CERIAS Tech Report 2002-16

CS 490: WIRELESS SECURITY
INDEPENDENT STUDY - FINAL REPORT

By Patrick Fitzgerald
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907



CS 490: Wireless Security Independent Study —
Final Report

Patrick Fitzgerald
Purdue University

April 30, 2002

1 Abstract

This paper presents the purpose, goals, accomplishments, and design details of
this CS 490 project: design and implementation of improved security measures
for wireless networks.

2 Introduction

Wireless networking using commodity 802.11b hardware provides a convenient,
simple method for rapidly building a local area network in practically any loca-
tion. Unfortunately, it is quite common for security to be overlooked in exchange
for convenience. While provisions built into the protocol such as MAC authen-
tication and WEP do provide some measures for authentication and encryption,
these measures do not offer significant security for anything but the most triv-
ial communications. Analysis of WEP has shown that the security it provides
is minimal.[1] open source project called “Air Snort” claims that after gather-
ing 100 megabytes of data, the encryption key can be guessed.[2] Other tools
are available to force access into MAC authenticated networks.[3] Clearly, the
tools inherently provided by 802.11b for encryption and authentication are not
sufficient.

Other cryptographic protocols are available for adding security to inherently
insecure networks. The IP Security Protocol (IPSEC) offers many strong cryp-
tographic measures which would be useful in wireless environments. However,
a full IPSEC implementation is very resource intensive and would be ineffective
on handheld network devices due to its size. Additionally, the complexity of
IPSEC yields much greater likelihood of insecurity in implementation. IPSEC
also incurs penalties of both speed and bandwidth. Furthermore, the available
implementations of IPSEC for common platforms are expensive to license, in-
complete, and often incompatible with each other. SSL tunnelling of all data
can be more lightweight than IPSEC, but requires either extensive modification



to the operating system or foreknowledge on both the wireless client and the
router of all protocols which will be used in communication.

In addition, it is the social responsibility of the owners of the wireless net-
work to ensure that only valid users may access the network. An attacker finding
an insecure wireless network in a public area is likely to do two things. First,
he will attempt to exploit the data and systems on the network. Second, he
will attempt to use the wireless network, any host on the wireless network, and
any connection between the wireless network and other networks to mount at-
tacks on other networks and hosts. The attacker can anonymously connect to
the wireless network, then launch attacks which appear to be coming from the
legitimate owner’s systems. Using the MAC address as an authentication token
has proven a faulty approach. Furthermore, even if MAC authentication were
strong enough, the nature of wireless networks makes theft of authentic hard-
ware much more likely. It is therefore critical to ensure the strong authentication
and identification of users— not hardware.

In this project, I propose a software remedy to this problem. The widespread
availability of HT'TPS enabled browsers allows for strong authentication of the
users and a secure channel for transfer of a unique session key for each user.
IP payload data is encrypted using the Blowfish cipher! in cipher feedback
mode. The implementation is fast, efficent, and does not incur any bandwidth
overhead.

3 Purpose of this Study

The purpose of this study was to gain knowledge about security software engi-
neering in a networked environment. I have studied a wide range of subjects in
order to successfully complete this project. Some of the areas which have been
covered are:

e Common cryptographic algorithms
e Secure software development

IP firewalls

e 802.11b wireless networking
e key management
e SSL certificate management

My primary accomplishment in this project was the implementation of a lightweight
mechanism for improving the security of a wireless local area network. The soft-
ware produced in the course of this project provides the following functionality:

e Client authentication of router.

TAny block cipher can be used— Blowfish was chosen for its speed and small memory
footprint.



Router authentication of client.

Packet level encryption of all IP payload data on the network.

The software developed in the course of this project is not intended to replace
other security protocols but rather to provide additional security to a public

local

area network. It should also be noted that because of its design, there

may be other possible uses of the software

4

6
6.1

Design Goals

All payload data on the network must be encrypted.
All clients must be able to authenticate the router.
All clients must be authenticated by the router.

