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ABSTRACTZhang, Chaogui. Ph.D., Purdue University, August, 2002. An extension of theDi
kman fun
tion and its appli
ation. Major Professor: Samuel S. Wagsta�, Jr.In this thesis, we study a generalization of the Di
kman fun
tion and its appli
a-tions.We �rst generalize the 
on
ept of a smooth integer to make it suitable to ana-lyze the Large-Prime Variations of the Quadrati
 Sieve(QS) and Number Field Sieve(NFS). Smooth integers are the ones whose largest prime divisors are bounded. Inour generalization, we will bound the largest prime divisor and the (k + 1)st largestprime divisor and ignore the size of the other prime divisors in between. Su
h integerswill be 
alled k-semismooth.A heuristi
 argument will �rst be given to derive re
urren
e formulae for theasymptoti
 distribution of k-semismooth integers. Using that, we de�ne a general-ization of the Di
kman fun
tion. Then we give a rigorous proof for the re
urren
eformulae, and explore some properties of the generalized Di
kman fun
tion. We alsopresent a method for 
omputing this fun
tion. Numeri
al results and appli
ations tothe MPQS and NFS will then be dis
ussed.At the end, we will investigate the smooth integer distribution in a short interval,and use results available in this area to get an estimate of the fun
tion f(n) de�nedas the smallest positive integer z su
h that the interval [n; n + z℄ 
ontains a set ofintegers (in
luding n and n+ z) whose produ
t is a perfe
t square. This problem wasproposed by Selfridge and Meyerowitz.



1
1. Introdu
tion1.1 Integer Fa
torization Algorithms1.1.1 Why fa
tor integers?The problem of fa
torizing large integers into prime divisors has been studied bymany mathemati
ians for several hundred years. The problem is simple to state andunderstand, just like many other problems in number theory, yet the solution to theproblem requires the understanding of very 
ompli
ated theories. The theoreti
alimportan
e of the problem itself deserves all the attention it 
an get from mathe-mati
ians of all time. One of the greatest mathemati
ians in history, Carl Friedri
hGauss, said the following more than two hundred years ago [10℄:The problem of distinguishing prime numbers from 
omposite numbersand of resolving the latter into their prime fa
tors is known to be one of themost important and useful in arithmeti
. It has engaged the industry andwisdom of an
ient and modern geometers to su
h an extent that it wouldbe super
uous to dis
uss the problem at length...Further, the dignity ofthe s
ien
e itself seems to require solution of a problem so elegant and so
elebrated.After the RSA publi
-key 
ryptosystem 
ame into existen
e in the 1970s [24℄, the e�ortto fa
tor large integers got more attention than ever before. It is 
onje
tured, andmany people believe, that breaking the RSA 
ryptosystem is equivalent to fa
torizingthe modulus n used in the system. At least half of the 
onje
ture is true, that is, ifone 
an fa
tor n, then one 
an de�nitely break the RSA system, although the otherhalf of the 
onje
ture has not been proved or disproved yet.



2For any serious appli
ation of the RSA system, it's essential to keep tra
k of thesize of the integers that people 
an fa
tor using the best fa
torization algorithmsavailable so that one 
an 
hoose a large enough modulus to make the system se
ure.When Gauss wrote those words quoted above, there were no eÆ
ient algorithmsfor primality testing or integer fa
torization. Sin
e then, signi�
ant progress has beenmade on both problems, espe
ially for primality testing. Today we have good algo-rithms that 
an test the primality of an integer in nearly polynomial time. Integerfa
torization, however, remains a hard problem, although there are mu
h faster algo-rithms now than before, like ECM, MPQS and NFS, all with heuristi
 sub-exponentialrunning time.1.1.2 Algorithms for fa
torizing integers, QS and NFSWe will brie
y present two of the most powerful integer fa
torization algorithmsnext. Both of them are based on the Legendre's Congruen
e Method, whi
h we shallexplain brie
y �rst.Given the number N to fa
tor, if we 
an �nd a non-trivial solution to the 
ongru-en
e x2 � y2 (mod N), then we 
an �nd a fa
tor of N by taking the GCD of x � yand N . Here, non-trivial means that x 6� �y (mod N). In pra
ti
e, we usually ignorethe requirement of non-trivialness and just try to �nd a solution to the 
ongruen
eabove. If it turns out to be a trivial solution, we try again. The reason is that for themethods we use to 
onstru
t the solutions, �nding many su
h solutions only requiresa little more e�ort than �nding one solution. Furthermore, when N is 
omposite,if we �nd the solutions randomly, then at least half of the solutions are non-trivial,and when N is the produ
t of two primes, we have exa
tly half of the solutions beingnon-trivial. So if we �nd many solutions to the 
ongruen
e, then 
han
es are we willbe able to fa
tor N easily.Therefore, the question now is how to 
onstru
t solutions to the 
ongruen
e, inother words, �nding 
ongruent squares mod N . The Quadrati
 Sieve and the Number



3Field Sieve both try to �nd su
h 
ongruent squares eÆ
iently. We shall give a briefintrodu
tion here to the QS and NFS. See [23℄ for an ex
ellent presentation of all theimportant fa
torizing methods, an
ient or modern, in
luding the QS and NFS. Alsosee [21℄, [22℄ and [26℄ for details about the QS. For the NFS, [15℄ provides a 
ompletetreatment.The Quadrati
 Sieve 
onstru
ts the 
ongruent squares from a large set of 
on-gruen
es of the form x2 � y mod N , where y 
an be 
ompletely fa
tored using onlyprimes from a fa
tor base B 
onsisting of �1 and prime numbers p � B su
h that(Np ) = 1, where (Np ) is the Legendre symbol. Su
h a 
ongruen
e is 
alled a relationr(x; y), and 
an be written as x2 �Yp2B pe(p) mod N:The value p = �1 is needed to allow negative y. For ea
h relation, we 
an de�ne ave
tor in GF(2)#B where ea
h 
omponent of the ve
tor 
orresponds to the exponente(p) mod 2. It's 
lear that if the number of su
h relations is greater than #B, thatis, the size of the fa
tor base, then we 
an use Gaussian elimination or some othermethod like blo
k Lan
zos over GF(2) to �nd a dependen
y among those ve
tors,whi
h 
orresponds to a subset, S, of all the relations, su
h that the produ
t of theright hand sides of the relations in S is a perfe
t square. So we haveYr(x;y)2S x2 � Yr(x;y)2S y = x0 2 mod NTaking the GCD of x� x0 and N , we have at least a 50% 
han
e of fa
torizing N.The way to �nd lots of relations eÆ
iently is by a sieving method. Let m = bpN 
and Q(t) = (t�m)2�N . Then for ea
h t, we trivially have (t�m)2 � Q(t) mod N .Thus, Q(t) is a quadrati
 residue moduloN for ea
h t. Also, Q(t) = t2�2 tm+m2�Nis about as large as 2 tpN , whi
h is small 
ompared to N when t is not too large.So Q(t) is a relatively small quadrati
 residue modulo N . If Q(t) is B-smooth, thatis, 
an be fa
tored 
ompletely using primes in B, then we have a relation r(x; y) withx = t�m and y = Q(t). To identify su
h parameters t eÆ
iently, noti
e that p 2 B



4divides Q(t) if and only if p divides Q(t � p). So we 
an lo
ate all the parameters twhere p divides Q(t) by solving just one quadrati
 
ongruen
e (t�m)2 � N mod p.Remember that we have 
hosen p su
h that (Np ) = 1, so it has exa
tly two solutions.When p = 4k + 3, the solutions are given by t � �m � N (p+1)=4 mod p. Whenp = 4k + 1, the solutions are more diÆ
ult to �nd, but there are eÆ
ient (but more
ompli
ated) algorithms to do that. The divisibility of Q(t) by powers of 2 is more
ompli
ated and we do not dis
uss that here. The sign of Q(t) is just the sign of(t�m)2 �N .The multiple polynomial variation of the QS, 
alled MPQS, uses many quadrati
polynomialsQ(t) so that we only need to sieve for small values of t for ea
h polynomial.Q(t) must be 
hosen su
h that it is a quadrati
 residue modulo N for ea
h t just likebefore. Care must also be taken to make sure that Q(t) takes small values (relativelyspeaking). For details on MPQS, see [26℄.The Number Field Sieve is the most eÆ
ient fa
toring algorithm available today.There are two variations of NFS, the Spe
ial NFS and the General NFS. They di�eronly in the �rst step, polynomial sele
tion. The spe
ial NFS 
an only fa
tor numbersof the form re+ s sin
e this form gives rise to very simple and good polynomials that
an be used for the sieving. For the general NFS, one has to sear
h for a polynomialthat is as \good" as possible.Two polynomials f1(x) and f2(x) must be 
hosen su
h that fi(m) � 0 mod N ,i = 1; 2. Usually f2(x) = x �m, but it need not be. Also the polynomials must beirredu
ible, but that is not a problem be
ause if we �nd f1(x) to be redu
ible, thenwe have just fa
tored N nontrivially.We will assume f1(x) 2 Z[x℄ is moni
 and irredu
ible of degree d > 1 and assumef2(x) = x�m. The restri
tion on f1 being moni
 and f2 being linear is to make ourdis
ussion easier. To see how to remove these restri
tions and other details aboutNFS, please refer to [3℄.In NFS, we work with the ring Z[�℄ generated by a root � of f1. One 
an ei-ther 
onsider Z[�℄ as a subring of the �eld of 
omplex numbers or as a subring of



5Z[X℄=f1Z[X℄, with � = (X mod f1). Every element of Z[�℄ 
an be written uniquelyin the form Pd�1i=0 ai�i, with a0; a1; � � � ; ad�1 2 Z. Sin
e we have m 2 Z satisfyingf(m) � 0 mod N , there is a natural ring homomorphism � : Z[�℄ ! Z=NZ indu
edby �(�) = (m mod N). Now, suppose we 
an �nd a non-empty set S of pairs (a; b)of relatively prime integers su
h that the following are true:Y(a;b)2S(a + bm) is a square in Z (1.1)Y(a;b)2S(a + b�) is a square in Z[�℄ (1.2)Then let x 2 Z be a square root ofQ(a;b)2S(a+ bm), and � 2 Z[�℄ be a square root ofQ(a;b)2S(a+ b�). Sin
e �(a+ b�) = (a+ bm mod N), we have �(�2) = (x2 mod N).Let y 2 Z su
h that �(�) = (y mod N). Then we have x2 � y2 mod N , and we haveour 
ongruent squares to fa
tor N .Several important issues need to be addressed before this 
an be put to work:1. How are the polynomials f1 and f2 to be 
onstru
ted?2. How do we �nd the set S?3. How do we �nd �?4. How mu
h time is needed?Paper [3℄ answers all the above questions 
arefully. Here we only tou
h upon these
ond question sin
e that's the most relevant one for us and it's the most importantand time 
onsuming step of the NFS. As with the QS, the 
onstru
tion of the set Sis done in two steps. First, sieving pro
edures are used to �nd a set T of pairs (a; b)su
h that both a+ bm and a+ b� are smooth (smoothness for a+ b� is de�ned belowin a similar sense as that for an integer). Next, one uses linear algebra over the �eldGF(2) to �nd a subset S � T su
h that (1.1) and (1.2) are satis�ed.



