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We propose modeling Group Support System (GSS) search tasks with Genetic

Algorithms. Using explicit mathematical models for Genetic Algorithms (GAs), we

show how to estimate the underlying GA parameters from an observed GSS solution path.

Once these parameters are estimated, they may be related to GSS variables such as group

composition and membership, leadership presence, the specific GSS tools available, incen-

tive structure, and organizational culture. The estimated Genetic Algorithm parameters can

be used with the mathematical models for GAs to compute or simulate expected GSS pro-

cess outcomes.

(Information Systems: Decision Support Systems; Artificial Intelligence; Probability: Markov

Processes)

1. Introduction
Work performed by groups play an important role in

the success or failure of today’s organizations. Tech-

nology is often used to support the tasks under-

taken by these groups. Group Support Systems

(GSS) encompassing Group Decision Support Systems

(GDSS) and Electronic Meeting Systems (EMS) are of

particular interest. Much attention has been focused

on group task outcomes and the impact of technol-

ogy. However, there is still much to be learned about

how groups will perform given certain environments,

tasks, and group membership.

Organizations utilize GSS in order to improve the

eventual outcomes of group meetings. Given the

interest in the eventual outcome of GSS use, the pro-

cesses leading to the set of outcomes need to be care-

fully examined. Groups using these tools most often

have a specific task or problem to address. In order to

address such problems, groups must explore a space

of possible solutions. The movement from solution

to solution in this solution space is achieved through

creative insights, negotiation, and group learning. As

group members exchange information, new solutions

are discovered, potentially better than previous solu-

tions. The group adapts its search according to sev-

eral factors including, but not limited to, the group

composition and membership, leadership presence,

the specific GSS tools available, incentive structure,

organizational culture, and most importantly input

and feedback from group members as the search pro-

gresses. Occasionally, a completely new line of think-

ing is undertaken or a random idea is inserted as

a potential solution in the search space. We suggest

that proposed solutions from groups using GSS can

be viewed as strings of genes in an evolving, adap-

tive environment. These proposed solutions of the

group evolve until a final solution or set of solu-

tions is reached. This is not a new idea—Hirokawa

and Johnson (1989) argued similarly. Even the “ran-

dom idea out of left field” fits this view as merely

a manifestation of punctuated equilibria—a hallmark

of evolutionary methods. However, we build on this
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observation by proposing an explicit model of evolu-

tionary behavior—the process captured by the simple

Genetic Algorithm.

There are several useful models of GSS available

that provide insight into particular GSS processes

and potential outcomes. Several of these models are

descriptive (Poole and DeSanctis 1990; Nunamaker

et al. 1991; Hiltz 1988; Rao and Jarvenpaa 1991), and

others are more analytical (Gavish and Kalvenes 1996;

Valacich and Dennis 1994).

The analytical model we propose for GSS departs

from other GSS models in that it provides, through

analogy, a computational view of GSS processes and

expected outcomes. The analogy utilized is the sim-

ple Genetic Algorithm (GA). As stated above, groups

using GSS for decision-making engage in a search

process. It is assumed that this search is not a random

search, especially with the addition of decision aids

and other tools present in GSS software. This search

is also influenced by the environment and interactions

among group members. If a useful analogy for this

search could be identified, much progress could be

made in better understanding GSS processes. GAs are

targeted as a possible analogy due to several features.

GAs are adaptive, mirroring the evolutionary nature

of GSS groups. GAs use populations of agents to

search a solution space, as do GSS groups. GA search

is partially guided by a fitness function that provides

a measure of the potential viability of a string. In GSS

processes, the potential viability of an idea influences

its continued consideration. GAs are a form of heuris-

tic search and as such are not guaranteed to find the

optimal solution (if one exists) in a finite amount of

time. As the same could be said about GSS groups,

GAs appeared to have much potential to become the

basis for an analogy for GSS search processes. The use

of genetic algorithms as the basis of a model for GSS

has several advantages and implications. For exam-

ple, over the last several years, a sound mathematical

theory has been developed that describes the exact

expected behavior of GAs. This theory, in principle,

could be used to determine many GSS characteristics,

such as expected time till an optimal solution is gen-

erated. Also, there is a wide body of practitioner rules

of thumb for GAs that could prove useful in design-

ing better GSS processes.

The remainder of this paper is organized as follows.

Section 2 presents relevant background on Group

Support Systems and Genetic Algorithms. In Sec-

tion 3 we summarize our arguments for represent-

ing GSS search as a genetic algorithm. In Section 4

we discuss various specifics of GA implementations.

In Section 5 we show how to estimate the under-

lying GA parameters from GSS solution paths. This

requires a presentation of the underlying mathemat-

ical models for GAs. In Section 6 we discuss specific

issues pertaining to modeling a GSS as a GA. In Sec-

tion 7 we present results found when estimating GA

parameters from actual GSS data using the estimation

procedure of Section 5. Section 8 shows how a GA

model can be used to derive process values such as

the expected time to see an optimal solution. Finally,

in Section 9 we provide our conclusions and future

directions.

2. Background
The following subsections provide relevant back-

ground on the various research areas that form the

basis for this research. Section 2.1 provides a brief sur-

vey of theoretical and computational developments in

GSS. This section highlights the need for additional

investigation into computational and analytical mod-

els for GSS. Section 2.2 provides a brief background

on genetic algorithms serving as the foundation of the

model.

