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ABSTRACT

Zhang, Chaogui. Ph.D., Purdue University, August, 2002. An extension of the
Dickman function and its application. Major Professor: Samuel S. Wagstaff, Jr.

In this thesis, we study a generalization of the Dickman function and its applica-
tions.

We first generalize the concept of a smooth integer to make it suitable to ana-
lyze the Large-Prime Variations of the Quadratic Sieve(QS) and Number Field Sieve
(NFS). Smooth integers are the ones whose largest prime divisors are bounded. In
our generalization, we will bound the largest prime divisor and the (k + 1)st largest
prime divisor and ignore the size of the other prime divisors in between. Such integers
will be called k-semismooth.

A heuristic argument will first be given to derive recurrence formulae for the
asymptotic distribution of k-semismooth integers. Using that, we define a general-
ization of the Dickman function. Then we give a rigorous proof for the recurrence
formulae, and explore some properties of the generalized Dickman function. We also
present a method for computing this function. Numerical results and applications to
the MPQS and NFS will then be discussed.

At the end, we will investigate the smooth integer distribution in a short interval,
and use results available in this area to get an estimate of the function f(n) defined
as the smallest positive integer z such that the interval [n,n + z| contains a set of
integers (including n and n + z) whose product is a perfect square. This problem was

proposed by Selfridge and Meyerowitz.



1. Introduction
1.1 Integer Factorization Algorithms
1.1.1 Why factor integers?

The problem of factorizing large integers into prime divisors has been studied by
many mathematicians for several hundred years. The problem is simple to state and
understand, just like many other problems in number theory, yet the solution to the
problem requires the understanding of very complicated theories. The theoretical
importance of the problem itself deserves all the attention it can get from mathe-
maticians of all time. One of the greatest mathematicians in history, Carl Friedrich

Gauss, said the following more than two hundred years ago [10]:

The problem of distinguishing prime numbers from composite numbers
and of resolving the latter into their prime factors is known to be one of the
most important and useful in arithmetic. It has engaged the industry and
wisdom of ancient and modern geometers to such an extent that it would
be superfluous to discuss the problem at length...Further, the dignity of
the science itself seems to require solution of a problem so elegant and so

celebrated.

After the RSA public-key cryptosystem came into existence in the 1970s [24], the effort
to factor large integers got more attention than ever before. It is conjectured, and
many people believe, that breaking the RSA cryptosystem is equivalent to factorizing
the modulus n used in the system. At least half of the conjecture is true, that is, if
one can factor n, then one can definitely break the RSA system, although the other

half of the conjecture has not been proved or disproved yet.



For any serious application of the RSA system, it’s essential to keep track of the
size of the integers that people can factor using the best factorization algorithms

available so that one can choose a large enough modulus to make the system secure.

When Gauss wrote those words quoted above, there were no efficient algorithms
for primality testing or integer factorization. Since then, significant progress has been
made on both problems, especially for primality testing. Today we have good algo-
rithms that can test the primality of an integer in nearly polynomial time. Integer
factorization, however, remains a hard problem, although there are much faster algo-
rithms now than before, like ECM, MPQS and NFS, all with heuristic sub-exponential

running time.

1.1.2 Algorithms for factorizing integers, QS and NFS

We will briefly present two of the most powerful integer factorization algorithms
next. Both of them are based on the Legendre’s Congruence Method, which we shall
explain briefly first.

Given the number N to factor, if we can find a non-trivial solution to the congru-
ence 2 = y? (mod N), then we can find a factor of N by taking the GCD of z — y
and N. Here, non-trivial means that x #Z +y (mod N). In practice, we usually ignore
the requirement of non-trivialness and just try to find a solution to the congruence
above. If it turns out to be a trivial solution, we try again. The reason is that for the
methods we use to construct the solutions, finding many such solutions only requires
a little more effort than finding one solution. Furthermore, when N is composite,
if we find the solutions randomly, then at least half of the solutions are non-trivial,
and when N is the product of two primes, we have exactly half of the solutions being
non-trivial. So if we find many solutions to the congruence, then chances are we will

be able to factor NV easily.

Therefore, the question now is how to construct solutions to the congruence, in

other words, finding congruent squares mod N. The Quadratic Sieve and the Number



Field Sieve both try to find such congruent squares efficiently. We shall give a brief
introduction here to the QS and NFS. See [23] for an excellent presentation of all the
important factorizing methods, ancient or modern, including the QS and NFS. Also
see [21], [22] and [26] for details about the QS. For the NFS, [15] provides a complete
treatment.

The Quadratic Sieve constructs the congruent squares from a large set of con-
gruences of the form 22 = y mod N, where y can be completely factored using only
primes from a factor base B consisting of —1 and prime numbers p < B such that

N N

(5) = 1, where (37) is the Legendre symbol. Such a congruence is called a relation

r(z,y), and can be written as
2? = Hpe(”) mod N.
peB
The value p = —1 is needed to allow negative y. For each relation, we can define a
vector in GF(2)#F where each component of the vector corresponds to the exponent
e(p) mod 2. It’s clear that if the number of such relations is greater than #BB, that
is, the size of the factor base, then we can use Gaussian elimination or some other
method like block Lanczos over GF(2) to find a dependency among those vectors,
which corresponds to a subset, S, of all the relations, such that the product of the
right hand sides of the relations in S is a perfect square. So we have
H 2? = H y=a'? mod N
r(z,y)€eS r(z,y)€S

Taking the GCD of x + 2’ and N, we have at least a 50% chance of factorizing N.

The way to find lots of relations efficiently is by a sieving method. Let m = |v/N |
and Q(t) = (t —m)? — N. Then for each ¢, we trivially have (t —m)* = Q(¢) mod N.
Thus, Q(t) is a quadratic residue modulo N for each t. Also, Q(t) = t*—2tm+m?*—N
is about as large as 2¢+/N, which is small compared to N when ¢ is not too large.
So Q(t) is a relatively small quadratic residue modulo N. If Q(¢) is B-smooth, that
is, can be factored completely using primes in B, then we have a relation r(x,y) with

x=1—m and y = Q(¢). To identify such parameters ¢ efficiently, notice that p € B



divides Q(t) if and only if p divides Q(t & p). So we can locate all the parameters ¢
where p divides Q(t) by solving just one quadratic congruence (t —m)? = N mod p.
Remember that we have chosen p such that (%) = 1, so it has exactly two solutions.
When p = 4k + 3, the solutions are given by t = —m + N®*)/* mod p. When
p = 4k + 1, the solutions are more difficult to find, but there are efficient (but more
complicated) algorithms to do that. The divisibility of Q(¢) by powers of 2 is more
complicated and we do not discuss that here. The sign of Q(t) is just the sign of
(t—m)?—N.

The multiple polynomial variation of the QS, called MPQS, uses many quadratic
polynomials Q(¢) so that we only need to sieve for small values of ¢ for each polynomial.
Q(t) must be chosen such that it is a quadratic residue modulo N for each ¢ just like
before. Care must also be taken to make sure that Q)(t) takes small values (relatively

speaking). For details on MPQS, see [26].

The Number Field Sieve is the most efficient factoring algorithm available today.
There are two variations of NFS, the Special NF'S and the General NF'S. They differ
only in the first step, polynomial selection. The special NF'S can only factor numbers
of the form r°+ s since this form gives rise to very simple and good polynomials that
can be used for the sieving. For the general NFS, one has to search for a polynomial
that is as “good” as possible.

Two polynomials fi(x) and fy(z) must be chosen such that f;(m) = 0 mod N,
i = 1,2. Usually fo(x) = x — m, but it need not be. Also the polynomials must be
irreducible, but that is not a problem because if we find f;(x) to be reducible, then

we have just factored /N nontrivially.

We will assume f;(z) € Z[z] is monic and irreducible of degree d > 1 and assume
fa(z) = & —m. The restriction on f; being monic and f; being linear is to make our
discussion easier. To see how to remove these restrictions and other details about

NFS, please refer to [3].

In NFS, we work with the ring Z[«] generated by a root « of f;. One can ei-

ther consider Z[a] as a subring of the field of complex numbers or as a subring of



Z[X]/LZ]X], with @ = (X mod f;). Every element of Z[a] can be written uniquely
in the form Zf;ol a;of, with ag,a,,---,a4_1 € Z. Since we have m € Z satisfying
f(m) =0 mod N, there is a natural ring homomorphism ¢ : Z[a] - Z/NZ induced
by ¢(a) = (m mod N). Now, suppose we can find a non-empty set S of pairs (a, b)

of relatively prime integers such that the following are true:

H (a + bm) is a square in Z (1.1)
(a,b)eS
H (a + ba) is a square in Z[a] (1.2)
(a,b)€S

Then let z € Z be a square root of [[, ,cs(a+bm), and 3 € Z[a] be a square root of
[L(0pyes(a+ba). Since ¢(a + ba) = (a + bm mod N), we have ¢(5?) = (+* mod N).
Let y € Z such that ¢() = (y mod N). Then we have 22 = y* mod N, and we have
our congruent squares to factor N.

Several important issues need to be addressed before this can be put to work:
1. How are the polynomials f; and f, to be constructed?

2. How do we find the set S7

3. How do we find 37

4. How much time is needed?

Paper [3] answers all the above questions carefully. Here we only touch upon the
second question since that’s the most relevant one for us and it’s the most important
and time consuming step of the NFS. As with the QS, the construction of the set S
is done in two steps. First, sieving procedures are used to find a set T of pairs (a, b)
such that both a+ bm and a+ ba are smooth (smoothness for a + ba is defined below
in a similar sense as that for an integer). Next, one uses linear algebra over the field

GF(2) to find a subset S C T such that (1.1) and (1.2) are satisfied.



