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Abstract

We study the height of the binary search tree { the most fundamental data structure used
for searching. We assume that the binary search tree is built from a random permutation
of n elements. Under this assumption, we study the limiting distribution of the height
as n ! 1. We show that the distribution has six asymptotic regions (scales). These
correspond to di�erent ranges of k and n where PrfHn � kg is the height distribution.
In the critical region (the so{called central region), where most of the probability mass is
concentrated, the limiting distribution satis�es a non-linear integral equation. While we
cannot solve this equation exactly, we show that both tails of the distribution are roughly
of a double exponential form. From our analysis we conclude that the average height
E[Hn] � A log n � 3

2
A

A�1 log log n where A = 4:311 : : : is the unique solution of x log x �
x � x log 2 + 1 = 0, x > 1, while the variance Var[Hn] = O(1). The second term in the
expansion of E[Hn] and the rate of growth of the variance were also recently obtained by
B. Reed who used probabilistic arguments, while M. Drmota established the growth of the
variance by analytic methods. Our analysis makes certain assumptions about the forms of
some asymptotic expansions, as well as their asymptotic matching.

Key Words: Binary search trees, limiting height distribution, saddle point method, matched
asymptotics, linearization, WKB method, non-linear integral equation.
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1 Introduction

A binary search tree is a fundamental data structure used for searching and sorting. It can

be de�ned as follows: A root node is created for the �rst element. Then subsequent elements

are directed to the left or right subtree according to whether they are less or greater than

the element stored in the root. A consequence of this construction is that the left subtree

and the right subtree of the root are binary search trees themselves. The popularity of

binary search trees stems from the fact that many sorting algorithms (e.g., Quicksort) can

be conveniently represented by them.

To justify the performance of algorithms that are based on the binary search tree,

a body of theory was built. For a tree storing n elements it is known that the worst

search time is O(n), however, on average it is only O(logn). To state precisely the average

case performance we must introduce a probabilistic model. We adopt here the standard

assumption that all n! permutations of the n elements are equally likely. For such a model,

we shall analyze here the height Hn of the binary search tree, that is, the longest path in a

randomly built tree.

The analysis of the height of the binary search tree is a challenging problem. There are

still some open questions regarding the height. In 1986 Devroye [5] proved that the average

height E[Hn] satis�es E[Hn] � A log n as n!1 where A = 4:31107 : : : is a unique solution

of x log x� x� x log 2 + 1 = 0 for x > 1. Earlier Pittel [23] had shown that Hn= log n! �

almost surely where � � A. Then, Devroye and Reed [7] established a stronger result,

namely that

E[Hn] = A log n+O(log log n):

They also show that the variance Var[Hn] = O((log log n)2). However, Robson [25] has

shown experimentally that E[jHn � E[Hn]j] = O(1) which would suggest that Var[Hn] =

O(1). This conjecture was recently proved by Reed [24] and Drmota [8, 9]. Reed used

probabilistic arguments while Drmota applied analytic tools. To the best of our knowledge

there are no results concerning the limiting distribution of Hn.

In this paper we study the limiting distribution of the height Hn. In the course of our

analysis we re-establish recent results concerning the average and the variance of the height.

We �rst observe that Hn+1 = maxfHL
` ;HR

n�`g+1 where HL
` and HR

n�` are the left and right

subtrees. In the above, ` is selected with probability 1=(n + 1) according to the assumed

probabilistic model. In view of this, the distribution

Lkn = PrfHn � kg
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satis�es the following recurrence

Lk+1n+1 =
1

n+ 1

nX
`=0

Lk`L
k
n�`

with L0
0 = 1 and L0

n = 0 for n � 1. This is a non-linear recurrence that we solve asymptot-

ically to obtain the limiting distribution of the height.

We show that there are six scales of the distribution Lkn. These are de�ned precisely

in the next section and correspond to ranges of k where the structure of Lkn is di�erent for

n!1. The most important scale is what we call the central regime where the distribution

undergoes a transition from being close to zero to being close to one. For this scale we

derive a non-linear integral equation that we only know how to solve numerically. But we

also show that both tails of the asymptotic distribution are of a double exponential form.

We also establish

E[Hn]�A log n � �3

2

A

A� 1
log log n;

Var[Hn] = O(1);

where A is de�ned above. The second term of the expansion of E[Hn] agrees with Reed

[24].

These results can be compared to our recent results [15, 16] concerning the limiting

distributions of the height in PATRICIA tries and in digital search trees. The recurrences

considered there are

hk+1n = 2�n+1hk+1n + 2�n
n�1X
i=1

 
n

i

!
hki h

k
n�i; k � 0

�hk+1n+1 =
nX
i=0

 
n

i

!
2�n�hki

�hkh�i; k � 0

where hkn = PrfHPAT
n � kg and �hkn = PrfHDST

n � kg are height distributions for PATRICIA
tries and digital search trees, respectively. For these problems, we proved that in the central

regime both distributions are spanned on one or two points. This should be compared to

the binary search tree where the distribution is spread out over an in�nite number of points.

We derive our results using methods of applied mathematics, such as matched asymp-

totics and the WKB method. These are analytic methods and are especially suitable for

problems that cannot be solved exactly by transform methods. They make certain as-

sumptions about the forms of asymptotic expansions (e.g., see (4.4) or (7.5)), and also the

asymptotic matching between various scales. We also applied other analytic tools such as
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linearization, asymptotic matching, the Euler-Maclaurin summation formula, and methods

for solving integral, PDE, and recurrence equations.

The paper is organized as follows. In the next section, we present our main results for

binary search trees (cf. Theorem 1). The derivations of these results are relegated to Sec-

tions 3{8. In Sections 9-10 we present detailed numerical results and discuss consequences

of our �ndings.

2 Summary of Main Results

We let Hn be the height in a binary search tree and denote the probability distribution by

Lkn = PrfHn � kg; n; k � 0: (2.1)

As mentioned above, it satis�es the non-linear recursion equation

Lk+1n+1 =
1

n+ 1

nX
`=0

Lk`L
k
n�`; k � 0 (2.2)

subject to the initial condition

L0
n = Æ0n (2.3)

where Æ0n is the Kronecker delta. From (2.2) and (2.3) we can easily show that Lkn = 0 for

n � 2k and Lkn = 1 for n � k. Indeed, the height in a complete binary search tree is at

least log2 n while the height of a degenerate binary search tree is n. It therefore suÆces to

consider the range k < n < 2k (or log2 n < k < n).

By introducing the generating function

Gk(x) =
1X
n=0

xnLkn

we �nd that it satis�es

G0
k+1(x) = [Gk(x)]

2; Gk(0) = 1: (2.4)

It follows that Gk(x) is a polynomial in x of degree 2k � 1, and the �rst k + 1 coeÆcients

in the polynomial are 1. Below we give the �rst few Gk(x):

G0(x) = 1; G1(x) = 1 + x; G2(x) = 1 + x+ x2 + 1
3x

3;

G3(x) = 1 + x+ x2 + x3 + 2
3x

4 + 1
3x

5 + 1
9x

6 + 1
63x

7:
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It is not diÆcult to solve (2.2) and (2.3) explicitly if n is close to either k or 2k. In

Section 5 we show that

k = n� 1 : Lkn = 1� 2n�1

n! (n � 1);

k = n� 2 : Lkn = 1� 2n�3

(n�2)! (n � 3);

k = n� 3 : Lkn = 1� 2n�6

n!

h
n(n� 1)(n� 2)

�
n� 1

3

�
� 40

i
(n � 5):

We also have L0
2 = 0 and L2

5 = L1
4 = L0

3 = 0. In Section 3 we consider n close to 2k and

show that

n = 2k � 1 : Lkn = 2k+2�3�2
k�1

"
kY
i=2

(1� 2�i)2
�i

#�2k
� �k;

n = 2k � 2 : Lkn = (2k � 1)�k:

It appears diÆcult to solve (2.2) (or (2.4)) exactly and obtain an explicit expression

for Lkn. Therefore we consider the asymptotic limit n !1. The structure of the problem

depends on the relative size of k and n. As with any problem in asymptotic analysis, it is

important to identify the basic scales. We �nd that as n ! 1 there are six major ranges

of k that lead to di�erent asymptotic behaviors. We list them below:

(i) far left tail, 2k � n =M = O(1), M � 1,

(ii) left tail, n2�k = ! �xed, 0 < ! < 1,

(iii) central region, k = A log n+ B log logn+ � where � = O(1) and A = 4:311 : : : is the

unique solution to

x log x� x� x log 2 + 1 = 0; x > 1

while we shall argue that

B = �3

2

A

A� 1
:

(iv) near right tail, k= log n = � �xed, A < �,

(v) right tail, k=n �xed such that 0 < k=n < 1,

(vi) far right tail, j = n� k = O(1), j � 1.

Note that k � log2 n for case (i) and k�log2 n = O(1) for case (ii). If we plot the distribution

Lkn as a function of k for a �xed (large) n, then as k increases we move from region (i) to

(vi).

We obtain results for Lkn in the indicated ranges. In some cases we obtain the asymptotic

expansion (or at least the leading term) completely, while in other cases we obtain partial
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information only, which we supplement with numerical studies. The derivation of these

results is presented in the next six sections, where we make certain assumptions about

the forms of the asymptotic expansions, as well as the asymptotic matching between the

various scales. Our main analytic methods are those of linearization, the WKB method,

and matched asymptotic expansions (cf. [10, 20, 21]). The WKB method postulates that

the solution Fn(!) to an equation (e.g., recurrence, functional or di�erential equation) has

the following form as n!1

Fn(!) = ne�n�(!)
�
A(!) +

1

n
A1(!) +

1

n2
A2(!) + � � �

�
; (2.5)

where �(!), , A(!), A1(!); A2(!); : : : are unknown functions that must be determined

from the equation itself. Here is what Fedoryuk [10] has to say about such approximations:

"... It is necessary �rst of all to guess (and no other word will do) in what form to search

for the asymptotic form. Of course, this stage { guessing the form of the asymptotic form

{ is not subject to any formalization. Analogy, experiments, numerical simulation, physical

considerations, intuitions, random guesswork; these are the arsenal of means used by any

research worker".

Theorem 1 Let Hn be the height of a binary search tree built from a random permutation

of n elements. Under the WKB assumption (2.5), the distribution Lkn = PrfHn � kg of the
height has the following asymptotic expansions:

(i) far left tail: 2k � n =M = O(1)

Lkn �
2kM

(M � 1)!
4

�
1

2
p
2K0

�2k
� nM

(M � 1)!
4e�c�(M+n); M � 1;

where

K0 =
1Y
i=2

(1� 2�i)2
�i

= :9103 : : : ;

c� =
3

2
log 2 + log(K0)

(ii) left tail: n2�k = !; 0 < ! < 1

Lkn � p
nA(!)e�n�(!)

A(!) = 2

r
2!

�

q
!�00(!) + 2�0(!)e�(�(!)+!�

0(!)):

The function �(!) is calculated numerically in Section 9. Asymptotically we have

�(!) � c� + (1� !) log(1� !) + (1� !)(c� � 1); ! " 1

�(!) � c!
1

A log 2�1

� � log!

A log 2� 1

� B log 2
A log 2�1

; ! # 0;

6



where c is a constant.

(iii) central region: � = k �A log n�B log log n

Lkn � f(�);

where f(�) satis�es the non-linear integral equation

f(� + 1) =

Z 1

0
f(� �A log x)f(� �A log(1� x))dx; �1 < � <1:

Asymptotically we have

f(�) � 1� c1� exp

�
�
�
1� 1

A

�
�

�
; � ! +1

f(�) � 2

r
2c

�

s
A log 2

A log 2� 1
e���=2 exp(�ce���); � ! �1;

where c1 is a constant,

� =
log 2

A log 2� 1
= :3486 : : : ;

and the constant c is the same constant as in (ii).

