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ABSTRACTZhang, Chaogui. Ph.D., Purdue University, August, 2002. An extension of theDikman funtion and its appliation. Major Professor: Samuel S. Wagsta�, Jr.In this thesis, we study a generalization of the Dikman funtion and its applia-tions.We �rst generalize the onept of a smooth integer to make it suitable to ana-lyze the Large-Prime Variations of the Quadrati Sieve(QS) and Number Field Sieve(NFS). Smooth integers are the ones whose largest prime divisors are bounded. Inour generalization, we will bound the largest prime divisor and the (k + 1)st largestprime divisor and ignore the size of the other prime divisors in between. Suh integerswill be alled k-semismooth.A heuristi argument will �rst be given to derive reurrene formulae for theasymptoti distribution of k-semismooth integers. Using that, we de�ne a general-ization of the Dikman funtion. Then we give a rigorous proof for the reurreneformulae, and explore some properties of the generalized Dikman funtion. We alsopresent a method for omputing this funtion. Numerial results and appliations tothe MPQS and NFS will then be disussed.At the end, we will investigate the smooth integer distribution in a short interval,and use results available in this area to get an estimate of the funtion f(n) de�nedas the smallest positive integer z suh that the interval [n; n + z℄ ontains a set ofintegers (inluding n and n+ z) whose produt is a perfet square. This problem wasproposed by Selfridge and Meyerowitz.



1
1. Introdution1.1 Integer Fatorization Algorithms1.1.1 Why fator integers?The problem of fatorizing large integers into prime divisors has been studied bymany mathematiians for several hundred years. The problem is simple to state andunderstand, just like many other problems in number theory, yet the solution to theproblem requires the understanding of very ompliated theories. The theoretialimportane of the problem itself deserves all the attention it an get from mathe-matiians of all time. One of the greatest mathematiians in history, Carl FriedrihGauss, said the following more than two hundred years ago [10℄:The problem of distinguishing prime numbers from omposite numbersand of resolving the latter into their prime fators is known to be one of themost important and useful in arithmeti. It has engaged the industry andwisdom of anient and modern geometers to suh an extent that it wouldbe superuous to disuss the problem at length...Further, the dignity ofthe siene itself seems to require solution of a problem so elegant and soelebrated.After the RSA publi-key ryptosystem ame into existene in the 1970s [24℄, the e�ortto fator large integers got more attention than ever before. It is onjetured, andmany people believe, that breaking the RSA ryptosystem is equivalent to fatorizingthe modulus n used in the system. At least half of the onjeture is true, that is, ifone an fator n, then one an de�nitely break the RSA system, although the otherhalf of the onjeture has not been proved or disproved yet.



2For any serious appliation of the RSA system, it's essential to keep trak of thesize of the integers that people an fator using the best fatorization algorithmsavailable so that one an hoose a large enough modulus to make the system seure.When Gauss wrote those words quoted above, there were no eÆient algorithmsfor primality testing or integer fatorization. Sine then, signi�ant progress has beenmade on both problems, espeially for primality testing. Today we have good algo-rithms that an test the primality of an integer in nearly polynomial time. Integerfatorization, however, remains a hard problem, although there are muh faster algo-rithms now than before, like ECM, MPQS and NFS, all with heuristi sub-exponentialrunning time.1.1.2 Algorithms for fatorizing integers, QS and NFSWe will briey present two of the most powerful integer fatorization algorithmsnext. Both of them are based on the Legendre's Congruene Method, whih we shallexplain briey �rst.Given the number N to fator, if we an �nd a non-trivial solution to the ongru-ene x2 � y2 (mod N), then we an �nd a fator of N by taking the GCD of x � yand N . Here, non-trivial means that x 6� �y (mod N). In pratie, we usually ignorethe requirement of non-trivialness and just try to �nd a solution to the ongrueneabove. If it turns out to be a trivial solution, we try again. The reason is that for themethods we use to onstrut the solutions, �nding many suh solutions only requiresa little more e�ort than �nding one solution. Furthermore, when N is omposite,if we �nd the solutions randomly, then at least half of the solutions are non-trivial,and when N is the produt of two primes, we have exatly half of the solutions beingnon-trivial. So if we �nd many solutions to the ongruene, then hanes are we willbe able to fator N easily.Therefore, the question now is how to onstrut solutions to the ongruene, inother words, �nding ongruent squares mod N . The Quadrati Sieve and the Number



3Field Sieve both try to �nd suh ongruent squares eÆiently. We shall give a briefintrodution here to the QS and NFS. See [23℄ for an exellent presentation of all theimportant fatorizing methods, anient or modern, inluding the QS and NFS. Alsosee [21℄, [22℄ and [26℄ for details about the QS. For the NFS, [15℄ provides a ompletetreatment.The Quadrati Sieve onstruts the ongruent squares from a large set of on-gruenes of the form x2 � y mod N , where y an be ompletely fatored using onlyprimes from a fator base B onsisting of �1 and prime numbers p � B suh that(Np ) = 1, where (Np ) is the Legendre symbol. Suh a ongruene is alled a relationr(x; y), and an be written as x2 �Yp2B pe(p) mod N:The value p = �1 is needed to allow negative y. For eah relation, we an de�ne avetor in GF(2)#B where eah omponent of the vetor orresponds to the exponente(p) mod 2. It's lear that if the number of suh relations is greater than #B, thatis, the size of the fator base, then we an use Gaussian elimination or some othermethod like blok Lanzos over GF(2) to �nd a dependeny among those vetors,whih orresponds to a subset, S, of all the relations, suh that the produt of theright hand sides of the relations in S is a perfet square. So we haveYr(x;y)2S x2 � Yr(x;y)2S y = x0 2 mod NTaking the GCD of x� x0 and N , we have at least a 50% hane of fatorizing N.The way to �nd lots of relations eÆiently is by a sieving method. Let m = bpN and Q(t) = (t�m)2�N . Then for eah t, we trivially have (t�m)2 � Q(t) mod N .Thus, Q(t) is a quadrati residue moduloN for eah t. Also, Q(t) = t2�2 tm+m2�Nis about as large as 2 tpN , whih is small ompared to N when t is not too large.So Q(t) is a relatively small quadrati residue modulo N . If Q(t) is B-smooth, thatis, an be fatored ompletely using primes in B, then we have a relation r(x; y) withx = t�m and y = Q(t). To identify suh parameters t eÆiently, notie that p 2 B



4divides Q(t) if and only if p divides Q(t � p). So we an loate all the parameters twhere p divides Q(t) by solving just one quadrati ongruene (t�m)2 � N mod p.Remember that we have hosen p suh that (Np ) = 1, so it has exatly two solutions.When p = 4k + 3, the solutions are given by t � �m � N (p+1)=4 mod p. Whenp = 4k + 1, the solutions are more diÆult to �nd, but there are eÆient (but moreompliated) algorithms to do that. The divisibility of Q(t) by powers of 2 is moreompliated and we do not disuss that here. The sign of Q(t) is just the sign of(t�m)2 �N .The multiple polynomial variation of the QS, alled MPQS, uses many quadratipolynomialsQ(t) so that we only need to sieve for small values of t for eah polynomial.Q(t) must be hosen suh that it is a quadrati residue modulo N for eah t just likebefore. Care must also be taken to make sure that Q(t) takes small values (relativelyspeaking). For details on MPQS, see [26℄.The Number Field Sieve is the most eÆient fatoring algorithm available today.There are two variations of NFS, the Speial NFS and the General NFS. They di�eronly in the �rst step, polynomial seletion. The speial NFS an only fator numbersof the form re+ s sine this form gives rise to very simple and good polynomials thatan be used for the sieving. For the general NFS, one has to searh for a polynomialthat is as \good" as possible.Two polynomials f1(x) and f2(x) must be hosen suh that fi(m) � 0 mod N ,i = 1; 2. Usually f2(x) = x �m, but it need not be. Also the polynomials must beirreduible, but that is not a problem beause if we �nd f1(x) to be reduible, thenwe have just fatored N nontrivially.We will assume f1(x) 2 Z[x℄ is moni and irreduible of degree d > 1 and assumef2(x) = x�m. The restrition on f1 being moni and f2 being linear is to make ourdisussion easier. To see how to remove these restritions and other details aboutNFS, please refer to [3℄.In NFS, we work with the ring Z[�℄ generated by a root � of f1. One an ei-ther onsider Z[�℄ as a subring of the �eld of omplex numbers or as a subring of



5Z[X℄=f1Z[X℄, with � = (X mod f1). Every element of Z[�℄ an be written uniquelyin the form Pd�1i=0 ai�i, with a0; a1; � � � ; ad�1 2 Z. Sine we have m 2 Z satisfyingf(m) � 0 mod N , there is a natural ring homomorphism � : Z[�℄ ! Z=NZ induedby �(�) = (m mod N). Now, suppose we an �nd a non-empty set S of pairs (a; b)of relatively prime integers suh that the following are true:Y(a;b)2S(a + bm) is a square in Z (1.1)Y(a;b)2S(a + b�) is a square in Z[�℄ (1.2)Then let x 2 Z be a square root ofQ(a;b)2S(a+ bm), and � 2 Z[�℄ be a square root ofQ(a;b)2S(a+ b�). Sine �(a+ b�) = (a+ bm mod N), we have �(�2) = (x2 mod N).Let y 2 Z suh that �(�) = (y mod N). Then we have x2 � y2 mod N , and we haveour ongruent squares to fator N .Several important issues need to be addressed before this an be put to work:1. How are the polynomials f1 and f2 to be onstruted?2. How do we �nd the set S?3. How do we �nd �?4. How muh time is needed?Paper [3℄ answers all the above questions arefully. Here we only touh upon theseond question sine that's the most relevant one for us and it's the most importantand time onsuming step of the NFS. As with the QS, the onstrution of the set Sis done in two steps. First, sieving proedures are used to �nd a set T of pairs (a; b)suh that both a+ bm and a+ b� are smooth (smoothness for a+ b� is de�ned belowin a similar sense as that for an integer). Next, one uses linear algebra over the �eldGF(2) to �nd a subset S � T suh that (1.1) and (1.2) are satis�ed.



