CERIAS Tech Report 2003-08

(ALMOST) OPTIMAL PARALLEL BLOCK
ACCESS FOR RANGE QUERIES

by Mikhail J. Atallah and Sunil Prabhakar
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907

(Almost) Optimal Parallel Block Access for
Range Queries *

Mikhail J. Atallah!

CERIAS and Department of Computer Sciences, Purdue University, West
Lafayette, IN 47907, U.S.A.

Sunil Prabhakar 2*

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907,
U.S.A.

Abstract

Range queries are an important class of queries for several applications. can be
achieved by tiling the multi-dimensional data and distributing it among multiple
disks or nodes. It has been established that schemes that achieve optimal parallel
block access exist only for a few special cases. Though several schemes for the
allocation of tiles to disks have been developed, no scheme with non-trivial worst-
case bound is known. We establish that any range query on a 27 x 2%-block grid of
blocks can be performed using k¥ = 2! disks (¢ < ¢), in at most [m/k] + O(log k)
parallel block accesses. We achieve this result by judiciously distributing the blocks
among the k£ nodes or disks. Experimental data show that the algorithm achieves
very close to [m/k] performance (on average less than 0.5 away from [m/k]|, with
a worst-case of 3). Although several declustering schemes for range queries have
been developed, prior to our work no additive non-trivial performance bounds were
known. Our scheme guarantees performance within a (small) additive deviation
from [m/k]. Subsequent to this work, Bhatia et al. [4] have proved that such a
performance bound is essentially optimal for this kind of scheme, and have also
extended our results to the case where the number of disks is a product of the form
k1 x ko x - -+ x k; where the k;s need not all be 2.

Key words: Multi-Dimensional Data, Parallel I/O, Declustering, Range Queries

Preprint submitted to Elsevier Preprint 24 May 2002

1 Introduction

Range queries are an important class of queries for several application domains
including relational databases, spatial databases, visualization, and GIS appli-
cations. Given a multidimensional dataset, a range query specifies a range of
values for each dimension. The result of the range query is the set of all items
in the dataset that have values within the specified range in each dimension.
As the size of the dataset grows, the amount of data that needs to be accessed
to answer range queries also increases, resulting in poor performance. In order
to improve performance, the dataset is typically tiled along each dimension.
Therefore in order to process a range query, it is necessary to access only those
tiles or blocks that intersect the query, resulting in reduced I/O and improved
performance. Even with such tiling, the performance is limited by the disk
I/O. To further improve performance, multiple disks or processing nodes can
be used to access the blocks in parallel. The blocks of the dataset are dis-
tributed among the disks. The key to achieving gains from parallelism is in
the allocation of the blocks to the disks. Note that the data could be placed on
multiple disks connected to a single processor or stored on parallel nodes, each
with local disk space. Similarly, at the primary storage level, access to rect-
angular ranges from main memory are needed to refresh rectangular windows
in GUI displays, and for visualizing three dimensional objects. Main memory
typically consists of several memory banks, each of which can retrieve a single
data item in one memory cycle. These range accesses can be optimized by
accessing the required data in parallel from the data banks. Once again, the
key is to place the data on the multiple data banks so as to reduce the overall
number of memory cycles needed to access the data. The allocations described
in this paper are applicable to each of these problems. We will use the term
disk to refer to such data banks, parallel disks, or nodes.

The goal of the allocation is to achieve optimal parallel access for each range
query. The design of these allocation schemes has been an active research area,
resulting in the development of several allocation schemes [2,6,7,11,15,16,10].
These schemes are developed under the following framework. Due to the rel-
atively high cost of disk accesses, the CPU processing time is ignored. Fur-

* An earlier version of this paper appeared in the Proceedings of the 19th ACM
Symposium on Principles of Database Systems (PODS), Dallas, Texas, May 2000
* Corresponding Author: Fax: +1-765 4940739

