

CERIAS Tech Report 2002-40

INCOMMUNICADO: FAST COMMUNICATION
FOR ISOLATES

by Krzysztof Palacz, Grzegorz Czajkowski,

Laurent Daynès, Jan Vitek

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

Incommunicado: Efficient Communication for Isolates

Krzysztof Palacz Grzegorz Czajkowski† Laurent Daynès† Jan Vitek

S3Lab, Dept of Computer Sciences, Purdue University, West Lafayette, IN, USA
† Sun Microsystems Laboratories, 2600 Casey Avenue, Mountain View, CA 94043, USA

ABSTRACT
Executing computations in a single instance of safe language
virtual machine can improve performance and overall plat-
form scalability. It also poses various challenges. One of
them is providing a fast inter-application communication
mechanism. In addition to being efficient, such a mechanism
should not violate any functional and non-functional prop-
erties of its environment, and should also support enforce-
ment of application-specific security policies. This paper ex-
plores the design and implementation of a communication
substrate for applications executing within a single JavaTM

virtual machine modified to enable safe and interference-free
execution of isolated computations. Designing an efficient
extension that does not break isolation properties and at the
same time pragmatically offers an intuitive API has proven
non-trivial. This paper demonstrates a set of techniques
that lead to at least an eight-fold performance improvement
over the in-process inter-application communication using
standard mechanisms offered by the JavaTM platform.

Keywords
Application isolation, inter-application communication.

1. INTRODUCTION
Running multiple computations in a single instance of the
Java virtual machine (JVMTM), for instance executing many
servlets in a Web server, has the potential for improving
overall system performance and scalability by sharing some
of the virtual machine’s internal data structures. Such col-
location also creates opportunities for better management of
resources and elegant control policies at the language level.
The main difficulty in delivering collocation is that the plat-
form must provide strong isolation guarantees to ensure that
if one computation fails or misbehaves, other computations
will not be disrupted or prevented from performing their
assigned tasks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’02,November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-417-1/02/0011 ...$5.00.

The application isolation API defines the basic functional-
ity that can be used to create and manage mutually dis-
joint computations within the JVM. The key abstraction
proposed is that of an isolate1. Isolates are instances of the
Isolate class, which provides the means to start and stop
an isolated computation.

The goal of our project, code-named Incommunicado due to
the conflicting needs of keeping applications disjoint while
allowing them to interact, is to explore the design space of
communication infrastructures for isolates. The presented
design is by no means definitive, nor are we in a position to
advocate its inclusion in the isolation API. Rather, we seek
to gain experience with the costs and benefits of a particular
scheme as well as to provide a flexible and efficient platform
for further experimentation.

Designing a communication substrate for isolates is challeng-
ing for several reasons. New communication mechanisms
cannot interfere with other features offered by the under-
lying language or by its particular implementation. This
item is particularly important: any new feature may have
subtle interactions with, for instance, the automatic mem-
ory manager, which in turn may impact the safety of the
language. Any communication mechanism should be gen-
eral enough to accommodate the many different application
requirements, such as different security policies [?], and re-
source limits [?, ?]. Yet it must remain efficient, so that
the benefits of collocation are not drowned by the com-
munication costs. In this respect, it is essential to use a
high-performance virtual machine for experimentation. Us-
ing low-quality virtual machine implementations, or virtual
machines without dynamic compilers, may skew the picture
of the relative costs. Implementing the mechanism in a mod-
ern, fast virtual machine is much more time consuming, but
leads to performance answers meaningful for practical use.
Similarly, bytecode editing approaches are not only plagued
by performance problems, but typically must prohibit the
use of certain languages features [?].

Another important guiding principle for our implementation
is to pay as you go. In other words, applications that do
not communicate should not suffer any slowdown due to the

1The application isolation API, currently under review as
JSR 121 [?], has not been finalized as of this writing. The
name isolate was chosen in order to avoid further overload-
ing of terms such as task, process, domain, etc.

presence of the new mechanism. This principle is key for
practical acceptance.