(iv) near right tail: k = � log n, A < � <1

1� Lkn � e�a(�) log n(logn)�1=2b(�);

where

a(�) = � log � � � � � log 2 + 1;

and asymptotically b(�) satis�es

b(�) � 1

2�
e�����1; � !1

b(�) � c1(� �A); � ! A:

(v) right tail: k = n� j, � = n=j, 1 < � <1

1� Lkn �
(2e)kn�k

2�n2
zk�n� (1� z�)

�k

p
�z�p

1� z�
p
�z� � 1

where z� = z�(�) is the unique solution of

1

�
=

1X
m=1

zm�
m(m+ 1)

= 1 +
(1� z�) log(1� z�)

z�
; 0 < z� < 1:

(vi) far right tail: k = n� j, j = O(1), j � 1

1� Lkn �
2n

n!

n2j�2

(j � 1)!
21�2j

for n!1.
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Remark. In the derivation of the above results, we used the WKB method several times.

In particular, the analysis for case (ii) assumes the WKB form (4.4) of Section 4, and the

conclusions about the behavior of �(!) as ! " 1 and ! # 0 are based on the asymptotic

matching between cases (ii) and (i) and cases (ii) and (iii), respectively. The analysis of (iii)

assumes the form (8.3), of Section 8, that of (iv) assumes the WKB form (7.5) of Section 7,

while case (v) assumes relation below (6.8) (i.e., that of F j
n � eF j

n). 2

We observe that in cases (i), (v) and (vi) we have completely determined the leading

term. In case (ii) we do not have an exact expression for the function �(!), but it is

relatively easy to compute numerically, as discussed in Section 9. The most diÆcult cases

seem to be (iii) and (iv). In the former we must numerically solve the non-linear integral

equation and in the latter we have the unknown function b(�). Our analysis suggests the

following.

Corollary 1 The mean of Hn behaves as

E[Hn]�A log n � B log log n (2.6)

where

B = �3

2

A

A� 1
: (2.7)

The variance is

Var[Hn] = O(1) (2.8)

for n!1.

The above value of B is deduced on the assumption of asymptotic matching between the

� and � scales. This implies that b(�) vanishes at � = A with b0(A) = c1 > 0. The leading

term E[Hn] � A logn is well-known, having been established by a variety of approaches,

both analytical and probabilistic (cf. [5, 7, 8, 9]). It was also conjectured that

B = �1

2

A

A� 1
: (2.9)

While our value in (2.7) does make certain assumptions about the forms of various asymp-

totic expansions and their asymptotic matching, we can show that if (2.9) were true then

b(�) would not vanish at � = A, and then the solution to the integral equation for f(�)

would become negative for certain values of � (see Section 8 and Appendix C). This contra-

diction would seem to exclude the possibility of (2.9). We also do some numerical studies

in Section 10 which test the conjectures (2.7) and (2.9). The correct value of B was also

established by Reed [24].
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Finally, the result for the central region implies that the variance Var[Hn] = O(1).

This was conjectured by Robson [25] but eluded analysis for some time. Devroye and Reed

proved in [7] that Var[Hn] = O(log log n), and only recently Reed [24] and Drmota [9]

proved that Var[Hn] = O(1).

From our results we see that in the right tail the rough order of magnitude of 1�Lkn is

O(e�n log n), O(e�k log n), and O(n�a(�)), for the j, �, and � scales, respectively. In the near

right tail 1� Lkn is only algebraically small. In the left tail we have Lkn = O(e�n�(!)). It is

also interesting to compare the present results to corresponding ones we previously obtained

for digital trees, such as PATRICIA tries [15] and digital search trees (in short: DST) [16].

In these other models the M;!; � and j scales also arose, and their analysis was somewhat

similar to that here. However, the central and near right tail regimes did not occur in the

PATRICIA and DST models. Here the limit n!1 made the probability mass concentrate

at one or two values of k. However, for the BST model, it is spread out over an in�nite

number of points. Also, the PATRICIA and DST models had certain oscillations occurring

in the range of k where the probability mass concentrates, and these seem to be completely

absent in the BST model.

From (ii) we see that the function �(!) is �nite at ! = 1, but its derivative has a

logarithmic singularity there. Since 1=(A log 2 � 1) = :5029 : : : ; the function vanishes at

! = 0 but its derivative is in�nite. We contrast this to the PATRICIA and DST models,

where the corresponding �(�) and all its derivatives vanished as ! ! 0. We also note that

the solution to the integral equation for f(�) is not unique: if f0(�) is a solution so is

f0(�+ c) for any c. To uniquely specify the solution we need the behavior of f(�) as � !1
(or � ! �1). Note also that f0(�) = 0 and f0(�) = 1 are solutions, but these do not have

the appropriate behaviors as � ! �1.

Finally, we show in Section 8 that if we set

f(�) =
1

2�i

Z a+i1

a�i1
exp

�
�

A
e��=A

�
F (�)d� (2.10)

where a > 0, then F (�) satis�es

�F 0(�) = e�2=A[F (�e�1=A)]2: (2.11)

The above is precisely the retarded di�erential equation studied by Drmota [8]. Its solution

is also not unique: if F0(s) is a solution, so is �F0(�s) for any �. In Section 8 we discuss

the solution to (2.11), using the normalization F (0) = 1, which is also used in [8].
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3 Far Left Tail

We consider 2k � n = M = O(1), which is close to the left boundary of the support of

the probability distribution (we recall that Lkn = 0 for n � 2k). We isolate the leading

coeÆcients in the polynomial Gk(x) by writing

Gk(x) = ckx
2k�1 + dkx

2k�2 + ekx
2k�3 + � � � : (3.1)

It follows that

G2
k(x) = c2kx

2k+1�2 + 2ckdkx
2k+1�3 + (2ckek + d2k)x

2k+1�4 + � � �

By comparing the above to G0
k+1(x) we are led to the recurrences

c2k = (2k+1 � 1)ck+1 (3.2)

dkck = (2k � 1)dk+1 (3.3)

2ekck + d2k = (2k+1 � 3)ek+1: (3.4)

We solve (3.2) subject to c1 = 1. Setting ck = euk leads to

uk+1 � 2uk = � log(2k+1 � 1) = �(k + 1) log 2� log(1� 2�k�1):

Solving this linear di�erence equation yields

uk = (k + 2) log 2 +K2k �
kX
i=2

2k�i log(1� 2�i):

where K is a constant. Now, c1 = 1 implies that u1 = 0 and hence K = �3
2 log 2. we thus

have

ck = Lk2k�1 = 2k+2�3�2
k�1

kY
i=2

(1� 2�i)�2
k�i

: (3.5)

From (3.5) it follows immediately that as k !1

ck = 4 � 2k exp
�
�2k

�
logK0 +

3

2
log 2

���
1 +O(2�k)

�
(3.6)

� 4 � 2k
�

1

2
p
2K0

�2k
= 4 � 2ke�2kc�

where c� =
3
2 log 2 + logK0 and
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K0 =
1Y
i=2

(1� 2�i)2
�i

= :9103 : : : : (3.7)

Once we know ck we can easily solve the linear equation (3.3) to obtain

dk = (2k � 1)ck: (3.8)

We thus have

dk = Lk2k�2 � 4k+1
�

1

2
p
2K0

�2k
= 4 � 4ke�2kc�; k !1: (3.9)

In a similar manner we can solve the linear recurrence (3.4) for ek.

Now consider general (�xed) M and n, k ! 1. While we could infer the asymptotic

behavior of Lkn by continuing to solve the sequence of equations for the coeÆcients in (3.1),

we shall instead use the recurrence (2.2). We change variables from (k; n) to (M;n) with

Lkn =W (M ;n) =W (2k � n;n): (3.10)

Replacing k by k � 1 in (2.2) and noting that

Lkn+1 =W (M � 1;n+ 1); Lk�1` =W

�
M

2
+
n

2
� `; `

�
leads to

W (M � 1;n+ 1) =
1

n+ 1

nX
`=0

W

�
M

2
+
n

2
� `; `

�
W

�
M

2
� n

2
+ `;n� `

�

=
1

n+ 1

n=2X
j=�n=2

W

�
M

2
� j;

n

2
+ j

�
W

�
M

2
+ j;

n

2
� j

�

=
1

n+ 1

M=2X
j=�M=2

W

�
M

2
� j;

n

2
+ j

�
W

�
M

2
+ j;

n

2
� j

�
: (3.11)

To obtain the last equality we have used the fact that W (M ;n) = 0 for M < 0 (i.e., Lkn = 0

for n > 2k) to truncate the limits on the sum. It follows that for a �xed M , the number of

non-zero terms in the sum in (2.2) is O(1) as n!1.

We already know that W (0;n) = 0 and this can also be concluded by setting M = 0 in

(3.11). By setting M = 2 we obtain

W (1;n+ 1) =
1

n+ 1
W 2

�
1;
n

2

�
: (3.12)
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This admits an asymptotic solution as n!1 in the form

W (1;n) = ck � 4ne�c�n�c� (3.13)

where c� is an arbitrary constant. Setting M = 3 in (3.11) yields

W (2;n+ 1) =
2

n+ 1
W

�
2;
n� 1

2

�
W

�
1;
n+ 1

2

�
: (3.14)

In view of (3.13), (3.14) admits an asymptotic solution

W (2;n) = dk � n2e�c�n4c0e�c� ; n!1 (3.15)

where c0 is also arbitrary. Let us assume that for a �xed M we have

W (M ;n) � nMe�c�nf(M); n!1: (3.16)

Using (3.16) in (3.11) and simplifying the result for n!1, we �nd that f(M) satis�es the

recurrence

e�c�f(M � 1) = 2�M
M�1X
`=1

f(`)f(M � `); f(0) = 0: (3.17)

The most general solution to (3.17) is

f(M) = 4e�c�
1

(M � 1)!
(c0)M�1; M � 1: (3.18)

We have thus obtained, for �xed M ,

Lkn �
4e�c�

(M � 1)!
(c0)M�1nMe�c�n; n!1: (3.19)

It remains only to determine the constants c� and c
0. By comparing (3.19) with M = 1

to (3.6) we see that

c� = log(2
p
2K0):

Note that now n = 2k�1 � 2k. SettingM = 2 and comparing (3.9) and (3.19) we conclude

that

c0 = e�c� ;

where we used n = 2k � 2 � 2k. The expression (3.19) is asymptotically equivalent to

Lk2k�M � 4

(M � 1)!
2kM

�
1

2
p
2K0

�2k
; k !1: (3.20)
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The form (3.20) is somewhat more numerically accurate than (3.19). We also note that if

we use dk = (2k � 1)ck along with (3.2) in (3.4) and let ek = ck~ek, we �nd that

2k+1 � 3

2k+1 � 1
~ek+1 = (2k � 1)2 + 2~ek: (3.21)

With M = 3, (3.20) yields

Lk2k�3 � 2 � 23ke�2kc� � 22k�1ck

so that ~ek � 22k�1 as k !1, and this also follows from (3.21).

For purposes of asymptotic matching we will need the behavior of (3.19) as M ! 1.

Using Stirling's formula this yields

Lkn � 4

s
M

2�
e�c�(n+M) exp

�
M log

�
n

M

�
+M

�
(3.22)

for M !1.

4 Left Tail

We consider Lkn in the range where n; k ! 1 in such a way that ! � n2�k is �xed, with

0 < ! < 1. Note that as ! ! 1� we have n = 2k(1+ o(1)) so we are moving into the region

where the M -scale analysis applies. We also have k � log2 n = � log2 ! > 0 and O(1) in

this range. We de�ne

V (!;n) = V (n2�k;n) = Lkn (4.1)

and note that

Lkn+1 = V

�
! +

!

n
;n+ 1

�
; Lk�1` = V

�
!
2`

n
; `

�
: (4.2)

Replacing k by k � 1 in (2.2) and using (4.1) and (4.2) leads to

V

�
! +

!

n
;n+ 1

�
=

1

n+ 1

nX
`=0

V

�
!
2`

n
; `

�
V

�
!
2(n� `)

n
;n� `

�
: (4.3)

The initial condition (2.3) does not apply on this scale, since k is assumed large.