Email addresses: mjaQcerias.purdue.edu (Mikhail J. Atallah),
sunil@cs.purdue.edu (Sunil Prabhakar).
1 Portions of this work were supported by Grant EIA-9903545 from the National
Science Foundation, Contract N00014-02-1-0364 from the Office of Naval Research,
and by sponsors of the Center for Education and Research in Information Assurance
and Security.
2 Portions of this work were supported by NSF CAREER grant 11S-9985019.

thermore, since the disk accesses are random, the cost of a single disk access
is assumed to be constant. Note that for the case of main memory banks,
this model is completely accurate. Thus, given a query, the cost of executing
the query is taken to be proportional to the number of disk accesses per-
formed. When the data are accessed from multiple disks in parallel, the cost
is proportional to the largest number of accesses performed on a single disk.
For a query that intersects m blocks, the access cost using k£ disks is at least
OPT = [m/k]. The worst-case performance of an allocation is, expressed
as a function of m, the maximum number of parallel accesses over all pos-
sible queries that intersect m blocks. The non-existence of general solutions
that achieve optimal allocation for all queries has been established [2,9,16].
Schemes that achieve OPT for every query exist in only a small number of
special cases. The existence of allocations that achieve OPT for higher di-
mensions is expected to be at least as restrictive. Next, we describe the most
prominent schemes that have previously been developed. In view of the prov-
able impossibility of achieving O PT except in a small number of special cases,
the notation “OPT” should be viewed as merely a shorthand for [m/k] rather
than as an achievable performance bound.

A wide range of declustering schemes have been proposed in teh literature for
range queries over parallel disks. The techniques can be divided into two broad
classes. Data independent schemes generate an allocation of tiles to disks based
upon a mapping function [1-3,5-7,10,11,13,15,16]. Data-dependent techniques
typically transform the declustering into a graph problem (e.g. mincut) based
upon the datasets considered and possibly also the queries [8,14,12].

Prior to our work, there is no guarantee on the performance of a given range
query for any of the existing schemes, except the GRS scheme. For two di-
mensions, the GRS scheme has been shown to guarantee performance within
a multiplicative factor of 3 from OPT (i.e., 30O PT). In this paper, we develop
an allocation scheme which has guaranteed worst-case performance within an
additive deviation from OPT: Within OPT + O(logk) for two dimensions.
Our scheme requires that the number of disks available is & = 2!, numbered
from 1 to k. To generate the allocation for a dataset that has been divided
into N; x N, blocks along the two dimensions, we first extend the number of
blocks in each dimension such that we have 29 tiles in each dimension, where
q > t. After generating the allocation for this larger grid of blocks, we sim-
ply ignore the extra blocks that were added, resulting in the allocation for the
N; x Ny dataset. The disk allocation problem can be viewed as that of coloring
the N = 227 blocks by using colors numbered 1 to %, with the interpretation
that a block of color 7 is to be stored in disk 7. The number of parallel block
accesses for processing a range query is the maximum occurrence of any color
in the rectangular region of blocks defined by the range query.

The rest of this paper is organized as follows. Section 2 describes the coloring

(allocation) scheme used. Section 3 discusses some properties of that coloring
scheme. Sections 3 proves that, for any 2-dimensional range query, if m is the
number of blocks for that range query, then the coloring scheme we use can
result in no more than [m/k| + ~ parallel block accesses where v = O(logk).
Finally, Section 4 concludes the paper.

2 The coloring scheme

We partition the 27 x 27 grid of blocks into a 277* x 297t grid of groups each of
which is itself a k& x k grid of blocks (recall that k& = 2'). We next describe the
coloring scheme for the blocks in a group (the same coloring scheme is used
for all the groups). Row and column numbers in that description are relative
to that group (not relative to the whole grid). We start with some definitions.

