

CERIAS Tech Report 2003-11

RIGHTS PROTECTION FOR
RELATIONAL DATA

by Radu Sion, Mikhail Atallah, Sunil Prabhakar

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

Rights Protection for Relational Data ∗

Radu Sion, Mikhail Atallah, Sunil Prabhakar
Center for Education and Research in Information Assurance,

Indiana Center for Database Systems,
Computer Sciences, Purdue University

West Lafayette, IN, 47907, USA
http://www.cs.purdue.edu/homes/sion

[sion, mja, sunil]@cs.purdue.edu

ABSTRACT
Protecting rights over relational data is of ever increasing
interest, especially considering areas where sensitive, valu-
able content is to be outsourced. A good example is a data
mining application, where data is sold in pieces to parties
specialized in mining it.

Different avenues for rights protection are available, each
with its own advantages and drawbacks. Enforcement by
legal means is usually ineffective in preventing theft of copy-
righted works, unless augmented by a digital counter-part,
for example watermarking.

Recent research of the authors introduces the issue of dig-
ital watermarking for generic number sets. In the present
paper we expand on this foundation and introduce a solution
for relational database content rights protection through wa-
termarking.

Our solution addresses important attacks, such as data
re-sorting, subset selection, linear data changes (applying a
linear transformation on arbitrary subsets of the data). Our
watermark also survives up to 50% and above data loss.

Finally we present wmdb.*, a proof-of-concept implemen-
tation of our algorithm and its application to real life data,
namely in watermarking the outsourced Wal-Mart sales data
that we have available at our institute.

1. INTRODUCTION
Digital Watermarking aims to protect a certain content

from unauthorized duplication and distribution by enabling
provable ownership over the content.

It has traditionally [6] [7] [14] relied upon the availability
of a large noise domain within which the object can be al-

∗Portions of this work were supported by Grants EIA-
9903545, ISS-0219560, IIS-9985019 and IIS-9972883 from
the National Science Foundation, N00014-02-1-0364 from
the Office of Naval Research, and by sponsors of the Center
for Education and Research in Information Assurance and
Security.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, San Diego, California USA
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

tered while retaining its essential properties. For example,
the least significant bits of image pixels can be arbitrarily al-
tered with little impact on the visual quality of the image (as
perceived by a human). In fact, much of the “bandwidth”
for inserting watermarks (such as in the least significant bits)
is due to the inability of human sensory system (especially
sight and hearing) to detect certain changes.

More recently, the focus of watermarking for digital rights
protection is shifting towards data types such as text, soft-
ware, and algorithms. Since these data types have very well
defined semantics (as compared to those of images, video, or
music) and may be designed for machine ingestion, the iden-
tification of the available “bandwidth” for watermarking is
as important a challenge as the algorithms for inserting the
watermarks themselves.

The goal of watermarking [17] is to insert an indelible
mark in the object such that (i) the insertion of the mark
does not destroy the value of the object (i.e. the object is
still useful for the intended purpose); and (ii) it is difficult
for an adversary to remove or alter the mark beyond detec-
tion without destroying the value of the object. Clearly, the
notion of value or utility of the object is central to the wa-
termarking process. This value is closely related to the type
of data and its intended use. For example, in the case of
software the value may be in ensuring equivalent computa-
tion, and for text it may be in conveying the same meaning
(i.e. synonym substitution is acceptable). Similarly, for a
collection of numbers, the utility of the data may lie in the
actual values, in the relative values of the numbers, or in the
distribution (e.g. normal with a certain mean).

Although a considerable amount of research effort has
been invested in the problem of watermarking multimedia
data (images, video and audio), there is relatively little work
on watermarking other types of data. Recent work has ad-
dressed the problems of software watermarking [5] [13] and
natural language watermarking [2]. Here we study the issue
of watermarking numeric relational content.

Protecting rights over outsourced digital content is of ever
increasing interest, especially considering areas where sensi-
tive, valuable data is to be outsourced. Good examples are
data mining applications (e.g. Wal-Mart sales database, oil
drilling data, financial data etc), where a set of data is usu-
ally produced/collected by a data collector and then sold in
pieces to parties specialized in mining that data. Given the
nature of most of the data, it is hard to associate rights of
the originator over it. Watermarking can be used to solve
this issue.

An important point about watermarking should be noted.

By its very nature, a watermark modifies the item being
watermarked. If the object to be watermarked cannot be
modified then a watermark cannot be inserted. The critical
issue is not to avoid changing the data, but to limit the
change to acceptable levels with respect to the intended use
of the data. Clearly, one can always identify some use of
the data that is affected by even a minor change to the
any portion of the data. It is therefore necessary that the
intended purpose of the data that should be preserved be
identified during the watermarking process.

Whereas extensive research has focused on various aspects
of DBMS security, including access control techniques as well
as data security issues [3] [4] [8] [9] [10] [11] [12] to the best of
our knowledge only one simultaneous published related ef-
fort is available for comparison [?]. Numerous fundamental
differences distinguish our results from this effort, including
but not limited to, the actual method of watermarking, the
fact that the method presented here is built around a frame-
work considering higher level semantics to be preserved in
the original data (an essential step, not addressed in [?]), the
increased resulting level of resilience, the openess, portabil-
ity and ease of use of our implementation. A more in depth
discussion can be found in Section 4.1.

In this paper we explore the issue of securing valuable out-
sourced data through the process of watermarking, enabling
future court-proofs assessing proper rights over the content.
Thus, the main contributions of the present work consists of

• a resilient watermarking method for relational data

• a technique for enabling user-level run-time control
over properties that are to be preserved as well as the
degree of change introduced

• a complete, user-friendly implementation for numeric
relational data

• the deployment of the implementation on real data, in
watermarking the Wal-Mart Sales Database and the
analysis thereof

The algorithms introduced here prove to be resilient to
various important classes of attacks, including data re- shuf-
fling/sorting, massive subset selection, linear data changes,
random item(s) alterations etc.

The paper is structured as follows. Section 2 presents
the main challenges for watermarking relational databases.
Section 3 introduces an initial solution to a primitive prob-
lem (watermarking numeric collections) to be used later in
the global algorithm. Section 4 develops a solution for re-
lational databases by building upon the primitive solution
developed earlier. Related work is discussed in Section 4.1.
Section 5 presents implementation details as well as exper-
iments and evaluations of the proposed watermarking tech-
nique on real outsourced Walmart warehouse data. Section
6 presents main conclusions of our work and discusses av-
enues for future research.

2. CHALLENGES FOR WATERMARKING
RELATIONAL DATABASES

The major distinction between a relational database and
a bag of numbers lies in the structure that is imposed by the
relational schema as well as the semantics of the data. A
naive approach to watermarking a relational database would
be to treat each numeric attribute as a set on which a simple

numeric set watermarking algorithm (e.g. [15]) is applied.
In order to avoid significant change, a mean square error
bound could be specified for each attribute.

Unfortunately, this approach could significantly destroy
the data even though individual values are modified only
minimally, because it does not consider the final data con-
sumer (i.e. ‘usability”) and the associated allowable distor-
tion constraints.

To see why this is the case, consider two of the most com-
mon properties of relational data: primary keys and foreign
keys. If we simply apply our earlier algorithm directly, pri-
mary key attributes in a relation may no longer be unique.
Similarly, since attributes are watermarked independently,
changes to foreign key attributes would change the result of
the join of the two tables.