2.1. Group Support Systems

Group support systems are designed to support

group decision-making through specialized software,

hardware and decision support tools. DeSanctis and

Gallupe (1987) defined GDSS, often considered the

precursor term for GSS, as a combination of computer,

communications and decision technologies working

in tandem to provide support for problem identifi-

cation, formulation, and solution generation during

group meetings. Broadly stated, the fundamental goal

of GSS is “� � � to support the exchange of ideas, opin-

ions, and preferences within the group” (Gallupe and

DeSanctis 1988, p. 278). As GSS research increased,

INFORMS Journal on Computing/Vol. 14, No. 3, Summer 2002 279



REES AND KOEHLER

An Evolutionary Approach to Group Decision Making

the described goals of GSS became more narrowly

proscribed. According to Watson et al. (1988) the

primary goal of GSS is to reduce “process loss”

attributed to disorganization within the group, social

issues such as member dominance, inhibition, peer

pressure, and other recognized difficulties of group

interaction and to improve overall decision quality

(Watson et al. 1988).

One of the first attempts to bring the empirical

research into a cohesive whole in the early days of

GSS research is the conceptual work of DeSanctis and

Gallupe (1987). They proposed a multidimensional

taxonomy of research variables in GSS research. This

taxonomy was driven by three factors: group size,

communication channel (face-to-face vs. computer-

mediated), and task type.

At about the same time, Hiltz (1988) proposed the

systems-contingency approach. Like many others at

the time, this framework focused on identifying how

technology was accepted and implemented and the

resultant effects on productivity and performance.

According to systems contingency theory, “Produc-

tivity impacts are hypothesized to be contingent

upon the characteristics of the higher-level systems

within which the technology is used” (Hiltz 1988,

p. 1440). The implication of this theoretical approach

is that there is no correct or universal method on

group systems design due to the fact that the needs

of each organization are complex and vary among

the subgroups within each organization (Hiltz 1988).

Rao and Jarvenpaa (1991) also advocated a contin-

gency approach while aggregating other social the-

ories thought to affect group decision-making via

group support systems.

While systems contingency theory attempted to

address the impact of GSS upon the users of the tech-

nology and the decision quality following from such

use, another theory evolved to address the issue of the

process of GSS usage within the organization. Poole

and DeSanctis (1990) proposed a new theory intended

to resolve some of the conflicting results gathered

from empirical research. Adaptive Structuration The-

ory (AST) considers GSS use as an input-process-

output model. The basis of the model comes from the

structure concept. Structures are defined as “� � � the

rules and resources actors use to generate and support

this system,” (Poole and DeSanctis 1990, p. 179) where

system refers to the GSS under consideration. AST has

several favorable characteristics including flexibility

and generality and has been adopted as the frame-

work for several empirical studies including but not

limited to Gopal et al. (1993) and Chidambaram et al.

(1991).

Nunamaker et al. (1991) presented a high-level

research model that describes the major influences

upon GSS processes and outcomes. The factors

influencing GSS outcomes are group characteristics,

task characteristics, context characteristics, and the

specific technologies in use. GSS are believed to

improve the quality of group decisions by minimiz-

ing “process losses” and maximizing “process gains.”

Process gains occur when certain aspects of the meet-

ing improve the eventual outcome or result and

process losses hinder or reduce the eventual out-

come. Thus, the overall meeting outcome is depen-

dent upon the process gains versus the process losses

(Nunamaker et al. 1991).

Valacich and Dennis (1994) presented a simple

regression model of electronic brainstorming using

GSS. Their model presents GSS brainstorming as the

ideas generated by a group of individuals, each work-

ing alone, accounting for process losses and process

gains. In other words, “� � � group performance is a

function of individual performance minus process

losses plus process gains” (Valacich and Dennis 1994,

p. 64). This research is based in part on the earlier

work of Steiner in the group literature (Steiner 1966,

1972).

Perhaps the most closely related GSS research to

ours is the economic analysis of GSS (Gavish and

Kalvenes 1996). One of the important features of

the economic model is that it considers GSS use by

groups to be in the format of a search problem with

a very large search space. This statement lays the

groundwork for our central argument that groups

using GSS act like a GA, as GAs are search tools that

share many GSS characteristics. According to Gavish

and Kalvenes’ model, every feasible solution has a

payoff, which must be balanced with the cost of per-

forming the search. Another aspect of interest in their

model is the discussion of a “trigger phenomenon”
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(Gavish and Kalvenes 1996). This is the case when

an original idea “triggers” a new line of reasoning

or discussion. The model also addressed the proba-

bility of finding a solution, the expected net bene-

fit of finding a particular solution, stopping criteria,

and the marginal value of group size (Gavish and

Kalvenes 1996). Many of the features inherent in the

Gavish and Kalvenes (1996) model can be incorpo-

rated into the GA evolutionary model proposed later

in this research and the features mentioned above

are certainly complementary to the proposed model.

One shared feature of both models is the assumption

of GSS existence outside of the traditional decision

room. However, the economic model, while comple-

mentary to the proposed model, does not provide

the high-level modeling capabilities of the genetic

algorithm-based model. The economic model does

not take into account systemic factors such as the

rate of solution exchange between group members,

the diversity of solutions within groups or the impact

of reward upon decision quality among other factors.

Therefore, while the economic model and the pro-

posed GA evolutionary model are highly compatible,

the proposed GA evolutionary model potentially goes

further in providing a system-wide level of analysis.

2.2. Genetic Algorithms

In order to make clear the analogy between genetic

algorithms and GSS, we will provide a brief descrip-

tion of the basic or “simple” GA. GAs are a search

tool loosely based on the principles of natural selec-

tion and evolution. The genetic algorithm operates on

strings of “genes.” These strings are often composed

of a series of binary digits, representing a proposed

solution. (The composition of the strings is not lim-

ited to the binary alphabet.) In a GSS context, these

strings can represent possible solutions provided by

group members. For example, if the group is attempt-

ing to address a production-planning type problem,

the string might be made up of the possible set of

customer orders. A “1” indicates that the order corre-

sponding to the position on the string should be filled

and a “0” indicates otherwise. A starting collection of

strings forms an initial population (generation zero)

and the operators of genetic algorithms are applied

iteratively until some stopping criterion is met.