Let j be a column whose blocks have been colored, and let j' be another
column whose coloring is to be derived from that of column j. We say that
the coloring of column j' is a k/2-swap of the coloring of column j if we
first copy the coloring of j into j' and then we “swap” the coloring of the
upper half of column ;' with the coloring of its lower half. For example, if the
colors of the cells of column j are (in row order) 1,2,. ..,k then the colors for
column j' would be (k/2) +1,...,k,1,...,(k/2). More generally, a k/2"-swap
of a column’s coloring, for an integer ¢+ < ¢, is defined as follows: Partition the
column into 2= contiguous, non overlapping pieces of size k /2" each. Then,
for each piece, swap the coloring of the piece’s upper half with the coloring of
the piece’s lower half. (We call it a “k/2'” swap because that is the size of each
portion being swapped, as a mnemonic.)

For example, a 1-swap of a column’s coloring consists of interchanging the
colors of cells 2¢ — 1 and 2/, for all 1 < ¢ < k/2. We are now ready to describe
the coloring of a group of k£ x k blocks.

(1) Assign the colors 1,...,k to the cells of column 1.
Comment. Although we assign the colors in sorted order, in fact any
permutation would also work (as will soon become apparent).

(2) For u = 1,...,t in turn, do the following: For j = 1,...,2*¥"! in turn,
assign to column 2~ 4 j a coloring that is a k/2“-swap of the coloring
of column j.

Figure 1 gives an example of the above coloring for the case t = 4 (i.e., 16
colors). All columns are generated from column 1. For example, column 15 is
a l-swap of column 7, which is a 2-swap of column 3, which is a 4-swap of
column 1.

1 1 2 1 2 3 4 1 2 3 45 6 738 12 3 45 6 7 8 9 1011 12 13 14 15 16
1 19|11 9513/ |1 9 513311 715||1 9 5133117 15:2 106 14 4 12 8 16
2 2 10| |2 10:6 14| [2 10 6 14:4 12 816|[2 106144128 16:1 9 513311715
3 3 11| |3 11:715) |3 1217151 9 513|[3 117151 9 513:4 12 8 16 2 10 6 14
4 4 12014 12816l 14 128162106144 128162106 143117151 9 513
5 5 13| |5 13:1 9| |5 131 9:715311||5 1831 9 7153 11:6 14 2 10 8 16 4 12
6 6 14| l6 142 10l l6 14 2 108 16 412||6 14210816 4125131 9 7153 11
7 715 17 1553 11|17 15311513 19||7 153115131 9:816 4 12 6 14 2 10
8 s 161 Is 1664 121 |s 16 4 12:6 14 210]||8 16 4126 142 107153115131 9
9 9 1|9 1135||9 113511 3157||9 1135113157102 146124168
10f |10 2||102146]||102146124168]||202146124168:9 1135113157
11| 1131111315711 31579 1135|211 3157 9 1135124168102 14 6
12| |24 |124168]||124168102146(]124168102146113157 9 1135
13| |13'5] 11359 1135 9 1157 113|135 9 1157 113146 10 2 16 8 12 4
14| 146|114 6102|146 10216 8 124 146102168124135 9 1157113
15 57111571231 1157113135 91157113135 9 1168124146102
16| |16.8] |16 812 4| |16 8 12 4146 102|]16 8124146 102157113135 9 1
—> —>» —>

8-Swap 4-Swap 2-Swap 1-Swap

Fig. 1. An example of the allocation scheme for 16 disks

3 Properties of coloring scheme

A coloring of a group is said to be left-to-right legal if it is obtained according
to the process described in the previous section except that the process can
be initiated with the first column holding any permutation of the £ colors
(not necessarily the sorted one we used in the previous section). The coloring
is right-to-left legal if we do the same thing except that we start with the
rightmost column of the group and proceed leftward from there. The notions
of top-to-bottom legal and of bottom-to-top legal are defined using a similar
coloring process that operates by rows rather than by columns.

We begin with the group properties that hold within each group:

(1) Any of the following four properties of a group coloring implies the other
three: { left-to-right legal, right-to-left legal, top-to-bottom legal, bottom-
to-top legal }. Therefore the left-to-right legal coloring we produced for
a block also has the other three properties. We henceforth use the word
legal coloring as an abbreviation for these.

