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Abstract

Redundancy is de�ned as the excess of the code length over the optimal (ideal)
code length. We study the average redundancy of an idealized arithmetic coding (for
memoryless sources with unknown distributions) in which the Krichevsky and Tro�mov
estimator is followed by the Shannon{Fano code. We shall ignore here important prac-
tical implementation issues such as �nite precisions and �nite bu�er sizes. In fact, our
idealized arithmetic code can be viewed as an adaptive in�nite precision implementation
of arithmetic encoder that resembles Elias coding. However, we provide very precise
results for the average redundancy that takes into account integer{length constraints.
These �ndings are obtained by analytic methods of analysis of algorithms such as theory
of distribution of sequences modulo 1 and Fourier series. These estimates can be used to
study the average redundancy of codes for tree sources, and ultimately the context-tree
weighting algorithms.

1 Introduction

Recent years have seen a resurgence of interest in redundancy rates of lossless coding (cf.
[1, 9, 10, 12, 13, 14]). The redundancy rate problem for a class of sources corresponds to
determining how much the actual code length exceeds the optimal (ideal) code length. We
de�ne a code Cn : An ! f0; 1g� as a mapping from the set An of all sequences of length
n over the alphabet A to the set f0; 1g� of binary sequences. We write Xn

1 to denote the
random variable representing a message of length n. Given a probabilistic source model,
we let P (xn1 ) be the probability of the message xn1 2 An. Given a code Cn, we let L(Cn; x

n
1 )

be the code length for xn1 . Throughout we shall write log for the binary logarithm.
From Shannon's works we know that the entropy Hn(P ) = �Pxn

1

P (xn1 ) logP (x
n
1 ) is an

absolute lower bound on the expected code length. Hence � logP (xn1 ) can be viewed as the
\ideal" code length. The pointwise redundancy Rn(Cn; P ;x

n
1 ) and the average redundancy

Rn(Cn; P ) are de�ned as

Rn(Cn; P ;x
n
1 ) = L(Cn; x

n
1 ) + logP (xn1 );

Rn(Cn) = EXn
1
[Rn(Cn; P ;X

n
1 )] = EXn

1
[L(Cn;X

n
1 )]�Hn(P );

where the underlying probability measure P represents a particular source model and E

denotes the expectation. Another natural measure of code performance is the maximal
redundancy de�ned as R�(Cn; P ) = maxxn

1
fRn(Cn; P ;x

n
1 )g. The redundancy rate problem

�This research was supported in part by NSF Grants NCR-9415491 and C-CR-9804760, and contract

1419991431A from sponsors of CERIAS at Purdue.
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consists in determining for a class S of source models the growth rate of

R�
n(S) = min

Cn
max
P2S

fR�
n(Cn; P )g; (1)

Rn(S) = min
Cn

max
P2S

fRn(Cn; P )g: (2)

In this paper, we investigate the average redundancy of arithmetic coding [6] for mem-
oryless sources with unknown parameters. Here, we analyze an idealized arithmetic coding
in which �nite precision and �nite bu�er sizes are not taken into account. Following [16]
we assume that the idealized arithmetic encoding consists of the Krichevsky and Tro�mov
estimator followed by the Shannon{Fano code (however, using our recent results [14] we
could replace the Shannon{Fano code with the Hu�man code at the cost of signi�cant com-
plication of the analysis). Arithmetic coding is one of the most popular entropy encoding
that virtually appears in every multimedia compression scheme (cf. [5]). It has been known
(cf. [16]) that the average redundancy of arithmetic encoding is O(log n) for source strings
of length n, however, to the best of our knowledge no precise estimates are available (cf.
[11] for similar results). Here, we present precise asymptotics for the average redundancy

R
AC
n of arithmetic coding and the Krichevsky and Tro�mov estimator (KT-estimator) [7].

As a consequence, we can estimate the average redundancy R
T
n of codes for tree sources

[16] and the context-tree weighting algorithm CTW proposed by Willems, Shtarkov, and
Tjalkens [16]. The evaluation of redundancy of latter codes is our ultimate goal, but in this
conference version we will not elaborate on these issues.