Let Fj(z,y) = y%&) f;(x/y) be the homogeneous polynomial corresponding to
fi(x), 1 =1,2. We say that a + ba is B-smooth if its norm N(a + ba)) = Fy(a, —b) is
B-smooth. For fixed u > 0, let

U={(a,b)|a,b € Z,ged(a,b) =1,|a] <u,0<b<u}.

We will look for T' C U with the properties mentioned above. U is called the sieving
region.

In NFS, we have two sieves. The linear sieve is simple. Assume B is the smooth-
ness bound. Then for each fixed integer b with 0 < b < u, we first initialize an array
of integers a + bm for —u < a < u. For each prime p < B, the entries in the array
corresponding to a = —bm mod p are retrieved one by one, and divided by the highest
power of p that divides them. These entries are then replaced by their corresponding
quotient after dividing out the powers of p. After doing this for all the primes p < B,
we check the array and those entries containing 1 or —1 correspond to B-smooth
a+ bm.

In practice, however, we do not sieve as described above because that’s too time
consuming, especially the division by prime powers. Instead, we initialize the array
with approximate logarithms of a + bm to some base. We subtract the logarithms
of the prime powers from the entries, saving time by not doing divisions. Then at
the end, we look for those entries with values close to 0. These are called candidates.
Because of all the approximations used, we need to factor the candidates by trial
division to find the ones that are smooth.

The algebraic sieve is more complicated. Again, let’s say B is the smoothness
bound. For each prime p < B, let R(p) denote the set of roots of fi(r) = 0 mod p,

that is,

R(p) ={re€{0,1,....p—1}]| fi(r) = 0 mod p}.

Then for any fixed integer b with 0 < b < w and b #Z 0 mod p, the integers a with
N(a+ba) =0 mod p are those with a = —br mod p for some r € R(p). Note that if



b = 0 mod p, then there is no integer a with (a,b) € U and N(a + ba) = 0 mod p.
Now for each fixed b initialize an array of integers N(a + ba) for —u < a < u. For
each pair (p,r) such that r € R(p), the entries corresponding to a = —br mod p are
identified and divided by the highest power of p that divides them. Then these entries
are replaced by the quotients. After this is done for all p < B, we find those entries
containing 1 or —1, which correspond to the B-smooth values of a + ba. Again, for

efficiency, we use the approximate logarithm technique mentioned above in practice.

Taking the entries (a, b) such that ged(a,b) = 1 and both a + bm and a + ba are
B-smooth, we get our set T'. Apply linear algebra over GF(2) now to find the subset
S. Here more complication arises. The problem comes from the fact that the norm
of € Z[a] being a square does not necessarily mean (3 itself is a square, although
when [ is a square, its norm is definitely a square. Fortunately, this can be solved
if we remember, for each prime p dividing N(a + ba), the value r € R(p) which is

“responsible for it”. For more details, see [3].

1.1.3 Large-Prime Variations of the MPQS and NFS

The QS and NFS algorithm both run much faster if we allow in our relations not
only those that can be factored completely using primes in the factor base, but also
those that may have a few large prime divisors outside the factor base but below
another slightly larger bound. Relations with large primes involved are usually called
partial relations and the ones with no large primes are called full relations. Partial
relations need to be combined before they can be used in the linear algebra step. A
lot of experiments have been done with the QS and NFS using large primes. For the
QS, as many as 3 large primes were used. See [16], [4] and [17] for details. For the
NFS, because we can distribute the large primes over two sieves, for example, three
for one polynomial and two for the other, as many as 5 large primes were used. See,

for example, [7] and [5].



First we explain how partial relations can be efficiently collected during the sieving
process. When sieving for full relations, only those candidates that have complete
factorization in the factor base are saved. Suppose that we want to find those relations
that have exactly 1 large prime (1-LP) between B and L (B < L < B?). Then after
the trial division, we check the remaining cofactor ¢. If ¢ < L < B2, then we have
a 1-LP partial relation because ¢ must be prime. As we can see, 1-LP relations are
found at almost no extra cost. That’s why QS and NFS with 1-LP always perform
better than the no large prime versions. To collect relations with 2-LP, we check
for those cofactors ¢ with B? < ¢ < L? < B3. If ¢ satisfies this condition, then it’s
either the product of two primes between B and L, that is, we have a 2-LLP relation,
or a single prime > B? > L, that is, we have a false report (useless relation). We
distinguish these two cases by applying a compositeness test on ¢, and in case of a
2-LP relation, we then factor ¢ to find the two large primes. Similarly we can do
k-LP with k£ > 3, but the factorization pattern of ¢ gets more complicated and we
may have more and more false reports. In fact, people have thought that letting &
go beyond 2 would make the cost of identifying those partial relations outweigh the
benefit we get from the partial relations, thus making it slower than the 2-LLP version.
See, for example, [7]. However, recent experiments have shown that the 3-LP version
of MPQS (called TMPQS) is indeed about 1.75 times faster than PPMPQS, the 2-LP
version of MPQS. We will explain why that is the case next.

It’s necessary to combine the partial relations first to find the so-called funda-
mental cycles before they are used in the linear algebra step. Essentially what one
does is to combine partial relations together to remove the large primes and hence
obtain full relations. The number of cycles as a function of the number of partial
relations was observed to behave as ¢; m? and ¢, m* respectively for 1-LP and 2-LP
partials, where m is the number of partials and ¢, ¢y are small constants [16, 1].
However, with more large primes allowed, the behavior of the number of cycles as a
function of the number of partials have shown some interesting sudden growth after

initially behaving according to a power law like before. This was first observed with



NFS [7], because there relations with more than 2 large primes can be found at very
little extra cost. Just recently, an experiment with the MPQS using 3 large primes
confirmed this interesting behavior again [17]. It is because of this sudden growth
of cycle numbers that we can overcome the extra cost in identifying partial relations
with more than 2 large primes. There is no theoretical explanation yet to this sudden

change of behavior of cycle numbers.

1.2 Smoothness
1.2.1 Smooth integers and the Dickman function

An integer n is said to be smooth with respect to y (or y-smooth) if all the prime
factors of n are < y. Smooth integers are important to factorization algorithms like
the Quadratic Sieve and the Number field Sieve because they are exactly what we
seek in the sieving process (the most time consuming part) in both algorithms. So
estimating the number of smooth integers available under certain conditions is very
important for the running time analysis of such factorization algorithms.

There are two excellent survey papers on this subject. K. Norton [20] gave a
comprehensive survey of the literature up to 1970. A. Hildebrand [12] covered all the
important work on the subject from 1970 to early 1990s.

Let U(x,y) = #{n < z : n has no prime divisor > y}. K. Dickman [6] was the
first to obtain an asymptotic formula for ¥(z,y). He showed that for any u > 0,

V] 1/u
lim Y,z

T—00 T

= p(u),

where p(u) is defined by the differential-difference equation up'(u) = —p(u — 1) for
u>1and p(u) =1 for 0 < u < 1. It can be shown that p(u) = = [ p(t) dt.
1.2.2 Computing the Dickman p function accurately

Using the fact that p(u) = I [ p(t)dt, one can compute p(u) simply using

numerical integration methods. However, the results obtained this way are not very
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good, especially when u gets bigger, because we need to do numerical integration
repeatedly and errors accumulate in the process.

We introduce Bach and Peralta’s method for effective calculation of the Dickman
p function [2] here. Notice that p is analytic on [m — 1, m] for integer m > 1, that is,
there is an analytic function p,,(z) that is equal to p(x) on [m —1,m]. So we have a
Taylor expansion for p(z) = pp.(z) = pp(m — &) on [m — 1, m],

o

pu(m — &) =Y ™l

1=0

(1)

i

)

Since pi(z) = 1 and po(z) = 1 — In(x), the coefficients ¢;’ and c§2 are completely

determined.

V=1, Y =0fori>o0,

1
682) =1 In(2), (;Z@) = for ¢ > 0.

(m)

For m > 2, the coefficients ¢; ’ can be computed by the following formulae [2]. For

1> 0,m > 2,
i—1 (m—1)
C.
L
— '~
7=0
For:=0,m > 2,
o (m)
(m) ! ¢
C =
0 m—1 jz_;j+1

The coefficients decrease exponentially: cl(m) < (3)" form > 2.

A more accurate method (based on the same idea of piecewise analytic function)
exists. See Marsaglia, Zaman and Marsaglia [18] for details. Instead of expanding
pm(z) at = m, the method of [18] expands p,(z) at m — . For our purpose, Bach

and Peralta’s method suffices.
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1.3 Outline of the Thesis

In chapter 2, we will give an extension of the Dickman p function and discuss
some properties of the new function. Numerical results and applications to the QS
and NF'S will be discussed in Chapter 3. Chapter 4 will deal with a problem posed by
J. L. Selfridge and A. Meyerowitz [25], the growth rate of a function connected with
a perfect square product in a short interval. It turns out to depend on the smooth

integer distribution in short intervals.
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2. k-Semismooth Integers

2.1 Background

An integer is called smooth with respect to y if all of its divisors are < y, that is,
its largest prime divisor is < y, and it’s called semismooth with respect to y and z if

its second largest prime divisor is < y and its largest prime divisor is < z.

