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ABSTRACT

We describe novel methods of watermarking data using quadratic residues and random numbers. Our methods are
fast, generic and improve the security of the watermark in most known watermarking techniques.
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1. INTRODUCTION

Watermarking is a technique for adding a message, perhaps secret, to data to identify the owner or originator, or to
detect tampering with the data. Methods for watermarking image data are well known. See, for example, Tirkel et
al.,'! Swanson et al.,2 Wolfgang and Delp,®> and Cox et al.*

We propose a scheme that can improve the security of the watermark in most known watermarking techniques.
Further, our methods are faster and more robust than most known watermarking schemes. Here is the general idea
of our scheme: Let W be any watermarking method that encodes a 0 or 1, a bit of the watermark message, in a data
item x according to some rules. We make no assumptions about which portions of xz can be modified by W, and
no assumptions about the nature of z. Therefore, z could be a physical measurement, or color or brightness data
in a image, or an entry in the Fourier or Discrete Cosine Transform of an image. The portion of z which W could
modify need not be its least significant bit. (Indeed, the recent frequency domain methods actually deliberately store
the watermark by substantially modifying some high energy components of the spectrum of the image. Our scheme
improves these methods, too.)

The basic idea is illustrated first, in Section 3, for the simple case of watermarking numerical data by encrypting
the message into the low order bits of floating point numbers. These numbers, interpreted as integers, are modified
slightly to force them to be quadratic residues or nonresidues modulo a secret prime, according to the parity of the
next bit of the watermark message. Because of the nearly uniform distribution of quadratic residues and nonresidues,
usually little change in the number is needed. By adding a simple random number generator and changing the way
the watermark bit is encoded, we get an algorithm which damages at most one bit of each number.

In Section 4 we explain how the methods can be applied to improve any watermarking technique in which the
watermark is inserted into a list of numbers one bit per number. Part of the number in which the next watermark bit
is to be stored is combined with the next random number. If this combination is a quadratic residue, then the number
is changed one way according to the watermark bit. But if the combination is a quadratic nonresidue, the number
is changed the other way. The secret prime and random numbers make it harder to cryptanalyze the watermark.
Even if the cryptanalyst knew where and how the watermark was placed in the data, he could not read it without
knowing the secret prime. However, he could still erase it. This is why many recent image watermarking algorithms®
keep secret which entries of the Discrete Cosine Transform of the image contain the watermark. This secret makes
it impossible to remove the watermark without doing the removal operation on all of the transform’s entries and
thus making the data useless in the process. This is because the change needed to watermark one high-energy entry
in the transform is substantial enough that, although of no serious consequence to image quality if done on a small
number of such entries, it would make the image useless if done to all of the significant entries of its transform.

With our techniques the original data (as well as the watermarked data) are needed to read the watermark if
and only if they would be needed to read it by the method W that we are improving. Our methods are robust with
respect to truncation of the data in that one may read every bit of the watermark which survives truncation.
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2. PRELIMINARIES

This section introduces notation and terminology, and reviews basic facts that will be used in later sections.

We shall illustrate the basic idea in the simple situation where we are given a list of floating point numbers
dy,ds, ... and the (insecure) watermarking method ¥V which consists of storing the watermark message in the least
significant bit of each d;. This could occur when each d; comes from, for example, physical measurements made with
a certain level of imprecision, such that the imprecision introduced by W is within the range of measurement errors,
or it could be that the d; are the secret entries of the transform of an image that we mentioned in the previous
section. The security of any such scheme can be improved as described in Section 3.

Let the watermark message be the bit string wy, ws, ..., so that w; € {0,1} for every i. (There must be at least
as many floating point numbers as bits in the watermark. In most applications there will be many more floating
point numbers than watermark bits and the watermark is then repeated over and over again.)

Definitions. Let p be an odd prime number. An integer n is a quadratic residue modulo p if p does not divide n
and there exists an integer = for which 22 = n mod p. An integer n is a quadratic nonresidue modulo p if p does not
divide n and there does not exist an integer z for which > = n mod p. The Legendre symbol (n/p) is +1 if n is a
quadratic residue modulo p and —1 if n is a quadratic nonresidue modulo p. Whether n is a quadratic residue or
nonresidue modulo p is called the quadratic character of n modulo p.

Using Gauss’s quadratic reciprocity law, it is easy to determine the quadratic character of n modulo p in time
O((logn)(logp)). See Theorem 5.9.3 of Bach and Shallit.® The problem is just about as easy as computing the
greatest common divisor of two numbers as large as n and p by the Euclidean algorithm.