The mechanics of the genetic algorithm, while often

varied and complex for given applications, are based

on three fundamental operations. These operators are

the selection operator, the crossover operator and the

mutation operator. The selection operator implements

the “survival of the fittest” principle as the better

or more fit strings have a statistically better chance

of survival than do less fit strings. In a GSS con-

text, the group members determine which strings or

proposed solutions are fit. This is achieved by eval-

uating each string according to the fitness function

employed. The fitness function is related to an objec-

tive function or utility function. In GSS, the anal-

ogy might be “maximize organizational profit” or

“minimize departmental costs.” Selected strings have

a higher probability of surviving or passing genetic

material to future populations. There are several dif-

ferent types of selection mechanisms used in prac-

tice and these are discussed below. Once the strings

have been identified or “selected” to appear in the

next generation, a genetic mixing takes place. This is

akin to reproduction and mutation. More specifically,

a crossover operator is applied followed by possible

mutation.

Strings are paired and crossed with probability �

(a crossover rate). The crossover operator acts as a

“focusing” effect upon the search. As the selection

operator has seeded the next generation with fit-

ter strings (probabilistically speaking), exchanging of

parts of fitter strings should, it is hoped, result in more

quickly reaching a target or optimal solution than

would random search. In a GSS context, crossover

would be analogous to group members incorporat-

ing parts of other group member solutions into their

own solutions, in essence “combining” pieces of var-

ious solutions into one. Finally, the strings undergo a

mutation operation, where bits of information along

the strings are randomly altered at a predefined muta-

tion rate, �. The mutation operation adds diver-

sity to the search by adding random information

back to the strings. Computationally, the role of the

mutation operator is to shift the search away from

local optima (Goldberg 1989). Within the GSS anal-

ogy, mutation would operationalize the “trigger phe-

nomenon” described by Gavish and Kalvenes (1996).

Figure 1 summarizes a typical GA implementation.
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Algorithm:  (Genetic Algorithm) 

 Given:   

   String length , fitness function f(), mutation rate m ,  

   crossover rate Î [0,1]

Î [0,0.5]

c  and population size .   1³n

 

Initialization:  Generate an initial population, population 0.  This is usually done by 

 randomly drawing n strings from { }12,...,1,0 -=W  with replacement. 

 

            Step 1:  Form a new population as follows.  Repeat the following steps until the new 

population has n members. 

                        (A) Randomly choose two (or more) members from the old population according 

to a selection process.  These are called parent strings. 

                        (B) Form one or more children through a mixing process consisting of crossover 

and mutation operations. 

 

            Step 2:  If stopping conditions are not met, return to Step 1. 

Figure 1 The Simple Genetic Algorithm

3. An Evolutionary Approach
to GSS

We propose that the search of the solution space in

group problem solving, when supported by GSS, can

be modeled by a genetic algorithm, utilizing selec-

tion, crossover, and mutation. A population of strings

represents the solutions generated by a group. Each

string in the population at time step t represents the

solution proposed by group members at time step t.

The genetic algorithm was chosen as the basis of

this model for several reasons. First, GAs are adap-

tive, meaning there is change over time in response to

the environment that includes the current solution set,

the fitness function, various operators, and other con-

straints. This adaptive capability captures one of the

basic principles of group decision making put forth

by Hirokawa and Johnson (1989, p. 503) that “group

decision making is an evolutionary process.”

Second, the operations of the simple genetic algo-

rithm resemble basic processes of groups using GSS.

Proposed solutions are discussed and evaluated by

the group, analogous to the selection process of the

simple genetic algorithm. The better (“fitter”) pro-

posed solutions are combined with other fit pro-

posed solutions to yield improved solutions, similar

to the crossover operation. Random changes occur to

these proposed solutions along the way, much like

the mutation operation. Other, more complex, GA

operators exist that could be incorporated into the

model, including dominance and niching behaviors;

however, these behaviors fall beyond the scope of this

research.

Third, groups often propose good solutions that

may be very different from current solutions. Gavish

and Kalvenes (1996) termed this a trigger phenomenon.

We see this phenomenon as a naturally occurring one

observed in evolutionary systems-one termed punc-

tuated equilibria. Here a seemingly stable system sud-

denly evolves new genetic material.

Another reason for using a GA framework is that a

body of formal, mathematical theory has been devel-

oped to describe the expected behavior of the simple

genetic algorithm. If GSS can be modeled as a GA,

this theory could provide numerous insights into the

group decision-making process. Variables and differ-

ent environmental pressures thought to influence the

process could be related to GA parameters and then

factors such as the expected behavior of the system

could be determined or optimized. There also exists

a large body of heuristic knowledge available for the

genetic algorithm, which could be used to determine

group size and other group characteristics relating to

GA parameters, such as crossover and mutation rates.

Finally, by establishing an analogy for the behavior of

such groups, we can preserve the knowledge shared

by the group and the interaction knowledge among

group members.
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Several variables are thought to have an influ-

ence on group processes and outcomes. Among

these variables are task, communication mode, group

characteristics, incentive structures, and environmen-

tal variables. There are several different task types

mentioned in the GSS literature. Negotiation, idea

ranking, and idea generation are several examples.

Examples of communication mode include Face-to-

Face (FTF) communication, where all participants

are in the same physical location and have visible

contact with the other group members and Computer-

Mediated-Communication (CMC) where the partici-

pants are geographically dispersed. Group character-

istics include group size, the presence (or absence) of

a leader and group makeup or composition. Incentive

structures include localized incentive schemes, orga-

nizational (global) incentive schemes, leader incentive

schemes (Barkhi, 1995), hybrid incentive schemes and

the lack of external incentive, which can be classified

further as either identification (the intangible bene-

fit of group membership) or internalization (behav-

ior based on the belief in group norms) (Shamir,

1990; Guzzo and Dickson, 1996). The environment

is the surrounding within which the group decision-

making process takes place. Elements of the environ-

ment include (but are not limited to) the actual GSS

tool used in the decision-making process, the infor-

mation quality available to group members, and the

surrounding corporate culture.