Incommunicado is a new communication substrate for iso-
lates that has been designed to provide a minimal inter-
face for isolate communication and was implemented in the
Multitasking Virtual Machine (or MVM) [?]. MVM ex-
hibits many features we believe will be present in future
virtual machines. In particular, it is a single-process, high-
performance, full-featured virtual machine hosting multiple
tasks in an interference-free way, with clean application ter-
mination and resource reclamation facilities. MVM has been
designed to demonstrate that multitasking in a safe language
can be practical and efficient.

The design of Incommunicado can be characterized by:

• Simplicity – Incommunicado is inspired by the JavaTM

remote method invocation API (RMI), a model that
is already familiar to programmers [?].

• Efficiency – communication costs in our system are
between 8 and 70 times smaller than when locally using
RMI. Thus we feel justified in advocating the use of the
substrate for performance critical applications.

• Security – policy-neutral hooks are provided for im-
plementing application-specific policies. The policies
can be specified simply and run efficiently.

• Non-intrusiveness – the functional and non-funct-
ional properties of the underlying virtual machine were
preserved. In particular, we were careful to preserve
isolation and termination.

This paper shows how to use the new facilities and de-
tails the cross-isolate method invocation package which is
the centerpiece of our implementation. The main contribu-
tions of this work are a description and performance evalua-
tion of an isolate communication mechanism that addresses
the above requirements while simplifying program develop-
ment.2

2. APPLICATION ISOLATION API
The application isolation API provides the means of creat-
ing and managing isolated computations (isolates), written
in the Java programming language. An isolate, constructed
as an instance of the Isolate class, encapsulates an appli-
cation or a component. The goal of the isolate API, and
the main difference with servlets and applets, is that iso-
lates guarantee strict isolation between programs. Isolates
have disjoint object graphs, sharing objects is forbidden, and
each isolate has its own version of a static state of each class
it uses. This form of isolation guards application against
various form of interference. No special coding conventions
need to be followed within an isolate, nor is there a need
for recompilation or any other modification to the bytecode.

2The interface presented in this paper is not a part of the
JSR 121 API.

From a program’s point of view, starting an isolate is equiv-
alent to starting a new JVM and gives the programs the
same rights: applications executed as isolates have full ac-
cess to all features of the JDKTM and to all constructs of
the Java programming language, controlled by standard per-
missions. From an implementation point of view, running
multiple isolates in the same virtual machine enables sharing
of internal virtual machine (VM) data structures, bytecode
and in some cases compiled code. No particular techniques
are prescribed to realize isolates, and implementation strate-
gies can range from running the JVM in a separate process
for each isolate to executing all applications within a single
multi-tasking JVM in a single process.

The isolate API can be used to start new applications as
isolates and to manage their life-cycle. For instance, a Web
server can choose to start each servlet as an isolate, while
servlets themselves can be oblivious of the fact that they are
run as isolates.

2.1 The Isolate API
The Isolate class provides a simple interface. Isolates are
created by specifying a class name and an array of string
arguments:

Isolate isl = new Isolate("MyClass", args);

The only requirement is that the specified class must have
a main() method just like a Java application executed from
the command line. A newly created isolate is inactive, its
creator must call start(Link[]) to inject a new thread into
the isolate with an array of communication links to other
isolates.

The Isolate class provides methods to terminate the exe-
cution of isolates, exit() and halt(), the former is equiva-
lent to termination of the VM with Runtime.exit(), while
the latter is equivalent to Runtime.halt() which performs a
forced shutdown without finalization. Unlike the deprecated
stop method of java.lang.Thread, isolate termination is
guaranteed to leave the virtual machine and JDK code in
a consistent state. Thus, isolate-based applications are bet-
ter suited to interruptible tasks than for instance applets or
servlets.

2.2 The Link API
Links, which are part of the Isolate API, provide a low-level
communication layer designed for high bandwidth commu-
nication of basic data types (byte arrays, byte buffers, serial-
ized objects, sockets, and strings). Communication between
isolates is done through instances of subclasses of the ab-
stract Link class. Links are one- or two-way communication
channels between a pair of isolates that transport instances
of the class LinkMessage. The simplest case of a send-receive
sequence over links is coded as follows:

// sender isolate
LinkMessage message;
A data = new A();
message = LinkMessage.newSerializableMessage(data);
link.send(message);
...