(2) Each column of a group contains a permutation of the k colors.

(3) Each row of a group contains a permutation of the k colors.

Group property 2 is an immediate consequence of the way a column is colored
(because copying then permuting the coloring of a column results in another
permutation of the colors). Group property 1 will be proved (together with
other properties) at the end of this section. Group property 3 follows from
group properties 1 and 2.

We now define a finer partition of the input grid than its partition into groups.
This is not needed algorithmically and is done purely for the sake of the
analysis. To avoid unnecessarily cluttering the analysis with “|-|” notation,

we assume ¢ is even (it is easy to modify the analysis for odd ¢).

Partition each 2! x 2! group into a 2¢/2 x 24/2 grid of superblocks each of which
is itself a 22 x 242 grid of blocks (observe that 242 = \/k). A range query
is said to wvertically span a superblock if it does not completely contain that
superblock, and its intersection with that superblock is a contiguous set of
columns of that superblock (horizontal span is defined similarly with respect
to rows). Let S be a set of superblocks that are vertically contiguous to each
other (i.e., each of them is “on top” of another one of them). A range query
is said to vertically span S if it is contained in S and it vertically spans all
the superblocks of S at corresponding sets of columns, i.e., if its intersection
with a superblock z of S is the same interval of columns [j, j'] for all such z
(horizontal span is analogously defined).

The following superblock properties hold:

(1) Each superblock of V& x vk blocks contains the k colors (i.e., one oc-
currence of each color).

(2) Let S be a set of superblocks that are vertically contiguous to each other.
For any range query that vertically spans S, the legal coloring described
in the previous section is within an additive 27 'logk of OPT for that
query (i.e., results in at most [m/k] + 2 *logk parallel block accesses
where m is the number of blocks touched by the query).

(3) Let S be a set of superblocks that are horizontally contiguous to each
other. For any range query that horizontally spans S, the legal coloring
described in the previous section is within an additive 27!logk of OPT
for that query (i.e., results in [m/k] 4+ 2~ 'log k parallel block accesses).

The above superblock properties and group property 1 are proved below.

Proof of group property 1 and superblock properties 2 and 3

We give the proof for the general case where the coloring process is initiated
with an arbitrary permutation of & distinct symbols (rather then the particular
sorted permutation of the integers 1 to k& we used in Section 2).

The proof is by induction on t. The basis, ¢t = 1, is trivial. We assume in-
ductively that the properties hold for t. To show that they hold for t 4+ 1, we
observe that the coloring of a 2!*! x 2t+1 grid can be thought of as consisting
of the following four steps (which we describe assuming a coloring that starts
with an initial column and operates left-to-right — essentially the same argu-
ment can be made for a coloring process that starts with an initial row and
operates row-wise).

(1) (Coalesce step) For the initial column (of size 2*1), coalesce entry 2¢ — 1
and entry 2¢, 1 < ¢ < 2!, This “shrinks” the column into one of half the
size (= 2'), with 2¢ distinct new colors; each new color ¢ corresponds to
an ordered pair (¢, ¢") of old colors.

(2) (Induction step) Perform the iterative coloring process on a 2! x 2! array
A with the (shrunk) column of size 2 as the initial column (and using the
new colors). This results in a 2! x 2* colored array A that (by the induction
hypothesis) has the desired properties (relative to the new colors).

(3) (Duplication step) Duplicate the colored 2! x 2' array A and, in the du-
plicate copy A, replace every new color ¢ = (c, ") by its complement
¢ = (",) (ie., complementing ¢ consists of interchanging the ordering
of the two old colors ¢ an ¢” that define it). Array A has the desired
properties (relative to the complemented colors).

(4) (Ezpansion step) Append A to the right of A, resulting in a 2! x 20+!
array. This array is turned into a 2! x 2!*! one by “expanding” each
color ¢ to the two old colors corresponding to it (thus doubling the size
of each column).