6Let Fi(x; y) = ydeg(fi) fi(x=y) be the homogeneous polynomial 
orresponding tofi(x), i = 1; 2. We say that a + b� is B-smooth if its norm N(a + b�) = F1(a;�b) isB-smooth. For �xed u > 0, letU = f(a; b)ja; b 2 Z; g
d(a; b) = 1; jaj � u; 0 < b � ug:We will look for T � U with the properties mentioned above. U is 
alled the sievingregion.In NFS, we have two sieves. The linear sieve is simple. Assume B is the smooth-ness bound. Then for ea
h �xed integer b with 0 < b � u, we �rst initialize an arrayof integers a + bm for �u � a � u. For ea
h prime p � B, the entries in the array
orresponding to a � �bm mod p are retrieved one by one, and divided by the highestpower of p that divides them. These entries are then repla
ed by their 
orrespondingquotient after dividing out the powers of p. After doing this for all the primes p � B,we 
he
k the array and those entries 
ontaining 1 or �1 
orrespond to B-smootha+ bm.In pra
ti
e, however, we do not sieve as des
ribed above be
ause that's too time
onsuming, espe
ially the division by prime powers. Instead, we initialize the arraywith approximate logarithms of a + bm to some base. We subtra
t the logarithmsof the prime powers from the entries, saving time by not doing divisions. Then atthe end, we look for those entries with values 
lose to 0. These are 
alled 
andidates.Be
ause of all the approximations used, we need to fa
tor the 
andidates by trialdivision to �nd the ones that are smooth.The algebrai
 sieve is more 
ompli
ated. Again, let's say B is the smoothnessbound. For ea
h prime p � B, let R(p) denote the set of roots of f1(r) � 0 mod p,that is, R(p) = fr 2 f0; 1; : : : ; p� 1g j f1(r) � 0 mod pg:Then for any �xed integer b with 0 < b � u and b 6� 0 mod p, the integers a withN(a+ b�) � 0 mod p are those with a � �br mod p for some r 2 R(p). Note that if



7b � 0 mod p, then there is no integer a with (a; b) 2 U and N(a + b�) � 0 mod p.Now for ea
h �xed b initialize an array of integers N(a + b�) for �u � a � u. Forea
h pair (p; r) su
h that r 2 R(p), the entries 
orresponding to a � �br mod p areidenti�ed and divided by the highest power of p that divides them. Then these entriesare repla
ed by the quotients. After this is done for all p � B, we �nd those entries
ontaining 1 or �1, whi
h 
orrespond to the B-smooth values of a + b�. Again, foreÆ
ien
y, we use the approximate logarithm te
hnique mentioned above in pra
ti
e.Taking the entries (a; b) su
h that g
d(a; b) = 1 and both a + bm and a + b� areB-smooth, we get our set T . Apply linear algebra over GF(2) now to �nd the subsetS. Here more 
ompli
ation arises. The problem 
omes from the fa
t that the normof � 2 Z[�℄ being a square does not ne
essarily mean � itself is a square, althoughwhen � is a square, its norm is de�nitely a square. Fortunately, this 
an be solvedif we remember, for ea
h prime p dividing N(a + b�), the value r 2 R(p) whi
h is\responsible for it". For more details, see [3℄.1.1.3 Large-Prime Variations of the MPQS and NFSThe QS and NFS algorithm both run mu
h faster if we allow in our relations notonly those that 
an be fa
tored 
ompletely using primes in the fa
tor base, but alsothose that may have a few large prime divisors outside the fa
tor base but belowanother slightly larger bound. Relations with large primes involved are usually 
alledpartial relations and the ones with no large primes are 
alled full relations. Partialrelations need to be 
ombined before they 
an be used in the linear algebra step. Alot of experiments have been done with the QS and NFS using large primes. For theQS, as many as 3 large primes were used. See [16℄, [4℄ and [17℄ for details. For theNFS, be
ause we 
an distribute the large primes over two sieves, for example, threefor one polynomial and two for the other, as many as 5 large primes were used. See,for example, [7℄ and [5℄.



8First we explain how partial relations 
an be eÆ
iently 
olle
ted during the sievingpro
ess. When sieving for full relations, only those 
andidates that have 
ompletefa
torization in the fa
tor base are saved. Suppose that we want to �nd those relationsthat have exa
tly 1 large prime (1-LP) between B and L (B < L < B2). Then afterthe trial division, we 
he
k the remaining 
ofa
tor 
. If 
 < L < B2, then we havea 1-LP partial relation be
ause 
 must be prime. As we 
an see, 1-LP relations arefound at almost no extra 
ost. That's why QS and NFS with 1-LP always performbetter than the no large prime versions. To 
olle
t relations with 2-LP, we 
he
kfor those 
ofa
tors 
 with B2 < 
 < L2 < B3. If 
 satis�es this 
ondition, then it'seither the produ
t of two primes between B and L, that is, we have a 2-LP relation,or a single prime > B2 > L, that is, we have a false report (useless relation). Wedistinguish these two 
ases by applying a 
ompositeness test on 
, and in 
ase of a2-LP relation, we then fa
tor 
 to �nd the two large primes. Similarly we 
an dok-LP with k � 3, but the fa
torization pattern of 
 gets more 
ompli
ated and wemay have more and more false reports. In fa
t, people have thought that letting kgo beyond 2 would make the 
ost of identifying those partial relations outweigh thebene�t we get from the partial relations, thus making it slower than the 2-LP version.See, for example, [7℄. However, re
ent experiments have shown that the 3-LP versionof MPQS (
alled TMPQS) is indeed about 1.75 times faster than PPMPQS, the 2-LPversion of MPQS. We will explain why that is the 
ase next.It's ne
essary to 
ombine the partial relations �rst to �nd the so-
alled funda-mental 
y
les before they are used in the linear algebra step. Essentially what onedoes is to 
ombine partial relations together to remove the large primes and hen
eobtain full relations. The number of 
y
les as a fun
tion of the number of partialrelations was observed to behave as 
1m2 and 
2m4 respe
tively for 1-LP and 2-LPpartials, where m is the number of partials and 
1; 
2 are small 
onstants [16, 1℄.However, with more large primes allowed, the behavior of the number of 
y
les as afun
tion of the number of partials have shown some interesting sudden growth afterinitially behaving a

ording to a power law like before. This was �rst observed with



9NFS [7℄, be
ause there relations with more than 2 large primes 
an be found at verylittle extra 
ost. Just re
ently, an experiment with the MPQS using 3 large primes
on�rmed this interesting behavior again [17℄. It is be
ause of this sudden growthof 
y
le numbers that we 
an over
ome the extra 
ost in identifying partial relationswith more than 2 large primes. There is no theoreti
al explanation yet to this sudden
hange of behavior of 
y
le numbers.1.2 Smoothness1.2.1 Smooth integers and the Di
kman fun
tionAn integer n is said to be smooth with respe
t to y (or y-smooth) if all the primefa
tors of n are � y. Smooth integers are important to fa
torization algorithms likethe Quadrati
 Sieve and the Number �eld Sieve be
ause they are exa
tly what weseek in the sieving pro
ess (the most time 
onsuming part) in both algorithms. Soestimating the number of smooth integers available under 
ertain 
onditions is veryimportant for the running time analysis of su
h fa
torization algorithms.There are two ex
ellent survey papers on this subje
t. K. Norton [20℄ gave a
omprehensive survey of the literature up to 1970. A. Hildebrand [12℄ 
overed all theimportant work on the subje
t from 1970 to early 1990s.Let 	(x; y) = #fn � x : n has no prime divisor > yg. K. Di
kman [6℄ was the�rst to obtain an asymptoti
 formula for 	(x; y). He showed that for any u > 0,limx!1 	(x; x1=u)x = �(u);where �(u) is de�ned by the di�erential-di�eren
e equation u�0(u) = ��(u � 1) foru > 1 and �(u) = 1 for 0 � u � 1. It 
an be shown that �(u) = 1u R uu�1 �(t) dt.1.2.2 Computing the Di
kman � fun
tion a

uratelyUsing the fa
t that �(u) = 1u R uu�1 �(t) dt, one 
an 
ompute �(u) simply usingnumeri
al integration methods. However, the results obtained this way are not very



10good, espe
ially when u gets bigger, be
ause we need to do numeri
al integrationrepeatedly and errors a

umulate in the pro
ess.We introdu
e Ba
h and Peralta's method for e�e
tive 
al
ulation of the Di
kman� fun
tion [2℄ here. Noti
e that � is analyti
 on [m� 1; m℄ for integer m � 1, that is,there is an analyti
 fun
tion �m(x) that is equal to �(x) on [m� 1; m℄. So we have aTaylor expansion for �(x) = �m(x) = �m(m� �) on [m� 1; m℄,�m(m� �) = 1Xi=0 
(m)i �i;Sin
e �1(x) = 1 and �2(x) = 1 � ln(x), the 
oeÆ
ients 
(1)i and 
(2)i are 
ompletelydetermined. 
(1)0 = 1; 
(1)i = 0 for i > 0;
(2)0 = 1� ln(2); 
(2)i = 1i 2i for i > 0:For m > 2, the 
oeÆ
ients 
(m)i 
an be 
omputed by the following formulae [2℄. Fori > 0; m > 2, 
(m)i = i�1Xj=0 
(m�1)jimi�j :For i = 0; m > 2, 
(m)0 = 1m� 1 1Xj=1 
(m)jj + 1 :The 
oeÆ
ients de
rease exponentially: 
(m)i � (12)i for m � 2.A more a

urate method (based on the same idea of pie
ewise analyti
 fun
tion)exists. See Marsaglia, Zaman and Marsaglia [18℄ for details. Instead of expanding�m(x) at x = m, the method of [18℄ expands �m(x) at m� 12 . For our purpose, Ba
hand Peralta's method suÆ
es.



