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Abstract

We consider a universal predictor based on pattern matching: Given a sequence
X1; : : : ; Xn drawn from a stationary mixing source, it predicts the next symbol Xn+1

based on selecting a context of Xn+1. The predictor, called the Sampled Pattern Match-

ing (SPM), is a modi�cation of the Ehrenfeucht{Mycielski pseudo random generator
algorithm. It predicts the value of the most frequent symbol appearing at the so called
sampled positions. These positions follow the occurrences of a fraction of the longest
suÆx of the original sequence that has another copy inside X1X2 : : :Xn. In other words,
in SPM the context selection consists of taking certain fraction of the longest match.
The study of the longest match for lossless data compression was initiated by Wyner
and Ziv in their 1989 seminal paper. Here, we estimate the redundancy of the SPM
universal predictor, that is, we prove that the probability the SPM predictor makes
worse decisions than the optimal predictor is O(n��) for some 0 < � < 1

2
as n ! 1.

As a matter of fact, we show that we can predict K = O(1) symbols with the same
probability of error.

Index Terms: Optimal predictor, universal predictor, context selection, sequential deci-
sion, universal source coding, redundancy of universal predictors, pattern matching, suÆx
trees.
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Science : Algorithms, Trees, Combinatorics and Probabilities, University of Versailles-St Quentin, 2000.
yThe work of this author was supported by the NSF Grant C-CR-9804760, and contract 1419991431A
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1 Introduction

Prediction is important in communication, control, forecasting, investment, molecular biol-

ogy, security, and other areas. We understand how to do optimal prediction when the data

model is known, but there is a need for designing universal prediction algorithms that will

perform well no matter what the underlying probabilistic model is. Universal prediction

was subject of extensive research over the last 50 years; it dates back to Shannon [23]. We

mention here only a few references: [1, 2, 5, 8, 16, 17, 18, 20, 22]. In this paper we propose

a universal predictor based on pattern matching which is a modi�cation of an algorithm

proposed by Ehrenfeucht and Mycielski [7] for generating a pseudo random sequence. It

could also be viewed as a context selection rule for sequential decision [29], and one can see

some resembles to the PPM data compression algorithm [4]. The heart of our scheme is an

algorithm that �nds the longest suÆx of a sequence whose copy is located somewhere inside

the sequence. Such a longest match was studied by Wyner and Ziv [30] (cf. also [25]) in

the context of lossless compression.

Before we describe in details our algorithm, we �rst briey discuss the general prediction

problem (cf. [1, 2, 12, 17]). Let x1; x2; : : : ; xn over some �nite alphabet A be given to an

observer who tries to predict the next outcome xn+1, or more generally, makes a decision

bn+1 based on the observed data. We consider only nonanticipatory predictors whose deci-

sions depend on x1; : : : ; xn but not on the future outcomes. Once the real outcome xn+1 is

revealed, the observer incurs the loss l(bn+1; xn+1). The objective of the optimal decision is

to minimize this loss function. Throughout the paper, we assume that bn+1 = x̂n+1 (thus

we predict xn+1) and the loss function is the Hamming distance between x̂n+1 and xn+1.

The predictor can either be deterministic or random. For deterministic predictors there

is a function fn such that

x̂n+1 = fn+1(x1; : : : ; xn):

For random predictors, one de�nes a conditional probability distribution, say q(�jx1; : : : ; xn),

and sets

PrfX̂n+1 = x̂n+1jX1 = x1; : : : ;Xn = xng = q(x̂n+1jx1; : : : ; xn);

where X1; : : : ;Xn denote random variables. Finally, we can analyze prediction either in the

probabilistic setting or the deterministic setting. In the probabilistic setting the sequence

X1;X2; : : : is generated by a random source with the underlying probability measure P

(usually unknown to us) while in the deterministic setting we consider individual sequences.

In this paper, we consider deterministic predictors in a probabilistic setting with the

Hamming distance as the loss function. More precisely, we assume that X1;X2; : : : is drawn
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from a stationary mixing source, and X̂n+1 is computed deterministically from the already

observed data (i.e., context). In short, the value of X̂n+1 is decided by a majority rule of

symbols observed at sampled positions that are determined by a pattern matching algo-

rithm described in details below. We shall coin the term Sampled Pattern Matching (SPM)

predictor for such a scheme.

First, we must understand what is the optimal predictor for known source distributions.

It is not diÆcult to prove that for stationary ergodic sources the optimal predictor X�
n+1 is

given by (cf. [2])

X�
n+1 := argmax

a2A
PrfXn+1 = ajX1 = x1; : : : ;Xn = xng (1)

for all n. The so called predictability ��n, that is, the average prediction error (in the case

of the Hamming distance it is simply the the probability of error PrfX�
n+1 6= Xn+1g) is

de�ned as

��n := PrfX�
n+1 6= Xn+1g =

X
x1;:::;xn

P (x1; : : : ; xn)min
a2A

[PrfXn+1 6= ajx1; : : : ; xng] ; (2)

where, throughout this paper, we shall write P (x1; : : : ; xn) := PrfX1 = x1; : : : ;Xn = xng.

We illustrate these de�nitions on memoryless and Markov sources.

Example 1: Memoryless and Markov Binary Sources (cf. [16])

1. Memoryless Source. Let � = PrfXn = 1g. Then

X�
n+1 = 1

�
� �

1

2

�
;

��n = min[�; 1� �];

where 1(A) = 1 if A occurs, and zero otherwise.

2. Markov Source. Assume for simplicity that Xn is the �rst order Markov chain. De�ne

�i = PrfXn+1 = 1jXn = ig where i 2 f0; 1g. Then

X�
n+1 = 1

�
�i �

1

2

�
; i 2 f0; 1g;

��n = PrfXn = 0gmin[�0; 1� �0] + PrfXn = 1gmin[�1; 1� �1]

for all n. Clearly, �� = limn!1 ��n exists for irreducible and aperiodic Markov chains.