Several of the above variables could be further par-

titioned, for example, group characteristics could be

separated into group size, diversity, and cohesiveness

to name a few (Guzzo and Dickson, 1996). However,

for the sake of simplicity, this model will aggregate

as many of these related factors as possible. There is

also the admission that many of these components are

not easily measured, or even described, for example,

corporate culture and leadership.

The group decision-making process is an adap-

tive, iterative process that eventually results in a final

group solution, which can be measured by several

metrics. Overall, these metrics, which might be used

simultaneously, include solution quality (which may

or may not be objective), time taken to arrive at the

final solution and user satisfaction with both the final

solution and the process used to arrive at the solution.

It is certainly acknowledged that GSS takes on

many shapes, sizes, and variations in both field and

laboratory settings. For purposes of this model, we

will assume that GSS use entails a simplistic scenario.

The group using the GSS is provided a one-time prob-

lem to address. The group proposes possible solutions

to the problem through the GSS until a solution or set

of solutions adopted.

4. The Genetic Algorithm
Evolutionary Model

The simple genetic algorithm moves from popula-

tion to population using three operators: selection,

crossover, and mutation. There are many implemen-

tations of these. Below we summarize the most com-

mon implementations.

Selection

Although there are many others, one of three versions

of the selection operation is commonly employed

(Goldberg, 1989). They are roulette-wheel selection,

tournament selection, and rank selection. Roulette-

wheel selection assigns a probability of selection

proportional to a string’s fitness (multiplied by the

number of instances of the string in the popula-

tion) relative to the sum of the fitness values of

all the strings in the current population. Tourna-

ment selection operates by first using another selec-

tion process to pick k strings (typically k = 2) from

the current population (with replacement). Then the

“fittest” individual of the k strings is inserted into

the new population. This continues until the next

generation is complete. Rank selection, considered

a non-parametric procedure, sorts the strings in the

population according to fitness value. Copies of indi-

vidual strings are inserted into the next generation

according to a function of the original ranking. Essen-

tially, the higher ranked the proposed solution, the

more likely it will influence subsequent generations.

Crossover

Two strings are mated with probability � (the cross-

over rate). Typically, mating is accomplished using

single-point, multi-point, or uniform crossover. With

single-point crossover, a point along the string is
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selected with uniform probability. The bits follow-

ing this point are swapped between the two strings.

Multi-point crossover is similar except that multi-

ple points are selected and genetic material swapped

from selected intervals.

Uniform crossover works by moving bit-wise down

the pair of strings, exchanging bits with probabil-

ity � . The appeal of uniform crossover is the abil-

ity to exchange a variable number of information

segments between the string pairs, which is a more

dynamic approach than either single-point or multi-

point crossover.

Mutation

Uniform mutation works by moving bit-wise down

the string and altering the particular bit according to

a “flip” of a weighted coin. The “weighting” is called

the mutation rate, �.

Fitness Functions

Some group tasks or specific meetings provide for

an explicit operationalization of a particular incentive

scheme or reward that can be translated into a fit-

ness function for the genetic algorithm. Usually any

group that possesses an explicit economic incentive

structure system for its members can relatively easily

encode the incentive into a fitness function. However,

many groups do not operate under an explicit incen-

tive system. Other functions could possibly be used,

such as the objectives of the group. Various voting

procedures could be used as fitness functions, as they

provide a means to measure the fitness of proposed

solutions. Therefore, several methods exist for evalu-

ating proposed solutions exchanged among the group

and these methods can be mapped to the fitness func-

tions of GAs.

Model Implementation

We suggest a two-phase process for using the GA

model to guide GSS usage. The first phase consists

of gathering data from various actual GSS experi-

ments and using these data to determine the best-fit

GA parameters. Fine-tuning of model details would

occur during this first phase. Many GSS experiments

have already been performed that could provide the

data necessary for parameter estimation. The second

phase would consist of using the best-fit parameters

to determine various controllable parameters such as

group size, time until acceptable solution, etc. These

could be determined by using the mathematical mod-

els of GA behavior, by simulation using GA software,

or by using rules of thumb developed by the GA

community.

In the next section we summarize the mathematical

models for the simple GA and show how these can

be used to determine a maximum-likelihood estimate

for the observed sequence of GSS proposed solutions

(we call this a trajectory of solutions).

5. Markov Chain Model for
GAs and Parameter Estimation

Vose (1990) and Vose and Liepins (1991) provided the

first exact mathematical model of a simple GA (for

the proportional-selection, one-point crossover, and

uniform-mutation case). This initial model has been

extended to include many variants (see Vose 1999).

Let � be a collection of binary strings of length ℓ

and let r = ��� = 2ℓ be the number of possible strings.