We must show that the last (“expansion”) step results in an array that satisfies
the claimed properties. We do so separately for each property.

Group property 1: Because we assumed a coloring that is left-to-right legal, we
must show that the final array is also right-to-left legal, top-to-bottom legal,
and bottom-to-top legal (the proof would be very similar if we had assumed
one of the other three legal colorings rather than left-to-right, so we avoid
repeating this argument four times).

That the left-to-right legal array is right-to-left legal can be seen by looking at
the resulting rightmost colored column (after the expansion step) and trying
to use it as the starting column for a right-to-left legal coloring: In this “right-
to-left” process, we would first generate the expanded version of A because
the unexpanded A itself has group property 1 (by the induction hypothesis).

Next, the last step of the right-to-left process would duplicate the expanded
A and append a 1-swapped copy of it to the left of the expanded A: But a
1-swapped version of the expanded A is the same as the expanded version of
A. Thus the right-to-left process would generate exactly the same array.

We now prove that the left-to-right array is bottom-to-top legal. Starting with
the bottom row (after the expansion step), it is easy to see that the next-to-
bottom row looks just like a copy of the bottom row but with the left and right
halves interchanged. From that point on, the bottom-to-top process does not
cause any interaction between the left half of the rows and their right half, and
can be viewed as two separate bottom-up processes (one for each half). That
the left-half process gives rise to the expanded version of A follows from the
fact that A itself is bottom-to-top legal (by the induction hypothesis). Simi-
larly, the right-half process gives rise to the expanded version of A because A
is bottom-to-top legal.

To prove that the left-to-right array is top-to-bottom legal, we use the fact
(just proved) that it is bottom-to-top legal, followed by an almost identi-
cal argument to the one we used for showing that left-to-right legal implies
right-to-left legal (except that the roles of rows and columns are interchanged,
“bottom” replaces “left” and “top” replaces “right”).

This completes the proof of group property 1.

Superblock property 3: At the bottom of the recursive construction the additive
deviation from optimal is zero (verify this — in fact the first deviation from
optimality by an additive 1 occurs for k = 64). Because the superblocks in
S can extend partly over A and partly over fl, each “expansion” step in the
construction introduces one more additive unit deviation from optimality. To
see that this is so, before expansion let m; (resp., msy) be the number of cells
of S'in A (resp., fl), v be the total number of parallel block accesses we use
for those my cells in A (independently of A) and my cells in A (independently
of A), and let § be the deviation of v from the sum of the two individual
OPT values of the two pieces of S (that is, the deviation from [2m,/k] +
[2ms/k] where we used the fact that the effective number of colors on each
side before expansion is k£/2). When we “expand” we effectively double my,
ms, and the number of colors (which becomes k). We can still process S, after
expansion, with ~ parallel block accesses, but the deviation of that v from
the new (combined) OPT value can increase by 1 unit because we could have
[(2my + 2ma) /K] = [2m4/k] + [2mg/k] — 1. That is, the number of parallel
block accesses needed has stayed same but the overall (combined) OPT has
gone down by 1 compared to the sum of the two individuals O PT values (the
OPT for the portion of S in A + the OPT for the portion of S in A). Because a
superblock has dimensions vk x vk, the total deviation is log vk = 2" log k.

Superblock property 2: Immediately follows from group property 1 and su-
perblock property 3 (because it is the “vertical” equivalent of superblock
property 3).

Proof of superblock property 1

For any a < t, consider a partition of the leftmost column of a group into 2%
pieces of size 27 each. Call these pieces 1,...,2%.

Claim. For any piece i (1 < i < 29), the 2% x 207% rectangle R of k blocks
whose left side is piece i, contains all k£ colors (i.e., each color exactly once).

Before proving the above claim, we note that it would automatically imply
superblock property 1 for vk x vk superblocks that are “left-adjusted” in the
sense that their left side is on the leftmost column of their group (simply by
choosing o = ¢ in the claim). That the same is true for superblocks that are

further to the right within the block, follows from the observation that the
left-to-right legal coloring process maintains the same set of colors from one
superblock R to the next superblock immediately to the right of R (it merely
permutes the colors). Therefore it suffices to prove the above claim.