The well known Dickman function p(u) describes the asymptotic probability of an
integer being smooth. Knuth and Trabb Pardo generalized the Dickman function to
analyze the size of the k-th largest prime divisor of n in [13]. Bach and Peralta gave
another nice generalization of the Dickman function in [2] to study the semismooth
integers. These functions play an important role in analyzing factorization algorithms
like the MPQS and NFS, and their one large prime variations, because the running
times of these algorithms heavily depend on the number of smooth (semismooth)

integers available in a certain range.

Since in current implementations of the MPQS and NF'S, relations with several
large primes are being used, it is desirable to generalize the Dickman function further
to analyze integers with at most k£ large prime divisors in a certain range and all other
divisors below that. We will call such integers k-semismooth integers, and would like
to find a function that estimates the asymptotic probability of an integer being k-
semismooth given the smoothness bounds y and z (see the definition below).The work
done by Bach and Peralta solved this problem for £ = 1 using Stieltjes integration.
Lambert [14] used the same method to solve the problem for k£ = 2. In principle, their
method should work for £ > 2, but it gets very complicated and it’s not practical to
carry out the analysis. We will use a different method here to solve this problem for

any k > 0. Our method also gives a stronger result in terms of the error estimate.
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Definition 2.1.1 An integer n is called k-semismooth with respect to y and z if the
largest prime divisor of n is < y and its (k + 1)st largest prime divisor (counting

multiplicity) is < z, that is, n has at most k prime divisors between y and z.

Following the notation in [13], we write an integer n as n = nyng -+ n,,ny >
ny > --- > n,, where the n;’s are prime divisors of n. So ny, is the k-th largest prime
divisor of n (counting with multiplicity). If n has fewer than k& prime divisors, then
let n, = 1. Also, let ng = oc for convenience.

Let Wy(x,y,2) be the number of k-semismooth integers < x with smoothness

bounds y and z, that is,

Uy(z,y,2) =#{n<xz:n <ymp <z}, k>0. (2.1)
This generalizes the following functions defined in [6], [2] and [13]:

U(r,y,z) =#{n <z :n <y,ng <z} =V(x,y,2);

U(z,y)=#{n<z:n <y} =VYo(z,y,y);
\Ijk(ray) - #{’I’L <x: Ny < ?J} - \I]kfl(xaxay)'

We will prove that
. Uy(x, 2t xf)
lim ——=

T—-+0C T

exists, for £ > 0, and the functions G (s, t) satisfy some interesting formulae. Before
we do that, we will briefly explain the generalizations of the Dickman function done
by Knuth, Trabb Pardo [13] and Bach, Peralta [2].

Knuth and Trabb Pardo defined a generalization of the Dickman function as fol-

lows:

pe(u) =1 [“(p(t = 1) = ppa(t = 1)) %, foru>1, k> 1; (2.2)
pe(u) =1, for0<u<l1, k>1;, (2.3)

pr(u) =0, foru < 0or k=0. (2.4)
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and proved that for £ > 1,

Uy (z, 2!/
lim @) )

z—r+00 T
by proving the following theorem:
Theorem 2.1.1 Let Vi (z,y) and pp(u) be defined as above, k > 1, then
Uiz, 2" = pe(u)x + ox(u)z/In(z) + O(u’z/(Inx)?), (2.5)
where
o) = (1 - 7)(pe(n — 1) — pi1(u— 1))

and vy 1s Euler’s constant.

Clearly, p1(u) = p(u).
In [2], Bach and Peralta proved that if we define
! s L dA
G(s,t) =F F —
50 =P+ [ P

where F(s) = p(1/s), then we have

Theorem 2.1.2 [f0 < s <t <1, then,

1 -1
U(x, 2t 2°) =2 G(s,t) + O n(s ) =z . (2.6)
s(1—t)lnz
Therefore,
/] t .8
G(s.1) = Tim L2527
T—00 xT

In [2], it was also proved that

s s t ! 5

An effective method for computing G(s,t) was also discussed in [2]. Notice that this
G(s,t) is equal to our Gg(s,t) with £ = 1.
Lambert defined a function Ga(s,t) [14] such that

lim Uy (x, 2t x®) — Wy (z, 2, 2%)

00 T

= GQ(S, t)

He also gave an effective method for computing his G (s, t). Notice that this function
Go(s,t) in [14] is different from our G(s,t) with k& = 2. More precisely, his Gy (s, t)
is actually our Gy(s,t) — Gy(s,1).
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2.2 Heuristic argument

In this section we heuristically derive properties that Gy(s,t) should have if we

\I}k(I,It,CBS)

assume at the moment that G(s,t) = lim, does exist. This argument

is similar to what Knuth and Trabb Pardo did in [13].

First we will (heuristically) show that

0Gi(s,t) s t 1
ot = Gra )7

- 2.7
1—t"1—t (2.7)

This will lead to our definition for Gy(s,t) in the next section.

Consider W (x, 2't21 25) — U, (x, 2', 2°), the number of integers n < x such that n,

t+At

is between 2! and x and ngy < z°, where At is a very small positive real number

and s < t are between (0 and 1. Any such integer n can be obtained by multiplying

t

a prime p between z' and z*4! by an integer m < £ < 2! with m; < p ~ 2,

SIE)

1

my, < z°. The number of such m is approximately ¥, (z'~* 2! 2*). So we have

Uy (2, 22 %) — Wp(z, 2ty 2%) = (w(22) — w(ah) Ty (2" 2t 2®). (2.8)
Using the Prime Number Theorem, we know that 7 (z!*4%) — 7 (2!) ~ %At, so plugging

this into (2.8) and dividing by At gives us

Uy, a2 2%) = Wy (w2t 0%) Wy q(a' 0t )

At xl-tt

Notice that

s

W (a2t 2®) Wy (', (xlft)l%t, (z!71)757)
xlitt - xlftt .

\I}k(I,It,CBS)

So letting  — oo gives us (assuming lim, exists and is equal to G(s,t))

Gr(s,t+ At) — Gi(s, t) Gra(t%5,75)
At ~ t '

Letting At — 0 gives us (2.7).

Now let’s show (again heuristically) that

0Gk(s.1) _ <Gk( 5 L) G (2 L)) é (2.9)

0s 1—s'1—5 1—s"1—s
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This is a generalization of (3.7) in [13], and it will lead us to a generalization of (4.2)
in [13]. The argument is similar to what we just did for (2.7).
Consider Wy (x, 2', 2°72%) — Wy (2, 2', 2°), the number of integers n < z such that

sTA5 where As is a very small positive real

ny < x' and ny,; is between 2 and z
number and s < t are between 0 and 1. Any such integer n can be obtained by
multiplying a prime p between x° and z°t2* by an integer m < % < ' with
my < 2t, mp < p=a® and my > p ~ 2. The number of such m is approximately

Uy (x' = at a®) — Uy (2%, 2%, ). So we have

Wy, 2!, 2°F85) — Wy (z, 2, 2¥)

~ (m(@TA) — m(af)) W (a0 2t ) — Wy (a0 2t af).

The rest of the argument is similar to that of (2.7). First use the Prime Number
Theorem to approximate m(z*T2*) — 7(2*), and divide both sides by zAs. Then

letting © — oo, As — 0 gives us (2.9).

2.3 Rigorous proof

The integral form of (2.7) gives us the following

Definition 2.3.1 Let 0 < s <t, Go(s,t) = F(s) = p(1/s), then for k > 0 we define

t
s T . dr
Ga(s,1) :F(s)—i—/ Goy(—— Ty
s 1—-71—-7" 71
For the error term estimate that we are going to get, we introduce a function

)\k(g,t)

Definition 2.3.2 Let 0 < s <t, A\o(s,t) = (1 —v)F (%), and for k > 0,

1—s

)+ /st)\kl(ls T ) dr

—7r1l—-7"7(1—-7)

M5, 1) = (1 7)F(

1—s5
We will prove that
/] t s
Gels. 1) = Tim B 2027

Tr— 400 €T

In fact, we will prove an even stronger result that gives us the main error term, but

we need to prove the following lemma first:



Lemma 2.3.1 For0<s<t<1, k>0 andp prime in the summation below,

x ot x dy x
g W (— )= W (— N—+0 )
k(pap:x) / k(yayax )ln + ((IDZE)Q)

s <p<zxt z®

Proof We will use the Prime Number Theorem in the form 7(z) = li(z) + O(-2~)

for any ¢ > 0, where

li(z) = /OI lnd(if) B 11—%(/016 lnd(if) * /Ii lnd(tt)) '

Our proof is based on the ideas of Knuth and Trabb Pardo [13].

