

CERIAS Tech Report 2003-01

GENERALIZED TEMPORAL ROLE BASED
ACCESS CONTROL MODEL (GTRBAC) PART II

Expressiveness and Design Issues

by James B. D. Joshi, Elisa Bertino, Usman Latif,
Arif Ghafoor

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

Generalized Temporal Role Based Access Control Model (GTRBAC)
Par t I I

Expressiveness and Design Issues

James B. D. Joshi#, Elisa Bertino*, Usman Latif@,Arif Ghafoor#

 #CERIAS and School of Electrical and Computer Engineering,
@CERIAS and Department of Computer Science,

Purdue University, West Lafayette, IN, USA
{ joshij, ghafoor} @ecn.purdue.edu,

usman@purdue.edu
*Dipartimento di Scienze dell’ Informazione, Universita’ di Milano,

Milano, Italy
bertino@dsi.unimi.it

Abstract

The Generalized Temporal Role Based Access Control (GTRBAC) model introduces a large set of

temporal constraint expressions that facilitates the specification of a comprehensive access

control policy. However, the issue of its expressiveness has not been investigated earlier. In this

paper, we present an exhaustive analysis of the expressiveness of the constructs provided by

GTRBAC and prove that the set of constraints is not minimal by showing that there is a subset of

GTRBAC constraints that is sufficient to express all access constraints that can be expressed

using the full set. We formally present the minimality result for the GTRBAC constraint set and

argue that, although the complete set of constraints in GTRBAC is not minimal, having such an

extensive set is advantageous from the perspective of user convenience and the lower complexity

of constraint representation. Based on our analysis, we present a set of design guidelines that can

considerably enhance security management.

Index Terms: access control, role based, temporal constraint, access policy.

Portions of this work were supported by the sponsors of the Center for Education and

Research in Information Assurance and Security (CERIAS)

 1

1 Introduction

Role based access control (RBAC) has emerged as a promising alternative to traditional

discretionary and mandatory access control (DAC and MAC) models [7, 8, 9, 15, 18], which have

some inherent limitations [9]. Several beneficial features such as policy neutrality, support for

least privilege, efficient access control management, are associated with RBAC models [6, 10,

18]. Such features make RBAC better suited for handling access control requirements of diverse

organizations. Furthermore, the concept of role is associated with the notion of functional roles in

an organization, and hence RBAC models provide intuitive support for expressing organizational

access control policies [6]. RBAC models have also been found suitable for addressing security

issues in the Internet environment [2, 9, 16], and show promise for newer heterogeneous

multidomain environments that raise serious concerns related to access control across domain

boundaries [10].

One of the important aspects of access control is that of time constraining accesses to limit

resource use. Such constraints are essential for controlling time-sensitive activities that may be

present in various applications such as workflow management systems (WFMSs), where various

workflow tasks, each having some timing constraints, need to be executed in some order. Use of

RBAC has been found very suitable for such workflow applications [4]. To address general time-

based access control needs, Bertino et al. propose a Temporal RBAC model (TRBAC), which has

been generalized recently in the related paper [11]. The Generalized-TRBAC (GTRBAC) model

recognizes that temporal constraints are an important feature that orthogonally applies to all

aspects of a role system, that is, to role themselves, to permissions assigned to roles, and to role

use permissions given to users. GTRBAC thus incorporates a set of language constructs for the

specification of various temporal constraints on roles, including constraints on their activations as

well as on their enabling times, user-role assignments and role-permission assignments. In

particular, GTRBAC makes a clear distinction between role enabling and role activation. A role

is enabled if a user can acquire the permissions assigned to it, but no one has done so. An enabled

role becomes active when a user acquires the permissions assigned to the role in a session. By

contrast, a disabled role cannot be activated by any user. Therefore, constraints on

enabling/disabling roles specify when roles can actually be used or not used by subjects. An open

issue in the GTRBAC model is that of its expressiveness. It is important to understand if its

constraint set is minimal and if it is not then how it can be beneficial from a practical perspective.

 2

In the related paper [11], we presented a generalized TRBAC model and addressed issues related

to specification and modeling. We showed through various examples from real world applications

how GTRBAC’s temporal constraint expressions fulfill diverse access control requirements.

Furthermore, in [12], we introduce the various kinds of temporal hierarchy that can exist in a

GTRBAC model and analyze how hierarchy-related features differ in different types of hierarchy.

The different types of hierarchy we have identified are: the I-hierarchy that only allows

permission-inheritance semantics; the A-hierarchy that allows only activation semantics; and IA-

hierarchy that allows both inheritance and activation semantics. Furthermore, a notion of AC-

equivalence is introduced in [12], that establishes applicability of one hierarchy type to replace

another hierarchy type. In particular, it has been shown that not all hierarchies in which different

hierarchical relations co-exist are AC-equivalent. Our formal analysis in [12] further shows that in

presence of timing constraints on various entities, the separation of the permission-usage and the

role-activation semantics provides a basis for capturing various inheritance semantics of role

hierarchies. We show that these hierarchies can further be divided into sub-types, to account for

the subtle effects of temporal constraints.

However, a key issue that has not been addressed so far is that of the expressiveness of the

GTRBAC model. It is also relevant to investigate how its structure and semantics can be used in

devising proper constraint design guidelines for efficiently expressing access policies. It is

important to determine if having so many constraints in the GTRBAC model is at all beneficial

from the practical access control policy design perspective. In other words, it is necessary to first

investigate if there is a smaller set of constraints that have the same expressive power as the

current set of constraints do, and then to understand whether the exhaustive set of GTRBAC

constraints is beneficial for practical applications.

In this paper we formally address key issues related to the expressive power of the GTRBAC

model and its impact on the design of access constraints. As a novel contribution of this paper, we

show through extensive analysis that GTRBAC is in fact not minimal and there exists a subset of

GTRBAC constraints consisting of only temporal constraints on role enabling and activation

constraints that have the same expressive power as does the complete set of GTRBAC

constraints. However, we show that using such a minimal constraint set for specifying all types of

constraint requirements may not be efficient and intuitive. Based on such results, we argue that

the current set of constraints is much more flexible in terms of the user-convenience and simpler

constraint representation. Based on our analysis, we provide a set of design guidelines that is

 3

aimed towards improving efficient and convenient use of various constraints to represent the

overall access control policies.

The paper is organized as follows. In section two, we briefly present the constraint model of

GTRBAC. In section three, we discuss issues related to permission inheritance and role activation

in role hierarchies under the GTRBAC model. In section four, we analyze the expressiveness of

the GTRBAC model and present the minimality results as well as the constraint design guidelines

based on them. We then present related work in section five and our conclusions in section six.

2 Generalized Temporal Access Control Model (GTRBAC)

The GTRBAC model proposed in [11] is an extension of the TRBAC model [5]. The model

introduces the separate notion of role enabling and role activation and provides constraints and

event expressions associated with both. An enabled role indicates that a valid user can activate it,

whereas an activated role indicates that at least one user has activated it in a session. Constraints

in GTRBAC allows the specification of the following:

1. Temporal constraints on role enabling/disabling: These constraints allows one to specify the

intervals and durations in which a role is enabled. When a role is enabled, the permissions

assigned to it can be acquired by a user by activating it. When duration is specified, the

enabling/disabling of a role is initiated by a constraint enabling expression that may be

separately specified at run-time by an administrator or by a trigger.

2. Temporal constraints on user-role and role-permission assignments: These constraints

provide constructs to express either a specific interval or a duration in which a user or a

permission is assigned to a role.

3. Activation constraints: These constraints allow one to specify how a user should be restricted

in the actual activation of a role. These include, for example, specifying what is the total

duration a user is allowed to activate a role, how many users can be allowed to activate a

particular role, etc.

4. Run-time events: A set of run-time events allows an administrator to dynamically initiate

GTRBAC events, or enable duration or activation constraints. Another set of run-time events

allow users to make activation requests to the system

 4

5. Constraint enabling expressions: GTRBAC includes events that enable or disable duration

constraints and role activation constraints. The duration constraints may be on role enablings,

user-role assignments or role-permission assignments.

6. Triggers: Triggers allow expressing dependencies among GTRBAC events.

Tabl e 1 summarizes the constraint types and expressions of the GTRBAC model. The

GTRBAC model extends the safety notion of the TRBAC model to show that there exists an

execution model for it. The periodic expression of form (I, P) used in the constraint expressions

are based on those in [3, 14]. The function Sol(I, P) as defined in [5] is used to determine all the

time instants denoted by the interval expression (I, P). D expresses the duration specified for a

constraint. For more details, we refer the readers to [11].

Tabl e 1. Constraint Expressions

Constraint
categor ies

Constraints Expression Set/Type

User-role assignment (I, P, pr:assi gnU/ deassi gnU r t o u) CUrp
Role enabling (I, P, pr:enabl e/ di sabl e r) CRp

Periodicity
Constraint

Role-permission assignment (I, P, pr:assi gnP/ deassi gnP p t o r) CPRp
User-role assignment ([(I, P)| D], DU, pr:assi gnU/ deassi gnU r t o u) CUrd
Role enabling ([(I, P)| D], DR, pr:enabl e/ di sabl e r) CRd

Duration
Constraints

Role-permission assignment ([(I, P)| D], DP, pr:assi gnP/ deassi gnP p to r) CPRd
Per-role ([(I, P)| D], Dactive, [Ddefault], act i veR_t ot al r) Ca

dr Total active role
duration Per-user-role ([(I, P)| D], Duactive, u, act i veUR_t ot al r) Ca

dur
Per-role ([(I, P)| D], Dmax, act i veR_max r) Ca

mr

Duration
Constraints on
Role Activation Max role duration per

activation Per-user-role ([(I, P)| D], Dumax, u, act i veUR_max r) Ca
mur

Per-role ([(I, P)| D], Nactive, [Ndefault], act i veR_n r) Ca
nr Total no. of activations

Per-user-role ([(I, P)| D], Nuactive, u, act i veUR_n r) Ca
nur

Per-role ([(I, P)| D], Nmax, [Ndefault], act i veR_con r) Ca
nnr

Cardinality
Constraint on

Role Activation Max. no. of concurrent
activations Per-user-role ([(I, P)| D], Numax, u, act i veUR_con r) Ca

nmur

Trigger E1 ,…, En , C1 ,…, Ck → pr:E af t er �t Ctr

Constraint
Enabling

pr:enabl e/ di sabl e c
 where c ∈{ (D, Dx, pr:E), (C) , (D, C)}

Cc

Users’ activation request (s:(de) act i vat e r f or u af t er �t)) Cu

(pr:assi gnU/ de- assi gnU r t o u af t er �t) Cadmin

(pr:enabl e/ di sabl e r af t er �t) Cadmin

(pr:assi gnP/ de- assi gnP p t o r af t er �t) Cadmin

Run-time
Requests

Administrator’s run-time request

(pr:enabl e/ di sabl e c af t er �t) Cadmin

We illustrate with an example the GTRBAC specification of an access control policy. Tabl e 2

contains the GTRBAC specification of a hospital’s access policy. Groupings labeled 1, 2, 3, 4 and

a, b, c, d are used simplify the discussion.

In 1a, the enabling times of DayDoctor and NightDoctor roles are specified as a periodicity

constraint. For simplicity we use DayTime and NightTime instead of their (I, P) forms. In 1b,

different users are assigned to the two doctor roles. Adams can assume the DayDoctor role on

 5

Mondays, Wednesdays and Fridays, whereas Bill can assume the DayDoctor role on Tuesdays,

Thursdays, Saturdays and Sundays. Similarly, Alice and Ben are assigned to the NightDoctor role

on the different days of the week. Furthermore, in 1c, the assignment indicates that Carol can

assume the DayDoctor role everyday between 10 am and 3pm.

In 2a, users Ami and Elizabeth are assigned roles NurseInTraining and DayNurse respectively,

without any periodicity or duration constraints, that is, the assignment is valid at all times. 2b

specifies a duration constraint of 2 hours on the enabling time of the NurseInTraining role, but

this constraint is valid for only 6 hours after the constraint c1 is enabled. Because of this, Ami will

be able to activate the NurseInTraining role at the most for two hours whenever the role is

enabled.

Tabl e 2. Example GTRBAC access policy for a medical information System

a. (DayTime, enabl e DayDoctor), (NightTime, enabl e NightDoctor)

b. ((M, W, F), assi gnU Adams t o DayDoctor), ((T, Th, S, Su), assi gnU Bill t o DayDoctor),
((M, W, F), assi gnU Alice t o NightDoctor), ((T, Th, S, Su), assi gnU Ben t o NightDoctor)

1

c. ([10am, 3pm], assi gnU Carol t o DayDoctor)

a. (assi gnU Ami t o NurseInTraining)
(assi gnU Elizabeth t o DayNurse)

2

b. c1 = (6 hours, 2 hours, enabl e NurseInTraining)

a. (enabl e DayNurse → enabl e c1)

b. (act i vat e DayNurse f or Elizabeth → enabl e NurseInTraining af t er 10 min)

c. (enabl e NightDoctor → enabl e NightNurse af t er 10 min)
(di sabl e NightDoctor → di sabl e NightNurse af t er 10 min)

3

d. (enabl e DayDoctor → enabl e DayNurse af t er 10 min)
(di sabl e DayDoctor → di sabl e DayNurse af t er 10 min)

a. (10, act i veR_n DayNurse)

b. (5, act i veR_n NightNurse)

4

c. (2 hours, act i veR_t ot al NurseInTraining)

The constraints in 3 are triggers. Trigger 3a indicates that constraint c1 is enabled once the

DayNurse is enabled, which means now the NurseInTraining role can be enabled within the next

6 hours. Trigger 3b indicates that 10 min after Elizabeth activates the DayNurse role, the

NurseInTraining role is enabled for a period of 2 hours. This shows that a nurse in training will

have access to the system only if Elizabeth is present in the system, that is, she is acting as a

training supervisor. It is possible that Elizabeth activates the DayNurse role a number of times

within 6 hours after the DayNurse role is enabled, and hence the NurseInTraining role will be

enabled as many times if these activations (by Elizabeth) are more than 2 hours apart. This will

allow Ami to activate the NurseInTraining role a number of times. To prevent this, there is also

 6

an activation constraint 4c on the NurseInTraining role restricting its total activation time to 2

hours. The remaining triggers in 3 show that the DayNurse and NightNurse roles are enabled

(disabled) 10 min respectively after the DayDoctor and NightDoctor roles are enabled

(disabled). The constraint set 4 shows some activation constraints. 4a says that there can be at

most 10 users activating DayDoctor role at a time, whereas 4b shows that there can be at most 5

users activating the NightDoctor role at a time.

In a GTRBAC system, the reservoir of all constraints is termed as its Temporal Constraint and

Activation Base (TCAB). All the constraints of a TCAB must be satisfied before a user is

authorized to access an object. We note that a TCAB does not contain run-time requests as they

are events requested by users/administrators at arbitrary times. Thus, we see that a TCAB can be

represented as a tuple T = (CURp, CRp, CPRp, CURd, CRd, CPRd, Ca
dr, Ca

dur, Ca
mr, Ca

mur, Ca
nr, Ca

nur,

Ca
nmr, C

a
nmur, Ctr, Cc) where each component is a constraint type as depicted in Tabl e 1. Here,

we use a constraint type name to also refer to the set containing constraints of that type, for

example CURp also refers to the set containing the periocitiy constaints on user-role assignments.

3 Temporal hierarchies and Inher itance semantics in GTRBAC

In this section, we briefly summarize the relevant background on the temporal hierarchies and

various inheritance semantics that are possible in a GTRBAC system. For a more rigorous formal

discussion, the reader is referred to [12].