6Let Fi(x; y) = ydeg(fi) fi(x=y) be the homogeneous polynomial orresponding tofi(x), i = 1; 2. We say that a + b� is B-smooth if its norm N(a + b�) = F1(a;�b) isB-smooth. For �xed u > 0, letU = f(a; b)ja; b 2 Z; gd(a; b) = 1; jaj � u; 0 < b � ug:We will look for T � U with the properties mentioned above. U is alled the sievingregion.In NFS, we have two sieves. The linear sieve is simple. Assume B is the smooth-ness bound. Then for eah �xed integer b with 0 < b � u, we �rst initialize an arrayof integers a + bm for �u � a � u. For eah prime p � B, the entries in the arrayorresponding to a � �bm mod p are retrieved one by one, and divided by the highestpower of p that divides them. These entries are then replaed by their orrespondingquotient after dividing out the powers of p. After doing this for all the primes p � B,we hek the array and those entries ontaining 1 or �1 orrespond to B-smootha+ bm.In pratie, however, we do not sieve as desribed above beause that's too timeonsuming, espeially the division by prime powers. Instead, we initialize the arraywith approximate logarithms of a + bm to some base. We subtrat the logarithmsof the prime powers from the entries, saving time by not doing divisions. Then atthe end, we look for those entries with values lose to 0. These are alled andidates.Beause of all the approximations used, we need to fator the andidates by trialdivision to �nd the ones that are smooth.The algebrai sieve is more ompliated. Again, let's say B is the smoothnessbound. For eah prime p � B, let R(p) denote the set of roots of f1(r) � 0 mod p,that is, R(p) = fr 2 f0; 1; : : : ; p� 1g j f1(r) � 0 mod pg:Then for any �xed integer b with 0 < b � u and b 6� 0 mod p, the integers a withN(a+ b�) � 0 mod p are those with a � �br mod p for some r 2 R(p). Note that if



7b � 0 mod p, then there is no integer a with (a; b) 2 U and N(a + b�) � 0 mod p.Now for eah �xed b initialize an array of integers N(a + b�) for �u � a � u. Foreah pair (p; r) suh that r 2 R(p), the entries orresponding to a � �br mod p areidenti�ed and divided by the highest power of p that divides them. Then these entriesare replaed by the quotients. After this is done for all p � B, we �nd those entriesontaining 1 or �1, whih orrespond to the B-smooth values of a + b�. Again, foreÆieny, we use the approximate logarithm tehnique mentioned above in pratie.Taking the entries (a; b) suh that gd(a; b) = 1 and both a + bm and a + b� areB-smooth, we get our set T . Apply linear algebra over GF(2) now to �nd the subsetS. Here more ompliation arises. The problem omes from the fat that the normof � 2 Z[�℄ being a square does not neessarily mean � itself is a square, althoughwhen � is a square, its norm is de�nitely a square. Fortunately, this an be solvedif we remember, for eah prime p dividing N(a + b�), the value r 2 R(p) whih is\responsible for it". For more details, see [3℄.1.1.3 Large-Prime Variations of the MPQS and NFSThe QS and NFS algorithm both run muh faster if we allow in our relations notonly those that an be fatored ompletely using primes in the fator base, but alsothose that may have a few large prime divisors outside the fator base but belowanother slightly larger bound. Relations with large primes involved are usually alledpartial relations and the ones with no large primes are alled full relations. Partialrelations need to be ombined before they an be used in the linear algebra step. Alot of experiments have been done with the QS and NFS using large primes. For theQS, as many as 3 large primes were used. See [16℄, [4℄ and [17℄ for details. For theNFS, beause we an distribute the large primes over two sieves, for example, threefor one polynomial and two for the other, as many as 5 large primes were used. See,for example, [7℄ and [5℄.



8First we explain how partial relations an be eÆiently olleted during the sievingproess. When sieving for full relations, only those andidates that have ompletefatorization in the fator base are saved. Suppose that we want to �nd those relationsthat have exatly 1 large prime (1-LP) between B and L (B < L < B2). Then afterthe trial division, we hek the remaining ofator . If  < L < B2, then we havea 1-LP partial relation beause  must be prime. As we an see, 1-LP relations arefound at almost no extra ost. That's why QS and NFS with 1-LP always performbetter than the no large prime versions. To ollet relations with 2-LP, we hekfor those ofators  with B2 <  < L2 < B3. If  satis�es this ondition, then it'seither the produt of two primes between B and L, that is, we have a 2-LP relation,or a single prime > B2 > L, that is, we have a false report (useless relation). Wedistinguish these two ases by applying a ompositeness test on , and in ase of a2-LP relation, we then fator  to �nd the two large primes. Similarly we an dok-LP with k � 3, but the fatorization pattern of  gets more ompliated and wemay have more and more false reports. In fat, people have thought that letting kgo beyond 2 would make the ost of identifying those partial relations outweigh thebene�t we get from the partial relations, thus making it slower than the 2-LP version.See, for example, [7℄. However, reent experiments have shown that the 3-LP versionof MPQS (alled TMPQS) is indeed about 1.75 times faster than PPMPQS, the 2-LPversion of MPQS. We will explain why that is the ase next.It's neessary to ombine the partial relations �rst to �nd the so-alled funda-mental yles before they are used in the linear algebra step. Essentially what onedoes is to ombine partial relations together to remove the large primes and heneobtain full relations. The number of yles as a funtion of the number of partialrelations was observed to behave as 1m2 and 2m4 respetively for 1-LP and 2-LPpartials, where m is the number of partials and 1; 2 are small onstants [16, 1℄.However, with more large primes allowed, the behavior of the number of yles as afuntion of the number of partials have shown some interesting sudden growth afterinitially behaving aording to a power law like before. This was �rst observed with



9NFS [7℄, beause there relations with more than 2 large primes an be found at verylittle extra ost. Just reently, an experiment with the MPQS using 3 large primeson�rmed this interesting behavior again [17℄. It is beause of this sudden growthof yle numbers that we an overome the extra ost in identifying partial relationswith more than 2 large primes. There is no theoretial explanation yet to this suddenhange of behavior of yle numbers.1.2 Smoothness1.2.1 Smooth integers and the Dikman funtionAn integer n is said to be smooth with respet to y (or y-smooth) if all the primefators of n are � y. Smooth integers are important to fatorization algorithms likethe Quadrati Sieve and the Number �eld Sieve beause they are exatly what weseek in the sieving proess (the most time onsuming part) in both algorithms. Soestimating the number of smooth integers available under ertain onditions is veryimportant for the running time analysis of suh fatorization algorithms.There are two exellent survey papers on this subjet. K. Norton [20℄ gave aomprehensive survey of the literature up to 1970. A. Hildebrand [12℄ overed all theimportant work on the subjet from 1970 to early 1990s.Let 	(x; y) = #fn � x : n has no prime divisor > yg. K. Dikman [6℄ was the�rst to obtain an asymptoti formula for 	(x; y). He showed that for any u > 0,limx!1 	(x; x1=u)x = �(u);where �(u) is de�ned by the di�erential-di�erene equation u�0(u) = ��(u � 1) foru > 1 and �(u) = 1 for 0 � u � 1. It an be shown that �(u) = 1u R uu�1 �(t) dt.1.2.2 Computing the Dikman � funtion auratelyUsing the fat that �(u) = 1u R uu�1 �(t) dt, one an ompute �(u) simply usingnumerial integration methods. However, the results obtained this way are not very



10good, espeially when u gets bigger, beause we need to do numerial integrationrepeatedly and errors aumulate in the proess.We introdue Bah and Peralta's method for e�etive alulation of the Dikman� funtion [2℄ here. Notie that � is analyti on [m� 1; m℄ for integer m � 1, that is,there is an analyti funtion �m(x) that is equal to �(x) on [m� 1; m℄. So we have aTaylor expansion for �(x) = �m(x) = �m(m� �) on [m� 1; m℄,�m(m� �) = 1Xi=0 (m)i �i;Sine �1(x) = 1 and �2(x) = 1 � ln(x), the oeÆients (1)i and (2)i are ompletelydetermined. (1)0 = 1; (1)i = 0 for i > 0;(2)0 = 1� ln(2); (2)i = 1i 2i for i > 0:For m > 2, the oeÆients (m)i an be omputed by the following formulae [2℄. Fori > 0; m > 2, (m)i = i�1Xj=0 (m�1)jimi�j :For i = 0; m > 2, (m)0 = 1m� 1 1Xj=1 (m)jj + 1 :The oeÆients derease exponentially: (m)i � (12)i for m � 2.A more aurate method (based on the same idea of pieewise analyti funtion)exists. See Marsaglia, Zaman and Marsaglia [18℄ for details. Instead of expanding�m(x) at x = m, the method of [18℄ expands �m(x) at m� 12 . For our purpose, Bahand Peralta's method suÆes.



111.3 Outline of the ThesisIn hapter 2, we will give an extension of the Dikman � funtion and disusssome properties of the new funtion. Numerial results and appliations to the QSand NFS will be disussed in Chapter 3. Chapter 4 will deal with a problem posed byJ. L. Selfridge and A. Meyerowitz [25℄, the growth rate of a funtion onneted witha perfet square produt in a short interval. It turns out to depend on the smoothinteger distribution in short intervals.