Thus it becomes clear that relational data presents a dif-
ferent set of challenges and associated constraints. The usu-
ally low noise bandwidth (i.e. low tolerance to extensive
changes) of major relational framework data customers (e.g.
data-mining) require a different approach, taking more care-
fully into account the actual tolerated changes.

2.1 Available Bandwidth
An important first step in inserting a watermark into a

relational database (and thereby altering it), is to identify
changes that are acceptable. As was mentioned earlier, the
acceptable nature and level of change is dependent upon
the application for which the data is to be used. In the
following we define a metric that will enable us to deter-
mine the watermarking result as being valuable and valid,
within permitted/guaranteed error bounds. The available
“bandwidth” for inserting the bits of the watermark text is
therefore not defined directly. Instead we define allowable
distortion bounds for the input data in terms of metrics. If
the watermarked data satisfies the metrics, then the inser-
tion of the watermark is successful. We term such data to
be usable for the intended purpose, or that it is within the
“usability” bounds. Further details on the use of usability
bounds and their definition can be found in [17].

Example One simple but extremely relevant example is
the maximum allowable mean squared error case, in which
the usability metrics are defined in terms of mean squared
error tolerances as follows:

(si − vi)
2 < ti ∀i = 1, ..., n (1)�

(si − vi)
2 < tmax (2)

where � = {s1, ..., sn} ⊂ � , is the data to be watermarked,�
= {v1, ..., vn} is the result, � = {t1, ..., tn} ⊂ � and tmax ∈

� define the guaranteed error bounds at data distribution
time. In other words � defines the allowable distortions for
individual elements in terms of mean squared error (MSE)
and tmax the overall permissible MSE.

This is similar to the approach used for traditional mul-
timedia watermarking. For example, the Encyclopedia Bri-
tannica introduces small errors in the published figures (such
as population, and surface area of countries). Small changes
in these values do not significantly affect their use 1.

Database Semantics Specifying only allowable change
limits on individual values and possibly an overall limit, fails
to capture important semantic features associated with the
data – especially if the data is structured. Consider for

1Note however that this primitive “watermark” is easy to
defeat simply by making further small changes to the values.

example, age data. While a small change to the age values
may be acceptable, it may be critical that individuals that
are younger than 21 remain so even after watermarking if
the data will be used to determine behavior patterns for
under-age drinking. Similarly, if the same data were to be
used for identifying legal voters, the cut-off would be 18
years. Further still, for some other application it may be
important that the relative ages (in terms of which one is
younger) not change. Other examples of constraints include:
(i) uniqueness – each value must be unique; (ii) scale – the
ratio between any two number before and after the change
must remain the same; and (iii) classification – the objects
must remain in the same class (defined by a range of values)
before and after the watermarking.

Structured Data Structured collections, for example a
collection of relations, present further constraints that must
be adhered to by the watermarking algorithm. Consider a
data warehouse organized using a standard Star schema with
a fact table and several dimension tables. It is important
that the key relationships be preserved by the watermarking
algorithm. This is similar to the “Cascade on update” op-
tion for foreign keys in SQL and ensures that tuples that join
before watermarking also join after watermarking. This re-
quires that the new value for any attribute should be unique
after the watermarking process. In other words, we want to
preserve the relationship between the various tables. More
generally, the relationship could be expressed in terms of
an arbitrary join condition, not just a natural join. In ad-
dition to relationships between tuples, relational data may
have constraints within tuples. For example, if a relation
contains the start and end times of a web interaction, it is
important that each tuple satisfies the condition that the
end time be later than the start time.

2.2 Model of the Adversary
In order to be effective, the watermarking technique must

be able to survive a wide variety of attacks. These attacks
may be malicious with the explicit intent of removing the
watermark, or may be the result of normal use of the data
by the intended user.

A1. Subset Selection The attacker can randomly se-
lect and use a subset of the original data set that might still
provide value for its intended purpose (subtractive attack).

A2. Subset Addition The attacker adds a set of num-
bers to the original set. This addition is not to significantly
alter the useful (from the attacker’s perspective) properties
of the initial set versus the resulting set.

A3. Subset Alteration Altering a subset of the items
in the original data set such that there is still value asso-
ciated with the resulting set. A special case needs to be
outlined here, namely (A3.a) a linear transformation per-
formed uniformly to all of the items. This is of particular in-
terest as such a transformation preserves many data-mining
related properties of the data, while actually altering it con-
siderably, making it necessary to provide resilience against
it.

A4. Subset Re-sorting If a certain order can be
imposed on the data then watermark retrieval/detection
should be resilient to re-sorting attacks and should not de-
pend on this predefined ordering.

Given the attacks above, several properties of a successful
solution surface. For immunity against A1, the watermark
has to be embedded in overall collection properties that sur-
vive subset selection (e.g. confidence intervals).

If the assumption is made that the attack alterations do
not destroy the value of the data, then A3 should be defeat-
able by embedding the primitive mark in resilient global
data properties.

As a special case, A3.a can be defeated by a preliminary
normalization step in which a common divider to all the
items is first identified and applied. For a given item X, for
notation purposes we are going to denote this “normalized”
version of it by NORM(X).

Since it adds new data to the set, defeating A2 seems to
be the most difficult task, as it implies the ability to identify
potential uses of the data (for the attacker).

Subset Recovery Another interesting requirement is
the ability to “recognize” all (or at least most) of the collec-
tion items before and after watermarking and/or an attack.
That is, how do we “recognize” an item and its correspond-
ing subset after it has been changed slightly? While this
requirement in part defeats all of the above-mentioned at-
tacks, it is especially important as a response to attacks of
type A4.

3. SIMPLIFIED PROBLEM: NUMERIC COL-
LECTIONS

This section deals with the foundations of a primitive nu-
meric collection watermarking procedure (an extension of
our work in [15]) that will be later deployed as a sub-routine
in the main watermarking algorithm. Thus here we do not
enter into the relational database realm but rather keep the
domain as unrestricted as possible. Often it might be easier
to consider the term “numeric relation attribute” instead of
“number set” used here. Section 4 makes the connection to
the database framework by integrating the primitive solu-
tion into a generic relational framework.

Let � be a set of n real numbers � = {s1, ..., sn} ⊂ � ,
Let

�
be the result of watermarking � by minor alterations

to its content. For now we assume
�

= {v1, ..., vn} ⊂ � is
also of size n. Let a string of bits w of size m << n be the
desired watermark to be embedded into the data (|w| = m).
We will use the notation wi to denote the i-th bit of w.

Allowable change. For a numeric collection, a natural
starting point for defining the allowed change is to spec-
ify an absolute (or relative) change in value. For example,
each value may be altered by no more than 0.0005 or 0.02%.
Moreover a bound on the cummulative change may be spec-
ified.

Our solution for the simplified problem consists of several
steps. First, we deploy a resilient method for item label-
ing, enabling the required ability to “recognize” initial items
at watermarking detection time (i.e. after watermarking
and/or attacks). In the next step we ensure attack sur-
vivability by “amplifying” the power of a given primitive
watermarking method.

The amplification effect is achieved by deploying secrets
in the process of selecting the subsets to become input for
the final stage, in which a primitive encoding method is
deployed.