Let Sg(z,y,2) ={n <z :ny <y,ng1 < z}. Then

t

T s ’ z N
> nCpa) - [ wlaaeit

v epeat s Y Iny
It
dy
D n- [ (Y 0
zs<p<zl! MmES) %,p,:ﬂ‘s) z® nESk(ﬁ,y,zs) Y
CBt
dy
D IND S BN I DI
s <p<azt nS% Is ngf Y
n1<p n1<y
Np41 <x° Ng41 <x*
min(Z, zt) d
" Y
S N (D SRR B
1<n<zl—s ni<p<Z max(ni, 2*)
n1<min(Z, zt) zs<p<azt
g1 <z’
— Z (w(min(f,xt)) — m(max(nq, %)) + O(1)
1<n<z'~* "
nlg_min(%,:rt)
g1 <z’

~i(min(*, 21)) + li(max(m, +*))

B z/n
- 1<7§1s O ey

n1<min(£, zt)
ng41<z*

B x/n B x 1
B Z O(lnc(.rs)) B O(lnc(.rs)) Z n

1<n<z!™s
ni1<min(7, xt)
ng41 <z’
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Letting ¢ = 3 gives what we need. [ ]

Now, we are ready to prove our main theorem:

Theorem 2.3.2 If0 < s <t < 1, Wi(x,y,2), Gi(s,t) and \(s,t) are defined as

above and k > 0, then we have

X

(lnx)Q)'

Uy (z, 2", 2%) = 2Gr(s,t) + M (s, t)ﬁ +0(

Proof By induction on k.
For k = 0, the statement is simply a corollary of Theorem 2.1.1.
When k£ > 0, we have

(2,2’ 2°%) = Z#{nﬁx:m =p}+ Z #{n<x:nm =p g <2°}

p<zs x8 <p<zt

For the first sum, we have

Z#{”§$in1:p}

p<z*
= #{n<z:n <z}

= U(z,z")

1, x
= aF - .
’ (S)+01(S)lnx+0 52(111:1:)2)

For the second sum, we have

Z #{n<z:n =pnpg <2°}

s <p<zt
- > #{m <~ my < pomy < )
s <p<zxt p
X
- Z \Ijkfl(_apa'rs)
s <p<zt p
t
T x dy x
= W (= N—+0
/xs ’ l(y’y’x)lner ((11136)2)
! T ]“‘l{ 1511]11 d
T T nz—lny €T nr—Iny y €T
- v (L (2 (2 Y 40 .
/zs ’ 1(1/ <y> <y> )lny <(lnfr)2>



By induction, we have

Iny slnz

€T €T Inz—Iny €T Inz—Iny €T 5111;1j lny
Wea(= | = — = “Gj
’ 1(97 (?J) 7(?J) ) Y k l(lnx—lny’lnx—lny)
z/y slnx Iny
Py
+ In(z/y) g 1(111:L"—11ﬂy’ln:}:—lmy)

Iny
< >1nzlny <x> lnz lny dy
k— 1 [ )
Y Iny

)2
Iny

So,

»e

slnz Iny

lnT—lny Inz —Iny

QI’%

t

8

z/y slnx Iny dy

* /xs In(z/y) k- 1(lnm—lny’lnm—lny)lny

" z/y ) dy
+LSO@MWMJHW'

Iny
Inz

Making a change of variable, 7 = in the above integrals, we get

t

Iny
T €T T Inz—Iny T la: 1 Yy dy
/ (=, <—> 7<_> )
@t y \y Y Iny

t
: d
_ x/Gk S T )7'
s 1—7"1—7"71
x t S T dr

+ — [ Al )

Inz l—7'1—7"7(1-71)

A

.’I?

(lnm)Q)'

+ O
So we have

Uy (z, 2", 2°)
a(

A T
x 1 t s T dr
* m(al(s)—l_/s Ak*l(l— 1—7 T(I—T))
* O((ln:r) )
= 2Gy(s,1) + M, t)ﬁ +0( (111'“;)2).

This proves the theorem.
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2.4 Some properties of Gj(s,t)

First of all, let’s prove that Gy(s,t) does satisfy (2.9). Instead of proving (2.9)
directly, we will give a proof of its equivalent integral form.

The following lemma can be proved just like Lemma 2.3.1.

Lemma 2.4.1 For0<s<t<1, k>0 andp prime in the summation below,

xT

x ‘ x dy x
E U, (=, 2t p) = U (=2t y)—=+ 0 :
k(p:xap) / k(y’x’y)lny+ <(1HT)2>

s <p<zxt z®

Theorem 2.4.2 Given Gi(s,t) as defined in the previous section, we have

t
£ t £ t d&
G t) = F(t) — G — ) — Gy_ —)) —. 2.10
(ot = P = [ (G ) — Gl ) T )
Proof ForO0<s<t<1,
\Ij(xa'rt) o \Ijk(xamtaxs)
= #{n<x:n <alng >}
= Z #{n <z :ny <a'ingy =p}
s <p<xt
T
= > #H{m<Zimg <ol omg < pomy > p)
s <p<zxt p
T T
- Z (\Ijk(_,xt’p) o \Ijkfl(_a Ttap))
s <p<axt p
It d
- / (\Ijk(EaTtay)7qjk71(£aTtay))—y+O( & 2)
P Y Yy Iny (Inx)
+ tlnx Iny tlnzx Iny
T Inz—Iny Inz—Iny Inz—Iny Inz—Iny d
L T s (T ()7
o Yy \y Y y \y Y Iny
T
O(——).
T ((lnx)Q)
Making a substitution £ = E_i in the integral, we have
\Il(xaxt) - \Ilk(xaxt:xs)
t : £ : e atde
= [ et @ T S @ T )




Dividing by x and letting x go to oo, we get

F(t) = Gulst) = [ Gl 7o) = Goa(Fop o)

e

that is,

3 t 3 t
7€a1—7€) 7Gk71(17§7ﬁ

Gulsit) = F(t) -~ [ (G5 )

™|

and this concludes the proof.
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Remark: (2.10) is a generalization of (2.2). Notice that Gy(s,t) = ppy1 () if ¢ > 1.

Then when we let ¢ = 1, u = land set the index k to k — 1 in (2.10), we get exactly

(2.2).

If we start with the definition of Gx(s,t) and plug in Gj_1(s,t) recursively until

we reach Gy(s,t) = F(s), we get

Gk(S,t)

// Y

-7 (I—7r)(1— 72)---(1 Th—1)

Now if we define Iy(s,t) = F(s) and I;(s,t)

it’s easy to see that Ij(s,t) =

Tk—1

F< s >d7’k---d7'2d7'1
I-m)(A=7) - (1=m)) 7 7n
) L for k > 0, then

. d7—2 dTl

(A=r)(A=72)-(=7f_1)

/k : g ((1 -n)(1 - ;) (1= Tk)> dT;k."

*ToTy
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and we have just proved the following:
Gi(s,t) =Y _I(s,1). (2.11)

Remark: I;(s,t) is in fact the asymptotic probability for an integer n < z to have

exactly k large prime divisors between z* and 2!, and all other prime divisors < z°.

In other words, I(s,t) = lim, o \I”“(I’It’ws)ff’“*l(gﬁ’xt’xs). Notice that the function

Go(s,t) defined by Lambert [14] is in fact our Iy(s,t).
Because of the above interpretation of Iy (s,t), we expect it to have the following

properties: Assume 0 < s <t <1, k>1.

1. If s > , then I(s, t) = 0, therefore, Gy(s,t) = Gy_1(s,t).

2. Ift > 1— (k—1)s, then I(s,t) = It(s,1 — (k — 1) s), in other words, if we fix

s, then Ix(s,t) as a function of ¢ is constant on [1 — (kK — 1) s, 1].

Before we prove them, we first give a natural explanation of the properties given
the meaning of I;(s,t). The first property simply says that if n < z, then n can’t
have k factors > z® if s > 1/k because that would imply n > z, a contradiction! The

second property says that if n < x has k prime factors > 2°, then the largest one

—(k—1)s k—1)s

must be < z! , because if not, then n > (2°)F! z' = 1z, a contradiction
again!

To prove the properties, we just use the definition of I;(s,t) and induction.

Proof For k = 1, the first property is true because F(*-) = p(:7) = 0 when

1—7 s
T>s52>1.
When k£ > 2, s > % implies that when 7 > s, = > - > —_so by induction
; - 5 Z k-1
I (£, 1) = 0, therefore Ii(s, 1) = [/ I 1 (3%, 1) = 0
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The second property follows from the first one because, when 7 > 1 — (k — 1) s,

so I 1(+%,=) =0 and

1-771-7

s 1
we have %= > —,

T dT

t S
]k(S,t) = / Ik,l(;,l—)

-7 T

1=(k=1)s s T dT ! s T dT
— I o (—— = 2o Lo (2 T &7
/s g 1(1—7’1—7) T +_/1(k1)s g 1(1—7’1—7) T

1=(k=1)s S T drt
- I (—— 1 )&%
/s A g

-7’7
= I(s,1—(k—1)s).
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3. Numerical results and applications
3.1 Preparation

To compute G(s,t), the simplest way is to use the definition and numerical in-
tegration methods. If we have a very precise table of Gy 1(s,t) available, then we
can start with this table and use numerical integration methods to calculate G(s,1).
However, when k gets bigger, the assumption of having a precise table of Gy_1(s, 1)
available is hard to satisfy because as k gets higher, the results obtained using nu-

merical integration become less accurate.