For �xed ! we analyze (4.3) by a WKB-type expansion [4, 21, 26]. As discussed above, in

the WKB approximation one assumes a particular form of the solution with some unknown

parameters and/or functions. After substituting the solution into the original equation

one tries to determine the unknown parameters. In our case, we assume an asymptotic

expansion of the form

V (!;n) = ne�n�(!)
�
A(!) +

1

n
A(1)(!) +

1

n2
A(2)(!) + : : :

�
(4.4)
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with  a constant. We comment that the !-scale was also important in the analysis of digital

trees, such as tries, b-tries, PATRICIA tries [15] and digital search trees [16]. For tries and

b-tries we can obtain an exact expression for the corresponding probability distribution of

the height. Evaluating this for n ! 1 and ! �xed by the saddle point method yields an

asymptotic series in the form (4.4) (with  = 0). For the PATRICIA and DST models,

which have not been solved exactly, we used an \ansatz" similar to (4.4) (cf. [15, 16]).

Using (4.4) we obtain

V

�
! +

!

n
;n+ 1

�
� (n+ 1)A

�
! +

!

n

�
e�(n+1)�(!+!=n) (4.5)

� nA(!)e�n�(!)e��(!)e�!�
0(!):

With (4.4) the sum in (4.3) becomes, for n!1,

n2
nX
`=0

1

n
A

�
2!

`

n

�
A

�
2!

�
1� `

n

���
`

n

� �
1� `

n

�
(4.6)

� exp

�
�n

�
`

n
�

�
2!

`

n

�
+

�
1� `

n

�
�

�
2!

�
1� `

n

����
� n2

Z 1

0
x(1� x)A(2!x)A(2!(1 � x))e�n[x�(2!x)+(1�x)�(2!(1�x))]dx;

where we have used the Euler-MacLaurin formula to approximate the sum by an integral.

By symmetry, the major contribution to the integral will come from x � 1
2 . We thus de�ne

�(x) = �(x;!) := x�(2!x) + (1� x)�(2!(1 � x))

and note that

�

�
1

2

�
= �(!); �0

�
1

2

�
= 0; �00

�
1

2

�
= 8!�0(!) + 4!2�00(!):

Then expanding the integrand in (4.6) about x = 1
2 and using the Laplace method yields

n2 [A(!)]2e�n�(!)
4�p
n

s
2�

8!�0(!) + 4!2�00(!)

�
1 +O(n�1)

�
: (4.7)

Upon comparing (4.5) to (4.7) we see that the factors e�n�(!) cancel and then

 =
1

2
; (4.8)

A(!) = 2

r
2!

�

q
!�00(!) + 2�0(!)e�(�(!)+!�

0(!)): (4.9)

We have thus determined the algebraic factor n in (4.4) and expressed A(!) in terms

of �(!). However, we have not determined the latter function, which gives the exponential

14



decay rate (in n) of the distribution on the !-scale. The function �(!) seems to be very

sensitive to the initial conditions in (2.3), and we believe that it is unlikely that it can

be determined solely from the recursion (2.2). By obtaining higher order terms in the

approximations in (4.5) and (4.6) (using (4.4)) and then evaluating the higher order terms

in the Laplace expansion of the integral, we can express A(j)(!) in terms of �(!), A(!),

A(1)(!); : : : ; and A(j�1)(!). We can thus obtain the full asymptotic series, up to the function

�(!). This must be determined numerically, and this we do in Section 9.

We can obtain analytically the behavior of �(!) as ! ! 0 and ! ! 1, by using the

asymptotic matching principle. The limit ! ! 0+ will be discussed in Section 8, where we

analyze the \central region". Now consider the intermediate limit where ! = n2�k ! 1�,

but M = 2k � n ! 1. Noting that n
M = !

1�! = 1
1�! � 1 we rewrite (3.22) in terms of n

and !, which yields

Lkn � 4

s
n(1� !)

2�
exp [�nc� � n(1� !) log(1� !)� n(1� !)(c� � 1) (4.10)

+ O(n(1� !)2 log(1� !))
i
(1 +O(1� !)) :

Choosing an intermediate limit where ! ! 1 and n ! 1 with n(1 � !)2 log(1 � !) ! 0

(e.g., 1 � ! = O(n�2=3)), the matching condition implies that as ! ! 1,
p
nA(!)e�n�(!)

should agree with (4.10), which implies that

�(!) = c� + (1� !) log(1� !) + (1� !)(c� � 1) + o(1� !) (4.11)

and

A(!) � 4

r
1� !

2�
; ! ! 1: (4.12)

This shows that �(!) is �nite at ! = 1, with �(1) = c� = log(2
p
2K0) = :9457 : : : ; but

its derivative has a logarithmic singularity at ! = 1. The asymptotic matching condition

yielded independently the behavior of �(!) and A(!) as ! ! 1. Note also that the matching

is only possible if  = 1
2 in (4.4). We show that (4.11) and (4.12) are indeed consistent with

the relationship between �(!) and A(!) in (4.8). By di�erentiating (4.11) we obtain

�0(!) � � log(1� !)� c�; �00(!) � 1

1� !
; ! ! 1

and hence as ! ! 1

2

r
2!

�

q
!�00(!) + 2�0(!) � 2

p
2p

�(1� !)
;

e��(!)e�!�
0(!) � e�c�elog(1�!)+c� = 1� !:
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Thus (4.8) agrees with (4.12).

Finally we comment that for the digital trees we studied in [15, 16], the corresponding

expansion (4.4) had  = 0 and the corresponding A(!) satis�ed A(!)! 1 as ! ! 0. Note

that as ! ! 0 we have k � log2 n ! 1 so we are approaching the region where the mass

is concentrated, which occurs for k = A(log n)[1 + o(1)] and A > 1= log 2. In the present

case we have  = 1
2 and we will show in Section 8 that A(!) cannot ! 1 as ! ! 0. Thus

the structure of the binary search tree model is much di�erent in the central region, than

digital trees such as PATRICIA and DST.

5 Far Right Tail

We proceed to analyze the right tail regions, starting with the far right tail where n� k =

j = O(1). We shall use linearization of (2.2) to obtain asymptotic results in this region.

Our strategy is to move toward the central region from both the left and right sides, so we

analyze the central region last.

We change variables from (k; n) to (j; n) with j = n� k and

Lkn = Ln�jn = 1� F j
n: (5.1)

From (2.2) we then obtain the following problem for F j
n:

F j
n+1 =

2

n+ 1

nX
`=0

F `+j�n
` � 1

n+ 1

nX
`=0

F `+j�n
` F j�`

n�` (5.2)

=
2

n+ 1

nX
`=n�j+1

F `+j�n
` � 1

n+ 1

j�1X
`=n�j+1

F `+j�n
` F j�`

n�`:

Here we have used the fact that F j
n = 0 for j � 0 (since Lkn = 1 for k � n) to truncate

the limits on the sums in (5.2). If 2j < n + 2 then the second sum becomes void and the

equation becomes linear:

F j
n+1 =

2

n+ 1

j�1X
`=0

F j�`
n�`; j <

n

2
+ 1: (5.3)

We can easily solve (5.2) for small values of j. Setting j = 1 we have

F 1
n+1 =

2

n+ 1
F 1
n ; n � 1: (5.4)

Since L0
1 = 0 we have F 1

1 = 1 and hence the solution to (5.4) is

F 1
n =

2n�1

n!
: (5.5)
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For j = 2 (5.3) then yields

F 2
n+1 =

2

n+ 1
[F 2

n + F 1
n�1] =

2

n+ 1
F 2
n +

2n�1

(n+ 1)

1

(n� 1)!
; n � 3: (5.6)

Solving this simple di�erence equation gives

F 2
n =

2n

n!

�
n(n� 1)

8
+ c2

�
; n � 3: (5.7)

To determine c2 we use (5.2) with j = 2 and n = 1; 2; 3 to conclude that F 2
2 = F 2

3 = F 2
4 = 1.

Using (5.7) with n = 3 yields c2 = 0 and hence

1� Ln�2n =
2n�3

(n� 2)!
; n � 3: (5.8)

We set j = 3 and use (5.3) for n � 5 so that

F 3
n+1 =

2

n+ 1
[F 3

n + F 2
n�1 + F 1

n�2]; n � 5: (5.9)

In view of (5.5) and (5.7) we have

F 3
n+1 �

2

n+ 1
F 3
n =

2

n+ 1

"
2n�4

(n� 3)!
+

2n�3

(n� 2)!

#
(5.10)

whose solution is

F 3
n =

2n

n!

"
n4 + 3n2

64
� 5n3 + n

96
+ c3

#
; n � 5: (5.11)

By examining (5.2) with j = 3 and n = 2; 3; 4; 5 we �nd that F 3
3 = F 3

4 = F 3
5 = 1. It follows

that c3 = �5=8 and hence

F 3
n =

2n�6

n!

�
n(n� 1)(n� 2)

�
n� 1

3

�
� 40

�
; n � 5: (5.12)

In a similar manner we can compute F j
n for any �xed j.

For a �xed j and n suÆciently large F j
n has the form 2n(n!)�1� [polynomial in n of

degree 2j � 2]. We thus write

F j
n �

2n

n!
n2j�2�j; n!1: (5.13)

Using (5.13) we see that only the terms with ` = 0 and ` = 1 in the sum in (5.3) are

asymptotically important. We thus write (5.3) as

F j
n+1 �

2

n+ 1
[F j

n + F j�1
n�1]
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and use (5.13), which yields the recurrence

(2j � 2)�j =
1

2
�j�1; �1 =

1

2
(5.14)

so that �j =
21�2j

(j�1)! and

1� Ln�jn � 2n�1

n!

�
n

2

�2j�2 1

(j � 1)!
:

We have thus obtained the leading term in the far right tail region. Note that the error

term in (5.13) is 1 +O(n�1).

Our analysis also shows that the non-linear equation becomes exactly linear for n >

2(j � 1). This corresponds (roughly) to the sector n
2 < k < n of the (n; k) plane. We thus

refer to this as the \linear sector", and to the range 0 < k < n
2 as the \non-linear sector".

To uniquely determine the solution to (5.3) in the linear sector we need the values of F j
n

when n = 2j � 1. Unfortunately, these ultimately depend on how the initial conditions in

(2.3) propagate through the non-linear sector. Thus (5.2) and (5.3) are not immediately

useful for determining F j
n exactly. However, throughout the right tail of the distribution

we have Lkn � 1 and thus F j
n is asymptotically small. Then the non-linear term in (5.2) is

asymptotically small compared to the linear part and we write

F j
n+1 �

2

n+ 1

j�1X
`=0

F j�`
n�` for F j

n << 1 as n!1: (5.15)

In Section 8 we show that the non-linear part becomes negligible as we move out of the

central region and into the right tail.

Finally, we note that if we expand the leading term for F j
n for j �xed as j ! 1, we

obtain

F j
n � n�nj�j2nen+j

p
j

�n5=2
n2j2�2j ; j !1: (5.16)

This will be used for asymptotic matching purposes, as in the next section we will show

that (5.13) ceases to be valid if n; j !1 at the same rate.

6 Right Tail

We consider the limit n; k ! 1 with k=n �xed and 0 < k=n < 1. We de�ne � = n=j =

n=(n� k) so that � is �xed and > 1. First, we make some observations about the general

solution to the linear problem (5.15). Upon setting

F j
n =

2n

n!
Gj
n (6.1)
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we obtain

Gj
n+1 =

j�1X
`=0

n!