These strings can be equivalently considered as the

integer equivalents 0	1	 � � � 	 r − 1. Let Mg	k be the

probability that the string of all zeros is the child of

the mating process between parent strings g and k

(where g and k are the integer values correspond-

ing to the strings). Under one-point crossover and

uniform mutation, Vose (1990) and Vose and Liepins

(1991) showed that

Mg	k =
�1−�
ℓ

2

×

{

��g�

(

1−�+
�

ℓ−1

ℓ−1
∑

h=1

�−�g	k	h

)

+��k�

(

1−�+
�

ℓ−1

ℓ−1
∑

h=1

�+�g	k	h

)}

(1)

where

� =
�

1−�
	 (2)

division by zero at � = 1 is removed by continuity

and where

�g	k	h = ��2h−1
⊗g�− ��2h−1
⊗k� (3)
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and ⊗ is the bitwise “AND” operator. Let P be a

population of elements from � where n = �P� is the

population size and N is the number of possible pop-

ulations. N is computed by the formula,

N =

(

n+ r−1

r−1

)

(4)

A population is a multiset, meaning that it may con-

tain multiple copies of the same string. Consider

the Markov chain where the possible populations of

size n are the states. Express a state by the vector of

length r	�i, having as its kth component the num-

ber of copies of string k in the population. Let e be a

vector of 1’s and e’ its transpose. Each�i is defined by

e′�i = n (5)

��i
j ∈ �0	1	 � � � 	n� j = 0	1	 � � � 	 r−1� (6)

The transition probabilities from state (population) i

to j are computed by

Pi	 j = n!
r−1
∏

g=0

q
��j 
g
i	 g

��j
g!
(7)

where

qi	 g =ℳ�ℱ ��i

g� (8)

Vose (1999) uses ℱ to capture the selection process

and ℳ the mixing operators (mutation and crossover).

In particular

ℳ�x
i = ��ix
M�ix (9)

where the permutation of x, �kx, is defined by

�kx =







xk⊕0
���

xk⊕�r−1







� (10)

A general form of the mixing matrix, M , was given

by Vose and Wright (1995) as

Mx	y =
∑

j	 k

�j
�k+�k̄

2
��x⊗k⊕ k̄⊗y = j
� (11)

Here �j and �k are called mutation and crossover masks

and ��x
 is 1 when x is true and 0 otherwise. The

various mutation and crossover schemes can be cap-

tured using appropriate choices for these masks. For

example, letting

�i =

{

�ci if i > 0

1−�+�c0 if i = 0
(12)

with ci = 2−ℓ gives uniform crossover. For one-point

crossover

ci =







1

�ℓ−1

if ∃ k ∈ �0	 ℓ
 and i = 2k−1

0 otherwise

� (13)

For uniform mutation we have

�i = ��

e′i�1−�
ℓ−e

′i (14)

where e′i is the number of non-zero bits of i.

The selection process is captured through ℱ . For

roulette-wheel selection

ℱ ��
=
F�

e′F�
(15)

where F is a diagonal matrix and Fi	 i = f �i
 is the

fitness of string i. Rank selection is given by

ℱ ��
i =
∫

∑

��
j��f �j
≤f �i



∑

��
j��f �j
<f �i


$�y
dy (16)

where $ is any continuous increasing probability

density over &0	1' (see Vose 1999). Finally, tourna-

ment selection is given as follows. Here k (usually

k = 2) strings are uniformly drawn from a population.

These k strings compete for selection based on their

ranking under a ranking selection scheme �ℱ . Vose

(1999) showed that

ℱ ��
i = k!
∑

v∈Xkr

�ℱ

(

v

k

)

i

∏

j<r

��

vj
j

vj !
(17)

where

Xkr = �x ≥ 0	x integral	 e′x = k�� (18)

The previous models were developed specifically

for binary strings. Bhattacharyya and Koehler (1994)

extended the Vose model for strings with digits

selected from 2v cardinality alphabets. Later, Koehler

et al. (1998) generalized the Vose-Liepins model for

strings composed of digits having alphabets of arbi-

trary cardinality z, where z is an integer greater
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than 1. This is accomplished by replacing the Boolean

EXCLUSIVE-OR and AND operators with multiplica-

tion and addition over rings of integers. Their analy-

sis also requires Fourier transforms instead of Walsh

transforms, typically used in GA theory.

These models can be easily extended to varying-

sized populations as follows. Let Pi	 j�I	 J 
 be the prob-

ability of going from state i (where populations are

of size I) at time t (the current generation) to state j

(where populations are of size J ) at time t+ 1. Then

we have

Pi	 j�I	 J 
= I !
r−1
∏

g=0

q
��j 
g
i	 g

��j
g!
(19)

where

e′�i = I (20)

and

e′�j = J � (21)

Parameter Estimation

Given an observed trajectory of a GA process, we

wish to estimate the underlying parameters used by

the GA. That is, we wish to estimate rates � and �.

The likelihood of an observed trajectory is propor-

tional to the product of the transition probabilities

along the path. Hence, the likelihood of a given chain

going from j1 to j1 to j2 � � � is

Pj1	 j2�J1	 J2
Pj2	 j3�J2	 J3
 · · ·PjT−1	 jT
�JT−1	 JT 
	 (22)

where J1	 J2	 � � � 	 JT are the population sizes at times

t = 1	2	 � � � 	T . We use a simple maximum-likelihood

procedure in deriving estimates. Maximum-likelihood

estimators have several desirable properties, includ-

ing invariance, sufficiency (if the parameter itself is

sufficient), and efficiency (Mood, 1950). To find the

maximum-likelihood estimate for each parameter of

interest, namely, crossover � , and mutation �, we

maximize the likelihood function given above. There-

fore, we must solve

max
�	�

T−1
∏

i=1

Pji	 ji+1
�Ji	 Ji+1
 (23)

where T is the number of observed populations and Ji
is population i’s size.

In order to find the maximum-likelihood estimate

for our Markov chain, we could set the partial deriva-

tives with respect to the mutation and crossover

operators to zero and solve for � and � . The partial

derivatives, with respect to � , are relatively easy to

derive but those for � are highly non-linear. Further-

more, it is unlikely that first-order conditions would

be sufficient. Besides, it appears that the equations

would be nearly impossible to solve. Therefore, an

approximately exhaustive search over a grid should

be performed to determine the (near) optimal val-

ues of the crossover and mutation rates. An iteration

through the values of � from 0.0 to 0.5 (where 0.5 rep-

resents a random search in the binary case) and the

values of � from 0.0 to 1.0, inclusive, is appropriate.