3.1 Overview
As an overview, the solution for the simplified problem

reads as follows.
Encoding
Step E.1. Select a maximal number of unique, non-

intersecting (see below) subsets of the original set, as de-

scribed in Section 3.3.
Step E.2. For each considered subset, (E.2.1) embed

a watermark bit into it using the encoding convention in
Section 3.3 and (E.2.2) check for data usability bounds. If
usability bounds are exceeded, (E.2.3) retry different encod-
ing parameter variations or, if still no success, (E.2.3a) try
to mark the subset as invalid (i.e. see encoding convention
in Section 3.3), or if still no success (E.2.4) ignore the cur-
rent set. 2 We repeat step E.2 until no more subsets are
available for encoding. This results in multiple embeddings
in the data.

Note: Different levels of granularity are possible. For ex-
ample checking for data usability could be done at an even
more atomic level, such as inside the bit-encoding procedure.

Decoding
Step D.1. Using the keys and secrets from step E.1,

recover a majority of the subsets considered in E.1, (or all
if no attacks were performed on the data).

Step D.2. For each considered subset, using the en-
coding convention in Section 3.3, recover the embedded bit
value and re-construct watermarks.

Step D.3. The result of D.2 is a set of copies of the same
watermark with various potential errors. This last step uses
a set of error correcting mechanisms (e.g. majority voting
schemes) to recover the highest likelihood initial mark.

3.2 Subset Selection
Watermarking a data collection requires the ability to

“recognize” most of the collection items before and after
watermarking and/or a security attack. This is especially
important as a response to attacks of type A4. In other
words if an item was accessed/modified before watermark-
ing, e.g. being identified with a certain label L, then hope-
fully at watermark detection time the same item is identified
with the same label L or a known mapping to the new label.

More generally, we would like to be able to identify a ma-
jority of the initial elements of a subset after watermarking
and/or attacks. As we will see, our technique is resilient to
“missing” a small number of items.

While research efforts of the authors include work in this
area (see “tolerant canonical labeling” in [16]) we are going
to present a simplified tailored solution.

Our solution is based on lexicographically sorting the items
in the collection, sorting occuring based on a one-way, se-
cretly keyed, cryptographic hash of the set of most signifi-
cant bits (MSB) of the normalized (see Section 2.2) version
of the items. The secret one-way hashing ensures that an at-
tacker cannot possibly determine the ordering. In the next
step (see Section 3.3), subset “chunks” of the items are se-
lected based on this secret ordering. This defeats A4 as well
as any attempts at statistical analysis to determine the se-
cret subsets. Chunk-boundaries (“subset markers”) are then
computed and stored for detection time.

More formally, given a collection of items as above, � =
{s1, ..., sn} ⊂ � , and a secret “sorting key” ks, we induce a
secret ordering on it by sorting according to a cryptographic
keyed hash of the most significant bits of the normalized
items. Thus we have: index(si) = H(ks, MSB(NORM(si)), ks).

The MSB space here is assumed to be a domain where
minor changes on the collection items (changes that still

2This leaves an invalid watermark bit encoded in the data
that will be corrected by the deployed error correcting mech-
anisms (e.g. majority voting) at extraction time.

satisfy the given required usability metrics) have a minimal
impact on the MSB labels. This is true in many cases (as
usually the usability metrics are related to preserving the
“important” parts of the original data). If not suitable, a
different labeling space can be envisioned, one where, as
above, minor changes on the collection items have a minimal
impact.

Note: In the relational data framework, the existence
of a primary key associated with the given attribute to be
watermarked can make it easier to impose a secret sorting.
For more details see Section 4.

3.3 Power Amplification
Current watermarking algorithms draw most of their court-

persuasion power [17] from a secret that controlled water-
mark embedding (i.e. watermarking key). Much of the at-
tack immunity associated with a watermarking algorithm is
based on this key and its level of secrecy. Given a weak
partial marking technique (e.g. (re)setting a bit), a strong
marking method can be derived by a method of “mark am-
plification” – repeatedly applying the weak technique in a
keyed fashion on different parts of the data being water-
marked.

Given a collection of items as above, � = {s1, ..., sn} ⊂
� , and a secret “sorting key” ks, we first induce a secret
ordering on it by sorting according to a cryptographic keyed
hash of the most significant bits of the normalized items, e.g.
index(si) = H(ks, MSB(NORM(si)), ks). We then build
the subsets, Si, as “chunks” of items, a “chunk” being a set
of adjacent items in the sorted version of the collection.

This increases the ability to defeat different types of at-
tacks including “cut” and/or “add” attacks (e.g. A1 , A2),
by “dispersing” their effect throughout the data, as a result
of the secret ordering. Thus, if an attack removes 5% of the
items, this will result in each subset Si being roughly 5%
smaller. If Si is small enough and/or if the primitive water-
marking method used to encode parts of the watermark (i.e.
1 bit) in Si is made resilient to these kind of minor trans-
formations (see Section 5.2) then the probability of survival
of most of the embedded watermarks is accordingly higher
(see Section 3.4.2).

Additionally, in order to provide resilience to massive “cut”
attacks, we will select the subset “chunks” to be of sizes
equal to a given percent of the overall data set (i.e. not of
fixed absolute sizes). This choice provides adaptability of
our subset selection scheme to such attacks, assuring subse-
quent retrieval of the watermark even from, say, half of the
original data.

3.4 Watermark Embedding
Once each of the to-be-watermarked secret (keyed) sets

Si are defined, the problem reduces to finding a reasonable,
not-very-weak (i.e. better than “coin-flip”, random occur-
rence) algorithm for watermarking a medium-sized set of
numbers.

Thus, the previous “amplification” provides most of the
hiding power of our application (as happens in many current
watermarking techniques where secrets are an important av-
enue for hiding as well as protecting the watermark). The
next step encodes the watermark bits into the provided sub-
sets.

A desired property of an encoding method is the ability to
retrieve the encoded information without having the original
data. This can be important especially in the case of very

S
i

avg(S
i
)

distribution(S
i
)

V
c
(S
i
)

c

x

stdev(S
i
)

Figure 1: Distribution of item set Si. Encoding of
the watermark bit relies on altering the size of the
“positive violators” set, vc(Si).

large dynamic databases (e.g. 4-5 TBytes of data) where
data-mining portions were outsourced at various points in
time. It is unreasonable to assume the requirement to store
each outsourced copy of the original data. Our method sat-
isfies this desiderata.

3.4.1 Encoding A Single Bit
We now discuss how a single bit is encoded into a selected

subset of the data. We are given Si (i.e. one of the subsets
secretly selected in the previous step) as well as the value
of a watermark bit b that is to be encoded into Si. Let

�
represent the set of user specified change tolerance, or

usability metrics.
Let vfalse, vtrue, c ∈ (0, 1), vfalse < vtrue be real numbers

(e.g. c = 90%, vtrue = 10%, vfalse = 7%). We call c a
confidence factor and the interval (vfalse, vtrue) confidence
violators hysteresis. These are values to be remembered also
for watermark detection time. We can consider them as part
of the encoding key.

Definition: Let avg(Si) and δ(Si) be the average and
standard deviation, respectively, of Si. Given Si and the real
number c ∈ (0, 1) as above, we define vc(Si) to be the number
of items of Si that are greater than avg(Si) + c × δ(Si).
We call vc(Si) the number of positive “violators” of the c

confidence over Si, see Figure 1.
Mark encoding convention: Given Si, c, vfalse and

vtrue as above, we define mark(Si) ∈ {true, false, invalid}
to be true if vc(Si) > (vtrue×|Si|), false if vc(Si) < vfalse×
|Si| and invalid if vc(Si) ∈ (vfalse × |Si|, vtrue × |Si|).