// receiver isolate
LinkMessage message = link.receive();
A data = (A) message.getSerializable();

Links are created by invoking the static method newInst-

ance with a pair of isolates as arguments. Thus the following
code snippet creates a one way connection between the cur-
rent isolate and a newly created isolate:

Link lnk = Link.newInstance(Isolate.currentIsolate(),
new Isolate(aclass, args));

Note that both end-points of a link must exist3 before creat-
ing the link. This causes a slight difficulty for setting up the
initial communication topology. Passing an array of links to
the start method solves this problem. Thus, in the above
example the isolate isl can be bootstrapped by calling

isl.start(new Link[]{link});

Once communication has been set up in this fashion, changes
in the interconnection topology can be effected by exchang-
ing links (in a message over an existing link). For com-
pleteness, we mention the existence of the EventLink class,
which provides a channel for receiving notification of isolate
life-cycle events (currently three events types are supported:
starting, stopping, terminated).

2.3 The Isolate Security Model
As mentioned above isolates provide protection against un-
intentional sharing, which has been the cause of numerous
security breaches (see for instance [?]). The communication
API does not require an isolate to accept incoming message
(receive operations are explicit). Such provisions are needed
to prevent certain kinds of denial of service attacks. The
remaining forms of inter-isolate interference are related to
uncontrolled use of computational resources, such as CPU
and heap memory. The API provides a IsolatePermission

class that extends the BasicPermission class of the Java
platform security infrastructure. It controls the creation and
stopping of isolates, inter-isolate communication, listing of
all isolates, and retrieving an isolate’s context.

3. ISOLATE COMMUNICATION WITH XIMI
Incommunicado offers a high-level inter-isolate communica-
tion substrate called XIMI (for C ross-I solate M ethod Invoc-
ation). Initially our goal with XIMI was to provide a simple
and flexible programming model for inter-isolate communi-
cation. We chose to model XIMI on RMI, a well known com-
ponent of the Java platform. The version of XIMI presented
here is significantly different from our earlier design. When
we started working on XIMI (summer 2001), the Isolate API
did not specify how isolates were to communicate. This has
since then been addressed by the Link API. Another moti-
vation for revising our design was that our experience with
the XIMI programming model suggested that compatibility
with RMI is difficult to achieve and negates some of the
advantages of Isolates.

3By “exist” we mean that the isolates have been created,
but they need not have been started.

This section introduces the revised XIMI programming model.
Implementation issues will be discussed in Section ??. We
start by contrasting XIMI with RMI.

3.1 Why not RMI?
The abstraction of remote procedure call (RPC) has proven
to be versatile [?], and has been adopted for a variety of soft-
ware and hardware platforms. Communication mechanisms
inspired by RPC but customized for a particular environ-
ment, such as RMI [?], have emerged. Their existence pro-
vides a convenient way for programmers to utilize network
capabilities via an API in the spirit of the programming
language at hand.

While remote method invocation is syntactically identical to
local method invocation, there are significant semantic dif-
ferences. Remote objects can only be manipulated using ref-
erences of the interface type java.rmi.Remote or any other
interface that extends it. Arguments to remote method in-
vocations as well as their return values are passed by deep
copy, following the semantics of serialization. Remote ob-
jects are exchanged by remote references, and stubs are cre-
ated as replacement for remote objects to forward invoca-
tions. Beneath this high-level interface lie three layers of
implementation:

• stub layer: provides (compile-time) automatically gen-
erated implementations of sub-interfaces of Remote, so-
called stubs. These stubs forward invocations to the
actual, programmer-supplied implementations of these
sub-interfaces using the transport layer.

• remote reference layer: is responsible for determining
the identity of the remote object, whether the remote
object is replicated or not, and whether the remote ob-
ject is currently instantiated or has to be instantiated.

• transport layer: is responsible for connection manage-
ment, encoding and dispatching invocations over the
wire.

RMI is a general purpose protocol for distributed communi-
cation across administrative domains. Thus, with RMI, Java
virtual machines with potentially different internal data for-
mat, object layouts, and class representations are able to
exchange data. In the case of Isolate communication much
of this generality is merely overhead.

For isolates collocated within the same JVM several of these
differences disappear. For instance, data formats and object
layouts are identical on both communicating parties. Fur-
thermore, network errors need not be taken into account,
and machine failures are likely to be simultaneously fatal
for both sides. Thus, there is little motivation for forcing
programmers to catch errors that will not occur.

