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Abstract

Source coding, also known as data compression, is an area of information theory
that deals with the design and performance evaluation of optimal codes for data com-
pression. In 1952 Hu�man constructed his optimal code that minimizes the average

code length among all pre�x codes for known sources. Actually, Hu�man codes mini-
mizes the average redundancy de�ned as the di�erence between the code length and the
entropy of the source. Interestingly enough, no optimal code is known for other popu-
lar optimization criterion such as the maximal redundancy de�ned as the maximum of
the pointwise redundancy over all source sequences. We �rst prove that a generalized
Shannon code minimizes the maximal redundancy among all pre�x codes, and present
an eÆcient implementation of the optimal code. Then we compute precisely its redun-
dancy for memoryless sources. Finally, we study universal codes for unknown source
distributions. We adopt the minimax approach and search for the best code for the
worst source. We establish that such redundancy is a sum of the likelihood estima-
tor and the redundancy of the generalize code computed for the maximum likelihood
distribution. This replaces Shtarkov's bound by an exact formula. We also compute
precisely the maximal minimax for a class of memoryless sources. The main �ndings
of this paper are established by techniques that belong to the toolkit of the \analytic
analysis of algorithms" such as theory of distribution of sequences modulo 1 and Fourier
series. These methods have already found applications in other problems of information
theory, and they constitute the so called analytic information theory.

1 Introduction

The celebrated Hu�man code minimizes the average code length among all pre�x codes
(i.e., satisfying the Kraft inequality), provided the probability distribution is known. As
a matter of fact, the Hu�man code minimizes the average redundancy that is de�ned as
the di�erence between the code length and the entropy for the source. But other than the
average redundancy optimization criteria were also considered in information theory. The
most popular (cf. Shtarkov [10]) is the maximal redundancy de�ned as the maximum over
all source sequences of the sum of the code length and the logarithm of the probability of
source sequences. A seemingly innocent, and still open, problem is what code minimizes
the maximal redundancy. To make it more precise we need to plunge a little into source
coding, better known as data compression.

�The work of this author was supported by NSF Grant CCR-9804760 and contract 1419991431A from
sponsors of CERIAS at Purdue.
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We start with a quick introduction of the redundancy problem. A code Cn : An ! f0; 1g�
is de�ned as a mapping from the set An of all sequences of length n over the �nite alphabet
A to the set f0; 1g� of all binary sequences. A message of length n with letters indexed
from 1 to n is denoted by xn1 , so that x

n
1 2 An. We write Xn

1 to denote the random variable
representing a message of length n. Given a probabilistic source model, we let P (xn1 ) be
the probability of the message xn1 ; given a code Cn, we let L(Cn; x

n
1 ) be the code length for

xn1 . Information-theoretic quantities are expressed in binary logarithms written lg := log2.
We also write log := ln.

From Shannon's works we know that the entropy Hn(P ) = �Pxn
1

P (xn1 ) lgP (x
n
1 ) is the

absolute lower bound on the expected code length. Hence � lgP (xn1 ) can be viewed as the
\ideal" code length. The next natural question is to ask by how much the code length
L(Cn; x

n
1 ) di�ers from the ideal code length, either for individual sequences or on average.

The pointwise redundancy Rn(Cn; P ;x
n
1 ) and the average redundancy Rn(Cn; P ) are de�ned

as

Rn(Cn; P ;x
n
1 ) = L(Cn; x

n
1 ) + lgP (xn1 );

Rn(Cn; P ) = EP [Rn(Cn; P ;X
n
1 )] = E[L(Cn; X

n
1 )]�Hn(P );

where the underlying probability measure P represents a particular source model and E

denotes the expectation. Another natural measure of code performance is the maximal

redundancy de�ned as

R�
n(Cn; P ) = max

xn
1

[L(Cn; x
n
1 ) + lgP (xn1 )]:

While the pointwise redundancy can be negative, maximal and average redundancies cannot,
by Kraft's inequality and Shannon's source coding theorem, respectively (cf. [2]).