12
2. k-Semismooth Integers2.1 BakgroundAn integer is alled smooth with respet to y if all of its divisors are � y, that is,its largest prime divisor is � y, and it's alled semismooth with respet to y and z ifits seond largest prime divisor is � y and its largest prime divisor is � z.The well known Dikman funtion �(u) desribes the asymptoti probability of aninteger being smooth. Knuth and Trabb Pardo generalized the Dikman funtion toanalyze the size of the k-th largest prime divisor of n in [13℄. Bah and Peralta gaveanother nie generalization of the Dikman funtion in [2℄ to study the semismoothintegers. These funtions play an important role in analyzing fatorization algorithmslike the MPQS and NFS, and their one large prime variations, beause the runningtimes of these algorithms heavily depend on the number of smooth (semismooth)integers available in a ertain range.Sine in urrent implementations of the MPQS and NFS, relations with severallarge primes are being used, it is desirable to generalize the Dikman funtion furtherto analyze integers with at most k large prime divisors in a ertain range and all otherdivisors below that. We will all suh integers k-semismooth integers, and would liketo �nd a funtion that estimates the asymptoti probability of an integer being k-semismooth given the smoothness bounds y and z (see the de�nition below).The workdone by Bah and Peralta solved this problem for k = 1 using Stieltjes integration.Lambert [14℄ used the same method to solve the problem for k = 2. In priniple, theirmethod should work for k > 2, but it gets very ompliated and it's not pratial toarry out the analysis. We will use a di�erent method here to solve this problem forany k > 0. Our method also gives a stronger result in terms of the error estimate.



13De�nition 2.1.1 An integer n is alled k-semismooth with respet to y and z if thelargest prime divisor of n is � y and its (k + 1)st largest prime divisor (ountingmultipliity) is � z, that is, n has at most k prime divisors between y and z.Following the notation in [13℄, we write an integer n as n = n1 n2 � � �nr; n1 �n2 � � � � � nr, where the ni's are prime divisors of n. So nk is the k-th largest primedivisor of n (ounting with multipliity). If n has fewer than k prime divisors, thenlet nk = 1. Also, let n0 =1 for onveniene.Let 	k(x; y; z) be the number of k-semismooth integers � x with smoothnessbounds y and z, that is,	k(x; y; z) = #fn � x : n1 � y; nk+1 � zg; k � 0: (2.1)This generalizes the following funtions de�ned in [6℄, [2℄ and [13℄:	(x; y; z) = #fn � x : n1 � y; n2 � zg = 	1(x; y; z);	(x; y) = #fn � x : n1 � yg = 	0(x; y; y);	k(x; y) = #fn � x : nk � yg = 	k�1(x; x; y):We will prove that limx!+1 	k(x; xt; xs)x = Gk(s; t)exists, for k � 0, and the funtions Gk(s; t) satisfy some interesting formulae. Beforewe do that, we will briey explain the generalizations of the Dikman funtion doneby Knuth, Trabb Pardo [13℄ and Bah, Peralta [2℄.Knuth and Trabb Pardo de�ned a generalization of the Dikman funtion as fol-lows: �k(u) = 1� R u1 (�k(t� 1)� �k�1(t� 1)) dtt ; for u > 1; k � 1; (2.2)�k(u) = 1; for 0 < u � 1; k � 1; (2.3)�k(u) = 0; for u � 0 or k = 0: (2.4)



14and proved that for k � 1, limx!+1 	k(x; x1=u)x = �k(u)by proving the following theorem:Theorem 2.1.1 Let 	k(x; y) and �k(u) be de�ned as above, k � 1, then	k(x; x1=u) = �k(u)x+ �k(u)x= ln(x) +O(u2x=(lnx)2); (2.5)where �k(u) = (1� )(�k(u� 1)� �k�1(u� 1))and  is Euler's onstant.Clearly, �1(u) = �(u).In [2℄, Bah and Peralta proved that if we de�neG(s; t) = F (s) + Z ts F ( s1� �)d�� ;where F (s) = �(1=s), then we haveTheorem 2.1.2 If 0 < s < t < 1, then,	(x; xt; xs) = xG(s; t) +O� ln(s�1)s(1� t) xlnx� : (2.6)Therefore, G(s; t) = limx!1 	(x; xt; xs)x :In [2℄, it was also proved thatG(s; t) = Z s0 G( s1� �; t1� �)d� + Z ts F ( s1� �)d�:An e�etive method for omputing G(s; t) was also disussed in [2℄. Notie that thisG(s; t) is equal to our Gk(s; t) with k = 1.Lambert de�ned a funtion G2(s; t) [14℄ suh thatlimx!1 	2(x; xt; xs)� 	1(x; xt; xs)x = G2(s; t):He also gave an e�etive method for omputing his G2(s; t). Notie that this funtionG2(s; t) in [14℄ is di�erent from our Gk(s; t) with k = 2. More preisely, his G2(s; t)is atually our G2(s; t)�G1(s; t).



152.2 Heuristi argumentIn this setion we heuristially derive properties that Gk(s; t) should have if weassume at the moment that Gk(s; t) = limx!+1 	k(x;xt;xs)x does exist. This argumentis similar to what Knuth and Trabb Pardo did in [13℄.First we will (heuristially) show that�Gk(s; t)�t = Gk�1( s1� t ; t1� t)1t : (2.7)This will lead to our de�nition for Gk(s; t) in the next setion.Consider 	k(x; xt+�t; xs)�	k(x; xt; xs), the number of integers n � x suh that n1is between xt and xt+�t and nk+1 � xs, where �t is a very small positive real numberand s < t are between 0 and 1. Any suh integer n an be obtained by multiplyinga prime p between xt and xt+�t by an integer m � xp � x1�t with m1 � p � xt,mk � xs. The number of suh m is approximately 	k�1(x1�t; xt; xs). So we have	k(x; xt+�t; xs)� 	k(x; xt; xs) � (�(xt+�t)� �(xt))	k�1(x1�t; xt; xs): (2.8)Using the Prime Number Theorem, we know that �(xt+�t)��(xt) � xtt �t, so pluggingthis into (2.8) and dividing by x�t gives us	k(x; xt+�t; xs)�	k(x; xt; xs)x�t � 	k�1(x1�t; xt; xs)x1�tt :Notie that 	k�1(x1�t; xt; xs)x1�tt = 	k�1(x1�t; (x1�t) t1�t ; (x1�t) s1�t )x1�t t :So letting x!1 gives us (assuming limx!1 	k(x;xt;xs)x exists and is equal to Gk(s; t))Gk(s; t+�t)�Gk(s; t)�t � Gk�1( s1�t ; t1�t)t :Letting �t! 0 gives us (2.7).Now let's show (again heuristially) that�Gk(s; t)�s = �Gk( s1� s; t1� s)�Gk�1( s1� s; t1� s)� 1s : (2.9)



16This is a generalization of (3.7) in [13℄, and it will lead us to a generalization of (4.2)in [13℄. The argument is similar to what we just did for (2.7).Consider 	k(x; xt; xs+�s)� 	k(x; xt; xs), the number of integers n � x suh thatn1 � xt and nk+1 is between xs and xs+�s, where �s is a very small positive realnumber and s < t are between 0 and 1. Any suh integer n an be obtained bymultiplying a prime p between xs and xs+�s by an integer m � xp � x1�s withm1 � xt, mk+1 � p � xs and mk � p � xs. The number of suh m is approximately	k(x1�s; xt; xs)�	k�1(x1�s; xt; xs). So we have	k(x; xt; xs+�s)�	k(x; xt; xs)� (�(xs+�s)� �(xs))	k(x1�s; xt; xs)� 	k�1(x1�s; xt; xs):The rest of the argument is similar to that of (2.7). First use the Prime NumberTheorem to approximate �(xs+�s) � �(xs), and divide both sides by x�s. Thenletting x!1, �s! 0 gives us (2.9).2.3 Rigorous proofThe integral form of (2.7) gives us the followingDe�nition 2.3.1 Let 0 < s < t, G0(s; t) = F (s) = �(1=s), then for k > 0 we de�neGk(s; t) = F (s) + Z ts Gk�1( s1� � ; �1� � ) d�� :For the error term estimate that we are going to get, we introdue a funtion�k(s; t):De�nition 2.3.2 Let 0 < s < t, �0(s; t) = (1� )F ( s1�s), and for k > 0,�k(s; t) = (1� )F ( s1� s) + Z ts �k�1( s1� � ; �1� � ) d��(1� �) :We will prove that Gk(s; t) = limx!+1 	k(x; xt; xs)x :In fat, we will prove an even stronger result that gives us the main error term, butwe need to prove the following lemma �rst:



17Lemma 2.3.1 For 0 < s < t < 1, k > 0 and p prime in the summation below,Xxs<p�xt	k(xp ; p; xs) = Z xtxs 	k(xy ; y; xs) dyln y +O� x(lnx)2� :Proof We will use the Prime Number Theorem in the form �(x) = li(x) +O( xln(x))for any  > 0, whereli(x) = Z x0 dtln(t) = lim�!0(Z 1��0 dtln(t) + Z x1+� dtln(t)) :Our proof is based on the ideas of Knuth and Trabb Pardo [13℄.Let Sk(x; y; z) = fn � x : n1 � y; nk+1 � zg. ThenXxs<p�xt	k(xp ; p; xs)� Z xtxs 	k(xy ; y; xs) dyln y= Xxs<p�xt( Xn2Sk(xp ;p;xs) 1)� Z xtxs ( Xn2Sk(xy ;y;xs) 1) dyln y= Xxs<p�xt( Xn�xpn1�pnk+1�xs 1)� Z xtxs ( Xn�xyn1�ynk+1�xs 1) dyln y= X1�n<x1�sn1�min( xn ; xt)nk+1�xs
0BB�( Xn1�p� xnxs<p�xt 1)� Z min( xn ; xt)max(n1; xs) dyln y1CCA= X1�n<x1�sn1�min( xn ; xt)nk+1�xs ��(min(xn; xt))� �(max(n1; xs)) +O(1)�li(min(xn; xt)) + li(max(n1; xs)�= X1�n<x1�sn1�min( xn ; xt)nk+1�xs O( x=nln(x=n))= X1�n<x1�sn1�min( xn ; xt)nk+1�xs O( x=nln(xs)) = O( xln(xs)) X1�n�x1�s 1n= O( xln(xs) ln(x1�s)) = O(1� ss xln�1 x):