In [12], we identify and formally define three types of temporal hierarchies in a GTRBAC model.

These are similar to the hierarchies proposed in [19], which are considered in a different context

and do not address temporal issues related to them. The three types of temporal hierarchies are

inheritance-only hierarchy denoted by ≥t (I-hierarchy) , activation-only hierarchy denoted by �t (

A-hierarchy) and inheritance and activation hierarchy denoted by �t (IA-hierarchy). An I-

hierarchy only includes permission-inheritance semantics, which allows a senior to inherit all its

juniors’ permissions. However, it restricts a user assigned to the senior from activating any of the

junior roles unless s/he is explicitly assigned to them. An A-hierarchy only allows activation

semantics, according to which a user assigned to the senior role can also activate its junior roles;

however, the user can acquire only the permissions of the activated role. Finally, IA-hierarchy

includes both the inheritance and activation semantics, thus, allowing a senior role to inherit all

its junior roles’ permissions, as well as permitting any user assigned to the senior role to also

activate the junior roles within the same or different session.

 7

Examples of the three hierarchies are illustrated in Figure 1, where the Software Engineer role

is senior to the Programmer role. In Figure 1(a) and 1(b), the combination of roles that a user u

who is assigned only to Software Engineer role, can activate is { (Software Engineer),

(Software Engineer, Programmer) (Programmer)} . However, the permissions associated with

the same combination in the two cases are not exactly the same. For example, if u activates the

Software Engineer role, s/he can acquire permissions of both the roles’ if it is an IA-hierarchy

(Figure 1(a)), whereas, whereas, s/he acquire only Software Engineer role’s permissions if it is

an A-hierarchy (Figure 1(b)). We note that in IA-hierarchy, u acquires the same set of permissions

by activating role combinations (Software Engineer, Programmer) and (Software Engineer),

so u can simply activate a single role ((Software Engineer role) if he wishes to acquire the

permissions of both the roles.

Under the role hierarchy reported in Figure 1(c), the user can activate only the Software

Engineer role unless the user is also explicitly assigned to the Programmer. However, he

acquires maximal permissions, that is, permissions assigned to both the roles.

����� � ���
	 � ����
� �
��	

� 	 � � 	 �
�����
	 � 	 � � 	 �
�����
	

(a) IA Hierarchy (c) I Hierarchy

� 	 � � 	 ��������	

τ
1 τ

2

����� � ���
	 � ������ ����	
����� � ����	 � ����
� ���
	

(i) (ii)

Combination of roles that
can be activated � ��� ����� � ����	 � ������ ���
	 �

Combination of roles that can be
activated
� � ����� � �!�
	 � ������ �"��	 �$# � ����� � �!��	 � �%&��� �"��	 # � 	 � � 	 ��������	 � # � � 	 � � 	 ��������	 ��

(d) Enabling intervals of ����� � ���
	 � �'���� ����	 and � 	 � � 	 �
���(��	 roles

u ��)*) � �
 �
+,� �

� 	 � � 	 �����(��	

����� � ����	 � ����
� ���
	

(b) A Hierarchy

Figure 1(d) shows two cases where enabling times of the two roles are different. When enabling

intervals of hierarchically related roles differ in such a fashion, we need to consider how we allow

Figure 1. An example hierarchy

 8

inheritance and activation semantics in intervals where only one role is enabled. This issue is

briefly discussed in Section 3.1.

3.1 Enabling Constraints and Temporal Role Hierarchy

A hierarchy in presence of various temporal constraints becomes dynamic as permissions and

users can be assigned/de-assigned to any junior roles at times when a senior role is enabled.

Furthermore, there are activation constraints that need to be accounted for when either of the

hierarchy types is considered. Here, we consider the effect of the presence of role enabling

constraints on both inheritance and activation hierarchies.

Inher itance-only hierarchy (I -hierarchy)

Based on the temporal characteristics of hierarchically related roles, such as their enabling times

as shown in Figure 1(d), the following two subtypes of an I-hierarchy can be identified:

1. Unrestricted I-hierarchy (Iu-hierarchy): In this case, the permissions of a junior role are

inherited by its senior role whenever the senior role is enabled. For example, in interval τ2 of

Figure 1(d)-(ii), the Software Engineer role is enabled but the Programmer role is not

enabled. However, the unrestricted inheritance semantics permits the Software Engineer

role to inherit the permissions of the Programmer role even in this interval.

2. Restricted I-hierarchy (Ir-hierarchy): Here, the permissions of a junior role are inherited by its

senior role only in intervals in which both the roles are enabled. Hence, in interval τ2 of

Figure 1, the Programmer role’s permissions are not inherited by the Software Engineer

role in interval τ2.

In Figure 1(d)-(i), we see that the enabling interval of Software Engineer role is a subset of that

of the Programmer role. In this case, whenever u activates the Software Engineer role s/he

also acquires the permissions of the Programmer role, because at that time the Programmer

role is also enabled. Thus, in interval τ1, u cannot acquire any permissions of the Programmer

role even if it is enabled, as the Software Engineer role is disabled at that time.

Activation-only hierarchy (I -hierarchy)

Similar to an I-hierarchy, two subtypes of an A-hierarchy can be identified:

 9

1. Unrestricted A-hierarchy (Au-hierarchy): In this type of hierarchy, a user assigned to a senior

role can activate its junior role at anytime the junior role is enabled. For example, in Figure

1(d)-(i), a user assigned to the Software Engineer role can activate the Programmer role

even in the interval τ1, in which the Software Engineer role is actually not enabled.

2. Restricted A-hierarchy (Ar-hierarchy): In this case, a user assigned to a senior role can

activate its junior role only at time intervals in which both are enabled. For example, in

interval τ1, a user assigned to the Software Engineer role cannot activate the Programmer

role because the Software Engineer role is disabled in this interval.

In Figure 1(d)-(ii), we see that the Programmer role is disabled in interval τ2. Hence, a user

assigned to the Software Engineer role cannot activate it, as a role cannot be activated unless it

is enabled first.

General inher itance hierarchy (IA-hierarchy)

As an IA- inheritance incorporates both the permission inheritance and role-activation semantics

of I-hierarchy and an IA-hierarchy, it also has the same subtypes – an unrestricted and a restricted

form. For instance, in interval τ1, the IA-hierarchy can benefit from the use of role-activation

semantics and activate the junior role using the unrestricted semantics. Similarly, in interval τ2,

the inheritance semantics can be used and inheritance through the senior role using unrestricted

semantics. The restricted IA-hierarchy allows inheritance or activation semantics only in the

overlapping enabling intervals of the hierarchically related roles. The restricted and unrestricted

forms fo each hierarchy type is summarized in Tabl e 3.

Tabl e 3. Inheritance semantics

r1 is senior of r2→

↓Hierarchy Type

τ
r1 di sabl ed
r2 enabl ed

τ
r1 enabl ed

r2 di sabl ed

Iu No inheritance in τ Inheritance in τ
(by activating r1)

Inheritance

Ir No inheritance in τ No inheritance in τ
Au Inheritance in τ

(by activating r2)
No inheritance in τ Activation

Ar No inheritance in τ No inheritance in τ
IAu Inheritance in τ

(by activating r2)
Inheritance in τ

(by activating r1)
General

Inheritance

IAr No inheritance in τ No inheritance in τ

 10

3.2 Activation Constraints and Role Hierarchy

In [12], we show that an activation constraint can either be permission-oriented or user-oriented.

If an activation constraint is permission-oriented, it implies that the activation constraint is aimed

at constraining the use of permissions acquired through the role on which the activation constraint

is defined. For example, if a permission-oriented cardinality constraint of n is defined on a role

then it means that the goal is to limit the number of times the associated permissions are used to n

times. As A-hierarchies do not allow a user to acquire junior roles’ permissions without explicit

activation of the junior roles, A-hierarchies are suited for permission-oriented activation

constraints. Similarly, an activation constraint can also be user-oriented. For example, if the same

cardinality constraint is user oriented, then it implies that the aim of the constraint is to limit the

number of users that can activate at a time. Here, one is not concerned how many times the

associated permissions are used. For example, the permissions of a role may be used by different

users through different roles of an I-hierarchy because of inheritance. Tabl e 4 summarizes the

suitability of various kind of hierarchy for activation constraint that are either user-oriented or

permission-oriented.

 Tabl e 4. Cardinality constraints and hierarchy

Activation constraints Hierarchy
User-oriented Permission-oriented

I-or IA-hierarchy Suitable Not suitable
A-hierarchy Not suitable Suitable

As the concept of a role as a “set of permission” is the most prevalent one, it means that the

permission-oriented activation constraints lend itself closer to an RBAC model than the user-

oriented activation constraints. As we can see from the table, an A-hierarchy is particularly

suitable for such permission-oriented activation constraints.

We note that the role-activation semantics actually incorporates some implicit notion of

permission inheritance as the actual activation of a junior role allows its permissions to be

acquired by a user assigned to its senior. An advantage of A-hierarchy is that it allows all

combination of roles to be activated in a session. This allows a user to acquire, in a session, all

levels of granularity of permissions sets associated with the roles. This is not possible in a

hierarchy that has permission-inheritance semantics. This is because an I-hierarchy only allows

all permissions to be acquired whenever the role that a user is assigned to is activated, such

combinations. Similarly, an I-hierarchy a combination of roles that contain a senior and a junior is

 11

redundant (as shown in the case of Figure 1) in terms of what permissions that the user can

acquire. The issue of granularity of permissions set that can be acquired makes A-hierarchy most

suitable mechanism to address the issue of the principle of least privilege, particularly because

dynamic separation of duty can be additionally applied to hierarchically related roles to restrict a

particular set of roles to be activated [12, 19]. An obvious disadvantage of an A-hierarchy is that

explicit activations each role in a role set is essential to acquire a certain set of permissions.

However, such difficulties may be overcome by practical techniques such as identifying role sets

that a user usually activate at once and use group names.

An important conclusion in [12] is that all monotype hierarchies (that contains only one

hierarchical relation between roles in a hierarchy) are AC-equivalent. Two AC-equivalent

hierarchies allow the same set of maximum permissions to be acquired by a user. It has also been

shown in [12], except for a special case of a mixed hierarchy, all other mixed hierarchies (that

applies different hierarchical relations between different role pairs of the hierarchy) that most of

the mixed hierarchy types are AC-equivalent to the monotypes. The special case is the one that

has a linear I-type hierarchy that preceded an A-type hierarchy in a linear chain of hierarchically

related roles. We refer to [12], for a detailed formal treatment. The effect of such structure is that

the maximal set of permissions has smaller size than that are possible in monotypes.

In the remaining part of the paper, whenever we talk about a GTRBAC system we assume that A-

hierarchy is used. This is because we believe A-hierarchy is theoretically the best representative

of all of monotypes as well as most of the mixed types of hierarchies. Furthermore, A-hierarchy is

much more suitable for the permission-oriented activation constraints, which we believe should

bear higher emphasis in a GTRBAC system because of the notion of a role as a “set of

permissions” .

Before we present our analysis of the expressiveness of the GTRBAC model, we present an

example of A-hierarchy that also includes activation constraints. Figure 3 depicts an example of

an activation constraint in a role hierarchy of type Ar. Here, MV1, MV2 and MV3 are seniors to

role MV. There is a per-role total duration activation constraint specified for MV. Furthermore,

assume that MV1, MV2 and MV3 are enabled at all times. Thus, at anytime a user assigned to

MV1, MV2 or MV3 can activate the MV role. Hence in Figure 2, the total activation duration

allowed to the users A, B and C, if they are the only users assigned to the three senior roles, is 600

hours. Furthermore, since the default value is not specified, any of the users A, B or C may use all

600 hours.

 12

B

C

MV

MV3

MV1

MV2

(Weekly, 600, activeR_total MV)

Video
Database

A

4. Expressiveness of GTRBAC and Design Considerations

We have introduced a comprehensive set of temporal constraints in GTRBAC in the related paper

[11]. A pertinent question is whether such an exhaustive set of temporal constraints is required at

all, or is there a minimal set of constraint types that have the same expressive power as the set

containing all the constraint types introduced in this paper. By now, it should be clear that the set

of GTRBAC constraint types may not be minimal. In this section, we show formally that the set

of GTRBAC constraint types is indeed, not minimal. By introducing the notion of activity-

equivalence or a-equivalence, we show that there exists a minimal set of constraint types that

have an expressive power equivalent to the set of all the GTRBAC constraint types. However, we

show through an extensive analysis that even though such a minimal set exists, the complete set

of GTRBAC constraints provides with better alternatives for representing access constraints.

Such alternatives allow one to favor user convenience and lower complexity of representation

over the use of the minimal set of constraints.

4.1 Minimality of GTRBAC

Given a GTRBAC system, as we have seen earlier, its TCAB T can be represented as (CURp, CRp,

CPRp, CURd, CRd, CPRd, C
a
dr, C

a
dur, C

a
mr, C

a
mur, C

a
nr, C

a
nur, C

a
nmr, C

a
nmur, Ctr, Cc). In the discussion

below, we use a shorter version, such as T = (CRp, CURp), when only CRp and CURp are nonempty

sets of constraints. The behavior of a GTRBAC system depends on T, the set of users User s , the

set of roles Rol es , the set of permissions Per mi ssi ons , and the role hierarchy RH (we

denote it as �). Note that for reasons mentioned in Section 3, we consider RH to be an activation

hierarchy. Therefore, we can use the tuple (T, User s , Rol es , Per mi ssi ons , RH) to indicate

Figure 3. Constraint in a hierarchy

 13

a GTRBAC configuration. For simplicity, we will include only those parameters of a

configuration that are essential for the context at hand. For example, we will write (T, Rol es ,

RH) to represent a configuration when the discussion that follows considers an unchanging set of

User s and Per mi ssi ons . We will also use the notation (u
C

t
� p) to read “u acquires

permission p at time t under configuration C” . Next, we define the notion of a-equivalence

between two GTRBAC configurations.

Definition 4.1.1 (Activity-equivalence or a-equivalence): Given a GTRBAC system with two

configurations C1 = (T1, User s , Rol es1, Per mi ssi ons , RH1) and C2 = (T2, User s , Rol es2,

Per mi ssi ons , RH2) (User s and Per mi ssi ons are the same in both the configurations),

the configurations C1 and C2 are said to be a-equivalent (written as C1 ≈ C2) if, for all pairs (u, p)

such that u ∈ User s , p ∈ Per mi ssi ons , the following condition holds: (u
1C

t
� p) iff (u

2C

t
� p).

Furthermore, if C1 ≈ Cx and Cx ≈ C2,, then C1 ≈ C2 (transitivity). �

The a-equivalence between two configurations of a GTRBAC system indicates that a user can

perform the same accesses under the two configurations. Hence, by replacing configuration C1 by

C2, we do not change the accesses that are allowed for each individual user.

The GTRBAC system contains many constraint types. We show next that the set of constraint

types is not minimal, i.e., some constraint types can be removed without reducing the expressive

power of the GTRBAC constraint system. For example, the temporal constraints on assignments

can be expressed by using temporal constraint on roles (possibly new ones). Using a-equivalence

between GTRBAC configurations, we will show that there is a minimal representation that uses

only periodicity and duration constraints on roles, and the per-role activation constraints.

However, we will still need the default assignments that simply assign users or permissions to

roles without specifying any temporal restriction. Although default assignments can be

considered as a special case of periodicity constraints, we will consider it a special constraint type

(non-temporal constraint) represented by Cd.