(n� `)!
2�`Gj�`

n�`: (6.2)

Setting j = 1 yields G1
n = �c1, a constant. Then setting j = 2; 3; : : : and recursively solving

the resulting di�erence equations yields

G2

n =
1

4
�c1n(n� 1) + c2; (6.3)

G3

n
=

1

32
�c1n(n� 1)(n� 2)(n� 3) +

1

12
�c1n(n� 1)(n� 2) +

1

4
c2n(n� 1) + c3; (6.4)

G4

n
=

1

384
�c1n(n� 1)(n� 2)(n� 3)(n� 4)(n� 5) +

5

240
�c1n(n� 1)(n� 2)(n� 3)(n� 4)(6.5)

+
1

32
�c1n(n� 1)(n� 2)(n� 3) +

1

32
c2n(n� 1)(n� 2)(n� 3)

+
1

12
c2n(n� 1)(n� 2) +

1

4
c3n(n� 1) + c4;

and so forth. It is clear that for general j the solution has the form

Gj
n = �c1P2j�2(n) + c2Q2j�4(n) + c3R2j�6(n) + � � � (6.6)

where P;Q and R and polynomials in n of respective degrees 2j � 2, 2j � 4 and 2j � 6. We

write these polynomials as

P2j�2(n) =
j�2X
m=0

Aj
m[n(n� 1)(n� 2) � � � (n� 2j +m+ 3)];

Q2j�4(n) =
j�3X
m=0

Bj
m[n(n� 1)(n� 2) � � � (n� 2j +m+ 5)];

R2j�6(n) =
j�4X
m=0

Cj
m[n(n� 1)(n� 2) � � � (n� 2j +m+ 7)]: (6.7)

Furthermore, the coeÆcients are related by

Bj
m = Aj�1

m ; j � 3;

Cj
m = Bj�1

m = Aj�2
m j � 4:

In Appendix A we estimate the relative sizes of these polynomials in various limits. We

consider
Q2j�4(n)

P2j�2(n)
;

R2j�6(n)

P2j�2(n)

and show that for n ! 1 and j �xed we have Q=P = O(n�2) and R=P = O(n�4). For

n; j ! 1 with � = n=j �xed and > 1, we obtain Q=P = O(n�1) and R=P = O(n�2).

19



However, if k; n ! 1 with � = k=(log n) �xed and � > A = 4:311 : : : ; then P;Q and R

become of comparable magnitude.

Let us de�ne

~F j
n = �c1

2n

n!
P2j�2(n): (6.8)

From our results in Section 5, we see that on the j scale we have F j
n � ~F j

n and we refer to

~F j
n as the \uniform right tail" (URT) approximation. It applies in the right tail with the

exception of the near right tail, where all the terms in the series (6.6) contribute. Thus we

need k= log n ! 1 for the URT result to hold. We shall analyze this case separately in

Section 7. The calculations in Section 5 showed that �c1 =
1
2 , c2 = 0 and c3 = �5

8 . To obtain

these values we needed to use the initial conditions in (2.3) and to see how they propagate

through the non-linear sector. While this method can compute the �rst few c`, it doesn't

seem feasible to obtain c` in general. Fortunately, only �c1 is important in most of the right

tail region. Since c2 = 0 the above discussion shows that F n
j =

~F n
j = 1 + O(n�4) if n ! 1

with j �xed, and F n
j =

~F n
j = 1 + O(n�2) on the �-scale. We proceed to explicitly calculate

the polynomial P .

We use (6.6) and (6.7) in (6.2) to obtain (neglecting c` for ` � 2)

j�2X
m=0

Aj
m(n+ 1)n(n� 1) � � � (n+m� 2j + 4)�

j�2X
m=0

Aj
mn(n� 1)(n� 2) � � � (n+m� 2j + 3)

=
j�1X
`=1

j�`�2X
m=0

Aj�`
m 2�`n(n� 1)(n� 2) � � � (n+m+ `� 2j + 3):

By comparing coeÆcients of (n)` = n(n� 1) � � � (n� `+ 1) we are led to the recurrence

(2j �m)Aj
m�2 =

21�m

(j �m)!
4m�j +

m�2X
`=1

2�`Aj�`
m�`�1; j � m+ 1: (6.9)

Note that Aj
m is de�ned for 0 � m � j � 2, and we have used Aj�m+1

0 = 4m�j=(j �m)!

to isolate the term with ` = m � 1 in the above sum. From (6.9) we obtain the boundary

values

Am
m�2 =

21�m

m
; m � 2;

Aj
0 =

41�j

(j � 1)!
j � 2:

We also note that as n!1 with j �xed Gj
n � �c1A

j
0n

2j�2, which when used in (6.1) regains

the leading term in the far right tail.
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To solve (6.9) we set ` = j �m� 2 with

Aj
m = B(m; j �m� 2) = B(m; `) (6.10)

to obtain (shifting m! m+ 2 in (6.9))

(m+ 2`+ 2)B(m; `) = 2�m�1 4
�`

`!
+

mX
p=1

2�pB(m� p+ 1; `� 1) (6.11)

and this holds for m; ` � 0. Furthermore we let

B(m; `) = 4�`2�m�1H(m; `)

and obtain from (6.11)

[2(`+ 1) +m]H(m; `) =
1

`!
+ 2

mX
p=1

H(m� p+ 1; `� 1); m; ` � 0: (6.12)

We next introduce the bivariate generating function

~H(z; w) =
1X

m=0

1X
`=0

zmw`H(m; `) (6.13)

and obtain from (6.12) the partial di�erential equation

z
@ ~H(z; w)

@z
+ 2

@

@w
(w ~H(z; w)) =

ew

1� z
+

2w

1� z
( ~H(z; w) � ~H(0; w)):

Letting z ! 0 yields

2
@

@w
(w ~H(0; w)) = ew

which implies that

~H(0; w) =
ew � 1

2w
;

and then the above partial di�erential equation becomes

z
@ ~H(z; w)

@z
+ 2

@

@w
(w ~H(z; w)) =

1

1� z
+

2w

1� z
~H(z; w): (6.14)

Letting w ! 0 yields

~H(z; 0) = � 1

z2
[z + log(1� z)] =

1X
m=0

zm

m+ 2
:

Using the sequence of substitutions z = e�s, w = e�t, and then a = 2s � t, b = s, with

~H(z; w) = �H(a; b), we arrive at the following simpler PDE

@ �H(a; b)

@b
+ �H(a; b)

 
2ea�2b

1� e�b
� 2

!
=

�1
1� e�b
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that can be solved leading to the following solution analytic at z = 0, w = 0

~H(z; w) =
1

2w

�
exp

�
�2w

z2
[z + log(1� z)]

�
� 1

�
: (6.15)

Inverting the transform over w in (6.13) we �nd that

1X
m=0

zmH(m; `) =

�� log(1� z)� z

z2

�`+1 2`

(`+ 1)!
:

By Cauchy's formula (cf. [26]) and (6.10) we obtain

Aj
m =

21�j

(j �m� 1)!

1

2�i

I
z�m�1

�� log(1� z)� z

z2

�j�m�1

dz (6.16)

where the loop integral is around z = 0. Using �c1 =
1
2 we thus have, from (6.7), (6.9) and

(6.16),

~F j
n = 2n�j

j�2X
m=0

1

(j �m� 1)!

1

(n� 2j +m+ 2)!
I(m; j) (6.17)

where

I(m; j) =
1

2�i

I
z�m�1

�� log(1� z)� z

z2

�j�m�1

dz: (6.18)

We proceed to evaluate ~F j
n asymptotically in various limits. Since j = n�k we see that

~F j
n is de�ned for all k � 0. For n < 2j � 2 (i.e., n > 2(k + 1)), the lower limit on the sum

in (6.17) must be truncated at m = 2j � 2� n. We �rst establish the following lemma.

Lemma 1 The Cauchy integral I(m; j) has the following asymptotic expansions.

(1) For m!1, j �m �xed

I � j �m� 1

m
(logm)j�m�2:

(2) For m!1, j �m!1 with (j �m)= logm = ��, 0 < �� <1

I � 1

m
(logm)j�m�1 e

���

�(��)

where �(�) is the Euler gamma function.

(3) For m; j !1 with m=j �xed and 0 < m=j < 1

I � 1p
2�

z�m�1
0 [�(z0)]

j�m�1 1p
2j �m

�
1

(1� z0)z0
� m

j �m

1

z20

��1=2
;

where z0 = z0(m=j) is the solution to

1 +
j

j �m
=

z20
(1� z0)

�1
log(1� z0) + z0

=
1

1� z0

1

�(z0)
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and �(z) = �[log(1� z) + z]=z2.

(4) For j !1, m �xed

I � 2m+1�j 1

m!

�
2

3
j

�m
:

Proof. Since the result follows from asymptotically evaluating the integral in (6.18) using

standard methods, we only briey sketch the proof. We note that other than z = 0 the

integrand's only singularity is the branch point at z = 1.

For part (1) we use the singularity analysis of Flajolet and Odlyzko [11]). Observe that

I(m; j) = [zm]

�� log(1� z)� z

z2

�j�m�1

where [zn]f(z) stands for the coeÆcient at zn in the Laurent expansion of f(z). Since

� = j �m� 1 is �xed, the singularity analysis is applicable. We know that (cf. [11, 26])

[zm]

�� log(1� z)

z

��
=

(logm)�

m

�
�

logm
+O(1= log2m)

�
:

Thus

[zm]

�� log(1� z)� z

z

��
� �(logm)��1

m
;

and this implies that

[zm]

�� log(1� z)� z

z2

��
= [zm�� ]

�� log(1� z)� z

z

��
� �(logm)��1

m

which proves part (1) of the lemma.

For j ! 1 and m �xed the major contribution to the integral in (6.18) comes from

z = 0 and we obtain

I =
1

2�i

I
z�m�1

�
1

2
+
z

3
+O(z2)

�j�m�1

dz (6.19)

� 2m+1�j 1

2�i

I
z�m�1e2zj=3dz

= 2m+1�j 1

m!

�
2

3
j

�m
and this establishes Lemma 1 part (4).

Now consider m; j ! 1 at the same rate. We use (6.18) and the saddle point method

(cf. [26, 27]), writing the integrand as [z�(z)]�1 exp[�m log z + (j �m) log(�(z))]. The

saddle point equation is

d

dz
(�m log z + (j �m) log(�(z))) = 0
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or
m

j �m
= z

�0(z)

�(z)
= �2 + 1

1� z

1

�(z)
:

We can easily show that the above has a unique solution z = z0 = z0(m=j) that lies on

the real axis in the range 0 < z < 1. The directions of steepest descent at this saddle are

arg(z � z0) = ��=2 and then the standard Laplace estimate yields

I � 1

z0�(z0)

1p
2�

z�m0 [�(z0)]
j�m

 
m

z20
+ (j �m)

"
�00(z0)

�(z0)
�
�
�0(z0)

�(z0)

�2#!�1=2
: (6.20)

Now, z�0(z) + 2�(z) = 1=(1 � z) whose derivative yields

z0
�00(z0)

�(z0)
= �3�

0(z0)

�(z0)
+

1

(1� z0)2
1

�(z0)

= �3 m

j �m

1

z0
+

1

(1� z0)

2j �m

j �m
:

It follows that

m

z20
+ (j �m)

"
�00(z0)

�(z0)
�
�
�0(z0)

�(z0)

�2#
= (2j �m)

1

z0

�
1

1� z0
� m

j �m

1

z0

�
:

Using the above in (6.20) establishes part (3) of the Lemma. We note that z0 ! 0+ as

m=j ! 0 and z0 ! 1� as m=j ! 1; more precisely

z0 � 3

2

m

j
;
m

j
! 0; 1� z0 � �Æ

log Æ
; Æ = 1� m

j
! 0:

Finally, we prove part (2). We set j�m = �� logm. By deforming the contour in (6.18)

into an integral about the branch cut (i.e., Hankel contour; cf. [26, 27]), we obtain the

following alternate representation for I:

I =
1

2�i

Z (0�)

+1
(1 + y)�m�1

�
�i� log y � 1� y

(1 + y)2

�j�m�1

dy (6.21)

where
R (0�)
+1 denotes the Hankel integral along a path starting at in�nity on the lower half-

plane, winding clockwise around the origin and proceeding back to in�nity. Using y = u=m

we thus obtain

I � 1

2�im

Z (0�)

+1
e�u(logm)j�m�1

�
1 +

�i� log u� 1

logm
+O(m�1)

��� logm�1

du

� e���(logm)j�m�1

m

1

2�i

Z (0�)

+1
e�u(�u)���du

=
e���(logm)j�m�1

m�(��)
;
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since (cf. [1, 2, 26])
1

2�i

Z (0�)

+1
e�u(�u)�sdu =

1

�(s)
:

This proves the entire Lemma 1.

With Lemma 1 we have the expansion of I(m; j) for all possible ranges in the sum

in (6.17). We next obtain the asymptotic expansion of ~F j
n in various ranges; these are

summarized below.

