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Abstract. In this paper we study the problem of declustering two-
dimensional datasets with replication over parallel devices to improve
range query performance. The related problem of declustering without
replication has been well studied. It has been established that strictly op-
timal declustering schemes do not exist if data is not replicated. In addi-
tion to the usual problem of identifying a good allocation, the replicated
version of the problem needs to address the issue of identifying a good
retrieval schedule for a given query. We address both problems in this
paper. An efficient algorithm for finding a lowest cost retrieval schedule
is developed. This algorithm works for any query, not just range queries.
Two replicated placement schemes are presented — one that results in a
strictly optimal allocation, and another that guarantees a retrieval cost
that is either optimal or 1 more than the optimal for any range query.

1 Introduction

Declustering data across multiple I/O disks is an effective technique for im-
proving performance through parallel I/O. The problem of declustering multi-
dimensional datasets has received a lot of attention due to the importance of
multi-dimensional datasets. Examples of such datasets include relational databases
(each ordered attribute of a relation can be viewed as a dimension), GIS and
spatio-temporal databases, image and video data, pixels of a computer display,
and scientific simulation datasets. The I/O devices can be magnetic disks, chips
of main memory, or nodes in a shared-nothing environment.

By uniformly dividing the dataset along each dimension, the dataset is di-
vided into tiles which are then distributed across multiple I/O devices. A range
query over the dataset only needs to retrieve those tiles that intersect the query.
Since the tiles are placed on multiple devices, they can be retrieved in parallel.
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The cost of retrieving a tile is assumed to be constant. The cost for executing a
query from multiple devices is therefore proportional to the maximum number
of tiles that need to be retrieved from a single device. For a query that retrieves
m tiles, the optimal cost with k devices is given by [Z].

An ideal declustering scheme would achieve this optimal cost for all possible
queries. Such a scheme is said to be strictly optimal. It has been established that
for the case of two-dimensional data strictly optimal schemes exist only in very
special cases [AE97]. Given the impossibility of finding strictly optimal schemes
for the general case, researchers have focussed on developing schemes with aver-
age cost close to the optimal cost. This has resulted in the development of a large
number of allocation schemes [DS82,FM89,LHY97,FB93,BBB*97,PAAE98,AP(0)]
[BSC00,SBCO1]. The non-existence of strictly optimal allocations is based upon
the assumption that each tile is allocated to a single device. This raises an in-
teresting question: If tiles are allowed to be replicated and placed on multiple
devices, then is it possible to obtain strictly optimal allocation? This is an im-
portant issue since the latency of access is (and will likely continue to be in the
foreseeable future) more critical than storage capacity. To the best of our knowl-
edge at the time of submission, the issue of replicated declustering for range
queries had not been explored, however we have discovered that in [TF01] some
work was done in this area (more on this at the end of the Section 2).

In this paper we investigate the use of replication for improving the declus-
tering of two-dimensional data with an emphasis on range queries. While the
techniques are applicable to multiple dimensions, we limit our discussion to the
two-dimensional case. The allocation of tiles to disks can be viewed as a coloring
problem — each device is considered to be a color. If a tile is allocated to device
1, it is considered to be colored with color ¢. With replicated data placement,
each tile can have multiple colors. Two questions naturally follow:

1. When given a grid that is colored in such a manner, choosing which disk to
use for each block could dramatically increase the performance. How can an
optimal selection be computed?

2. How should the tiles of the grid be colored to maximize performance?

We address both problems in this paper. The contribution of this paper are
as follows:

— An efficient algorithm for determining a least cost retrieval schedule. This
result applies to any arbitrary query — not just range queries.

— Two replicated data declustering schemes. The schemes differ in the degree
of replication. One scheme achieves the strictly optimal cost by replicating
each tile on each device. The second scheme requires +/m replicas of each
tile where m is the number of devices and guarantees that the cost for any
range query is either optimal or one more than the optimal.