We will present a better method for computing G(s,t). Just like Bach and
Peralta’s method for computing their function o(u,v) = G(%, %), which is equivalent
to our G1(s,t), and Lambert’s method for computing his function Gs(s,t), which is
equivalent to our I5(s,t), we will utilize the fact that the Dickman function p(z) is

piecewise analytic on the interval [k, k + 1] for every integer k.
Since we have Gg(s,t) = Z?:o I;(s,t), we will concentrate on computing Ij(s,t)

instead from now on. Recall that we have

IkSt
Tk—1

AT

F < S ) di . d7—2d7—1
t=m (=) (=70 (1= Th_1) (1 771)(1 *72)"'(1 *Tk) Tk~ - ToTy

B / / < S ) dry - - - dmodn
(1—m)1—m)-(1—7) Tk ToTy

(11,72, ,Tk)ED

where the domain of integration D is defined by
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S 1
STQS )
]_*7'1 ]_*7'1

S T2
ST3§ )
(1=7)(1 —m) 1—17
S Th_
<7<

(].*7'1)(].*7'2)"'(].*7’]9,1) I*kal‘
Let wy =7 and w; = 7;(1 — 7)(1 — 1) --- (1 — 7;_1) for 2 < i < k. Then under this

map D is transformed to D'

w
VAN
=
=

=
VAN

o~

s <wy < wy,

w
A\
g

N

(VAN

We—1-

So making such a change of variables in the above integral gives us

Ii(s.1) = / | ( : )dww'dw?dwl
1—w —wy— -+ — wyg W, * + * Woll)q

wl,wg, . wk ED’
B w1 Wh—1 1—w; —wy — —w \ dwy dwsy dwy
wy, wy wy

When k = 2, we have I,(s, ) f [ p(im=wz ) dus duy - Noticing the symmetry

w2 w1

in the integrand, we can change the integration limits to get

1 [t 1—w; —wy\ dwy duy
- 5 p )
s s S Wo U1

which is exactly the formula proved by Lambert in [14].

Recall that p(z) is analytic for z € [m — 1, m] for an integer m. So if we divide

l—w)—wg—-—

the above integral into regions where .

Yk ¢ [m—1,m| for some m, then we
can replace p with its Taylor expansion, and then be able to integrate term by term.
To make these regions where p is analytic more amenable, we make another change

of variable in the above integral.
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Let u; = w; +w; 1 + -+ wg for i =1,2,---  k, and ug,, = 0 for convenience.
This defines a map ¢ : R¥ — R¥ by é((wy, wo, -+ ,wy)) = (u1,ug, -+ ,uy), and we

have

11— .
I (s, t) = //p( ul) - duy, dudeI _ ‘
S (up — 1) -+ - (ug — ug)(ug — ug)
B(D")

This formula can be used to calculate Iy (s,t). We shall give an example for k = 3
in the next chapter. The same principle works for higher (and lower) k, while the
first step, figuring out ¢(D’) explicitly using inequalities, becomes quite complicated

when k > 4, at least for hand calculation.

3.2 Calculating I5(s,t)

First of all, we need to express ¢(D’) using inequalities which can give us explicit
integration limits. In other words, if we integrate over wus first, then us and u;, we
should have u; bounded by constants, us bounded by expressions involving only u,
and uz bounded by expressions involving u; and us.

Since s <wy <t, s <w;, <w; 1,7= 2,3, we have

s< up—uy <t (3.1)
$< uy —uz < Uy — Uy, (3.2)
5 < Us < uy — us. (3.3)

We can easily derive from the above inequalities that

3s < wuy <3t (3.4)
2

25 < wy < UL, (3.5)
1

s< uy < U2 (3.6)

(3.2) implies that 2uy — u; < ug < up — s, together with (3.6), we have

1
max{s, 2us — u; } < uz < min{§u2, ug — S}
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Since %Ug < uy — s, min{%u% us — §} = %’UQ, which means
max{s, 2us — u; } < uz < Sl
Therefore,

oIf28§u2§’“T+sthenS§u3§%u2.

o If “17“ < g < %ul then 2uy — uyp < uz < %ug.

In the case 25 < uy < B2 notice that (3.1) implies u; —t < us < uy — s, and we

have
U+ S

max(u; — t,2s) < ug < 5

Using this together with 3s < wuy < 3t, we get
e If 3s <wuy <2s+tand 2s <uy < ulT“, then s < uz < %uQ.
o [f2s+t<wu; <s+2tand u; —t <uy < ’“Tﬂ,thensgu;; < %UQ.

In the case ulTJ“S <y < %ul, similar reasoning gives us

o [f3s <wuy <s+ 2t and “17“ <y < %ul, then 2uy — uqp < uz < %uQ.

° Ifs+2t§u1§3tandu1—t§u2§%ul,then2u2—u1§u3§%u2_

So we finally have that ¢(D') = D; U Dy U D3 U Dy, where

U+ S
Dy = {(u1,u9,uy)|3s <uyp <2s5+1,2s <uy < !

1
s < ug < §ug},

Dy = {(u17u2’“2)|25+tﬁu1§5+2t,u1—t§u2§“1"‘8

1
;S S us S 5“2}7

Uy + 8

2 1
D3 = {(uj,us,uy)|3s < uy < s+ 2t, <y < gul, 2y —uy < ug < 5'&2},

2 1
Dy = {(uy,ug,ug)|s +2t <wuy <3t,u; —t <y < §U1;2U2 —u; <uz < 5“2},
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and D;, 1 = 1,2, 3,4 do not overlap with each other except on the boundaries. There-

1—uy dusdusduy
I3(s,t) =
3(5,1) /// 4 s )71,3(11,2 — ug)(uy — ug)
Dy
1-— U1 du3du2du1
+/// 4 s )11,3(u2 — ug)(uy — ug)
Do
1-— U1 du3du2du1
_|_
///p( S )U3(U2 - U‘;)(Ul - U2)
D3

1—uy dusdusduy
[ -
s Tuz(ug — ug)(uy — ug)
Dy

Since we have D;,1 =1, 2, 3, 4 defined above explicitly by inequalities, we can rewrite

fore,

these integrals with explicit integration limits and compute them. We will give a
detailed analysis for the integral over D; as an example. For Dy, D3, Dy, the process
is similar.

Given the integral

/// (1 — ul) dusdusduy
P ug(ug — ug)(ug — usy)
D

u1+s
/2s+t/ 3 /%“2 (1 — Uy dusdusdu,
= p ;
3s 2s Js S uz(ug — uz)(uy — up)
we approximate p(1=“1) in the integrand using the Taylor expansion of p mentioned

S

in Chapter 1. Let m = [-=%], and £(u;) = m—1=%, on an interval [a, b] C [2s, 25+1]

of u; where m is a constant. We have

1— L1 e m . N m .
p(——) = plm = &(ur)) = Z< ()’ = Z‘ ()’ + E,
where
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So we have
/b /UI;S /%“2 (1 — U dusduydu,
a 2s ] P S U3(U2 - u?)(ul - UZ)
00 b oaults 1 .
= > " / / 2 /2 2 ) duzduydu,
' Ja Ja s uz(ug —uz)(ur —ug)
N b u12+s %UQ (m o ﬂ)z
~ Z Cl(m) / / / 5 dUgdUgdUl
i—0 a J2s $ uz(ug — uz)(ur — uy)
Al bt 1—u In(%2-2)
m — U1y s
= ZCE )/ / (m — ) (o )du2du1
i—0 a 2s S U2\ Uy U9
N b 2
_ (m) 1wy (In2) 1 Uy + S (8
;Q /a(m - ) [ 5 + In( . ) In( 5 )
. Uy — S . S du1
—|—L12(— ) + ng( —_—

up — s’ | uy
where

Lia (2) :/Owdt

t

is the second order polylogarithm function, also called the dilogarithm .

3.3 Results and implications for parameter choices of MPQS and NFS

Mathematica programs to compute I3(s,t) are given in the Appendix. Figure
3.1 shows the shape of this function in the region [0,1/3] x [0,1/3]. Figures 3.2 to
3.6 give us closer looks at the behavior of the function. Table 3.3 gives values of
o3(u,v) = I3(1/u, 1/v) at integral points with 4 < wu <20, 1 < v < 10.

[t’s clear from the graphs that when s is fixed, I5(s,?) increases as a function of
t, but for ¢ fixed, it’s not monotonic in s. If ¢ is fixed, I3(s,t) as a function of s will
increase initially with s, but after it reaches the peak, it starts decreasing.

The shape of I3(s,t) closely resembles that of I5(s,t) (see [14]), we expect that
to be the case for Iy(s,t) with £ > 4. So although the discussion below concerning

the parameter choice for MPQS and NFS is for the 3-LP variations, we expect to

!Dilogarithm sometimes also refers to Liy(1 — 2)
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have the same kind of results for £ > 4 provided that we have good numerical values

available for I;(s,t) with k& > 4.

Figure 3.1. I3(s,t) with 0 <s<1/3,0<t<1/3

We will analyze the parameter choice problem for MPQS here, using the latest
record-breaking (for MPQS) factorization of n = 2,1606L.c135 as an example [17].
We first give the actual parameters used in the factorization (from [17]), then examine
whether these choices are optimal. The factor base size was chosen as 555 000, so B
= 17 157 953 was the largest prime in the factor base. The large prime bound L = 23°
and the sieving range was —17158000/2 < t < 17158000/2. These parameters were
determined experimentally. Initially, a set of possible values were chosen (using past
experience with the algorithm), and sieving experiments were conducted with these
different parameter values. The best performer among these were used in the actual
sieving. It was noted in [17] that the sieving range only slightly affected the yield
of full and partial relations, with shorter sieve intervals producing somewhat higher
yield.