We now consider universal predictors for a class of sourcesM for which the distribution

of the underlying process is not known a priori and must be learned from experience. We

study here the class M of stationary mixing sources that we de�ne more precisely in the
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next section. In this case, the predictability �̂n(M) of the predictor X̂n+1 is de�ned as the

average prediction error, that is,

�̂n(M) = lim sup
n!1

1

n

nX
i=1

PrfX̂i 6= Xig:

As in source coding, the primary goal of universal prediction is to �nd predictors that

minimize (asymptotically) the predictability �̂n(M) (i.e., they match asymptotically the

optimal predictability ��n). However, among such predictors one looks for those that mini-

mize the redundancy, rn, de�ned as the di�erence between the average prediction error and

the optimal prediction error presented in (2), that is,

rn := �̂n(M) � ��n(M): (3)

Observe, however, that to estimate asymptotically the redundancy it suÆces to bound the

di�erence

PrfX̂n+1 6= Xn+1g � PrfX�
n+1 6= Xn+1g

for n!1. But

PrfX̂n+1 6= Xn+1g � PrfX�
n+1 6= Xn+1g � PrfX�

n+1 6= X̂n+1g: (4)

Thus one can estimate the right-hand side of (4) hoping that the bound is tight enough.

This is true for almost all cases (but not all) as illustrated in the next example.

Example 2: Unbiased versus Biased Binary Memoryless Sources

Let us consider an unbiased binary memoryless source with both symbols generated

with equal probability. By eXn we denote a very naive estimator that ips an unbiased

coin to make decisions whether to predict 0 or 1. We prove that this estimator is optimal.

Indeed, for a = f0; 1g by (1) we have PrfX�
n+1 = ag = 0:5, as well as Prf eXn+1 = ag = 0:5.

Moreover,

PrfX�
n+1 6= Xn+1g =

1

2
and Prf eXn+1 6= Xn+1g =

1

2
;

thus Prf eXn+1 6= Xn+1g � PrfX�
n+1 6= Xn+1g = 0 and eXn is an optimal estimator. But the

right-hand side of (4) is equal to

PrfX�
n+1 6=

eXn+1g =
1

2
:

The bound proposed in (4) is not tight in this case and should not be used (cf. also [8]).

Let us now consider a biased binary source with p denoting the probability of generating

0 and q := 1� p, where p > q. Clearly, the predictor eXn suggested above is not good since

PrfX�
n+1 6= Xn+1g = q and Prf eXn+1 6= Xn+1g = 2pq > q:
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We now construct another predictor that makes decisions based on counting the number

N0(n) of 0's and the number N1(n) of 1's in the sequence X1; : : : ; Xn. The predictor X̂n+1

outputs 0 if N0(n) � N1(n), and predicts 1 if N0(n) < N1(n). (We should treat the

case N0(n) = N1(n) separately, but for our illustrative purpose it is not that important.)

Observe that again PrfX�
n+1 6= Xn+1g = q but this time (cf. Lemma 8 of Section 3) for

some � > 0

PrfX̂n+1 6= Xn+1g = PrfN0(n) < N1(n)gp+PrfN0(n) � N1(n)gq

= pO(e��n) + q(1�O(e��n)) = q +O(e��n):

We also have

PrfX�
n+1 6= X̂n+1g = PrfX̂n+1 = 1g = PrfN1(n) > N0(n)g = O(e��n);

therefore, we conclude that the right-hand side of (4) is tight.

In this paper, we propose a universal predictor based on pattern matching that we

propose to call the Sampled Pattern Matching (SPM). The basic idea of our predictor

was already anticipated by Ehrenfeucht and Mycielski [7] (cf. also [12]). The algorithm

described in [7] is as follows: For a given x1; : : : ; xn, let Dn := n � ` + 1 be the maximal

suÆx x`; x`+1; : : : ; xn that occurs earlier in the sequence x1; : : : ; xn, that is, the smallest

` such that x`; : : : ; xn = x`�i; : : : ; xn�i for some 1 � i � n. To construct a predictor,

Ehrenfeucht and Mycielski took the smallest i (the most recent occurrence), say I, for

which the longest match is found, and set xn+1 = xn�I+1. It was conjectured in [7, 12] that

this is a universal predictor. However, Jacquet [10] (cf. also [18]) proved that the above

algorithm is a good density estimator but not a universal predictor. More precisely, Jacquet

proved that for memoryless sources PrfXn+1 = ag = PrfXn�I+1 = ag for all a 2 A.

To build a universal predictor based on the Ehrenfeucht and Mycielski idea, we consider

a fractional maximal suÆx, say of length d�Dne for 0 < � < 1. We shall show that such a

shorter matches occur O(n1��) times with high probability (in short: whp) in X1; : : : ; Xn

generated by a stationary mixing source. We �nd all occurrences of such shorter matches,

called further markers, in X1; : : : ;Xn and then apply the majority rule to all symbols that

occur just after the markers (i.e., we select the most likely symbol of the sampled sequence).

We shall prove that such a predictor is asymptotically optimal for mixing sources and its

redundancy is O(n��) for some 0 < � < 1
2 (cf. Theorem 1).

As we mentioned above, there is a large body of literature on prediction (cf. [1, 2, 5, 8,

16, 17, 18, 20, 22]), however, most are either restricted to individual sequences or Markovian
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models. In particular, in [16] Merhav, Feder, and Gutman proved that a standard majority

predictor (as described in the second part of Example 2) is asymptotically optimal for

Markov chains of known order with the redundancy O(1=n). A more general sources were

considered by Weinberger, Rissanen and Feder [29] who proved that for the so called tree

sources (of �nite memory) the majority rule predictor is asymptotically optimal with the

redundancy bounded from the above by
P

s2S Cs=n = O(1=n) where s is the set of context

and Cs a constant. In [29] the authors select a context over its parent only if it yields a

shorter code length for the past occurrences of symbols in that context. Our SPM predictor

is asymptotically optimal for mixing sources that includes Markov sources of unknown

order as well as tree sources. However, redundancy of such a predictor is O(n��) for some

0 < � < 1
2 .
1 Also, the SPM predictor seems to have an algorithmic edge since we can

provide an eÆcient implementation based on suÆx trees (see Section 2.1).