111.3 Outline of the ThesisIn 
hapter 2, we will give an extension of the Di
kman � fun
tion and dis
usssome properties of the new fun
tion. Numeri
al results and appli
ations to the QSand NFS will be dis
ussed in Chapter 3. Chapter 4 will deal with a problem posed byJ. L. Selfridge and A. Meyerowitz [25℄, the growth rate of a fun
tion 
onne
ted witha perfe
t square produ
t in a short interval. It turns out to depend on the smoothinteger distribution in short intervals.
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2. k-Semismooth Integers2.1 Ba
kgroundAn integer is 
alled smooth with respe
t to y if all of its divisors are � y, that is,its largest prime divisor is � y, and it's 
alled semismooth with respe
t to y and z ifits se
ond largest prime divisor is � y and its largest prime divisor is � z.The well known Di
kman fun
tion �(u) des
ribes the asymptoti
 probability of aninteger being smooth. Knuth and Trabb Pardo generalized the Di
kman fun
tion toanalyze the size of the k-th largest prime divisor of n in [13℄. Ba
h and Peralta gaveanother ni
e generalization of the Di
kman fun
tion in [2℄ to study the semismoothintegers. These fun
tions play an important role in analyzing fa
torization algorithmslike the MPQS and NFS, and their one large prime variations, be
ause the runningtimes of these algorithms heavily depend on the number of smooth (semismooth)integers available in a 
ertain range.Sin
e in 
urrent implementations of the MPQS and NFS, relations with severallarge primes are being used, it is desirable to generalize the Di
kman fun
tion furtherto analyze integers with at most k large prime divisors in a 
ertain range and all otherdivisors below that. We will 
all su
h integers k-semismooth integers, and would liketo �nd a fun
tion that estimates the asymptoti
 probability of an integer being k-semismooth given the smoothness bounds y and z (see the de�nition below).The workdone by Ba
h and Peralta solved this problem for k = 1 using Stieltjes integration.Lambert [14℄ used the same method to solve the problem for k = 2. In prin
iple, theirmethod should work for k > 2, but it gets very 
ompli
ated and it's not pra
ti
al to
arry out the analysis. We will use a di�erent method here to solve this problem forany k > 0. Our method also gives a stronger result in terms of the error estimate.



13De�nition 2.1.1 An integer n is 
alled k-semismooth with respe
t to y and z if thelargest prime divisor of n is � y and its (k + 1)st largest prime divisor (
ountingmultipli
ity) is � z, that is, n has at most k prime divisors between y and z.Following the notation in [13℄, we write an integer n as n = n1 n2 � � �nr; n1 �n2 � � � � � nr, where the ni's are prime divisors of n. So nk is the k-th largest primedivisor of n (
ounting with multipli
ity). If n has fewer than k prime divisors, thenlet nk = 1. Also, let n0 =1 for 
onvenien
e.Let 	k(x; y; z) be the number of k-semismooth integers � x with smoothnessbounds y and z, that is,	k(x; y; z) = #fn � x : n1 � y; nk+1 � zg; k � 0: (2.1)This generalizes the following fun
tions de�ned in [6℄, [2℄ and [13℄:	(x; y; z) = #fn � x : n1 � y; n2 � zg = 	1(x; y; z);	(x; y) = #fn � x : n1 � yg = 	0(x; y; y);	k(x; y) = #fn � x : nk � yg = 	k�1(x; x; y):We will prove that limx!+1 	k(x; xt; xs)x = Gk(s; t)exists, for k � 0, and the fun
tions Gk(s; t) satisfy some interesting formulae. Beforewe do that, we will brie
y explain the generalizations of the Di
kman fun
tion doneby Knuth, Trabb Pardo [13℄ and Ba
h, Peralta [2℄.Knuth and Trabb Pardo de�ned a generalization of the Di
kman fun
tion as fol-lows: �k(u) = 1� R u1 (�k(t� 1)� �k�1(t� 1)) dtt ; for u > 1; k � 1; (2.2)�k(u) = 1; for 0 < u � 1; k � 1; (2.3)�k(u) = 0; for u � 0 or k = 0: (2.4)



14and proved that for k � 1, limx!+1 	k(x; x1=u)x = �k(u)by proving the following theorem:Theorem 2.1.1 Let 	k(x; y) and �k(u) be de�ned as above, k � 1, then	k(x; x1=u) = �k(u)x+ �k(u)x= ln(x) +O(u2x=(lnx)2); (2.5)where �k(u) = (1� 
)(�k(u� 1)� �k�1(u� 1))and 
 is Euler's 
onstant.Clearly, �1(u) = �(u).In [2℄, Ba
h and Peralta proved that if we de�neG(s; t) = F (s) + Z ts F ( s1� �)d�� ;where F (s) = �(1=s), then we haveTheorem 2.1.2 If 0 < s < t < 1, then,	(x; xt; xs) = xG(s; t) +O� ln(s�1)s(1� t) xlnx� : (2.6)Therefore, G(s; t) = limx!1 	(x; xt; xs)x :In [2℄, it was also proved thatG(s; t) = Z s0 G( s1� �; t1� �)d� + Z ts F ( s1� �)d�:An e�e
tive method for 
omputing G(s; t) was also dis
ussed in [2℄. Noti
e that thisG(s; t) is equal to our Gk(s; t) with k = 1.Lambert de�ned a fun
tion G2(s; t) [14℄ su
h thatlimx!1 	2(x; xt; xs)� 	1(x; xt; xs)x = G2(s; t):He also gave an e�e
tive method for 
omputing his G2(s; t). Noti
e that this fun
tionG2(s; t) in [14℄ is di�erent from our Gk(s; t) with k = 2. More pre
isely, his G2(s; t)is a
tually our G2(s; t)�G1(s; t).



152.2 Heuristi
 argumentIn this se
tion we heuristi
ally derive properties that Gk(s; t) should have if weassume at the moment that Gk(s; t) = limx!+1 	k(x;xt;xs)x does exist. This argumentis similar to what Knuth and Trabb Pardo did in [13℄.First we will (heuristi
ally) show that�Gk(s; t)�t = Gk�1( s1� t ; t1� t)1t : (2.7)This will lead to our de�nition for Gk(s; t) in the next se
tion.Consider 	k(x; xt+�t; xs)�	k(x; xt; xs), the number of integers n � x su
h that n1is between xt and xt+�t and nk+1 � xs, where �t is a very small positive real numberand s < t are between 0 and 1. Any su
h integer n 
an be obtained by multiplyinga prime p between xt and xt+�t by an integer m � xp � x1�t with m1 � p � xt,mk � xs. The number of su
h m is approximately 	k�1(x1�t; xt; xs). So we have	k(x; xt+�t; xs)� 	k(x; xt; xs) � (�(xt+�t)� �(xt))	k�1(x1�t; xt; xs): (2.8)Using the Prime Number Theorem, we know that �(xt+�t)��(xt) � xtt �t, so pluggingthis into (2.8) and dividing by x�t gives us	k(x; xt+�t; xs)�	k(x; xt; xs)x�t � 	k�1(x1�t; xt; xs)x1�tt :Noti
e that 	k�1(x1�t; xt; xs)x1�tt = 	k�1(x1�t; (x1�t) t1�t ; (x1�t) s1�t )x1�t t :So letting x!1 gives us (assuming limx!1 	k(x;xt;xs)x exists and is equal to Gk(s; t))Gk(s; t+�t)�Gk(s; t)�t � Gk�1( s1�t ; t1�t)t :Letting �t! 0 gives us (2.7).Now let's show (again heuristi
ally) that�Gk(s; t)�s = �Gk( s1� s; t1� s)�Gk�1( s1� s; t1� s)� 1s : (2.9)



16This is a generalization of (3.7) in [13℄, and it will lead us to a generalization of (4.2)in [13℄. The argument is similar to what we just did for (2.7).Consider 	k(x; xt; xs+�s)� 	k(x; xt; xs), the number of integers n � x su
h thatn1 � xt and nk+1 is between xs and xs+�s, where �s is a very small positive realnumber and s < t are between 0 and 1. Any su
h integer n 
an be obtained bymultiplying a prime p between xs and xs+�s by an integer m � xp � x1�s withm1 � xt, mk+1 � p � xs and mk � p � xs. The number of su
h m is approximately	k(x1�s; xt; xs)�	k�1(x1�s; xt; xs). So we have	k(x; xt; xs+�s)�	k(x; xt; xs)� (�(xs+�s)� �(xs))	k(x1�s; xt; xs)� 	k�1(x1�s; xt; xs):The rest of the argument is similar to that of (2.7). First use the Prime NumberTheorem to approximate �(xs+�s) � �(xs), and divide both sides by x�s. Thenletting x!1, �s! 0 gives us (2.9).2.3 Rigorous proofThe integral form of (2.7) gives us the followingDe�nition 2.3.1 Let 0 < s < t, G0(s; t) = F (s) = �(1=s), then for k > 0 we de�neGk(s; t) = F (s) + Z ts Gk�1( s1� � ; �1� � ) d�� :For the error term estimate that we are going to get, we introdu
e a fun
tion�k(s; t):De�nition 2.3.2 Let 0 < s < t, �0(s; t) = (1� 
)F ( s1�s), and for k > 0,�k(s; t) = (1� 
)F ( s1� s) + Z ts �k�1( s1� � ; �1� � ) d��(1� �) :We will prove that Gk(s; t) = limx!+1 	k(x; xt; xs)x :In fa
t, we will prove an even stronger result that gives us the main error term, butwe need to prove the following lemma �rst:



17Lemma 2.3.1 For 0 < s < t < 1, k > 0 and p prime in the summation below,Xxs<p�xt	k(xp ; p; xs) = Z xtxs 	k(xy ; y; xs) dyln y +O� x(lnx)2� :Proof We will use the Prime Number Theorem in the form �(x) = li(x) +O( xln
(x))for any 
 > 0, whereli(x) = Z x0 dtln(t) = lim�!0(Z 1��0 dtln(t) + Z x1+� dtln(t)) :Our proof is based on the ideas of Knuth and Trabb Pardo [13℄.Let Sk(x; y; z) = fn � x : n1 � y; nk+1 � zg. ThenXxs<p�xt	k(xp ; p; xs)� Z xtxs 	k(xy ; y; xs) dyln y= Xxs<p�xt( Xn2Sk(xp ;p;xs) 1)� Z xtxs ( Xn2Sk(xy ;y;xs) 1) dyln y= Xxs<p�xt( Xn�xpn1�pnk+1�xs 1)� Z xtxs ( Xn�xyn1�ynk+1�xs 1) dyln y= X1�n<x1�sn1�min( xn ; xt)nk+1�xs
0BB�( Xn1�p� xnxs<p�xt 1)� Z min( xn ; xt)max(n1; xs) dyln y1CCA= X1�n<x1�sn1�min( xn ; xt)nk+1�xs ��(min(xn; xt))� �(max(n1; xs)) +O(1)�li(min(xn; xt)) + li(max(n1; xs)�= X1�n<x1�sn1�min( xn ; xt)nk+1�xs O( x=nln
(x=n))= X1�n<x1�sn1�min( xn ; xt)nk+1�xs O( x=nln
(xs)) = O( xln
(xs)) X1�n�x1�s 1n= O( xln
(xs) ln(x1�s)) = O(1� ss
 xln
�1 x):