In other words, the watermark is modeled by the per-
centage of positive “confidence violators” present in Si for a
given confidence factor c and confidence violators hysteresis
(vfalse, vtrue).

Encoding the single bit, b, into Si is therefore achieved by
making minor changes to some of the data values in Si such
that the number of postive violaters (vc(Si))is either (a) less
than vfalse × |Si| if b = 0, or (b) more than vtrue × |Si| if
b = 1. Of course the changes made to the data must not
violate the change tolerances,

�
, specified by the user.

Note: Encoding the watermark bits into actual data dis-
tribution properties (as opposed to directly into the data
itself) presents a set of advantages, the most important one
being its increased resilience to various types of attacks and
the tolerance of considerable data loss (see Section 5.2) as
compared to the fragility of direct data domain encoding.

Performing the required item alterations while satisfying
the given “usability” metrics (i.e.

�
) is one of the remaining

challenges. To do this, the algorithm deploys the primitive
watermarking step (e.g. for Si) and then checks for data

mark (w bits)

redundancy coder A

redundancy coder B

redundancy coder C

underlying mark data

(w' bits >> w)

redundancy coder chain

watermarker

original

data

marked

data

Figure 2: Different error correcting
(wmdb.sys.RedundancyCoder) plugins can be
added/removed at runtime in order to provide
an increased level of resilience for the original
watermark to be embeded.

usability with respect to
�
. If the tolerances are exceeded

it simply ignores Si and considers the next secretly selected
subset to encode the rest of the watermark. This will result
in errors (misses) in the encoded marks but by deploying
error correcting techniques (e.g. majority voting, see Figure
2) the errors are mostly eliminated in the result. For more
details see [15].

Given that our method embeds 1 bit per subset, a trade-off
is to be observed between larger sets (tolerant to more data
alteration attacks) but a small bandwidth, and smaller sets
(more “brittle” to attacks) but a larger encoding bandwidth.
More details are to be found in [15].

At watermark detection time, after recovering all the wa-
termark copies from the given data majority voting over
all the recovered watermark bits (or any other error correct-
ing method for that matter, see Figure 2) can be deployed
in order to determine the most likely initial watermark bits.

Another interesting point to be made here is consider-
ing the inherent attack-vulnerability of the watermarking
scheme. As shown also in previous research [17], bringing
the watermarked data as close as possible to the allowable
distortion bounds (“usability vicinity” limits) is of definite
benefit in making the result’s data usability as fragile as
possible to any attack. An attacker will be faced with the
problem of removing/altering the watermark and now any
changes he performs with this intent have an increased like-
lihood of making the data invalid with respect to the guar-
anteed usability metrics 3, thus removing or at least dimin-
ishing its value.

3.4.2 Resilience Analysis
A detailed analysis of the encoding presented above can

be found in our published results [15].
One of the main questions answered there was:
What is the probability of success of an attacker aiming at

destroying at least one watermark bit, as a function of the
amount of data damage (i.e. number of surgeries) ?

An answer to the above immediately enables the compu-
tation of resilience and attackability bounds of the water-
marking algorithm by relating the required damage for a
successful attack to the maximum permissible damage lev-
els.

3Because the watermarking process already altered the data
up to its usability metrics limits.

For example, it can be shown [15] that for a 10000 tuples
item set and an encoding with subsets of size 50 and an
average 1-bit subset encoding tolerance to 6% data item
losses (experimental results show usually up to 25-30% loss
tolerance, see Section 5.2), this probability is surprisingly
low, virtually zero:

1

200
×

1

50
× (

49

50
)9999 ' 1.86 × 10−92 ' 0

In Section 5.2 we present supporting experimental results.

4. RELATIONAL DATA
In the relational database setting it is important to pre-

serve structural and semantic properties of the data (as dis-
cussed in Section 2).

Sometimes it is undesireable or even impossible to map
higher level semantic constraints into low level (combined)
change tolerances for individual tuples or attributes. It
should be noted that not all constraints of the database
need to be specified. A practical approach would be to be-
gin by specifying a mean square error bound on individual
items. Further semantic or structural constraints that the
user would like to preserve can be added to these basic con-
straints.

We propose to solve this problem by treating each of these
properties as a constraint on the usability of the data as de-
scribed in Section 2.1. Each property of the database that
needs to be preserved is written as a constraint on the al-
lowable change to the dataset. The watermarking algorithm
presented earlier is then applied with these constraints as in-
put.

Constraints that arise from the schema (chiefly key con-
straints), can easily be specified in a form similar to (or
derived from) SQL create table statements. In addition,
integrity constraints (e.g. such as end time being greater
than begin time) can be expressed. A tolerance (or usabil-
ity metric) is specified for each constraint. The tolerance is
the amount of change or violation of the constraint that is
acceptable. This is an important parameter since it can be
used to tailor the quality of the watermark (at the expense
of greater change in the data). As mentioned earlier, if the
tolerances are too low, it may not be possible to insert a
watermark in the data.

In order to handle a very wide variety of constraints, we
allow their expression in terms of arbitrary SQL queries over
the relations, with associated requirements (usability met-
ric functions). For example, the requirement that the result
of the join (natural or otherwise) of two relations does not
change by more than 3% can be specified. Using this ap-
proach we can ensure that any changes made by the water-
marking algorithm do not violate the required properties.
Representative examples of constraints are presented below
and used to watermark real Wal-mart data warehouse data.

At watermarking time, data quality is continuosly as-
sessed as an intrinsic part of the marking algorithm in itself.
In this respect we can claim that, as opposed to other wa-
termarking algorithms in various domains (e.g. image wa-
termarking), we maintain 100% of the associated data value
with respect to a set of given required data “goodness” con-
straints. We believe this is an essential part of any water-
marking application in this low-noise, high fragility domain
of relational data (e.g. financial data, oil-drilling coordi-
nates).

The algorithm outline for watermarking relational data is
as follows (see Figure 3):

• User-defined queries and associated guaranteed query
usability metrics and bounds are specified with respect
to the given database.

• User input determines a set of attributes in the database
considered for watermarking, possibly all.

• For each selected attribute we then deploy the sim-
plified algorithm with the mention that in step E.2.2
instead of checking for local data usability the algo-
rithm simply checks all global user-defined queries and
usability bounds by execution.

An additional benefit of operating in the relational data
domain is the ability to use the actual relation key in the
secret subset selection procedure, instead of the proposed
most significant bits of the data (i.e. watermarked attribute
data). It is highly unlikely that an attack will entirely
change the database schema and replace the key attribute.
Thus for most applications it might be a safe idea to use
it (or it’s MSB space), especially in cases where the actual
data is subject to lax usability metrics (i.e. making the data
MSB domain less reliable).

4.1 Related Work
Research related to the issue of embedding information

into a set of numbers [1], can be also found (sometimes
implicitly) in various frameworks, associated with different
information hiding techniques, e.g. frequency domain em-
bedding, DCT and Wavelet watermarking [6].