For this reason we have chosen to design XIMI for speed
rather than versatility, with the understanding that appli-
cations requiring a more expressive protocol may have to
fall back on RMI. XIMI provides an application layer inter-
face comparable to RMI’s application layer. The semantics

of isolate communication follows the call semantics of RMI
but with some objects passed by copy and other by cross-
isolate references. APIs providing access to the lower layers
of RMI are not supported. For example, XIMI does not
have equivalents of classes and methods providing program-
matic access to the transport layer of RMI. These classes
and methods were omitted because their functionality (such
as setting up and managing connections or monitoring their
”liveness”) is either not applicable or performed differently.

3.2 The XIMI Communication Substrate
Incommunicado provides a simple interface to inter-isolate
communication. The Isolate API has been modified (i) to
add a new method to the Isolate class (ii) to define two
cross-isolate objects called Portal and DeferrablePortal,
and (iii) to add a new security manager class called Isolate-

SecurityManager. The new interface is given in Figure ??.

Isolate(String, String[], String) constructs an isolate;
the first argument is the name of the main isolate class and
the last argument is the name of a subclass of Isolate-

SecurityManager (or null). The only constraint is that the
main class must have a static main(String[]).

Communication between isolates is done through portals.
A portal, an instance of a non-public class extending the
Portal abstract class, is at the receiving end of a connec-
tion. To communicate, a server isolate must create a portal
object and send that portal through an existing communica-
tion channel (either as a message over a link or as an argu-
ment to another portal). Each portal has a target object and
one or more external stub objects. The portal and target
objects ’live’ within the server isolate, while the stubs are
located in client isolates. Cross-isolate calls have semantics
similar to RMI in that portal objects are passed by refer-
ence (involving the creation of stubs), while all other objects
are always copied maintaining the semantics of serialization,
even though the implementation avoids the overhead of ac-
tual serialization. Returns are treated in a similar fashion.
If a method called through a portal throws an exception,
the exception will be serialized and returned to the calling
isolate.

The semantics of cross-isolate method invocation are that
the caller will always block. On the callee side, the se-
mantics depend on how the portal was created. The static
method Portal.newPortal() creates a plain portal, while
the method Portal.newDeferablePortal creates a defer-
able portal. Both methods take an interface, a target object
and boolean. They differ in their behavior with respect to
external calls. A plain portal will always forward calls to the
target object, thus creating a new thread within the target
isolate to handle the external call (see Section ?? for imple-
mentation details)4. A deferrable portal defers the execution
until an explicit accept() call from within the isolate. Thus
the call is handled by an existing thread within the isolate.
The accept method is blocking thus if there is no pending

4The portal interface does not mandate creation of
threads per se, a thread pool could as well be used by an
implementation of XIMI.

call on the portal, the current thread will wait until one
occurs. If a call is issued on an isolate with several threads
blocked on the particular portal, one of these will be selected
randomly.

Each portal has an exported interface which must be an
interface implemented by the portal’s target. Unlike RMI
which requires that the exported interface extend Remote,
any interface may be chosen at portal creation time. This
facilitates inter-isolate communication by allowing any ob-
ject implementing the interface to be used as the target of
a portal. Stub objects created from a given portal have a
reference to the portal’s target and forward invocations. All
portals support methods to get and set the target object, as
well as a close method which closes a portal. Pending calls
are allowed to complete but no new calls will be processed.
A portal can also be copyable, meaning that isolates hold-
ing one of the portal’s stubs may send that stub to another
isolate. If the portal is not copyable, then its stubs will not
be serialized. A portal can thus be associated with multiple
stub objects.

final public class Isolate {
public Isolate(String classname,

String[] args,
IsolateSecurityManager sm);

public void start(Object[] portals);

static public Object[] getPortals();
}

public abstract class Portal {
static public Portal newPortal(Class iface,

Object target,
boolean copyable);

static public Portal
newDeferrablePortal(Class iface,

Object o,
boolean copyable);

void close();

void setTarget(Object tgt);

Object getTarget();

Class getExportedInterface();

void accept() throws InterruptedException;
}

public abstract class IsolateSecurityManager {
void checkInvokeFromIsolate(Isolate src,