Lemma 2 The asymptotic expansions of ~F j
n in (6.17) are as follows:

(a) For n!1, j = O(1)

~F j
n �

2n

n!

n2j�2

(j � 1)!
21�2j � 1p

2�n

�
2e

n

�n n2j�2

(j � 1)!
21�2j :

(b) For n; j !1, j = O(
p
n)

~F j
n � 1

n!

1

(j � 1)!
2n+1�2jn2j�2 exp

 
�2

3

j2

n

!

� 1

�

s
j

n

en+j

nnjj
2n�2jn2j�2 exp

 
�2

3

j2

n

!
:

(c) For n; j !1, � = n=j �xed, 1 < � <1

~F j
n �

(2e)n�j

2�n2
nj�nz�j� (1� z�)

j�n

p
�z�p

1� z�
p
�z� � 1

;

where z� = z�(�) is the unique solution to

1

�
=

1X
m=1

zm�
m(m+ 1)

= 1 +
1

z�
(1� z�) log(1� z�); 0 < z� < 1:

(d) For n; k !1, k = O(log n)

~F j
n �

�
2e

k

�k (log n)k+1
nk3=2

p
2�

1

�
�

k
log n

� :
(e) For k = O(1), n!1

~F j
n �

2k

k!

(log n)k

n
:

Proof. We again only sketch the proof of Lemma 2. If j is �xed and n!1 the dominant

term asymptotically in the sum in (6.17) corresponds to m = 0. Since I(0; j) = 21�j we

obtain part (a) of Lemma 2.
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Now let n; j !1 with j=
p
n �xed. We write

~F j
n =

2n�1

n!

j�2X
m=0

f(m)

where

f(m) =
Aj
m

(n� 2j +m+ 2)!
:

Note that
f(m+ 1)

f(m)
=
Aj
m+1

Aj
m

1

n� 2j +m+ 3
:

The main contribution of the sum comes from m = O(1). By part (4) of Lemma 1 we

conclude that for m = O(1) and j = O(
p
n)

f(m+ 1)

f(m)
� 4

3

j2

nm
:

Now all terms with m = O(1) in the sum in (6.17) are of comparable magnitude, and we

obtain

~F j
n � 2n+1�2j

(j � 1)!

j�2X
m=0

�
4

3
j2
�m 1

m!

1

n2+m(n� 2j)!

� 2n+1�2j

(j � 1)!

1

n2
1

(n� 2j)!

1X
m=0

1

m!

 
4j2

3n

!m
:

Summing the exponential series and using (n� 2j)! � n!n�2j exp(2j2=n) leads to part (b)

of Lemma 2.

Next we consider n; j ! 1 at the same rate with � = n=j > 1. Now the dominant

contribution to the sum in (6.17) will come from large m, with m = O(j). In this range we

may use the expansion in part (3) of Lemma 1. Note also that in this limit

f(m+ 1)

f(m)
� j �m

n+m� 2j

1

z0�(z0)
=

2j �m

n+m� 2j

1� z0
z0

where we have used the equation satis�ed by z0(m=j). As m=j ! 0 we have z0 ! 0 and

f(m + 1) > f(m); while for m=j ! 1 we have z0 ! 1 and f(m + 1) < f(m). Thus the

major contribution to the sum should come from where f(m+ 1)=f(m) = 1, so that

z0 = z0

�
m

j

�
=

2j �m

n
: (6.22)

We use Stirling's formula in (6.17) in the form

1

(j �m� 1)!
�

s
j �m

2�
e(m�j) log(j�m)ej�m;

1

(n+m� 2j + 2)!
� 1p

2�

1

(n+m� 2j)5=2
e(2j�n�m) log(n+m�2j)en+m�2j
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along with Lemma 1(3) to obtain

~F j
n � 2n�j

(2�)3=2

j�2X
m=0

s
j �m

2j �m

1

(n+m� 2j)5=2
1

z0�(z0)

�
1

(1� z0)z0
� m=j

1�m=j

1

z20

��1=2
(6.23)

� expfn� j + (m� j) log(j �m) + (2j � n�m) log(n+m� 2j)

� m log z0 + (j �m) log[�(z0)]g:

Next we set � = n=j > 1, x = m=j 2 (0; 1) and use the identity log[�(z0(x))] = log(1 �
x)� log(2� x)� log[1� z0(x)]. Approximating (6.23) by an integral via Euler-MacLaurin,

we arrive at

~F j
n �

2n�j

(2�)3=2
en�je(j�n) log j

1

j3=2

Z 1

0
ejF (x;�)G(x;�)dx (6.24)

where

F (x;�) = (2� x� �) log(x+ �� 2)� x log[z0(x)]� (1� x) log[1� z0(x)] + (x� 1) log(2� x)

G(x;�) =
1� z0(x)

(�+ x� 2)5=2z0(x)

s
2� x

1� x

�
1

z0(x)

1

1� z0(x)
� x

1� x

1

z20(x)

��1=2
:

By the Laplace method, the major contribution to the integral will come from where F is

maximal in the range 0 � x � 1. We have

@F

@x
= log

�
2� x

z0

1� z0
x+ �� 2

�
+

1

x� 2
+ z00(x)

� �x
z0(x)

+
1� x

1� z0(x)

�
:

Setting the above equal to zero and using

z00(x)

�
1� x

1� z0(x)
� x

z0(x)

�
=

1

2� x

we �nd that F is maximal when

2� x

�
= z0(x): (6.25)

Note that this is the same as (6.22). Equation (6.25) de�nes x = x�(�) and we set z�(�) =

z0(x�(�)). By using (2 � x)=(1 � x) = 1=[�(z0)(1 � z0)] we can eliminate x in (6.25) and

obtain
1

�
� 1 =

(1� z�) log(1� z�)

z�
:

The standard Laplace estimate of the integral in (6.24) is

G(x�;�)

s
2�

jjFxx(x�;�)je
jF (x�;�):
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Since x� = 2� �z� we obtain

F (x�;�) = (1� �) log �+ (1� �) log(1� z�)� log z�

so that

~F j
n �

(2e)n�j

2�j2
nj�nz�j� (1� z�)

j�nR(�); n = j� (6.26)

where

R(�) = G(x�;�)jFxx(x�;�)j�1=2:
By di�erentiating the equation de�ning z� we obtain

z0� =
1

�

1� z�
(�+ 1)z� � 2

(6.27)

where z0� = z00(x�(�)). We also have

Fxx =
1

x� 2
� 1

x+ �� 2
�
�

1

1� z0
+

1

z0

�
z00

so that

jFxx(x�;�)j =
�
1

�
+ z0�

�
1

z�(1� z�)
: (6.28)

Using (6.27) in (6.28) and setting x� = 2� �z� we �nd that

R(�) =
1

�3=2
z�p

1� z�
p
�z� � 1

and thus we have established part (c) of Lemma 2.

The above analysis holds for � > 2 (i.e., n > 2j). For 1 < � < 2 we must truncate the

lower limit of the sum in (6.17) at m = 2j � 2� n, and thus the lower limit on the integral

in (6.24) must be replaced by 2��. However, for any �xed � > 1, the point x�(�) satis�es

x�(�) > 2 � � (since 0 < z� < 1), so that the leading term for ~F j
n applies for all � > 1.

However, as �! 1� the interval of integration shrinks to zero and we must reconsider the

discrete sum in (6.17).

Next we consider n!1 with k = n� j = O(1). Truncating the sum in (6.17), setting

j �m� 2 = ` and using part (1) of Lemma 1, we are led to

~F j
n � 2k

kX
`=0

1

(k � `)!

1

`!

1

n� k � `� 2
(log(n� k � `� 2))` � 2k

k!

[log n]k

n
;

since the dominant term in the sum is that with ` = k. This yields part (e) of Lemma 2.

Finally we consider the limit k; n ! 1 with k = O(log n). Now we use part (2) of

Lemma 1 to obtain

~F j
n � 2k

kX
`=0

1

(k � `)!

1

(`+ 1)!

[log(n� k � `� 2)]`+1

n� k � `� 2

1

�
�

`+2
log(n�k�`�2)

� : exp�� `+ 2

log(n� k � `� 2)

�
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The major contribution to the sum will come from the upper limit, but now an in�nite

number of terms contribute to the asymptotic development. We use (`+1)! = (k +1+ `�
k)! � (k + 1)!k`�k and obtain

~F j
n � 2k

n

e��

�(�)

1

(k + 1)!

kX
`=0

�
log n

k

�`�k (log n)k+1
(k � `)!

� 2k

n

e��

�(�)

k�kekp
2�k3=2

(log n)k+1
1X
i=0

�i

i!
; � =

k

logn
:

We have thus established part(d) of Lemma 2.

We now have a rather complete description of the asymptotic behavior of ~F j
n. We next

discuss the range of validity of the approximation 1 � Lkn = 1 � Ln�jn = F j
n � ~F j

n. As

discussed at the beginning of this section, the terms proportional to c` for ` � 2 in (6.6)

are negligible on both the j and � scales. In view of the estimates in Appendix A, this is

no longer true in the near right tail, where k = � log n and A < � < 1. We thus analyze

this case separately in Section 7. Upon examining the �ve expressions in Lemma 2, we see

that in cases (a){(c) and (e), ~F j
n is asymptotically small. However, when k = � log n and

� lies in the range A0 < � < A, where A and A0 are the two solutions to z log(2e=z) = 1

(thus 0 < A0 < 1 < A = 4:311 : : :), then ~F j
n is asymptotically large in n. This would lead

to Lkn < 0 and thus this range is clearly not in the right tail. Now suppose we assume

that either (c) or (d) are valid in the near right tail. We can easily show that (c) and (d)

asymptotically match in an intermediate limit where � # 1 and � !1. By letting � !1
in (d) we obtain the solution in the matching region as

~F j
n �

(2e)k

2�nk

p
log n

�
logn

k

�k
exp

�
� k

logn
log

�
k

log n

�
+

k

logn

�
: (6.29)

Note that this becomes O(1) in n when

k = A logn� 1

2

A

A� 1
log log n+O(1):

Thus the assumption of being able to \push" the relation F j
n � ~F j

n into the near right tail

(i.e., the �-scale) leads to the value of B in (2.9), which was conjectured to be true in the

past. However, the analysis of the � and � scales in Section 7 and Section 8 will exclude

this possibility.
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7 Near Right Tail

We consider k = � logn, n ! 1 and � 2 (A;1). Since we are still in the right tail we

consider the linear problem (5.15) and change variables from (k; n) to (�; n) with

F j
n = U(�;n) = U

�
k

log n
;n

�
= U

�
n� j

logn
;n

�
(7.1)

where k = n� j. It follows that

F j
n+1 = U

�
�

log n

log(n+ 1)
+

1

log(n+ 1)
;n+ 1

�
(7.2)

and

F j�`
n�` = U

�
�

logn

log(n� `)
;n� `

�
: (7.3)

Using (7.1){(7.3) in (5.15) yields

U

�
�

logn

log(n+ 1)
+

1

log(n+ 1)
;n+ 1

�
=

2

n+ 1

n�� logn�1X
`=0

U

�
�

logn

log(n� `)
; n� `

�
: (7.4)

We analyze (7.4) by a (linear) WKB expansion. That is, we assume an asymptotic expansion

of the form

U(�;n) = e�a(�) log n(log n)Æ
"
b(�) +

b(1)(�)

log n
+
b(2)(�)

log2 n
+O(log�3 n)

#
: (7.5)

Here Æ is a constant which must be determined along with a(�) and b(�).

We shall show that in order to uniquely determine U (or even a(�)), we need the behavior

of U as � !1. We require that as � !1 U asymptotically matches to the expansion on

the �-scale, as � # 1. The basic idea ofmatched asymptotic expansion is that an approximate

solution to a given problem is sought not as a single expansion in terms of a single scale but

as two or more separate expansions in terms of two or more scales, each of which is valid

in part of the domain. We chose the scales so that the overall expansion covers the whole

domain and that the domains of validity of neighboring expansions overlap. Because the

domains overlap, we can match or blend the neighboring expansions. If this is possible, the

resulting solution is called the matched asymptotic expansion (cf. [21]).