 14

Figure 4. Algorithm Tr ansf or m2

Algor ithm Tr ansf or m2
Input : Cin; Output : Cout
1. Cout = Cin (i.e., { T’ , Rol es’ , RH’ } ={ T, Rol es , RH}); S = ∅;
2. FOR each c = (X, pr:assi gn/ deassi gn u t o r) ∈ T , where X = { (I, P), ([(I, P)|, Dx], D)} DO
3. Create a unique role r i; S = S ∪ (u, r, r i) // function getSui(S, u, r) used in line returns ri r(NIL if eturns
4. Replace all occurrences of { X, pr:assi gn/ deassi gn u t o r} by { X, pr:enabl e/ di sabl e r i} in T’
5 Add default assignment “assi gn/ deassi gn u t o r i to T’ ”

6. FOR each trigger TR ∈ T’ , where TR = “E1 ,…, En , C1 ,…, Ck → pr:En+1 af t er �t” DO

7. Replace TR by TR’ where TR’ == “E’ 1 ,…, E’ n , C’ 1 ,…, C’ k → pr:E’ n+1 af t er �t” such that
8. IF (Ei==“assi gn/ deassi gn u t o r”) THEN E’ i : = “enabl e/ di sabl e r i” ;
9. ELSE E’ i : = Ei ;
10. IF (Cj==“assi gned/ deassi gned u t o r”) THEN C’ j : = “ enabl ed/ di sabl ed r i” ;
12. ELSE C’ j : = Cj;
13 // ENDFOR
14. Rol es ’ = Rol es ’ ∪ { r i} ;

15. FOR each role r j ∈ Rol es such that { r �r j} DO

16. RH’ = RH’ ∪ { ri � r j} ; RH’ = RH’ - { r � r j} ;
17. //ENDFOR

18. RH’ = RH’ ∪ { r �r i} ;
19. //ENDFOR
20. // Handle all the per-role-activation constraints
21. FOR each pair (u, r) such that there is an activation constraint (X, Yu, u, act i veUY r) ∈ T’
22. where X ∈ { (I, P), D} , Yu ∈ { Duactive, Dumax, Nuactive, Dumax} and
23. act i veUY = { act i veUR_total, act i veUR_max , act i veUR_n, act i veUR_con} DO
24. IF (r i:=getSui(S, u, r) == NIL) THEN Create a unique role r i, // getSui(S, u, r) == NIL means that
25. FOR each c = (X, Yu, u, act i veUY r) ∈ T’ DO // there was no u, r assignment in line 1
26. Let c’ =(X, Yu, act i veUY r i);
27. Replace c in T’ by c’ where c’ =(X, Yu, act i veUY r i); //Note that old c will not be in T’
28. Replace all occurrences of “enabl e c” by “enabl e c’ ”
29 //ENDFOR
30 IF (r i was created new in Line 24) THEN
31. Rol e’ = Rol e’ ∪ { ri} ;

32. FOR each role r j ∈ Rol es such that { r �r j} DO

33. RH’ = RH’ ∪ { ri � r j} ; RH’ = RH’ - { r � r j} ;
34. //ENDFOR

35. RH’ = RH’ ∪ { r �r i} ; // Note: all are A-hierarchy
36. //ENDFOR
37. return Cout;

Figure 3. Algorithm Tr ansf or m1

Algor ithm Tr ansf or m1
Input :Cin; Output : Cout
1. Cout ={ T’ , Rol es’ , RH’ } = Cin={ T, Rol es , RH} ;
2. FOR each c = (X, pr:assi gn/ deassi gn p t o r) ∈ T , where X = { (I, P), ([(I, P)|, Dx], D)} DO
3. Create a unique role r i;
4. Replace all occurrences of { X, pr:assi gn/ deassi gn p t o r} by { X, pr:enabl e/ di sabl e r i} in T’
5 Add default assignment assi gn/ deassi gn p t o r i to T’

6. FOR each trigger TR ∈ T’ , where TR = “E1 ,…, En , C1 ,…, Ck → pr:En+1 af t er �t” DO

7. Replace TR by TR’ = “E’ 1 ,…, E’ n , C’ 1 ,…, C’ k → pr:E’ n+1 af t er �t” , such that,(i =1 to n+1, j = 1 to k) &
8. IF (Ei== “assi gn/ deassi gn p t o r”) THEN E’ i = “enabl e/ di sabl e r i” ;
9. ELSE E’ i = Ei ;
10. IF (Cj == “assi gned/ deassi gned p t o r”) THEN C’ j = “ enabl ed/ di sabl ed r i” ;
12. ELSE C’ j = Cj;
13. //ENDFOR
14. Rol es ’ = Rol es ’ ∪ { r i} ;

15. FOR each role r j ∈ Rol es such that { r j �r} DO

16. RH’ = RH’ ∪ { rj � r i } ; RH’ = RH’ - { r j � r }
17. //ENDFOR

18. RH’ = RH’ ∪ { ri �r} ; // Note: all are A-hierarchy
19. // ENDFOR
20. return Cout;

 15

The two algorithms shown in Figures 3 and 4 are used to replace certain constraint types in a

configuration by other types to produce an a-equivalent configuration. Algorithm Tr ansf or m1

takes in a GTRBAC configuration and produces an a-equivalent configuration with all the

temporal constraints on role-permission assignments removed. Similarly, the algorithm

Tr ansf or m2 produces a new configuration that is a-equivalent to the input configuration Cin,

with all user-role assignments and per-user-role activation constraints removed. The following

two lemmas formally show that the transformation done by each algorithm is correct.

Lemma 4.1.1 (Correctness of Tr ansf or m1): Given an input configuration Cin, algorithm

Tr ansf or m1 produces Cout such that there are no temporal role-permission assignments in Cout,

and Cin ≈ Cout. �

Lemma 4.1.2 (Correctness of Tr ansf or m2): Given an input configuration Cin, algorithm

Tr ansf or m2 produces Cout such that there are no temporal user-role assignments and per-

user-role activation constraints in Cout, and Cin ≈ Cout. �

We use the following notion of minimal constraint set (MCS) to express the fact that there is an

a-equivalent configuration that has the minimum number of constraint types.

Definition 4.1.2 (Minimal Constraint Set): Let MCS(T) be the set of constraint types in TCAB

T, and CS = { C1, C2, .. Cn} be an a-equivalent set of configurations such that Ci = (Ti, Rol es i,

RH i) for i = 1, 2, …, n. We say that MCS(Ti) is the minimal constraint set (MCS) of CS for i ∈ { 1,

2, …, n} , if there exists no other configuration Cj = (Tj, Rol es j, RHj), such that i ≠j and

 MCS (Tj)�⊂�MCS (Ti). �

The definition implies that a minimal constraint set is the one that has the least number of

temporal constraint types. Note that the role set and hierarchy may be altered to reduce the

number of constraint types. We are now ready to present the minimality result for GTRBAC

system, which is expressed by the following theorem.

Theorem 4.1 (Minimality of GTRBAC): Let C1 be a GTRBAC configuration, such that { Cd,

CRp, CRd, C
a
r, Ctr, Cc} ⊆�MCS(T1); There exists a GTRBAC configuration C2 such that:

a. C1 ≈ C2, and

 16

b. MCS(T2) �{ Cd, CRp, CRd, Ca
r, Ctr, Cc} , (note that Ca

r represents per-role activation

constraint types), and

c. MCS (T2) is a minimal constraint set, �

Theorem 4.1 shows that the set of GTRBAC constraints is not minimal because, a set of default

assignments, periodic and duration constraints on role enabling (disabling), and per-role

activation constraints can be used to represent any access constraint that GTRBAC constraints

can represent. We can see from the transformation algorithms that replacing temporal constraints

on assignments by temporal constraints on roles, in general, increases the number of roles and the

complexity of role hierarchy, which may not be desirable. This is because algorithms

t r ansf or m1 and t r ansf or m2 creates a new role for each temporal assignment that they

replace. This may not be very intuitive and efficient as it means there will be as many new roles

as there are temporal assignments. This results in a worst case where a role is created for each

user (or permission) in the system. A more intuitive and practical approach would be to create a

least number of roles such that the enabling/disabling intervals for them are non-overlapping. For

example, if there is a Doctor role and each of the n users are assigned to it for either day time or

night time (or both), then, instead of creating n new roles, we can simply create DayDoctor and

NightDocor roles and assign all the n users to one or the other (or both). Thus, to create such

temporally non-overlapping roles, we must first divide n periodic expressions into temporally

non-overlapping set of periodic expressions such as, Daytime and Nighttime.

We next provide formal definitions and algorithms to generate such a disjoint set of roles that

replace a set of temporal assignments. We first introduce the formal notions of containment,

equivalence, overlapping and disjunction between a pair of periodic expressions. Note that, an

arbitrary set of intervals can be represented by a periodic expression. This is possible because,

each such expression can be formulated, at the worst as a periodic expression that lists every

starting point and the smallest calendar as a duration.

Definition 4.2.1 (Containment/Equivalence/Over lapping/Disjunction of per iodic

Expressions) : Let PE1=(I1, P1) and PE2=(I2, P2) be two periodic expressions, then

1. PE1 is said to be contained in PE2 (written as PE1 ⊆�PE2), if the following conditions hold

for all t, (t ∈ Sol(I1, P1) → t ∈ Sol(I2, P2));

 17

2. PE1 and�PE2 are said to be equivalent (written as: PE1 ��PE2) if

(PE1 ⊆�PE2) ∧ (PE2 ⊆�PE1);

3. PE1 and�PE2 are said to be overlapped (written as PE1�⊗�PE2) if the following condition

holds:

 ∃ t1, t2 such that

• (t1, t2)∈Π(P1), i.e. t1, t2 are end points of an interval in P1, and

• ∃ ta, tb,

o t1 < ta < tb < t2, and

o (ta, tb ∈ Sol(I1, P1) → (ta∈ Sol(I2, P2) ∧ tb ∉ Sol(I2, P2)) ∨ (tb∈ Sol(I2, P2) ∧ ta

∉ Sol(I2, P2)));

4. PE1 and PE2 are said to be disjoint (written as PE1 �PE2), if, for all t1, t2 such that (t1∈

Sol(I1, P1) ∧ t2 ∈ Sol(I2, P2), the following condition holds:

((t1 ∈ Sol(I2, P2) → t1 ∈ ESol(I2, P2)) ∧ (t2 ∈ Sol(I1, P1) → t2 ∈ ESol(I1, P1)),

where ESol(I, P) is the set of end-points of intervals in (I, P) such that if t ∈ ESol(I, P)

then t ∈ Sol(I, P). �

A set of periodic expressions is said to be disjoint if the period expressions are pair-wise disjoint,

otherwise it is said to be non-disjoint. Similarly, a set of periodic expressions is said to be

equivalent if all the period expressions are equivalent to each other.

PE

PE 1

PE 2

PE 3

PE 4

PE1 ov erl aps w i th PE PE 2 ov er l aps w i th PE
PE3 i s contai ned i n PE PE 4 i s di sj oi nt f rom PE
PE5 i s equi v al ent to PE

PE 5

Figure 5. Temporal relations between a pair of periodic expressions

 18

Figure 5 shows some examples of these relations. Note that the fourth part of the definition

implies that if only endpoints of intervals of two periodic expressions are common, then they are

considered disjoint. Ideally, we want to compute a disjoint set of periodic expressions that is

minimal. The next definition expresses the notion of minimal disjoint set (MDS) over a set of

periodic expressions.

Definition 4.2.2 (Minimal Disjoint Set): Le PE= { PE1, PE2, …, PEn} be a set of arbitrary

periodic expressions. The minimal disjoint set (MDS) over PE is the least set of disjoint periodic

expressions, MDSPE, defined as:

MDSPE = minm{ PE'i | 1 ≤ i ≤ m} ,

such that the following conditions hold,

1. PE’ 1 ∪ PE’ 2 ∪ ... ∪ PE’ m = PE1 ∪ PE2 ∪ ... ∪ PEn,

2. If there exists a t1, such that (t1∈ Sol(PEj) ∧ t1∈ Sol(PE'i)) for 1 ≤ i ≤ m, 1 ≤ j ≤ n, then

∀t2, (t2 ∉ Sol(PEj) → t2 ∉ Sol(PE'i))) �

In the definition, the first condition says that the MDS contains periodic expressions containing

all time instants that are contained in all the original set of periodic expressions PEis. The second

condition ensures that if a time instant from a PEj is in PE’ i then the time instants that are not in

PEj will not be in PE’ i. In other words, each PE’ i is contained in one or more PE’ j. Associated

with MDS, we define minimal subset (MS) of a periodic expression over a MDS as follows.

Definition 4.2.3 (Minimal subset (MS) for a per iodic expression over a MDS): Let MDSPE =

minm{ PE'i | 1 ≤ i ≤ m} be a minimal disjoint set over periodic expressions PE= { PE1, PE2, …,

PEn} ; The minimal subset (MS) for a periodic expression PEj ∈ PE over the MDSPE is the set

MSPEj(MDSPE) = { PE’ π1, PE’ π2, …, PE’ πk} ⊆��MDSPE��1 ≤ k ≤ m such that,

• { π1, π2, …, πk} ⊆��1, 2, …, m} for 1 ≤ k ≤ m , and

• for all t, t ∈ Sol(PEj) iff (t ∈ Sol(PE’ π1) ∨ t ∈ Sol(PE’ π2) ∨ … ∨ t ∈ Sol(PE’ πk)). �

We see that MS of a periodic expression PEi of PE is a subset of MDSPE that collectively contains

all the time instants of PEi. Before presenting an example for MDS and MS, we first show some

formal properties related to the computation of MDS and MS. We write iMDSPE to mean MDS of

the first i periodic expressions of PE.

 19

Lemma 4.2.1 (MDS for two expressions): Let (PE1, PE2) be a pair of non-equivalent and non-

disjoint periodic expressions; The following holds true:

a. if (PEi ⊆�PEj) then, for (i, j) ∈{ (1, 2), (2, 1)} , there exist periodic expressions PEx��PEy such

that MDSPE = { PEx��PEy} . Furthermore, PEx = PEi and PEy = PEj - PEi.

b. if (PEi ⊗PEj) then for (i, j) ∈{ (1, 2), (2, 1)} , there exist periodic expressions PEx, PEy, PEz

such that MDSPE = { PEx, PEy, PEz} . Furthermore, PEx = PEi ∩ PEj, PEy = PEj - PEx and

PEz = PEi - PEx. �

Algorithm Pai r MDS computes MDS for a pair of periodic expressions. We note that when the

two expressions are equivalent, the MDS contains a single periodic expression, which can be

either of the original expression. Similarly, when the expressions are disjoint, the MDS contains

both the periodic expressions. Algorithm comput eMDS repeatedly calls Pai r MDS and

recursively builds the MDS by first finding the MDSs of smaller sizes. It uses the inductive

Algor ithm Pai r MDS
Input: PE1��PE2

Output: MDS of PE1��PE2

 1 IF (PE1 ��PE2) THEN return{ PE1} ;
 2 IF (PE1 � PE2) THEN return{ PE1, PE2} ;
 3 IF (PE1 ⊆�PE2) THEN // as per Lemma 4.2.1(a)
 4 PEx = PE1;
 5 PEy = PE2 - PEx;
 6 return{ PEx, PEy} ;
 7 IF (PE2 ⊆�PE1) THEN // as per Lemma 4.2.1(a)
 8 PEx = PE2;
 9 PEy = PE1 - PEx;
10 return{ PEy, PEx} ;
11 IF (PE1 ⊗�PE2) THEN // as per Lemma 4.2.1(b)

12 PEx = PE1 ∩ PE2;
13 PEy = PE2 - PEx;
14 PEz = PE1 - PEx;
15 return{ PEx, PEy, PEz}
16 //end

Algor ithm Comput eMDS
Input: PE1��PE2� …��PEn

Output: MDS of PE1��PE2� …��PEn

 1 // Assume that PE = { PE1��PE2� …��PEn}
 2 S = ∅; MDS = ∅;
 3 IF | PE | = 1 THEN return PE;

 4 IF | PE | = 2 THEN return Pai r MDS(PE1��PE2);
 5 IF | PE | > 2 THEN

 6 MDS = Comput eMDS(PE1��PE2� …��PEn-1);

 7 Let MDS computed be (PE’ 1��PE’ 2� …��PE’ m1);
 8 FOR i = 1 to m1 DO

 9 PairMDS = Pai r MDS(PEi��PEn);
10 IF |PairMDS| = 1 THEN
11 return MDS;
12 IF |PairMDS| = 2 THEN

13 Let PairMDS computed be (PE’x��PE’ y);

14 S = S ∪ { PE’ x} ;
15 ELSEIF |PairMDS| = 3 THEN

16 Let PairMDS be (PE’ x��PE’ y��PE’ z);

17 S = S ∪{ PE’x, PE’ z} ;
18 // ENDFOR

19 Let S computed be (PE’ ’ 1��PE’ ’ 2� …��PE’ ’ m2);
20 PE’ ’ m2+1= PEn - (PE’ ’ 1 ∪ PE’ ’ ∪ …∪ PE’ ’ m2);
21 IF (PE’ ’ m2+1=∅) THEN

22 MDS = (PE’ ’ 1��PE’ ’ 2� …��PE’ ’ m2,PE’ ’ m2+1);
23 ELSE

24 MDS = (PE’ ’ 1��PE’ ’ 2� …��PE’ ’ m2);
25 return MDS
26 //END IF

Figure 6. Algorithms Pai r MDS and comput eMDS

 20

technique used to prove Lemma 4.2.2. The following formal results show that comput eMDS

computes the MDS of a set of periodic expressions.