Source coding is an area of information theory that searches for optimal codes under
various optimization criteria. It has been known from the inception of the Hu�man code
(cf. [2]) that its average redundancy is bounded from above by 1, but its precise character-
ization for memoryless sources was proposed only recently in [12]. In [3, 7, 9] conditions for
optimality of the Hu�man code were given for a class of weight function and cost criteria.
Surprisingly enough, to the best of our knowledge, no one was looking at another natural
question: What code minimizes the maximal redundancy? More precisely, we seek a pre�x
code Cn such that

min
Cn

max
xn
1

[L(Cn; x
n
1 ) + lgP (xn1 )]:

We shall prove in this paper, that a generalized Shannon codey is the optimal code in this
case, and propose an eÆcient algorithm to construct such a code. Our algorithm runs in
O(N logN) steps if source probabilities are not sorted and in O(N) steps if the probabilities
are sorted, where N is the number of source sequences. We also compute precisely the
maximal redundancy of the optimal generalized Shannon code. In passing we observe that
Shannon codes, in one form or another, are often used in practice; e.g., in arithmetic coder.

It must be said, however, that in practice probability distribution (i.e., source) P is
unknown. So the next natural question is to �nd optimal codes for sources with unknown
probabilities. In information theory this is handled by the so called minimax redundancy,

yShannon's code assigns length d� lgP (xn1 )e to the source sequence xn1 for known source distribution P .
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that we introduce next. In fact, for unknown probabilities, the redundancy rate can be
also viewed as the penalty paid for estimating the underlying probability measure. More
precisely, universal codes are those for which the redundancy is o(n) for all P 2 S where
S is a class of source models (distributions). The (asymptotic) redundancy-rate problem

consists in determining for a class S the rate of growth of the minimax quantities as n!1
either on average

Rn(S) = min
Cn2C

max
P2S

[Rn(Cn; P )]; (1)

or in the worst case
R�
n(S) = min

Cn2C
max
P2S

[R�
n(Cn; P )]; (2)

where C denotes the set of all codes satisfying the Kraft inequality.
In this paper we deal with the maximal minimax redundancy R�

n(S) de�ned by (2).
Shtarkov [10] proved that

lg

0@X
xn
1

sup
P2S

P (xn1 )

1A � R�
n(S) � lg

0@X
xn
1

sup
P2S

P (xn1 )

1A+ 1: (3)

We replace the inequalities in the above by an exact formula. Namely, we shall prove that

R�
n(S) = lg

0@X
xn
1

sup
P2S

P (xn1 )

1A+RGS(Q�)

where RGS(Q�) is the maximal redundancy of the generalized Shannon code for the (known)
distribution Q�(xn1 ) = supP P (x

n
1 )=

P
xn
1

supP P (x
n
1 ). For a class of memoryless sources we

derive an asymptotic expansion for the maximal minimax redundancy R�
n(S).

2 Main Result

We �rst consider sources with known distribution P and �nd an optimal code that minimizes
the maximal redundancy, that is, we compute

R�
n(P ) = min

Cn2C
max
xn
1

[L(Cn; x
n
1 ) + log2 P (x

n
1 )]: (4)

We recall that Shannon code CS
n assigns length L(CS

n ; x
n
1 ) = d� lgP (xn1 )e to the source

sequence xn1 . We de�ne a generalized Shannon code CGS
n as

L(xn1 ; C
GS
n ) =

(
blg 1=P (xn1 )c if xn1 2 L
dlg 1=P (xn1 )e if xn1 2 An n L

where L � An, and the Kraft inequality holds.
Our �rst main result proves that a generalized Shannon code is an optimal code with

respect to the maximal redundancy.
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Theorem 1 If the probability distribution P is dyadic, i.e. lgP (xn1 ) 2 Z (Z is the set of

integers) for all xn1 2 An, then R�
n(P ) = 0. Otherwise, let p1; p2; : : : ; pjAjn be the probabilities