18Letting 
 = 3 gives what we need.Now, we are ready to prove our main theorem:Theorem 2.3.2 If 0 < s < t < 1, 	k(x; y; z), Gk(s; t) and �k(s; t) are de�ned asabove and k � 0, then we have	k(x; xt; xs) = xGk(s; t) + �k(s; t) xln(x) +O( x(lnx)2 ):Proof By indu
tion on k.For k = 0, the statement is simply a 
orollary of Theorem 2.1.1.When k > 0, we have	k(x; xt; xs) = Xp�xs#fn � x : n1 = pg+ Xxs<p�xt#fn � x : n1 = p; nk+1 � xsgFor the �rst sum, we have Xp�xs#fn � x : n1 = pg= #fn � x : n1 � xsg= 	(x; xs)= xF (s) + �1(1s ) xlnx +O( xs2(lnx)2 ):For the se
ond sum, we haveXxs<p�xt#fn � x : n1 = p; nk+1 � xsg= Xxs<p�xt#fm � xp : m1 � p;mk � xsg= Xxs<p�xt	k�1(xp ; p; xs)= Z xtxs 	k�1(xy ; y; xs) dyln y +O� x(lnx)2�= Z xtxs 	k�1(xy ;�xy� ln ylnx�lny ;�xy� s lnxlnx�lny ) dyln y +O� x(lnx)2� :



19By indu
tion, we have	k�1(xy ;�xy� ln ylnx�lny ;�xy� s lnxlnx�lny ) = xyGk�1( s lnxlnx� ln y ; ln ylnx� ln y )+ x=yln(x=y)�k�1( s lnxlnx� ln y ; ln ylnx� ln y )+ O� x=yln(x=y)2� :So, Z xtxs 	k�1(xy ;�xy� ln ylnx�lny ;�xy� s lnxlnx�lny ) dyln y= Z xtxs xyGk�1( s lnxlnx� ln y ; ln ylnx� ln y ) dyln y+ Z xtxs x=yln(x=y)�k�1( s lnxlnx� ln y ; ln ylnx� ln y ) dyln y+ Z xtxs O� x=yln(x=y)2� dyln y :Making a 
hange of variable, � = ln ylnx in the above integrals, we getZ xtxs 	k�1(xy ;�xy� ln ylnx�ln y ;�xy� s lnxlnx�ln y ) dyln y= x Z ts Gk�1( s1� � ; �1� � )d��+ xlnx Z ts �k�1( s1� � ; �1� � ) d��(1� �)+ O( x(lnx)2 ):So we have 	k(x; xt; xs)= x(F (s) + Z ts Gk�1( s1� � ; �1� � )d�� )+ xlnx(�1(1s) + Z ts �k�1( s1� � ; �1� � ) d��(1� �))+ O( x(lnx)2 )= xGk(s; t) + �k(s; t) xln(x) +O( x(lnx)2 ):This proves the theorem.



202.4 Some properties of Gk(s; t)First of all, let's prove that Gk(s; t) does satisfy (2.9). Instead of proving (2.9)dire
tly, we will give a proof of its equivalent integral form.The following lemma 
an be proved just like Lemma 2.3.1.Lemma 2.4.1 For 0 < s < t < 1, k > 0 and p prime in the summation below,Xxs<p�xt	k(xp ; xt; p) = Z xtxs 	k(xy ; xt; y) dyln y +O� x(lnx)2� :Theorem 2.4.2 Given Gk(s; t) as de�ned in the previous se
tion, we haveGk(s; t) = F (t)� Z ts (Gk( �1� � ; t1� � )�Gk�1( �1� � ; t1� � )) d�� : (2.10)Proof For 0 < s < t < 1,	(x; xt)� 	k(x; xt; xs)= #fn � x : n1 � xt; nk+1 > xsg= Xxs<p�xt #fn � x : n1 � xt; nk+1 = pg= Xxs<p�xt #fm � xp : m1 � xt; mk+1 � p;mk � pg= Xxs<p�xt(	k(xp ; xt; p)� 	k�1(xp ; xt; p))= Z xtxs (	k(xy ; xt; y)� 	k�1(xy ; xt; y)) dyln y +O( x(lnx)2 )= Z xtxs (	k(xy ;�xy� t lnxlnx�lny ;�xy� ln ylnx�ln y )� 	k�1(xy ;�xy� t lnxlnx�ln y ;�xy� ln ylnx�ln y )) dyln y+ O( x(lnx)2 ):Making a substitution � = ln ylnx in the integral, we have	(x; xt)� 	k(x; xt; xs)= Z ts (	k(x1��; (x1��) t1�� ; (x1��) �1�� )�	k�1(x1��; (x1��) t1�� ; (x1��) �1�� )) x� d��+ O( x(lnx)2 ):



21Dividing by x and letting x go to 1, we getF (t)�Gk(s; t) = Z ts (Gk( �1� � ; t1� � )�Gk�1( �1� � ; t1� � )) d�� ;that is,Gk(s; t) = F (t)� Z ts (Gk( �1� � ; t1� � )�Gk�1( �1� � ; t1� � )) d��and this 
on
ludes the proof.Remark: (2.10) is a generalization of (2.2). Noti
e that Gk(s; t) = �k+1(1s) if t � 1.Then when we let t = 1, u = 1sand set the index k to k � 1 in (2.10), we get exa
tly(2.2).If we start with the de�nition of Gk(s; t) and plug in Gk�1(s; t) re
ursively untilwe rea
h G0(s; t) = F (s), we getGk(s; t)= F (s) + Z ts Gk�1( s1� �1 ; �11� �1 ) d�1�1= F (s) + Z ts  F ( s1� �1 ) + Z �11��1s1��1 Gk�2( s(1� �1)(1� �2) ; �21� �2 ) d�2�2 ! d�1�1= F (s) + Z ts F ( s1� �1 ) d�1�1 + Z ts Z �11��1s1��1 Gk�2( s(1� �1)(1� �2) ; �21� �2 ) d�2 d�1�2 �1= � � �= F (s) + Z ts F ( s1� �1 ) d�1�1 + Z ts Z �11��1s1��1 F � s(1� �1)(1� �2)� d�2 d�1�2 �1+ � � �+Z ts Z �11��1s1��1 � � �Z �k�11��k�1 s(1��1)(1��2)���(1��k�1) F � s(1� �1)(1� �2) � � � (1� �k)� d�k � � �d�2d�1�k � � � �2�1 :Now if we de�ne I0(s; t) = F (s) and Ik(s; t) = R ts Ik�1( s1�� ; �1�� ) d�� for k > 0, thenit's easy to see that Ik(s; t) =Z ts Z �11��1s1��1 � � �Z �k�11��k�1 s(1��1)(1��2)���(1��k�1) F � s(1� �1)(1� �2) � � � (1� �k)� d�k � � �d�2d�1�k � � � �2�1 ;



22and we have just proved the following:Gk(s; t) = kXj=0 Ij(s; t): (2.11)Remark: Ik(s; t) is in fa
t the asymptoti
 probability for an integer n � x to haveexa
tly k large prime divisors between xs and xt, and all other prime divisors � xs.In other words, Ik(s; t) = limx!1 	k(x;xt;xs)�	k�1(x;xt;xs)x . Noti
e that the fun
tionG2(s; t) de�ned by Lambert [14℄ is in fa
t our I2(s; t).Be
ause of the above interpretation of Ik(s; t), we expe
t it to have the followingproperties: Assume 0 < s � t � 1, k � 1.1. If s � 1k , then Ik(s; t) = 0, therefore, Gk(s; t) = Gk�1(s; t).2. If t � 1� (k � 1) s, then Ik(s; t) = Ik(s; 1� (k � 1) s), in other words, if we �xs, then Ik(s; t) as a fun
tion of t is 
onstant on [1� (k � 1) s; 1℄.Before we prove them, we �rst give a natural explanation of the properties giventhe meaning of Ik(s; t). The �rst property simply says that if n � x, then n 
an'thave k fa
tors > xs if s � 1=k be
ause that would imply n > x, a 
ontradi
tion! These
ond property says that if n � x has k prime fa
tors > xs, then the largest onemust be � x1�(k�1)s, be
ause if not, then n > (xs)k�1 x1�(k�1)s = x, a 
ontradi
tionagain!To prove the properties, we just use the de�nition of Ik(s; t) and indu
tion.Proof For k = 1, the �rst property is true be
ause F ( s1�� ) = �(1��s ) = 0 when� � s � 1.When k � 2, s � 1k implies that when � � s, s1�� � s1�s � 1k�1 , so by indu
tionIk�1( s1�� ; �1�� ) = 0, therefore Ik(s; t) = R ts Ik�1( s1�� ; �1�� )d �� = 0.



