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Abstract. A fraudster can be an impersonator or a swindler. An imper-
sonator is an illegitimate user who steals resources from the victims by
“taking over” their accounts. A swindler is a legitimate user who inten-
tionally harms the system or other users by deception. Previous research
efforts in fraud detection concentrate on identifying frauds caused by
impersonators. Detecting frauds conducted by swindlers is a challenging
issue. We propose an architecture to catch swindlers. It consists of four
components: profile-based anomaly detector, state transition analysis,
deceiving intention predictor, and decision-making component. Profile-
based anomaly detector outputs fraud confidence indicating the possibil-
ity of fraud when there is a sharp deviation from usual patterns. State
transition analysis provides state description to users when an activity
results in entering a dangerous state leading to fraud. Deceiving inten-
tion predictor discovers malicious intentions. Three types of deceiving in-
tentions, namely uncovered deceiving intention, trapping intention, and
illusive intention, are defined. A deceiving intention prediction algorithm
is developed. A user-configurable risk evaluation function is used for de-
cision making. A fraud alarm is raised when the expected risk is greater
than the fraud investigation cost.

1 Introduction

Fraudsters can be classified into two categories: impersonators and swindlers.
An impersonator is an illegitimate user who steals resources from the victims by
“taking over” their accounts. A swindler, on the other hand, is a legitimate user
who intentionally harms the system or other users by deception. Taking super-
imposition fraud in telecommunication [7] as an example, impersonators impose
their usage on the accounts of legitimate users by using cloned phones with Mo-
bile Identification Numbers (MIN) and Equipment Serial Numbers (ESN) stolen
from the victims. Swindlers obtain legitimate accounts and use the services with-
out the intention to pay bills, which is called subscription fraud.

Impersonators can be forestalled by utilizing cryptographic technologies that
provide strong protection to users’ authentication information. The idea of sep-
aration of duty may be applied to reduce the impact of a swindler. The essence
� This research is supported by NSF grant IIS-0209059.
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is to restrict the power an entity (e.g., a transaction partner) can have to pre-
vent him from abusing it. An empirical example of this idea is that laws are
set, enforced and interpreted by different parties. Separation of duty can be im-
plemented by using access control mechanisms such as role based access control
mechanism, or lattice-based access control model [8]. Separation of duty policies
and other mechanisms, like dual-log bookkeeping [8] reduce frauds but cannot
eliminate them. For example, for online auctions, such as eBay, sellers and buy-
ers have restricted knowledge about the other side. Although eBay, as a trusted
third party, has authentication services to check the information provided by
sellers and buyers (e.g. phone numbers), it is impossible to verify all of them due
to the high quantities of online transactions. Fraud is a persistent issue under
such an environment.

In this paper, we concentrate on swindler detection. Three approaches are
considered: (a) detecting an entity’s activities that deviate from normal patterns,
which may imply the existence of a fraud; (b) constructing state transition graphs
for existing fraud scenarios and detecting fraud attempts similar to the known
ones; and (c) discovering an entity’s intention based on his behavior. The first
two approaches can also be used to detect frauds conducted by impersonators.
The last one is applicable only for swindler detection.

The rest of this paper is organized as the follows. Section 2 introduces the
related work. Definitions for fraud and deceiving intentions are presented in
Section 3. An architecture for swindler detection is proposed in Section 4. It
consists of a profile-based anomaly detector, a state transition analysis compo-
nent, a deceiving intention predictor, and a decision-making component. The
functionalities and design considerations for each component are discussed. An
algorithm for predicting deceiving intentions is designed and studied via exper-
iments. Section 5 concludes the paper.

2 Related Work

Fraud detection systems are widely used in telecommunications, online trans-
actions, the insurance industry, computer and network security [1, 3, 6, 11].
The majority of research efforts addresses detecting impersonators (e.g. detect-
ing superimposition fraud in telecommunications). Effective fraud detection uses
both fraud rules and pattern analysis. Fawcett and Provost proposed an adap-
tive rule-based detection framework [4]. Rosset et al. pointed out that standard
classification and rule generation were not appropriate for fraud detection [7].
The generation and selection of a rule set should combine both user-level and
behavior-level attributes. Burge and Shawe-Taylor developed a neural network
technique [2]. The probability distributions for current behavior profiles and be-
havior profile histories are compared using Hellinger distances. Larger distances
indicate more suspicion of fraud.

Several criteria exist to evaluate the performance of fraud detection engines.
ROC (Receiver Operating Characteristics) is a widely used one [10, 5]. Rosset
et al. use accuracy and fraud coverage as criteria [7]. Accuracy is the number
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of detected instances of fraud over the total number of classified frauds. Fraud
coverage is the number of detected frauds over the total number of frauds. Stolfo
et al. use a cost-based metric in commercial fraud detection systems [9]. If the
loss resulting from a fraud is smaller than the investigation cost, this fraud is
ignored. This metric is not suitable in circumstances where such a fraud happens
frequently and causes a significant accumulative loss.