We prove the claim by induction on a. The basis (a = 0) holds because of
group property 3. Now, assume inductively that the claim holds for a — 1.
We partition the piece ¢ into two halves U (“upper”) and L (“lower”): By the
induction hypothesis, the 2271 x 2=¢F1 rectangle Ry (respectively, Ry) whose
left side is U (respectively, L) satisfies the claim. Now, the colors in the right
half of Ry (respectively, Ry) are the same as the colors in the left half of Ry,
(respectively, Ry) because the last step in the coloring of R consisted of a
“swap” that copied the colors of the left half of R, (respectively, Ry) into the
right half of Ry (respectively, Ry). Therefore the set of colors that appear in
R is the same as the set of colors that appear in Ry (or Ry,), namely the full
set of k colors (each color once). This completes the proof of the claim.

Proof of performance bound

If the query is entirely contained in one superblock then our coloring implies
a single parallel block access (because no color appears twice in a superblock),
which is optimal. We henceforth assume that the query is not entirely con-
tained in a superblock. We distinguish two cases, depending on whether the
query completely contains a superblock or not. We begin with the case where
it contains one or more superblocks.

If the query does not completely contain any superblock, then it can be decom-
posed into at most six subqueries: Four that are each completely contained in
a superblock, and two each of which spans (either horizontally or vertically) a
set S of superblocks that are (vertically or horizontally) contiguous. The four
subqueries that are completely contained in superblocks can each be done in
one parallel block access. The other two subqueries are each done with a num-
ber of block accesses that is within an additive 27 logk of the OPT value
for that individual subquery (by superblock properties 2 and 3 of the previous
section). Therefore the total number of parallel block accesses for such queries
cannot exceed OPT by more than 3 + log k.

If the query completely contains one or more superblocks, then we can parti-
tion it into nine subqueries:

(1) Four subqueries that are each completely contained in a superblock (these
are the four “corners” of the rectangle defining the original query). These
subqueries can each be done in one parallel block access.

(2) One subquery that consists of all the superblocks that are completely

contained in the original query, say, a rectangle of m’ superblocks. These
can be done in m’ parallel block accesses with full disk utilization (i.e.,
no disk is idle during any of these m parallel steps). This follows from
the fact that each color appears exactly once in a superblock.

(3) Two subqueries each of which vertically spans a set of superblocks that
are vertically contiguous (one of them is just below the top-left corner
subquery, the other just below the top-right corner subquery). Each such
subquery is done with a number of block accesses that is within an ad-
ditive 27" log k of optimal for that individual subquery (by superblock
property 2 of the previous section).

(4) Two subqueries each of which horizontally spans a set of superblocks
that are horizontally contiguous (one of them is just to the right of the
top-left corner subquery, the other just to the right of the bottom-left
corner subquery). Each such subquery is done with a number of block
accesses that is within an additive 27! log k of optimal for that individual
subquery (by superblock property 3 of the previous section).

The above implies that the number of subqueries that can (each) introduce a
deviation of 1 from OPT are (at most) 4 “corner” subqueries, the number of
subqueries that can (each) introduce an additive 27! log k from optimal are 4
subqueries that span sets of superblocks that are contiguous along a dimension.
The total possible deviation from OPT is then 4+4%2"'logk—1 = 3+2logk
(where we subtracted one because even in an optimal coloring at least one
parallel block access is needed for these 8 subqueries).

This completes the proof. O

In practice, the deviation from O PT is much less than 3+2log k. In particular,
experimentally, we found the deviation to be no more than 3, and the average
deviation less than 0.5 from the (unachievable) OPT.