23The se
ond property follows from the �rst one be
ause, when � � 1 � (k � 1) s,we have s1�� � 1k�1 , so Ik�1( s1�� ; �1�� ) = 0 andIk(s; t) = Z ts Ik�1( s1� � ; �1� � )d ��= Z 1�(k�1) ss Ik�1( s1� � ; �1� � )d �� + Z t1�(k�1) s Ik�1( s1� � ; �1� � )d ��= Z 1�(k�1) ss Ik�1( s1� � ; �1� � )d ��= Ik(s; 1� (k � 1) s) :



24
3. Numeri
al results and appli
ations3.1 PreparationTo 
ompute Gk(s; t), the simplest way is to use the de�nition and numeri
al in-tegration methods. If we have a very pre
ise table of Gk�1(s; t) available, then we
an start with this table and use numeri
al integration methods to 
al
ulate Gk(s; t).However, when k gets bigger, the assumption of having a pre
ise table of Gk�1(s; t)available is hard to satisfy be
ause as k gets higher, the results obtained using nu-meri
al integration be
ome less a

urate.We will present a better method for 
omputing Gk(s; t). Just like Ba
h andPeralta's method for 
omputing their fun
tion �(u; v) = G( 1u ; 1v ), whi
h is equivalentto our G1(s; t), and Lambert's method for 
omputing his fun
tion G2(s; t), whi
h isequivalent to our I2(s; t), we will utilize the fa
t that the Di
kman fun
tion �(x) ispie
ewise analyti
 on the interval [k; k + 1℄ for every integer k.Sin
e we have Gk(s; t) = Pkj=0 Ij(s; t), we will 
on
entrate on 
omputing Ik(s; t)instead from now on. Re
all that we haveIk(s; t)= Z ts Z �11��1s1��1 � � �Z �k�11��k�1 s(1��1)(1��2)���(1��k�1) F � s(1� �1)(1� �2) � � � (1� �k)� d�k � � �d�2d�1�k � � � �2�1= Z � � �Z(�1;�2;��� ;�k)2D F � s(1� �1)(1� �2) � � � (1� �k)� d�k � � �d�2d�1�k � � � �2�1 ;where the domain of integration D is de�ned bys � �1 � t;



25s1� �1 � �2 � �11� �1 ;s(1� �1)(1� �2) � �3 � �21� �2 ;� � �s(1� �1)(1� �2) � � � (1� �k�1) � �k � �k�11� �k�1 :Let w1 = �1 and wi = �i(1� �1)(1� �2) � � � (1� �i�1) for 2 � i � k. Then under thismap D is transformed to D0: s � w1 � t;s � w2 � w1;� � �s � wk � wk�1:So making su
h a 
hange of variables in the above integral gives usIk(s; t) = Z � � �Z(w1;w2;��� ;wk)2D0 F � s1� w1 � w2 � � � � � wk� dwk � � �dw2dw1wk � � �w2w1= Z ts Z w1s � � �Z wk�1s ��1� w1 � w2 � � � � � wks � dwkwk � � � dw2w2 dw1w1 :When k = 2, we have I2(s; t) = R ts R w1s �(1�w1�w2s )dw2w2 dw1w1 . Noti
ing the symmetryin the integrand, we 
an 
hange the integration limits to getI2(s; t) = 12 Z ts Z ts ��1� w1 � w2s � dw2w2 dw1w1 ;whi
h is exa
tly the formula proved by Lambert in [14℄.Re
all that �(x) is analyti
 for x 2 [m � 1; m℄ for an integer m. So if we dividethe above integral into regions where 1�w1�w2�����wks 2 [m�1; m℄ for some m, then we
an repla
e � with its Taylor expansion, and then be able to integrate term by term.To make these regions where � is analyti
 more amenable, we make another 
hangeof variable in the above integral.



26Let ui = wi + wi+1 + � � � + wk for i = 1; 2; � � � ; k, and uk+1 = 0 for 
onvenien
e.This de�nes a map � : Rk ! Rk by �((w1; w2; � � � ; wk)) = (u1; u2; � � � ; uk), and wehave Ik(s; t) = Z � � �Z�(D0) �(1� u1s ) duk � � �du2du1(uk � uk+1) � � � (u2 � u3)(u1 � u2) :This formula 
an be used to 
al
ulate Ik(s; t). We shall give an example for k = 3in the next 
hapter. The same prin
iple works for higher (and lower) k, while the�rst step, �guring out �(D0) expli
itly using inequalities, be
omes quite 
ompli
atedwhen k � 4, at least for hand 
al
ulation.3.2 Cal
ulating I3(s; t)First of all, we need to express �(D0) using inequalities whi
h 
an give us expli
itintegration limits. In other words, if we integrate over u3 �rst, then u2 and u1, weshould have u1 bounded by 
onstants, u2 bounded by expressions involving only u1,and u3 bounded by expressions involving u1 and u2.Sin
e s � w1 � t, s � wi � wi�1; i = 2; 3, we haves � u1 � u2 � t; (3.1)s � u2 � u3 � u1 � u2; (3.2)s � u3 � u2 � u3: (3.3)We 
an easily derive from the above inequalities that3s � u1 � 3t; (3.4)2s � u2 � 23u1; (3.5)s � u3 � 12u2: (3.6)(3.2) implies that 2u2 � u1 � u3 � u2 � s, together with (3.6), we havemaxfs; 2u2 � u1g � u3 � minf12u2; u2 � sg:



27Sin
e 12u2 � u2 � s, minf12u2; u2 � sg = 12u2, whi
h meansmaxfs; 2u2 � u1g � u3 � 12u2:Therefore,� If 2s � u2 � u1+s2 then s � u3 � 12u2:� If u1+s2 � u2 � 23u1 then 2u2 � u1 � u3 � 12u2:In the 
ase 2s � u2 � u1+s2 , noti
e that (3.1) implies u1 � t � u2 � u1 � s, and wehave max(u1 � t; 2s) � u2 � u1 + s2 :Using this together with 3s � u1 � 3t, we get� If 3s � u1 � 2s+ t and 2s � u2 � u1+s2 , then s � u3 � 12u2.� If 2s+ t � u1 � s+ 2t and u1 � t � u2 � u1+s2 , then s � u3 � 12u2.In the 
ase u1+s2 � u2 � 23u1, similar reasoning gives us� If 3s � u1 � s+ 2t and u1+s2 � u2 � 23u1, then 2u2 � u1 � u3 � 12u2.� If s+ 2t � u1 � 3t and u1 � t � u2 � 23u1, then 2u2 � u1 � u3 � 12u2.So we �nally have that �(D0) = D1 [D2 [D3 [D4, whereD1 = f(u1; u2; u2)j3s � u1 � 2s+ t; 2s � u2 � u1 + s2 ; s � u3 � 12u2g;D2 = f(u1; u2; u2)j2s+ t � u1 � s+ 2t; u1 � t � u2 � u1 + s2 ; s � u3 � 12u2g;D3 = f(u1; u2; u2)j3s � u1 � s+ 2t; u1 + s2 � u2 � 23u1; 2u2 � u1 � u3 � 12u2g;D4 = f(u1; u2; u2)js+ 2t � u1 � 3t; u1 � t � u2 � 23u1; 2u2 � u1 � u3 � 12u2g;



28and Di; i = 1; 2; 3; 4 do not overlap with ea
h other ex
ept on the boundaries. There-fore, I3(s; t) = ZZZD1 �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2)+ ZZZD2 �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2)+ ZZZD3 �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2)+ ZZZD4 �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2) :Sin
e we have Di; i = 1; 2; 3; 4 de�ned above expli
itly by inequalities, we 
an rewritethese integrals with expli
it integration limits and 
ompute them. We will give adetailed analysis for the integral over D1 as an example. For D2; D3; D4, the pro
essis similar.Given the integralZZZD1 �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2)= Z 2s+t3s Z u1+s22s Z 12u2s �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2) ;we approximate �(1�u1s ) in the integrand using the Taylor expansion of � mentionedin Chapter 1. Let m = d1�u1s e, and �(u1) = m� 1�u1s , on an interval [a; b℄ � [2s; 2s+t℄of u1 where m is a 
onstant. We have�(1� u1s ) = �(m� �(u1)) = 1Xi=0 
(m)i �(u1)i = NXi=0 
(m)i �(u1)i + E;where E = 1Xi=N+1 
(m)i �(u1)i:



29So we haveZ ba Z u1+s22s Z 12u2s �(1� u1s ) du3du2du1u3(u2 � u3)(u1 � u2)= 1Xi=0 
(m)i Z ba Z u1+s22s Z 12u2s �(u1)iu3(u2 � u3)(u1 � u2)du3du2du1� NXi=0 
(m)i Z ba Z u1+s22s Z 12u2s (m� 1�u1s )iu3(u2 � u3)(u1 � u2)du3du2du1= NXi=0 
(m)i Z ba Z u1+s22s (m� 1� u1s )i ln(u2�ss )u2(u1 � u2)du2du1= NXi=0 
(m)i Z ba (m� 1� u1s )i "(ln 2)22 + ln(u1 + ss ) ln(u1 � s2 s )+Li2(�u1 � s2 s ) + Li2( su1 � s)� du1u1 ;where Li2(z) = Z 0z ln(1� t)t dtis the se
ond order polylogarithm fun
tion, also 
alled the dilogarithm 1.3.3 Results and impli
ations for parameter 
hoi
es of MPQS and NFSMathemati
a programs to 
ompute I3(s; t) are given in the Appendix. Figure3.1 shows the shape of this fun
tion in the region [0; 1=3℄ � [0; 1=3℄. Figures 3.2 to3.6 give us 
loser looks at the behavior of the fun
tion. Table 3.3 gives values of�3(u; v) = I3(1=u; 1=v) at integral points with 4 � u � 20, 1 � v � 10.It's 
lear from the graphs that when s is �xed, I3(s; t) in
reases as a fun
tion oft, but for t �xed, it's not monotoni
 in s. If t is �xed, I3(s; t) as a fun
tion of s willin
rease initially with s, but after it rea
hes the peak, it starts de
reasing.The shape of I3(s; t) 
losely resembles that of I2(s; t) (see [14℄), we expe
t thatto be the 
ase for Ik(s; t) with k � 4. So although the dis
ussion below 
on
erningthe parameter 
hoi
e for MPQS and NFS is for the 3-LP variations, we expe
t to1Dilogarithm sometimes also refers to Li2(1� z)