In passing we mention that the SPM predictor somewhat resembles the PPM (Prediction

by Pattern Matching) data compression algorithm of Cleary and Witten [4]. In fact, our

context selection rule can be used for a data compression scheme. In PPM the \decision

rule" depends on the number of times a (long) match occurs in the text. To be more

precise, let the longest suÆx that occurs at least twice be of the length 1=h(log n � `(n))

where `(n) = O(log n) and h is the entropy rate of the source. It is not diÆcult to prove

(see Lemma 4) that such a suÆx occurs O(2`(n)) times in the original string of length n. For

the Lempel-Ziv scheme we have `(n) = O(1) and therefore the longest suÆx appears O(1)

times, while in our SPM algorithm we set `(n) = (1 � �) log n, and then the �{fractional

match occurs O(n1��) times. In PPM `(n) seems to be o(log n).

The paper is organized as follows. In the next section we describe the Sampled Pattern

Matching predictor, and argue its asymptotic optimality for a class of mixing sources (cf.

Theorem 1). The proof of the main result is delayed till the last section. In passing we

should mention that we did apply SPM to the prediction of molecular sequences showing

its suitability to proteins and DNA predictions (cf. [11]).

2 Main Results

We start this section with a precise description of the Sampled Pattern Matching (SPM)

predictor, and show how to implement it eÆciently using suÆx trees. Then we formulate

our main theoretical results.

1It is an interesting open problem to determine the best possible redundancy for mixing sources.
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2.1 Sampled Pattern Matching Predictor

It is assumed that a sequence xn1 := x1; : : : ; xn is given. Each symbol xi belongs to a �nite

alphabet A of size V := jAj. For a �xed integer K � 1, the algorithm will predict the next

K symbols,2 that is, (x̂n+1; : : : ; x̂n+K). However, throughout the paper we carry out the

analysis of the algorithm only for K = 1.

Let us �x 0 < � < 1. The SPM prediction algorithm works as follows:

1. Find the largest suÆx of xn1 whose copy appears somewhere in the string xn1 . We call

this suÆx the maximal suÆx and denote its length by Dn. More precisely, Dn := l

where l is the largest integer such that

(xn�l+1; : : : ; xn) = (xn�i�l+1; : : : ; xn�i)

for some 1 � i � n.

2. Take an � fraction of the maximal suÆx of length kn := d�Dne, that is, the suÆx

xn�kn+1; : : : ; xn. Such a fractional suÆx occurs more than twice in the original string.

Let Ln � 2 be the actual number of times xn�kn+1; : : : ; xn appears in the string xn1 .

Each such a occurrence de�nes a marker (substring), and the K positions after a

marker will be called the marked positions. Finally, by a sampled sequence we

mean the sequence composed of all symbols from the K-tuple marked positions. We

shall use these notations throughout the paper.

3. Let now N(x1; : : : ; xK) be the number of non-overlapping K-tuple (x1; : : : ; xK) oc-

currences in the sampled sequence. The SPM predictor assigns

(x̂n+1; : : : ; x̂n+K) = argmaxN(x1; : : : ; xK) (5)

with a tie broken in an arbitrary manner (e.g., by a random selection). In words,

(x̂n+1; : : : ; x̂n+K) is assigned to the most frequent K-tuple occurring in the sampled

sequence.

We illustrate the SPM algorithm in the following example.

Example 3. SPM Predictor for K = 1

Below is presented a text with the largest suÆx and its copy framed (de�ned in Step 1

of the algorithm):
2In some applications (e.g., molecular biology) one may need to predict simultaneously more than one

symbol.
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10,b$

7,bbab$

2,bbaba

3,baba

8,bab$

1,abbaba

4,aba

6,abbab$

9,ab$

$ b a

*

*

*
longest suffix

*

5,babb

Figure 1: The suÆx tree of abbababbab$ with its longest suÆx and markers shown (denoted

by asterisks).

sljzggdl ygsjsljz kgssljzidsljzjgz ygsjsljz

In fact, D40 = 8. Let � = 0:5. Then the fractional suÆx sljz is used to �nd all markers.

They are shown below:

sljz ggdlygsj sljz kgs sljz kljzjgzygsj sljz

The sampled sequence is gkk, thus the SPM predicts x̂41 = K.

The next question is how to compute eÆciently the longest suÆx, markers, and the

predicted symbol x̂n+1. We propose to use the suÆx tree construction (cf. [9, 26]). The

suÆx tree of x1; : : : ; xn is a trie (i.e., a digital tree) built from all suÆxes of x1; : : : ; xn$

where $ is a special symbol that does not belong to the alphabet A. External nodes of such

a suÆx tree contain information about the the suÆx positions in the original string and the

substring itself that leads to this node (cf. Figure 1). In addition, we keep pointers to those

external nodes that contain suÆxes ending with the special symbol $ (since one of them

will be the longest suÆx that we are looking for; in the fact the one with the longest path).

Figure 1 shows the suÆx tree constructed for x101 $ = abbababbab$. The external nodes

containing suÆxes ending with $ are denoted by ovals. Observe that in Figure 1 the node

containing (6; abbab) leads to the longest suÆx x106 = abbab of length D10 = 5 occurring

also at x51 = abbab. It is very easy to �nd all markers once the suÆx tree is built. Indeed,
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they are located in the subtree that can be reached following the last d�Dne symbols of the

longest suÆx. In Figure 1 for � = 0:5 we chosen the fractional suÆx to be ab which occurs

at position 1; 6; 4 and 9 as can be read directly from the subtree reached by following the

path ab (see the nodes denoted by an asterisk). Reading the most frequent symbol (say for

K = 1) is also simple: We only need to consider strings contained in these nodes (marked

by asterisks in Figure 1).