The rest of the paper is organized as follows. Section 2 presents a brief dis-
cussion of the existing declustering (coloring) schemes, all of which assume non-
replicated placement. In Section 3 we present an efficient algorithm to compute



a least cost retrieval schedule for replicated placement. Section 4 addresses the
issue of strictly optimal placement schemes with replication. Section 5 concludes
the paper.

2 Related Work

Consider a two-dimensional data set that has been divided into tiles along each
dimension. In the case of a screen display these tiles may correspond to single
pixels, whereas in the case of a large image they may represent larger rectangular
sections of the full image. For relational databases, they may correspond to
subranges of two attributes. The I/O devices can be magnetic disks, chips of
main memory, or nodes in a shared-nothing environment. In this paper we use
the term disk to refer to any of these parallel I/O devices. We also use the terms
allocation, declustering and coloring synonymously to refer to the assignment of
tiles to I/O devices.

Given a two-dimensional array of Ny x Nj tiles, and k colors (disks, or I/0O
devices), the coloring (declustering) function, ¢, maps each tile (zg,z1), 0 <
zg < No,0 < 1 < N; to one of the colors, 0,...,k—1. In [AE97], the necessary
and sufficient conditions for the existence of strictly optimal coloring schemes
are derived. In particular it is shown that strictly optimal colorings exist only in
the following cases:

1. k=2,3, or 5; or

2. kZNoNl—z, or

3. Ng<2,0or Ny <2;o0r

4. k = NyN; — 4 and min{Ny, N;} = 3; or
5. k=8and Ng=N; =4

Of these cases, only the second case is of general interest. To demonstrate
sufficiency of these conditions, a strictly optimal coloring is also developed in
[AE97], which allocates tile (zg,x1) to color (L%J)xo + z1) mod k. We will refer
to this as the HalfK coloring. Figure 1(a) shows the coloring generated by the
HalfK method for No=N;=8 and k = 5.

Several coloring techniques have been proposed for improving range query
performance in relational databases. These include the Disk Modulo or DM
approach [DS82] also known as CMD [LSR92], the Fieldwise eXclusive or FX
approach [KP88], the Gray code approach [GHW90] and the HCAM approach
[FB93]. Two approaches based upon error correcting codes are [FM89] and
[AE93]. Other techniques include [LHY97]. Coloring techniques for similarity
query have also been developed in [BBBT97,PAE98b,PAE9Ra].

The Disk Modulo (DM) coloring proposed by Du and Sobolewski allocates
tile (zg, z1) to color ¢par (o, x1) = (o + 1) mod k. An example of the coloring
generated by DM is shown in Figure 1(b) for the case No=N; =8, k=5. A
generalization of the DM method, the Generalized Disk Modulo or GMD, was
also developed in [DS82], which allocates tile (zg, z1) to device (azg+bz1) mod k,
where a and b are integers.
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Fig. 1. Examples of colorings generated by non-replicating schemes.

The FX method proposed by Kim and Pramanik [KP88], requires that No, Ny
and k are all powers of 2. The FX coloring is defined as ¢rx(zo,21) = (bo ®
b1) mod k, where bg and b; are the binary representations of zo and z; re-
spectively and @ is the bit-wise exclusive-OR operation. Figure 1(c) shows an
example of the coloring generated by the FX method for No=N;=8, k=5.

The HCAM method is based upon the Hilbert space filling curves. Hilbert
curves can be used to convert a discrete two-dimensional array into a linear
sequence such that spatial proximity in the original array is preserved. Given
an Ny x N; array of tiles, the HCAM method first converts the array into a
linear sequence, and then allocates the tiles to devices in a round-robin fashion
following the linear sequence. Figure 1(d) shows the coloring generated by HCAM
for No=N;1=8, k=5. The linear path corresponding to the Hilbert curve is also
shown.

A class of schemes called Cyclic Allocation schemes was developed in [PAAE9S]
[PAE98c]. The cyclic schemes allocate tile (zg,z1) to color (zg + Sz;) mod k,
where S € {0,...,k—1} is called the skip value. Each different value of S defines
a unique scheme within the class of Cyclic schemes. The choice of S is shown to
be critical for the performance of the scheme. Three methods for choosing good
values for S are also presented in [PAAE9IS,PAE98c].

