.
RFC 1321, MIT, RSA Data Security, Apr. 1992.
M. Rodeh, V. R. Pratt, and S. Even. Linear
algorithm for data compression via string
matching. J. Assoc. Comput. Mach., 28(1):16 24,
Jan. 1981.

B. Schneier. Applied Cryptography: Protocols,
Algorithms, and Source Code in C. John Wiley
and Sons, Inc., New York, NY, USA, 1994.

W. Szpankowski. Personal communication, 2002.
S. Walton. Image authentication for a slippery
new age. Dr. Dobbs’ Journal, pages 18—26, April
1995.

T. A. Welch. A technique for high-performance
data compression. IEEE Computer, 17(6):8-19,
June 1984.

F. M. J. Willems. Universal compression and
repetition times. IEEE Trans. on Information
Theory, 1(35):54-58, 1989.

R. Wolfgang, C. 1. Podilchuk, and E. Delp.
Perceptual watermarks for digital images and
video. Proceedings of the IEEE, 87(7):1108-1126,
July 1999.

M. M. Yeung and F. C. Mintzer. Invisible
watermarking for image verification. Journal of
Electronic Imaging, 7(3):578-591, July 1998.

J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Trans. Inf.
Theory, 23(3):337-343, May 1977.

J. Ziv and A. Lempel. Compression of individual
sequences via variable-rate coding. IEFE Trans.
Inf. Theory, 24(5):530-536, Sept. 1978.