30have the same kind of results for k � 4 provided that we have good numeri
al valuesavailable for Ik(s; t) with k � 4.
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sFigure 3.1. I3(s; t) with 0 � s � 1=3, 0 � t � 1=3We will analyze the parameter 
hoi
e problem for MPQS here, using the latestre
ord-breaking (for MPQS) fa
torization of n = 2; 1606L:
135 as an example [17℄.We �rst give the a
tual parameters used in the fa
torization (from [17℄), then examinewhether these 
hoi
es are optimal. The fa
tor base size was 
hosen as 555 000, so B= 17 157 953 was the largest prime in the fa
tor base. The large prime bound L = 230and the sieving range was �17158000=2 � t � 17158000=2. These parameters weredetermined experimentally. Initially, a set of possible values were 
hosen (using pastexperien
e with the algorithm), and sieving experiments were 
ondu
ted with thesedi�erent parameter values. The best performer among these were used in the a
tualsieving. It was noted in [17℄ that the sieving range only slightly a�e
ted the yieldof full and partial relations, with shorter sieve intervals produ
ing somewhat higheryield.If we �x the sieving range for the moment, we have two important parametersthat may a�e
t the algorithm, B and L. In the above setting, most of the numbers
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Table 3.1�3(u; v) = I3(1=u; 1=v) for 4 � u � 20, 1 � v � 10vu 1 2 3 4 5 6 7 8 9 104 1.48863e-2 1.48863e-2 3.96814e-3 - - - - - - -5 7.12659e-2 6.80954e-2 1.88411e-2 9.42377e-4 - - - - - -6 1.40822e-1 1.23824e-1 2.87082e-2 2.22512e-3 9.01503e-5 - - - - -7 1.98437e-1 1.57745e-1 2.79713e-2 1.91224e-3 1.31608e-4 5.53028e-6 - - - -8 2.40073e-1 1.70494e-1 2.23729e-2 1.08903e-3 7.2448e-5 5.59516e-6 2.5458e-7 - - -9 2.69038e-1 1.70185e-1 1.64852e-2 5.08494e-4 2.63569e-5 2.15762e-6 1.90899e-7 9.42544e-9 - -10 2.88994e-1 1.63447e-1 1.18528e-2 2.15634e-4 7.72096e-6 5.48512e-7 5.50327e-8 5.49599e-9 2.92057e-10 -11 3.02644e-1 1.54188e-1 8.55239e-3 8.76134e-5 2.00327e-6 1.10884e-7 1.04466e-8 1.24077e-9 1.37267e-10 7.77771e-1212 3.11838e-1 1.44382e-1 6.27255e-3 3.50492e-5 4.84851e-7 1.95161e-8 1.56555e-9 1.84548e-10 2.51265e-11 3.02864e-1213 3.1784e-1 1.34916e-1 4.69872e-3 1.39809e-5 1.12649e-7 3.14533e-9 2.02085e-10 2.15865e-11 3.0345e-12 4.6167e-1314 3.21523e-1 1.26135e-1 3.59738e-3 5.58863e-6 2.55185e-8 4.78114e-10 2.35982e-11 2.16063e-12 2.87691e-13 4.65182e-1415 3.23502e-1 1.18135e-1 2.81133e-3 2.24109e-6 5.68072e-9 6.97564e-11 2.56806e-12 1.94103e-13 2.3249e-14 3.6777e-1516 3.24215e-1 1.10898e-1 2.23805e-3 9.00848e-7 1.24724e-9 9.8679e-12 2.65309e-13 1.61185e-14 1.67775e-15 2.47298e-1617 3.23981e-1 1.04367e-1 1.81097e-3 3.62491e-7 2.7045e-10 1.36125e-12 2.63237e-14 1.26089e-15 1.11296e-16 1.48017e-1718 3.23036e-1 9.84702e-2 1.48648e-3 1.45822e-7 5.7937e-11 1.83686e-13 2.52645e-15 9.4074e-17 6.91693e-18 8.11335e-1919 3.21555e-1 9.31364e-2 1.23551e-3 5.85742e-8 1.22605e-11 2.42862e-14 2.35594e-16 6.7491e-18 4.07936e-19 4.15042e-2020 3.1967e-1 8.82996e-2 1.03829e-3 2.34698e-8 2.56242e-12 3.14902e-15 2.1404e-17 4.68096e-19 2.3031e-20 2.00733e-21



32

0.1

0.2

0.3

0.1

0.2

0.3

0
0.002
0.004
0.006
0.008
0.01

0.1

0.2

0.3Figure 3.2. I3(s; t) with 0 � s � 1=3, 0 � t � 1=3

0.1

0.2

0.3

0.1

0.2

0.3

0
0.0002
0.0004
0.0006
0.0008
0.001

0.1

0.2

0.3Figure 3.3. I3(s; t) with 0 � s � 1=3, 0 � t � 1=3



33

0.1

0.2

0.3

0.1

0.2

0.3

0
0.00002
0.00004
0.00006
0.00008
0.0001

0.1

0.2

0.3Figure 3.4. I3(s; t) with 0 � s � 1=3, 0 � t � 1=3

0.1

0.2

0.3

0.1

0.2

0.3

0

      -6
2.5 10

     -6
5. 10

      -6
7.5 10

0.00001

0.1

0.2

0.3Figure 3.5. I3(s; t) with 0 � s � 1=3, 0 � t � 1=3



34

0.1

0.2

0.3

0.1

0.2

0.3

0

     -7
2. 10

     -7
4. 10

     -7
6. 10

     -7
8. 10

     -6
1. 10

0.1

0.2

0.3Figure 3.6. I3(s; t) with 0 � s � 1=3, 0 � t � 1=3

0.1 0.15 0.2 0.25 0.3
s

0.002

0.004

0.006

0.008

0.01

0.012

I_3(s, 0.3)

Figure 3.7. I3(s; 0:3) with 0 � s � 0:3



35

0.03 0.04 0.05 0.07 0.08 0.09 0.1
s

     -12
2. 10

     -12
4. 10

     -12
6. 10

     -12
8. 10

     -11
1. 10

I_3(s, 0.1)

Figure 3.8. I3(s; 0:1) with 0:06 � s � 0:1

0.085 0.09 0.095 0.1 0.105 0.11 0.115
s

     -9
2. 10

     -9
4. 10

     -9
6. 10

     -9
8. 10

     -8
1. 10

I_3(s, 0.121273)

Figure 3.9. I3(s; 0:121273) with 0:08 � s � 0:12



36

0.2 0.4 0.6 0.8 1
t

0.01

0.02

0.03

0.04

0.05

0.06

0.07

I_3(0.2, t)

Figure 3.10. I3(0:2; t) with 0 � t � 1
that we are sieving have roughly the same size as x = M �pn = 2:93322�1074, whereM = 17158000=2 is half of the length of the sieve interval. The 
orresponding s isabout 0.0971495, and t is about 0.121273. If we �x t at this value, and draw I3(s; t) asa fun
tion of s, we have Figure 3.9. It is quite 
lear from the �gure that s = 0:0971495is not the best 
hoi
e, at least if we want to get a better yield of relations with 3large primes. When s is about 0.107, we have the highest I3(s; t) value. One mightargue that this 
ould result in a loss in the 2-LP and 1-LP relations, (full relationsare a
tually going to gain a lot from this in
rease of s), however, 
al
ulating I2(s; t)and I1(s; t) at these values, we see that we a
tually should have more 2-LP and 1-LPrelations too. Another interesting reason that we might want to maximize the 3-LPyield is that, for 3-LP relations, we are expe
ting to see a sudden in
rease in thenumber of 
y
les as a fun
tion of the number of partial relations. Higher yield in the3-LP relations will take us to this sudden in
rease qui
ker and thus redu
e the timeneeded for sieving. Therefore, taking s � 0:107 should almost 
ertainly produ
e morerelations, full or partial, but that still does not mean a shorter running time, be
auseone must also take into a

ount the fa
t that, with a higher s, we have a larger fa
torbase too, therefore, we will need more relations to begin with. A rough estimate



37shows that the fa
tor base would be about 4 to 5 times larger if we take s to around0.107. The in
rease in the full relations are mu
h more than that, in fa
t, we shouldhave about 30 times the original number of full relations. For partial relations, weshould be 
on
erned about how many fundamental 
y
les they 
an produ
e insteadof the a
tual number of relations. Even if we do not 
onsider the sudden in
reasein the 
y
le number, be
ause of the power law, the yield of 
y
les should still growmu
h faster than 4 or 5 times when the number of relations doubles, whi
h is roughlythe 
ase for the 3-LP relation in this 
ase. Therefore, we 
on
lude that the a
tualparameters used in fa
toring 2,1606L.
135 are quite far from optimal.From this, we propose the following parameter 
hoi
e pro
edure for future fa
tor-izations with MPQS and NFS:1. Determine the size of the numbers that we expe
t to be sieving. This willdepend on the number we are trying to fa
tor, whi
h algorithm we use as wellas how large the sieve region will be.2. Determine the large prime bound L, that is, the parameter t. This should be
hosen as large as possible given the available 
omputing resour
es.3. Choose s to maximize Ik(s; t) for the moment, where k is the number of largeprimes that will be allowed in a partial relation. Then 
he
k the values of Ij(s; t)for j = 1; : : : ; k � 1 to make sure that this s is not too bad a 
hoi
e for thefewer large prime partials.4. With the above s, �nd the largest prime in the fa
tor base and the size of thefa
tor base. Determine whether the fa
tor base is a

eptable with available
omputing resour
es. If not, 
hoose the maximum a�ordable s.5. Finally, vary the parameters slightly and 
ondu
t sieving experiments to deter-mine the best 
hoi
e.



38With the program we have for 
omputing I3(s; t), we 
an do this for k = 3. We willneed to have an e�e
tive method for 
omputing Ik(s; t) �rst before we 
an utilize thispro
edure in pra
ti
e for k � 4.3.4 How good are the approximations?Sin
e Gk(s; t), Ik(s; t) are de�ned as limit fun
tions when integers tend to in�nity,a natural question that one might ask is, how 
lose are the approximations whenused to predi
t the number of smooth, k-semismooth integers in a 
ertain range?This se
tion gives some eviden
e that we have reasonably good mat
hes when theintegers are relatively big.We fa
tored the integers in the interval [1015� 105; 1015� 1℄ 
ompletely and 
om-piled the tables below. Table 3.2 gives the total number of integers that have exa
tly3 large prime fa
tors between y and z for di�erent 
hoi
es of y; z. Table 3.3 givesI3(s; t) � 105 with s = ln(y)= ln(1015); t = ln(z)= ln(1015), whi
h is the expe
ted num-ber of su
h integers. As we 
an see, they are very 
lose to ea
h other as soon as the
ount gets reasonably big. The relative errors are mostly < 10%.
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Table 3.2Number of integers in [1015 � 105; 1015 � 1℄ with exa
tly 3 prime divisors between yand z and all other prime divisors � yzy 4000 6000 8000 10000 20000 40000 80000 100000 2000002000 5 22 48 80 259 507 902 1066 16534000 - 1 8 18 92 230 469 566 9266000 - - 0 3 40 129 293 363 6318000 - - - 0 17 73 189 244 44710000 - - - - 9 52 143 189 36420000 - - - - - 8 34 57 139
Table 3.3I3(s; t) � 105 with s = ln(y)= ln(1015); t = ln(z)= ln(1015)zy 4000 6000 8000 10000 20000 40000 80000 100000 2000002000 7.28 29.31 59.34 93.41 272.50 571.2 991.24 1152.11 1714.644000 - 1.65 8.25 18.75 92.52 244.65 488.23 587.32 945.366000 - - 0.57 3.1 36.3 127.95 295.07 366.66 631.78000 - - - 0.25 15.25 74.51 197.99 253.20 462.4810000 - - - - 6.37 45.94 140.60 185.18 356.5120000 - - - - - 5.16 37.48 56.91 136.57
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4. Smooth Integer Distribution in Short Intervals4.1 Introdu
tionIn this 
hapter, we will study a problem posed by Selfridge and Meyerowitz [25℄.The problem is about a fun
tion f de�ned as follows:De�nition 4.1.1 Given integers k � 2 and n > 0, let f(n; k) be the smallest positiveinteger t so that there is a subset of k distin
t integers in the interval [n; n+ t℄ whoseprodu
t is a perfe
t square and both n and n + t are in
luded in the set. De�ne f(n)to be the minimum of f(n; 2), f(n; 3), : : :Problem: Find good estimates for f(n).For ea
h k � 2 and n > 0, f(n; k) is well-de�ned sin
e there are k distin
t integers� n, namely n, 4n, 9n, : : : , (k�1)2n, k2n if k is even, or n, 4n, 9n, : : : , (k�1)2n, k2n2if k is odd, whose produ
t is a square. So f(n; k) � k2n if k is even and f(n; k) � k2n2if k is odd. Of 
ourse, this is a gross overestimate, f(n; k) should have mu
h smallervalues most of the time. For example, f(8; 3) = 10 sin
e in the interval [8; 18℄, wehave 3 integers, 8; 9; 18, that form a square produ
t and its easy to 
he
k that thelength of the interval 
annot be any shorter.Selfridge and Meyerowitz have shown [25℄ that lim infn!1 f(n;3)4pn , and thereforelim infn!1 f(n)4pn is bounded. We will brie
y present their ideas here.If we 
hoose integer x su
h that x2 � 1 is twi
e a square, then the following threeintegers have a square produ
t:2(4x4 � x2 � 2)2 = 32x8 � 16x6 � 30x4 + 8x2 + 8;2(x2 � 1)(x2 + 1)(4x2 � 1)2 = 32x8 � 16x6 � 30x4 + 16x2 � 2;2x2(x2 + 1)(4x2 � 3)2 = 32x8 � 16x6 � 30x4 + 18x2:



41If we let nx = 2(4x4 � x2 � 2)2 = 32x8 � 16x6 � 30x4 + 8x2 + 8 and zx = 10x2 � 8,then we 
an see that f(nx; 3) must be � zx sin
e in the interval [nx; nx+ zx℄, we havethose three integers above that have a perfe
t square produ
t. Noti
e that on theright hand side, all three expressions agree on the high order terms and di�er onlyon the x2 and 
onstant terms. So the di�eren
e between the last and the �rst integer= zx � 
 4pnx. So we have f(nx; 3) � zx � 
 4pnx and
 = 104p32 � 4:20 :Now to show that lim infn!1 f(n;3)4pn is bounded, all we need to prove is that in-�nitely many su
h nx, or x with x2 � 1 being twi
e a square, exist. So now thequestion is how many integer solutions x2 � 1 = 2y2 has. This is exa
tly the Pellequation x2�Dy2 = 1 with D = 2, and it is well known that in�nitely many integersolutions exist. See, for example, [19℄.This proof is based on expli
it 
onstru
tion of 3 integers in an interval of lengththat is only the fourth root of the size of the integers. Sin
e the de�nition of f pla
esno restri
tion on the number of integers to form the produ
t, it's reasonable to hopefor a better estimate of f using possibly more integers.To use the results on smooth integer distribution in short intervals, we modifythe de�nition of f to remove the 
onstraint that the beginning and the end of theinterval must be in
luded in the subset of integers. Also we extend the domain of thefun
tion to all real numbers x > 0. We haveDe�nition 4.1.2 For any real number x > 0, let g(x) be the least positive real numberz so that there exists a subset of at least 2 distin
t integers in [x; x+ z℄ whose produ
tis a perfe
t square.Clearly, for integer n, g(n) � f(n). We will �rst obtain good estimates for g(x), andthen show that similar results 
an be extended to f(x).In the next se
tion, we will �rst give results on the smooth integer distributionin short intervals. The length of the \short interval" for whi
h we 
an derive a good



42approximation of the number of smooth integers greatly impa
ts the growth rate ofthe fun
tion g. The shorter su
h an interval is, the better estimate we 
an get for g.The �rst result we will prove is that for any � > 0, g(x) � x� for \most" large x, ina sense whi
h will be de�ned later. Then, with a little more 
ompli
ation, we furtherimprove this to get that g(x) � exp((ln(2 x))1=6 + (ln(2 x))5=6+�) for \most" large x.4.2 Estimates for g(x) and f(x).The reason that we 
an use smooth integer distribution to estimate g(x) better isbe
ause we 
an view the pro
ess of �nding an integer subset of [x; x + z℄ to form asquare as a sieving pro
ess, just like in the Quadrati
 Sieve and Number Field Sievealgorithms. If we 
an �nd enough y-smooth integers in the interval, then we 
an �nddependen
ies modulo 2 among the exponent ve
tors of all the y-smooth numbers wehave, and thus get a square. So we need to estimate the number of y-smooth integersavailable in the interval [x; x + z℄. Hildebrand proved the following [11℄:Theorem 4.2.1 If y � 2; exp((ln lnx)5=3+�) � y � x and xy�5=12 � z � x, thenwe have 	(x + z; y)� 	(x; y) = z�(u)�1 +O� ln(u+ 1)ln y ��;where u = (lnx)=(ln y).In other words, the number of y-smooth integers in the interval [x; x + z℄ 
an beapproximated by z�(u) asymptoti
ally, provided that y; z are in the given range.However the restri
tion on y; z makes this theorem useless for our purpose here. Wehope to �nd a relatively short interval, [x; x+ z℄, preferably of length subexponentialin lnx, with enough y-smooth integers, but in this theorem, z is x7=12 at its best(smallest). To relax the 
ondition on y; z, one must turn to weaker results. Insteadof asking for estimates that hold for all x, we now ask for estimates that hold for\almost all" x. Then the ranges for y and z 
an be improved a lot. The �rst su
hresult was obtained by Friedlander [8℄. Later he and Lagarias improved his results toobtain the following theorems [9℄:



43Theorem 4.2.2 For any �xed � > 0, 0 < � � � � 1, and for all suÆ
iently largeX, the estimate 	(x+ x�; x�)�	(x; x�) � 164��(1=�)x� (4.1)holds for all x 2 [1; X℄ with the ex
eption of a set of measure (usual Lesbegue measure)bounded by 
�;�;�X exp(�(lnX)1=3��); where 
�;�;� is a 
onstant depending only on �; �and �.Theorem 4.2.3 For any �xed � > 0, for all suÆ
iently large X, and for y and zsatisfying exp((lnX)5=6+�) � y � X; y exp((lnX)1=6) � z � X; (4.2)the estimate 	(x+ z; y)�	(x; y) � 116�( lnXln y )z (4.3)holds for all x 2 [1; X℄ with the ex
eption of a set of measure (usual Lesbegue measure)bounded by 
�X exp(�12(lnX)1=6), where 
� is a 
onstant depending only on �.With the above results on the smooth integer distribution in a short interval, we
an get mu
h better results 
on
erning the growth rate of the fun
tion g(x) de�nedin the previous se
tion. First, we have the following 
orollary of Theorem 4.2.2Corollary 4.2.4 For any �xed � > 0, 0 < � � 1, and all suÆ
iently large X,	(x+ x�; x�)�	(x; x�) � 164��(1=�)x� (4.4)holds for all x 2 [X=2; X℄ with the ex
eption of a set of measure (usual Lesbeguemeasure) bounded by 
�;�X exp(�(lnX)1=3��), where 
�;� is a 
onstant depending onlyon � and �.Remark: we want x 2 [X=2; X℄ be
ause we need x to tend to 1 with X. The X=2
an be repla
ed by any fun
tion of X that tends to 1 when X !1.



44Proof Let � = � in Theorem 4.2.2.Now we are ready to proveTheorem 4.2.5 For any �xed � > 0, 0 < � � 1, g(x) as de�ned in the previousse
tion, and all suÆ
iently large X, g(x) � x� for all x 2 [X=2; X℄ with the ex
eptionof a set of measure (usual Lesbegue measure) bounded by 
�;�X exp(�(lnX)1=3��),where 
�;� is a 
onstant depending only on � and �.Proof For those x 2 [X=2; X℄ satisfying (4.4), we have the number of x�-smoothintegers in the interval [x; x + x�℄ is > �(x�) � x�= ln(x�). Using the same linearalgebra te
hnique used in QS and NFS, one 
an see that there is a subset of thosex�-smooth integers that have a perfe
t square produ
t. Therefore g(x) � x�. So forlarge X, g(x) � x� 
an only fail to hold when (4.4) fails to hold. This proves thetheorem.In parti
ular, for any 0 < � � 1, we have in�nitely many x su
h that g(x) � x�.Noti
ing that for any x > 0, g(dxe) = g(x), we haveCorollary 4.2.6 For any 0 < � � 1, g de�ned as in the previous se
tion,lim infn!1;n2Z g(n)n� � 1Theorem 4.2.3 shortens the interval to subexponential length and therefore enablesus to get an even better estimate for g, with some 
ompli
ations. Sin
e we want theinterval to be as short as possible, we will take y and z to be at their minimum valuesin the range (4.2).Corollary 4.2.7 For any �xed � > 0, for all suÆ
iently large X, andy = exp((lnX)5=6+�);z = y exp((lnX)1=6) = exp((lnX)1=6 + (lnX)5=6+�);the estimate (4.3) holds for all x 2 [X=2; X℄ with the ex
eption of a set of measurebounded by 
�X exp(�12(lnX)1=6), where 
� is a 
onstant depending only on �.