Implementation of the client software must be lightweight and fast enough
to be usable on a PDA.

The entire system must be implementable in software only and must not
require any additional modifications to commodity 802.11b hardware.

The client software should be portable to many platforms.

The server software should be portable, at least, to Linux and FreeBSD
platforms.

Assumptions

A secure web browser platform supporting HTTPS is available on the
client.

A secure web server platform supporting HTTPS is available on the server.
Username/password pair is sufficient for authentication of a user.
Client and server system software is not vulnerable to other attacks.

The software is not required to provide protection from attacks against IP
implementations.

Client systems will not need to communicate securely with each other.

Requirements Analysis

Authentication
The client must be able to strongly authenticate the server.

The server must be able to strongly authenticate the client.



6.2 Encryption
e All IP payloads on the network must be encrypted.
¢ Key exchange must take place across the insecure network as well.

e An eavesdropper should not be able to gain significant advantage in de-
feating the encryption by monitoring any part of the traffic.

e There should be no significant cryptographic weakness in the key genera-
tion.

e The server should provide protection against attacks on the key generation
algorithm.

6.3 Network

e The software must encrypt all IP payloads on the network after the key
exchange.

e The software may ignore all non-IP traffic.

e The software may assume that all hosts on a specified subnet will partic-
ipate in encrypted communications.

7 Architecture

7.1 Overview

The architecture of this project was designed to meet the requirements and
goals listed above in a simple and straightforward manner, using open software
and standard protocols wherever possible. This philosophy was adapted for two
reasons. First, a complex system is much more difficult to verify than a simple
one. The software consists of approximately 800 lines of C code and 200 lines of
PHP. Secondly, use of proven libraries and standards decreases the risk of error
in our own implementations of standard functions and increases the portability
of the project. Rather than implementing an unportable kernel module, I devel-
oped a user-space packet encryption engine based on divert socket functionality.
Because of this, the port to OS X was extremely simple and the port to Linux is
expected to be less than twenty extra lines of code. All cryptographic functions
are provided by the OpenSSL library, a well-known open source project.

The project uses HT'TPS to authenticate the client and server, then transfers
a key across the HTTPS connection. The key is generated by reading from
the /dev/urandom device. Configurable time constraints prevent valid users
from mounting attacks on the random number generator. The key is used for
the duration of the session to encrypt IP traffic across the network using the
Blowfish cipher in cipher feedback mode. Keys are transferred from the HTTPS
server to the packet encryptor using a named pipe; they are transferred from
the HTTPS browser to the packet encryptor via copy/paste buffer.



7.2

7.3

7.4

Authentication

The client and server use HTTPS to authenticate each other mutually
using certificates.

The user is authenticated with a username/password combination.

The web server stores session data (session key, username, IP address) in
an SQL database.

The web server sends the session key to the user via the HT'TPS session.

The web server then passes the IP address and the key to the gateway
server daemon through a named pipe.

When the user has finished using the encrypted connection, he/she may
use a web interface to revoke his/her key. The web server then passes a
key-revocation message to the packet encryptor, which revokes the key.

Key Exchange

A session key is given to the client via HI'TPS after both client and server
have authenticated.

This key is used for symmetric encryption on all subsequent communica-
tions.

The server ensures that each user may only request one key per IP at a
time and limits key request rates.

Encryption

The payload of the IP datagrams sent to the network by both client and
server software is encrypted using the Blowfish cipher in cipher feedback
mode.

The payload is encrypted and decrypted using blowfish in CFB64 mode
as implemented in the OpenSSL package, and as such requires the openssl
library to be installed. The initializing vector is computed as follows:
iv = K (source address, dest address)

iv' = K (iv®length, id, flags, offset, ttl, proto)

iv' is used as the initializing vector. (See figure 1.)

Late in the semester, it was determined that this method exhibits a weak-
ness when packets are sent with identical IP headers. This weakness has
not been fixed in the software due to time limitations, but an outline of
the weakness two possible solutions are given below.