In our case, by rewriting (6.29) in terms of �, this implies that

U(�;n) � (2e)� log n

2�n�

��� log np
logn

e�� log �+� ; � !1: (7.6)

We thus have

a(�) � � log � � � log(2e) + 1; � !1 (7.7)
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b(�) � 1

2��
e��� log � ; � !1 (7.8)

and Æ = �1=2. We also give an independent derivation of the value of Æ below.

Using (7.5) and the expansions

�
log n

log(n+ 1)
+

1

log(n+ 1)
= � +

1

log n
+O(n�1);

log n

log(n� `)
= 1� 1

log n
log

�
1� `

n

�
+

1

log2 n
log2

�
1� `

n

�
+O(log�3 n)

we �nd that the left side of (7.4) becomes

(logn)Æe�a(�) log ne�a
0(�)

�
1� a00(�)

2 log n

� "
b(�) +

b(1)(�) + b0(�)

log n
+O(log�2 n)

#
: (7.9)

The right side of (7.4) is asymptotically equal to

2

n

nX
`=0

(log n)Æ
�
1 + Æ

log(1� `=n)

logn
+O(log�2 n)

� �
b(�) +

1

log n

�
b(1)(�)� �b0(�) log

�
1� `

n

���

�e�a(�) log ne� log(1�`=n)(a(�)��a0(�))

"
1� �2a00(�)

2 log n
log2

�
1� `

n

�
+O(log�2 n)

#
:

Using the Euler-MacLaurin formula we �nd that the above is asymptotic to

(log n)Æe�a(�) log n �
�
2b(�)

Z 1

0
(1� x)�a

0(�)�a(�)dx (7.10)

+
1

log n

�
2

Z 1

0
(1� x)�a

0(�)�a(�)(b(1)(�)� �b0(�) log(1� x)

+ Æb(�) log(1� x)� 1

2
�2a00(�)b(�) log2(1� x))dx

�
+O(log�2 n)

�
:

We cancel the common factor (log n)Æe�a(�) log n in (7.9) and (7.10), compare terms of orders

O(1) and O(log�1 n), and explicitly evaluate the x-integrals in (7.10). This yields

�a0(�)� a(�) + 1 = 2ea
0(�) (7.11)

and �
b0(�)� 1

2
b(�)a00(�)

�
e�a

0(�) = � 2[Æb(�) � �b0(�)]

[�a0(�)� a(�) + 1]2
� 2�2a00(�)b(�)

[�a0(�)� a(�) + 1]3
: (7.12)

The non-linear ODE (7.11) is the Clairaut equation (cf. [12], Chap. 2.45)). To solve it

we di�erentiate (7.11) with respect to � to �nd that

�a00(�) = 2ea
0(�)a00(�)
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so that either a00(�) = 0 or a0(�) = log(�=2). The former leads to a(�) = k� + k0 and then

(7.11) is satis�ed if k0 = 1 � 2ek. Thus a(�) = k� � 2ek + 1 is a one-parameter family of

linear solutions. The solution with a0(�) = log(�=2) is the geometric envelope of this family

and it is explicitly given by

a(�) = � log � � � + 1� � log 2: (7.13)

In view of (7.7) the linear solutions must be rejected. Note that

a(A) = 0 and a0(A) = log

�
A

2

�
= 1� 1

A
> 0: (7.14)

Thus a(�) > 0 for � > A, and then (7.13) shows that (7.7) holds for all � > A, not just

� !1.

Using (7.13) we �nd that �a0(�)� a(�) + 1 = � with which (7.12) becomes�
b0(�)� 1

2
b(�)

1

�

�
2

�
= � 2

�2
[Æb(�)� �b0(�)]� 2

�2
b(�)

so that b(�) = (2Æ + 2)b(�) and hence Æ = �1=2. This con�rms the result we obtained

via asymptotic matching. However, setting Æ = �1=2 in (7.12) and using (7.13) yields \0

= 0", and thus b(�) cannot be determined! In Section 10 we briey discuss the numerical

computation of b(�), but this too is problematic. In view of (7.8) we have the behavior as

� !1 and in Section 8 we discuss the behavior of b(�) as � ! A.

Thus we have been able to determine Æ and a(�) in (7.5), but not the O(1) factor b(�).

We also note that on the �-scale 1 � Lkn = O(n�a(�)), which is algebraically small in n. In

this section we neglected the non-linear terms in (5.2). However, these are (roughly) of

order O(n�2a(�)) and since a(�) > 0 for � > A, they do not contribute to the asymptotic

series in (7.5), whose terms are O(n�a(�)(log n)�p) for p = 1
2 ;

3
2 ; : : : :

8 Central Region

We consider the important central region, where Lkn undergoes the transition from Lkn � 0

to Lkn � 1, and where most of the mass is concentrated. Now we must analyze the full

non-linear problem (2.2).

We de�ne � by

� = k � �A log n� �B log logn (8.1)

and for now we treat �A and �B as arbitrary parameters. They will ultimately be determined

by asymptotically matching the central and near right tail regions. We set

Lkn = f(�;n) = f(k � �A logn� �B log log n;n)
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and note that

Lk+1n+1 = f

�
� + 1� �A log

�
1 +

1

n

�
� �B log

�
log(n+ 1)

log n

�
;n+ 1

�
;

Lk` = f

�
� � �A log

�
`

n

�
� �B log

�
log `

logn

�
; `

�
:

Hence, in terms of � and n, (2.2) becomes

f

�
� + 1� �A log

�
1 +

1

n

�
�

�B log

�
log(n+ 1)

logn

�
;n+ 1

�
(8.2)

=
1

n+ 1

nX
`=0

f

�
� � �A log

�
`

n

�
�

�B log

�
log `

logn

�
; `

�
f

�
� � �A log

�
1�

`

n

�
�

�B log

�
log(n� `)

logn

�
;n� `

�
:

We assume (as n!1 with � �xed) an expansion of the form

f(�;n) = f(�) +
1

log n
f (1)(�) +

1

log2 n
f (2)(�) + � � � : (8.3)

Using (8.3) in (8.2), setting x = `=n and approximating the sum by an integral leads to

f(� + 1) =

Z 1

0
f(� � �A log x)f(� � �A log(1� x))dx (8.4)

and

f (1)(� + 1)� 2

Z 1

0
f (1)(� � �A log x)f(� � �A log(1� x))dx (8.5)

= �2 �B
Z 1

0
(log x)f 0(� � �A log x)f(� � �A log(1� x))dx:

Note that to obtain the equation (8.4) for the leading term, we can weaken (8.3) to the

assumption that f(�;n)! f(�) as n!1.

As � !1 we are entering the right tail so we expect that f(�)! 1 as � !1. Setting

f(�) = 1� g(�) we obtain from (8.4)

g(� + 1)� 2

Z 1

0
g(� � �A log x)dx = �

Z 1

0
g(� � �A log x)g(� � �A log(1� x))dx: (8.6)

Furthermore we denote the solution to the linearized version of (8.6) as gL(�), which satis�es

gL(� + 1) = 2

Z 1

0
gL(� � �A log x)dx (8.7)

= 2

Z 1

0
gL(� + �At)e�tdt:

We note that in (8.6) we have decomposed the non-linear integral operator into linear and

non-linear parts, in a manner similar to (5.2).
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We can easily solve (8.7) exactly. Indeed the equation admits exponential solutions of

the form e�a0� provided that a0 satis�es

e�a0 =
2

1 + a0 �A
> 0: (8.8)

We thus consider a0 = a0( �A). By plotting the function F (a0) = (2ea0 � 1)=a0 = �A versus

a0, we see that if �A > A = 4:311 : : : ; then (8.8) has two solutions, which we denote by a+

and a� with a+( �A) > a�( �A). When �A < A, (8.8) has no solution and when �A = A then

(8.8) has the unique solution a0 = 1 � 1=A, which is a double root of (8.8). We have thus

obtained

gL(�) =

8>>><>>>:
c+e

�a+( �A)� + c�e
�a�( �A)� ; �A > A

(c1� + ~c) exp
h
�
�
1� 1

A

�
�
i
; �A = A = 4:311 : : :

0; �A < A

: (8.9)

Here c1; ~c; c� are arbitrary constants.

The linearized problem (8.7) also admits complex exponential solutions. However, in

Appendix C we show, by a combination of analytic and numerical studies, that such solu-

tions are not relevant to the present problem. Thus we restrict ourselves to real roots of

(8.8).

Next we determine �A and �B by asymptotic matching. On the �-scale 1�Lkn is given by

(7.5) with (7.13) and Æ = �1=2. Near � = A we have

a(�) = a0(A)(� �A) +
1

2
a00(A)(� �A)2 + � � � =

�
1� 1

A

�
(� �A) +

1

2A
(� �A)2 + � � � :

But, � �A = (k�A log n)= log n = (� + ( �A�A) log n+ �B log log n)=(log n). Thus as � # A
the expansion on the �-scale has the local behavior

b(A)(log n)�1=2 exp

�
�
�
1� 1

A

�
� �

�
1� 1

A

�
( �A�A) log n�

�
1� 1

A

�
�B log logn

�
(8.10)

if b(A) > 0, or

b0(A)[� + ( �A�A) log n+ �B log log n](logn)�3=2 (8.11)

� exp

�
�
�
1� 1

A

�
(� + ( �A�A) log n+ �B log logn)

�
if b(A) = 0 and b0(A) 6= 0. Since clearly g(�) � gL(�) as � ! 1, the asymptotic matching

of the � and �-scales implies that �A = A = 4:311 : : : : Thus the leading term for E[Hn]

is A logn, as is well-known. The conclusion that �A = A is based only on comparing

the exponential growth rates in (8.9) and (8.10), (8.11). It follows that g(�) � (c1� +

34



~c) exp
h
�
�
1� 1

A

�
�
i
as � ! 1. By comparing the algebraic factors we see that there are

two possibilities:

(1) c1 = 0 ) ~c = b(A) and �B = �1
2

A
A�1

(2) c1 6= 0 ) c1 = b0(A) and �B = �3
2

A
A�1 � B:

(8.12)

Note that in the former case (log n)�1=2 exp
h
�
�
1� 1

A

�
�B log logn

i
= 1 and in the latter

case (log n)�3=2 exp
h
�
�
1� 1

A

�
�B log logn

i
= 1.

We now show that case (1) in (8.12) leads to a contradiction. If g(�) behaved purely as

an exponential as � ! 1, then we can construct the exact solution to the full non-linear

problem in the form

g(�) =
1X

m=1

e(m)e�ma0� ; a0 = 1� 1

A
: (8.13)

Note that this corresponds to solving (8.6) by the method of successive approximations,

with the initial guess being the exponential e�a0� . Once we conclude that g(�) � e(1)e�a0�

as � !1, we can set g(�) � e(1)e�a0� = g�(�) in (8.6) to conclude that g�(�) = O(e�2a0�)

as � !1, and so on. Using (8.13) in (8.6) leads to

1X
m=1

e(m)e�ma0e�ma0� � 2
1X

m=1

e(m)

Z 1

0
e�ma0�xma0Adx (8.14)

= �
X

m;`�1

e(m)e(`)

Z 1

0
e�(m+`)a0�xma0A(1� x)`a0Adx:

By comparing coeÆcients of e�ma0� , usingZ 1

0
xma0A(1� x)`a0Adx = B(1 +ma0A; 1 + `a0A) =

�(m(A� 1) + 1)�(`(A � 1) + 1)

�((m+ `)(A� 1) + 2)
;

setting

e(N) =
�e(N)

�(N(A� 1) + 1)
;

and noting that e�a0 = 2=A, we are led to the recurrence

�e(N)

"
2� (N(A� 1) + 1)

�
2

A

�N#
=

N�1X
`=1

�e(`)�e(N � `) (8.15)

for N � 2. By the matching condition we have e(1) = ~c = b(A) so we set

�e(N) = [b(A)]N [�(A)]Nd(N)

to �nd that d(N) satis�es, for N � 2

d(N)

"
2� (N(A� 1) + 1)

�
2

A

�N#
=

N�1X
`=1

d(`)d(N � `); d(1) = 1: (8.16)
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In terms of d(N) we have

g(�) =
1X

m=1

(b(A)�(A))m

�(m(A� 1) + 1)
d(m) exp

�
�m

�
1� 1

A

�
�

�
: (8.17)

From (8.16) it follows that d(N) > 0 for all N � 1.