45Proof Let y = exp((lnX)5=6+�), z = y exp((lnX)1=6) = exp((lnX)1=6 + (lnX)5=6+�)in Theorem 4.2.3.For those x satisfying (4.3), the number of y-smooth integers in the interval [x; x+z℄ is big enough to enable us to 
onstru
t a perfe
t square, so we haveTheorem 4.2.8 For any �xed � > 0, g(x) as de�ned in the previous se
tion, and allsuÆ
iently large X, g(x) � exp((ln(2 x))1=6 + (ln(2 x))5=6+�)for all x 2 [X=2; X℄ with the ex
eption of a set of measure (usual Lesbegue measure)bounded by 
�X exp(�12(lnX)1=6), where 
� is a 
onstant depending only on �.Proof Let y; z be de�ned as in Corollary 4.2.7. We only need to show that for allsuÆ
iently large X and x 2 [X=2; X℄ satisfying (4.3),g(x) � z � exp((ln(2 x))1=6 + (ln(2 x))5=6+�):Using the same argument as Theorem 4.2.5, we see that it suÆ
es to prove	(x+ z; y)� 	(x; y) > �(y);with y and z de�ned as in Corollary 4.2.7.By (4.3), 	(x+ z; y)� 	(x; y) � 116�( lnXln y )z = 116�((lnX)1=6��)z:Taking logarithms on both sides and using the fa
t that ln �(u) = �(u+ o(1)) lnuas u!1 (see [12℄ for a proof of this), we have
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ln(	(x+ z; y)� 	(x; y))� ln z � ((lnX)1=6�� + o(1)) ln((lnX)1=6��)� ln(16)= (lnX)1=6 + (lnX)5=6+� � ((lnX)1=6�� + o(1)) ln((lnX)1=6��)� ln(16)> (lnX)5=6+� + (lnX)1=6 � 2 (lnX)1=6�� ln((lnX)1=6��)= (lnX)5=6+� + (lnX)1=6 �1� 2 ln lnX(1=6� �) (lnX)��> (lnX)5=6+�= ln y> ln(�(y)):This shows that 	(x + z; y)� 	(x; y) > �(y), and 
on
ludes the proof.Similar to Corollary 4.2.6, we haveCorollary 4.2.9 For any � > 0, and g de�ned as in the previous se
tion,lim infn!1;n2Z g(n)exp((ln(2n))1=6 + (ln(2n))5=6+�) � 1:To extend the results to f(n), we use the fa
t that for any integer n > 0, 9n0 � nsu
h that f(n0) � g(n). To see this, let g(n) = z. By de�nition of g, we 
an �ndk � 2 integers n1 < n2 < � � � < nk in the interval [n; n+ z℄ whose produ
t is a square.Also noti
e that nk must be equal to n+g(n) = n+ z (otherwise, we 
an �nd smallervalues for z, 
ontradi
ting with the de�nition of g). So letting n0 = n1 � n, we havea subset of integers in [n0; n + z℄, in
luding n0 and n + z, whose produ
t is a square.By the de�nition of f , f(n0) � n+ z � n0 � z = g(n).Using this fa
t, we see that Corollaries 4.2.6 and 4.2.9 with g repla
ed by f holdtoo. Therefore, f(n) takes subexponential values (in ln(n)) for in�nitely many n.This improves the result of Selfridge and Meyerowitz signi�
antly.
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5. SummaryWe have generalized the Di
kman fun
tion to get an asymptoti
 probability esti-mate for k-semismooth integers. Our result agrees with previous work on the problemfor k = 1 and k = 2. Properties of the new fun
tion were dis
ussed. We also gavea method for 
al
ulating this fun
tion at k = 3. It is still an interesting problemto �nd an e�e
tive method for 
omputing the new fun
tion at k � 4. Numeri
alresults (at k = 3) were given and applied to the parameter 
hoi
e problem of integerfa
torization algorithms like MPQS and NFS with 3 large primes. Experiments areneeded to 
he
k the e�e
tiveness of our proposed method for parameter 
hoi
e.The smooth integer distribution in a short interval gave a ni
e improvement forthe estimate of the square produ
t fun
tion of Selfridge and Meyerowitz.
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APPENDIXMATHEMATICA PROGRAM TO COMPUTE I3(s; t)(* Clear all the symbols that we need *)ClearAll[num
oeffrho, 
, intd1, intd2, intd3, intd4, I3, sigma3℄;(* number of 
oeffi
ients to use in the Taylor expansion of rhoon [m-1, m℄ *)num
oeffrho = 22;(* Fun
tion to 
ompute 
_i^{(m)} *)
[m_, i_℄ := 
[m,i℄ = Module[{j, value},If[m==1,If[ i==0, value=1, value=0℄,If[ m ==2,If[i==0, value = N[1-Log[2℄℄, value = N[1/(i*2^i)℄℄,value = 0;If[ i == 0,Do[value=value+N[
[m,j℄/((m-1)(j+1))℄,{j, 1, num
oeffrho}℄,Do[value=value+N[
[m-1,j℄/(i*m^(i-j))℄,{j, 0, i-1}℄℄℄℄;



51value℄ (* End Module for 
[m,i℄ *)
(* Fun
tion to 
ompute the integral over the region D_1 *)intd1[s_, t_℄ := Module[ {F1, u1, u2, u3, tmp, low, high, a, b,m, i, sum},(* F1, produ
ed by Mathemati
a *)F1 = (Log[2℄^2 + 2*Log[2℄*Log[(-s + u1)/(2*s)℄ + 2*Log[(-s + u1)/(2*s)℄*Log[(s + u1)/(2*s)℄ + 2*PolyLog[2, (s - u1)/(2*s)℄ +2*PolyLog[2, s/(-s + u1)℄)/(2*u1);low = 3*s;high = 2*s + t;If[high > 1, high = 1℄;a = low;m = Ceiling[(1-a)/s℄;b = 1 - (m-1)*s;If[ b > high, b = high ℄;sum = 0;While[ a < high - 10^(-5),For[i = 0, i < num
oeffrho, i++,tmp = (m - 1/s + u1/s)^i * F1;sum = sum + 
[m, i℄ * NIntegrate[tmp, {u1, a, b}℄;℄;a = b;b = b + s;If[ b > high, b = high ℄;



52m = m - 1;℄; (* End While *)sum℄; (* End Module for intd1[s,t℄ *)
(* Fun
tion to 
ompute the integral over the region D_2 *)intd2[s_, t_℄ := Module[ {F2, u1, u2, u3, tmp, low, high, a, b,m, i, sum},(* F2, produ
ed by Mathemati
a *)F2 =(-Pi^2/12 + Log[2℄^2/2 + Log[-((s+t-u1)/s)℄*Log[t/(-s+u1)℄ +Log[2℄*Log[(-s+u1)/(2*s)℄ + Log[(-s+u1)/(2*s)℄*Log[(s+u1)/(2*s)℄ -Log[-((s+t-u1)/s)℄*Log[(-t+u1)/s℄ + PolyLog[2, (s-u1)/(2*s)℄ -PolyLog[2, (s+t-u1)/s℄ + PolyLog[2, (s+t-u1)/(s-u1)℄)/u1 ;low = 2*s+t;high = s+ 2*t; If[high > 1, high = 1℄;a = low;m = Ceiling[(1-a)/s℄;b = 1 - (m-1)*s; If[ b > high, b = high ℄;sum = 0;While[ a < high - 10^(-5),For[i = 0, i < num
oeffrho, i++,tmp = (m - 1/s + u1/s)^i * F2;sum = sum + 
[m, i℄ * NIntegrate[tmp, {u1, a, b}℄;℄;a = b;



53b = b + s;If[ b > high, b = high ℄;m = m - 1;℄; (* End While *)sum℄; (* End Module for intd2[s,t℄ *)
(* Fun
tion to 
ompute the integral over the region D_3 *)intd3[s_, t_℄ := Module[ {ex, F3, u1, u2, u3, tmp, low, high, a, b,m, i, sum},(* F3, produ
ed by Mathemati
a and further simplified by handusing property of the dilogarithm to remove the imaginary part,whi
h should not appear in the first pla
e *)F3 = (Pi^2/6 - Log[4/3℄^2/2 - Log[s℄*Log[1 - s/u1℄ -Log[3/2℄*Log[u1/3℄ - Log[u1/3℄^2/2 +Log[(-s + u1)/2℄^2/2 + Log[s℄*Log[(s + u1)/2℄ -Log[(s/u1)℄*Log[u1/2℄ - Log[(-s + u1)/2℄*Log[(s + u1)/2℄ +Log[(-s + u1)/(2*u1)℄*Log[(s + u1)/2℄ + PolyLog[2, 1/3℄ -PolyLog[2, 2/3℄ - PolyLog[2, 3/4℄ - PolyLog[2, s/u1℄ +PolyLog[2, (s + u1)/(2*u1)℄ + PolyLog[2, -s/u1℄)/u1 ;low = 3*s;high = s + 2*t; If[high > 1, high = 1℄;a = low;m = Ceiling[(1-a)/s℄;b = 1 - (m-1)*s; If[ b > high, b = high ℄;sum = 0;While[ a < high - 10^(-5),For[i = 0, i < num
oeffrho, i++,



54tmp = (m - 1/s + u1/s)^i * F3;sum = sum + 
[m, i℄ * NIntegrate[tmp, {u1, a, b}℄;℄;a = b; b = b + s; If[ b > high, b = high ℄;m = m - 1;℄; (* End While *)sum℄; (* End Module for intd3[s,t℄ *)
(* Fun
tion to 
ompute the integral over the region D_4 *)intd4[s_, t_℄ := Module[ { F4, u1, u2, u3, tmp, low, high, a, b,m, i, sum},(* F4, produ
ed by Mathemati
a and further simplified by handusing property of the dilogarithm to remove the imaginary part,whi
h should not appear in the first pla
e *)F4 = (Pi^2/6 - Log[4/3℄^2/2 + Log[t℄^2/2 - Log[3/2℄*Log[u1/3℄ -Log[u1/3℄^2/2 - Log[(2*t)/u1℄*Log[-2*t + u1℄ -Log[t℄*Log[-t + u1℄ + Log[1 - (2*t)/u1℄*Log[2/u1℄ +Log[t/u1℄*Log[-t + u1℄ + Log[-2*t + u1℄*Log[-t + u1℄ +PolyLog[2, 1/3℄ - PolyLog[2, 2/3℄ - PolyLog[2, 3/4℄ -PolyLog[2, 1 - (2*t)/u1℄ + PolyLog[2, (2*t)/u1 - 1℄ +PolyLog[2, 1 - t/u1℄)/u1 ;low = s + 2*t;high = 3*t; If[high > 1, high = 1℄;a = low;m = Ceiling[(1-a)/s℄;b = 1 - (m-1)*s; If[ b > high, b = high ℄;sum = 0;



55While[ a < high - 10^(-5),For[i = 0, i < num
oeffrho, i++,tmp = (m - 1/s + u1/s)^i * F4;sum = sum + 
[m, i℄ * NIntegrate[tmp, {u1, a, b}℄;℄;a = b; b = b + s; If[ b > high, b = high ℄;m = m - 1;℄; (* End While *)sum℄; (* End Module for intd4[s,t℄ *)
(* Fun
tion to 
ompute I_3(s,t) *)I3[s_, t_℄ := Module[ {value},If[s >= t,value = 0,value = intd1[s,t℄ + intd2[s,t℄ + intd3[s,t℄ + intd4[s,t℄;℄;value℄;(* Define sigma3(u,v) *)sigma3[u_, v_℄ := I3[1/u, 1/v℄;
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