P (xn1 ), x
n
1 2 An, ordered in a nondecreasing manner, that is,

0 � h� lg p1i � h� lg p2i � � � � � h� lg pjAjni � 1;

where hxi = x� bxc is the fractional part of x. Let now j0 be the maximal j such that

j�1X
i=1

pi2
h� lg pii +

1

2

jAjnX
i=j

pi2
h� lg pii � 1; (5)

that is, the Kraft inequality holds for a generalized Shannon code. Then

R�
n(P ) = 1� h� lg pj0i: (6)

Proof. First we want to recall that we are only considering codes satisfying Kraft's in-
equality X

xn
1

2�L(Cn;xn1 ) � 1:

Especially we will use the fact that for any choice of positive integers l1; l2; : : : ; ljAjn with

jAjnX
i=1

2�li � 1

there exists a (pre�x) code Cn with code lengths li, 1 � i � jAjn.
If P is dyadic then the numbers l(xn1 ) := � lgP (xn1 ) are positive integers satisfyingX

xn
1

2�l(x
n
1
) = 1 � 1:

Thus, Kraft's inequality is satis�ed and consequently there exists a (pre�x) code Cn with
L(Cn; x

n
1 ) = l(xn1 ) = � lgP (xn1 ). Of course, this implies R�

n(P ) = 0.
Now assume that P is not dyadic and let C�

n denote the set of optimal codes, i.e.

C� = fCn 2 C : R�
n(Cn; P ) = R�

n(P )g:

The idea of the proof is to �nd some properties of the optimal code. Especially we will
show that there exists an optimal code C�

n 2 C� with
(i)

b� lgP (xn1 )c � L(C�
n; x

n
1 ) � d� lgP (xn1 )e (7)

(ii) There exists s0 2 [0; 1] such that

L(C�
n; x

n
1 ) = blg 1=P (xn1 )c if hlg 1=P (xn1 )i < s0 (8)

and
L(C�

n; x
n
1 ) = dlg 1=P (xn1 )e if hlg 1=P (xn1 )i � s0; (9)
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that is, C�
n is the generalized Shannon code. Observe that w.l.o.g. we may assume that

s0 = 1�R�
n(P ). Thus, in order to compute R�

n(P ) we just have to consider codes satisfying
(8) and (9). It is clear that (5) is just Kraft's inequality for codes of that kind. The optimal
choice is j = j0 and consequently R�

n(P ) = 1� h� lg pj0i.
It remains to prove the above properties (i) and (ii). Assume that C�

n is an optimal
code. First of all, the upper bound in (7) is obviously satis�ed for C�

n. Otherwise we would
have

max
xn
1

[L(C�
n; x

n
1 ) + log2 P (x

n
1 )] > 1

which contradicts Shtarkov's bound (3). Second, if there exists xn1 such that L(C�
n; x

n
1 ) <

blg 1=P (xn1 )c then (in view of Kraft's inequality) we can modify this code to a code eC�
n with

L( eC�
n; x

n
1 ) = dlg 1=P (xn1 )e if L(C�

n; x
n
1 ) = dlg 1=P (xn1 )e;

L( eC�
n; x

n
1 ) = blg 1=P (xn1 )c if L(C�

n; x
n
1 ) � blg 1=P (xn1 )c:

By construction R�
n(
eC�
n; P ) = R�

n(C
�
n; P ). Thus,

eC�
n is optimal, too. This proves (i).

Now consider an optimal code C�
n satisfying (7) and let xn�1 be a sequence with R�

n(P ) =
1�h� lgP (xn�1 )i. Thus, L(C�

n; x
n
1 ) = blg 1=P (xn1 )c for all xn1 with h� lgP (xn1 )i < h� lgP (xn�1 )i.