If we fix the sieving range for the moment, we have two important parameters

that may affect the algorithm, B and L. In the above setting, most of the numbers



Table 3.1
os(u,v) = I3(1/u,1/v) for 4 <u <20,1<v <10

U 1 2 3 4 5 6 7 8 9 10
4 1.48863e-2 | 1.48863e-2 | 3.96814e-3 - - - - - - -
5 7.12659e-2 | 6.80954e-2 | 1.88411e-2 | 9.42377e-4 - - - - - -
6 1.40822e-1 | 1.23824e-1 | 2.87082e-2 | 2.22512e-3 9.01503e-5 - - - - -
7 1.98437e-1 | 1.57745e-1 | 2.79713e-2 | 1.91224e-3 1.31608e-4 5.53028e-6 - - - -
8 2.40073e-1 | 1.70494e-1 | 2.23729e-2 | 1.08903e-3 7.2448e-5 5.59516e-6 2.5458e-7 - - -
9 2.69038e-1 1.70185e-1 1.64852e-2 | 5.08494e-4 2.63569¢-5 2.15762e-6 1.90899e-7 9.42544e-9 - -
10 | 2.88994e-1 1.63447e-1 1.18528e-2 | 2.15634e-4 7.72096e-6 5.48512e-7 5.50327e-8 5.49599e-9 2.92057e-10 -
11 | 3.02644e-1 | 1.54188e-1 | 8.55239e-3 | 8.76134e-5 2.00327e-6 1.10884e-7 1.04466e-8 1.24077e-9 1.37267e-10 | 7.77771e-12
12 | 3.11838e-1 | 1.44382e-1 | 6.27255e-3 | 3.50492e-5 4.84851e-7 1.95161e-8 1.56555e-9 1.84548e-10 | 2.51265e-11 | 3.02864e-12
13 3.1784e-1 1.34916e-1 | 4.69872e-3 | 1.39809e-5 1.12649e-7 3.14533e-9 2.02085e-10 | 2.15865e-11 3.0345e-12 4.6167e-13
14 | 3.21523e-1 1.26135e-1 | 3.59738e-3 | 5.58863e-6 2.55185¢-8 4.78114e-10 | 2.35982e-11 | 2.16063e-12 | 2.87691e-13 | 4.65182e-14
15 | 3.23502e-1 1.18135e-1 | 2.81133e-3 | 2.24109e-6 5.68072e-9 6.97564e-11 | 2.56806e-12 | 1.94103e-13 2.3249e-14 3.6777e-15
16 | 3.24215e-1 1.10898e-1 | 2.23805e-3 | 9.00848e-7 1.24724e-9 9.8679e-12 2.65309e-13 | 1.61185e-14 | 1.67775e-15 | 2.47298e-16
17 | 3.23981e-1 | 1.04367e-1 | 1.81097e-3 | 3.62491e-7 2.7045e-10 1.36125e-12 | 2.63237e-14 | 1.26089e-15 | 1.11296e-16 | 1.48017e-17
18 | 3.23036e-1 | 9.84702e-2 | 1.48648e-3 | 1.45822e-7 5.7937e-11 1.83686e-13 | 2.52645e-15 9.4074e-17 6.91693e-18 | 8.11335e-19
19 | 3.21555e-1 | 9.31364e-2 | 1.23551e-3 | 5.85742e-8 | 1.22605e-11 | 2.42862e-14 | 2.35594e-16 6.7491e-18 4.07936e-19 | 4.15042e-20
20 3.1967e-1 8.82996e-2 | 1.03829e-3 | 2.34698e-8 | 2.56242e-12 | 3.14902e-15 2.1404e-17 4.68096e-19 2.3031e-20 2.00733e-21

1€



Figure 3.2. I3(s,t) with 0 <s<1/3,0<t<1/3

Figure 3.3. I3(s,t) with 0 <s<1/3,0<t<1/3
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Figure 3.4. I3(s,t) with 0 <s<1/3,0<t<1/3
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Figure 3.5. I3(s,t) with 0 <s<1/3,0<t<1/3
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Figure 3.6. I3(s,t) with 0 <s<1/3,0<t<1/3
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Figure 3.7. I3(s,0.3) with 0 < s < 0.3
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Figure 3.8. I3(s,0.1) with 0.06 < s < 0.1
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Figure 3.9. I3(s,0.121273) with 0.08 < s < 0.12
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Figure 3.10. I3(0.2,¢) with 0 <t <1

that we are sieving have roughly the same size as © = M *+/n = 2.93322 x 10™, where
M = 17158000/2 is half of the length of the sieve interval. The corresponding s is
about 0.0971495, and ¢ is about 0.121273. If we fix ¢ at this value, and draw I3(s, t) as
a function of s, we have Figure 3.9. It is quite clear from the figure that s = 0.0971495
is not the best choice, at least if we want to get a better yield of relations with 3
large primes. When s is about 0.107, we have the highest I3(s,t) value. One might
argue that this could result in a loss in the 2-LP and 1-LP relations, (full relations
are actually going to gain a lot from this increase of s), however, calculating I5(s,t)
and I;(s,t) at these values, we see that we actually should have more 2-LP and 1-LP
relations too. Another interesting reason that we might want to maximize the 3-LP
yield is that, for 3-LP relations, we are expecting to see a sudden increase in the
number of cycles as a function of the number of partial relations. Higher yield in the
3-LP relations will take us to this sudden increase quicker and thus reduce the time
needed for sieving. Therefore, taking s &~ 0.107 should almost certainly produce more
relations, full or partial, but that still does not mean a shorter running time, because
one must also take into account the fact that, with a higher s, we have a larger factor

base too, therefore, we will need more relations to begin with. A rough estimate
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shows that the factor base would be about 4 to 5 times larger if we take s to around
0.107. The increase in the full relations are much more than that, in fact, we should
have about 30 times the original number of full relations. For partial relations, we
should be concerned about how many fundamental cycles they can produce instead
of the actual number of relations. Even if we do not consider the sudden increase
in the cycle number, because of the power law, the yield of cycles should still grow
much faster than 4 or 5 times when the number of relations doubles, which is roughly
the case for the 3-LP relation in this case. Therefore, we conclude that the actual

parameters used in factoring 2,1606L.c135 are quite far from optimal.

From this, we propose the following parameter choice procedure for future factor-

izations with MPQS and NFS:

1. Determine the size of the numbers that we expect to be sieving. This will
depend on the number we are trying to factor, which algorithm we use as well

as how large the sieve region will be.

2. Determine the large prime bound L, that is, the parameter ¢. This should be

chosen as large as possible given the available computing resources.

3. Choose s to maximize Iy (s,t) for the moment, where k is the number of large
primes that will be allowed in a partial relation. Then check the values of I;(s, ?)
for 7 = 1,...,k — 1 to make sure that this s is not too bad a choice for the

fewer large prime partials.

4. With the above s, find the largest prime in the factor base and the size of the
factor base. Determine whether the factor base is acceptable with available

computing resources. If not, choose the maximum affordable s.

5. Finally, vary the parameters slightly and conduct sieving experiments to deter-

mine the best choice.
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With the program we have for computing I3(s,t), we can do this for £ = 3. We will
need to have an effective method for computing I (s, t) first before we can utilize this

procedure in practice for k£ > 4.

3.4 How good are the approximations?

Since Gg(s,t), Ix(s,t) are defined as limit functions when integers tend to infinity,
a natural question that one might ask is, how close are the approximations when
used to predict the number of smooth, k-semismooth integers in a certain range?
This section gives some evidence that we have reasonably good matches when the
integers are relatively big.

We factored the integers in the interval [10'® — 10° 10" — 1] completely and com-
piled the tables below. Table 3.2 gives the total number of integers that have exactly
3 large prime factors between y and z for different choices of y,z. Table 3.3 gives
I3(s,t) * 10° with s = In(y)/In(10'), ¢ = In(z)/ In(10'%), which is the expected num-
ber of such integers. As we can see, they are very close to each other as soon as the

count gets reasonably big. The relative errors are mostly < 10%.



Table 3.2
Number of integers in [10' — 10°,10" — 1] with exactly 3 prime divisors between y
and z and all other prime divisors < y

39

z
Y 4000 | 6000 | 8000 | 10000 | 20000 | 40000 | 80000 | 100000 | 200000
2000 ) 22 48 80 259 507 902 1066 1653
4000 - 1 8 18 92 230 469 066 926
6000 - - 0 3 40 129 293 363 631
8000 - - - 0 17 73 189 244 447
10000 - - - - 9 52 143 189 364
20000 - - - - - 8 34 57 139
Table 3.3
I3(s,t) * 10° with s = In(y)/In(10'®), ¢ = In(2)/In(10")
z
Y 4000 | 6000 | 8000 | 10000 | 20000 | 40000 | 80000 | 100000 | 200000
2000 | 7.28 | 29.31 | 59.34 | 93.41 | 272.50 | 571.2 | 991.24 | 1152.11 | 1714.64
4000 - 1.65 | 825 | 18.75 | 92.52 | 244.65 | 488.23 | 587.32 | 945.36
6000 - - 0.57 3.1 36.3 | 127.95 | 295.07 | 366.66 631.7
8000 - - - 0.25 15.25 | 74.51 | 197.99 | 253.20 | 462.48
10000 - - - - 6.37 45.94 | 140.60 | 185.18 | 356.51
20000 - - - - - 0.16 37.48 56.91 136.57
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4. Smooth Integer Distribution in Short Intervals
4.1 Introduction

In this chapter, we will study a problem posed by Selfridge and Meyerowitz [25].

The problem is about a function f defined as follows:

Definition 4.1.1 Given integers k > 2 andn > 0, let f(n, k) be the smallest positive
integer t so that there is a subset of k distinct integers in the interval [n,n + t] whose

product is a perfect square and both n and n +t are included in the set. Define f(n)

to be the minimum of f(n,2), f(n,3), ...

Problem: Find good estimates for f(n).