3 Formal Definitions

Frauds by swindlers occur in cooperations where each entity makes a commit-
ment. A swindler is an entity that has no intention to keep his commitment.

Commitment is the integrity constraints, assumptions, and conditions an en-
tity promises to satisfy in a process of cooperation. Commitment is described
by using conjunction of expressions. An expression is (a) an equality with an
attribute variable on the left hand side and a constant representing the expected
value on the right hand side, or (b) a user-defined predicate that represents cer-
tain complex constraints, assumptions and conditions. A user-defined Boolean
function is associated with the predicate to check whether the constraints, as-
sumptions and conditions hold.

Outcome is the actual results of a cooperation. Each expression in a com-
mitment has a corresponding one in the outcome. For an equality expression,
the actual value of the attribute is on the right hand side. For a predicate ex-
pression, if the use-define function is true, the predicate itself is in the outcome.
Otherwise, the negation of the predicate is included.

Example: A commitment of a seller for selling a vase is (Received by = 04/01)
∧ (Prize = $1000) ∧ (Quality = A) ∧ ReturnIfAnyQualityProblem. This com-
mitment says that the seller promises to send out one “A” quality vase at the
price of $1000. The vase should be received by April 1st. If there is a quality
problem, the buyer can return the vase. An possible outcome is (Received by
= 04/05) ∧ (Prize = $1000) ∧ (Quality = B) ∧ ¬ReturnIfAnyQualityProblem.
This outcome shows that the vase of quality “B”, was received on April 5th. The
return request was refused. We may conclude that the seller is a swindler.

Predicates or attribute variables play different roles in detecting a swindler.
We define two properties, namely intention-testifying and intention-dependent.

Intention-testifying: A predicate P is intention-testifying if the presence of ¬P
in an outcome leads to the conclusion that a partner is a swindler. An attribute
variable V is intention-testifying if one can conclude that a partner is a swindler
when V’s expected value is more desirable than the actual value.

Intention-dependent: A predicate P is intention-dependent if it is possible
that a partner is a swindler when ¬P appears in an outcome. An attribute
variable V is intention-dependent if it is possible that a partner is a swindler
when its expected value is more desirable than the actual value.

An intention-testifying variable or predicate is intention-dependent. The op-
posite direction is not necessarily true.
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(b) Trapping intention
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(c) Illusive intention

Fig. 1. Deceiving intention

In the above example, ReturnIfAnyQualityProblem can be intention-
testifying or intention-dependent. The decision is up to the user. Prize is
intention-testifying since if the seller charges more money, we believe that he
is a swindler. Quality and received by are defined as intention-dependent vari-
ables considering that a seller may not have full control on them.

3.1 Deceiving Intentions

Since the intention-testifying property is usually too strong in real applications,
variables and predicates are specified as intention-dependent. A conclusion that
a partner is a swindler cannot be drawn with 100% certainty based on one
intention-dependent variable or predicate in one outcome. Two approaches can
be used to increase the confidence: (a) consider multiple variables or predicates
in one outcome; and (b) consider one variable or predicate in multiple outcomes.
The second approach is applied in this paper.

Assume a satisfaction rating ranging from 0 to 1 is given for the actual value
of each intention-dependent variable in an outcome. The higher the rating is,
the more satisfied the user is. The value of 0 means totally unacceptable and the
value of 1 indicates that actual value is not worse than the expected value. For
example, if the quality of received vase is B, the rating is 0.5. If the quality is C,
the rating drops to 0.2. For each intention-dependent predicate P, the rating is
0 if ¬P appears. Otherwise, the rating is 1. A satisfaction rating is related to an
entity’s deceiving intention as well as some unpredictable factors. It is modelled
by using random variables with normal distribution. The mean function fm(n)
determines the mean value of the normal distribution at the the nth rating.

Three types of deceiving intentions are identified.
Uncovered deceiving intention: The satisfaction ratings associated with

a swindler having uncovered deceiving intention are stably low. The ratings
vary in a small range over time. The mean function is defined as fm(n) = M,
where M is a constant. Figure 1a shows satisfaction ratings with fm(n)=0.2. The
fluctuation of ratings results from the unpredictable factors.
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Trapping intention: The rating sequence can be divided into two phases:
preparing and trapping. A swindler behaves well to achieve a trustworthy image
before he conducts frauds. The mean function can be defined as:

fm(n) =
{

mhigh, n≤ n0;
mhigh, otherwise. Where n0 is the turning point.

Figure 1b shows satisfaction ratings for a swindler with trapping intention.
Fm(n) is 0.8 for the first 50 interactions and 0.2 afterwards.