This proves (8) with s0 = h� lgP (xn�1 )i. Finally, if (9) is not satis�ed then (in view of Kraft's
inequality) we can modify this code to a code eC�

n with

L( eC�
n; x

n
1 ) = dlg 1=P (xn1 )e if hlg 1=P (xn1 )i � s0;

L( eC�
n; x

n
1 ) = blg 1=P (xn1 )c if hlg 1=P (xn1 )i < s0:

By construction R�
n(
eC�
n; P ) = R�

n(C
�
n; P ). Thus,

eC�
n is optimal, too. This proves (ii).

Thus, we proved that the following generalized Shannon code code is the desired optimal
code and it satis�es

L(CGS
n ; xn1 ) =

(
blg 1=P (xn1 )c if xn1 2 Ls0
dlg 1=P (xn1 )e if xn1 2 An n Ls0 ;

where
Lt := fxn1 2 An : h� lgP (xn1 )i < tg

and s0 = h� lg pj0i is de�ned in (5).
The next question is how to construct eÆciently the optimal generalized Shannon code?

This turns out to be quite simple due to property (ii) (cf. (8) and (9)). The algorithm is
presented below.

Algorithm GS{CODE

Input: Probabilities P (xn1 ).
Output: Optimal generalized Shannon code.
1. Let si = h� lgP (xn1 )i for i = 1; 2; : : : ; N , where N � jAnj.
2. Sort s1; : : : ; sN .
3. Use binary search to �nd the largest j0 such that (5) holds, and set s0 = 1 � sj0 =
1� h� lg pj0i.
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5. Set code length li = b� lg pic for i � j0, otherwise li = d� lg pie.
end

Observe that property (ii) above was crucial to justify the application of the binary
search in Step 3 of the algorithm. Obviously, Step 2 requires O(N logN) operations which
determines the complexity of the algorithm. If probabilities are sorted, then the complexity
is determined by Step 5 and it is equal to O(N), as for the Hu�man code construction (cf.
[8]).

Now, we turn our attention to universal codes for which the probability distribution P
is unknown. We assume that P belongs to a set S (e.g., class of memoryless sources with
unknown parameters). The following result summarizes our next �nding. It transforms the
Shtarkov bound (3) into an equality.

Theorem 2 Suppose that S is a system of probability distributions P on An and set

Q�(xn1 ) :=
supP2S P (x

n
1 )P

yn
1
2An supP2S P (y

n
1 )
:

If the probability distribution Q� is dyadic, i.e. lgQ�(xn1 ) 2 Z for all xn1 2 An, then

R�
n(S) = lg

0@ X
xn
1
2An

sup
P2S

P (xn1 )

1A : (10)

Otherwise, let q1; q2; : : : ; qjAjn be the probabilities Q�(xn1 ), x
n
1 2 An, ordered in such a way

that

0 � h� lg q1i � h� lg q2i � � � � � h� lg qjAjni � 1;

and let j0 be the maximal j such that

j�1X
i=1

qi2
h� lg qii +

1

2

jAjnX
i=j

qi2
h� lg qii � 1: (11)

Then

R�
n(S) = lg

0@ X
xn
1
2An

sup
P2S

P (xn1 )

1A+R�
n(Q

�); (12)

where R�
n(Q

�) = 1�h� lg qj0i is the maximal redundancy of the optimal generalized Shannon

code designed for the distribution Q�.

Proof. By de�nition we have

R�
n(S) = min

Cn2C
sup
P2S

max
xn
1

(L(Cn; x
n
1 ) + lgP (xn1 ))

= min
Cn2C

max
xn
1

 
L(Cn; x

n
1 ) + sup

P2S
lgP (xn1 )

!