Method m)
throws AccessControlException;

void checkClassDefinition(Isolate src,
String classname)

throws AccessControlException;

final public Isolate getParent(Isolate src);

final public Isolate getCurrent();
}

Figure 1: Incommunicado interfaces. In the case of
Isolate, we only present new methods. Implementa-
tions of Portal and DeferrablePortal are private.

interface Map {
Object put(Object name, Object obj);
Object get(Object name);
...

interface Converter {
Printable prepare(Document doc);
...

class ConverterImpl
implements Converter {
...

class PrintServer {
static public void main(String[] args) {

Map nameSrv = (Map) Isolate.getPortals()[0];
Portal conv = Portal.newPortal(Converter.class,

new ConverterImpl(),
true);

nameServ.put("converter", conv);
...

class App {
...
Document doc = new DocImpl();
Converter conv = (Converter) nameSrv.get("converter");
Printable file = conv.prepare(doc);

Figure 2: An example of inter-isolate communication. PrintServer registers a Converter with the name
server. App, running in another isolate, looks up the converter and invokes prepare() in the PrintServer.

Isolates have two methods to bootstrap communication. The
start(Object[] portal) method is called by the isolate’s
creator to inject a number of stubs into a newly created iso-
late (the semantics of start are identical to that of a cross-
isolate call). Then from within an isolate, getPortals()

can be used to obtain all portals. The array of objects re-
turned may contain remote stubs as well as plain objects.
A name server object can simply be passed as an argument
as shown in Figure ??. Thus XIMI differs from RMI in that
the java.rmi.Naming functionality is not required.

Implementations of the IsolateSecurityManager class must
provide the following two methods, checkInvokeFromIsol-
ate and checkDefineClass, to respectively check that a par-
ticular invocation is legitimate and that the target isolate is
allowed to load a class while unpacking a message received
from another isolate. The class further provides two meth-
ods, getCurrent and getParent, to respectively get the iso-
late that is the target of the operation, as well as its creator.

3.2.1 Example: Servers

Figure ?? illustrates isolate communication with one isolate,
running the PrintServer class, providing a document con-
version service, and a client running App. The two isolates
are connected by a name server, an object implementing the
standard Map interface. The name server is a stub for an ob-
ject living in yet another isolate. The class PrintServer

is thus able to export a conversion service from its main

method. When it calls the name server’s put method with
a string and the converter portal, the string is passed by
copy while the portal is converted to a stub. The portal was
created in copy mode since the name server must be able
to forward stubs to isolates requesting them. Without this,
any attempt to hand out stubs would fail. The class App of
Figure ?? is an application that uses the name server to get
a cross-isolate reference to a converter. The variable conv is
actually a copy of the stub stored in the name server.

3.2.2 Example: Futures

Another use case for portals is to combine them with fu-
tures [?]. A future is an object that stands in for the result

of a computation. Futures decouple computation of inter-
mediate values from the main control flow of a program,
a future may be computed in the background. The main
computation need only block if, when it needs the result,
the background task has not completed. For instance in the
previous example, the class App was forced to wait for the
document conversion to terminate, with futures the same
program can be written as:

Callable obj = new Callable() {
Object call(Object arg) {

return conv.prepare((Document) arg);
}};

Future future = new BasicFuture(obj, doc);
future.run();

...

Printable file = (Printable) future.get();

The application can now perform arbitrary actions between
the time run() is invoked and the result is requested with
get(). In Figure ?? the client blocked until completion of
prepare().

On the server side, the choice whether to have (i) one thread
per request, (ii) a thread pool, or (iii) sequential processing
is made by specifying a portal class. If conv is a stub cre-
ated from an instance of Portal, calls to prepare() will be
concurrent. On the other hand, if a deferrable portal had
been used, along with the following code in main(), calls
would be serialized.

while (true) { conv.accept(); }

A thread pool implementation can be derived by extending
the above with logic to manage a set of threads.