18Letting  = 3 gives what we need.Now, we are ready to prove our main theorem:Theorem 2.3.2 If 0 < s < t < 1, 	k(x; y; z), Gk(s; t) and �k(s; t) are de�ned asabove and k � 0, then we have	k(x; xt; xs) = xGk(s; t) + �k(s; t) xln(x) +O( x(lnx)2 ):Proof By indution on k.For k = 0, the statement is simply a orollary of Theorem 2.1.1.When k > 0, we have	k(x; xt; xs) = Xp�xs#fn � x : n1 = pg+ Xxs<p�xt#fn � x : n1 = p; nk+1 � xsgFor the �rst sum, we have Xp�xs#fn � x : n1 = pg= #fn � x : n1 � xsg= 	(x; xs)= xF (s) + �1(1s ) xlnx +O( xs2(lnx)2 ):For the seond sum, we haveXxs<p�xt#fn � x : n1 = p; nk+1 � xsg= Xxs<p�xt#fm � xp : m1 � p;mk � xsg= Xxs<p�xt	k�1(xp ; p; xs)= Z xtxs 	k�1(xy ; y; xs) dyln y +O� x(lnx)2�= Z xtxs 	k�1(xy ;�xy� ln ylnx�lny ;�xy� s lnxlnx�lny ) dyln y +O� x(lnx)2� :



19By indution, we have	k�1(xy ;�xy� ln ylnx�lny ;�xy� s lnxlnx�lny ) = xyGk�1( s lnxlnx� ln y ; ln ylnx� ln y )+ x=yln(x=y)�k�1( s lnxlnx� ln y ; ln ylnx� ln y )+ O� x=yln(x=y)2� :So, Z xtxs 	k�1(xy ;�xy� ln ylnx�lny ;�xy� s lnxlnx�lny ) dyln y= Z xtxs xyGk�1( s lnxlnx� ln y ; ln ylnx� ln y ) dyln y+ Z xtxs x=yln(x=y)�k�1( s lnxlnx� ln y ; ln ylnx� ln y ) dyln y+ Z xtxs O� x=yln(x=y)2� dyln y :Making a hange of variable, � = ln ylnx in the above integrals, we getZ xtxs 	k�1(xy ;�xy� ln ylnx�ln y ;�xy� s lnxlnx�ln y ) dyln y= x Z ts Gk�1( s1� � ; �1� � )d��+ xlnx Z ts �k�1( s1� � ; �1� � ) d��(1� �)+ O( x(lnx)2 ):So we have 	k(x; xt; xs)= x(F (s) + Z ts Gk�1( s1� � ; �1� � )d�� )+ xlnx(�1(1s) + Z ts �k�1( s1� � ; �1� � ) d��(1� �))+ O( x(lnx)2 )= xGk(s; t) + �k(s; t) xln(x) +O( x(lnx)2 ):This proves the theorem.



202.4 Some properties of Gk(s; t)First of all, let's prove that Gk(s; t) does satisfy (2.9). Instead of proving (2.9)diretly, we will give a proof of its equivalent integral form.The following lemma an be proved just like Lemma 2.3.1.Lemma 2.4.1 For 0 < s < t < 1, k > 0 and p prime in the summation below,Xxs<p�xt	k(xp ; xt; p) = Z xtxs 	k(xy ; xt; y) dyln y +O� x(lnx)2� :Theorem 2.4.2 Given Gk(s; t) as de�ned in the previous setion, we haveGk(s; t) = F (t)� Z ts (Gk( �1� � ; t1� � )�Gk�1( �1� � ; t1� � )) d�� : (2.10)Proof For 0 < s < t < 1,	(x; xt)� 	k(x; xt; xs)= #fn � x : n1 � xt; nk+1 > xsg= Xxs<p�xt #fn � x : n1 � xt; nk+1 = pg= Xxs<p�xt #fm � xp : m1 � xt; mk+1 � p;mk � pg= Xxs<p�xt(	k(xp ; xt; p)� 	k�1(xp ; xt; p))= Z xtxs (	k(xy ; xt; y)� 	k�1(xy ; xt; y)) dyln y +O( x(lnx)2 )= Z xtxs (	k(xy ;�xy� t lnxlnx�lny ;�xy� ln ylnx�ln y )� 	k�1(xy ;�xy� t lnxlnx�ln y ;�xy� ln ylnx�ln y )) dyln y+ O( x(lnx)2 ):Making a substitution � = ln ylnx in the integral, we have	(x; xt)� 	k(x; xt; xs)= Z ts (	k(x1��; (x1��) t1�� ; (x1��) �1�� )�	k�1(x1��; (x1��) t1�� ; (x1��) �1�� )) x� d��+ O( x(lnx)2 ):



21Dividing by x and letting x go to 1, we getF (t)�Gk(s; t) = Z ts (Gk( �1� � ; t1� � )�Gk�1( �1� � ; t1� � )) d�� ;that is,Gk(s; t) = F (t)� Z ts (Gk( �1� � ; t1� � )�Gk�1( �1� � ; t1� � )) d��and this onludes the proof.Remark: (2.10) is a generalization of (2.2). Notie that Gk(s; t) = �k+1(1s) if t � 1.Then when we let t = 1, u = 1sand set the index k to k � 1 in (2.10), we get exatly(2.2).If we start with the de�nition of Gk(s; t) and plug in Gk�1(s; t) reursively untilwe reah G0(s; t) = F (s), we getGk(s; t)= F (s) + Z ts Gk�1( s1� �1 ; �11� �1 ) d�1�1= F (s) + Z ts  F ( s1� �1 ) + Z �11��1s1��1 Gk�2( s(1� �1)(1� �2) ; �21� �2 ) d�2�2 ! d�1�1= F (s) + Z ts F ( s1� �1 ) d�1�1 + Z ts Z �11��1s1��1 Gk�2( s(1� �1)(1� �2) ; �21� �2 ) d�2 d�1�2 �1= � � �= F (s) + Z ts F ( s1� �1 ) d�1�1 + Z ts Z �11��1s1��1 F � s(1� �1)(1� �2)� d�2 d�1�2 �1+ � � �+Z ts Z �11��1s1��1 � � �Z �k�11��k�1 s(1��1)(1��2)���(1��k�1) F � s(1� �1)(1� �2) � � � (1� �k)� d�k � � �d�2d�1�k � � � �2�1 :Now if we de�ne I0(s; t) = F (s) and Ik(s; t) = R ts Ik�1( s1�� ; �1�� ) d�� for k > 0, thenit's easy to see that Ik(s; t) =Z ts Z �11��1s1��1 � � �Z �k�11��k�1 s(1��1)(1��2)���(1��k�1) F � s(1� �1)(1� �2) � � � (1� �k)� d�k � � �d�2d�1�k � � � �2�1 ;



22and we have just proved the following:Gk(s; t) = kXj=0 Ij(s; t): (2.11)Remark: Ik(s; t) is in fat the asymptoti probability for an integer n � x to haveexatly k large prime divisors between xs and xt, and all other prime divisors � xs.In other words, Ik(s; t) = limx!1 	k(x;xt;xs)�	k�1(x;xt;xs)x . Notie that the funtionG2(s; t) de�ned by Lambert [14℄ is in fat our I2(s; t).Beause of the above interpretation of Ik(s; t), we expet it to have the followingproperties: Assume 0 < s � t � 1, k � 1.1. If s � 1k , then Ik(s; t) = 0, therefore, Gk(s; t) = Gk�1(s; t).2. If t � 1� (k � 1) s, then Ik(s; t) = Ik(s; 1� (k � 1) s), in other words, if we �xs, then Ik(s; t) as a funtion of t is onstant on [1� (k � 1) s; 1℄.Before we prove them, we �rst give a natural explanation of the properties giventhe meaning of Ik(s; t). The �rst property simply says that if n � x, then n an'thave k fators > xs if s � 1=k beause that would imply n > x, a ontradition! Theseond property says that if n � x has k prime fators > xs, then the largest onemust be � x1�(k�1)s, beause if not, then n > (xs)k�1 x1�(k�1)s = x, a ontraditionagain!To prove the properties, we just use the de�nition of Ik(s; t) and indution.Proof For k = 1, the �rst property is true beause F ( s1�� ) = �(1��s ) = 0 when� � s � 1.When k � 2, s � 1k implies that when � � s, s1�� � s1�s � 1k�1 , so by indutionIk�1( s1�� ; �1�� ) = 0, therefore Ik(s; t) = R ts Ik�1( s1�� ; �1�� )d �� = 0.