= min
Cn2C

max
xn
1

0@L(Cn; x
n
1 ) + lgQ�(xn1 ) + lg

0@ X
yn
1
2An

sup
P2S

P (yn1 )

1A1A
= R�

n(Q
�) + lg

0@ X
yn
1
2An

sup
P2S

P (yn1 )

1A ;
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where R�
n(Q

�) = 1 � h� lg qj0i, and by Theorem 1 it can be interpreted as the maximal
redundancy of the optimal generalized Shannon code designed for the distribution Q�.
Theorem 2 is proved.

3 Memoryless Sources

Let us consider a binary memoryless source with Pp(x
n
1 ) = pk(1 � p)n�k where k is the

number of \0" in xn1 and p is the probability of generating a \0". In the next theorem
we compute the maximal redundancy R�

n(Pp) of the optimal generalized Shannon code
assuming p is known.

Theorem 3 Suppose that lg 1�p
p is irrational. Then as n!1

R�
n(Pp) = � log log 2

log 2
+ o(1) = 0:5287 : : : + o(1):

If lg 1�p
p = N

M is rational and non-zero then as n!1

R�
n(Pp) = �bM lg(M(21=M � 1)) � hMn lg 1=(1 � p)ic+ hMn lg 1=(1 � p)

M
+ o(1):

Finally, if lg 1�p
p = 0 then p = 1

2 and R�
n(P1=2) = 0.

Proof. Set

�p = lg
1� p

p
;

�p = lg
1

1� p
:

Then
� lg(pk(1� p)n�k) = �pk + �pn:

First we assume that �p is irrational. We know from [12] that for every Riemann integrable
function f : [0; 1] ! R we have

lim
n!1

nX
k=0

 
n

k

!
pk(1� p)n�kf(h�pk + �pni) =

Z 1

0
f(x) dx: (13)

Now set fs0(x) = 2x for 0 � x < s0 and fs0(x) = 2x�1 for s0 � x � 1. We obtain

lim
n!1

nX
k=0

 
n

k

!
pk(1� p)n�kfs0(h�k + �ni) = 2s0�1

log 2
:

In particular, for

s0 = 1 +
log log 2

log 2
= 0:4712 : : :

we get
R 1
0 f(x) dx = 1 so that (5) holds. This implies that

lim
n!1

R�
n(Pp) = 1� s0 = 0:5287 : : :
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If �p =
N
M is rational and non-zero then we have (cf. [12] or [13] Chap. 8)

lim
n!1

nX
k=0

 
n

k

!
pk(1� p)n�kf(h�pk + �pni) =

1

M

M�1X
m=0

f

��
mN

M
+ �pn

��
(14)

=
1

M

M�1X
m=0

f

�
m+ hM�pni

M

�
: (15)

Of course, we have to use fs0(x), where s0 is of the form

s0 =
m0 + hM�pni

M
;

and choose maximal m0 such that

1

M

M�1X
m=0

fs0

�
m+ hM�pni

M

�
=

2hM�pni=M

M

 
m0�1X
m=0

2m=M +
M�1X
m=m0

2m=M�1

!

=
2(hM�pni+m0)=M�1

M(21=M � 1)

� 1:

Thus,
m0 =M + bM lg(M(21=M � 1))� hMn lg 1=(1 � p)ic

and consequently

R�
n(Pp) = 1� s0 + o(1)

= 1� m0 + hM�pni
M

+ o(1)

= �bM lg(M(21=M � 1)) � hMn lg 1=(1 � p)ic+ hMn�pi
M

+ o(1):

This completes the proof of the theorem.

The next step is to consider memoryless sources Pp such that p is unknown and say
contained in an interval [a; b], i.e. we restrict Sab to the class of memoryless sources with
p 2 [a; b]. Here, the result reads as follows.