3.2.3 XIMI Class Stubs

XIMI simplifies application development by avoiding the in-
termediate step of stub generation. RMI’s requirement of
a remote stub class compiler, rmic, is an extra step in the
development cycle. For each remote method in an inter-
face extending Remote, rmic generates a method in the stub
class with the same signature that marshals its arguments,

Figure 3: Overview of XIMI communication. Calls to the security manager and copies are explicitly indicated,
we assume that the security manager for B is located in its parent B.

sends them to the remote object and unmarshals the return
value it receives. Whenever an exported remote object is
passed as a parameter or return value in a remote method
call, the stub for that remote object is passed instead and
the stub class has to be available for loading in both client
and server. In XIMI stubs are generated dynamically, on
demand, hence no preprocessing is required and no special
tools need be invoked during development, nor is necessary
to ensure stub availability at class loading time.

3.2.4 Fast loading

Our implementation is based on MVM which provides a fast
loading mechanism that bypasses full class loading, includ-
ing the fetching, parsing and verification of the class file.
Full class loading is required only by the first isolate that
loads a given class. Subsequent loads of the same class in
other isolates reuse the previously created run-time system
data structures, thus considerably speeding loading [?]. The
current version of MVM limits fast loading to the default
class loader. Future MVM versions will lift this restriction
and allow fast loading for user-defined class loaders. XIMI
takes advantage of fast class loading.

3.3 Enforcing Security Policies with XIMI
The security requirements of isolate communication differ
from RMI in at least two respects. First, controlling network
connections is a non-issue. Second, efficiency is crucial —not
only should applications that do not require a security man-
ager not pay for it, but those requiring security managers
should not experience overheads that would dwarf the per-
formance gains of XIMI. For these reasons, Incommunicado
introduces a subclass of SecurityManager called Isolate-

SecurityManager that provides policy-neutral hooks that
allow the implementations of a variety of security policies
for controlling communication between isolates. Further-
more cross-isolate references can be used like capabilities as
described next.

3.3.1 Capabilities

Capabilities are a well known access control mechanism [?]
used in operating systems as well as some agent systems
(e.g. [?] and [?]). A capability is an unforgeable token
that grants certain access rights to its owner. Some authors
have advocated the use of plain objects as capabilities [?,
?], under the rationale that references can not be manu-
factured and their type describes what can be done with
the object. While this approach can be successful in cer-
tain cases, objects lack two important characteristics found
in most capability-based systems: revocation and copy con-
trol. XIMI references behave as capabilities. Revocation
can be achieved by closing a portal. The expression

portal.close();

will ensure that no more calls can be issued through the
stubs associated with this portal. Calls in progress will not
be affected. Copy control is meant to restrict the flow of
capabilities between isolates:

Portal port = Portal.newPortal(Printer.class, obj, false);

will create a portal whose stubs can not be copied. Thus if
an isolate acquires the stub, it will not be able to send it to
another isolate via XIMI.

3.3.2 Interposition

Instances of IsolateSecurityManager and its subclasses are
able to interpose on relevant XIMI operations and throw a
AccessControlException if the current security policy is
breached. The security exception is then serialized and re-
thrown in the caller. The interface of this class, given in Fig-
ure ??, consists of two methods: checkClassDefinition(Iso-
late src, String cl) is invoked every time a new class
is about to be loaded as a result of a XIMI call. While
this method may appear redundant given the normal secu-
rity check on class loading, this is not the case since there
is no easy way to check what event triggered a class load
(stack inspection could be used, but it is rather inconve-
nient). The arguments to the method are the name of the
class about to be loaded, the isolate that caused the load
and the isolate in which the class will be loaded. The invo-
cation of this method occurs during deserialization. If the
security manager throws an exception the entire XIMI call
is aborted. The other method in the security manager in-
terface is checkInvokeFromIsolate(Isolate src, Method

met), called once for each XIMI method invocation. Its ar-
guments are the originating isolate and the reflection object
describing the method about to be invoked.

Security policies are chosen by the current isolate and dy-
namically associated with newly created isolates. In other
words the same application can have different policies at
different times. For instance,

isl = new Isolate("Application", null,
"RelaxedSecurityManager");

creates a new isolate running the Application class with an
instance of RelaxedSecurityManager.

We will now illustrate some applications of the proposed
API with examples from the literature.

3.3.3 The JavaSeal security model

The JavaSeal mobile object system [?] provides an abstrac-
tion called a seal (for sealed object), which plays a similar
role to isolates. Just as isolates, seals are disjoint computa-
tions which communicate through channels. The seal secu-
rity model enforces hierarchical communication —a seal can