It is well known that a suÆx tree of xn1 can be built in O(n) in the worst case (cf. [9]).

This algorithm, due to Weiner (cf. [9]), is quite complicated. One may want to use a simple

brute-force algorithm that runs on average in O(n log n) (cf. [25]). Moreover, it is easy to

update the suÆx tree when the new symbol xn+1 is added. The only nodes that we must

look at are the ones with $ to which we keep pointers. In the worst case, we need to inspect

O(n) nodes, but on average only O(n1��) (cf. Lemma 4). This is another advantage over

the majority predictor proposed in [16].

2.2 Average Redundancy of the SPM

The prime goal of this work is to derive the redundancy of the SPM algorithm for a class

of mixing models M that we describe next (cf. [3, 24]):

(MX) (Strongly)  -Mixing Source

Let F
n
m be a �-�eld generated by Xn

k=m for m � n. The source is called mixing, if

there exists a bounded function  (g) such that for all m; g � 1 and any two events

A 2 F
m
1 and B 2 F

1
m+g the following holds

(1�  (g))PrfAgPrfBg � PrfABg � (1 +  (g))PrfAgPrfBg: (6)

If, in addition, limg!1  (g) = 0, then the source is called strongly mixing. Hereafter,

we consider only strongly  -mixing sources and we shall call them mixing sources.

It is known that memoryless sources are mixing with  (g) = 0, and Markov sources over

a �nite alphabet are strongly mixing with  (g) = O(�g) for some � < 1 (cf. [3, 26]).

Our main result is summarized next. It asserts that the SPM predictor is asymptotically

optimal and its average redundancy is O(n��) for some � > 0. We recall the optimal

predictability (i.e., the average prediction error) ��n(M) is computed for the best predictor

for known source statistics. In our setting the optimal predictor is de�ned as

(X�
n+1; : : : ;X

�
n+K) := arg max

(a1;:::;aK)2AK
PrfXn+1 = a1; : : : ;Xn+K = aK jx1; : : : ; xng
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for all (x1; : : : ; xn) 2 An. The proof of the main result for K = 1 is presented in the next

section.

Theorem 1 Let � > 1
2 and K be �xed. Consider the Sampled Pattern Matching algorithm

that predicts the next K outcomes of a sequence X1; : : : ;Xn drawn from a  -mixing source

M. Then there exists 0 < � < 1
2 such that for n!1

rn = �̂n(M)� ��n(M) = O(n��) (7)

provided the  mixing coeÆcient satis�es

lim
n!1

n1�� (n") = 0 (8)

for any arbitrary small " > 0.

Remark. The restriction � > 1
2 is necessary to assure that the crucial marker separation

property (cf. next section) holds. This property says that whp two markers are not too

close to each others. The SPM may still work for � < 1
2 but then its average redundancy

will decay to zero in a slower pace. However, the proof presented in the next section does

not cover such an extension.

3 Proof of the Main Result

We shall prove Theorem 1 using a combination of probabilistic and combinatorial methods.

The reader is referred to the recent book [26] for in-depth discussion of these tools. We

start with some de�nitions following by a series of technical lemmas that will lead us to the

main result.

In the sequel, we shall need R�enyi's entropy, rate of convergence to Shannon entropy,

the Asymptotic Equipartition Property (AEP), and the Azuma inequality that we briey

review below (cf. [6, 15, 26]).

For �1 � b � 1, the bth order R�enyi entropy is de�ned as

hb = lim
n!1

� logE[P b(Xn
1 )]

bn
= lim

n!1

� log
�P

w2An P b+1(w)
�1=b

n
; (9)

provided the above limit exists. In the above, we write P (w) = PrfXn
1 = wg for w 2 An. It

is known (e.g., see [24, 26]) that for mixing processes the R�enyi entropies exist. Observe that

Shannon entropy h = limb!0 hb. Moreover, by the Shannon-McMillan-Breiman theorem the

convergence to Shannon entropy is also in the almost sure sense. Then the AEP states: For
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a stationary and ergodic sequence Xn
1 , for given " > 0 the state space An can be partitioned

into two subsets, B"n (\bad set") and G"n (\good set"), such that there is N" so that for

n � N" we have

2�nh(1+") � P (xn1 ) � 2�nh(1�") for xn1 2 G
"
n; (10)

lim
n!1

P (B"n) = 0: (11)

In general, there is no universal rate of convergence to the entropy h, however, for

sources satisfying the so called Blowing-up Property Marton and Shields [14] proved that

the convergence rate in the AEP is exponential, that is, P (B"n) converges exponentially fast

to zero for such processes. In particular, Shields [24] showed that for mixing processes there

exists ! > 0 such that

P (B"n) = O(2�!n) (12)

for large n.

3.1 A Road-map to the Proof

Before we proceed with a formal proof we present here a \guided tour" through the main

thrust of our approach. As mentioned before, we only consider the case K = 1. In order to

establish a bound for the prediction redundancy, we shall show that (4), that is,

PrfX̂n+1 6= Xn+1g � PrfX�
n+1 6= Xn+1g � PrfX�

n+1 6= X̂n+1g

is small for n!1. As pointed out in Example 2, the right-hand side of the above might not

be tight for some cases (e.g., when probabilities of generating symbols are indistinguishable),

and we must handle them separately. However, the core of the proof is common to both

cases.

The main theorem will follow from the fact that the sampled sequence is mixing. In

Lemma 7 we establish this fact which we call the mixing property.

Property 1 (Mixing of the sampled sequence) The sampled sequence is mixing with

probability P (Xn+1jX
n
1 ) provided (8) holds for n!1.

Knowing this, it is easy to prove our main result. Indeed, the majority rule for an (al-

most) i.i.d. sampled sequence suggests to predict symbol a 2 A such that argmaxafP (Xn+1 =

ajXn
1 )g provided that the number of markers tends to in�nity. This result is qualitatively

equivalent to the main theorem. Details can be found in the forthcoming subsections.