Theorem 4 Let 0 � a < b � 1 be given and let Sa;b = fPp : a � p � bg. Then as n!1

R�
n(Sa;b) =

1

2
lgn+ lg Ca;b � log log 2

log 2
+ o(1); (16)

where

Ca;b =
1p
2�

Z b

a

dxp
x(1� x)

=

r
2

�
(arcsin

p
b� arcsin

p
a):

Proof. First observe that

sup
p2[a;b]

pk(1� p)n�k =

8>><>>:
ak(1� a)n�k for 0 � k < na;�
k
n

�k �
1� k

n

�n�k
for na � k � nb;

bk(1� b)n�k for nb < k � n.
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By Theorem 2 we must evaluate Tn =
P

xn
1

supP2Sab P (x
n
1 ), which becomes

Tn :=
X
k<na

 
n

k

!
ak(1� a)n�k +

X
na�k�nb

 
n

k

!�
k

n

�k �
1� k

n

�n�k
+
X
k>nb

 
n

k

!
bk(1� b)n�k:

It is easy to show that

X
k<na

 
n

k

!
ak(1� a)n�k =

1

2
+O(n�1=2)

and X
k>nb

 
n

k

!
bk(1� b)n�k =

1

2
+O(n�1=2):

Furthermore, we have (uniformly for an � k � bn) 
n

k

!�
k

n

�k �
1� k

n

�n�k
=

1p
2�

s
n

k(n� k)
+O(n�3=2):

Consequently

X
na�k�nb

 
n

k

!�
k

n

�k �
1� k

n

�n�k
=

r
n

2�

Z b

a

dxp
x(1� x)

+O(n�1=2)

= 2

r
n

2�
(arcsin

p
b� arcsin

p
a) +O(n�1=2)

which gives
Tn = Ca;b

p
n+ 1 +O(n�1=2)

and

lg Tn =
1

2
lg n+ lgCa;b +O(n�1=2):

To complete the proof we must evaluate the redundancy R�
n(Q

�) of the optimal general-
ized Shannon code designed for the maximum likelihood distribution Q�. We proceed as in
the proof of Theorem 3, and de�ne a function fs0 = 2x for x � s0 and otherwise fs0 = 2x�1.
In short, fs0(x) = 2�hs0�xi+s0 (now considered as a periodic function with period 1). The
problem is to evaluate the sum (cf. (11))

nX
k=0

 
n

k

! sup
p2[a;b]

pk(1� p)n�k

Tn
fs0

 
� lg

 
sup
p2[a;b]

pk(1� p)n�k
!
+ lg Tn

!

=
1

Tn

X
k<an

 
n

k

!
ak(1� a)n�kfs0(� lg(ak(1� a)n�k) + lg Tn)

+
1

Tn

X
an�k�bn

 
n

k

!�
k

n

�k �
1� k

n

�n�k
fs0

 
� lg

 �
k

n

�k �
1� k

n

�n�k!
+ lg Tn

!

+
1

Tn

X
k>bn

 
n

k

!
bk(1� b)n�kfs0(� lg(bk(1� b)n�k) + lg Tn)

= S1 + S2 + S3:
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Obviously, the �rst and third sum can be estimated by

S1 = O(n�1=2) and S3 = O(n�1=2):

Thus, is remains to consider S2.
We will use the property that for every (Riemann integrable) function f : [0; 1] ! C

and for every sequence xn;k, an � k � bn, of the kind

xn;k = k lg k + (n� k) lg(n� k) + cn;

where cn is an arbitrary sequence, we have

lim
n!1

1

Tn

X
an�k�bn

 
n

k

!�
k

n

�k �
1� k

n

�n�k
f(hxn;ki) =

Z 1

0
f(x) dx: (17)

Note that we are now in a similar situation as in the proof of Theorem 3. We apply (17)
with fs0(x) for s0 = � log log 2= log 2, and (16) follows.