6. Modeling a GSS as a GA:
Model Details

Population Sizing

A population consists of a number of proposed solu-

tions. In GSS settings, proposed solutions are offered

by group members. As these solutions are not typ-

ically offered in a round-robin fashion, but rather

as soon as the proposed solutions are generated by

group members, a dynamic population size scheme

was designed for use in the model. Several possi-

bilities exist for population sizing schemes. When

learning GA parameters from GSS experimental data,

several schemes have been proposed and several have

undergone preliminary testing. We propose two par-

ticular schemes for modeling the populations: Peer-

Influenced and Data-Driven.

The Peer-Influenced scheme is quite simple. Each

group member is assigned an identifier by the sys-

tem. When anonymity is desired, this identifier could

be used at the system level and not revealed to GSS

users. As each proposal is submitted, that proposal

is encoded and placed into the current population.

As the next proposal enters the system, the identifier

is checked to see who submitted the proposal. If the

identifier is the same as the identifier of the previous

solution proposal, the proposal is placed into the pop-

ulation and the process continues. This indicates that

the same group member submitted the proposal, per-

haps to reemphasize the point or clarify the previous
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statement. When an identifier enters the system that

does match the previous identifier, the proposed solu-

tion is encoded and placed into the population and

the GA operators then act upon the population. The

rationale for this is that group members most likely

require the proposed solutions from multiple group

members before the proposed solutions are evalu-

ated and combined. Consecutive proposed solutions

from the same group member are more likely seen as

repeating or clarifying a previous statement and are

not as “powerful” in driving the group towards its

final, accepted solution. Once the operations are fin-

ished, the next proposed solution seeds the next pop-

ulation or generation and the process continues. This

scheme is presented in algorithm form in Figure 2

below.

The advantages of this scheme are that the

scheme (in algorithm form below) is relatively sim-

ple to implement and conceptualize. Preliminary tests

(Rees and Koehler, 1999) show that it captures the

maximum-likelihood estimates of the transition prob-

abilities better than previously proposed schemes. As

each proposal is treated equally, this scheme seems

suitable for GSS usage where the participants are

anonymous, considered an important feature of GSS.

However, some GSS implementations allow the iden-

tification of group members by either rank or title

and situations potentially exist where this identifica-

tion might be desirous or necessary. The drawback to

this population scheme is when group member iden-

tifications are known during GSS use, certain partic-

ipant proposals carry different “weight” than others

WHILE NOT end-of-session DO: 

      READ (input string) INTO Proposed_Solution; 

      READ (System_Identifier) INTO New_ID; 

      IF New_ID == Prev_ID 

      THEN append Proposed_Solution to Current_Population 

      ELSE start New_Population; 

      Prev_ID = New_ID; 

END WHILE. 

Figure 2 Description of Peer-Influenced Population Sizing Scheme

and the GA model should capture this phenomenon.

Therefore, another population-sizing scheme, namely,

Data-Driven, has been proposed (but not yet tested)

that would hopefully address this concern.

The Data-Driven population-sizing scheme would

use data from actual GSS experiments to estimate

the population sizes from the data itself. By comput-

ing the parameter-estimates and maximum likelihood

estimates for the transition probabilities for different

population sizing schemes, the “best-fit” population

size scheme can be determined. Initially, this com-

putation would most likely be by a “brute-force”

approach. However as more is learned about the

model, heuristics and intelligence could be applied

to the search for the most representative population

sizes. The advantage of this scheme is that it best

reflects what occurs in actual GSS use. Different popu-

lation configurations are likely to occur from different

implementations of GSS, which would be interesting

from a research perspective. The primary disadvan-

tage is that it appears computationally expensive in

terms of time to run the data through the different

configurations of population sizes.

Both schemes result in variable population sizes,

meaning that the number of strings in each popula-

tion can vary from generation to generation. Equa-

tion 19 showed how the Markov-chain model is

extended to accommodate variable-sized populations.

The GA model takes each proposed solution as it is

submitted to the group and places it into the current

population or begins a new population, depending

on the scheme employed. The process ends when the

group ends its GSS session. Therefore, the total num-

ber of actual solutions proposed by the group is the

same as the total number of strings processed by the

GA model.

String Encoding

Some problems have solutions that are more easily

represented by strings than others. Binary strings are

the most common implementation form but higher-

cardinality strings are natural in some situations. The

analytical model has forms for all cardinalities. This

allows for much flexibility in encoding the problem.

However, Rees and Koehler (1998) showed that the
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higher the cardinality, the more difficult the compu-

tation of quantities, such as expected time to solu-

tion, could be. Due to the inherent complexity and

dynamic characteristics of this type of system, most

analyses will be limited anyway. String lengths can

either be fixed or variable-length. However, compu-

tational analysis will be much more unwieldy in the

case of variable-length strings. Often it is not com-

plicated to create fixed-length strings from variable-

length strings.

7. Illustration
Barkhi (1995) performed experiments examining the

effects of communication channel, leadership and

incentive structure on group decision-making within

a GSS context. The groups were provided a resource-

allocation task to solve that required negotiation and

conflict resolution. The group task was a production-

planning problem. Each group was given a predeter-

mined set of customer orders and were to determine

the most optimal set of customer orders to fill based

on revenue and cost data for each order and capac-

ity constraints. Group members submitted proposed

solutions to the task (for example, fill order numbers

1, 5, and 8) using templates provided with the GSS.

The data from the experiments, including the solu-

tions proposed (and the order in which they were

proposed) and the group decisions (the final solution

from each group) were used to validate the model.