For each k > 2 and n > 0, f(n, k) is well-defined since there are k distinct integers
> n, namely n, 4n, 9n, ..., (k—1)*n, k?n if k is even, or n, 4n, 9n, ..., (k—1)*n, k?n?
if k is odd, whose product is a square. So f(n, k) < k*nif k is even and f(n, k) < k*n?
if £ is odd. Of course, this is a gross overestimate, f(n, k) should have much smaller
values most of the time. For example, f(8,3) = 10 since in the interval [8,18], we
have 3 integers, 8,9, 18, that form a square product and its easy to check that the
length of the interval cannot be any shorter.

Selfridge and Meyerowitz have shown [25] that liminf, . f("f), and therefore

<1/7
liminf,, fé(/%) is bounded. We will briefly present their ideas here.

If we choose integer x such that 22 — 1 is twice a square, then the following three

integers have a square product:

2(4x* —2? —2)* = 322° — 162° — 302" + 822 + 8,
2(z% — 1)(z* + 1)(42* — 1)? = 322% — 162° — 302" + 162 — 2,

20%(2% 4+ 1)(42* — 3) = 322% — 162° — 302" + 1822
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If we let n, = 2(42" — 2? — 2)? = 3228 — 1625 — 302" + 82% + 8 and z, = 102% — 8,
then we can see that f(n,,3) must be < z, since in the interval [n,, n, + z,|, we have
those three integers above that have a perfect square product. Notice that on the
right hand side, all three expressions agree on the high order terms and differ only
on the 22 and constant terms. So the difference between the last and the first integer

= 2, ~ ¢¥/ng. So we have f(ng,3) < z, ~ c¢{¥/n, and

10

V32

~ 4.20 .

CcC =

Now to show that liminf,_ %\/ﬁg) is bounded, all we need to prove is that in-

finitely many such n,, or & with 22 — 1 being twice a square, exist. So now the
question is how many integer solutions 2> — 1 = 2y? has. This is exactly the Pell
equation 22 — Dy? = 1 with D = 2, and it is well known that infinitely many integer
solutions exist. See, for example, [19].

This proof is based on explicit construction of 3 integers in an interval of length
that is only the fourth root of the size of the integers. Since the definition of f places
no restriction on the number of integers to form the product, it’s reasonable to hope
for a better estimate of f using possibly more integers.

To use the results on smooth integer distribution in short intervals, we modify
the definition of f to remove the constraint that the beginning and the end of the
interval must be included in the subset of integers. Also we extend the domain of the

function to all real numbers z > 0. We have

Definition 4.1.2 For any real number x > 0, let g(x) be the least positive real number
z so that there exists a subset of at least 2 distinct integers in [x,x + z| whose product

s a perfect square.

Clearly, for integer n, g(n) < f(n). We will first obtain good estimates for g(x), and
then show that similar results can be extended to f(z).
In the next section, we will first give results on the smooth integer distribution

in short intervals. The length of the “short interval” for which we can derive a good



42

approximation of the number of smooth integers greatly impacts the growth rate of
the function g. The shorter such an interval is, the better estimate we can get for g.
The first result we will prove is that for any a > 0, g(z) < 2 for “most” large z, in
a sense which will be defined later. Then, with a little more complication, we further

improve this to get that g(x) < exp((In(22))"/% + (In(2 x))>/+¢) for “most” large =.

4.2 Estimates for ¢g(z) and f(z).

The reason that we can use smooth integer distribution to estimate g(x) better is
because we can view the process of finding an integer subset of [z, z + 2| to form a
square as a sieving process, just like in the Quadratic Sieve and Number Field Sieve
algorithms. If we can find enough y-smooth integers in the interval, then we can find
dependencies modulo 2 among the exponent vectors of all the y-smooth numbers we
have, and thus get a square. So we need to estimate the number of y-smooth integers

available in the interval [z, z + z]. Hildebrand proved the following [11]:

Theorem 4.2.1 If y > 2, exp((Inlnz)®3 ) <y < x and xy~ "% < z < x, then

we have

Iny

U(z +2,y) — U(z,y) = zp(u){l +0<M> }

where u = (Inxz)/(Iny).

In other words, the number of y-smooth integers in the interval [z,z + z] can be
approximated by zp(u) asymptotically, provided that y,z are in the given range.
However the restriction on y, 2z makes this theorem useless for our purpose here. We
hope to find a relatively short interval, [z, z + z], preferably of length subexponential
in Inz, with enough y-smooth integers, but in this theorem, z is 27/!? at its best
(smallest). To relax the condition on y, z, one must turn to weaker results. Instead
of asking for estimates that hold for all , we now ask for estimates that hold for
“almost all” . Then the ranges for y and z can be improved a lot. The first such
result was obtained by Friedlander [8]. Later he and Lagarias improved his results to

obtain the following theorems [9]:
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Theorem 4.2.2 For any firted e > 0, 0 < § < a < 1, and for all sufficiently large
X, the estimate

U+ 27, 2%) — (e, %) > éﬂp(l/a)xﬁ (4.1)

holds for all x € [1, X| with the exception of a set of measure (usual Lesbegue measure)
bounded by c.o.5X exp(—(In X)/37€) where c. o g is a constant depending only on €, o

and f3.

Theorem 4.2.3 For any fized € > 0, for all sufficiently large X, and for y and z

satisfying
exp((lnX)5/6+5) <y <X, yexp((lnX)l/ﬁ) <z<X, (4.2)
the estimate
1 InX
N -0 > —p(—— 4.
(@ +2.y) = ¥(z,y) 2 7o ny )2 (4.3)

holds for all x € [1, X| with the exception of a set of measure (usual Lesbegue measure)

bounded by c. X exp(—%(ln X)Y6), where ¢, is a constant depending only on e.

With the above results on the smooth integer distribution in a short interval, we
can get much better results concerning the growth rate of the function g(z) defined

in the previous section. First, we have the following corollary of Theorem 4.2.2

Corollary 4.2.4 For any fixred e > 0, 0 < a < 1, and all sufficiently large X,
1
U(r+ 2% 2%) — ¥(x,2%) > 6—40[;)(1/05).%“ (4.4)

holds for all x € [X/2, X] with the exception of a set of measure (usual Lesbeque
measure) bounded by c.oX exp(—(In X)/37¢), where c. o is a constant depending only

on € and .

Remark: we want z € [X/2, X] because we need z to tend to oo with X. The X/2

can be replaced by any function of X that tends to oo when X — oc.
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Proof Let a = in Theorem 4.2.2. [ |
Now we are ready to prove

Theorem 4.2.5 For any fized ¢ > 0, 0 < o < 1, g(z) as defined in the previous
section, and all sufficiently large X, g(x) < z* for all x € [X/2, X| with the exception
of a set of measure (usual Lesbegue measure) bounded by c.oX exp(—(In X)Y/37¢),

where c. o 15 a constant depending only on € and c.

Proof For those x € [X/2, X] satisfying (4.4), we have the number of z*-smooth
integers in the interval [z,z + %] is > 7(2*) ~ 2%/In(2®). Using the same linear
algebra technique used in QS and NFS, one can see that there is a subset of those
x*smooth integers that have a perfect square product. Therefore g(z) < z®. So for
large X, g(z) < z% can only fail to hold when (4.4) fails to hold. This proves the

theorem. [ ]

In particular, for any 0 < a < 1, we have infinitely many = such that g(z) < z°.

Noticing that for any z > 0, g([x]) = g(x), we have

Corollary 4.2.6 For any 0 < o < 1, g defined as in the previous section,

lim inf M <1

n—oo,n€Z n%

Theorem 4.2.3 shortens the interval to subexponential length and therefore enables
us to get an even better estimate for g, with some complications. Since we want the
interval to be as short as possible, we will take y and z to be at their minimum values

in the range (4.2).
Corollary 4.2.7 For any fized € > 0, for all sufficiently large X, and

y = exp((In X)5/6+E),

z = yexp((In X)Y%) = exp((In X)"/5 4 (In X)%/6+),

the estimate (4.3) holds for all v € [X/2, X] with the exception of a set of measure

bounded by c. X exp(—3(In X)V%), where c. is a constant depending only on e.
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Proof Let y = exp((In X)%/5%¢) 2 = yexp((In X)'/®) = exp((In X)/6 + (In X )>/6+)

in Theorem 4.2.3. [ ]

For those z satisfying (4.3), the number of y-smooth integers in the interval [z, z+

z] is big enough to enable us to construct a perfect square, so we have

Theorem 4.2.8 For any fized € > 0, g(x) as defined in the previous section, and all

sufficiently large X,
9(x) < exp((In(22))"° + (In(22))*/°*)

for all x € [X/2, X] with the exception of a set of measure (usual Lesbegue measure)

bounded by c. X exp(—%(ln X)Y6), where ¢, is a constant depending only on e.