— Because identical IP headers will generate identical initializing vec-
tors, it is possible to determine the first 64 bits of the IP payload
data if the TP headers are identical.



— An attacker can exploit this weakness by sending additional forged
packets with identical headers through the server. This reveals the
first 64 bits of the packet, which can be used to generated another
forged packet which reveals the next 64 bits and so on.

— This attack requires the attacker to have connections on both sides
of the server and send (size/64) * size additional data for each packet
to be decrypted.

— This attack can only reveals data sent from server to client. An
attacker cannot forge duplicates of packets sent from client to server.

— The attack can be mitigated by randomly modifying certain parts of
the header. Filling TOS and TTL fields with random bits in the IP
header before encryption on the server will not affect packet delivery
and require the attacker to send size * 65535 additional data for
each packet for a 63% probability of decrypting the first 64 bits of
the packet payload. Assuming a minimum packet size of at least
300 bytes, this attack would require sending over twenty gigabits of
additional information to have a 95% probability of decrypting a full
packet.

— For packets which are not fragmented, the identification and fragment
offset fields can also be used. This increases the available entropy
to 23!, Recovering these packets would require approximately two
hundred days on an eleven megabit network.

— The weakness could also be fixed by using a modified version of cipher
block chaining (CBC) mode adapted for variable-length data. The
cipher would function in CBC mode as long as 64 bit blocks were
available, then encrypt the remaining data by XOR with the re-
encrypted last block of ciphertext.? i.e. ¢, = p, ® K(cn_1)

e The client software decrypts the payload of all IP datagrams with a desti-
nation address matching that of the client using the session key, excepting
HTTPS communication with the authenticating web server.

e The client software encrypts the payload of all IP datagrams with a des-
tination address other than the client’s using the session key, excepting
HTTPS communication with the authenticating web server.

e The server software decrypts the payload of all IP datagrams with a source
address in the encrypted subnet and a destination address outside the
encrypted subnet using the stored session key matching the source address,
excepting HTTPS communication with the authenticating web server.

e The server software encrypts the payload of all IP datagrams with a des-
tination address in the encrypted subnet and a source address outside the

2This method requires use of a cipher where K(K(m)) is not significantly weaker than



‘ Source Address, Destination Address Length, Identification, flags, fragment offset, ttl, protJ

7.5

8

O

‘ Blowfish

o

|

Initialization Vector for
CFB-64 mode.

Figure 1: Generation of IV for CFB64 mode.

encrypted subnet using the stored session key matching the destination
address, excepting HTTPS communication with the authenticating web
server.

Packet capture and manipulation

Packets are captured for the client and router packet encryption processes
by the divert socket mechanism under FreeBSD and Mac OS X. A port
using libipq under Linux is currently in development.

Firewall rules must be added on the client and server to divert all traffic
to the packet encryptor except for HTTPS traffic to the authentication
server.

Packets are then anaylzed by the encryptor to determine their eligibility
for encryption and decryption according to the rules listed above.

Observations and Conclusion

At the CERIAS symposium, I had the opportunity to discuss my project with
several members of the security community. The response I had was overwhelm-
ing. Sysadmins are currently piling IPSEC on top of LEAP on top of WEP and
changing keys every nine minutes, trying to solve the wireless security problem
by adding more complex structures. Clearly, there is much concern in the com-
munity about providing secure wireless access for business use. Unfortunately,



complexity has never been a friend of security. The more complex a system is,
the more likely it is to exhibit trivial weaknesses hidden within the complexity.

Offering free software which solves the problems of wireless networks in eight
hundred lines of portable C seems unrealistic. I do not claim that this project
is a panacea for wireless network security. Further research and investigation is
stil needed within this project, particularly in the way initializing vectors are
created and used. Wireless network security remains an open problem, despite
my best attempts this semester. To address all concerns, it would be necessary
to have pervasive influence in the protocol design process. As an undergraduate
student, I certainly do not have the widespread influence in the network industry
that IEEE does! Perhaps the greatest value of this project lies in causing others
to question the validity of the current standards process.