For the proof of (17), we verify the Weyl criteria (cf. [4, 13]), that is, we �rst consider
the following exponential sums

S :=
X

an�k�cn

e(h(k lg k + (n� k) lg(n� k));

where e(x) = e2�ix, c 2 [a; b], and h is an arbitrary non-zero integer. By Van-der-Corput's
method (see [6, p. 31]) we know that

jSj � jF 0(cn)� F 0(an)j+ 1p
�

;

where � = min
an�y�cn

jF 00(y)j > 0 and

F (y) = h(y lg y + (n� y) lg(n� y)):

Since jF 0(y)j � h log n, and jF 00(y)j � h=n (uniformly for an � y � cn) we conclude

jSj � logn
p
hn

and consequently ������
X

an�k�cn

e(hxnk)

������� log n
p
hn:

Note that all these estimates are uniform for c 2 [a; b]. Next we consider exponential sums

eS :=
X

an�k�bn

an;ke(hxnk);

where

an;k =

 
n

k

!�
k

n

�k �
1� k

n

�n�k
:
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By elementary calculations we get (uniformly for an � k � bn) an;k � n�1=2 and

jan;k+1 � an;kj � n�3=2:

Thus, by Abel's partial summation (cf. [13])

j eSj � an;bn

������
X

an�k�bn

e(hxn;k)

������
+

X
an�k<bn

jan;k+1 � an;kj
������
X

an�`�k

e(hxn;`)

������
� n�1=2 logn

p
hn+ nn�3=2 logn

p
hn

�
p
h log n:

This means that for every non-zero integer h we have

lim
n!1

1

Tn

X
an�k�bn

an;ke(hxn;k) = 0: (18)

Consequently, by standard tools in Fourier analysis (18) implies (for every Riemann inte-
grable function f : [0; 1] ! C)

lim
n!1

1

Tn

X
an�k�bn

an;kf(hxn;ki) = A0(f);

where A0 is the zero-th Fourier coeÆcient

A0 =

Z 1

0
f(x) dx:

This means that we have proved (17).

Remark 1. We can derive a full asymptotic expansion for the maximal minimax redun-
dancy R�

n(S) for memoryless sources. Indeed, for a change consider an m{ary alphabet A
(m � 2). Following the footsteps of the above derivation, and using the approach from [11]
for p 2 (0; 1), we arrive at

R�
n(S) =

m� 1

2
log

�
n

2

�
� ln 1

m�1 lnm

lnm
+ log

 p
�

�(m2 )

!
+

�(m2 )m

3�(m2 � 1
2)
�
p
2p
n

+

 
3 +m(m� 2)(2m + 1)

36
� �2(m2 )m

2

9�2(m2 � 1
2 )

!
� 1
n
+O

�
1

n3=2

�
for large n. To the best of our knowledge, the above formula is the �rst asymptotic ex-
pansion with the correct constant term (i.e., containing the term R�

n(Q
�)). This is of some

importance since some authors (cf. [14]) propose to design optimal codes that optimize the
constant term.

Remark 2. Parker [9] (cf. also [3, 7]) investigated other than average cost functions
but such for which the Hu�man construction still produces optimal code. For example,

11



Campbell [3] shown that Hu�man's code is optimal if the average code length is replaced
by

W (r) =
1

r
logm

0@X
xn
1

P (xn1 )m
rL(xn

1
)

1A
where m = jAj, r > 0 is any positive number, and L(xn1 ) is the code length. Observe that
limr!0W (r) = E[L(Cn;X

n
1 )], while limr!1W (r) = maxxn

1
L(Cn; x

n
1 ) (= dlogmNe). In this

paper, we proved that when the maxxn
1
L(Cn; x

n
1 ) is replaced by the maximal redundancy

R�
n = maxxn

1
[L(Cn; x

n
1 ) + logP (xn1 )], then the Hu�man code is not any more optimal. In

general, let us de�ne the r-th redundancy Rr
n (r > 0) as

Rr
n =

0@X
xn
1

P (xn1 ) [L(Cn; x
n
1 ) + logP (xn1 )]

r

1A1=r

:

Observe that the average redundancy is Rn = R1
n, while the maximal redundancy is R�

n =
R1
n . The open question is what code minimizes the r-th redundancy Rr

n?
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