Relational data presents a different set of challenges and
associated constraints. The usually low noise bandwidth
(i.e. low tolerance to extensive changes) of major relational
framework data customers (e.g. data-mining) require a dif-
ferent approach, taking more carefully into account the ac-
tual tolerated changes on the given data.

Similarly, the watermark encoding method, presents specifics
more suited to the new constraints, namely the ability to
survive a maximum level of attacks and at the same time
accommodate the existence of required data ‘usability” con-
ditions to be satisfied by the result.

One simultaneous published related effort is available for
comparison [?]. Numerous fundamental differences distin-
guish our results from this effort, including but not limited
to, the actual method of watermarking, the fact that the
method presented here is built around a framework consid-
ering higher level semantics to be preserved in the original
data (an essential required step, totally ignored by this ef-
fort), the increased resulting level of resilience, the openess,
portability and ease of use of our implementation.

The requirement that the least significant bit (LSB) in any
tuple can be altered has limited applicability. It cannot be
applied for many important applications such as data min-
ing that require the preservation of classification. We exper-
imentally demonstrate the ability of our scheme to handle
classification constraints in Section 5.2.

A sound and truly resilient watermarking method has to
start by assesing the final purpose of the content to be wa-
termarked, together with its associated allowable alteration
limits. These limits are often times impossible to express
as “least significant bits” and require a higher level seman-
tic expression power such as offered by the data goodness
plugins.

watermark(attribute, wm key, mark data[], goodness plugin handler, db primary key, subset size, v min, v max, c)
1. sorted attribute ← sort on normalized crypto hash(wm key,db primary key,wm key)
2. for (i=0; i < length(attribute)/subset size;i++)

a. subset bin ← next subset size elements from sorted attribute
b. compute rollback data
c. encode(mark data[i % mark data.length], subset bin, v min, v max, c)
d. propagate changes into attribute
e. if (not goodness plugin handler.isSatisfied(new data,changes)) then

i. rollback rollback data
ii. continue

f. else
i. commit
ii. embedding map[i] = TRUE
iii. subset boundaries[i] = subset bin[0]

3. return embedding map, subset boundaries

Figure 3: Watermark Embedding Algorithm.

detect(attribute, wm key, db primary key, subset size, v min, v max, c, embedding map[], subset boundaries[])
1. sorted attribute ← sort on normalized crypto hash(wm key,db primary key,wm key)
2. read pipe ← null
3. do { tuple ← next tuple(sorted attribute) }
4. until (exists idx such that (subset boundaries[idx] == tuple))
5. current subset ← idx
6. while (not(sorted attribute.empty())) do

a. do {
i. tuple ← next tuple(sorted attribute)
ii. read pipe = read pipe.append(tuple)

b. } until (exists idx such that (subset boundaries[idx] == tuple))
c. subset bin ← (at most subset size elements from read pipe, not including last read element)
d. read pipe.remove all remaining elements but last read()
e. if (embedding map[current subset]) then

i. mark data[current subset] ← decode (subset bin, v min, v max, confidence)
ii. if (mark data[current subset] != DECODING ERROR) then detection map[current subset] ← TRUE

f. current subset ← idx
7. return mark data, detection map

Figure 4: Watermark Detection Algorithm.

Other vulnerabilities appear in [?]. True data alteration
(e.g. linear changes to an arbitrary subset of the data,
non-uniform scaling of all or part of the data, and epsilon-
attacks) resilience is not analysed and the encoding method
lacks fundamental provisions to resist such alterations. For
example, even minor-level epsilon-attacks such as the ones
illustrated in Section 5.2 (where our encoding survives up to
97%) would entirely remove the mark.

An analogy can be constructed in the image watermark-
ing framework. There, the LSB aproach to watermarking
was among of the inital attempts and immediately proved
its limits. For example, one simple attack considers the as-
sumed (also by watermarking party) fact that the LSB space
is insignificant. Thus simply altering this space randomly
or even more, zero-ing its entire content would immediately
remove the watermark. Thus LSB information hiding was
immediately discarded as an effective technique for resilient
rights protection watermarking [6] [14].

5. IMPLEMENTATION AND EXPERIMENTS
This section presents our implementation and the exper-

imental results of watermarking real-life, commercial, data,
namely the Wal-Mart Sales relational database.

5.1 The wmdb.* Package
wmdb.* is our test-bed implementation of the algorithms

presented in this paper. It is written using the Java language
and uses the JDBC API in accessing the data.

The package receives as input a watermark to be embed-
ded, a secret key to be used for embedding, a set of rela-
tions/attributes to consider in watermarking as well as a set
of external usability plugin modules. The role of the plugin
modules is to allow user defined query metrics to be used
at run-time without recompilation and/or software restart.
4 The software uses those metrics to re-evaluate data us-
ability after each atomic watermarking step as explained in
Sections 3 and 4.

Once usability metrics are defined and all other parame-
ters are in place, the watermarking module (see Figure 5)

4Usability metrics can be specified either as SQL queries,
stored procedures or simple Java code inside the plug-in
modules.

usability

metrics

plugin

handler

usability metric

plugin A

usability metric

plugin B

usability metric

plugin C
 JDBC

WM

evaluate
 user
mark

key

alteration rollback log

attributes

A1
 A2
 A3
 A4
 A5
 A6

DBMS

Figure 5: The wmdb.* package. Overview.

starts the process of watermarking. A rollback log is kept
for each atomic step performed (i.e. 1-bit encoding) until
data usability is assessed and confirmed. This allows for
rollbacks in case usability is not preserved by the current
atomic operation.

Watermark recovery takes as input the watermarking key
used in embedding, the set of attributes known to contain
the watermark as well as other various encoding specific pa-
rameters (see Figure 4). It recovers the set of watermark
copies initially embedded. A final step of error correction
(e.g. majority voting) over the recovered copies completes
the recovery process.

Note: Various details need to be resolved in order to
implement the encoding method. For example, in order to
maintain actual mark references (e.g. mean of all values
of Si, avg(Si)), items in Si are to be altered in pairs. In
order to more accurately recover subsets, markers had to be
introduced and handled at detection time (see Figure 4).

5.2 Experiments
The Wal-Mart Sales Database contains most of the infor-

mation regarding item sales in Wal-Mart stores nationwide.
Its main value lies in the huge commercial potential deriv-
ing from mining buying patterns and association rules. In
the following we present some of our experiments using the
wmdb.* package to watermark the Wal-Mart database.

Our experimental setup included access to the 4 TBytes
Wal-mart data, hosted on a NCR Teradata machine, one
1GHz CPU Linux box with Sun JDK 1.3.1 and 384MB
RAM. The amount of data available is enormous. For exam-
ple, the ItemScan relation contains over 840 million tuples.

For testing purposes, we deployed our algorithm on a ran-
domly selected subset of size equal to a small percentage of
the original data size (e.g. just a maximum of 141075 tuples
for relation UnivClassTables.StoreVisits).

In the following we present experiments involving attacks
(data loss, data alterations, linear changes, data resorting)
as well as the evaluation of the available bandwidth in the
presence of different data goodness metrics (tolerable abso-
lute change, data classification preservation goodness).

5.2.1 Data Loss Attacks (“Surgeries”)
In this attack scenario, we study the distortion of the wa-

termark as the input data is subjected to gradually increas-
ing levels of data loss.