This project falls short of its lofty goal of replacing WEP because it is an
afterthought. I have “fixed” the broken standard by applying a patch. This
approach is also fundamentally flawed. The only reasonable way to ensure
security of a system is to design the system with security in mind. This project,
and others like it, should be seen only as stop-gap measures designed to keep a
broken system functional until it can be replaced. It is my sincere hope that the
industry will utilize better practices in the future. This seems unlikely, however,
until stronger market pressures develop supporting secure protocol design.? The
widespread availability of inexpensive 802.11b devices ensures the necessity of
stop-gap measures for the time being.

I intend to continue development of this project beyond the proof-of-concept
phase. I plan to add features permitting better, more automated, key manage-
ment; communication between clients; automated key revokation using a heart-
beat protocol; graphical user interface for the client software; administrator-
configurable cipher suites; and many other enhancements to the functionality of
the software. It will also be necessary to modify the way initialization vectors
are generated, especially on the server. Because the software functions on IP
datagrams, it not restricted to wireless use only. On a wired network, it could
easily be modified to provide VPN and secure IP tunneling functionality, with
the proper configuration. Additional study is needed to address security con-
cerns associated with this use before it can be approved for this use. The source
code of this project will therefore be opened to the public to allow open analysis
and further collaboration with the security community at large.

A Software availability

The software produced in the course of this project has been released under an
Open Source license and is available at the project web page,
http://wepless.sourceforge.net/. The implementation supports FreeBSD and
MacOS X as of this paper, and will support Linux and OpenBSD very soon.

31t is clear that no amount of complaint from the security community will ever have near
the persuasive strength of the almighty dollar.



B Schematic Diagrams

B.1 Server

To External Network

Server

Apache/modssl/modphp
and MySQL server
authenticate user and
generate key

(Client Address,
Session Key)

_

*" External Interface

‘ Internal Interface
Encrypted Data

IPFW or IPtables send all

traffic on the subnet to userspace

packet encryptor
f Packets

1 (Divert Socket)

Y

Unencrypted
Data

!
'

Packet Encryptor
Decrypts traffic to outside network
Encrypts traffic to inside network

Drops anything spurious

B.2 Client

Figure 2. Server schematic

L

Wireless AP
(in Bridge mode

diagram.

Client

HTTPS Client

Authenticates server, receives key

—————
Wireless IF

Data

Encrypted

to userspace packet encryptor

IPFW or IPtables send all traffic

A A

! Packets

; (Divert Socket) ;

Packet Encryptor
Decrypts traffic to me

Session
Key

Encrypts all other traffic
Drops anything spurious

Figure 3. Client Schematic diagram



C

Acknowledgements

I would like to acknowledge the guidance and input of my advisor Pascal Meunier
in this project. Without his persistent suggestions that I should ”do some-
thing about the wireless problem,” I probably would never have attempted this
project. Without his constant prodding to keep coding, I probably never would
have finished the project. Without his help in understanding the complexity of
the problem, I probably would have implemented a system as flawed as the one
I wanted to replace.

I would also like to thank Dave Jacoby and his wife Kerry, for feeding me
several hot meals during the course of this project. Too often, I have overlooked
the importance of proper nutrition in software development.

Finally, I would like to thank my fianceé for putting up with my incessant
ramblings about this project.

D

1.
2.

References

The AirSnort project: http://airsnort.shmoo.com/

Weaknesses in the Key Scheduling Algorithm of RC/, Mantin, Shamir and
Fluhrer. http://www.securityfocus.com/cgi-bin/library.pl?cat=154&offset=10

ActiveSync, TCP/IP and 802.11b Wireless Vulnerabilites of WinCE-based
PDAs, Pascal Meunier, et al. (Publication pending.)

. The unofficial 802.11 security web page: http://www.drizzle.com/ aboba/IEEE/

10



	purdue.edu
	https://www.cerias.purdue.edu/infosec/bibtex_archive/archive/2002-16.pdf