The Golden Ratio Sequences (GRS) scheme was developed by Bhatia et al.
[BSC00]. The scheme is defined as: ¢grs(zo, 1) = (vo — H~1((x1) mod k)) mod
k, where $7! is the inverse mapping of . The mapping @ is a permutation of the
set {0,1,---,k—1}. The permutation is computed as follows: i) Vi € {0,---,k—1}
compute the fractional part of T Jf:/g, and call it k;. ii) Sort the k; values and use
this order to define the permutation @.




In [AP00], a coloring scheme with worst-case deviation from the optimal cost
of O(log k) has been developed. The scheme was shown to be equivalent to one
that maps tile (2o,z1) to device (2o @ x¥) mod k, where zf* is the reversal of
z1’s binary representation in [SBC01]. The O(logk) is the tightest bound for
any declustering scheme that does not replicate tiles [SBCO1].

None of the existing schemes addresses the issue of replicated data placement.
To the best of our knowledge, the issue of declustering schemes for replicated
data as studied in this paper has not been addressed with the exception of two
recent studies [SEK00,TF01]. The study in [SEK00], allows each data item to
have at most one copy. An algorithm for finding a least cost retrieval schedule
is developed. This study does not offer any particular algorithm for placing
replicated data on disks. In [TF01] a retrieval computation algorithm is given for
the case where an optimal scheduling exists, some suggested coloring schemes
are given, and experimental data is provided for small numbers of disks. Our
algorithm for scheduling is faster for large queries and is less restrictive (this
difference is quantified in the first paragraph of the next section after some
notation has been introduced).

3 Least Cost Retrieval with Replicated Placement

In this section we address the problem of finding a least cost schedule for re-
trieving the tiles required to answer a given query if the tiles are replicated on
multiple disks. There are k disks, numbered 1,...,k. As a result of this partic-
ular query that we are processing, the tiles to be retrieved from the disks are

numbered 1,...,m (what we are describing works for any query, whether it is
a range query or not). An identical copy of tile ¢ resides on each of the g; disks
in the set L; = {li1,li2, ..y ligi }, ¢ <k, 1 <l;; <k.Letr= max g;, be the

level of replication, or equlvalently the number of distinct dlSkS that a record
can be stored upon. The desired output is an assignment of each tile i to one of
the disks in L; so as to minimize the maximum number of tiles assigned to any
disk (i.e., make the disk queues as evenly equal as possible). For the special case
where records are placed on at most two disks, i.e. 7 < 2, an algorithm is given
in [SEKO00] which computes such an assignment. In [TF01], there is an algorithm
that is given for an arbitrary level of replication, but only computes an assign-
ment if the retrieval cost is optimal; this algorithm runs in time O(”,;‘3 ). Our
algorithm executes in time O(rm? + mk), and will compute the best retrieval
schedule even if is not optimal.

It suffices to give an algorithm that, given any integer ¢, tests whether there
is a solution in which no disk is assigned more than £ tiles to retrieve (because
such an algorithm can then be used in a binary search for the smallest such
£, at the cost of an extra logarithmic factor in the time complexity). Such an
algorithm is given next.

Algorithm Test(¢)



Comment: Tests whether there is a solution in which no disk is assigned more
than £ tiles to retrieve. If such a solution exists, it can also return (if needed)
the corresponding assignment of each tile to a disk.

1. Create a directed graph G, whose edges have capacities, as follows:

— There is one vertex for each disk, one vertex for each tile, and two ad-
ditional special vertices called s and ¢; therefore there are m + k + 2
vertices.

— There is a directed edge of capacity 1 from vertex s to the vertex for tile
i, 1<i<m.

— There is a directed edge of capacity 1 from the vertex of tile ¢ to each of
the g; vertices corresponding to the disks in its L; list, 1 <¢ < m.

— There is a directed edge of capacity £ from the vertex for disk j to vertex
t,1<j<k.