Quadratic residues have many applications in Computer Science. For example, they have been used by Maurer”

and Radke® in constructing efficient hashing functions.

We use z Vy, z Ay and = @ y to mean the bitwise logical or, and and exclusive or, respectively, of the binary
numbers z and y.

3. EXAMPLES ILLUSTRATING THE IDEA

This section illustrates, by example, the algorithm. The next section will state abstractly the general version of the
approach.

Since the number 0 often has special meaning, floating point zeros should not participate in the watermarking.
We assume they are just copied from the old list to the new list unchanged and that they are ignored when the
watermark is read. From now on we assume that our given list of floating point numbers contains no zeros. In all
floating point representations of which we are aware the number zero is represented by a word with all zero bits.

Let p be a secret prime at least 20 decimal digits long.

3.1. A preliminary version

We begin with a simple, preliminary (and flawed) version of the algorithm for embedding a watermark message in
the list of non-zero floating point numbers dy, ds, . . .. Encode the i-th bit w; of watermark by changing d; to a nearby
number d} with specified quadratic character when considered to be an integer.

Let n; be the integer whose bit representation is the same as that of the floating point number d;. Then n;
will not be 0 because d; is not zero. The low order bits of n; will be the least significant bits of d;, at least on the
machines we checked. Assume that |n;| < p. (If the floating point numbers have 32 or 64 bits, then a prime p of 20
decimal digits will be large enough to meet this requirement.)

We will find an integer n} near n; which is a quadratic residue or nonresidue modulo p according as w; is 0 or
1. Specifically, try the integers n;, n; + 1, n; — 1, n; + 2, n; — 2, etc., until some n} = n; + j is found for which the
Legendre symbol (n}/p) =1 — 2w;.

Finally, let d; be the floating point number whose bit representation is the same as that of the integer n}.

One can read the watermark in the sequence dj,d,... usin by finding n! from d} and computing w; =
15 G2 g p by g n; i p g

(1 = (ni/p))/2.



Because of the way floating point numbers are represented, if the difference |n; — n}| is small, then the percentage
difference between d; and d} will be small, too. Of the p — 1 numbers between 1 and p — 1 (or between —1 and
—p + 1), inclusive, exactly (p — 1)/2 are quadratic residues and (p — 1)/2 are quadratic nonresidues. One would
expect that about 50% of the time n; will already have the desired quadratic character, so that n} = n;. In about
50% of the remaining cases, n; + 1 will have the desired quadratic character. In about 50% of the remaining cases,
n; = n; — 1, etc. Experiments show that the difference |n; — n}| is close to the expected exponential distribution
having |n; — n}| < k with probability 1 — 2721,

The worst case upper bound on |n; — n}| has been studied for a long time. The best that number theorists can
prove is probably far from the truth. Let a > 1/4. Burgess® proved that every interval of length O(p®) must contain
at least one quadratic residue and at least one quadratic nonresidue modulo p. See Norton!® for the latest work on
this subject. When starting at the beginning (n; = 1) and seeking a quadratic nonresidue, one can do better because
there is a way to take advantage of numbers having only small prime factors: Ankeny,'! assuming the (unproved
but widely believed) Extended Riemann Hypothesis, proved that the least positive quadratic nonresidue modulo p
must be O((logp)?).

The above method does not require storing the original data in order to retrieve the watermark, but it suffers
from three drawbacks. The most serious drawback is that if dy = dy = - - -, then it is possible to read the watermark
even without knowing p because the watermarked version of such a sequence of equal d;’s is a sequence S containing
only two distinct symbols (call them a and b), and the watermark message is one of only two possibilities (either
interpreting every a in S as a 0 and every b as a 1, or vice-versa). Another drawback is the case of distinct but very
small n;’s, because we would then be dealing with the quadratic character of very small numbers, and there would
be many dependencies among these Legendre symbols. Finally, although we pointed out that it is quite unlikely that
|n; — nj| is large, it is better to guarantee that it does not exceed 1. The modifications outlined in the next section
take care of all three drawbacks.

3.2. A better version

We have seen that the preliminary algorithm, just presented, changes only a few low order bits of d;. Half of the
time it changes nothing and in only about one case in four does it change more than one bit of d;.

We now describe how to write the same watermark by changing at most one bit of each d;. Half of the time
d; will be unchanged and the other half of the time the only change to d; will be that its least significant bit will
be complemented. The one-bit algorithm consist of simply using the quadratic character of the integer represented
by all of the bits of n; except the rightmost bit of n;, and modifying that rightmost bit according as the quadratic
character just computed and the corresponding watermark message bit w;.