In Appendix B we show by a combination of analytical and numerical methods that

d(N) � L2N
�3=2(L1)

N ; N !1 (8.18)

where L1 and L2 are constants, whose approximate numerical values are

L1 � 3:89; L2 � :377: (8.19)

But, in view of (8.18) we see that the coeÆcients in the series (8.17) decay faster than

geometrically, roughly as exp(�m(A � 1) logm). It follows that (8.17) de�nes an entire

function of �. But then (since d(m) > 0 for all m) g(�) ! 1 as � ! �1 and thus

f(�) ! �1 as � ! �1. Since this is unacceptable for a probability distribution, we

conclude that we cannot have c1 = 0 in (8.12) and thus case (2) must hold.

We observe that (8.4) is independent of �B. The solution to this equation is not unique,

for if f0(�) is a solution, so is f0(� + c) for any constant c. The asymptotic matching

condition 1 � f(�) � c1� exp
h
�
�
1� 1

A

�
�
i
, � ! 1 is needed to uniquely specify f(�).

Setting �A = A we can recast this equation as follows. We let

� =
1

A
e��=A; � = �A log(A�); f(�) = �f(�):

Then (8.4) becomes

�f

�
A

2e
�

�
=

Z 1

0

�f(x�) �f((1� x)�)dx (8.20)

=
1

�

Z �

0

�f(y) �f(�� y)dy:

Introducing the Laplace transform

F (�) =

Z 1

0
e��� �f(�)d�

we �nd from (8.20) that

�e1=A d

d�
[F (e1=A�)] = F 2(�)

or

�F 0(�) = e�2=AF 2(�e�1=A): (8.21)
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This is precisely the equation analyzed by Drmota [8] who proved that it has a proper

solution. In terms of F (�) we thus have

f(�) =
1

2�i

Z a+i1

a�i1
exp

�
�

A
e��=A

�
F (�)d� (8.22)

for a > 0 in the complex �-plane. Note that the solution to (8.21) is also not unique: if

F0(�) is a solution, so is �F0(��) for any �. We also note that �f(0) = f(1) = 1 implies

1

2�i

Z a+i1

a�i1
F (�)d� = 1:

The contractive nature of (8.21) implies that F (�) is an entire function, and this was

rigorously shown by Drmota in [8]. The solution to (8.21) can be made unique by using

a normalization such as F (0) = 1. However, such an arbitrary choice would not give

the proper normalization (or shift) for f(�); for this we needed the asymptotic matching

condition.

We can get some information about the behavior of F (�) as � ! �1, and that of f(�)

as � ! �1. For � ! +1, it is shown in [8] that any (non-zero) solution to (8.21) satis�es

F (�) � 1=� as � !1. This can be extended to a full asymptotic series of the form

F (�) � 1

�
+

1X
m=1

1

�1+m(A�1)
Pm(log �) (8.23)

where Pm is a polynomial of degree m. Using (8.23) in (8.21) and also using exp
�
1� 1

A

�
=

A
2 we are led to the recurrence

[1 +m(A� 1)]Pm(log �)�P 0
m(log �)� 2

�
A

2

�m
Pm

�
log � � 1

A

�
(8.24)

=

�
A

2

�m m�1X
`=1

P`
�
log � � 1

A

�
Pm�`

�
log � � 1

A

�
; m � 1:

Upon setting m = 1 in (8.24) we obtain

AP1(X) �P 0
1(X) �AP1

�
X � 1

A

�
= 0:

This is satis�ed by an arbitrary linear polynomial, so we write

P1(X) = DX + ~D: (8.25)

Then with m = 2, (8.24) yields

(2A� 1)P2(X)�P 0
2(X) � A2

2
P2

�
X � 1

A

�
=

�
A

2

�2
(DX + ~D)2: (8.26)
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We thus obtain

P2(X) = `2X
2 + `1X + `0

where

`2 =
1

2

A2

4A� 2�A2
D2;

`1 =
A2

4A� 2�A2
D

�
2�A

4A� 2�A2
D + ~D

�
;

`0 =
A2

4A� 2�A2

"
~D2

2
+

(2�A)D ~D

4A� 2�A2
+

D2

2(4A� 2�A2)
+

(2�A)2D2

(4A� 2�A2)2

#
:

We use (8.23) in (8.22). Since F (�) is entire we can shift the contour far to the right,

where � ! +1. It follows that as � !1

f(�) � 1 +
1X

m=1

1

2�i

Z M+i1

M�i1

Pm(log �)
�1+m(A�1)

exp

"
�
e��=A

A

#
d� (8.27)

for arbitrary large M > 0, and thus

f(�) � 1�
1X

m=1

�Pm(�) exp
�
�m�

�
1� 1

A

��

where �Pm(�) are polynomials of degree m, which can be calculated from Pm(�) as follows:

�Pm(�) = �A
�m(A�1)

2�i

Z M+i1

M�i1

ew

w1+m(A�1)
Pm

�
�

A
+ logA+ logw

�
dw:

By contour integration we have

1

2�i

Z M+i1

M�i1

ew

wA
dw =

1

�(A)
;

1

2�i

Z M+i1

M�i1

ew logw

wA
dw =

�0(A)

�2(A)

so that, in view of (8.25), we obtain

�P1(�) = �A
1�A

�(A)

�
D

�
�

A
+ logA+

�0(A)

�(A)

�
+ ~D

�
:

In view of (8.9), the constants (c1; ~c) are related to (D; ~D) via

c1 = �A�A

�(A)
D; ~c = �A

1�A

�(A)

�
D

�
logA+

�0(A)

�(A)

�
+ ~D

�
so we clearly have D < 0.
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The numerical studies in Section 10 show that F (�) grows rapidly as � ! �1. We can

estimate this growth by seeking an asymptotic solution to (8.21) in the form

F (�) � �4j�j�3 exp(�2j�j�1); � ! �1:

Using the above in (8.21) and retaining only the leading term for F 0(�) leads to the balance

�1�2�4j�j�1+�3�1 exp(�2j�j�1) � e�2=A�24 j�j2�3 exp
�
� 2

A
�3

�
exp(2�2j�j�1e��1=A)

so we must have

�1 = A log 2; �3 = A log 2� 1; �4 = (4A log 2)�2

and �2 is arbitrary. We have thus formally obtained

F (�) � 4A(log 2)�2(��)A log 2�1 exp[�2(��)A log 2]; � !1: (8.28)

The numerical calculation of �2 is discussed in Section 10.

We next analyze (8.4) (with �A = A) in the limit � ! �1. Now we are getting into the

left tail so we have f(�) ! 0+ as � ! �1. We set � = e�� with f(�) = h(e��) = h(�) =

f(� log �) and obtain from (8.4)

h

�
�

e

�
=

Z 1

0
h(�xA)h(�(1 � x)A)dx: (8.29)

As � ! �1 we have � ! +1. We seek an asymptotic solution to (8.29) in the form

h(�) � �2�
�1 exp[�c��]:

We thus obtain

�2

�
�

e

��1
exp(�ce����) �

Z 1

0
�22�

2�1xA�1(1� x)A�1 exp[�c��(xA� + (1� x)A�)]dx

� �22�
2�1

�
1

4

�A�1s 2�

c��
2A�=22�3=2p
A�(A� � 1)

exp[�c��21��A]

where the last step involved Laplace's method to evaluate the integral as � !1 (the major

contribution comes from x � 1
2 ). It follows that

e�� = 21��A or � =
log 2

A log 2� 1
= :3486 : : : :

Then we get �1 = �=2 and

�2 = 2

r
2c

�

q
A�(A� � 1) = 2

r
2c

�

p
A log 2

A log 2� 1
:
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In terms of � we have

f(�) � 2

r
2c

�

p
A log 2

A log 2� 1
e���=2 exp(�ce���); � ! �1: (8.30)

for some constant c. The value of c cannot be determined solely from (8.4), in view of the

translation invariance of this equation.

An alternate argument for (8.30) is as follows. Since F (�) is an entire function we shift

the contour in (8.22) toward the left where we may use the expansion (8.28), that applies

for � ! �1. This yields

f(�) � 1

2�i
(4A�2 log 2)

Z �M+i1

�M�i1
(��)A log 2�1 exp

�
�

A
ej�j=A + �2(��)A log 2

�
d�

where M > 0 is a large positive number. For � ! �1 the above has a saddle point where

�� = �� �
"

e��=A

�2A2 log 2

# 1
A log 2�1

:

Then the standard saddle point approximation leads to

f(�) � 4A�2 log 2p
2�

e��=A

�2A2 log 2

1p
�2A log 2(A log 2� 1)

�
"

e��=A

�2A2 log 2

#� A log 2�2
2(A log 2�1)

exp

"
1�A log 2

A2 log 2

�
1

�2A2 log 2

� 1
A log 2�1

exp

�
� � log 2

A log 2� 1

�#
:

The above agrees precisely with (8.30) if �2 and c are related by

c = (A log 2� 1)(A2 log 2)
� A log 2
A log 2�1 �

� 1
A log 2�1

2 :

Having derived the behavior of f(�) as � ! �1, we investigate the asymptotic matching

between the ! and � scales. We recall that log2 ! = log2 n� k and thus

� =

�
1

log 2
�A

�
log n�B log log n� log2 !;

! = n1�A log 2e�� log 2(log n)�B log 2:

By asymptotic matching, (8.30) should agree with the behavior of
p
nA(!)e�n�(!) as ! !

0+. This is true provided that as ! ! 0

�(!) � !
1

A log 2�1 (� log!)�B ĉ; ĉ = c(A log 2� 1)��B :

and

A(!) �
r
8

�

p
A log 2

A log 2� 1

p
ĉ!

1
2

1
A log 2�1 (� log!)�B :
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Note that the above is consistent with the relationship between �(!) and A(!) in (4.8).

To summarize, we have shown that analysis of the central region involves solving the

non-linear integral equation in (8.4). Our formal asymptotic results show that the value

of B cannot be that in (2.9), and lead to the new conjecture in (2.7). Some numerical

results to support this are presented in Section 10. We have also obtained the tails of

f(�), as � ! �1. Note that an extreme value (or double exponential) distribution would

correspond to a solution to (8.4) in the form exp(�K2e
�K1�). While this does not satisfy

(8.4), our analysis shows that the distribution behaves (roughly) as a double exponential

at both �1. However, the values of K1 are di�erent in these two limits. The analysis as

� !1 would be consistent with K1 = 1� 1=A = :768 : : : ; while the � ! �1 result would

lead to K1 = � = :348 : : :

9 Numerical Studies of the Tails

We assess the numerical accuracy of our results for theM , j and � scales, and also determine

the hitherto unknown function �(!), which arose in the analysis of the ! scale.

We �rst consider M = O(1), where we have shown in Section 3 that

Lk2k�M � 2kM

(M � 1)!
4

�
1

2
p
2K0

�2k
� Lkn(asy, M -scale): (9.1)

In Table 1 we compare (9.1) to the exact Lkn for 1 � M � 5, and k = 4, 6, 8. We see

that the agreement is overall quite good. For a �xed M the result improves rapidly with

k, and larger values of k allow for larger values of M to be used. The data in Table 1

are consistent with an error term in (9.1) of the form 1 + O(2�k), with the coeÆcient of

the O(2�k) correction term growing with M . Note also that if k = 8 and M = O(1), the

probability distribution is very small, of the order of 10�100.

In Table 2 we consider the far right tail, where j = n � k = O(1) and we have shown

that

1� Lkn �
2n

n!

n2j�2

(j � 1)!
21�2j � 1� Lkn(asy, j-scale): (9.2)

Note that (9.2) is exact for j = 1 and we may approximate n! by Stirling's formula. When

j = 4 and n = 20 the asymptotic result overestimates the true value by about 50%, but

this improves to an error of about 4% when j = 4 and n = 100.