In Figure 6 (c) the analysis is performed repeatedly for
single bit encoding using the “confidence-violators” encod-
ing method outlined in Section 3.4.1. The results are then

averaged over multiple runs.
The “confidence-violators” primitive set encoding proves

to be resilient to a considerable amount of randomly oc-
curring uniformly distributed surgeries (i.e. item removals
by an attacker with no extra knowledge) before watermark
alterations occur. Even then, there exists the ability to
“trace” or approximate the original watermark to a certain
degree (i.e. by trying to infer the original mark value from
an invalid set).

The set size considered was 35, experiments were per-
formed on 30 different sets of close to normally distributed
data. Other parameters for the experiment include: vfalse =
5%, vtrue = 9%, c = 88%. The average behavior is plotted
in the graphs. Up to 25% and above data loss was toler-
ated easily by the tested data, before mark alteration (i.e.
bit-flip) occurred.

Figure 6 (a) and (b) depict more complex scenarios in
which a real multi-bit watermark is embedded into a larger
data set (both uniform (a) and normal distribution (b) were
considered). The input data contained 8000 tuples, subset
size was 30 and the considered watermark was 12 bits long.
Other parameters: vfalse = 15%, vtrue = 35%, c = 85%.
This set is then subjected to various degrees of data loss
and the watermark distortion is observed. The encoding
method again proves to be surprisingly resilient by allowing
up to 45-50% data loss while still 40-45% of the watermark
survives. Also, in (a), as data alteration increases, the subset
(i.e. secretly selected for encoding 1-bit, see 3.3) overlap (i.e.
the “resemblance” to the original content) degrades.

5.2.2 Data Alteration Attacks (Epsilon-Attack)
Presented with the watermarked data an attacker is faced

with two contradictory tasks: preserving the inherent data
value while removing the hidden watermark. Given no knowl-
edge of the secret watermarking key nor of the original data
the only available choice is to attempt minor random data
modifications in the hope that at some point the watermark
will be destroyed. Because the original data is unknown
(thus also the current watermark-related distortion is un-
known) it is impossible for the attacker to determine the
real “minority” of changes he/she performs. In other words,
because of the goal of preserving the data value, the attacker
cannot afford performing significant change to the data.

In this experiment we analyse the sensitivity of our water-
marking scheme to randomly occuring changes, as a direct
measure for watermark resilience.

To do this, we defined a transformation that modifies a
certain percentage τ of the input data within certain bounds
defined by two variables ε and µ. We called this transfor-
mation epsilon-attack. Epsilon-attacks can model any unin-
formed, random change transformation – the only available
attack alternative.

A normal epsilon-attack modifies roughly τ
2

percent of the
input tuples by multiplication with (1+µ+ ε) and the other
τ
2

percent by multiplication with (1 + µ − ε).
A “uniform altering” epsilon-attack modifies τ percent

of the input tuples by multiplication with a uniformly dis-
tributed value in the (1 + µ − ε, 1 + µ + ε) interval.

In Figure 7, a comparison is made between the case of uni-
formly distributed (i.e. values are altered randomly between
100% and 120% of their original value) and fixed alterations
(i.e. values are increased by exactly 20%).

Note: In the case of fixed alterations the behavior demon-

0

20

40

60

80

100

-10 0 10 20 30 40 50

(%
)

data surgeries (%)

un-corrected mark data loss
final watermark loss

average subset overlap

0

20

40

60

80

100

-10 0 10 20 30 40 50

(%
)

data surgeries (%)

un-corrected mark data loss
final watermark loss

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14

w
at

er
m

ar
k

al
te

ra
tio

n

attack surgeries

exact watermark recovery
approximated watermark recovery

Figure 6: Experiments on resilience to data surgeries (a) uniform distribution, (b) normal distribution, (c)
single subset (1-bit) encoding

10

20

30

40

50

60

70

0 20 40 60 80 100

m
ar

k
da

ta
 lo

ss
 (

%
)

amount of data altered (tuples %)

uniform alterations (100-120% x value)
fixed alteration at (120% x value)

Figure 7: Epsilon-attack (non-zero average) on a
normally distributed data set.

strates the effectiveness of the encoding convention: as more
and more of the tuples are altered linearly, the data distri-
bution comes increasingly closer to the original shape. For
example when 100% of the data is modified consistently and
linearly the mark data suffers only 6% alterations.

A peak around 50% data alterations can be observed in-
dicating that an attack changing roughly 50% of the data
might have a greater chance of success. This is also intu-
itively so (in the case of randomly distributed alterations)
as a maximal change in distribution is expected naturally
when close to half of the data set is skewed in the same
“direction” (by addition or subtraction).

Parameter µ models the average of the data alteration
distribution while ε controls its width. Naturally, a “zero-
average epsilon-attack” (µ = 0) is a transformation that
modifies roughly τ

2
percent of the input tuples by multipli-

cation with (1+ε) and the other τ
2

percent by multiplication
with (1− ε).

Figure 8 presents the behaviour of our encoding algorithm
to this type of attack. This is particularly intriguing as it re-
veals clearly a special feature of the watermarking method:
since the bit-encoding convention relies on altering the ac-
tual distribution of the data, it survives gracefully to any
distribution-preserving transformation. Randomly changing
the data, while it can definitely damage the watermark (e.g.
especially when altering around 50% of the data, see Figure
7), proves to be, to a certain extent, distribution-preserving.

A zero-average epsilon-attack is survived very well. For
example, altering 80% of the input data within 20% of the
original values still yields over 70% of the watermark.

Note: One could argue that, after all, if the watermark
encoding relies too much on the distribution of the data,
one successful attack could be the one that alters exactly
this distribution. But this is not possible, as the power of
the watermarking scheme lies not only in the distribution it-
self but also in the secrecy of the encoding subsets. In other
words, where the bits are encoded (i.e. subsets, see Section
3) is as important as how. Altering global data character-
istics would not only destroy probably much of the value of
the data but, as shown above, achieve little in destroying
the watermark.

In Figure 8 (a), as the percentage of tuples altered and
the alteration factor goes up, so does the watermark distor-
tion. Nevertheless, it turns out to be surprisingly resilient.
For example, altering 100% of the data within 1% of the
original values can yield a distortion as low as 3-4% in the
resulting watermark. The watermark distortion increases
with increasing alteration factor (b) or percentage of data
(c). Figure 8 (b) presents a comparison between the curves
corresponding to the alteration of 80% of the tuples versus
100% of the tuples. Naturally the curve for the higher tuples
percentage appears “above”. In (c) a comparison is made
between curves for the alteration factor 1% or 5%. The
higher alteration curve is intuitively “above”. Note that the
curves are not very steep: mark alteration is less dependent
on the percentage of data altered than on the alteration fac-
tor (as seen in (b)).

Thus the watermarking scheme is also naturally resilient
to un-informed attacks (modeled by epsilon-attack transfor-
mations).

5.2.3 Data Quality (Goodness) Metrics
We analysed the impact of data goodness preservation on

the ability to provide watermark encoding bandwidth. Intu-
itively the more restrictive data constraints one imposes, the
less available bandwidth there is as allowable data changes
are directly impacted.

In the following we present two results. The first analysed
goodness metric is a commonly considered one, namely up-
per bounds imposed on the total and local tolerable absolute
change (i.e. of the new data with respect to the original).

Note: A practically identical experimental result was ob-
tained for a related metric, the maximum allowable mean
squared error.