In more detail, let m; be n; with its low order bit set to 0. That is, m; = n; — (n; A1) = n; A...11105. Let b;
be the one-bit number b; = [(1 + (m;/p))/2] ® w;. Finally, n} = m; + b;. We can read the watermark knowing only
p and the n}’s because m; is just n} with its low order bit set to 0 and because w; = [(1 + (m;/p))/2] ® b;.

So far we have solved the problem of damaging not more than one bit. The drawbacks for the cases of equal n;’s
mentioned earlier, and the one of very small n;’s with dependent Legendre symbols, are both solved by introducing
random numbers. Let the watermark be k bits long. Define w; for i > k by making the bits repeat: wy4; = w; for
i > 0. Use a pseudo-random number generator with p as seed to generate ¥ random numbers r1,72,...,r. Define r;
for i > k by making the numbers repeat: ri4; = r; for 4 > 0. Then we use (m; + r;) in place of m; in the definition
of b; above. That is, b; = [(1 + ((m; + 7;)/p))/2] ® w; in the version with random numbers. This takes care of all
three drawbacks but it introduces a synchronization problem when trying to retrieve the watermark from truncated
data: Since we do not know where the truncation occurred, we must try up to k possibilities (one for each possible
starting position modulo k of the truncation).

If the above is applied to a long stretch of constant data, then the resulting periodicity (of period k) in the
watermarked version of that stretch reveals the length k of the watermark. This can be avoided by letting the
pseudo-random number generator have a period k' different from k. Then the length of the block of constant data
would have to exceed ged(k, k') before any repetition would result. It would take O(ged(k, k')) steps to recover from
truncation. This device would hide k without impairing our ability to recover the watermark from truncated data.

Another way to hide the length k of the watermark is to pad the length by choosing some k' > k and random
bits wit1,...,wg . Then store the bits wy,...,wy as the watermark.



3.3. Additional practical considerations

We mentioned earlier that the watermark should be repeated many times throughout the data. This is so that it
may be detected if just part of the data is pirated.

If the problem domain from which the data is drawn is such that it makes sense to sample the data and pirate
only every i-th number, say, then each bit of the watermark should be repeated 4 times, so that it still appears in
the sample data.

If one is worried about a disgruntled employee tampering with unwatermarked data by changing a few values of
d;, one could watermark the data by making each d; be a quadratic residue modulo a secret prime p. If tampering is
suspected, one can determine which data values were changed by looking for quadratic nonresidues modulo p. About
half of the changes made by someone who did not know p would produce quadratic nonresidues.

Why is our scheme better than simply enciphering the watermark before inserting it? First, our scheme is faster
than most encryption algorithms because there is a very swift algorithm (Bach and Shallit® Theorem 5.9.3) for
determining quadratic character. Another advantage of our method is that it is more robust than a block cipher
because our method can recover all bits of the watermark not truncated, while, with a block cipher, one could recover
only those bits from whole blocks unaffected by truncation.

3.4. Cryptanalysis

If a pirate knows or suspects the data has been watermarked, he can destroy the watermark by setting all the low
order bits to 0. This vulnerability is due to the simple example we used and is not inherent to our method. Later in
the paper we describe how our method can be used in conjunction with a large class of watermarking schemes, some
of which do not suffer from such a vulnerability.

Suppose one knows that a watermark is present, but does not know p. Can one read the watermark? At first
glance, this may seem to be possible depending on the data. For example, if the data consists of numbers rounded
to three significant decimal digits (or ten significant bits), one could infer the differences between the original and
watermarked data and recover the original data. But one could not determine the bits of the watermark without
knowing p because p defines the quadratic character of the numbers n; and the pseudo-random numbers mask any
constant data.

What about a known plaintext attack in which the original data, the watermarked data and the watermark
text are all known and no random numbers are used, and p is sought? The given data determine the value of the
Legendre symbol (n;/p) for every i. By the Quadratic Reciprocity Law (see Theorem 5.8.1 of Bach and Shallit® ), the
value of (n;/p) restricts p to lie in only one-half of the possible arithmetic progressions modulo 4n;. Thus, O(log, p)
known values of (n;/p) should provide enough information to determine p. However, the problem of manipulating
the huge arithmetic progressions makes this information useless. The only known solution to the problem of finding
pseudosquares, positive integers which are not exact squares but which are quadratic residues modulo each of the
first k primes, is trial and error. Special hardware devices (sieves) have been built!'? to search for pseudosquares by
trying numbers one after the other. Mathematicians'? have searched up to about 10%° for such numbers using years
of sieve time. Similar, but more complicated, hardware devices could be built to solve the known plaintext attack on
watermarking, but they would take years to find a 20-digit prime p. Of course, the use of random numbers makes
the cryptanalysis even harder.