23The seond property follows from the �rst one beause, when � � 1 � (k � 1) s,we have s1�� � 1k�1 , so Ik�1( s1�� ; �1�� ) = 0 andIk(s; t) = Z ts Ik�1( s1� � ; �1� � )d ��= Z 1�(k�1) ss Ik�1( s1� � ; �1� � )d �� + Z t1�(k�1) s Ik�1( s1� � ; �1� � )d ��= Z 1�(k�1) ss Ik�1( s1� � ; �1� � )d ��= Ik(s; 1� (k � 1) s) :



24
3. Numerial results and appliations3.1 PreparationTo ompute Gk(s; t), the simplest way is to use the de�nition and numerial in-tegration methods. If we have a very preise table of Gk�1(s; t) available, then wean start with this table and use numerial integration methods to alulate Gk(s; t).However, when k gets bigger, the assumption of having a preise table of Gk�1(s; t)available is hard to satisfy beause as k gets higher, the results obtained using nu-merial integration beome less aurate.We will present a better method for omputing Gk(s; t). Just like Bah andPeralta's method for omputing their funtion �(u; v) = G( 1u ; 1v ), whih is equivalentto our G1(s; t), and Lambert's method for omputing his funtion G2(s; t), whih isequivalent to our I2(s; t), we will utilize the fat that the Dikman funtion �(x) ispieewise analyti on the interval [k; k + 1℄ for every integer k.Sine we have Gk(s; t) = Pkj=0 Ij(s; t), we will onentrate on omputing Ik(s; t)instead from now on. Reall that we haveIk(s; t)= Z ts Z �11��1s1��1 � � �Z �k�11��k�1 s(1��1)(1��2)���(1��k�1) F � s(1� �1)(1� �2) � � � (1� �k)� d�k � � �d�2d�1�k � � � �2�1= Z � � �Z(�1;�2;��� ;�k)2D F � s(1� �1)(1� �2) � � � (1� �k)� d�k � � �d�2d�1�k � � � �2�1 ;where the domain of integration D is de�ned bys � �1 � t;



25s1� �1 � �2 � �11� �1 ;s(1� �1)(1� �2) � �3 � �21� �2 ;� � �s(1� �1)(1� �2) � � � (1� �k�1) � �k � �k�11� �k�1 :Let w1 = �1 and wi = �i(1� �1)(1� �2) � � � (1� �i�1) for 2 � i � k. Then under thismap D is transformed to D0: s � w1 � t;s � w2 � w1;� � �s � wk � wk�1:So making suh a hange of variables in the above integral gives usIk(s; t) = Z � � �Z(w1;w2;��� ;wk)2D0 F � s1� w1 � w2 � � � � � wk� dwk � � �dw2dw1wk � � �w2w1= Z ts Z w1s � � �Z wk�1s ��1� w1 � w2 � � � � � wks � dwkwk � � � dw2w2 dw1w1 :When k = 2, we have I2(s; t) = R ts R w1s �(1�w1�w2s )dw2w2 dw1w1 . Notiing the symmetryin the integrand, we an hange the integration limits to getI2(s; t) = 12 Z ts Z ts ��1� w1 � w2s � dw2w2 dw1w1 ;whih is exatly the formula proved by Lambert in [14℄.Reall that �(x) is analyti for x 2 [m � 1; m℄ for an integer m. So if we dividethe above integral into regions where 1�w1�w2�����wks 2 [m�1; m℄ for some m, then wean replae � with its Taylor expansion, and then be able to integrate term by term.To make these regions where � is analyti more amenable, we make another hangeof variable in the above integral.



26Let ui = wi + wi+1 + � � � + wk for i = 1; 2; � � � ; k, and uk+1 = 0 for onveniene.This de�nes a map � : Rk ! Rk by �((w1; w2; � � � ; wk)) = (u1; u2; � � � ; uk), and wehave Ik(s; t) = Z � � �Z�(D0) �(1� u1s ) duk � � �du2du1(uk � uk+1) � � � (u2 � u3)(u1 � u2) :This formula an be used to alulate Ik(s; t). We shall give an example for k = 3in the next hapter. The same priniple works for higher (and lower) k, while the�rst step, �guring out �(D0) expliitly using inequalities, beomes quite ompliatedwhen k � 4, at least for hand alulation.3.2 Calulating I3(s; t)First of all, we need to express �(D0) using inequalities whih an give us expliitintegration limits. In other words, if we integrate over u3 �rst, then u2 and u1, weshould have u1 bounded by onstants, u2 bounded by expressions involving only u1,and u3 bounded by expressions involving u1 and u2.Sine s � w1 � t, s � wi � wi�1; i = 2; 3, we haves � u1 � u2 � t; (3.1)s � u2 � u3 � u1 � u2; (3.2)s � u3 � u2 � u3: (3.3)We an easily derive from the above inequalities that3s � u1 � 3t; (3.4)2s � u2 � 23u1; (3.5)s � u3 � 12u2: (3.6)(3.2) implies that 2u2 � u1 � u3 � u2 � s, together with (3.6), we havemaxfs; 2u2 � u1g � u3 � minf12u2; u2 � sg:



27Sine 12u2 � u2 � s, minf12u2; u2 � sg = 12u2, whih meansmaxfs; 2u2 � u1g � u3 � 12u2:Therefore,� If 2s � u2 � u1+s2 then s � u3 � 12u2:� If u1+s2 � u2 � 23u1 then 2u2 � u1 � u3 � 12u2:In the ase 2s � u2 � u1+s2 , notie that (3.1) implies u1 � t � u2 � u1 � s, and wehave max(u1 � t; 2s) � u2 � u1 + s2 :Using this together with 3s � u1 � 3t, we get� If 3s � u1 � 2s+ t and 2s � u2 � u1+s2 , then s � u3 � 12u2.� If 2s+ t � u1 � s+ 2t and u1 � t � u2 � u1+s2 , then s � u3 � 12u2.In the ase u1+s2 � u2 � 23u1, similar reasoning gives us� If 3s � u1 � s+ 2t and u1+s2 � u2 � 23u1, then 2u2 � u1 � u3 � 12u2.� If s+ 2t � u1 � 3t and u1 � t � u2 � 23u1, then 2u2 � u1 � u3 � 12u2.So we �nally have that �(D0) = D1 [D2 [D3 [D4, whereD1 = f(u1; u2; u2)j3s � u1 � 2s+ t; 2s � u2 � u1 + s2 ; s � u3 � 12u2g;D2 = f(u1; u2; u2)j2s+ t � u1 � s+ 2t; u1 � t � u2 � u1 + s2 ; s � u3 � 12u2g;D3 = f(u1; u2; u2)j3s � u1 � s+ 2t; u1 + s2 � u2 � 23u1; 2u2 � u1 � u3 � 12u2g;D4 = f(u1; u2; u2)js+ 2t � u1 � 3t; u1 � t � u2 � 23u1; 2u2 � u1 � u3 � 12u2g;



28and Di; i = 1; 2; 3; 4 do not overlap with eah other exept on the boundaries. There-fore, I3(s; t) = ZZZD1 �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2)+ ZZZD2 �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2)+ ZZZD3 �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2)+ ZZZD4 �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2) :Sine we have Di; i = 1; 2; 3; 4 de�ned above expliitly by inequalities, we an rewritethese integrals with expliit integration limits and ompute them. We will give adetailed analysis for the integral over D1 as an example. For D2; D3; D4, the proessis similar.Given the integralZZZD1 �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2)= Z 2s+t3s Z u1+s22s Z 12u2s �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2) ;we approximate �(1�u1s ) in the integrand using the Taylor expansion of � mentionedin Chapter 1. Let m = d1�u1s e, and �(u1) = m� 1�u1s , on an interval [a; b℄ � [2s; 2s+t℄of u1 where m is a onstant. We have�(1� u1s ) = �(m� �(u1)) = 1Xi=0 (m)i �(u1)i = NXi=0 (m)i �(u1)i + E;where E = 1Xi=N+1 (m)i �(u1)i:



29So we haveZ ba Z u1+s22s Z 12u2s �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2)= 1Xi=0 (m)i Z ba Z u1+s22s Z 12u2s �(u1)iu3(u2 � u3)(u1 � u2)du3du2du1� NXi=0 (m)i Z ba Z u1+s22s Z 12u2s (m� 1�u1s )iu3(u2 � u3)(u1 � u2)du3du2du1= NXi=0 (m)i Z ba Z u1+s22s (m� 1� u1s )i ln(u2�ss )u2(u1 � u2)du2du1= NXi=0 (m)i Z ba (m� 1� u1s )i "(ln 2)22 + ln(u1 + ss ) ln(u1 � s2 s )+Li2(�u1 � s2 s ) + Li2( su1 � s)� du1u1 ;where Li2(z) = Z 0z ln(1� t)t dtis the seond order polylogarithm funtion, also alled the dilogarithm 1.3.3 Results and impliations for parameter hoies of MPQS and NFSMathematia programs to ompute I3(s; t) are given in the Appendix. Figure3.1 shows the shape of this funtion in the region [0; 1=3℄ � [0; 1=3℄. Figures 3.2 to3.6 give us loser looks at the behavior of the funtion. Table 3.3 gives values of�3(u; v) = I3(1=u; 1=v) at integral points with 4 � u � 20, 1 � v � 10.It's lear from the graphs that when s is �xed, I3(s; t) inreases as a funtion oft, but for t �xed, it's not monotoni in s. If t is �xed, I3(s; t) as a funtion of s willinrease initially with s, but after it reahes the peak, it starts dereasing.The shape of I3(s; t) losely resembles that of I2(s; t) (see [14℄), we expet thatto be the ase for Ik(s; t) with k � 4. So although the disussion below onerningthe parameter hoie for MPQS and NFS is for the 3-LP variations, we expet to1Dilogarithm sometimes also refers to Li2(1� z)