2. Run any polynomial-time maximum-flow algorithm on the above graph G
(with s as source and ¢ as destination). One known feature of such algorithms
is that, if all edge capacities are integers, then the flow they produce is also
integral (i.e., the flow through any edge is an integer).

3. If the value of the flow produced in the previous step is less than m, then
answer “No”. Otherwise answer “Yes” and, if the corresponding assignment
is desired, assign each tile i to the disk j for which the edge (i, j) carries a
flow of 1.

This algorithm ensures that no disk j is assigned more than Z tiles since no more
than £ units of flow can go through j (because the capacity of the edge from j
to t is £). Also when the flow is m all of the records can be retrieved, since the
flow from s to each record-node is 1.

Each probe of the binary search (for the smallest feasible £) makes one usage
of the above Test procedure (in “Yes/No” mode — there is no need to actually
produce the assignment until the end of the binary search, when the best £
has been found). The most practical (and easiest to program) maximum-flow
algorithm runs in time proportional to the cube of the number of vertices of
the graph, therefore each probe in the binary search takes time O((m + k)3).
There are O(logm) such probes, so that the overall running time of our method
is O((m + k)3 logm).

This previous algorithm can be optimized to remove the factor of O(logm)
by taking advantage of the similarity between the residual networks created in
each of the executions of AlgorithmTest.

First set up the max flow problem as before, use any Ford Fulkerson method
to solve it, and have a global residual network so that information can be saved
when a scheduling does not exist. Modify AlgorithmTest() so that it uses this
global residual network. Another algorithm QuickAlgorithmTest() is created
which takes the global residual network, adds one to the outflow from each
disk to t, and then continues to execute Ford Fulkerson on the residual network
to maximize the flow. QuickAlgorithmTest() returns true if the flow reaches M,
otherwise it returns false. The following is an algorithm to find the minimum



response time:

begin FindMinResponseTime
L :=[7] (note L is retrieval cost)
D := AlgorithmTest(L)
while D # true do

L=L+1
D := QuickAlgorithmTest()
endwhile

end FindMinResponseTime

To analyze this algorithm we define f; = flow found in execution of Al-
gorithmTest(), and f; = change in flow found in ith execution of QuickAlgo-
rithmTest(). The total cost of FindMinResponseTime() will be O(E(fy + f1 +
e+ fL,[%ﬂ), where E is the number of edges in the flow graph, since Ford
Fulkerson methods run in time O(E f) on integer flow graphs where f is the flow
found. Now E = O(mr + k), where r is the level of replication. Also, since the
algorithm stops when a flow of m is reached, (fo + fi+...+ fL_[=7) = m. Hence
the running time is O(rm? + mk).

4 Strictly Optimal Coloring with Replication

In the previous section we demonstrated that if tiles are placed on multiple disks
that an optimal scheduling can be computed in polynomial time. The question
now becomes, how do the tiles get placed on disk so that the query response
time is minimized. In [SEKO0] it was shown that if each tile was placed on two
disks that are assigned randomly, then the probability of having a response time
no more than one worse than optimal is very high. In [TF01] several replicated
coloring were proposed that worked optimally when the number of disks was less
than 15. We have two schemes for assigning disks to tiles. The first, Complete
Coloring (CC), has optimal performance, and the second, Square Root Colors
Disk Modulo (SRCDM) has performance that is no more than one from optimal.

Definition 1: The CC method places all tiles on all disks.

Theorem 1: The CC method has optimal query performance.

Proof: Sequentially, order the tiles in the query, call them rq,ry,...r,_1. Use
disk i mod M for tile r;. The response time is thus [{%], which is optimal. QED

Before we define SRCDM we need to specify some things about the query
problem.

1. M is the number of disks in the system, and M is a perfect square such that
M = n? for some n € .

2. Q(r,c) represents a query with r rows and ¢ columns.

3. For any query Q(r,c), r1, 2, ¢1, and ¢y are defined such that r = rin + ro
where 0 < r2 < mn and ¢ = ¢;n + ¢ where 0 < ¢3 < n. Furthermore,



let d = r2¢1 + r1¢o, and define d; and ds such that d = din + d2 where
0<ds<n

Definition 2: Vi€ {0,..,n — 1}, there is a corresponding set with n elements
<i>={in,in+1,...,(i+ 1)n —1}.