Lemma 4.2.2 (MDS for n per iodic expressions): Given a non-equivalent and non-disjoint set of

periodic expressions PE = { PE1 , PE2, ..., PEn} , there exist periodic expressions PE’ 1 , PE’ 2 , ...,

PE’ m such that MDSPE = { PE’ 1, PE’ 2, ..., PE’ ’ m} . �

Theorem 4.2 (MDS using comput eMDS): Given an arbitrary set of periodic expressions PE

={ PE1, PE2, ..., PEn} , there exist periodic expressions PE’ 1, PE’ 2, ..., PE’ m , such that

a. MDSPE = { PE’ 1 , PE’ 2, ..., PE’ m} and

b. For PE as input, algorithm comput eMDS produces MDSPE �

Theorem 4.2 shows that we can construct a MDS of an arbitrary set of periodic expressions. As

we will show later, this will help us in finding a minimum set of roles corresponding to a set of

periodic expressions such that they are minimal and disjoint in terms of their enabling intervals.

We also derive the following two corollaries.

Corollary 4.2.1 (Bounds for size of MDS): Given a set of periodic expressions PE = { PE1, PE2,

..., PEn} , the algorithm comput eMDS produces MDSPE = { PE’ 1 , PE’ 2, ..., PE’ m} such that if sn =

|MDSPE| then 1 ≤ sn ≤ (2n- 1). �

Corollary 4.2.2 (Bounds for size of MS): Given a set of periodic expressions PE = { PE1 , PE2,

..., PEn} and MDSPE = { PE’ 1 , PE’ 2, ..., PE’ m} produced by algorithm comput eMDS, if pn =

|MSPE1| + |MSPE2| + … + |MSPEn|, then n ≤ pn ≤ n2n-1. �

We illustrate the notion of MDS and MS, and the computation of MDS by algorithms

comput eMDS and pai r MDS with the following example.

Thus, we see that one way to replace a periodic constraint on assignments is by the technique

used by the algorithms t r ansf or m1 and t r ansf or m2. Another technique is to compute the

MDS and create a role corresponding to each of its intervals. Such a technique is used in

algorithm Tr ansf or mMDS, as shown in Figure 8, which only replaces the user-role assignment

constraints by new roles and constraints on them. Theorem 4.3 shows that the algorithm correctly

produces a configuration without user-role periodicity constraints that is a-equivalent to the input

configuration.

 21

Exampl e 4. 1: To simplify notation, we consider the Daytime of the days listed for a periodic expression. For

example, if PE = { Sun} , we mean the interval (9am, 9pm) or daytime of a Sunday. Let PEA = { Sun, Mon, Tue,

Wed, Thu, Fri} , PEB = { Sun, Tue} , PEC = { Sun, Tue, Thu, Fri} , PED = { Sun, Mon, Tue, Wed, Sat} , PEE =

{ Thu, Fri} . The following steps illustrate the computation of MDS{ PEA, PEB, PEC, PED, PEE } using algorithm

comput eMDS.

1. MDS{ PEA, PEB} = { PE’ 1, PE’ 2} = { { Sun, Tue} , { Mon, Wed, Thu, Fri} } (as PEB ⊆ PEA)

2. MDS{ PEA, PEB, PEC} = MDS of { PE’ 1, PE’ 2, PEC} = MDS of { { Sun, Tue} , { Mon, Wed, Thu, Fri} , { Sun,

Tue, Thu, Fr} }

 Here,

 - MDS of (PE’ 1, PEC} = { PE’ x1 ={ Sun, Tues} , PE’ y1 = { Thu, Fr} (as PE’ 1 ⊆ PEC)} ,

 - MDS of { PE’ 2, PEC} = { PE’ x2 ={ Thu, Fri} , PE’ y2 ={ Sun, Tues} , PE’ z2= { Mon, Wed} } (as PE’ 2 ⊗ PEC)

 - S = { PE’ x1, PE’ x2, PE’ z2}

 - PE’ x1 ∪ PE’ x2 ∪PE’ z2 = { Sun, Mon, Tues, Wed, Thu, Fri} .

 - PE” 4 = PEC - (PE’ x1 ∪ PE’ x2 ∪PE’ z2) = ∅

Therefore MDS{ PEA, PEB, PEC} = { PE” 1, PE” 2, PE” 3} = { { Sun, Tues} , { Thu, Fri} , { Mon, Wed} }

3. MDS{ PEA, PEB, PEC, PED} = MDS of { PE’ ’ 1, PE’ ’ 2, PE’ ’ 3, PE D}

 = MDS of { { Sun, Tues} , { Thu, Fri} , { Mon, Wed} , { Sun, Mon, Tues, Wed, Sat} }

 Here,

- MDS of { PE’ ’ 1, PED} = { PE’ x3 ={ Sun, Tues} , PE’ y3 = { Mon, Wed, Sat} (as PE’ ’ 1 ⊆ PED } ,

- MDS of { PE’ ’ 2, PED} = { PE’ x4 = { Thu, Fri} , PE’ y4 = { Sun, Mon, Tues, Wed, Sat} } (as PE’ ’ 2 � PED } ,

- MDS of { PE’ ’ 3, PED} = { PE’ x5 = { Mon, Wed} , PE’ y5 = { Sun, Tues, Sat} } (as PE’ ’ 3 ⊆ PED } ,

- S = { PE’ x3, PE’ x4, PE’ x5}

- PE’ x3 ∪ PE’ x4 ∪ PE’ x5 = { Sun, Mon, Tues, Wed, Thu, Fri} ,

- PE’” 4 = PED - (PE’ x3 ∪ PE’ x4 ∪ PE’ x5) = { Sat} ;

 Therefore, MDS{ PEA, PEB, PEC, PED} ={ PE’” 1, PE’” 2, PE’” 3, PE’ ” 4}

 ={ { Sun, Tues} , { Thu, Fri} , { Mon, Wed} , { Sat} }

4. MDS{ PEA, PEB, PEC, PED, PEE } = MDS of { PE’ ’ 1, PE’ ’ 2, PE’ ’ 3, PE’” 4, PEE}

 = MDS of { { Sun, Tues} , { Thu, Fri} , { Mon, Wed} , { Sat} , { Thu, Fri} }

 Since PEE = PE’ ’ 2, MDS{ PEA, PEB, PEC, PED, PEE } = MDS{ PEA, PEB, PEC, PED }

 = { PE’” 1, PE’” 2, PE’” 3, PE’ ” 4} = { { Sun, Tues} , { Thu, Fri} , { Mon, Wed} , { Sat} }

Also, we see that,

1. MSPEA(MDS{ PEA, PEB, PEC, PED, PEE}) = { PE’” 1, PE’” 2, PE’” 3} .

2. MSPEB(MDS{ PEA, PEB, PEC, PED, PEE}) = { PE’” 1}

3. MSPEC(MDS{ PEA, PEB, PEC, PED, PEE}) = { PE’” 1, PE’” 2} .

4. MSPED(MDS{ PEA, PEB, PEC, PED, PEE }) = { PE’ ” 1, PE’ ” 3, PE’ ” 4} .

5. MSPEE(MDS{ PEA, PEB, PEC, PED, PEE }) = { PE’ ” 2} .

Figure 7. Example of minimal disjoint set (MDS) and minimal subset (MS)

 22

Theorem 4.3 (Correctness of Tr ansf or mMDS): Given an input configuration Cin with only

periodicity constraint on user-role assignments, algorithm Tr ansf or mMDS produces a

configuration Cout such that the following holds:

1. Cin ≈ Cout, and

2. Cout has no periodicity user-role assignment constraints. �

Here, we considered only the presence of the periodicity constraints on user-role assignment. If

we allow the presence of per-role constraints, algorithm Tr ansf or mMDS will still work as the

original roles are simply retained in their original form (along with any per-role constraints on

them).

4.2 System Complexity and Design considerations

The complexity of a GTRBAC system may have different components. Foremost among them is

the number of roles. Typically, we do not want an unmanageable number of roles in a system.

Another component is the number of temporal constraints. Then we have the complexity incurred

by a hierarchy. Finally, we have the default assignments (non-temporal). In default assignments,

the only check needed is the membership check, for example, to determine whether a particular

user is assigned to a role or not. Thus, we can expect temporal assignments to introduce

additional complexity compared to an RBAC system without temporal constraints because it

Figure 8. Algorithm Tr ansf or mMDS

Algor ithm Tr ansf or mMDS
Input :Cin
Output : Cout
1. Cout ={ T’ , Rol es’ , RH’ } = Cin={ T, Rol es , RH} ;
2. FOR each r ∈ Rol es DO
3. Let PE = { PE1, PE2…, PEn} and U = { u1, u2…, un} be such that (PEi, assi gn r t o ui) ∈T’ ;
4. Compute MDS of PE; Let the computed MDS = { PE’ 1, PE’ 2…, PE’ n} ;
5. FOR i = 1 to n DO
6. Compute MSPEi for PEi
7. //ENDFOR
8. FOR each PE’ i ∈ MDS DO
9. Create a unique role r i;
10. FOR all uk ∈ U such that PE’ i ∈ MSPEk for PEk DO
11. Add default assignment (assi gn ri t o uk) in T’ .
12. Add constraint (PEi, enabl e r i) in T’ .
13. Remove constraint (PEi, assi gn r t o ui) from T’ ;
14. Rol es ’ = Rol es ’ ∪ { r i} ;

15. RH’ = RH’ ∪ { r �r i} ; // Note: all are A-hierarchy
16 //ENDFOR
17 //ENDFOR
18. //ENDFOR

 23

involves, besides checking for membership, ensuring the temporal validity of a membership. To

simplify our discussion on trade-offs and complexity issues, we first develop a family of

GTRBAC models that have equivalent expressive power, based on the results in the previous

section, and then investigate the potential benefits of a model at a higher level of family hierarchy

over those at the lower level.

The minimality result in the previous section shows that the minimal model of GTRBAC system

is the one that includes the following temporal constraints: per-role activation constraint,

periodicity and duration constraints for role-enabling/disabling, constraint enabling and triggers,

as shown in Tabl e 5. Figure 9 shows the minimal model as GTRBAC0 at level 0. At level 1, we

have three different models, each of which adds a new type of constraint to the constraint set of

GTRBAC0. GTRBAC1,A represents the model having all the temporal constraints of GTRBAC0 plus

the per-user-role activation constraints. Similarly, GTRBAC1,U represents the model having all the

temporal constraints of GTRBAC0 plus the user-role assignment constraints, whereas, GTRBAC1, P

represents the model having all the temporal constraints of GTRBAC0 plus the role-permission

assignment constraints. At level 2, we have the overall GTRBAC2 model that contains all the

temporal constraints. We note that we can have other models between Level 1 and Level 2 that

represent models representing the pairs of level 1 models. However, for our analysis, we adopt

this simpler hierarchy. We also keep in mind that, according to the results in the previous section,

all the models in Figure 9 have the same expressive power, i.e, these models can be used to

generate a-equivalent configurations.

Level M odel Constraint Set

2 GTRBAC2 T � T1,A ∪ T1,U ∪ T1,P

GTRBAC1,P T1,P ��T0 ∪{ CPRp, CPRd}

GTRBAC1,U T1,U � T0 ∪{ CUrp, CUrd}

1

GTRBAC1,A T1, A � T0 ∪{Ca
dur, Ca

mur, Ca
nur, Ca

nmur}

0 GTRBAC0

Minimal
T0 �{ Cd, CRp, CRd, Ca

r, Ctr, Cc}

GTRBAC0

GTRBAC1,A GTRBAC1,U GTRBAC1, P

GTRBAC2

{Per-role constraint, role enabling}

{Per-user-role constraint} {user-role constraint} { role-permission constraint}

Level 0
Minimal Model

Level 1

Level 2

All constraints

Figure 9. A family of GTRBAC models Tabl e 5. GTRBAC Family of models and
constraint sets

 24

Next, we show through analysis that, it is advantageous to use a model at a higher level in terms

of user-convenience and complexity of representation. Our analysis will focus on the advantages

and disadvantages of using a Level 1 model compared against that of the Level 0, the minimal

model.

4.2.1 Constraints on Role Enabling and Assignments

We have shown in section 4.1 that all temporal constraints on user-role and role-permission

assignments can be transformed into the temporal constraints on role. However, such a

transformation may result in a large number of roles and/or produce inconvenient or complex

access control structures. In this section, we look at various design alternatives for choosing

constraints on role enablings and assignments. We do this by comparing the complexity of

representation using a Level 1 model against those of various representations using the minimal

model for expressing the same set of access requirements.

As we can see, in Tr ansf or m2, the transformation from temporal constraints on user-role

assignments to the temporal constraints on roles is the same as that of the transformation from

temporal constraints on role-permission assignments to the temporal constraints on roles, except

for the difference in hierarchy relation. That is, in the first case, the new roles inherit from the old

role, whereas in the second case, the old role inherits from the new roles. Because of this

similarity, we will mainly focus on the user-role assignments, as similar results can be obtained

for the role-permission assignments. Also, algorithm Tr ansf or m2 transforms both the

periodicity and duration constraints in the similar way, i.e., each such constraint is replaced by a

new role. Hence, the complexity analysis we apply for periodicity constraints will apply for the

duration constraints as well. We will, hence, focus on the periodicity constraint and point out

important considerations related to duration constraints whenever they apply.