30have the same kind of results for k � 4 provided that we have good numerial valuesavailable for Ik(s; t) with k � 4.
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sFigure 3.1. I3(s; t) with 0 � s � 1=3, 0 � t � 1=3We will analyze the parameter hoie problem for MPQS here, using the latestreord-breaking (for MPQS) fatorization of n = 2; 1606L:135 as an example [17℄.We �rst give the atual parameters used in the fatorization (from [17℄), then examinewhether these hoies are optimal. The fator base size was hosen as 555 000, so B= 17 157 953 was the largest prime in the fator base. The large prime bound L = 230and the sieving range was �17158000=2 � t � 17158000=2. These parameters weredetermined experimentally. Initially, a set of possible values were hosen (using pastexperiene with the algorithm), and sieving experiments were onduted with thesedi�erent parameter values. The best performer among these were used in the atualsieving. It was noted in [17℄ that the sieving range only slightly a�eted the yieldof full and partial relations, with shorter sieve intervals produing somewhat higheryield.If we �x the sieving range for the moment, we have two important parametersthat may a�et the algorithm, B and L. In the above setting, most of the numbers
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Table 3.1�3(u; v) = I3(1=u; 1=v) for 4 � u � 20, 1 � v � 10vu 1 2 3 4 5 6 7 8 9 104 1.48863e-2 1.48863e-2 3.96814e-3 - - - - - - -5 7.12659e-2 6.80954e-2 1.88411e-2 9.42377e-4 - - - - - -6 1.40822e-1 1.23824e-1 2.87082e-2 2.22512e-3 9.01503e-5 - - - - -7 1.98437e-1 1.57745e-1 2.79713e-2 1.91224e-3 1.31608e-4 5.53028e-6 - - - -8 2.40073e-1 1.70494e-1 2.23729e-2 1.08903e-3 7.2448e-5 5.59516e-6 2.5458e-7 - - -9 2.69038e-1 1.70185e-1 1.64852e-2 5.08494e-4 2.63569e-5 2.15762e-6 1.90899e-7 9.42544e-9 - -10 2.88994e-1 1.63447e-1 1.18528e-2 2.15634e-4 7.72096e-6 5.48512e-7 5.50327e-8 5.49599e-9 2.92057e-10 -11 3.02644e-1 1.54188e-1 8.55239e-3 8.76134e-5 2.00327e-6 1.10884e-7 1.04466e-8 1.24077e-9 1.37267e-10 7.77771e-1212 3.11838e-1 1.44382e-1 6.27255e-3 3.50492e-5 4.84851e-7 1.95161e-8 1.56555e-9 1.84548e-10 2.51265e-11 3.02864e-1213 3.1784e-1 1.34916e-1 4.69872e-3 1.39809e-5 1.12649e-7 3.14533e-9 2.02085e-10 2.15865e-11 3.0345e-12 4.6167e-1314 3.21523e-1 1.26135e-1 3.59738e-3 5.58863e-6 2.55185e-8 4.78114e-10 2.35982e-11 2.16063e-12 2.87691e-13 4.65182e-1415 3.23502e-1 1.18135e-1 2.81133e-3 2.24109e-6 5.68072e-9 6.97564e-11 2.56806e-12 1.94103e-13 2.3249e-14 3.6777e-1516 3.24215e-1 1.10898e-1 2.23805e-3 9.00848e-7 1.24724e-9 9.8679e-12 2.65309e-13 1.61185e-14 1.67775e-15 2.47298e-1617 3.23981e-1 1.04367e-1 1.81097e-3 3.62491e-7 2.7045e-10 1.36125e-12 2.63237e-14 1.26089e-15 1.11296e-16 1.48017e-1718 3.23036e-1 9.84702e-2 1.48648e-3 1.45822e-7 5.7937e-11 1.83686e-13 2.52645e-15 9.4074e-17 6.91693e-18 8.11335e-1919 3.21555e-1 9.31364e-2 1.23551e-3 5.85742e-8 1.22605e-11 2.42862e-14 2.35594e-16 6.7491e-18 4.07936e-19 4.15042e-2020 3.1967e-1 8.82996e-2 1.03829e-3 2.34698e-8 2.56242e-12 3.14902e-15 2.1404e-17 4.68096e-19 2.3031e-20 2.00733e-21
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that we are sieving have roughly the same size as x = M �pn = 2:93322�1074, whereM = 17158000=2 is half of the length of the sieve interval. The orresponding s isabout 0.0971495, and t is about 0.121273. If we �x t at this value, and draw I3(s; t) asa funtion of s, we have Figure 3.9. It is quite lear from the �gure that s = 0:0971495is not the best hoie, at least if we want to get a better yield of relations with 3large primes. When s is about 0.107, we have the highest I3(s; t) value. One mightargue that this ould result in a loss in the 2-LP and 1-LP relations, (full relationsare atually going to gain a lot from this inrease of s), however, alulating I2(s; t)and I1(s; t) at these values, we see that we atually should have more 2-LP and 1-LPrelations too. Another interesting reason that we might want to maximize the 3-LPyield is that, for 3-LP relations, we are expeting to see a sudden inrease in thenumber of yles as a funtion of the number of partial relations. Higher yield in the3-LP relations will take us to this sudden inrease quiker and thus redue the timeneeded for sieving. Therefore, taking s � 0:107 should almost ertainly produe morerelations, full or partial, but that still does not mean a shorter running time, beauseone must also take into aount the fat that, with a higher s, we have a larger fatorbase too, therefore, we will need more relations to begin with. A rough estimate



37shows that the fator base would be about 4 to 5 times larger if we take s to around0.107. The inrease in the full relations are muh more than that, in fat, we shouldhave about 30 times the original number of full relations. For partial relations, weshould be onerned about how many fundamental yles they an produe insteadof the atual number of relations. Even if we do not onsider the sudden inreasein the yle number, beause of the power law, the yield of yles should still growmuh faster than 4 or 5 times when the number of relations doubles, whih is roughlythe ase for the 3-LP relation in this ase. Therefore, we onlude that the atualparameters used in fatoring 2,1606L.135 are quite far from optimal.From this, we propose the following parameter hoie proedure for future fator-izations with MPQS and NFS:1. Determine the size of the numbers that we expet to be sieving. This willdepend on the number we are trying to fator, whih algorithm we use as wellas how large the sieve region will be.2. Determine the large prime bound L, that is, the parameter t. This should behosen as large as possible given the available omputing resoures.3. Choose s to maximize Ik(s; t) for the moment, where k is the number of largeprimes that will be allowed in a partial relation. Then hek the values of Ij(s; t)for j = 1; : : : ; k � 1 to make sure that this s is not too bad a hoie for thefewer large prime partials.4. With the above s, �nd the largest prime in the fator base and the size of thefator base. Determine whether the fator base is aeptable with availableomputing resoures. If not, hoose the maximum a�ordable s.5. Finally, vary the parameters slightly and ondut sieving experiments to deter-mine the best hoie.



38With the program we have for omputing I3(s; t), we an do this for k = 3. We willneed to have an e�etive method for omputing Ik(s; t) �rst before we an utilize thisproedure in pratie for k � 4.3.4 How good are the approximations?Sine Gk(s; t), Ik(s; t) are de�ned as limit funtions when integers tend to in�nity,a natural question that one might ask is, how lose are the approximations whenused to predit the number of smooth, k-semismooth integers in a ertain range?This setion gives some evidene that we have reasonably good mathes when theintegers are relatively big.We fatored the integers in the interval [1015� 105; 1015� 1℄ ompletely and om-piled the tables below. Table 3.2 gives the total number of integers that have exatly3 large prime fators between y and z for di�erent hoies of y; z. Table 3.3 givesI3(s; t) � 105 with s = ln(y)= ln(1015); t = ln(z)= ln(1015), whih is the expeted num-ber of suh integers. As we an see, they are very lose to eah other as soon as theount gets reasonably big. The relative errors are mostly < 10%.
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Table 3.2Number of integers in [1015 � 105; 1015 � 1℄ with exatly 3 prime divisors between yand z and all other prime divisors � yzy 4000 6000 8000 10000 20000 40000 80000 100000 2000002000 5 22 48 80 259 507 902 1066 16534000 - 1 8 18 92 230 469 566 9266000 - - 0 3 40 129 293 363 6318000 - - - 0 17 73 189 244 44710000 - - - - 9 52 143 189 36420000 - - - - - 8 34 57 139
Table 3.3I3(s; t) � 105 with s = ln(y)= ln(1015); t = ln(z)= ln(1015)zy 4000 6000 8000 10000 20000 40000 80000 100000 2000002000 7.28 29.31 59.34 93.41 272.50 571.2 991.24 1152.11 1714.644000 - 1.65 8.25 18.75 92.52 244.65 488.23 587.32 945.366000 - - 0.57 3.1 36.3 127.95 295.07 366.66 631.78000 - - - 0.25 15.25 74.51 197.99 253.20 462.4810000 - - - - 6.37 45.94 140.60 185.18 356.5120000 - - - - - 5.16 37.48 56.91 136.57
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4. Smooth Integer Distribution in Short Intervals4.1 IntrodutionIn this hapter, we will study a problem posed by Selfridge and Meyerowitz [25℄.The problem is about a funtion f de�ned as follows:De�nition 4.1.1 Given integers k � 2 and n > 0, let f(n; k) be the smallest positiveinteger t so that there is a subset of k distint integers in the interval [n; n+ t℄ whoseprodut is a perfet square and both n and n + t are inluded in the set. De�ne f(n)to be the minimum of f(n; 2), f(n; 3), : : :Problem: Find good estimates for f(n).For eah k � 2 and n > 0, f(n; k) is well-de�ned sine there are k distint integers� n, namely n, 4n, 9n, : : : , (k�1)2n, k2n if k is even, or n, 4n, 9n, : : : , (k�1)2n, k2n2if k is odd, whose produt is a square. So f(n; k) � k2n if k is even and f(n; k) � k2n2if k is odd. Of ourse, this is a gross overestimate, f(n; k) should have muh smallervalues most of the time. For example, f(8; 3) = 10 sine in the interval [8; 18℄, wehave 3 integers, 8; 9; 18, that form a square produt and its easy to hek that thelength of the interval annot be any shorter.Selfridge and Meyerowitz have shown [25℄ that lim infn!1 f(n;3)4pn , and thereforelim infn!1 f(n)4pn is bounded. We will briey present their ideas here.If we hoose integer x suh that x2 � 1 is twie a square, then the following threeintegers have a square produt:2(4x4 � x2 � 2)2 = 32x8 � 16x6 � 30x4 + 8x2 + 8;2(x2 � 1)(x2 + 1)(4x2 � 1)2 = 32x8 � 16x6 � 30x4 + 16x2 � 2;2x2(x2 + 1)(4x2 � 3)2 = 32x8 � 16x6 � 30x4 + 18x2:



41If we let nx = 2(4x4 � x2 � 2)2 = 32x8 � 16x6 � 30x4 + 8x2 + 8 and zx = 10x2 � 8,then we an see that f(nx; 3) must be � zx sine in the interval [nx; nx+ zx℄, we havethose three integers above that have a perfet square produt. Notie that on theright hand side, all three expressions agree on the high order terms and di�er onlyon the x2 and onstant terms. So the di�erene between the last and the �rst integer= zx �  4pnx. So we have f(nx; 3) � zx �  4pnx and = 104p32 � 4:20 :Now to show that lim infn!1 f(n;3)4pn is bounded, all we need to prove is that in-�nitely many suh nx, or x with x2 � 1 being twie a square, exist. So now thequestion is how many integer solutions x2 � 1 = 2y2 has. This is exatly the Pellequation x2�Dy2 = 1 with D = 2, and it is well known that in�nitely many integersolutions exist. See, for example, [19℄.This proof is based on expliit onstrution of 3 integers in an interval of lengththat is only the fourth root of the size of the integers. Sine the de�nition of f plaesno restrition on the number of integers to form the produt, it's reasonable to hopefor a better estimate of f using possibly more integers.To use the results on smooth integer distribution in short intervals, we modifythe de�nition of f to remove the onstraint that the beginning and the end of theinterval must be inluded in the subset of integers. Also we extend the domain of thefuntion to all real numbers x > 0. We haveDe�nition 4.1.2 For any real number x > 0, let g(x) be the least positive real numberz so that there exists a subset of at least 2 distint integers in [x; x+ z℄ whose produtis a perfet square.Clearly, for integer n, g(n) � f(n). We will �rst obtain good estimates for g(x), andthen show that similar results an be extended to f(x).In the next setion, we will �rst give results on the smooth integer distributionin short intervals. The length of the \short interval" for whih we an derive a good



42approximation of the number of smooth integers greatly impats the growth rate ofthe funtion g. The shorter suh an interval is, the better estimate we an get for g.The �rst result we will prove is that for any � > 0, g(x) � x� for \most" large x, ina sense whih will be de�ned later. Then, with a little more ompliation, we furtherimprove this to get that g(x) � exp((ln(2 x))1=6 + (ln(2 x))5=6+�) for \most" large x.4.2 Estimates for g(x) and f(x).The reason that we an use smooth integer distribution to estimate g(x) better isbeause we an view the proess of �nding an integer subset of [x; x + z℄ to form asquare as a sieving proess, just like in the Quadrati Sieve and Number Field Sievealgorithms. If we an �nd enough y-smooth integers in the interval, then we an �nddependenies modulo 2 among the exponent vetors of all the y-smooth numbers wehave, and thus get a square. So we need to estimate the number of y-smooth integersavailable in the interval [x; x + z℄. Hildebrand proved the following [11℄:Theorem 4.2.1 If y � 2; exp((ln lnx)5=3+�) � y � x and xy�5=12 � z � x, thenwe have 	(x + z; y)� 	(x; y) = z�(u)�1 +O� ln(u+ 1)ln y ��;where u = (lnx)=(ln y).In other words, the number of y-smooth integers in the interval [x; x + z℄ an beapproximated by z�(u) asymptotially, provided that y; z are in the given range.However the restrition on y; z makes this theorem useless for our purpose here. Wehope to �nd a relatively short interval, [x; x+ z℄, preferably of length subexponentialin lnx, with enough y-smooth integers, but in this theorem, z is x7=12 at its best(smallest). To relax the ondition on y; z, one must turn to weaker results. Insteadof asking for estimates that hold for all x, we now ask for estimates that hold for\almost all" x. Then the ranges for y and z an be improved a lot. The �rst suhresult was obtained by Friedlander [8℄. Later he and Lagarias improved his results toobtain the following theorems [9℄:



43Theorem 4.2.2 For any �xed � > 0, 0 < � � � � 1, and for all suÆiently largeX, the estimate 	(x+ x�; x�)�	(x; x�) � 164��(1=�)x� (4.1)holds for all x 2 [1; X℄ with the exeption of a set of measure (usual Lesbegue measure)bounded by �;�;�X exp(�(lnX)1=3��); where �;�;� is a onstant depending only on �; �and �.Theorem 4.2.3 For any �xed � > 0, for all suÆiently large X, and for y and zsatisfying exp((lnX)5=6+�) � y � X; y exp((lnX)1=6) � z � X; (4.2)the estimate 	(x+ z; y)�	(x; y) � 116�( lnXln y )z (4.3)holds for all x 2 [1; X℄ with the exeption of a set of measure (usual Lesbegue measure)bounded by �X exp(�12(lnX)1=6), where � is a onstant depending only on �.With the above results on the smooth integer distribution in a short interval, wean get muh better results onerning the growth rate of the funtion g(x) de�nedin the previous setion. First, we have the following orollary of Theorem 4.2.2Corollary 4.2.4 For any �xed � > 0, 0 < � � 1, and all suÆiently large X,	(x+ x�; x�)�	(x; x�) � 164��(1=�)x� (4.4)holds for all x 2 [X=2; X℄ with the exeption of a set of measure (usual Lesbeguemeasure) bounded by �;�X exp(�(lnX)1=3��), where �;� is a onstant depending onlyon � and �.Remark: we want x 2 [X=2; X℄ beause we need x to tend to 1 with X. The X=2an be replaed by any funtion of X that tends to 1 when X !1.



44Proof Let � = � in Theorem 4.2.2.Now we are ready to proveTheorem 4.2.5 For any �xed � > 0, 0 < � � 1, g(x) as de�ned in the previoussetion, and all suÆiently large X, g(x) � x� for all x 2 [X=2; X℄ with the exeptionof a set of measure (usual Lesbegue measure) bounded by �;�X exp(�(lnX)1=3��),where �;� is a onstant depending only on � and �.Proof For those x 2 [X=2; X℄ satisfying (4.4), we have the number of x�-smoothintegers in the interval [x; x + x�℄ is > �(x�) � x�= ln(x�). Using the same linearalgebra tehnique used in QS and NFS, one an see that there is a subset of thosex�-smooth integers that have a perfet square produt. Therefore g(x) � x�. So forlarge X, g(x) � x� an only fail to hold when (4.4) fails to hold. This proves thetheorem.In partiular, for any 0 < � � 1, we have in�nitely many x suh that g(x) � x�.Notiing that for any x > 0, g(dxe) = g(x), we haveCorollary 4.2.6 For any 0 < � � 1, g de�ned as in the previous setion,lim infn!1;n2Z g(n)n� � 1Theorem 4.2.3 shortens the interval to subexponential length and therefore enablesus to get an even better estimate for g, with some ompliations. Sine we want theinterval to be as short as possible, we will take y and z to be at their minimum valuesin the range (4.2).Corollary 4.2.7 For any �xed � > 0, for all suÆiently large X, andy = exp((lnX)5=6+�);z = y exp((lnX)1=6) = exp((lnX)1=6 + (lnX)5=6+�);the estimate (4.3) holds for all x 2 [X=2; X℄ with the exeption of a set of measurebounded by �X exp(�12(lnX)1=6), where � is a onstant depending only on �.