We now briey summarize our results. For a sequence xn1 generated by a memoryless
source with unknown parameter � (i.e., P (xn1 ) = �k(1 � �)n�k), the average redundancy
of arithmetic coding (that applies Shannon-Fano code on the top of the KT-estimator) is
asymptotically (as n!1) equal to (cf. Theorem 1)

R
AC
n =

1

2
logn� 1

2
log

�e

2
+ 2�En +O(n�1=2);

where En exhibits an \erratic" behavior that depends whether log 1��
� is rational or irra-

tional. A graph of En is shown in Figure 1. Actually, En � 1
2 , however, the exact behavior

is much more complicated (cf. Theorem 2). We observe that the leading term of R
AC
n is

optimal (cf. [10]) while the constant term is not.
As a simple consequence of the above result, one can obtain the average redundancy of

arithmetic coding for tree sources S (see [16] for a de�nition) as follows

R
T
n =

S

2
logn+

1

2

X
1�j�S

log pj � S

2
log

�e

2
+ 2S �E0

n +O(n�1=2);

where S = jSj, pj is the probability of the jth suÆx occurrence, (where the j suÆx belongs
to S), and E0

n is the erratic part of the redundancy (again E0
n � S

2 ).
The erratic behavior of the redundancy seems to be a rule rather than an exception.

We have already observed this in the redundancy of the Lempel-Ziv code and the Tunstall
code (cf. [9, 12]). Actually, one does not need to look too far since the simplest code, that

of Shannon-Fano, exhibits the same kind of behavior. The average redundancy R
SF
n of the

Shannon-Fano code for a known memoryless source (i.e., for P (xn1 ) = �k(1 � �)n�k with
known �) can be computed as

R
SF
n = 1 +

nX
k=0

 
n

k

!
�k(1� �)n�k

�
d� log(�k(1� �)n�k)e+ log(�k(1� �)n�k)

�
:
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Figure 1: The \erratic" part, En, of the average redundancy of the KT estimator versus n
for: (a) irrational � = 1=�; (b) rational � = 1=2.

In [14] Szpankowski proved that R
SF
n for large n behaves as follows

R
SF
n =

8><
>:

3
2 + o(1) � = log(1� �)=� irrational

3
2 � 1

M

�
hMn�i � 1

2

�
+O(�n) � = N

M rational

where � = � log(1� �), the integers M;N are such that gcd(N;M) = 1, and hxi = x� bxc
is the fractional part of x. The same type of behavior is exhibited in the Hu�man code
redundancy as shown in [14].

2 Main Results

In this section we formulate precisely our results focusing here on the average redundancy
of the KT-estimator. Below, we provide only a sketch of the proof delaying details to the
next section.

Let xn1 be a binary sequence of length n generated by a memoryless(�) source with k \1"
and n� k \0", that is, P (xn1 ) = �k(1� �)n�k. It is assumed that � is unknown. Therefore,
to estimate the probability P (xn1 ) we shall use the KT estimator [7, 16] de�ned as

Pe(k; n� k) :=
�(k + 1=2)�(n� k + 1=2)

��(n)
:

To generate an arithmetic encoding, we apply the Shannon-Fano code (cf. [2, 6]) for the
probability distribution Pe(k; n � k). That is, the code length Ln is Ln = d� logPe(k; n �
k)e+ 1. The average redundancy of the arithmetic coding therefore becomes

R
AC
n = 1 +

nX
k=0

 
n

k

!
�k(1� �)n�k

�
d� logPe(k; n� k)e + log �k(1� �)n�k

�
:
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Using d�xe = �x+ 1� h�xi, where hxi is the fractional part of x, we reduce the above to
the following

R
AC
n = 2 +

nX
k=0

 
n

k

!
�k(1� �)n�k log

�k(1� �)n�k

Pe(k; n� k)
�En;

where

En =
nX

k=0

 
n

k

!
�k(1� �)n�kh� logPe(k; n� k)i:

Our main result is formulated next.

Theorem 1 Consider arithmetic coding over memoryless(�) source. Then

R
AC
n =

1

2
log n� 1

2
log

�e

2
+ 2�En +O(n�1=2) (3)

where En behavior depends whether  = log 1��
� is rational or not, that is:

(i) If  = log 1��
� is rational, i.e.  = N

M for some positive integers M;N with gcd(M;N) =
1, then

En =
1

2
+GM

�
� log(1� �)n+

1

2
log

�n

2

�
+ o(1) (4)

as n!1, where

GM (y) :=
1

M

1p
2�

1Z
�1

e�x
2=2

 *
M

 
y � x2

2

!+
� 1

2

!
dx

is a periodic function with period 1
M and maximum max jGM j � 1

2M .

(ii) If  = log 1��
� is irrational, then

En =
1

2
+ o(1) (5)

as n!1.