A temporal constraint on user-role assignment states that the user can activate a role in the

specified periods or for a specified duration, provided the role is enabled. Instead of using a

temporal constraint on user-role assignment (the user is still assigned to the role using default

assignment), we enforce the desired access control by using temporal constraints on role

enabling. Next, we will present the complexity issues related to the representations of a set of

access requirements using GTRBAC0 and GTRBAC1,U models. For our purpose, we use the

following example

 25

Exampl e 4. 2: Let us assume that there is a DayDoctor role in a hospital. Five doctors

A, B, C, D, and E are assigned to this role in the periods given by the periodic expressions

PEA, PEB, PEC, PED, and PEE of Exampl e 4. 1. We assume that we have the

GTRBAC1, U representation of these constraints (hence, there are no activation

constraints). We will also look at two different representations using GTRBAC0 model,

which we will denote as GTRBAC0
1 and GTRBAC0

2 representations.

GTRBAC2 representation: For each doctor, a periodicity constraint on his assignment to

the DayDoctor role is specified using periodic expressions shown in Figure 10(a). For

example, for doctor A, PEA is the periodic expression used – i.e., there is a constraint

(PEA, assi gn DayDoctor t o A) in T. Similarly, assignment constraints for the

remaining doctors with the respective periodic expressions are specified.

GTRBAC0
1 representation: In this alternative, we use algorithm Tr ansf or m2 with

the above GTRBAC2 representation as the input. Accordingly, a role is created for each

constraint and a default assignment and a periodicity constraint on the new role are

added. For instance, for a constraint (PEA, assi gn DayDoctor t o A), a role, say rA, is

created and a new constraint (PEA, enabl e rA) is added, whereas the constraint (PEA,

assi gn DayDoctor t o A) is replaced by default assignment (assi gn DayDoctor t o

rA). Similarly, all other temporal assignments are replaced. This is depicted in Figure

10(b).

GTRBAC0
2 representation: This alternative uses the minimal disjoint set approach using

algorithm Tr ansf or mMDS. The result is as shown in Figure 10 (c). From Exampl e

4. 1, we know that MDS{ PEA, PEB, PEC, PED, PEE } = { PE’” 1, PE’” 2, PE’” 3, PE’ ” 4} = { { Sun,

Tues} , { Thu, Fri} , { Mon, Wed} , { Sat} } . A role is created for each periodic expression of

MDS{ PEA, PEB, PEC, PED, PEE } . As |MDS{ PEA, PEB, PEC, PED, PEE } | = 4, four new roles are created,

and a periodicity constraint is added for each new role. The i th new role is associated with

the i th periodic expression of MDS{ PEA, PEB, PEC, PED, PEE } . Each doctor is assigned to a set of

new roles that corresponds to the periodic expressions that constitutes MS of the periodic

expression associated with him, e.g., since MSPEC(MDS{ PEA, PEB, PEC, PED, PEE}) = { PE’” 1,

PE’” 2} , doctor C is assigned to the new roles that correspond to periodic expressions

PE’” 1 and PE’” 2.

 26

In the discussions that follow, we will use UR to refer to temporal user-role assignment, DUR to

refer to default user-role assignment, R to mean temporal constraint on roles and H to represent

the overhead associated with hierarchy. In the complexity expressions we will neglect original

role and any activation constraints associated with it, as they remain the same in all the

representations. We can see that for the GTRBAC1, U representation, the complexity is:

n.UR .

The following theorem establishes formally the complexities of the alternative representations

using GTRBAC0
 model.

Day
Doctor

PEA = { Sun, Mon, Tue, Wed, Thu, Fri}

PEB = { Sun, Tue}

PEC = { Sun, Tue, Thu, Fri}

PED = { Sun, Mon, Tue, Wed, Sat}

PEE = { Thu, Fri}

C

D

E

B

Day
Doctor

PEA = { Sun, Mon, Tue, Wed, Thu, Fri}

PEB = { Sun, Tue}

PEC = { Sun, Tue, Thu, Fri}

PED = { Sun, Mon, Tue, Wed, Sat} ,

PEE = { Thu, Fri}

C

D

E

B

Day
Doctor

PE’” 1 = { Sun, Tue}

PE’” 2 = { Thu, Fri}

A A

PE’” 3 = { Mon, Wed}

PE’” 4 = { Sat}

A

C

D

E

B

(a) (b)

(c)

Theorem 4.4 (Complexity expressions for GTRBAC0
1 and GTRBAC0

2 representations): Let n

be the number of users assigned to a role r, and let PE = { PE1, PE2 …, PEn} be the set of the

periodic expressions in the user-role assignment constraints corresponding to n users assigned to

r, i.e., there is a (PEi, assi gn r t o ui) for each i = 1 to n; Then, the general complexity

expressions for the alternative representations GTRBAC0
1 and GTRBAC0

2 are as follows:

1. GTRBAC0
1 representation: n.DUR + n. R + n. roles + H,

Figure 10. Access requirements of Exampl e 4. 2 using (a) GTRBAC1, U representation (b)
GTRBAC0

1 representation and (c) GTRBAC0
2 representation

 27

2. GTRBAC0
2 representation: pn.DUR + sn. R + sn. roles + H;

where pn = |MSPE1(MDSPE) | + |MSPE2(MDSPE) | + …. + |MSPEn(MDSPE) |, and sn = |MDSPE |. �

Based on this, we get the following complexities for each representation of exampl e 4. 3,

which is shown in Figure 10.

GTRBAC1, U representation: 5.UR.

GTRBAC0
1 representation: 5.DUR + 5 R + 5 roles + H

GTRBAC0
2 representation: 10.DUR + 4.R + 4.roles + H

(using algorithm Tr ansf or m2)

We see that, for the above example, the GTRBAC1, U representation is the best in terms of

complexity – it has the least number of roles, no hierarchy overhead and no default assignments;

furthermore, it is simple and intuitive to use and hence very convenient. The main difference

between GTRBAC0
1 and GTRBAC0

2 representations is that the latter always produces roles that

are temporally disjoint. GTRBAC0
1 representation associates one role for each user for whom

there is a temporal assignment constraint. However, GTRBAC1, U representations may not be the

best for all cases as we show below.

It can be seen that the complexities of GTRBAC1, U representations and GTRBAC0
1 representations

each remain the same for a given n, irrespective of how periodic expressions are pair-wise

related. The complexity of GTRBAC0
2 representations, for a given n, depends on MS and MDS of

PE. The following corollary states the effect of MS and MDS on the complexity of the

GTRBAC0
2 representations.

Corollary 4.4.1(Complexity cases for GTRBAC0
2 representations): Let n be the number of

users assigned to a role r, and let PE = { PE1, PE2 …, PEn} be the set of the periodic expressions

in the user-role assignment constraints corresponding to n users, i.e., there is a (PEi, assi gn r

t o ui) for each i = 1 to n; Then:

1. if PEi ≠PEj, for all i, j pairs such that 1 ≤ i, j ≤ n (i.e., they are pair-wise disjoint), then

the following holds true:

 complexity of GTRBAC0
2 = complexity of GTRBAC0

1

 In other words, the complexity of GTRBAC0
2 = n. DUR + n.R + n.roles + H

 28

2. if PEi =PEj, for all i, j pairs such that 1 ≤ i, j ≤ n (i.e., they are pair-wise equivalent), then

the following holds true:

the complexity of GTRBAC0
2 = n. DUR + 1.R + 1.roles + H.

3. the worst case for GTRBAC0
2 is: n2n.DUR + 2n. R + 2n. roles + H. �

The first part of the corollary shows that when all the periodic expressions associated with the

user-role assignments are disjoint, the GTRBAC0
2 representation is the same as the GTRBAC0

1

representation. When PEi =PEj, for all i, j = 1 to n and n is large, GTRBAC0
2 is substantially

better than GTRBAC1, U representation, based on the fact that temporal constraints incur more

processing cost than default assignments. The hierarchy overhead introduced by an extra role can

be expected to be negligible to membership check associated with default assignment for large n.

Furthermore, the new role created can be combined with the original role, if that does not

introduce extra complicacies, and thus removing the hierarchy overhead.

However, the worst case for GTRBAC0
2 representation, as indicated by third part of corollary 4.3

is O(2n) in the number of new roles created as well as temporal constraints on roles, and O(n2n) in

the number of default assignments.

Based on above observation, we can summarize the following design guidelines.

1. The GTRBAC1, U representation is preferable to GTRBAC0
1 representations as its complexity

in terms of the number of roles and/or the number of temporal constraints is always better.

2. The GTRBAC1, U and GTRBAC0
1 representations may result in using temporal constraints that

can be avoided because of some common periodic expressions. For example, there may be a

large number of doctors who need to use the role DayDoctor role at daytime, making

daytime a common period for many users. Using the GTRBAC0
1 representations in such cases

also results in the same temporal periodicity constraints on different roles, as algorithm

Tr ansf or m2 does not attempt to reduce constraints based on common periodicity

expressions. The GTRBAC0
2 is a good solution in al such cases where some user-role

assignments have common periodic expressions. If all the periodic expressions are equivalent

then it produces a single role and all users are assigned to that role, as indicated by the results

in second part of corollary 4.3. Theorem 4.4 and corollary 4.3 show that GTRBAC0
2 is

advantageous when the MS set of each periodic expression is very small (the smallest case is

when it has one member, as in the 2nd part of corollary, i.e., when all the periodic expressions

 29

are equivalent). Furthermore, we want a small MCS set, as it determines the number of new

roles created.

Similarly, if all the periodic expressions are pair-wise disjoint, then GTRBAC0
2 representation

becomes equivalent to the GTRBAC0
1 representations as shown by the first part of corollary

4.3.

3. The GTRBAC1, U representation is very flexible with respect to access specification since it

supports temporal constraints on user-role assignments, in addition to the constraints on role

enabling. For example, we can have the following constraints:

([Mon, Wed, Fri], assi gn John t o DayDoctor)

([Tue, Thurs], assi gn John t o NightDocotor).

([10am, 3pm], assi gn Greg t o DayDoctor).

By using the above constraints, we can keep the roles that have static temporal enabling times

fixed in the system and express individual user requirements using periodicity constraints.

Here, DayDoctor and NightDoctor roles are more or less fixed in the system and, as

illustrated, users are assigned to it as required.

4. Note that if there are per-user-role activation constraints, using the GTRBAC0
2

representations may not be advantageous. For example, in the example above (Figure 10(c)),

each user is assigned to multiple new roles. In such a case, if there had been a per-user-role

constraint for each user, we would have needed to take extra steps during its transformed

representation. Here, we note that algorithm Tr ansf or mMDS creates an activation hierarchy

of type Ar between the new roles and the original role. So if we leave the per-user-role

untouched, i.e., in the transformed representation, the per-user-role is still specified in terms

of the original role, then the new representation is still valid, as the users assigned to the new

role will have to explicitly activate the new role. However, it is neither intuitive nor

convenient to keep track, as the users are only implicitly assigned to the original role.

Therefore, in presence of per-user-role activation constraints GTRBAC0
1 and GTRBAC1, U

provide more intuitive and convenient representations than GTRBAC0
2.

5. Unlike periodicity constraints, duration constraints are somewhat inflexible in terms of being

replaced (for example, replacing user-role assignment by role enabling). As duration

constraints have non-deterministic start times, such constraints depend on some other events.

Such dependencies often have some application semantics and even though it may be

 30

possible to replace a duration constraint on user-role assignment, as in the case of periodicity

constraints, care must be taken to ensure that the dependency semantics is not hindered. We

illustrate this with an example:

Exampl e 4. 3: Consider Manager and Employee roles in an office and assume that the

Employee role is enabled on weekdays from 9am to 5pm, whereas the Manager role is

enabled everyday. At other times, the Employee role is enabled only if Mr. Smith, the

manager who is also the owner, has activated his Manager role. This can be expressed using

the following trigger:

act i vat e Manager f or Smith → enabl e Employee (t1)

Suppose Smith wants to allow John, an employee in his office, to work on Saturday and

Sunday when he is also working, for at most 4 hours, then he can do that by adding the

following constraints:

 ([Sat], 4 hours, assi gn John t o Employee) (c1)

act i vat e Manager f or Smith → assi gn John t o Employee (t2)

de- act i vat e Manager f or Smith → di sabl e Employee (t3)

When Smith activates the Manager role on Saturday, it enables Employee using trigger t1

and assigns John to the Employee role using trigger t2. Because of the constraint c1 active at

the time, the assignment gets restricted to 4 hours during which John can work.

In this case, if we try to use the duration constraint on Employee role instead, the implicit

dependency between the activation of Manager role and allowing John to work is lost.

6. We note that transformation such as in GTRBAC0
2 is not possible for user-role assignment

with duration constraints. Although there may be common duration values associated with

different user-role assignments, there is an inherent dependency semantics associated with

each duration constraint that relates it to a trigger or a constraint enabling expression.

7. Except for the discussion presented in 4, all apply to role-permission assignments too.

Thus, we can see, except for some cases, where GTRBAC0
2 is better in terms of complexity of

representations. GTRBAC2
 gives the best representational form, both in terms of complexity and

convenience.

 31

4.2.2 Activation Constraints

In this section, we compare the use of GTRBAC0 and GTRBAC1,A models to express the same set

of activation constraints. For simplicity, we assume that GTRBAC1,A has only total active duration

constraints in addition to constraints in GTRBAC0. Same kinds of analysis apply to other

activation constraints. In the complexity expressions, we use PUR to mean per-user-role

activation constraint, PR to mean per-role activation constraints and H to mean the overhead

associated with hierarchy. In addition, we will not include the original role and any of its

associated per-role constraints in the complexity expressions. For discussions that follow, we use

the following example:

Exampl e 4. 4: Let A, B, C, D and E be the users subscribing 100, 100, 100, 250, 50 hours

of active time per week respectively from a Video Library. A straightforward representation

of these constraints using GTRBAC1,A model is shown in Figure 11(a) (we will refer to this as

GTRBAC1,A
s representation). To represent these constraints using GTRBAC0, we can use the

part of algorithm Tr ansf or m2 that removes per-user-role activation constraints (or we can

simply assume that there are no temporal assignment constraints and run the Tr ansf or m2

on this configuration). Such a representation, later referred to as GTRBAC0
s representation, is

shown in Figure 11(b).

From the example, it is clear that the straightforward representation of a set of n per-user-role

constraints for n users assigned to a role (a per-role constraint on the role may or may not be

present), using the two models incur the following costs:

GTRBAC1,A
s representation: n .PRU (i)

GTRBAC0
s representation: n .PR + n.role + H (ii)

(using algorithm Tr ansf or m2)

Note that, we did not include the original role and any per-role constraints on it, as they will

always remain the same. We can see that between the two cases illustrated above, the

GTRBAC1,A
s model gives better representation in terms of the reduced number of roles. The

total number of activation constraints is the same in both. However, we want to know if these

give the best representations. We observe that in Figure 11(a), the users A, B and C have same

per-user-role access requirements and hence can possibly be expressed as one per-role

constraint. Similarly, we see that in Figure 11(b), MV1, MV2 and MV3 have the same per-role

constraint values, which can possibly be combined. The following theorem formally shows that

 32

such reduction in complexity can be achieved, when there are duration constraint values that

are common.