In Figure 9, as data goodness metrics are increasingly re-

0 20 40 60 80 100tuples(%) 0
5

10
15

20

epsilon(%)

0
5

10
15
20
25
30
35
40
45
50

mark alteration(%)

0

10

20

30

40

50

0 5 10 15 20

m
ar

k
al

te
ra

tio
n(

%
)

epsilon(%)

for 100% of tuples altered
for 80% of tuples altered

0

5

10

15

20

25

30

0 20 40 60 80 100

m
ar

k
al

te
ra

tio
n(

%
)

tuples altered(%)

epsilon=1%
epsilon=5%

Figure 8: Epsilon-attack (zero-average) on normally distributed data.

30

40

50

60

70

80

90

-0.001-0.0008-0.0006-0.0004-0.00020

av
ai

la
bl

e
ba

nd
w

id
th

 (
%

)

guaranteed data goodness (%)

Figure 9: Impact of the Maximum Allowable Abso-
lute Change Goodness Metric on the available wa-
termarking bandwidth.

strictive, the available bandwidth (guaranteeing higher re-
silience) decreases. In the illustrated experiment, the al-
lowed absolute change in the watermarked data (i.e. from
the original) is decreased gradually (from 0.1% to 0.02%)
and the decrease in available encoding bandwidth is ob-
served (depicted as a percent of total potential bandwidth).
The upper limit (approx. 90%) is inherently data-imposed
and cannot be exceeded due to original data characteristics,
making it effectively the maximum possibly attainable data
bandwidth.

Another important experiment analyses a classification-
preserving data goodness metric. Classification is extremely
relevant in areas such as data mining and we envision that
many of the actual deployment scenarios for our relational
watermarking application will require classification preser-
vation.

Classification preservation deals with the problem of prop-
agation of the classes occuring in the original (input) data
in the watermarked (output) version of the data. It provides
thus the assurance that the watermarked version still con-
tains most (or within a certain allowed percentage) of the
original classes.

To perform the experiment, we designed and implemented
a data classifier which allows for runtime fine-tuning of sev-
eral important classification parameters such as the number
of (synthetic) classes to be associated with a certain data
set as well as the sensitivity of these classes. The sensitivity
parameter can be illustrated best by example. Given a cer-

tain data set to be altered (e.g. watermarked) and an item
X in this data set, the classification sensitivity models the
amount of alterations X tolerates before it “jumps” out of
its original class.

Note: One different perspective on sensitivity can be ob-
tained by linking it to the notion of “selectivity”. The more
“selective” a classification is, the more sensitive it behaves.

The tolerance factor in Figure 10 represents the maxi-
mum tolerated classification distortion (i.e. percentage of
class violators with respect to the original). In (a), as the
classification tolerance and sensitivity go up, so does the
available bandwidth. Figure 10 (b) – a section through (a)
for different classification sensitivities – shows how the wa-
termarking algorithm adapts to more and more available
tolerance in data goodness. Figure 10 (c) depicts how for
classification tolerance fixed at 1%, the sensitivity of the
classification impacts directly the available bandwidth.

Depending on classification sensitivity (e.g. 0.01 in (b)),
up to 90% of the bandwidth can become available for wa-
termark encoding with a quite restrictive 6% classification
preservation goodness.

These results confirm the adaptability of our watermark-
ing algorithm. As classification tolerance is increased, the
application adapts and makes use of an increased avail-
able bandwidth for watermark encoding. The results also
show that classification preservation is compatible with our
distribution-based encoding method, an important point to
be made, considering the wide range of data-mining applica-
tions that could naturally benefit from watermarking ability.

5.2.4 Discussion
Watermarking outsourced content happens only once, at

outsourcing time. The main purpose of watermarking in
this framework is rights-protection and/or traitor tracing
through fingerprinting. Thus, there is little to be gained
from an ability to watermark at runtime, in the presence of
updates. Moreover, because watermarking inherently alters
the data, it is unreasonable to assume that a certain party
would keep an altered (i.e. watermarked) copy of the data as
replacement for the original (after all, how could it generate
the outsourced version at the time of outsourcing ?).

Given the above, as it is to be a performed once per
transaction, computation overhead is naturally not an is-
sue (unless exorbitantly time-consuming). Nevertheless we
also assessed computation times and observed an intuitively
(according to the O(n) nature of the algorithm) linear be-
havior, directly proportional with the input data size. Given

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
classification sensitivity 0

5
10

15
20

classification tolerance (%)

20

40
60

80

100

available bandwidth(%)

20

40

60

80

100

0 5 10 15 20

av
ai

la
bl

e
ba

nd
w

id
th

 (
%

)

classification goodness (%)

classification sensitivity 0.1
classification sensitivity 0.01

30

40

50

60

70

80

90

100

0.0050.010.0150.02

av
ai

la
bl

e
ba

nd
w

id
th

 (
%

)

classification sensitivity

Figure 10: Impact of a classification preserving goodness metric on the available watermarking bandwidth.

the setup described above, in single-user mode, with a local
database we obtained an average of around 200 tuples/second
for watermark embedding, while detection turned out to be
approximatively twice as fast. The results are considering
the case of no data goodness metrics, thus measuring the
core performance of the system (goodness metric evalua-
tion is mostly user and data dependent). This occurs in the
non-optimized, interpreted Java proof-of-concept implemen-
tation. We expect major speedups (one order of magnitude)
in a real life deployment version.

5.3 Example: Watermarking the Wal-Mart
Sales Database

A set of more complex experiments performed are out-
lined in Section 5.2. Here we present one actual applica-
tion of our watermarking software. The watermark con-
sidered to be hidden was the string “(C)walmart” (80 bits
in 8bit/character encoding). Algorithm parameters were
adjusted repeatedly in an attempt to maximize the num-
ber of embedded copies, finally establishing them as c =
85%, vfalse = 15%, vtrue = 30%.

Notation: For formatting purposes in the following we
abbreviated “StoreVisits” by “SV” and “ItemScan” by “IS”.

The size of the subsets considered was roughly 70 for
a total of around 2000 available encoding bits in the To-
talScanAmount attribute for example.

We considered a set of usability metrics and associated
queries, including the following:

(a) Intra-relational Consistency:

IS.UnitCostAmount x IS.ItemQuantity = IS.TotalScanAmount

(b) Inter-relational Consistency:

SV.TotalVisitAmt < SUM(IS.TotalScanAmount)

(c) General Attribute Constraints: MSE constraints for
attribute SV.TotalVisitAmt: introduced normalized mean
squared error should not exceed 1%.

(d) General SQL Constraints: e.g. (d.1) for each store
and date, the number of sales after watermarking should
not deviate more that 2% from the original data, (d.2) for
the join between SV and IS on the VisitNbr attribute, a
maximum number of 5% of the elements should be disturbed
after watermarking.

For example, the actual numeric value in (d.2) can be
formulated as follows:

SELECT * AS J1 FROM ItemScanOrig, StoreVisitsOrig
WHERE ItemScanOrig.VisitNbr = StoreVisitsOrig.VisitNbr;

SELECT * AS J1 FROM ItemScanWM, StoreVisitsWM

WHERE ItemScanWM.VisitNbr = StoreVisitsWM.VisitNbr;
SELECT COUNT(*) FROM (

(SELECT * FROM J1 EXCEPT SELECT * FROM J2)
UNION
(SELECT * FROM J2 EXCEPT SELECT * FROM J1))

In the working system, each of these metrics was repre-
sented by a separate usability metric plug-in, used in eval-
uating data usability after each atomic watermarking step
(see Figure 5).