Sketch of Proof. Here we only sketch how to estimate the main part of R
AC
n delaying the

derivation of En the next section. In the derivation of En, we shall use discrepancy theory
and uniformly distributed sequences modulo 1 (cf. [3, 8, 15]).

Our proof �rst approximates the binomial distribution by its Gauss density, and then
estimates the sum by the Gaussian integral, coupling with large deviations of the binomial
distribution. By Stirling's formula, we have

log
�k(1� �)n�k

Pe(k; n� k)
=

1

2
log n+

1

2
log

�

2
� x2

2
+O((jxj+ jxj3)n�1=2);

for k = �n+ x
p
�(1� �)n and x = o(n1=6). Note that the left-hand side is bounded above

by 1
2 log n+ 1=2 for n � 2 and k 6= 0; n. This follows easily from the identity

�(n+ 1=2) =
(2n)!

p
�

4n n!
(n � 0);
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and the inequalities
p
2�n(n=e)n � n! � e1=12

p
2�n(n=e)n; (n � 1):

On the other hand, by using the local limit theorem 
n

k

!
�k(1� �)n�k =

e�x2=2p
2��(1� �)n

�
1 +O((1 + jxj3)n�1=2)

�
; (6)

uniformly for x = o(n1=6), we deduce that

R
AC
n �En =

1p
2�

Z 1

�1
e�x

2=2

 
1

2
log n+

1

2
log

�

2
� x2

2

!
dx+O(n�1=2);

A straightforward evaluation of the integral leads to (3). The error term can be further
re�ned by expanding more terms in the above, but this will not be used.

Remark: Note that it is an easy exercise to derive the Fourier expansion for GM (y). Its
mean value vanishes. Therefore, also in the rational case, En varies around 1

2 . However,
the essential di�erence between the rational and the irrational case is that in the rational
case En never converges (cf. Figure 1). (If � log(1 � �) is irrational then the sequence
xn = � log(1 � �)n + 1

2 log
�n
2 is uniformly distributed modulo 1, and if � log(1 � �) is

rational then xn is not uniformly distributed modulo 1 but dense in the unit interval.)

3 Derivation of En

Our goal is to estimate

En :=
X

0�k�n
pn(k)h� log Pe(k; n� k)i;

where

pn(k) = pn(k; �) :=

 
n

k

!
�k(1� �)n�k

and

Pe(a; b) :=
�(a+ 1

2)�(b+
1
2 )

��(a; b)
:

The main result, formulated below, is a consequence of applying analytic tools such as
theory of distribution of sequences modulo 1 and Fourier series, as already advocated in
[14]. The interested reader is referred to [3, 8, 15].

Theorem 2 (i) If  = log 1��
� is rational, i.e.  = N

M for some positive integers M;N with

gcd(M;N) = 1, then (4) holds, that is,

En =
1

2
+GM

�
� log(1� �)n+

1

2
log

�n

2

�
+ o(1)

as n!1, where

GM (y) :=
1

M

1p
2�

1Z
�1

e�x
2=2

 *
M

 
y � x2

2

!+
� 1

2

!
dx
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is a periodic function with period 1
M and maximum max jGM j � 1

2M .

(ii) If  = log 1��
� is irrational then

En =
1

2
+ o(1) (7)

as n!1.

We start with the following lemma.

Lemma 1 Set � := �� log � � (1� �) log(1� �). Then if jk � �nj � n7=12 we have

� logPe(k; n� k) = �n+
1

2
log

�n

2
+ (k � �n)� 1

2�(1� �)

(k � �n)2

n
+O

�
n�1=4

�

uniformly as n!1.

Proof. Stirling's approximation formula.

Lemma 2 If jk � �nj � n7=12 we have

pn(k; �) =
1p

2��(1� �)n
exp

 
� (k � �n)2

2�(1� �)n

!
+O(n�3=4)

uniformly as n!1.

Proof. Stirling's approximation formula.