45Proof Let y = exp((lnX)5=6+�), z = y exp((lnX)1=6) = exp((lnX)1=6 + (lnX)5=6+�)in Theorem 4.2.3.For those x satisfying (4.3), the number of y-smooth integers in the interval [x; x+z℄ is big enough to enable us to onstrut a perfet square, so we haveTheorem 4.2.8 For any �xed � > 0, g(x) as de�ned in the previous setion, and allsuÆiently large X, g(x) � exp((ln(2 x))1=6 + (ln(2 x))5=6+�)for all x 2 [X=2; X℄ with the exeption of a set of measure (usual Lesbegue measure)bounded by �X exp(�12(lnX)1=6), where � is a onstant depending only on �.Proof Let y; z be de�ned as in Corollary 4.2.7. We only need to show that for allsuÆiently large X and x 2 [X=2; X℄ satisfying (4.3),g(x) � z � exp((ln(2 x))1=6 + (ln(2 x))5=6+�):Using the same argument as Theorem 4.2.5, we see that it suÆes to prove	(x+ z; y)� 	(x; y) > �(y);with y and z de�ned as in Corollary 4.2.7.By (4.3), 	(x+ z; y)� 	(x; y) � 116�( lnXln y )z = 116�((lnX)1=6��)z:Taking logarithms on both sides and using the fat that ln �(u) = �(u+ o(1)) lnuas u!1 (see [12℄ for a proof of this), we have
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ln(	(x+ z; y)� 	(x; y))� ln z � ((lnX)1=6�� + o(1)) ln((lnX)1=6��)� ln(16)= (lnX)1=6 + (lnX)5=6+� � ((lnX)1=6�� + o(1)) ln((lnX)1=6��)� ln(16)> (lnX)5=6+� + (lnX)1=6 � 2 (lnX)1=6�� ln((lnX)1=6��)= (lnX)5=6+� + (lnX)1=6 �1� 2 ln lnX(1=6� �) (lnX)��> (lnX)5=6+�= ln y> ln(�(y)):This shows that 	(x + z; y)� 	(x; y) > �(y), and onludes the proof.Similar to Corollary 4.2.6, we haveCorollary 4.2.9 For any � > 0, and g de�ned as in the previous setion,lim infn!1;n2Z g(n)exp((ln(2n))1=6 + (ln(2n))5=6+�) � 1:To extend the results to f(n), we use the fat that for any integer n > 0, 9n0 � nsuh that f(n0) � g(n). To see this, let g(n) = z. By de�nition of g, we an �ndk � 2 integers n1 < n2 < � � � < nk in the interval [n; n+ z℄ whose produt is a square.Also notie that nk must be equal to n+g(n) = n+ z (otherwise, we an �nd smallervalues for z, ontraditing with the de�nition of g). So letting n0 = n1 � n, we havea subset of integers in [n0; n + z℄, inluding n0 and n + z, whose produt is a square.By the de�nition of f , f(n0) � n+ z � n0 � z = g(n).Using this fat, we see that Corollaries 4.2.6 and 4.2.9 with g replaed by f holdtoo. Therefore, f(n) takes subexponential values (in ln(n)) for in�nitely many n.This improves the result of Selfridge and Meyerowitz signi�antly.
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5. SummaryWe have generalized the Dikman funtion to get an asymptoti probability esti-mate for k-semismooth integers. Our result agrees with previous work on the problemfor k = 1 and k = 2. Properties of the new funtion were disussed. We also gavea method for alulating this funtion at k = 3. It is still an interesting problemto �nd an e�etive method for omputing the new funtion at k � 4. Numerialresults (at k = 3) were given and applied to the parameter hoie problem of integerfatorization algorithms like MPQS and NFS with 3 large primes. Experiments areneeded to hek the e�etiveness of our proposed method for parameter hoie.The smooth integer distribution in a short interval gave a nie improvement forthe estimate of the square produt funtion of Selfridge and Meyerowitz.
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APPENDIXMATHEMATICA PROGRAM TO COMPUTE I3(s; t)(* Clear all the symbols that we need *)ClearAll[numoeffrho, , intd1, intd2, intd3, intd4, I3, sigma3℄;(* number of oeffiients to use in the Taylor expansion of rhoon [m-1, m℄ *)numoeffrho = 22;(* Funtion to ompute _i^{(m)} *)[m_, i_℄ := [m,i℄ = Module[{j, value},If[m==1,If[ i==0, value=1, value=0℄,If[ m ==2,If[i==0, value = N[1-Log[2℄℄, value = N[1/(i*2^i)℄℄,value = 0;If[ i == 0,Do[value=value+N[[m,j℄/((m-1)(j+1))℄,{j, 1, numoeffrho}℄,Do[value=value+N[[m-1,j℄/(i*m^(i-j))℄,{j, 0, i-1}℄℄℄℄;



51value℄ (* End Module for [m,i℄ *)
(* Funtion to ompute the integral over the region D_1 *)intd1[s_, t_℄ := Module[ {F1, u1, u2, u3, tmp, low, high, a, b,m, i, sum},(* F1, produed by Mathematia *)F1 = (Log[2℄^2 + 2*Log[2℄*Log[(-s + u1)/(2*s)℄ + 2*Log[(-s + u1)/(2*s)℄*Log[(s + u1)/(2*s)℄ + 2*PolyLog[2, (s - u1)/(2*s)℄ +2*PolyLog[2, s/(-s + u1)℄)/(2*u1);low = 3*s;high = 2*s + t;If[high > 1, high = 1℄;a = low;m = Ceiling[(1-a)/s℄;b = 1 - (m-1)*s;If[ b > high, b = high ℄;sum = 0;While[ a < high - 10^(-5),For[i = 0, i < numoeffrho, i++,tmp = (m - 1/s + u1/s)^i * F1;sum = sum + [m, i℄ * NIntegrate[tmp, {u1, a, b}℄;℄;a = b;b = b + s;If[ b > high, b = high ℄;



52m = m - 1;℄; (* End While *)sum℄; (* End Module for intd1[s,t℄ *)
(* Funtion to ompute the integral over the region D_2 *)intd2[s_, t_℄ := Module[ {F2, u1, u2, u3, tmp, low, high, a, b,m, i, sum},(* F2, produed by Mathematia *)F2 =(-Pi^2/12 + Log[2℄^2/2 + Log[-((s+t-u1)/s)℄*Log[t/(-s+u1)℄ +Log[2℄*Log[(-s+u1)/(2*s)℄ + Log[(-s+u1)/(2*s)℄*Log[(s+u1)/(2*s)℄ -Log[-((s+t-u1)/s)℄*Log[(-t+u1)/s℄ + PolyLog[2, (s-u1)/(2*s)℄ -PolyLog[2, (s+t-u1)/s℄ + PolyLog[2, (s+t-u1)/(s-u1)℄)/u1 ;low = 2*s+t;high = s+ 2*t; If[high > 1, high = 1℄;a = low;m = Ceiling[(1-a)/s℄;b = 1 - (m-1)*s; If[ b > high, b = high ℄;sum = 0;While[ a < high - 10^(-5),For[i = 0, i < numoeffrho, i++,tmp = (m - 1/s + u1/s)^i * F2;sum = sum + [m, i℄ * NIntegrate[tmp, {u1, a, b}℄;℄;a = b;



53b = b + s;If[ b > high, b = high ℄;m = m - 1;℄; (* End While *)sum℄; (* End Module for intd2[s,t℄ *)
(* Funtion to ompute the integral over the region D_3 *)intd3[s_, t_℄ := Module[ {ex, F3, u1, u2, u3, tmp, low, high, a, b,m, i, sum},(* F3, produed by Mathematia and further simplified by handusing property of the dilogarithm to remove the imaginary part,whih should not appear in the first plae *)F3 = (Pi^2/6 - Log[4/3℄^2/2 - Log[s℄*Log[1 - s/u1℄ -Log[3/2℄*Log[u1/3℄ - Log[u1/3℄^2/2 +Log[(-s + u1)/2℄^2/2 + Log[s℄*Log[(s + u1)/2℄ -Log[(s/u1)℄*Log[u1/2℄ - Log[(-s + u1)/2℄*Log[(s + u1)/2℄ +Log[(-s + u1)/(2*u1)℄*Log[(s + u1)/2℄ + PolyLog[2, 1/3℄ -PolyLog[2, 2/3℄ - PolyLog[2, 3/4℄ - PolyLog[2, s/u1℄ +PolyLog[2, (s + u1)/(2*u1)℄ + PolyLog[2, -s/u1℄)/u1 ;low = 3*s;high = s + 2*t; If[high > 1, high = 1℄;a = low;m = Ceiling[(1-a)/s℄;b = 1 - (m-1)*s; If[ b > high, b = high ℄;sum = 0;While[ a < high - 10^(-5),For[i = 0, i < numoeffrho, i++,



54tmp = (m - 1/s + u1/s)^i * F3;sum = sum + [m, i℄ * NIntegrate[tmp, {u1, a, b}℄;℄;a = b; b = b + s; If[ b > high, b = high ℄;m = m - 1;℄; (* End While *)sum℄; (* End Module for intd3[s,t℄ *)
(* Funtion to ompute the integral over the region D_4 *)intd4[s_, t_℄ := Module[ { F4, u1, u2, u3, tmp, low, high, a, b,m, i, sum},(* F4, produed by Mathematia and further simplified by handusing property of the dilogarithm to remove the imaginary part,whih should not appear in the first plae *)F4 = (Pi^2/6 - Log[4/3℄^2/2 + Log[t℄^2/2 - Log[3/2℄*Log[u1/3℄ -Log[u1/3℄^2/2 - Log[(2*t)/u1℄*Log[-2*t + u1℄ -Log[t℄*Log[-t + u1℄ + Log[1 - (2*t)/u1℄*Log[2/u1℄ +Log[t/u1℄*Log[-t + u1℄ + Log[-2*t + u1℄*Log[-t + u1℄ +PolyLog[2, 1/3℄ - PolyLog[2, 2/3℄ - PolyLog[2, 3/4℄ -PolyLog[2, 1 - (2*t)/u1℄ + PolyLog[2, (2*t)/u1 - 1℄ +PolyLog[2, 1 - t/u1℄)/u1 ;low = s + 2*t;high = 3*t; If[high > 1, high = 1℄;a = low;m = Ceiling[(1-a)/s℄;b = 1 - (m-1)*s; If[ b > high, b = high ℄;sum = 0;



55While[ a < high - 10^(-5),For[i = 0, i < numoeffrho, i++,tmp = (m - 1/s + u1/s)^i * F4;sum = sum + [m, i℄ * NIntegrate[tmp, {u1, a, b}℄;℄;a = b; b = b + s; If[ b > high, b = high ℄;m = m - 1;℄; (* End While *)sum℄; (* End Module for intd4[s,t℄ *)
(* Funtion to ompute I_3(s,t) *)I3[s_, t_℄ := Module[ {value},If[s >= t,value = 0,value = intd1[s,t℄ + intd2[s,t℄ + intd3[s,t℄ + intd4[s,t℄;℄;value℄;(* Define sigma3(u,v) *)sigma3[u_, v_℄ := I3[1/u, 1/v℄;
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