(Weekly, 100, C, activeUR_total M V)
D

C

E

A

B

(a)

(Weekly, 100, A , activeUR_total M V)

(Weekly, 100, B, activeUR_total M V)

(Weekly, 600, activeR_total M V)

MV

(Weekly, 250, D, activeUR_total M V)

(Weekly, 50, E, activeUR_total M V)

V ideo
Database

D

E

(Weekly, 300, 100, activeR_total M V3)

(Weekly, 250, activeR_total M V 4)

(Weekly, 50, activeR_total M V5)

MV

MV5

MV3

MV4

(Weekly, 600, activeR_total M V)

(b)

V ideo
Database

C

(Weekly, 300, 100, activeR_total M V2)
MV2

(Weekly, 300, 100, activeR_total M V1)
MV1A

B

Theorem 4.5 (Complexity expression for GTRBAC0 and GTRBAC1 representations): Let n be

the number of users assigned to role r, D = { d1, d2,, … dn | di is the total active duration that the

i th user is allowed over role r} , Dm = { d’ 1, d’ 2,, … d’ m} ⊆ D be the set of distinct elements of D,

and Cm(d) be the number of times d occurs in D; Then the complexities of the following two

representations are as follows:

1. GTRBAC1,A representation: (nx - ny) .PUR + ny PR + c.(b.ny+ 1) roles + c. H

2. GTRBAC0 representation: nx .PR + nx .roles + H

where,

• nx = |Dm| and ny = |D’ | , such that

o D’ ⊆ Dm ,and

o if d ∈D’ then Cm(d) > 1

• b =1 if (n > nx); b =0 otherwise,

• c =1 if (n > nx>0); c = 0 otherwise. �

Figure 11. Access requirements of Exampl e 4. 4 using (a) GTRBAC1,A
s representation (b)

GTRBAC0
 s representation by running algorithm Tr ansf or m2 on a GTRBAC1,A

s configuration

 33

The complexities of the previously mentioned representations of the constraints as shown in (i)

and (ii) can be easily derived by forcing each element in D to be considered as unique. In that

case,

nx = |Dm|= n, ny = 0, b = 0 and c = 0

and hence the complexities are as follows.

GTRBAC1,A
s
 representation:

= (nx - ny) .PUR + ny PR + c.(b.ny+ 1) roles + c. H = n.PUR (same as (i))

GTRBAC0
s representation:

= nx .PR + nx .roles + H = n .PR + n .roles + H (same as (ii))

Thus, for Exampl e 4. 4, we have the following complexities, as given by Theorem 4.5 (the

constraints are as shown in Figure 11):

GTRBAC1,A
s representation: 5 PUR

GTRBAC0
s representation: 5.PR + 5.roles + H

Here, we see that, in GTRBAC0
s representation, there are 5 temporal constraints for the 5 new

roles and one for the old role. In GTRBAC1,A
s representation, there is just one role with on per-

role constraint (original role and hence not included) but there are five per-user-role and one per-

role constraints.

Figure 12 illustrates the general constraint design that combines common total active duration

constraints as is used in Theorem 4.5. Here, we get nx=3 as Dm={ 50, 100, 250} , ny=1 as

D’={ 100} , b = 1 and c = 1. Therefore, the complexities are:

GTRBAC0 representation:

 = nx .PR + nx .roles + H = 3.PR + 3.roles + H

 GTRBAC1,A representation:

= (nx - ny) .PUR + ny PR + c.(b.ny+ 1) roles + c. H

= 2.PUR + 1.PR + 2.role+ H

 34

B
(Weekly, 300, 100, activeR_total MV1)

Video
Database

C

A

MV

MV2

MV1

E

D
(Weekly, 250, D, activeUR_total MV2)

(Weekly, 50, E, activeUR_total MV2)

(Weekly, 600, activeR_total MV)

B

C

A

MV

MV2

MV1

E
(Weekly, 50, activeR_total MV2)

(Weekly, 600, activeR_total MV)

D

(Weekly, 300, 100, activeR_total MV1)

(Weekly, 250, activeR_total MV2)
MV2

(a)

(b)

We can summarize the following guidelines based on the above observation.

1. If there are many users having a common active duration requirement, then using a role and a

constraint that specify both the total and default duration constraint minimizes both the

number of roles and the number of temporal constraints, as shown by Theorem 4.5

2. If the expected requirements for active durations for individual users vary substantially from

user to user, GTRBAC1,A representation is preferable.

3. If flexibility is needed, using per-user-role constraints (and hence GTRBAC1,A representation)

is better. For example, if the users A, B, C, D and E request different active duration every

week, then the use of per user-role constraints is more appropriate.

4. In some cases, a hybrid approach utilizing constraints on both per role and per user-role will

give a more efficient representation, as shown by Figure 12(b). This is the GTRBAC1,A

representation as per Theorem 4.5

Thus, we see that GTRBAC1,A representation has distinct advantages over the GTRBAC0

representation.

Figure 12. Constraints of Exampl e 4. 4 (a) using GTRBAC0 representation (b)
using GTRBAC1,A representation

 35

5 Related Work

The TRBAC model proposed by Bertino et. al. [5], is the first known model that addresses

temporal constraints for a an RBAC model. It, however, provides constraints only on role

enabling and triggers, considerably limiting its use in a diverse set of practical requirements. The

work presented in [11] is a generalization of the TRBAC model and constitutes a substantial

extension to it. However, issues such as whether the exhaustive set of GTRBAC constraints has

any practical benefit are not addressed in [11]. The effects of temporal constraints on the

inheritance semantics of a role hierarchy have not been dealt upon in [12]. This paper has mainly

focused on the issue of expressiveness of the GTRBAC model. Another approach dealing with

the time based control of access can be found in [3] by Bertino et. al., that supports temporal

authorization and derivation rules. Formalism for periodic time used in this paper as well as in

[11] has been borrowed from [14, 5].

Many researchers have addressed the need for supporting constraints in an RBAC model. The

attention has been particularly in supporting SOD constraints [1, 13, 17, 18, 20]. SOD constraints

are mainly aimed at reducing the risk of a fraud by not allowing any individual to have sufficient

rights to perpetrate such frauds. Ferraiolo et. al. [6] propose an RBAC model that supports the

cardinality constraints. In [1], Ahn et. al. propose RCL2000 – a role based constraint specification

language. However, they do not address time based access restrictions. Bertino et. al. have

proposed a logic based constraint specification language that can be used to specify constraint on

roles and users and their assignments to workflow tasks [4]. However, it also doe not include

temporal constraints in their specification models.

6 Conclusions

In this paper, we have addressed the issue of expressiveness of the GTRBAC model. As our

major contribution, we showed through exhaustive analysis of minimality of the GTRBAC model

that a comprehensive set of GTRBAC constraints can provide distinct advantages over minimal

GTRBAC model in terms of user convenience and the complexity of constraint representation.

This is practically a significant result as it shows that although the GTRBAC model is not

minimal, its constraints set provides constraint designers with flexibility and intuitive choices

over various constraint expressions as well as a much better and less complex representations in

certain cases. Based on these results, we outlined some design guidelines that can assist constraint

designers in choosing more convenient and less complex constraint expressions.

 36

We plan to extend the present work in various directions. The first direction is an extensive

investigation on significant design issues when arbitrary mixed hierarchies are present. We note

that we presented our theoretical analysis by assuming the use of a monotype A-hierarchy. As we

have mentioned, A-type hierarchy is theoretically the best representative among all hierarchies

that are AC-equivalent to it, which excludes the cases where I-hierarchy precedes an A-hierarchy

within the same hierarchical chain. We also plan to develop an SQL-like language for specifying

temporal properties for roles and the various types of constraints and inheritance relations.

We furthermore plan to develop a prototype of such language by extending the implementation of

TRBAC to support all the constraint types of GTRBAC. Finally, we plan to develop a tool that,

based on the results presented in this paper, supports the security policy designer in establishing

the proper role configuration for a given set of policy requirements.

References

[1] G.J. Ahn and R. Sandhu The RSL99 Language for Role-Based Separation of Duty

Constraints. In Proc. of the Fourth ACM Workshop on Role-Based Access Control, Fairfax
(VA), 1999.

[2] J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrila, and D.R. Kuhn. Role Based Access
Control for the World Wide Web. In 20th National Information System Security
Conference, NIST/NSA, 1997.

[3] E. Bertino, C. Bettini, E. Ferrari, P. Samarati. An Access Control Model Supporting
Periodicity Constraints and Temporal Reasoning. ACM Transactions on Database Systems,
23(3):231-285, September 1998.

[4] E. Bertino, E. Ferrari, and V. Atluri. The Specification and Enforcement of Authorization
Constraints in Workflow Management Systems. ACM Transactions on Information and
System Security, 2(1):65-104, 1999.

[5] E. Bertino, P. A. Bonatti, E. Ferrari. TRBAC: A Temporal Role-based Access Control
Model. ACM Transactions on Information and System Security, 4(4), 2001 (in print).

[6] D. F. Ferraiolo, D. M. Gilbert, and N Lynch. An examination of Federal and commercial
access control policy needs. In Proceedings of NISTNCSC National Computer Security
Conference, pages 107--116, Baltimore, MD, September 20-23 1993.

[7] L. Giuri. A new model for role-based access control. In Proceedings of 11th Annual
Computer Security Application Conference, pages 249-255, New Orleans, LA, December
11-15 1995.

[8] L. Giuri. Role-based access control: A natural approach. In Proceedings of the 1st ACM
Workshop on Role-Based Access Control. ACM, 1997.

[9] J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H. Spafford. Security models for web-based
applications. Communications of the ACM, 44, 2 (Feb. 2001), pages 38-72.

 37

[10] J. B. D. Joshi, A. Ghafoor, W. Aref, E. H. Spafford. Digital Government Security
Infrastructure Design Challenges. IEEE Computer, Vol. 34, No. 2, February 2001, pages
66-72.

[11] J. B. D. Joshi, E. Bertino, U. Latif, A. Ghafoor. Generalized Temporal Role Based Access
Control Model (GTRBAC) (Part I)– Specification and Modeling. CERIAS TR 2001-47,
Purdue University, USA, 2001 (Submitted as Part I to TKDE for review along with this
paper).

[12] J. B. D. Joshi, E. Bertino, A. Ghafoor. Temporal Hierarchies and Inheritance Semantics for
GTRBAC. CERIAS TR 2001-52, Purdue University, USA, 2001.

[13] S. Kandala and R. Sandhu. Extending the BFA Workflow Authorization Model to Express
Weighted Voting. In Research Advances in Database and Information Systems Security,
pages 145-159, Kluwer Academic Publishers, 1999

[14] M. Niezette and J. Stevenne. An efficient symbolic representation of periodic time. In
Proc.First International Conference on Information and Knowledge Management, 1992.

[15] M. Nyanchama and S. Osborn. The Role Graph Model and Conflict of Interest. ACM
Transactions on Information and System Security, 2(1):3-33, 1999.

[16] J. S. Park, R. Sandhu, G. J. Ahn. Role-based access control on the web. ACM Transactions
on Information and System Security (TISSEC) Volume 4, Issue 1 (February 2001) Pages:
37 – 71.

[17] R. Sandhu. Separation of Duties in Computerized Information Systems. In Database
Security IV: Status and Prospects, pages 179-189. North Holland, 1991.

[18] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman. Role-Based Access Control
Models", IEEE Computer 29(2): 38-47, IEEE Press, 1996.

[19] R. Sandhu. Role Activation Hierarchies. Proceedings of 2rd ACM Workshop on Role-based
Access Control, Fairfax, Virginea, October 22-23, 1998

[20] R. Simon and M.E. Zurko. Separation of Duty in Role-based Environments. In Proc. 10th
IEEE Computer Security Foundations Workshop, June 1997.

 38

Appendix

Proof Lemma 4.1.1: (Correctness of Tr ansf or m1)

Let us consider an arbitrary user u such that (u
inC

t
�p). We need to show that (u

outC

t
� p). Since

(u
inC

t
�p), the following must be true at time t for Cin:

(1) there is a constraint { X, pr:assi gn/ deassi gn p t o r} ∈ Cin because of which p is

assigned to role r,

(2) role r is enabled,

(3) user u is assigned to role r,

(4) there is no activation constraint that prevents the user from activating the role.

We note that algorithm Tr ansf or m1 only replaces the constraints of types { X,

pr:assi gn/ deassi gn p t o r} to produce Cout and temporal constraints on original roles are

not changed. Hence, (2), (3) and (4) are still valid in Cout at time t. The FOR loop in line 2 repeats

for every constraint of type { X, pr:assi gn/ deassi gn p t o r} . Each constraint { X,

pr:assi gn/ deassi gn p t o r} is replaced by temporal constraint on role enabling/disabling in

line 4. Thus a constraint of type { X, pr:assi gn/ deassi gn p t o r} is not in Cout. We need to

show that Cin ≈ Cout for the following two cases:

Case 1: Let X = (I, P), i.e. { X, pr:assi gn/ deassi gn p t o r} in (1) is a periodicity

constraint: We note that following replacements take place in T’ (initially T’= T) according to

lines 4, 5, and 7:

(i) the replacement of all temporal role-permission assignment expressions by

a. temporal constraint on the corresponding new role in line 4, and

b. default assignments, as is shown added in line 5.

(ii) the replacement of all occurrences of temporal role-permission assignment expressions and

role-permission assignment status expressions in triggers by constraint and status expressions

on the new roles as shown in line 7-12..

Because of (i) and (ii), for all triggers or constraint enabling events that cause

“assi gn/ deassi gn p t o r” event in Cin, the algorithm produces triggers and constraints that

cause “enabl e/ di sabl e r i” event in Cout and vice versa. Hence, if because of { (I, P),

 39

pr:assi gn/ deassi gn p t o r} in Cin, permission p is assigned to r at time t, then because of

{ (I, P), pr:enabl e/ di sabl e r i} and default assignment { pr:assi gn/ deassi gn p t o r i} in

Cout, p is assigned to r i at time t and vice versa. Hence, a user u who is assigned to role r that is

enabled at time t and as (2), (3) and (4) remain same at t, can inherit p through r i, using restricted

inheritance Ir in Cout. This inheritance allows u to acquire exactly those permissions that he can

acquire in Cin. Hence, (u
outC

t
� p) and therefore Cin ≈ Cout.

Case 2: (X = ([(I, P)| D], Dx), i.e. c = { X, pr:assi gn/ deassi gn p t o r} in (1) is a duration

constraint): The transformation indicated by line 4 also replaces all duration constraints of this

form by the same duration constraint on the new role’s enabling/disabling times. Thus

enabling/disabling of the assignment constraint in Cin done by any “enabl e/ di sabl e c”

expression (independent constraint enabling expressions or in triggers) now enables the duration

constraint on the new role and vice versa. Thus, since (2), (3) and (4) still remain valid, user u,

who is assigned to role r, which is enabled at time t can inherit p through r i, using restricted

inheritance Ir in Cout. Thus, (u
outC

t
� p). Hence, Cin ≈ Cout

Proof of Lemma 4.1.2 (Correctness of Tr ansf or m2):

We prove this by considering following cases:

Case 1: There are no per-user-role activation constraints in T: In this case lines 16-37 do not

apply. We also note that except for the hierarchy relations added to RH’ with respect to the new

roles, everything else is same as that of algorithm t r ansf or m1 if the assignment of permissions

is replaced by assignment of users. So, by arguments similar to one used to prove lemma 4.1.1,

we can show that the transformation of temporal constraints on user-assignments done by

t r ansf or m2 produces an a-equivalent configuration.

Case 2: There are no temporal constraints on user assignments: In this case, only lines 16-37

apply. Since S is empty, new roles will be created for all per-user-role activation in line 30. Each

set of per-user-role constraint associated with user role pair (u, r) is replaced by a new role and a

correspond set of per-role constraint on it so that all activation constraints associated with a user-

role pair applies to the corresponding new role. Since each new role is assigned to only one user,

in Cout, the per-role constraint on it has the same effect as the per-user-role with the matching

constraint value (total active duration, cardinality etc.). Since an old role retains the per-role

 40

activation constraint in Cout, any effect it has on users assigned to it will be the same as the effect

it has when a user attempts to activate it through new roles that inherit form it. Thus, as (u
inC

t
�p), it

follows that (u
outC

t
� p).