The mixing property of the sampled sequence is a consequence of two crucial properties,

namely:
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� the marker separation property;

� the marker stability property.

The marker separation property is formulated next. It is used in establishing the mixing

property. We will prove this property in Lemma 3 where the condition � > 1=2 is required.

Property 2 (Marker separation property) There exists " > 0 such that for � > 1
2

with high probability two consecutive markers in the string Xn
1 cannot be closer than n" as

n!1.

The separation property together with the mixing condition of the original sequence

show that a pair of consecutive markers tend to be independent as n ! 1. This should

lead to the proof of the mixing property of the sampled sequence, however, we must �rst

take care of another detail. Observe that a modi�cation of one part of the string may

change the positions of the markers in other parts of the string. Fortunately, this happens

very rarely as the next marker stability property asserts.

Property 3 (Marker stability property) There exists " > 0 such that with high prob-

ability there exists no modi�cation of any of the dn"e symbols after a marker that changes

string Xn
1 into a new string ~Xn

1 with di�erent marker positions.

In the next subsections we prove in sequel the marker separation property, the marker

stability property, and the mixing property of the sampled sequence. Finally, in Section 3.5

we complete the proof of Theorem 1.

3.2 Marker Separation Property

We establish here the marker separation property. We �rst show in Lemma 1 that the largest

suÆx Dn is of length
1
h logn whp (with high probability). This will lead to Lemma 3 which

is a formal statement of the separation property. In addition, we show in Lemma 4 that

whp the number of markers is n1�� which is also required for the proof of the main result,

as discussed above.

Lemma 1 For a string Xn
1 generated by a mixing source, let Dn be the length of largest

suÆx of Xn
1 that has a copy inside Xn

1 , that is,

Dn = maxfl : 91�i�n�l+1 Xn
n�l+1 = Xi+l�1

i g:

12



For any " > 0

Pr

�
(1� ")

log n

h
< Dn < (1 + ")

log n

h

�
= 1�O

�
logn

n"

�
provided the  -mixing coeÆcient satis�es (8) of Theorem 1.

Proof. This was basically proved in [13, 25, 28] (cf. also [30]) using the �rst and the second

moment methods (cf. [26]). We provide here only a sketch of the proof. Let w 2 G
"=2
k .

Then for k = (1 + ")h�1 logn

PrfDn � kg �
n�kX
i=1

X
w2G

"=2
k

PrfXi+k�1
i = Xn

n�k+1 = wg+ P (B"k)

�
n�kX
i=1

(1 +  (n� 2k � i+ 2))2�kh(1�"=2) + P (B"k)

� O(maxfn�"=2; P (B"log n)g)

for any " > 0. By (12) the upper bound is established.

The lower bound is more intricate, but follows the standard approach of \loosing up"

the dependency by deleting n"=4 letters after ever symbol of Xn
1 . The derivation from [13]

lead us to for k = (1� ")h�1 log n

PrfDn < kg � 2 (n"=4) +O(logn=n"=4):

This completes the proof since  (n"=4) = O(n�") under (8).

Remark. We should point out that (8) is not necessary for Lemma 1 to be true. In general,

the rate of convergence is O(maxf (n�"=4); n�"g) (cf. [13, 28]).

In the sequel, we must study the way markers may overlap. For two strings X and Y

we denote C(X;Y ) the length of the longest common pre�x of both X and Y . The next

lemma presents an estimate on the tail of the probability distribution of C(X1
i ; X

1
j ) where

X1
i and X1

j are substrings of a string generated by a mixing model.

Lemma 2 There exists � > 0 such that for any 1 � i 6= j � n

PrfC(Xn
i ;X

n
j ) � kg � c2��k (13)

where c > 0 is a constant.

13



Proof. We shall follow the proof of [25]. To simplify the notation let Ci;j = C(Xn
i ;X

n
i )

and j = i + d � 1, that is, X1
j is d shifted version of X1

i . When d > k the situation is

quite simple (there is no overlap), so we concentrate on the case 1 � d � k. Let wd 2 Ad

be a word of length d. Since both strings overlap on k + d positions, there exists wd such

that Xi+k+d�1
i = w

b k
d
c+1

d wd and Xi+ di+k+2d�1 = w
b k
d
c+1

d wd where wd is a pre�x of wd (cf.

[25, 26]). Thus we have

PrfCi;i+d � kg =
X
Ad

P (w
bk=dc+1
d wd) (14)

� c
X
Ad

P (w
bk=dc
d wd)P (wd) (15)

� c

sX
Ad

P 2(w
bk=dc
d wd)P (wd) � c

sX
Ad

P 2(w
bk=dc
d wd) (16)

� c

sX
Ak

P 2(wk) = c1

q
E[P (wk)] (17)

� c2�
1
2
kh1(1�") (18)

where (15) is due to the mixing condition, (16) is a consequence of the inequality on means

(cf. [26]), (17) follows from Ad � Ak, and (18) is a consequence of the de�nition (9) of

the R�enyi's entropy h1 of order b = 1. In the above, the constant c1 may change from line

to line and " > 0 is any arbitrary small constant. This completes the proof after setting

� = 1
2h1(1� ").

The next lemma is at the heart of our proof, and it establishes the marker separation

property. It says that whp markers cannot overlap and in fact cannot be too close to each

others. Below " > 0 stands for a small positive number and c is constant that may change

from line to line.

Lemma 3 For any " > 0 and � > 1
2 , the probability that for k � � log n

h , a string Xn
1

contains two consecutive copies of Xn
n�k+1 that are separated by less than d = dn"e symbols

is O(n��) with

�� = max

�
1� 2�+ ";��+ ";�!

�

h
(1� ");�

h1
2h
��"

�
;

where ! and � are de�ned in (12) and (13), respectively.

Proof. We start by formalizing the statement of the lemma. De�ne the set En as

En := fXn
1 : 91�i�n 9i�j�i+d : X

i+k�1
i = Xj+k�1

j = Xn
n�k+1g:

14



To prove the lemma it suÆces to estimate P (En) and show that it is O(n��).