Lemma 3 Suppose that M;N are positive integers with gcd(M;N) = 1. Then for every

real number x we have

1

M

M�1X
v=0

��
x+ v

N

M

�
� 1

2

�
=

1

M

�
hxMi � 1

2

�
:

Proof. First observe that gcd(M;N) = 1 ensures that the numbers
hN : 0 � v � M � 1i represent a complete set of residue classes modulo M . There-
fore, the sum of interest does not change if we replace N by 1. Next, it is clear that the
function of interest

f(x) :=
1

M

M�1X
v=0

��
x+

v

M

�
� 1

2

�

is periodic with period 1
M . Hence, it suÆces to consider f(x) for 0 � x < 1

M . In this range
we can calculate f(x) by

f(x) =
1

M

M�1X
v=0

�
x+

v

M
� 1

2

�
=

�
x� 1

2M

�
:

Finally, since f(x) = f
� hxMi

M

�
and 0 � hxMi

M < 1
M we directly obtain the proposed repre-

sentation for f(x).

Now, we are in the position to prove part (i) of Theorem 2. In a �rst step we
concentrate on k with jk � �nj � n7=12 and subdivide those k into residue classes modulo
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M . Afterwards we use Lemma 1 and 2 to approximate the sum by an Gaussian-like integral.
Finally, we apply Lemma 3 to simplify the resulting integral:

En � 1

2
=

X
jk��nj�n7=12

pn(k)

�
h� logPe(k; n� k)i � 1

2

�
+ o(1)

=
X

jk��nj�n7=12

1p
2��(1� �)n

exp

�
� (k � �n)2

2�(1� �)n

�
��

�n+
1

2
log

�n

2
+

M

N
(k � �n)� 1

2�(1� �)

(k � �n)2

n
+O

�
n�1=4

��
� 1

2

�
+ o(1)

=

M�1X
v=0

X
k�v mod M

1p
2��(1� �)n

exp

�
� (k � �n)2

2�(1� �)n

�
��

(�� �)n+
1

2
log

�n

2
+

M

N
v � 1

2�(1� �)

(k � �n)2

n
+O

�
n�1=4

��
� 1

2

�
+ o(1)

=
M�1X
v=0

X
u2Z

1p
2��(1� �)n

exp

�
� M2u2

2�(1� �)n

�
��

(�� �)n+
1

2
log

�n

2
+

M

N
v � 1

2�(1� �)

M2u2

n
+O

�
n�1=4

��
� 1

2

�
+ o(1)

=
M�1X
v=0

1p
2��(1� �)

Z 1

�1

exp

�
� M2x2

2�(1� �)

�
��

(�� �)n+
1

2
log

�n

2
+

M

N
v � M2

2�(1� �)
x2
�
� 1

2

�
dx+ o(1)

=
1p
2�

Z 1

�1

e�x
2=2 1

M

M�1X
v=0

��
(� � �)n+

1

2
log

�n

2
+

M

N
v � x2

2

�
� 1

2

�
dx+ o(1)

=
1p
2�

Z 1

�1

e�x
2=2 1

M

��
M

�
(�� �)n+

1

2
log

�n

2
� x2

2

��
� 1

2

�
dx+ o(1):

This proves (4).

We now concentrate on proving part (ii) of Theorem 2, that is, (7). We have to
introduce some notation.

De�nition 1 Let (xk)k�1 be a sequence of real numbers. The discrepancy DN (xk) is

de�ned by

DN (xk) := sup
0�y�1

���� jfn � N : hxki 2 [0; y)gj
N

� y

����
and the uniform discrepancy ~DN (xk) by

~DN (xk) := sup
��0

sup
0�y�1

���� jfk � N : hxk+�i 2 [0; y)gj
N

� y

���� :
Furthermore, (xn) is said to be uniformly distributed modulo 1 if limN!1DN (xk) = 0
and (xk) is said to be well distributed modulo 1 if limN!1 ~DN (xk) = 0.

In particular we will apply this concept for the Weyl sequence xk = k.

Lemma 4 Suppose that  is an irrational real number. Then the sequence xk := k is well

distributed modulo 1.
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Proof. Weyl criterion (cf. [3, 15]).

We will also apply two standard tools of the theory of uniformly distributed sequences
(cf. [3]).

Lemma 5 (Koksma inequality) Suppose that f : [0; 1] ! R is of bounded variation

V (f) =
R 1
0 djf j. Then, for all real sequences (xk)����� 1N

NX
k=1

f(hxki)�
Z 1

0
f(t) dt

����� � V (f)DN (xk):

Lemma 6 Suppose that (xk) and (yk) are real sequences. Then

jDN (xk)�DN (yk)j � dist (fx1; : : : ; xNg; fy1; : : : ; yNg) ;
where

dist (fx1; : : : ; xNg; fy1; : : : ; yNg) := min
�2SN

max
1�k�N

jhxk � y�(k)ij;

and SN denotes the set of all permutations � of the numbers f1; 2; : : : ; Ng.
Furthermore we will use the following technical estimate.