Case 3: Both temporal user assignments and per-user-role activation constraints are present:

This case is similar to case 1, in that a new role is created for each user assignment. In addition,

all per-user-role activation constraints are transformed into per-role constraint for the new role

created, as indicated by line 2 and 30 (use of getSui allows creation of one new role for a (u, r)

pair). As the new roles still have only one user assigned to it, the per-role constraints applied to

them has the same effect as the original per-user-role constraints. Hence, as (u
inC

t
�p), it follows

that (u
outC

t
� p)

Case 4: There are no user-role assignment and no per-user-role activation constraints: In this

case the algorithm simply returns Cin as Cout as both the FOR loops at lines 2 and 22 are not

entered.

Hence, it follows that for a given input Cin, if Cout is the output produced by algorithm

Tr ansf or m2, then Cout contains no temporal user assignments and per-user-role activation

constraints, and Cin ≈ Cout.

Proof of Theorem 4.1 (Minimality of GTRBAC)

Proof for (a) and (b): To prove (a) and (b), we do the following:

Step 1: Let C12= t r ansf or m1(C1), i.e., configuration C1 is input to algorithm t r ansf or m1 ,

and C12 is the new a-equivalent configuration returned by it.

Step 2: Let C2= t r ansf or m2(C12), i.e., configuration C12 is input to algorithm t r ansf or m2,

and C2 is the new a-equivalent configuration returned by it.

Since C1 ≈ C12 by lemma 4.1.1, and C12 ≈ C2 by lemma 4.1.2, it implies that C1 ≈ C2 as per

definition 4.1.1. As t r ansf or m1 removes all temporal role-permissions assignments, C12 does

not have any temporal constraints on role-permission assignment. Similarly, since t r ansf or m2

removes all temporal user-role assignments and per-user-role activation constraints, C12 does not

 41

have any temporal constraints on role-permission assignment and per-user-role activation

constraint. Hence, MCS (T2) ⊆{ Cd, CRp, CRd, C
a
r, Ctr, Cc} .

Proof for (c): From (b), we have MCS(T2) = { Cd, CRp, CRd, C
a
r, Ctr, Cc} . We need to prove that

MCS(T2) is minimal. We show that a constraint type from MCS(T2) can not be replaced by

another constraint type of MCS(T2) to produce an a-equivalent configuration. We show this case-

wise.

Case 1: (Periodicity(CRp) vs. Duration constraints(CRd) on role): Periodicity constraint specifies

each time instant at which a role is enabled/disabled, whereas, duration constraint does not

specify the starting/ending time at which a role is enabled/disabled. Furthermore, an event

associated with a duration constraint needs to be triggered or caused by a runtime request. A

periodicity constraint can be represented by a duration constraint if there is a way to enable it (the

duration constraint) at a specific time instant that corresponds to the start time of the periodic

expression. But GTRBAC does not support such specific constraint enabling unless we use a

trigger in which clock timer is allowed to trigger an “enabl e c” event that enables the duration

constraint, which then becomes equivalent to the original periodicity constraint. However, even if

we allow that, the duration constraint that is generated to enforce the periodicity constraint will

allow any other trigger or run-time event to enable the role, which is not what the periodicity

constraint is intended to do.

Similarly, a duration constraint cannot be specified using a periodicity constraint as it does not

have deterministic start times.

Case 2: (Duration constraint vs. Trigger): Assume we have the following set of triggers:

 B → enabl e r ..(1)

 enabl e r → di sabl e r af t er �t. ..(2)

If (1) triggers the non-blocked event enabl e r then (2) will allow role r to be enabled for a

duration �t. In effect, this is similar to the duration constraint (D = �t, enabl e r). However, if

we also have a periodicity constraint (I, P, enabl e r) in T of Cin, then whenever, for an instant

t∈Sol(I, P), the non-blocked event enabl e r is caused, trigger (2) will enable the duration

constraint. This is semantically different from a duration constraint (D = �t, enabl e r), in

which only a trigger or a run-time event can cause the duration restriction for event “enabl e r”

 42

as specified by (D = �t, enabl e r). Thus, representing the semantically same duration

constraint by triggers is not possible in the GTRBAC framework.

Case 3: (Activation vs. Non-activation constraint): Replacement of one by the other is not

possible because they refer to the different states of a role. In addition, for an enabling/disabling

of a role, no user needs to be assigned to the role. An activation constraint needs to be enforced

only when a user is actually using the associated role.

Hence, MCS (T2) ⊆{ Cd, CRp, CRd, C
a
r, Ctr, Cc} is minimal.

Proof of Lemma 4.2.1 (MDS of two per iodic expressions)

a. Here we have PEi ⊆�PEj. Hence for all t ∈ Sol(PEi), it is also true that t ∈ Sol(PEj). But

since PEi ≠�PEj (non-equivalent), there exists some t ∈ Sol(PEj) such that t∉Sol(PEi). Therefore,

there are two groups of time instants of which one group belongs to both PEi and�PEj, and the

other group belongs to only PEj. This implies that atleast two groups of periodic expressions are

needed to represent the time instants of both the periodic expressions. This is because if there is a

single group for both PEi and�PEj, then we need PEx = PEi ∪PEj in order to satisfy the first

condition of a MDS. But then, if we consider t1 and t2 such that t1, t2∈ Sol(PEi), t1 ∈ Sol(PEj) and

t2 ∉ Sol(PEj), then the second condition required for a MDS is not satisfied.

As the first group contains time instants that belong to both PEi and�PEj, we can write the first

expression to denote this group as PEx = PEi ∩ PEj, but PEi = PEi ∩ PEj , hence, PEx = PEi

as all time instants that are in Sol(PEi) are also in Sol(PEj). The second group of time instants

belong to only PEj , hence we can denote the second group as PEy = PEj - PEi = PEj - PEx.

We can see that PEy do not contain time instants in PEx, hence, PEx and�PEy are disjoint.

From the construction of PEx and�PEy, we can see that PEx�∪ PEy = PEi ∪ PEj , which is the

first condition for a MDS (definition 4.2.2 (a)) Furthermore, Since PEx = PEi, only those time

instants in PEi belongs to PEx; any time instant t not in PEi also is not in PEx. Similalry, since

PEx is contained in PEj, only a proper subset of time instants in PEj is in PEx, and no time

instants that is not in PEj is in PEx. Similarly, by construction, only a proper subset of time

instants in PEj is in PEy, and no time instants that is not in PEj is in PEx.. Thus, PEx and�PEy

satisfy the condition (b) of definition 4.2.2 too. Hence MDSPE = { PEx��PEy} .

 43

b. Here, we have PEi ⊗PEj. Hence, as the definition of PEi ⊗PEj implies, there are three groups

of time instants. The first group belongs to both PEi and PEj. The second group belongs only

to PEi, whereas the last group belongs only to PEj. As there exist some common time instants

in the two periodic expressions, based on the argument presented in (a) above, its MDS must

contain more that one periodic expressions.

Assume that we can create a MDS that contains two disjoint periodic expressions. Since,

there is a group of periodic instants that belong to both PEi and PEj, they must be represented

by a single periodic expression otherwise we cannot get a disjoint pair as required for a MDS.

So assume that PEx = PEi ∩ PEj. Now, we have two remaining groups of time instants, one

that belongs only to PEi and the other that belongs only to PEj. If we combine the two groups

to get PEy, then { PEx�� PEy} can not be a MDS, because it will not satisfy the second

condition (just take time instants t1, t2 such that t1 belong to PEi, and t2 belongs to PEj but not

to PEi, then such t1, t2 do not satisfy the second condition).

Thus, the problem is that one group of time instants belongs to only PEi and the other belongs

to only PEi. Now if we construct PEy = PEi - PEx and PEz = PEj - PEx , we get the disjoint set

of periodic expressions { PEx��PEy��PEz} . As in (a), it is easy to see that { PEx��PEy��PEz}

satisfies the two conditions of a MDS. Hence, it follows that { PEx��PEy��PEz} is a MDS of

{ PEi, PEj} .

Proof of Lemma 4.2.2 (MDS of n per iodic expressions)

We show this by induction on the number of periodic expressions n. Note that iMDSPE represents

the MDS of the first i periodic expressions of PE.

Basis : n = 2: That is, PE = { PE1 , PE2} . Then by lemma 1, we have the following:

• if PE1 ⊆ PE2 then MDSPE = { PEx��PEy} and

• if PE1 ⊗ PE2 then MDSPE = { PEx��PEy��PEz} .

Hypothesis: Assume that it is true for n-1, i.e. there exists n-1MDSPE = { PE’ 1��PE’ 2, …, PE’ m1} for

PE = { PE1��PE2, …, PEn-1}

We need to show that MDSPE = { PE’ ’ 1��PE’ ’ 2, …, PE’ ’ m2} for PE = { PE1��PE2, …, PEn} .

 44

We start by writing MDSPE ({ PE1��PE2, …, PEn}) = MDSPE ({ n-1MDSPE, PEn}) = MDSPE ({ PE’ 1��

PE’ 2, …, PE’ m1, PEn}) (This is true because PE’ 1 ∪ PE’ 2 ∪ ... ∪ PE’ m1 = PE1 ∪ PE2 ∪ ... ∪

PEn-1). Now, we look at pair-wise relations between PEn and PE’ i, for 1 ≤ i ≤ m1. First, we note

that it is possible that PEn is equivalent to some PE’ i. A simple example is when PEn = PEi ∩

PEk and PE’ i represents PEi ∩ PEk in n-1MDSPE. However, as PE is not a disjoint set, PEn

cannot be disjoint from all PE’ i , 1 ≤ i ≤ m1. We look at each of the possible relations that PEn

may have with each PEis.

Case 1: PEn = PE’ i for some i, such that 1 ≤ i ≤ m1 : Then, MDSPE ({ PE1��PE2, …, PEn}) = n-

1MDSPE and we are done.

Case 2: PE’ i ⊆�PEn for some i, such that 1 ≤ i ≤ m1: Then, by lemma 4.2.1(a), MDS{ PE’ i��PEn} =

{ PE’ ’ xi , PE’ ’ yi} , where PE’ ’ xi = PE’ i, and PE’ ’ yi = PEn - PE’ ’ xi .

Case 3: PE’ i ⊗�PEn for some i, such that 1 ≤ i ≤ m1: Then by lemma 4.2.1(b), MDS{ PE’ i��PEn} =

{ PE’ ’ xi, PE’ ’ yi, PE’ ’ zi} , where PE’ ’ xi = PE’ i ∩ PEn, and PE’ ’ yi = PEn - PE’ ’ xi , and PE’ ’ zi = PE’ i -

PE’ ’ xi .

We can see that PEn may be related to each of the PE’ is, 1 ≤ i ≤ m1 by either case 2 or case 3 (As

shown above, we need not worry about case 1; the case of PEn ⊆PE’ i can be handled easily by

reversing the periodic expressions of MDS in case 2).

Now, consider that PE’ i ⊆�PEn and PE’ j ⊆�PEn for i ≠ j. (i.e. case 2 applies to both i and j). Thus,

we have MDS{ PE’ i��PEn} = { PE’ ’ xi, PE’ ’ yi} and MDS{ PE’ j��PEn} = { PE’ ’ xj, PE’ ’ yj} . We see that PE’ ’ xi

and PE’ ’ xj are disjoint as PE’ ’ xi = PE’ i and PE’ ’ xj = PE’ j, and PE’ i and PE’ j belong to n-1MDSPE.

However, we do not know how PE’ ’ yi and PE’ ’ yj are related; but we do know that each of them is

a proper subset of PEn.

Now consider that PE’ i ⊗�PEn and PE’ j ⊗�PEn for i ≠ j. (i.e. case 3 applies to both i and j). As

shown in case 3, we get: MDS{ PE’ i�� PEn} = { PE’ ’ xi, PE’ ’ yi, PE’ ’ zi} and MDS{ PE’ j�� PEn} = { PE’ ’ xj,

PE’ ’ yj, PE’ ’ zj} . Now we know that, PE’ ’ xi is a subset of PE’ i and PE’ ’ xj is a subset of PE’ j. Hence,

PE’ ’ xi and PE’ ’ xj are disjoint (as PE’ i and PE’ j are disjoint). Similarly, PE’ ’ zi is a subset of PE’ i

and PE’ ’ zj is a subset of PE’ j and hence, PE’ ’ zi and PE’ ’ zj are disjoint. Again, we are left with

 45

PE’ ’ yi and PE’ ’ yj but we do not know how they are related. However, again, we know that each of

them is a subset of PEn.

And lastly consider that PE’ i ⊆�PEn and PE’ j ⊗�PEn for i ≠ j. (i.e. case 2 applies to the first and

case 3 applies to the second; we ignore the situation in which case 3 applies to the first and case 3

applies to second, as it is a simple case of exchanging the index values). Thus, we get MDS{ PE’ i��

PEn} = { PE’ ’ xi, PE’ ’ yi} and MDS{ PE’ j��PEn} = { PE’ ’ xj, PE’ ’ yj, PE’ ’ zj} . Similar to the reasons given

above, PE’ ’ xi and PE’ ’ xj , and PE’ ’ xi and PE’ ’ zj are disjoint. Again, we are left with PE’ ’ yi and

PE’ ’ yj, and we do not know how they are related. However, here too, we do know that they are

each subset of PEn.

Hence, we have, { MDS{ PE’1��PEn} , MDS{ PE’2��PEn}…, MDS{ PE’m1��PEn}} = { PE’ ’ 1, PE’ ’ 2, …, PE’ ’ m2,

PE’ ’ y1, PE’ ’ y2, PE’ ’ ym1} , where { PE’ ’ 1, PE’ ’ 2, …, PE’ ’ m2} =

 { PE’ ’ xi, PE’ ’ xj| case 2 applies both to MDS{ PE’ i��PEn} and MDS{ PE’,j��PEn} and i ≠ j} ∪

 { PE’ ’ xi , PE’ ’ xj , PE’ ’ zj | case 2 applies to MDS{ PE’ i��PEn} , case 3 to MDS{ PE’,j��PEn} and i ≠ j} .

This implies that (PE’ ’ i � PE’ ’ j), for all i, j pairs such that i ≠ j, 1 ≤ i, j ≤ m2. However, we cannot

guarantee that (PE’ ’ i � PE’ ’ yj) for all i, j pairs such that i, j, 1 ≤ i ≤ m2 and 1 ≤ j ≤ m1. This is

because each PE’ ’ yj is a proper subset of PEn and there are some PE’ ’ i such that (PE’ ’ i�⊗�PEn).

However, since the construction of each PE’ ’ i involves breaking down time instants contained in

PEn, we can construct a periodic expression for the group of time instants in PEn that were not

contained or overlapped with any other PE’ i. Hence we have

Now let PE’ ’ m2+1= PEn - (PE’ ’ 1 ∪ PE’ ’ ∪ …∪ PE’ ’ m2). Then if PE’ ’ m2+1 is not empty then

MDSPE({ PE1��PE2, …, PEn}) = { PE’ ’ 1, PE’ ’ 2, …, PE’ ’ m2, PE’ ’ m2+1} otherwise MDSPE ({ PE1��

PE2, …, PEn}) = { PE’ ’ 1, PE’ ’ 2, …, PE’ ’ m2} .

We need to show that MDSPE constructed in this way is minimal. Assume that it is not minimal.

Then there is at least one periodic expression PE’ ’ i, 1 ≤ i ≤ m2 such that all time instants in PE’ ’ i

are contained in one or more of PE’ ’ j for i ≠ j and 1 ≤ i, j ≤ m2+1. But it can only be possible if

the periodic expressions in n-1MDSPE are not disjoint, as the construction above does not introduce

such a non-disjoint set. Hence it contradicts with our assumption. Therefore, MDSPE constructed

above is the MDS of PE.