Let us consider two substrings Xi+k�1
i and Xj+k�1

j . Let the integer g = maxfj � i �

k + 1; 0g be called the gap between the substrings. We assume that g < n". We de�ne also

the distance d between the substrings Xi+k�1
i and Xj+k�1

j as d = j � i (j � i). Clearly

d = j � i � k + g. Observe that strings in En may have markers that may overlap, or

may have two markers within distance d without overlapping, or may have a marker within

distance d from the suÆx Xn
n�k+1. To analyze these three case we consider the following

three subsets:

� On: set of strings X
n
1 such that the suÆx Xn

n�k+1 and its copy overlap on more than

"k positions;

� E1n : set of strings Xn
1 such that Xn

1 =2 On and Xn
n�k�d contains another copy of

Xn
n�k+1;

� E2n : set of strings Xn
1 such that Xn

1 =2 On and two consecutive copies (i.e., markers)

of Xn
n�k+1 are within distance smaller than d.

Notice that En � On [E
1
n [E

2
n. By Lemma 2 we can bound the probability of On as follows

P (On) � ck2��"k = O(n��)

where � = h1
2h��". Thus, now we concentrate on evaluating the probability of the other two

sets. Observe that

P (E1n) =
X

wk2Ak�On

Prf90<j�k+g : X
n�i
n�k�i = Xn

n�k = wkg:

Using Lemma 1, Asymptotic Equipartition Property (AEP), and mixing condition (6), we

obtain (to simplify notations we write below k(1� ") for bk(1 � ")c):

P (E1n) � c
X

wk(1�")2A
k(1�")

Prf9k(1�")�i�k+g X
n�i
n�k(1�")�i+1 = wk(1�")gPrfX

n
n�k(1�")+1 = wk(1�")g

� cP (B"k(1�")) + c(k + g)
X

wk(1�")2G
"
k(1�")

P 2(wk(1�"))

� cP (B"k(1�")) + c(k + g)2h(1�")
2k

� cP (B"k(1�")) + cn��+O("):

The probability of E2n, formally satis�es the following identity

P (E2n) =
X

wk2Ak�On

Prf9m<n90<j�k+d : Xm�j
m�k�j = Xm

m�k = Xn
n�k = wkg: (21)
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Using the same arguments as above we conclude that

P (E2n) � cP (B"k(1�")) + cn(k + g)
X

wk(1�")2G
"
k(1�")

P 3(wk�d)

� cP (B"k(1�")) + 2cnn"2�2h(1�")
2k

� cP (B"k(1�")) + cn1�2�+O("):

Combining the previous estimates we prove the lemma.

Remark: For "! 0 we have 0 < � < 1
2 for � > 1

2 . The condition � >
1
2 is required only

in the proof of this lemma.

Let now Ln be the number of markers (of length k = b�Dnc). We shall prove that

whp Ln � n1���" where " > 0 is an arbitrary positive number. Actually, we only need

a lower bound on the number of markers since we know that Ln � n which suits us quite

well.

Lemma 4 For arbitrarily small " > 0

PrfLn < n1���O(")g = O(maxfn��1+";  (n")g)

for large n.

Proof. We only consider nonoverlapping markers that are separated by g = n" symbols.

Denote this number of markers by L�n. Clearly, Ln � L�n and let Zi be equal to 1 if a

nonoverlapping n"-separated marker occurs at position i, where 1 � i � n=(k + g) with

k = b�Dnc. Observe that

E[L�n] =

n=(k+g)X
i=1

E[Zi] �
n

k + g
PrfZi = wk 2 G

"
k; k � (1� ")�h�1 logng � n1���":

Then by Chebyshev's inequality

PrfLn < n1��+"g � PrfL�n < (1� ")E[L�n]g �
Var[L�n]

"2E[L�n]
2
:

We prove below that

Var[L�n] � E[Ln] + 2 (n")E[L�n]
2:

To estimate the variance Var[L�n] we proceed basically as in [13]. Observe that for m =

n=(k + g)

Var[L�n] =
mX
i=1

Var[Zi] +
X

ji�jj>n"

Cov[ZiZj ]

16



A B C D E F G

Cn Sn

Figure 2: Illustration to Lemma 5: Solid intervals represent the largest suÆx and its copy,

boxes are markers and sampled positions are marked as crosses.

� E[L�n] + 2 (n")
X

ji�jj>n"

E[Zi]E[Zj]

� E[L�n] + 2 (n")E[L�n]
2;

which, together with our previous estimates, completes the proof.

3.3 Marker Stability Properties

We establish here the marker stability property. Assume now that m = bn"c for any

arbitrary small " > 0. In the sequel, we shall work with modi�ed strings eXn
1 in which

we change any of the m symbols following a marker. We prove several properties of such

modi�ed strings. Among others, in the next lemma we show that whp the largest suÆxeDn in the modi�ed strings is equal to the suÆx Dn in the original string.

Lemma 5 Let eXn
1 be a string that di�ers from the string Xn

1 generated by a mixing model

on any of m = bn"c positions after a marker of Xn
1 . Let eDn be the length of the largest

suÆx in eXn
1 . Then there exists " > 0 such that

PrfDn = eDng = 1�O(n��) (22)

for some 0 < � < 1
2 .

Proof. The thrust of the proof is quite simple. We shall show that the modi�cation de�ned

in the lemma can only concern markers that contains any of these modi�ed symbols. But

due to marker separation properties (in particular Lemma 3) such event is quite unlikely as

long as Dn > (1� ") 1h logn for " suÆciently small. Therefore, we assume from now on that

Dn � (1 � ") 1h logn, which by Lemma 1 occurs with probability 1 � O(n�"). We consider

several cases illustrated in Figure 2 (where m = 1 is assumed).