We needed to test whether or not groups using GSS

behaved like a GA with random search. In order to

test this, we compared maximum-likelihood estimates

of the path probabilities (the probability of the search

moving from a particular state to another) estimated

from the experimental data with the path probabilities

seen in a GA using random search.

We modeled the GA explicitly using uniform

crossover, uniform mutation, and rank selection.

Tournament selection is also a likely process. Better

proposed solutions are successively compared two-

by-two with the better solution of the pair going on

for future consideration. However, rank selection is

useful in cases of small population sizes, which is the

most likely scenario in applying the model to GSS

use. In any case, GA practitioners have observed little

performance difference between rank and tournament

selection methods.

Previous experimentation has indicated that single-

point crossover is probably not an effective operator

for the GSS model (Rees and Koehler, 1999). This is

most likely due to a lack of diversity in the search

and also the manner in which single-point crossover

is operationalized—which is not intuitively sugges-

tive of how people form solutions. Solutions are more

likely formed by taken one or more pieces of previ-

ous proposed solutions rather than exchanging entire

segments between solutions. Previous research (Rees

and Koehler, 1999) also supports the use of uniform

mutation as an implementation of the mutation oper-

ator. The peer-influenced population-sizing heuristic

was used due to the relative simplicity of the scheme.

Implementation of the data-driven population-sizing

heuristic is beyond the scope of this research.

The values of � and � consistent with random

search are � = 0�0 and �= 0�5. Table 1 shows the log-

likelihood values for path probabilities found from

a random GA path and those based on estimates

from the Barkhi data using the estimation proce-

dure detailed in Section 5. We pose the null hypoth-

esis that the estimated GA is indistinguishable from

a purely random GA process. The significance of

these differences was measured using the Wilcoxon

matched-pairs signed-ranks test (Siegel, 1956). The

null hypothesis was rejected for the 0.05 level (T =

1081, w�95 = 691�1). The model was fitted using data

from 48 groups from Barkhi’s study. The average

estimated uniform crossover rate was computed at

0.15994, and the average uniform mutation rate was

computed at 0.0231. From this example, we concluded

groups using GSS do not behave like random GA pro-

cesses but follow a significantly different GA process

(as estimated). This gives support to using GAs to

model GSS search processes.

Another finding of interest is the set of estimated

crossover and mutation rates. The average estimated

mutation rate certainly falls within normal GA muta-

tion rate parameters (between 0.001 and 0.1). How-

ever, the average estimated crossover rate is far lower

than what is considered normal by practitioners (usu-

ally this value is around 0.6). After applying a GA

simulation to the groups’ problem, the solutions were
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Table 1 Log Differences in Path Probabilities Between Actual (Fitted)

and Random GA Paths for All Groups Under Peer-Influenced

Populations,RankSelection,UniformMutation, andCrossover

Random Path

Actual Path Probability (Log) Probability (Log) Difference (Log)

−102�923 −332�711 229�788

−33�337 −235�670 202�333

−38�013 −124�766 86�753

−83�074 −318�848 235�774

−7�926 −152�492 144�566

−41�889 −235�670 193�781

−97�825 −402�025 304�199

−85�865 −180�218 94�353

−61�312 −318�848 257�534

−35�382 −97�041 61�659

−142�889 −318�848 175�959

−8�830 −124�766 115�936

−46�830 −304�985 258�155

−38�723 −194�081 155�358

−28�929 −69�315 40�386

−9�040 −97�041 88�000

−5�205 −83�178 77�972

−33�655 −138�629 104�974

−61�213 −180�218 119�005

−32�494 −207�944 175�450

−24�120 −138�629 114�509

−40�949 −235�670 194�721

−60�054 −207�944 147�890

−31�839 −180�218 148�379

−25�442 −124�766 99�324

−45�942 −124�766 78�824

−31�479 −110�904 79�425

0�000 0�000 0�000

−0�308 −83�178 82�869

−43�461 −194�081 150�620

−6�827 −166�355 159�528

−57�639 −180�218 122�579

−34�693 −69�315 34�621

0�000 0�000 0�000

−55�953 −221�807 165�854

−1�909 −41�589 39�679

−91�283 −207�944 116�661

−37�326 −152�492 115�166

−28�638 −207�944 179�306

−7�115 −180�218 173�103

−169�015 −318�848 149�833

−13�013 −235�670 222�657

−46�868 −180�218 133�350

−72�118 −249�533 177�415

−55�611 −166�355 110�744

−6�709 −138�629 131�919

−17�548 −124�766 107�218

−31�893 −97�041 65�147

maximized at lower crossover rates than at more

“typical” crossover rates. The apparent explanation

is that the production-planning problem was highly

constrained, resulting in many infeasible solutions.

Therefore, both the GA simulation and the GSS users

had to rely mostly on enumeration, rather than high

levels of information exchange to solve the problem.

This issue is further explored in Rees and Barkhi

(2001).

8. Using the GA Mathematical
Model

We have presented a new model for GSS activi-

ties using a Genetic Algorithm as the foundation.

This model has a built-in mathematical framework

that could prove useful in analyzing group processes

under GSS. Through this framework, we have the

ability to examine the exact expected behavior of

groups using GSS.

The vector of expected times (where the value in

row k corresponds to starting in state k) until string i

is observed is found by computing�I
−DiP�−1e− e (24)

where Di is a diagonal matrix having zero rows cor-

responding to states having string i in the population

and a diagonal of one in rows corresponding to states

not having string i. Prior probabilities are given by�
j =

n!

rn
∏r−1
g=0���j�g!� (25)

when the initial population is drawn randomly

from�with replacement and�
j =

	��
j ≤e�

(

r
n

)

(26)

without replacement. A straightforward application

of these equations, however, is impractical since the

size of P is very large. Koehler (1999) explored using

matrix iterative methods for this purpose, but more

work is needed.