 46

Proof of theorem 4.2 (MDS using comput eMDS)

(a) We prove this by taking all the possible cases:

Case 1 - All the n periodic expressions are equivalent: In this case anyone of the periodic

expression can constitute the MDS, as each periodic expression satisfies the conditions of a

MDS.

Case 2 - The n periodic expressions are pair-wise disjoint: In this case we can simply

consider MDS = PE (and thus MSPEj = { PEj}). This satisfies the conditions of a MDS.

Case 3: The set of n periodic expressions are non-equivalent and non-disjoint: In this case,

according to lemma 4.2.2, there exists a MDS.

Therefore, there exists a MDS for an arbitrary set of periodic expressions.

(b) Again, we prove this by taking all the possible cases used above:

Case 1 - All the n periodic expressions are equivalent: In this case, for each n>2,

comput eMDS recusively computes MDS of smaller size at line 6. When the recursive call

reaches n = 2, the algorithm calls pai r MDS to compute the MDS of { PE1, PE2} . As the

periodic expressions are equivalent, pai r MDS returns { PE1} from line 1. This is returned by

comput eMDS in line 4 for n = 2. This is also the value of MDS computed by comput eMDS

at line 6 for n = 3. So for n = 3, comput eMDS will compute the MDS of { PE1, PE3} at line 9

by using the algorithm pai r MDS. But since PE1 and PE3 are equivalent, again { PE1} is

returned. And thus, from line 11, { PE1} will be again returned. We can see, for all n >2, the

MDS is the same periodic expression that was returned by the invocation of the algorithm for

n = 2. Hence, the algorithm correctly returns the MDS for a set of periodic expressions that

are equivalent.

Case 2: The n periodic expressions are pair-wise disjoint: Since all are pair-wise disjoint,

for each pair, pai r MDS returns the original pair of periodic expressions. Now if n-1MDSPE =

{ PE1, PE2,…, PEn-1} , then after the FOR loop in line 8, S will be { PE1, PE2,…, PEn-1} (i.e.,

m2 = n-1 in the algorithm). Hence, PE” n= m2+1 = PEn at line 20. Therefore, MDSPE = { PE1,

PE2,…, PEn} . Hence, it follows that the algorithm correctly returns the MDS for a set of

periodic expressions that are equivalent.

 47

Case 3: The set of n periodic expressions are non-equivalent and non-disjoint: We can see

that lines 5-25 implement the inductive method used to prove lemma 4.2.2. When n > 2, MDS

of lower values are recursively computed. The FOR loop computes the pair-wise MDS of the

new periodic expression PEn with each of the periodic expressions PE’ j computed for the

earlier value of n. Line 11 returns the earlier MDS if PEn is equivalent to any one of PE’ j. In

lines 14 and 17, those periodic expressions returned by pai r MDS are collected in S, which

constitutes time instants that belong to the periodic expressions of n-1MDSPE, some of which

may also belong to PEn (when PEn is contained in or overlaps with some PE’ j). In line 20, a

periodic expression is created for any time instants that do not fall in the periodic expressions

of n-1MDSPE but only in PEn. The IF-ELSE statement ensures that this periodic expression is

not empty. Hence the algorithm correctly computes the MDS of PE.

Proof of Corollary 4.2.1 (Bounds for size of MDS): We prove this by induction on n.

Basis: Let n = 1, then trivially 1 ≤ s1 ≤ (21- 1), as implied by the first IF statement of line 3 of

algorithm comput eMDS.

For n = 2, the second IF statement of algorithm comput eMDS is executed and the returned set is

the set returned by algorithm pai r MDS for { PE1, PE2} . But algorithm pai r MDS returns a set

whose cardinality is 1, 2, or 3. Hence, 1 ≤ s2 ≤ 3 = 22- 1.

Hypothesis: We assume that it is true for n-1. That is, 1 ≤ sn-1 = |n-1MDSPE| ≤ 2n-1- 1. We need to

show that 1 ≤ sn = |MDSPE| ≤ 2n- 1.

We observe that a pair-wise MDS is computed for each pair (PE’ j, PEn), 1 ≤ j ≤ sn-1= m1, where

PE’ j ∈ n-1MDSPE. For each such pair (PE’ j , PEn), algorithm pai r MDS returns at most three

disjoint periodic expressions { PEx , PEy , PEz} . In such a case MSPE’ j= { PEx , PEz} . Thus, we see

that each of the periodic expression of n-1MDSPE is split into at the most two disjoint sets.

Furthermore, a new set is created for the remaining time instants of PEn. Hence, we get the

following expression,

sn ≤ 2 sn-1 + 1 = 2(2n-1- 1) + 1 = 2n- 1

Furthermore, when all periodic expressions are equivalent we get sn = 1.Therefore, 1 ≤ sn ≤ (2n- 1).

Proof of Corollary 4.2.2 (Bounds for size of MS)

 48

Basis: Let n = 1. Then, trivially, p1 = 1 and n ≤ p1 ≤ n2n-1. Let n = 2. Then, when the periodic

expressions are equivalent; we get |MDSPE| = 1 and |MSPEj| = 1 for both j = 1 and 2, hence, p2 = 2.

However, if MDSPE = { PEx , PEy , PEy} , then |MDSPE| = 3 and |MSPE| = 2 for both j = 1 and 2, and

hence p2 = 4. Thus, 2 ≤ p2 ≤ 4 = 2.22-1.

Hypothesis: Assume that for n-1, it is true, i.e., (n -1) ≤ pn-1 ≤ (n-1)2n-2. We need to show that n ≤ pn

≤ n2n-1.

Induction step: If all n periodic expressions are equivalent, then |MDSPE| = 1 and |MSPEj| = 1 for

each 1 ≤ j ≤ sn-1= m1. Thus, pn = n. Since, this creates the minimum number of expressions in

|MDSPE|, we have n ≤ pn.

When we add the nth periodic expression PEn, each of PE’ j of n-1 MDSPE is split into two periodic

expressions at the most. Thus the maximum increase in pn occurs when PEn overlaps with each

PE’ j for 1 ≤ j ≤ sn-1. Thus, each of the MSPEj will be split into two. Furthermore, |MSPEn| = sn-1 + 1,

as in the worst case, PEn overlaps with each of the periodic expressions PE’ j of n-1MDSPE, and

there is a periodic expression that represents those instants of PEn that are not contained in n-

1MDSPE. Hence, we have,

pn ≤ 2pn-1 + (sn-1 + 1)

 = 2(2pn-2 + (sn-2 + 1)) + (sn-1 + 1) = 22pn-2 + 21(sn-2 + 1) + (sn-1 + 1)

 = …

 = 2n-1p1 + 2 n-2(s1 + 1) + … + 21(sn-2 + 1) + 20 (sn-1 + 1)

 = 2n-1 + 2 n-2(s1 + 1) + … + 21(sn-2 + 1) + 20(sn-1 + 1)

 ≤ 2n-1 + 2 n-2(2 1 – 1 + 1) + … + 21(2 n-2 – 1 + 1) + 20(2 n-1 – 1 + 1)

 = 2n-1 + (n-1)2 n-1

 = n2 n-1

Therefore, n ≤ pn ≤ n2n-1.

Proof of Theorem 4.3 (Correctness of Tr ansf or mMDS):

We have PE = { PE1, PE2…, PEn} and MDS = { PE’ 1, PE’ 2…, PE’ m} . Furthermore, in line 6 all

the required MSPEi are computed. Line 9 creates a unique role for each of the expressions PE’ i

which is made senior to the original role using An. Line 10 inside the FOR loop of line 9 ensures

that each user uk which corresponds to PEk in the user-role assignment of Cin is assigned to this

new role associated with PE’ i ∈ MSPEk. This ensures that the following hold

 For each t∈PEi , we have t∈ MSPEi (by definition 4.2.3 of MS) .. (a)

 49

 For each ui ∈U, we see that ui is (default) assigned to each new role that corresponds

to expressions in MSPEi by lines 11 and FOR loops at lines 8 and 10, and (b)

 For each PE’ i, (PE’ i, enabl e r i) is added to T’by line 12... (c)

Thus from (a), it follows that a ui can activate the original role r through one of the new roles that

corresponds to expressions in MSPEi at t∈ MSPEi. Furthermore, the periodic expressions { PE1,

PE2…, PEn} and { PE’ 1, PE’ 2…, PE’ m} exactly cover the same time instants. The main loop in

line 2 ensures that such transformation is done for each r. Hence, it follows from (a), (b) and (c)

that Cin ≈ Cout. We note that the repetition of line 13 removes all the user-role assignment. Hence,

Cout is free of user-role assignments.

Proof of Theorem 4.4 (Gener ic complexity expressions GTRBAC0
1 and GTRBAC0

2)

1. GTRBAC0
1 representation is n.DUR + n. R + n. roles + H : Here, GTRBAC0

1 refers to the use

of algorithm Tr ansf or m2. For each user-role assignment, algorithm Tr ansf or m2 creates a

new role (therefore total of n roles), adds a constraint for each new role (total is n.R), and a adds a

default assignment (hence, total is n.DUR). Furthermore, as new roles are made senior to the

original role, we introduce hierarchy overhead too. Hence, for n user-role assignments the

complexity incurred is: n.DUR + n. R + n. roles + H,.

2. GTRBAC0
2 representation is pn.DUR + sn. R + sn. roles + H: It follows immediately from

corollaries 4.2.1 and 4.2.2 and Theorem 4.3.

Proof of Corollary 4.4.1 (Complexity cases for GTRBAC0
2 representations)

Proof of Part 1

From Theorem 4.4, the complexities for GTRBAC0
1 and GTRBAC0

2 are (n.DUR + n. R + n. roles

+ H) and (pn.DUR + sn. R + sn. roles + H) respectively.

When PEi ≠PEj, for all i, j pairs such that 1 ≤ i, j ≤ n, we obtain pn = n and sn = n as per

corollaries 4.2.1 and 4.2.2. Furthermore, hierarchy overhead is also incurred. Hence, the

complexity for GTRBAC0
2 representation, using Tr ansf or mMDS (Theorem 4.3) and by

Theorem 4.4, is (pn.DUR + sn. R + sn. roles + H = n.DUR + n. R + n. roles + H) which is also the

complexity of the GTRBAC0
1 representations.

Proof of Part 2

 50

When PEi =PEj, for all i, j pairs such that 1 ≤ i, j ≤ n, we obtain pn = n and sn = 1 as per

corollaries 4.2.1 and 4.2.2. Furthermore, hierarchy overhead is also incurred. Hence, the

complexity for GTRBAC0
2 representation is:

= pn.DUR + sn. R + sn. roles + H = n.DUR + 1. R + 1. roles + H.

Proof of Part 3

As shown by corollaries 4.2.1 and 4.2.2, the worst cases for pn and sn are n2n and 2n respectively.

Thus using it in the complexity expression given by Theorem 4.4, we get

= pn.DUR + sn. R + sn. roles + H = n2n.DUR + 2n. R + 2n. roles + H

Proof of Theorem 4.5 (Gener ic complexity expression GTRBAC0 and GTRBAC1,A)

Proof of 1 (GTRBAC1,A representation) : We prove this by cases.

Case 1: di ≠ dj, for all i, j pairs such that 1 ≤ i, j ≤ n, i.e., durations are pair-wise disjoint.

Since durations are distinct from each other, we need a per-user-role activation constraint for

each. Hence we have the term n.PUR to represent n such constraints. Other than that we do not

require other constraints as they fully express the required access constraints. However, the

original role is still there and if there is a per-role constraint on the original role, it will still be

there. Thus the complexity of representation without including the original role and per-role

constraints on it simply is: n.PUR..

Now we show that the expression provided by the theorem gives this same expression. Since, the

durations are all pair-wise disjoint, we get Dm =D and therefore nx = n, and ny = 0. Similarly, we

see that b = 0 and c = 0. Therefore the complexity is:

= (nx - ny) .PUR + ny PR + c.(b.ny+ 1) roles + c. H = nx.PUR = n.PUR .

Thus, the expression holds for this case.

Case 1: di = dj, for all i, j pairs such that 1 ≤ i, j ≤ n, i.e., durations are all equal.

When all the durations are same, then all per-user-role constraints can be expressed as a per-role

constraint on a role such that the default value of the per-role constraint is that duration. Thus, we

create a new role that is senior to the original role and specify the new per-role constraint. This

obviously incurs some hierarchy overhead. The complexity is, thus, 1. PR + 1. role + H.

 51

Now, lets look at the constraint expression given by the theorem. Since, all the durations are

equal, there is only one distinct duration element. Hence, nx = 1. Similarly, ny = 1, as the same

element occurs more than once in D. Values for b = 0 and c = 1. Therefore, we get :

 = (nx - ny) .PUR + ny. PR + c.(b.ny+ 1) roles + c. H = 0 .PUR + 1. PR + 1. roles + c. H

 = 1. PR + 1. role + 1. H

Thus, the expression holds for this case also.

Case 3: There is at least one i, j pair, 1 ≤ i, j ≤ n such that di = dj and there is at least one i, j pair,

1 ≤ i, j ≤ n such that di ≠ dj.

In this case, Dm ⊂ D. Let Dm = { d’ 1, d’ 2,, … d’ nx} , i.e., nx = |Dm| < n. We know that D’ = { d’ π_1,

d’ π_2,, … d’ π_ny} ⊆ Dm, where ny = |D’ | ≥ 0. Since each of duration d’ π_i is common to at least two

users, we create a role rπ_i corresponding to each d’ π_i and, and specify a per-role constraint with

d’ π_i as the default value and (Cm(d’ π_i) × d’ π_i) as the total per-role active duration value, i.e, the

new per-role constraint is (Cm(d’ π_i) × d’ π_i, [d’ π_i], act i veR_t ot al rπ_i). Complexity incurred by

this is: ny. PR + ny . roles... (a)

Since nx = |Dm|, (nx - ny) is the number of durations that occurs only once in D and hence we can

create a role rnx and assign all the users associated with these durations to it and specify an

associated per-user-role activation constraints for each user. This will incur cost as follows:

 (nx - ny). PUR + 1. roles ..(b)

Furthermore, the roles rπ_is and rnx need to be made senior to the original role and thus incurring

H. Hence adding (a) and (b) and H, we get the following complexity:

 (nx - ny). PUR + ny. PR + (ny +1). Roles + H ...(i)

Now we show that this is exactly the complexity given by the theorem. According to the theorem,

in this case, b = 1, as n > nx holds true because of the strict subset relation Dm ⊂ D. Similarly,

since there is at least one i, j pair, 1 ≤ i, j ≤ n such that di ≠ dj, therefore (n > nx> 0) holds true;

hence c = 1. Therefore, the complexity expression, according to the theorem is:

(nx - ny) .PUR + ny PR + c.(b.ny+ 1) roles + c. H = (nx - ny) .PUR + ny PR + (ny+ 1) roles + H

Which is the same as (i) Thus, complexity expression holds good for case 3 too. Since the three

cases cover all the possible relation among the duration values, it follows that the complexity

expression for GTRBAC1,A representation is true.

 52

Proof of 2 (GTRBAC0 representation)

As nx is the number of distinct durations D, we simply create nx roles and add to each role a per-

role constraint. Such a constraint will use the duration value in D. For all durations which occurs

only once in D, they are used as per-role duration value in the corresponding new per-role

constraint, i.e, the new constraint is (X, d, act i veR_total, r), where d occurs only once in D. For

all d’s that occur more than once in D, the new per-role constraint is (X, Cm(d) × d , d,

act i veR_total, r). The new roles are senior to the original roles, thus incurring H. Hence, the

complexity becomes: nx.PR + nx.roles + H.