Illusive intention: A smart swindler with illusive intention, instead of mis-
behaving continuously, attempts to cover the bad effects by intentionally doing
something good after misbehaviors. He repeats the process of preparing and
trapping. fm(n) is a periodic function. For simplicity, we assume the period is N,
the mean function is defined as:

fm(n) =
{

mhigh, (n mod N) < n0;
mhigh, otherwise.

Figure 1c shows satisfaction ratings with period of 20. In each period, fm(n)
is 0.8 for the first 15 interactions and 0.2 for the last five.

4 Architecture for Swindler Detection

Swindler detection consists of profile-based anomaly detector, state transi-
tion analysis, deceiving intention predictor, and decision-making. Profile-based
anomaly detector monitors suspicious actions based upon the established pat-
terns of an entity. It outputs fraud confidence indicating the possibility of a fraud.
State transition analysis builds a state transition graph that provides state de-
scription to users when an activity results in entering a dangerous state leading
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to a fraud. Deceiving intention predictor discovers deceiving intention based on
satisfaction ratings. It outputs DI-confidence to characterize the belief that the
target entity has a deceiving intention. DI-confidence is a real number ranging
over [0,1]. The higher the value is, the greater the belief is.

Outputs of these components are feed into decision-making component that
assists users to reach decisions based on predefined policies. Decision-making
component passes warnings from state transition analysis to user and display
the description of next potential state in a readable format. The expected risk
is computed as follows.

f(fraud confidence, DI-confidence, estimated cost) = max(fraud confidence,
DI-confidence) × estimated cost

Users can replace this function according to their specific requirements.
A fraud alarm will arise when expected risk is greater than fraud-investigating
cost. In the rest of this section, we concentrate on the other three components.

4.1 Profile-Based Anomaly Detector

As illustrated in fig. 3, profile-based anomaly detector consists of rule generation
and weighting, user profiling, and online detection.

Rule generation and weighting: Data mining techniques such as association
rule mining are applied to generate fraud rules. The generated rules are as-
signed weights according to their frequency of occurrence. Both entity-level and
behavior-level attributes are used in mining fraud rules and weighting. Normally,
a large volume of rules will be generated.

User profiling: Profile information characterizes both the entity-level infor-
mation (e.g. financial status) and an entity’s behavior patterns (e.g. interested
products). There are two sets of profiling data, one for history profiles and the
other for current profiles. Two steps, variable selection followed by data filtering,
are used for user profiling. The first step chooses variables characterizing the nor-
mal behavior. Selected variables need to be comparable among different entities.
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Profile of the selected variable must show a pattern under normal conditions.
These variables need to be sensitive to anomaly (i.e., at least one of these pat-
terns is not matched in occurrence of anomaly). The objective of data filtering
for history profiles is data homogenization (i.e. grouping similar entities). The
current profile set will be dynamically updated according to behaviors. As behav-
ior level data is large, decay is needed to reduce the data volume. This part also
involves rule selection for a specific entity based on profiling results and rules.
The rule selection triggers the measurements of normal behaviors regarding the
rules. These statistics are stored in history profiles for online detection.

Online detection: The detection engine retrieves the related rules from the
profiling component when an activity occurs. It may retrieve the entity’s current
behavior patterns and behavior pattern history as well. Analysis methods such
as Hellinger distance can be used to calculate the deviation of current profile
patterns to profile history patterns. These results are combined to determine
fraud confidence.

4.2 State Transition Analysis

State transition analysis models fraud scenarios as series of states changing from
an initial secure state to a final compromised state. The initial state is the start
state prior to actions that lead to a fraud. The final state is the resulting state
of completion of the fraud. There may be several intermediate states between
them. The action, which causes one state to transit to another, is called the
signature action. Signature actions are the minimum actions that lead to the
final state. Without such actions, this fraud scenario will not be completed.

This model requires collecting fraud scenarios and identifying the initial
states and the final states. The signature actions for that scenario are identified
in backward direction. The fraud scenario is represented as a state transition
graph by the states and signature actions.

A danger factor is associated with each state. It is defined by the distance
from the current state to a final state. If one state leads to several final states,
the minimum distance is used. For each activity, state transition analysis checks
the potential next states. If the maximum value of the danger factors associated
with the potential states exceeds a threshold, a warning is raised and detailed
state description is sent to the decision-making component.