Definition 3: The SRCDM (Square root colors disk modulo) coloring colors
position (i,j) with the n colors in the set < i + j(modn) >.

Lemma 1: Given n adjacent squares in a row(or a column), Vie {0,..,n—1}
there exists a square colored with < ¢ > in SRCDM.

Proof: Wlog suppose that we are given n adjacent squares in a row, and
that the leftmost square is colored with set < j >. Vie {0,..,n — 1}, the ((i —
j) mod n)th leftmost square is colored with the set < i >. QED

Theorem 2: SRCDM colors a grid with M = n? colors, in a way that the
maximum response time of a query Q(r,c) is [{F] + 1 (i.e. no more than one
from optimal).

Proof: Consider the optimal time for a query Q(r,c).
re = (rin +mr2)(cin + co )= ricin® + (rica + raci)n + roca= ricin? + dn + roco=
riet M +(din+da)n+raco= riey M +din® +don+raca= (ric1+di) M +dan+raco.
Now dan + race < 2M, so r¢ < (r1e1 + di + 2)M. Hence the optimal query
response time [72] is subject to the following constraints: (ric; +di) < [§7] <
(ric1 +di +2). Consider the query response time for SRCDM. We can partition
Q into four regions (I, I, ITI, and IV) as shown in Figure 2. Consider region I, in
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Fig. 2. Partitioning a Query

each row there are c¢; disjoint groups of n adjacent squares. Thus region I contains
nricy of these groups. By lemma, 1 this implies that there are nric; instances of
each set < 1 >, hence region I requires a response time of r;¢;. Consider regions
IT and ITI, in region II(IIT) each column(row) has r1(c1) disjoint groups of n
adjacent squares. Together these regions have ryca + ciro=d1n + da such groups,
and thus require a response time < d; 4+ 1. Consider region IV: It fits in an n by
n square which implies its query response time will be < 1. The maximum query
response time in SRCDM will be < r1¢; + d; + 2. This is no more than one off



optimal except for the case when the optimal response time is r1¢; + di, but in
this case region IV would have area 0, which implies that region IV’s response
time will be 0, hence it will be no more than one from optimal. QED

For CC and SRCDM, a scheduling of disk accesses can be done in time
proportional to the size of the query, and the algorithm in section 3 is unnecessary
to compute it.

The colorings in this section have provable bounds for arbitrary large values
of M, but they may be impractical to use in practice. However, our experimen-
tal results show that replication can help increase performance dramatically. A
simple replication scheme would be to place would be to use any non-replicated
coloring scheme for the first color and add @ color modulo to get the ith
coloring. We implemented this scheme and tested the performance of this scheme
for values of M < 32 and r = 2. We found that this scheme increases performance
for many colorings dramatically.

5 Conclusion

Tiling a multi-dimensional dataset and distributing it among multiple I/O de-
vices is a well-known technique for improving retrieval performance for range
queries. Since the non-existence of strictly optimal allocations has been estab-
lished, researchers have focused on identifying schemes that approach this un-
achievable ideal. In this paper we addressed the impact of replicated placement
of tiles. Two sub-problems arise with replicated placement: (a) Given a set of
tiles to be retrieved, determining the lowest cost retrieval schedule and (b) Gen-
erating replicated allocations that result in good performance. We developed an
efficient algorithm that generates a lowest cost retrieval schedule for any query
(not just range queries). We show that it is possible (with full replication) to
achieve a strictly optimal allocation. We also developed a scheme that requires
vk (where k is the number of parallel devices) replicas and guarantees that the
retrieval cost is at most 1 more than the optimal for any range query. While the
discussion in the paper focuses on two-dimensional data, all results with the ex-
ception of the performance guarantee for SRCDM are applicable to any number
of dimensions.
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