De Jong et al. (1995) used the binary Markov chain

model to compute the exact expected performance of
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small, simple problems

—while varying various GA parameters (such as

the crossover rate and mutation rate);

—while changing the scaling on the fitness func-

tion; and

—while altering the fitnesses of schema-style build-

ing blocks.

Another practical use of this theory is to derive

stopping criteria. Aytug and Koehler (1996, 2000) used

the binary GA model to derive bounds on GA run-

ning times. These (upper) bounds provide sufficient

conditions on the number of GA iterations needed to

guarantee that one has seen an optimal solution with

some stated confidence.

9. Conclusions and Future
Directions

This research has shown that in the GSS groups stud-

ied, the groups engaged in a directed search process

as opposed to engaging in a random search. Estimates

of GA search parameters were obtained for experi-

mental groups, indicating that these parameter val-

ues can possibly be examined and manipulated in

order to achieve improved GSS outcomes. The advan-

tages of the evolutionary method relative to others are

many, including access to the existing body of theory

of the exact expected behavior of GAs that might be

applied to GSS research, and the large set of prac-

titioner heuristics in the GA community that might

be applied to GSS research. For example the expected

waiting time to a particular solution can be computed

as shown in Section 8. This technique could be imme-

diately useful to managers looking for rudimentary

quality control on the length of GSS sessions. Also,

this method is well suited for developing realistic sim-

ulation models for GSS research, discussed in greater

detail below.

Perhaps the most interesting capability of this

model is the ability to capture the search processes of

the experimental GSS groups. The search processes do

vary from group to group as demonstrated in Table 1.

Now that a preliminary computational method of

examining these search processes has been identified,

the factors affecting the search can be better studied.

Specifically, how do the task, communication mode,

group characteristics, incentive structures, and envi-

ronmental variables affect the nature of this search in

light of this model? Experimental data, when avail-

able, can be examined within the context of the model

to see how the search varies between treatment con-

ditions. Preliminary research (Rees and Koehler, 1999)

shows that there is promise in examining the search

processes of groups in this manner.

More data from actual GSS experimental use is

required to further validate the model. Due to the

highly constrained problem used in the Barkhi (1995)

example, more data sets, especially data sets incorpo-

rating less constrained search spaces, are required. At

the least, the GA estimation process should explicitly

consider constraints on the search space. For example,

in the Barkhi data capacity constraints in the underly-

ing manufacturing problem were not explicitly mod-

eled in the GA context. As a result, the GA search

space was larger than it needed to be.

Also, more work needs to be completed with

respect to examining the potential role crossover and

mutation masks could play in the model. Instead of

positing models where the mutation and crossover

masks are constrained to forms dependent on muta-

tion and crossover rates, the mask values could be

estimated directly. This would increase the estima-

tion problem from two parameters to 2ℓ. In other

words, the size of the estimation problem would

increase from two parameters (crossover and muta-

tion in the current model) to two times the string

length. In the example presented in this paper, the

strings were twenty digits in length, representing a

significant increase in computation time.

Other operators and behaviors have been studied in

addition to crossover and mutation (Goldberg, 1989)

and should be carefully examined in light of the GA

evolutionary model. Examples of potential operators

include niching behaviors and dominance operators.

We handled population size changes under the

peer-influenced heuristic. Other schemes should

be examined including the data-driven heuristic.

Another possible scheme is one where the popu-

lation size continuously increases with new solu-

tions being added to the non-changing old ones. This

could be modified to drop the oldest solutions or the

least beneficial solutions. The mathematical models
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and estimation equations would have to be changed

accordingly.

Once better GA models have been designed to

capture GSS activities and their parameters esti-

mated, further validation can be attained by using

the derived GA model to predict a group’s perfor-

mance on a set of new problems and have these com-

pared to actual outcomes. These “holdout” cases will

help to distinguish between the apparent “random-

looking” behavior of groups trying to solve complex,

combinatorial problems under uncertainty from ran-

dom behavior not systematically (on average) cap-

tured by the GA model.

One particularly attractive feature of the GA model

is the ability to create simulations based on charac-

teristics of the model. The ability to simulate groups

and experimentally vary incentive schemes, group

sizes, and composition, and other variables would be

invaluable to many researchers. Simulation studies

have the potential to shed new light on previously

examined variables and allow researchers to carefully

examine relationships in great detail with lower cost

than repeating costly human subject studies.

Another exciting future application of this model

is the creation of an “intelligent” GSS based on this

model. We envision a GSS where GAs are built into

the system, acting as an additional (albeit virtual)

team member. The system itself could provide sug-

gested solutions to the group problem as the GSS par-

ticipants themselves use the system for problem solv-

ing. We do not suggest replacing the group itself with

the system. Instead, the GA-based system would add

rationality to and remove biases from the decision-

making process, and the group members would add

considerable domain knowledge and common sense

to the process. In addition, the GA could be used

to assist in the capture of organizational knowl-

edge incorporated into such groups, greatly assist-

ing in organizational knowledge management activi-

ties. The combination of the two forces could prove a

formidable foe to many organizational problems.

One issue of interest is whether any conclusions can

be drawn linking GA parameters, such as crossover

and mutation rates, to GSS variables such as lead-

ership, communication channel, group size, incen-

tive structure, and others. Examining the crossover

operator’s role as an exploitation operator and the

mutation operator’s role as an exploration operator

would hopefully lead to better insights into group

decision-making processes. Rees and Koehler (1999)

reported ambiguous and often contradictory results

when examining such possible relationships. Most

likely, more work needs to be performed in fine-

tuning the model and testing the model on a wide

variety of data sets performed before such relation-

ships can be fruitfully explored.
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