4.3 Deceiving Intention Predictor

The kernel of the predictor is the deceiving intention prediction (DIP) algorithm.
DIP views the belief of deceiving intention as the complementary of trust belief.
The trust belief about an entity is evaluated based on the satisfaction sequence
<R1, R2, . . . , Rn >, Rn is the most recent one, which contributes to a portion
of α to the trust belief. The rest portion comes from the previous trust belief
that is determined recursively. For each entity, DIP maintains a pair of factors
(i.e. current construction factor Wc and current destruction factor Wd). If in-
tegrating Rn will increase trust belief, α = Wc. Otherwise, α = Wd. Wc and
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Wd satisfy the constraint Wc < Wd, which implies that more efforts are needed
to gain the same amount of trust than to loose it [12]. Wc and Wd are modified
when a foul event is triggered by the fact that the coming satisfaction rating is
lower than a user-defined threshold. Upon a foul event, the target entity is put
under supervision. His Wc is decreased and Wd is increased. If the entity does
not conduct any foul event during the supervision period, the Wc and Wd are
reset to the initial values. Otherwise, they are further decreased and increased
respectively. Current supervision period of an entity increases each time when he
conduct a foul event, so that he will be punished longer next time, which means
an entity with worse history is treated harsher. The DI-confidence is computed
as 1 − current trust belief .

DIP algorithm accepts seven input parameters: initial construction factor Wc
and destruction factor Wd; initial supervision period p; initial penalty ratios
for construction factor, destruction factor and supervision r1, r2 and r3 such
that r1, r2 ∈ (0, 1) and r3 > 1; foul event threshold fThreshold. For each
entity k, we maintain a profile P(k) consisting of five fields: current trust value
tV alue, current construction factor Wc, current destruction factor Wd, current
supervision period cPeriod, rest of supervision period sRest.

DIP algorithm (Input parameters: Wd, Wc, r1, r2, r3, p,
fThreshold; Output: DI-confidence)

Initialize P(k) with input parameters
while there are new rating R

if R <= fThreshold then //put under supervision
P(k).Wd = P(k).Wd + r1 * (1 - P(k).Wd)
P(k).Wc = r2 * P(k).Wc
P(k).sRest = P(k).sRest + P(k).cPeriod
P(k).cPeriod = r3 * P(k).cPeriod

end if
if R <= P(k).tValue then //update tValue

W = P(k).Wd
else

W = P(k).Wc
end if
P(k).tValue = P(k).tValue * (1 - W) + R * P(k).W
if P(k).sRest > 0 and R > fThreshold then

P(k).sRest = P(k).sRest - 1
if P(k).sRest = 0 then //restore Wc and Wd

P(k).Wd = Wd and P(k).Wc = Wc
end if

end if
return (1 - P(k).tValue)

end while

Experimental Study DIP’s capability of discovering deceiving intentions de-
fined in section 3.1 is investigated through experiments. Initial construction fac-
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Fig. 4. Experiments to discovery deceiving intentions

tor is 0.05. Initial destruction factor is 0.1. Penalty ratios for construction factor,
destruction factor and supervision-period are 0.9, 0.1 and 2 respectively. The
threshold for a foul event is 0.18. The results are shown in fig. 4. The x-axis of
each figure is the number of ratings. The y-axis is the DI-confidence.

Swindler with uncovered deceiving intention: The satisfaction rating sequence
of the generated swindler is shown in fig. 1a. The result is illustrated in fig.
4a. Since the possibility for the swindler to conduct foul events is high, he is
under supervision at most of the time. The construction and destruction factors
become close to 0 and 1 respectively because of the punishment for foul events.
The trust values are close to the minimum rating of interactions that is 0.1 and
DI-confidence is around 0.9.

Swindler with trapping intention: The satisfaction rating sequence of the
generated swindler is shown in fig. 1b. As illustrated in fig. 4b, DIP responds
to the sharp drop of fm(n) very quickly. After fm(n) changes from 0.8 to 0.2, it
takes only 6 interactions for DI-confidence increasing from 0.2239 to 0.7592.

Swindler with illusive intention: The satisfaction rating sequence of the gen-
erated swindler is shown in fig. 1c. As illustrated in fig. 4c, when the mean
function fm(n) changes from 0.8 to 0.2, DI-confidence increases. When fm(n)
changes back from 0.2 to 0.8, DI-confidence decreases. DIP is able to catch this
smart swindler in the sense that his DI-confidence eventually increases to about
0.9. The swindler’s effort to cover a fraud with good behaviors has less and less
effect with the number of frauds.

5 Conclusions

In this paper, we classify fraudsters as impersonators and swindlers and present
a mechanism to detect swindlers. The concepts relevant to frauds conducted by
swindlers are formally defined. Uncovered deceiving intention, trapping inten-
tion, and illusive intention are identified. We propose an approach for swindler
detection, which integrates the ideas of anomaly detection, state transition anal-
ysis, and history-based intention prediction. An architecture that realizes this
approach is presented. The experiment results show that the proposed deceiving
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intention prediction (DIP) algorithm accurately detects the uncovered deceiving
intention. Trapping intention is captured promptly in about 6 interactions after
a swindler enters the trapping phase. The illusive intention of a swindler, who
attempt to cover frauds with good behaviors, can also be caught by DIP.
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