Let Sn be the suÆx of length Dn of string Xn
1 , that is, Sn = Xn

n�Dn+1; let Cn be an

internal copy of Sn in the original string Xn
1 . We assume that Cn starts at position i, i.e.,

Cn = Xi+Dn�1
i . We consider two cases:

Case Dn < eDn.

17



This can only happen if the modi�cation occurs inside the suÆx Sn or the copy Cn (cf.

positions C and G in Figure 2). If the change occurs inside Sn, then there must be another

marker within distance O(log n), which happens with probability O(n��). If the change is

inside Cn (cf. position C in Figure 2), then this will result in producing another marker

within distance O(log n) that by Lemma 3 has probability O(n��) to occur.

Case Dn > eDn.

Again, we must consider a few cases (we refer to positions A, B, E and F in Figure 2).

In the �rst case a change occurs in the new largest suÆx of eXn
1 , just before Sn. But by

Lemma 3 this happens with probability O(n��). The second case is more intricate. We

assume that the change occurs inside the string which creates a new copy eCn such that

j eCnj = eDn > Dn (cf. positions A, B and E in Figure 2). Of course, the new copy eCn

creates a new marker. If this marker does not contain the modi�ed position, then this

marker existed before and was within distance O(n") from another marker (see A and B)

which is unlikely to happen. Finally, we consider the situation as illustrated by position

E in Figure 2. We reduce it again to Lemma 3 by considering "new" markers of length
1
2 < �0 < �, and see that again these two new markers are close enough so that Lemma 3

can be used.

The last lemma tells us that whp strings do not modify the positions of their markers if

we alter any of m = bn"c symbols after a marker. We shall call such strings favorite strings.

This is made more formal in the next de�nition.

De�nition 1 A string Xn
1 is m-favorite if a modi�cation of any m symbols following a

marker does not change locations of nay marker in the new string eXn
1 .

Lemma 5 basically implies that whp any string is favorite. This is proved formally in

the next lemma.

Lemma 6 There exists " > 0 such that the probability that there exists a modi�cation of

any m = O(n") symbols following a marker in Xn
1 changing the position of markers is

O(n��) for some 0 < � < 1
2 .

Proof. By changing a symbol after a marked position we either create a new marker that

overlap with the previous marker (cf. position E in Figure 2) or delete an existing marker

that overlapped with the previous marker (cf. position A in Figure 2). Thus by Lemma 3

this can occur with probability O(n��).

Before we proceed, we need the following de�nition.
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De�nition 2 Strings Xn
1 and eXn

1 are m-paired if:

� Xn
1 and eXn

1 are both m-favorite strings;

� Xn
1 and eXn

1 have their markers at the same positions;

� Xn
1 and eXn

1 match on every positions except the marked symbols.

We de�ne the orbit Fn(X
n
1 ) of X

n
1 as

Fn(X
n
1 ) := f eXn

1 : eXn
1 is m � paired with Xn

1 g;

and the orbit set (or the set of favorite strings) as

Fn :=
[
Xn
1

Fn(X
n
1 ) = fXn

1 : Xn
1 is a favorite stringg:

Given F := Fn(X
n
1 ), let Ln(F) be the number of markers in a string Xn

1 2 F . Observe

that the favorite strings F may di�er only on m positions following a marker, thus the

number of markers is �xed for a given F . Furthermore, the cardinality of F is jFj =

V mLn(F). Finally, by Lemma 6 the probability that a string belongs to the set of favorite

strings is 1�O(n��).

3.4 Mixing Property of Sampled Sequence

The last two facts just proved have far reaching consequences. In particular, in Lemmas 5

and 6 we establish that whp markers do not change their positions if we modi�ed any

sampled symbol. Strings satisfying this property were called favorite strings. They play for

our problem the same role as typical sequence for AEP. In Lemma 7 below we shall prove

that sampled sequence of favorite strings is mixing. This will allow us to complete the proof

of Theorem 1 for strings for which the probabilities of symbol generations are distinguishable

(we call them Æ-discriminant). When these probabilities are very close (think of an unbiased

memoryless source discussed in Example 2) we appeal to the left side of (4) to complete the

proof of Theorem 1.

The next lemma summarizes our knowledge about the sampled sequence. It proves

that given F the sampled sequence is mixing. In other words, we shall show that the

probability distribution of the marked sequence is within factor (1�O( (k))Ln(F) from an

i.i.d. sequence.
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Lemma 7 Let F 2 Fn be given. Under the condition that Xn
1 2 F , the sampled sequence

is mixing provided (8) holds. More precisely, let ` := Ln(F) and let i1, i2; : : : ; i` be the

marked positions. Then

�
1�  (n")

1 +  (n")

�`
PrfXi1 = x1jX

n
1 2 Fg � : : : � PrfXi` = x`jX

n
1 2 Fg

� PrfXi1 = x1; : : : ;Xi` = x`jX
n
1 2 Fg ��

1 +  (n")

1�  (n")

�`
PrfXi1 = x1jX

n
1 2 Fg � : : : � PrfXi` = x`jX

n
1 2 Fg

for any arbitrary small " > 0.

Proof. As in the formulation of the theorem, we let i1, i2; : : : ; i` to be the marked positions,

where ` := Ln(F). The sampled sequence is Xi1Xi2 : : : Xi` . We also de�ne Ij := fi1 +

1; : : : ; ij + mg for j = 1; 2; : : : ; `. In words, the sets Ij represent m positions after each

marker. Observe that given F all the other values Xr for r =2
S`
j=1(ij [ Ij) are �xed. We

denote by X(F)i1�11 the �xed substring Xi1�1
1 , X(F)

ik+1�1
ik+1

the �xed substring X
ik+1�1
ik+1

,

and X(F)ni`+1 the �xed substring Xn
i`+1

when Xn
1 2 F . By de�nitions of the mixing source

(MX) and the favorite sequence, we have

PrfXn
1 2 Fg = PrfX(F)i11 X

i1+m
i1

: : : X(F)i`�1i`�1+m+1X
i`+m
i`

X(F)ni`+m+1g

� (1�  (m))`PrfX(F)i11 g � : : :� PrfX(F)i`i`�1+mgPrfX(F)ni`+mg

and

PrfXi1 = x1; : : : ;Xi` = x`;X
n
1 2 Fg �

� (1 +  (m))`PrfX(F)i11 x1g � : : :� PrfX(F)i`i`�1+mx`gPrfX(F)ni`+mg:

Combining these two inequalities we obtain the desired upper bound. In a similar manner

we obtain the lower bound. This yields the result since (1 +  (n"))n
1��

! 1 as long as (8)

holds.