For example, the usability metric module for (d.2) exe-
cutes the above query and if the result exceeds a certain
threshold, it simply returns false, denying the watermarking
module the proposed modifications to the data. The water-
marking module then performs a rollback on those modifi-
cations and continues on to the next subset as presented in
Section 3.1.

Deployment Issues
Some of the usability constraints above present a set of

deployment challenges especially when implemented as us-
ability plug-in modules. Whereas (a), (b) might be straight-
forward to code, (c) presented some complications because
of the need of maintaining original reference data in order
to be able to compute MSE values. This was solved by cre-
ating an additional relation at run-time, used by the plug-in
to keep original data that was altered in the watermarked
version.

Step (d) proved to be the most challenging, particularly
(d.2) because of the requirement to always compare JOINS
on the original data to joins on the resulting data. We tried
two approaches. In the first approach, the entire original
data was duplicated temporarily 5 and JOINS were dynam-
ically performed at run-time. This soon proved to be infea-
sible, and computation-intensive, often causing JDBC buffer
related crashes and taking long times to execute.

The next approach optimized the idea by keeping just a
record of watermark-related alterations and then directly
assessing their impact in the data JOIN result (i.e. deter-
mining whether a change in tuple X in table SV will affect a
yet unaccessed tuple in the JOIN result with table IS). This
second approach, requiring definitely less space and compu-
tation power, proved to be working well.

Algorithm deployment times cannot be pre-assessed as
much of the time is spent in evaluating usability metrics,
and not in the actual encoding algorithm itself. Thus this

5Again, space and computation constraints are not of con-
cern here if within reach, as this is done only once in the
lifetime of the outsourced data.

is to be considered as depending heavily on the optimality
of the usability metrics plug-in modules implementations.

Using the attribute IS.TotalScanAmount, the watermark
was embedded successfully roughly 21 times, leading to a
good utilization (84%) of the potential encoding bandwidth
of 2000 bits (see above). This allows for a highly accurate
final majority voting step at mark retrieval/detection time
(see Section 5.2 for attack and resilience experiments).

Thus, we successfully deployed wmdb.* in watermarking
the Wal-Mart Sales Database. Pre-processed parts of the
original data as well as their watermarked version will be
available over the web (details ommitted to facilitate blind
review).

6. CONCLUSIONS, FUTURE RESEARCH.
In the present paper we introduced the problem of data

security through watermarking in the framework of numeric
relational data.

We (a) design a solution to a simplified version of our
problem, namely watermarking a numeric collection by (a.i)
defining a new suitable mark encoding method for numeric
sets and (a.ii) designing an algorithmic secure mapping (i.e.
mark amplification) from a simple encoding method to a
more complex watermarking algorithm, and (b) applied the
concept to numeric relational databases, thus providing a
solution for resiliently watermarking relational databases.

We also developed a proof of concept implementation of
our algorithms under the form of a Java software package,
wmdb.* which we then used to watermark a commercial
database extensively used for data-mining in the area of cus-
tomer trends and buying patterns.

Recently we started investigating new, non-numeric rela-
tional data encoding domains. A proof-of-concept imple-
mentation and associated experimental results for generic
data types are in the works.

Another fascinating application that we plan on tackling
is in the framework of streaming data, especially of interest
in scenarios such as boundary protection and massive remote
sensor data processing. A model of attacks in this new do-
main needs to be devised and a more detailed attack-ability
analysis performed.

Additionaly, a full-fledged commercial watermarking ap-
plication could be derived from our proof-of-concept soft-
ware and various other applications for our numeric collec-
tion marking method could be envisioned and pursued.

7. REFERENCES
[1] M. J. Atallah and Jr. S. S. Wagstaff. Watermarking

with quadratic residues. In Proc. of IS-T/SPIE Conf.
on Security and Watermarking of Multimedia
Contents, SPIE Vol. 3657, pp. 283–288., 1999.

[2] M.J. Atallah, V. Raskin (with M. Crogan,
C. Hempelmann, F. Kerschbaum, D. Mohamed, and
S. Naik). Natural language watermarking: Design,
analysis, and a proof-of-concept implementation. In
Lecture Notes in Computer Science, Proc. 4th
International Information Hiding Workshop,
Pittsburgh, Pennsylvania. Springer Verlag, 2001.

[3] Elisa Bertino, M. Braun, Silvana Castano, Elena
Ferrari, and Marco Mesiti. Author-x: A java-based
system for XML data protection. In IFIP Workshop
on Database Security, pages 15–26, 2000.

[4] Elisa Bertino, Sushil Jajodia, and Pierangela
Samarati. A flexible authorization mechanism for
relational data management systems. ACM Trans. on
Information Systems, 17(2), 1999.

[5] Christian Collberg and Clark Thomborson. On the
limits of software watermarking, August 1998.

[6] Ingemar Cox, Jeffrey Bloom, and Matthew Miller.
Digital watermarking. In Digital Watermarking.
Morgan Kaufmann, 2001.

[7] Stefan Katzenbeisser (editor) and Fabien Petitcolas
(editor). Information hiding techniques for
steganography and digital watermarking. In
Information Hiding Techniques for Steganography and
Digital Watermarking. Artech House, 2001.

[8] J. Hale, J. Threet, and S. Shenoi. A framework for
high assurance security of distributed objects, 1997.

[9] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A
logical language for expressing authorizations. In
IEEE Symposium on Security and Privacy. Oakland,
CA, pages 31–42, 1997.

[10] S. Jajodia, P. Samarati, V. S. Subrahmanian, and
E. Bertino. A unified framework for enforcing multiple
access control policies. In SIGMOD, 1997.

[11] Li, Feigenbaum, and Grosof. A logic-based knowledge
representation for authorization with delegation. In
PCSFW: Proc. of The 12th Computer Security
Foundations Workshop, 1999.

[12] M. Nyanchama and S. L. Osborn. Access rights
administration in role-based security systems. In IFIP
Workshop on Database Security, pages 37–56, 1994.

[13] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma,
Q. Shao, and Y. Zhang. Experience with software
watermarking. In Proceedings of ACSAC, 16th Annual
Computer Security Applications Conference, pages
308–316, 2000.

[14] Fabien A. P. Petitcolas, Ross J. Anderson, and
Markus G. Kuhn. Attacks on copyright marking
systems. In David Aucsmith, editor, Information
Hiding: Second International Workshop, volume 1525
of Lecture Notes in Computer Science, pages 218–238,
Portland, Oregon, U.S.A., 1998. Springer-Verlag.

[15] Radu Sion, Mikhail Atallah, and Sunil Prabhakar. On
watermarking numeric sets. In Proceedings of IWDW
2002, Lecture Notes in Computer Science, CERIAS
TR 2001-60. Springer-Verlag, 2002.

[16] Radu Sion, Mikhail Atallah, and Sunil Prabhakar. On
watermarking semistructures. In (submission for
review), CERIAS TR 2001-54, 2002.

[17] Radu Sion, Mikhail Atallah, and Sunil Prabhakar.
Power: Metrics for evaluating watermarking
algorithms. In Proceedings of IEEE ITCC 2002,
CERIAS TR 2001-55. IEEE Computer Society Press,
2002.