4 Conclusion

Range queries are an important class of queries for several applications Per-
formance improvements are typically achieved through parallel I/O by tiling
the data set and distributing it among multiple disks or processing nodes.
Therefore, in order to process a range query, it is necessary to access only
those tiles or blocks that intersect with the query. Though several schemes
for the allocation of tiles to disks have been developed, prior to our work this
worst-case performance was known only for one scheme with two-dimensional
data. Moreover, this bound was a multiplicative factor of 3 from OPT. In
this paper we developed a novel allocation scheme with guaranteed worst-case
performance for any number of dimensions. We showed that any range query
on a 27 x 2%-block grid of blocks can be performed using k = 2* disks (¢ < ¢),

10

in at most OPT + O(log k) parallel block accesses. Experimental data show
that the algorithm achieves very close to OPT performance.

References

1]

2]

[4]

[6]

K. A. S. Abdel-Ghaffar and A. EI Abbadi. Optimal disk allocation for partial
match queries. Transactions of Database Systems, 18(1):132-156, March 1993.

K. A. S. Abdel-Ghaffar and A. El Abbadi. Optimal allocation of two-
dimensional data. In Int. Conf. on Database Theory, pages 409-418, Delphi,
Greece, Jan. 1997.

R. Bhatia, R. K. Sinha, and C.-M. Chen. Declutering using golden ratio
sequences. In Proc. of Int’l. Conference on Data Engineering (ICDE), San
Diego, California, March 2000.

R. Bhatia, R. K. Sinha, and C.-M. Chen. Hierarchical declustering schemes for
range queries. In Proc. of Intl. Conference on Extending Database Technology,
pages 525-537, Konstanz, Germany, March 2000.

B. Chor, C. E. Leiserson, R. L. Rivest, and J. B. Shearer. An application of
number theory to the organization of raster-graphics memory. Journal of the
Association for Computing Machinery, 33(1):86-104, January 1986.

H. C. Du and J. S. Sobolewski. Disk allocation for cartesian product files on
multiple-disk systems. ACM Transactions of Database Systems, 7(1):82-101,
March 1982.

C. Faloutsos and P. Bhagwat. Declustering using fractals. In Proc. of the 2nd
Int. Conf. on Parallel and Distributed Information Systems, pages 18 — 25, San
Diego, CA, Jan 1993.

S. Ghandeharizadeh and D. J. DeWitt. A multiuser performance analysis
of alternative declustering strategies. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 466-475, Los Angeles,
California., February 1990.

B. Himatsingka and J. Srivastava. Performance evaluation of grid based multi-
attibute record declustering methods. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 356-365, Houston, Texas,
February 1994.

[10] K. Kim and V. K. Prasanna. Latin squares for parallel array access. IEEFE

Transactions on Parallel and Distributed Systems, 4:4, 1993.

[11] M. H. Kim and S. Pramanik. Optimal file distribution for partial match

retrieval. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
173-182, Chicago, 1988.

11

[12] D.-R. Liu and S. Shekhar. A similarity graph-base approach to declustering
problems and its application toward parallelizing grid files. In Proceedings of
the 11th International Conference on Data Engineering, pages 373-381, Taipei,
Taiwan, 1995.

[13] Y.-L. Lo, K. A. Hua, and H. C. Young. A general multidimensional data
allocation method for multicomputer database systems. In 8th Int. Conf. on

Database and Fxpert Systems Applications, pages 35766, Toulouse, France,
September 1997.

[14] B. Moon, A. Acharya, and J. Saltz. Study of scalable declustering algorithms
for parallel grid files. In Tenth International Parallel Processing Symposium,
pages 434-440, 1996.

[15] S. Prabhakar, K. Abdel-Ghaffar, D. Agrawal, and A. El Abbadi. Cyclic
allocation of two-dimensional data. In Proc. of the International Conference
on Data Engineering (ICDE’98), pages 94-101, Orlando, Florida, Feb 1998.

[16] Y. Zhou, S. Shekhar, and M. Coyle. Disk allocation methods for parallelizing
grid files. In Proceedings of the International Conference on Data Engineering

(ICDE), pages 243-252, February 1994.

12