Damgard'® considers the following problem: Given the sequence of Legendre symbols (a/p), (a + 1/p), ..., (b/p)
(with p prime and a < b), find (b + 1/p). (Assume that b+ 1 is not the square of an integer.) While no one knows
how to find this Legendre symbol without first finding p, no one has shown that it cannot be done either. He argues
that the sequence of Legendre symbols (a/p), (a + 1/p), ..., (p prime) is random (unpredictable), and shows that
a sequence of Jacobi symbols (p composite) is even more random. If one believes his heuristic argument, then our
watermarking scheme would become even more secure if one replaced the prime p by the product of several primes.
Peralta'* presents further evidence of the randomness of Legendre symbols by showing that their distribution is like
that of independent fair coins.



4. A GENERIC DESCRIPTION

The generic description of the scheme is as follows.

Let W be any watermarking scheme that stores a 0 or a 1 in each of data items z1,z5, ..., z,. Let wy,ws, ..., wy
be the bits of the watermark message; if ¥ < n then the watermark is written repeatedly (roughly n/k times). To
hide the length k of the watermark, choose some k' > k (as mentioned at the end of Subsection 3.2) and choose
random bits w;y1,...,wr. Define w; for ¢ > k' by making the bits repeat: wyy; = w; for ¢ > 0. Let y; be the
number representing the portions of x; that cannot be changed by W, and let z; be the number representing the
remaining portions of x; (we do not even assume that the bits of y; are contiguous in z;).

Let r1,...,7x be a sequence of pseudo-random numbers generated using p, a secret prime, as seed. Define r; for
i > k' by making the numbers repeat: rgy; = r; for ¢ > 0. An z; is processed by our scheme as follows. We check
whether y; + r; is a quadratic residue mod p. If it is, then we modify z; so that it stores w; according to W’s rules.
Otherwise we modify z; so that it stores the complement of w;. Suppose W changes z; to z} if w; = 0 and to 2} if
w; = 1. Our scheme modifies W to W' which changes z; to 2z} if w; = 0 and y; + r; is a quadratic residue modulo p
or if w; =1 and y; + r; is a quadratic nonresidue modulo p. W' changes z; to 2} if w; = 1 and y; + r; is a quadratic
residue modulo p or if w; = 0 and y; + r; is a quadratic nonresidue modulo p. In other words, W’ stores w; in the
same way that W would store [(1 + ((y; +7:)/p))/2] & w;.

4.1. A frequency domain example

Suppose x1, . ..,Z, are the n frequencies in the spectrum of an image which are to be used to store a watermark. See
Cox and Miller® for this kind of watermark. Suppose k' = n because the watermark is written just once. Suppose
W decreases z; by 10% if w; = 1 and leaves z; unchanged if w; = 0. This scheme requires comparison of the original
and watermarked images to read the watermark.

In our modification W' of W we would decrease z; by 10% if w; = 1 and y; + r; is a quadratic residue modulo p
or if w; = 0 and y; + r; is a quadratic nonresidue modulo p. W' would leave z; unchanged if w; = 0 and y; + r; is
a quadratic residue modulo p or if w; = 1 and y; + r; is a quadratic nonresidue modulo p. The watermark can be
read by comparing x; from the original image with z; from the watermarked image, using p to generate the r; and
to evaluate the Legendre symbols ((y; + ;) /p)-

4.2. A text example

Suppose W places a watermark in a text document by shifting a word to the right by a small amount if w; =1 and
shifting it to the left if w; = 0. See Low et al.'® and Chapman and Davida!® for this kind of watermark.

In our modification W' of W we would shift a word to the right if w; = 1 and y; +r; is a quadratic residue modulo
por if w; = 0 and y; + r; is a quadratic nonresidue modulo p. W' would shift the word to the left if w; = 0 and
y; + 7 is a quadratic residue modulo p or if w; =1 and y; + r; is a quadratic nonresidue modulo p. The watermark
can be read by comparing x; from the original image with z; from the watermarked image, using p to generate the
r; and to evaluate the Legendre symbols ((y; + r;)/p).
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