To obtain a complete picture of the probabilistic behavior of the SMP predictor, and

to compare it to the optimal predictor X�
n, we must investigate the distribution of the

most frequent symbol in the sampled sequence. We know from Lemma 7 that the sampled

sequence is within \distance" (1 +  (n"))Ln(F) ! 1 from an i.i.d. sequence provided (8)

holds. However, the distribution of the most frequent symbol depends on how close are the

probabilities of the next symbol Xn+1 given Xn
1 . We technically need a di�erent proof of

Theorem 1 for these cases, as we have already pointed out in Example 2. Therefore, we

introduce the so called Æ-discriminant strings.
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De�nition 3 A string xn1 is called Æ-discriminant if there exists one the most frequent

symbol, say amax 2 A such that for all a 2 A� famaxg

PrfXn+1 = amaxjX
n
1 = xn1g � PrfXn+1 = ajXn

1 = xn1g > Æ (23)

for some Æ > 0. (Throughout, we assume that Æ > n�� for some � > 0.)

Remark. For memoryless sources all strings are either Æ-discriminant or none is Æ-discriminant.

For sources with memory, some strings might be Æ-discriminant while others not, even for

the same source.

We need to prove the following simple result before we can complete the proof of The-

orem 1.

Lemma 8 Let Y `
1 be a sequence of length ` generated by a Æ-discriminant memoryless source

over an alphabet A. Let Na(Y ) denote the number of times the symbols \a" occurs in Y .

For all Æ > 0 there exists � > 0 such that for all a 6= amax:

PrfNamax(Y ) < Na(Y )g � exp(��`Æ2): (24)

Proof. We use the Azuma inequality (cf. [15, 26]) applied to N(Y ) := Namax(Y )�Na(Y )

for a 6= amax. Since for any symbol a

E[N(Y )] = `(P (amax)� P (a)) > `Æ:

Moreover, for any string Y 0 that di�ers from Y on a single position we have

jN(Y 0)�N(Y )j � 1:

Hence, by the Azuma inequality

PrfjN(Y )�E[N(Y )] > "E[N(Y )]g � 2 exp(�
1

2
`Æ2) � exp(��`Æ2)

for some � > 0. Thus

PrfNamax(Y )�Na(Y ) > 0g � PrfNamax(Y )�Na(Y ) > (1� ")lÆg � 1� exp(��`Æ2);

which proves the lemma.

Lemma 9 For a Æ-discriminant string generated by a mixing source and belonging to an

orbit F with Æ = n��, we have

PrfX̂n+1 6= amaxjX
n
1 2 Fg = O

�
((1 +  (n"))!)Ln(F)

�
(25)

for some 0 < ! < 1 provided 2� < 1� �.

Proof. We use the previous lemma together with Lemma 7.
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3.5 Finishing the Proof of Theorem 1

Now we are in a position to prove Theorem 1 for Æ-discriminant strings with Æ > n�� for

2� < 1 � �. As discussed in Example 2, for this case we show that the right-hand side of

(4), namely, PrfX̂n+1 6= X�
n+1g = PrfX̂n 6= amaxg = O(n��) for some 0 < � < 1

2 . Using

Lemmas 3{9 we have for m = bn"c and any " > 0 (below � is a positive constant not bigger

than 1
2 that can change from line to line):

PrfX̂n+1 6= amaxg � PrfXn
1 is not m-stable g

+ PrfXn
1 is m-paired and X̂n

1 6= amax g

� O(n��) +
X
F

P (F)O((1 +  (n")))!)Ln(F))

� O(n��):

This completes the proof for the Æ-discriminant strings.

Finally, we consider the remaining non Æ-discriminant strings and assume that

PrfXn+1 = amaxjX
n
1 = xn1g � PrfXn+1 = ajXn

1 = xn1g � Æ = n�� (26)

for 2� < 1�� and all a 2 A. To simplify the presentation, we now assume that the alphabet

A is binary. Extending to a �nite alphabet is straightforward by restricting symbol a to the

subset satisfying PrfXn+1 = ajXn
1 = xn1g � PrfXn+1 = amaxjX

n
1 = xn1g � Æ. As discussed

in Example 2, we must consider now the left-hand side of (4), that is, we shall prove that

PrfX�
n+1 6= Xn+1g � PrfX̂n+1 6= Xn+1g � PrfX�

n+1 6= Xn+1g+O(n��)

for some 0 < � < 1
2 . The left-hand side of the above inequality is obvious, so we only

concentrate on the right-hand side. We have

PrfX̂n+1 6= Xn+1g � 1�
X
xn1

PrfX̂n+1 = Xn+1jX
n
1 = xn1gP (x

n
1 )

� 1�
X

xn12Fn

PrfX̂n+1 = Xn+1jX
n
1 = xn1gP (x

n
1 ):

But due to (26)

PrfXn+1 = X̂n+1jx
n
1g � max

a2A
PrfXn+1 = ajxn1g � n��:

Thus we �nd

PrfX̂n+1 6= Xn+1g � 1�
X

xn12Fn

max
a2A

PrfX̂n+1 = Xn+1jX
n
1 = xn1gP (x

n
1 ) + n��

= 1�
X
xn1

max
a2A

PrfX̂n+1 = Xn+1jX
n
1 = xn1gP (x

n
1 ) + n�� +O(n��)

= PrfXn+1 6= X�
n+1g+O(n��):
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This completes the proof of Theorem 1.
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