Proof Let y,z be defined as in Corollary 4.2.7. We only need to show that for all
sufficiently large X and x € [X/2, X] satisfying (4.3),

g(z) < 2z < exp((In(22))"/5 + (In(22))?/6+).
Using the same argument as Theorem 4.2.5, we see that it suffices to prove
U(r+2,y) — Y(x,y) > 7(y),

with y and z defined as in Corollary 4.2.7.
By (4.3),

1 InX 1
7 v > —p(——)z = —p((In X))z
(o 29) = W(o9) 2 1op(Ge)z = 1ol X)/*):
Taking logarithms on both sides and using the fact that In p(u) = —(u+o0(1)) Inu

as u — oo (see [12] for a proof of this), we have
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In(¥(z +z,y) — ¥(z,9))

vV

Inz— ((In X)l/ﬁff +0(1)) In((In X)I/G*) — In(16)
= (lnX)l/6 + (lnX)WﬁJre — ((111)()1/676 +0(1)) ln((lnX)l/ﬁfe) —In(16)

> (InX)%%* 4 (In X)"/6 — 2 (In X)"/%<In((In X)"/6~¢)
2Inln X )
(1/6 —¢) (In X)¢

= (InX)%5¢ 4 (In X)V/6 (1—

> (lnX)5/6+e

= Iny
> In(7(y)).
This shows that U(z + z,y) — ¥(z,y) > 7(y), and concludes the proof. [ |

Similar to Corollary 4.2.6, we have

Corollary 4.2.9 For any e > 0, and g defined as in the previous section,

lim inf 9(n) < 1.
n—ooneZ exp((In(2n))1/8 + (In(2n))>/6+) =

To extend the results to f(n), we use the fact that for any integer n > 0, In’ > n
such that f(n') < g(n). To see this, let g(n) = z. By definition of g, we can find
k > 2 integers n; < ng < - -+ < ny in the interval [n, n+ z] whose product is a square.
Also notice that nj, must be equal to n+ g(n) = n+ 2 (otherwise, we can find smaller
values for z, contradicting with the definition of g). So letting n’ = ny > n, we have
a subset of integers in [n/, n + z], including n’ and n + z, whose product is a square.
By the definition of f, f(n') <n+z—-n'<z=g(n).

Using this fact, we see that Corollaries 4.2.6 and 4.2.9 with g replaced by f hold
too. Therefore, f(n) takes subexponential values (in In(n)) for infinitely many n.

This improves the result of Selfridge and Meyerowitz significantly.
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5. Summary

We have generalized the Dickman function to get an asymptotic probability esti-
mate for k-semismooth integers. Our result agrees with previous work on the problem
for K = 1 and k£ = 2. Properties of the new function were discussed. We also gave
a method for calculating this function at £ = 3. It is still an interesting problem
to find an effective method for computing the new function at £ > 4. Numerical
results (at k = 3) were given and applied to the parameter choice problem of integer
factorization algorithms like MPQS and NFS with 3 large primes. Experiments are
needed to check the effectiveness of our proposed method for parameter choice.

The smooth integer distribution in a short interval gave a nice improvement for

the estimate of the square product function of Selfridge and Meyerowitz.
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APPENDIX
MATHEMATICA PROGRAM TO COMPUTE I5(s, t)

(x Clear all the symbols that we need *)

ClearAll [numcoeffrho, c, intdl, intd2, intd3, intd4, I3, sigma3];

(* number of coefficients to use in the Taylor expansion of rho
on [m-1, m] *)

numcoeffrho = 22;

(* Function to compute c_i~{(m)} *)

clm_, i_] := c[m,i] = Module[{j, value},

If[m==1,
If[ i==0, value=1, value=0],
If[{ m ==2,
If[i==0, value = N[1-Logl[2]], value = N[1/(i*2"1)]],

value = 0;

If[ i == 0,

Do[value=value+N[c[m,j]/((m-1) (j+1))],
{j, 1, numcoeffrhol}],

Do[value=value+N[c[m-1,j]1/(i*m"(i-j))],

{j, 0, i-1}]



ol

value

] (* End Module for c[m,i] *)

(* Function to compute the integral over the region D_1 *)
intdi[s_, t_] := Module[ {F1, ul, u2, u3, tmp, low, high, a, b,
m, i, sum},
(x F1, produced by Mathematica *)
F1 = (Logl2]°2 + 2xLog[2]*Log[(-s + ul)/(2%s)] + 2xLogl[(-s + ul)/(2%s)]*
Logl(s + ul)/(2%s)] + 2xPolyLogl[2, (s - ul)/(2*s)] +
2xPolyLog[2, s/(-s + ul)])/(2%ul);

low = 3%s;
high = 2xs + t;
If[high > 1, high = 1];

a = low;

m = Ceiling[(1-a)/s];

b

1 - (m-1)*s;

If[ b > high, b = high 1;

sum = 0;
While[ a < high - 10°(-5),
For[i = 0, i < numcoeffrho, i++,

tmp = (m - 1/s + ul/s)"i * F1;

sum = sum + c[m, i] * NIntegratel[tmp, {ul, a, b}]l;
1;
a = b;
b=D>b+ s;

If[ b > high, b = high ];
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m=m- 1;
]; (x End While %)
sum

]; (% End Module for intdi[s,t] *)

(* Function to compute the integral over the region D_2 *)
intd2[s_, t_] := Module[ {F2, ul, u2, u3, tmp, low, high, a, b,
m, i, sum},

(x F2, produced by Mathematica *)

F2 =
(-Pi72/12 + Log[2]~°2/2 + Log[-((s+t-ul)/s)]*Loglt/(-s+ul)] +
Log[2]*Log[(-s+ul)/(2*s)] + Logl[(-s+ul)/(2*s)]*Logl[(s+ul)/(2*s)] -
Log[-((s+t-ul)/s)I*Logl[(-t+ul)/s] + PolyLogl[2, (s-ul)/(2xs)] -
PolyLogl[2, (s+t-ul)/s] + PolyLogl[2, (s+t-ul)/(s-ul)]l)/ul ;

low = 2%s+t;

high = s+ 2xt; Ifl[high > 1, high = 1];

a = low;

m = Ceiling[(1-a)/s];

b =1- (m-1)*s; If[ b > high, b = high 1;
sum = 0;

While[ a < high - 10°(-5),
For[i = 0, i < numcoeffrho, i++,

tmp = (m - 1/s + ul/s)"i * F2;

sum = sum + c[m, i] * NIntegrate[tmp, {ul, a, b}];



b=D>b+ s;
If[ b > high, b = high ];
m=m- 1;

1; (% End While x)

sum

]; (x End Module for intd2[s,t] *)

(* Function to compute the integral over the region D_3 *)
intd3[s_, t_] := Module[ {ex, F3, ul, u2, u3, tmp, low, high, a, b,
m, i, sum},
(¥ F3, produced by Mathematica and further simplified by hand
using property of the dilogarithm to remove the imaginary part,
which should not appear in the first place *)
F3 = (Pi"2/6 - Logl4/31°2/2 - Loglsl*Logll - s/ull -
Log[3/2]*Log[ul/3] - Loglul/3]°2/2 +
Logl(-s + u1)/2]1°2/2 + Loglsl*Logl(s + ul)/2] -
Logl[(s/ul)]*Loglul/2] - Logl(-s + ul)/2]*Logl(s + ul)/2] +
Logl(-s + ul)/(2%ul)]l*Logl(s + ul)/2] + PolyLogl2, 1/3] -
PolyLog[2, 2/3] - PolyLog[2, 3/4] - PolyLogl[2, s/ull +
PolyLog[2, (s + ul)/(2*u1l)] + PolyLogl[2, -s/ull)/ul ;

low = 3%s;

high = s + 2xt;  Iflhigh > 1, high = 1];

a = low;

m = Ceiling[(1-a)/s];

b=1- (m-1)*s; If[ b > high, b = high ];
sum = O;

While[ a < high - 10°(-5),

For[i = 0, i < numcoeffrho, i++,
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= (m - 1/s + ul/s)"i * F3;

ct

=]

ol
1

sum + c[m, i] * NIntegrate[tmp, {ul, a, b}]l;

n
o}
=

1]

a=Db; b=>b+ s; If[ b > high, b = high 1;
m=m-1;

1; (x End While x*)

sum

]; (% End Module for intd3[s,t] *)

(* Function to compute the integral over the region D_4 *)
intd4[s_, t_] := Module[ { F4, ul, u2, u3, tmp, low, high, a, b,
m, i, sum},

(* F4, produced by Mathematica and further simplified by hand
using property of the dilogarithm to remove the imaginary part,
which should not appear in the first place *)

F4 = (Pi~2/6 - Logl4/3]1°2/2 + Logl[t]~2/2 - Logl[3/2]1*Logl[ul/3] -

Loglu1/3]1°2/2 - Logl(2*t)/ull*Logl[-2*%t + ull -
Logltl*Log[-t + ull + Logl[l - (2%t)/ull*Logl[2/ul] +
Loglt/ull*Log[-t + ull + Log[-2*%t + ull*Log[-t + ull] +
PolyLog[2, 1/3] - PolyLogl[2, 2/3] - PolyLog[2, 3/4] -
PolyLog[2, 1 - (2xt)/ull + PolyLogl[2, (2xt)/ul - 1] +
PolyLog[2, 1 - t/ull)/ul ;

low = s + 2x%t;

high = 3%t; Ifl[high > 1, high = 17;

a = low;

m = Ceiling[(1-a)/s];

b

1 - (m-1)*s; If[ b > high, b = high 1;

sum = 0;
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While[ a < high - 10°(-5),
For[i = 0, i < numcoeffrho, i++,

tmp = (m - 1/s + ul/s)”i * F4;

sum = sum + c[m, i] * NIntegratel[tmp, {ul, a, b}];
1;
a=b; b=b+s; If[ b>high, b= high ];
m=m- 1;

1; (* End While *)

sum

]; (% End Module for intd4[s,t] *)

(* Function to compute I_3(s,t) *)

I3[s_, t_] := Module[ {value},

If[s >= t,
value = O,
value = intdi[s,t] + intd2[s,t] + intd3[s,t] + intd4[s,t];
1;
value
1;

(x Define sigma3(u,v) *)

sigma3[u_, v_] := I3[1/u, 1/v];
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