Lemma 7 For a real sequence (xk) set ÆN := supN 0�N ~DN 0(xk). Then the discrepancy of

the sequence yk := xk +
k2

M (with M � 1) can be estimated by

DN (yk) � inf
L�1

 
2ÆN=(2L) +

N2

ML

!
:

Proof. For 0 � l < L set

Nl := fk � 1 : lN2 � k2L � (l + 1)N2g
and Nl := jNlj. Obviously, we have N0 � N1 � � � � � NL�1 � N

2L . Since

dist

 (
xk +

l

L

N2

M
: k 2 Nl

)
;

(
xk +

n2

M
: k 2 Nl

)!
� N2

MN

we obtain by Lemma 6�����DNl

 (
xk +

l

L

N2

M
: k 2 Nl

)!
�DNl

 (
xk +

k2

M
: k 2 Nl

)!����� � N2

MN
:

Hence

N DN

 
xk +

k2

M

!
�

L�1X
l=0

NlDNl

 (
xk +

k2

M
: k 2 Nl

)!

�
L�1X
l=0

Nl

 
DNl

 (
xk +

l

L

N2

M
: k 2 Nl

)!
+

N2

MN

!

�
L�1X
l=0

Nl

 
2ÆNl

+
N2

MN

!
� N

 
2ÆNL�1

+
N2

MN

!

proves the lemma.
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Corollary 1 Suppose that (xk) is a well distributed sequence modulo 1. Then there exists

a monotonely decreasing sequence ("N ) with lim
N!1

"N = 0 such that for all N � n7=12

DN

 
xk + c1

k2

n
+O(n�1=4)

!
� "N : (8)

Proof. By choosing L = bpNc in Lemma 7 and by Lemma 6 we have

DN

 
xk + c1

k2

n
+O(n�1=4)

!
� 2ÆbpN=2c +N�3=14 +O(N�3=7)

Thus, we can choose
"N := 2Æb

p
N=2c +N�3=14 + C1N

�3=7

for some constant C1 > 0. By construction we have 0 < "N+1 < "N and lim
N!1

"N = 0.

Now we can complete the proof of Theorem 2. Set

T1(n) :=
X

0�k<b�nc
pn(k)

�
h� logPe(k; n� k)i � 1

2

�

and

T2(n) :=
X

b�nc�k�n
pn(k)

�
h� logPe(k; n� k)i � 1

2

�
:

We show that T2(n) = o(1) as n ! 1. (Of course, in the same fashion it is possible to
prove T1(n) = o(1) which then completes the proof of Theorem 2.)

First of all we note that
P
b�nc+n7=12�k�n pn(k) = o(1) as n ! 1. Thus, it suÆces to

consider the sum

~T2(n) :=
X

b�nc�k�b�nc+n7=12
pn(k)

�
h� logPe(k; n� k)i � 1

2

�
:

We further note that for b�nc < k � b�nc + n7=12 we have pn(k) > pn(k + 1), and that
Lemma 5 (applied to the function f(x) = hx+ Æi � 1

2) and (8) imply that for b�nc � N �
b�nc+ n7=12������

X
b�nc�k�b�nc+N

�
h� logPe(k; n� k)i � 1

2

������� � N DN

 
k + c1

k2

n
+O(n�1=4)

!

� N "N :

Finally, partial summation (cf. [15]) yields

j ~T2(n)j =

������
X

b�nc�k�b�nc+n7=12
pn(k)

�
h� logPe(k; n� k)i � 1

2

�������
� pn(b�n+ n7=12c)bn7=12c"bn7=12c +

X
b�nc�k�b�nc+n7=12

(pn(k)� pn(k + 1))(k � b�nc)"k�b�nc

� "bn1=4c

 
pn(b�n+ n7=12c)bn7=12c+

X
b�nc�k�b�nc+n7=12

(pn(k)� pn(k + 1))(k � b�nc)
!

9



+
X

b�nc�k�b�nc+n1=4
(pn(k)� pn(k + 1))(k � b�nc)

� "bn1=4c
X

b�nc�k�b�nc+n7=12
pn(k) + n1=4pn(b�nc) � "bn1=4c +O(n�1=4) = o(1);

which proves that T2(n) = o(1) as n!1. As already mentioned exactly the same reasoning
works for T1(n), too, and shows that T1(n) = o(1) as n!1.
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