In Table 3 we compare the exact values of 1�Lkn to the asymptotic result on the �-scale.

This corresponds to case (v) in Section 2 and applies when k is a signi�cant fraction of n

(e.g., k = n=2). In Table 3 we also give the uniform right tail result, which is 1� Lkn � ~F j
n
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Table 1: Far Left Tail Comparison

k M Lkn (exact) Lkn (asy, M -scale)

4 1 .1680(10�4) .1716(10�4)

2 .2520(10�3) .2745(10�3)

3 .1764(10�2) .2196(10�2)

4 .7937(10�2) .1171(10�1)

5 .2646(10�1) .4685(10�1)

6 1 .1315(10�23) .1322(10�23)

2 .8283(10�22) .8459(10�22)

3 .2568(10�20) .2707(10�20)

4 .5232(10�19) .5774(10�19)

5 .7896(10�18) .9239(10�18)

8 1 .7265(10�102) .7275(10�102)

2 .1853(10�99) .1862(10�99)

3 .2353(10�97) .2384(10�97)

4 .1984(10�95) .2034(10�95)

5 .1251(10�93) .1302(10�93)
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Table 2: Far Right Tail Comparison

n j 1� Lkn (exact) 1� Lkn (asy, j-scale)

20 1 .2155(10�12) .2155(10�12)

2 .2047(10�10) .2155(10�10)

3 .9056(10�9) .1077(10�8)

4 .2477(10�7) .3592(10�7)

100 1 .6792(10�128) .6792(10�128)

2 .1681(10�124) .1698(10�124)

3 .2052(10�121) .2122(10�121)

4 .1648(10�118) .1769(10�118)

200 1 .1019(10�314) .1019(10�314)

2 .1014(10�310) .1019(10�310)

3 .5009(10�307) .5094(10�307)

4 .1639(10�303) .1698(10�303)

where ~F j
n is given by (6.8)

�
with �c1 =

1
2

�
. The analysis in Section 6 showed that this applies

on both the j and � scales, though this expression is more complicated in form (and also

more diÆcult to evaluate numerically) than the j and � scale results. We consider n = 20

and n = 100, for various k = O(n). These results show that while the �-scale expansion is

reasonably accurate, the URT result always improves upon it. In Table 4 and Table 5 we

consider n = 20 and n = 100, respectively, and compare 1�Lkn to the URT approximation.

We decrease k until (the asymptotic) 1 � Lkn exceeds 1; by then we are clearly out of the

right tail. We see that as long as 1� Lkn is small, URT is reasonably accurate. However, if

we de�ne the \numerical near right tail" as those values of k where 10�3 � 1�Lkn � 10�2,

then we see that the results in Table 4 (n = 20) are somewhat more accurate than those in

Table 5 (n = 100). This is also consistent with the asymptotic analysis, which predicts that

URT ceases to be valid in the near right tail, where n!1 with k = � logn, A < � <1.

Larger values of n allow for a clearer resolution of this asymptotic range.

We next consider the !-scale, where we have Lkn �
p
nA(!)e�n�(!), but �(!) is known

only asymptotically for ! ! 0 and ! ! 1. We de�ne

�num(!; k) =
1

2n
log n� 1

n
log(Lkn); ! = n2�k (9.3)
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Table 3: Right Tail Comparison

n k 1� Lkn (exact) 1� Lkn (asy, �-scale) 1� Lkn (URT)

20 15 .4691(10�6) .4927(10�6) .4703(10�6)

10 .1863(10�1) .2065(10�1) .1948(10�1)

100 90 .3965(10�103) .4018(10�103) .3965(10�103)

80 .1444(10�81) .1459(10�81) .1445(10�81)

70 .4650(10�63) .4697(10�63) .4652(10�63)

60 .7168(10�47) .7251(10�47) .7176(10�47)

50 .9548(10�33) .9694(10�33) .9576(10�33)

40 .1211(10�20) .1239(10�20) .1220(10�20)

30 .1087(10�10) .1136(10�10) .1112(10�10)

25 .1275(10�6) .1368(10�6) .1333(10�6)

20 .2923(10�3) .3340(10�3) .3231(10�3)

15 .8922(10�1) .1257 .1201

Table 4: URT Approximation with n = 20

k 1� Lkn (exact) 1� Lkn (URT)

18 .2047(10�10) .2047(10�10)

17 .9056(10�9) .9059(10�9)

16 .2477(10�7) .2480(10�7)

15 .4691(10�6) .4703(10�6)

14 .6527(10�5) .6559(10�5)

13 .6905(10�4) .6968(10�4)

12 .5673(10�3) .5762(10�3)

11 .3661(10�2) .3759(10�2)

10 .1863(10�1) .1948(10�1)

9 .7455(10�1) .8037(10�1)

8 .2311 .2635

7 .5368 .6815
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Table 5: URT Approximation with n = 100

k 1� Lkn (exact) 1� Lkn (URT)

98 .1681(10�124) .1681(10�124)

95 .9787(10�116) .9787(10�116)

90 .3965(10�103) .396510(10�103)

80 .1444(10�81) .1445(10�81)

70 .4650(10�63) .4652(10�63)

60 .7168(10�47) .7176(10�47)

50 .9548(10�33) .9576(10�33)

40 .1211(10�20) .1220(10�20)

30 .1087(10�10) .1112(10�10)

25 .1275(10�6) .1333(10�6)

20 .2923(10�3) .3231(10�3)

19 .1099(10�2) .1240(10�2)

18 .3802(10�2) .4405(10�2)

17 .1203(10�1) .1444(10�1)

16 .3457(10�1) .4352(10�1)

15 .8922(10�1) .1201

14 .2036 .3022

13 .4016 .6897
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Table 6: Numerical Evaluation of the � function.

(a) k �
(1)
num �num

5 .1997 .2863

6 .2291 .2832

7 .2485 .2810

8 .2607 .2797

(b) k �
(1)
num �num

4 .7330 .8232

5 .8201 .8755

6 .8728 .9057

7 .9041 .9232

8 .9223 .9332

and

�(1)num(!; k) = � 1

n
log(Lkn) (9.4)

where Lkn is understood to be the exact (numerical) value. According to our WKB expansion

we should have both �num and �
(1)
num ! �(!) as k (or n) ! 1 with ! held �xed. The

convergence should be faster for �num, since (9.3) makes use of the algebraic factor n =
p
n

in (4.4). In Table 6(a) we �x ! = 1=2 and give �num and �
(1)
num for 5 � k � 8. Both sequences

appear to converge to a value �
�
1
2

�
� :28, and the convergence is de�nitely faster for �num.

In Table 6(b) we set n = 2k � 1 so that M = 1 and ! = 1 � 2�k. Note that now we have

the exact theoretical value �(1) = c� = log(2
p
2K0) = :945755 : : : : We again give �num and

�
(1)
num, for 4 � k � 8. Both sequences again appear to converge with �num being the more

rapidly convergent. However, the convergence is somewhat slower than was the case when

! = 1
2 . We recall that the rate of convergence of �num(!; k) to �(!) should be O(n�1) for

each 0 < ! < 1. This corresponds to geometric (O(2�k)) convergence in k. We can use this

observation to accelerate the (numerical) convergence of the data points in Table 6. Below,

we work with xk = �(1� 2�k).

If the sequence xk ! X as k ! 1 with xk+1 � xk � abk for jbj < 1 and k ! 1, then

we choose a �xed (large) N , de�ne

~a =
xN+2 � xN+1

~bN+1
; ~b =

xN+2 � xN+1

xN+1 � xN
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Figure 1: The functions �num(!) versus ! for: (a) k = 5 and (b) k = 8.

and approximate X by

X � xN +
~a~bN

1� ~b
: (9.5)

Applying this to the sequence of �num in Table 6(b) with N = 6 and x6 = :9057, x7 = :9232,

x8 = :9332 we obtain ~b � :5714 and ~a � :5027. Then (9.5) leads to �(1) � :9465, and this

di�ers from the theoretical value by only about 0.1%. We note that O(2�k) convergence

would imply b = 0:5. The fact that ~b somewhat exceeds this value is likely due to the fact

that the logarithmic singularity in �0(!) at ! = 1 causes the convergence to be slightly

slower than geometric (say O(k2�k)) for ! � 1.

In Figure 1, we plot �num for 0 < ! < 1 (i.e., 0 < n < 2k) for k = 5 and k = 8. As

k increases the graphs appear to be converging to some function �(!), if we renormalized

the horizontal axis to the interval 0 < ! < 1. Our analytical results predict �(1) is �nite

and �(!) � �(1) � (1 � !) log(1 � !) as ! ! 1�; while as ! ! 0+ we have (roughly)

�(!) � !:503. Thus �00 > 0 for ! near 1 and �00 < 0 for ! near 0, with �0 !1 as ! ! 0+.

The graphs in Figure 1 show that �(!) is convex for most of the range 0 < ! < 1, with an

abrupt convexity change occurring near ! = 0. The graphs for each of the cases k show a

\kink" near ! = n2�k = 0, which indicates a changing convexity. Note however that for

(numerically) small values of !, the convergence of �num to � is extremely slow and thus the

graphs cease to be very reliable in this range. If we let n!1 and simultaneously ! ! 0+

then we are exiting the left tail and moving into the central or right tail regimes.
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Table 7: Numerical Veri�cation of E[Hn]

n E(Hn) �(n)

10 5.64 {3.946

20 7.74 {3.623

30 9.06 {3.513

50 10.81 {3.409

75 12.25 {3.343

100 13.29 {3.303

200 15.85 {3.220

10 Numerical Studies of the Central Region

We consider the � and � scales, where 0 < Lkn < 1 or 1 � Lkn is only algebraically small in

n. First we note that the mean height of the binary search tree is given by

E[Hn] =
nX

k=1

k PrfHn = kg =
nX

k=0

(1� Lkn): (10.1)

Now de�ne

�(n) =
E[Hn]�A log n

log log n

A� 1

A
; (10.2)

where E[Hn] is understood to be the exact value of the sum in (10.1).

In Table 7 we give �(n) and E[Hn] for n in the range 10 � n � 200. As discussed in

Section 2 it was conjectured (cf. (2.9)) that �(n) ! �1=2 as n ! 1, while the present

conjecture (2.7) has �(n) ! �3=2. While Table 7 supports the latter more than the

former, even when n = 200 we have �(200) � �3:22. Our analysis suggests that the

magnitude of �(n) ��(1) is O((log logn)�1). When n = 200, log log n � 1:667 which is

not particularly large. To truly test (2.7) and (2.9) we would probably need log log n � 10

and for n = exp(e10) it is not feasible to calculate E[Hn] numerically.

If we assume that for n!1

�(n) = �(1) +
�c

log logn
[1 + o(1)]; �c a constant;

then we can use

�(2N)��(N) � �c

log log(2N)
� �c

log logN
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to estimate �c, and then estimate �(1) as

�(1) � �(2N) � �c

log log(2N)
:

Using this idea with N = 100 leads to �c � �1:507 and then �(1) � �2:30. This suggests
that �(n) in Table 7 may converge to a value signi�cantly larger (less negative) than �(200)

(� �3:22).
Our analysis of the �-scale involves the unknown function b(�). We de�ne

bnum(�;n) =
p
logn n� log ��� log(2e)+1(1� Lkn): (10.3)

According to (7.5) we should have, for � �xed and n!1, bnum(�;n)! b(�). We have done

some numerical experiments with k = b6 log nc (thus � � 6), but found that the sequence

(10.3) is not close to converging even when n is as large as 160. It appears that the value

of b(6) is of the order 10�4. Indeed our analysis suggests that b(�) is very small as � !1
(cf. (7.8)) and also b(A) = 0. Since b(�) is only de�ned for � > A = 4:311 : : : ; it appears

that b(�) is uniformly small numerically, though asymptotically it is O(1) as n!1. This,

along with the fact that the asymptotic series on the �-scale involves inverse powers of log n,

makes the numerical computation of b(�) diÆcult. The analysis predicts that b0(�) < 0 for

� large and b0(A) > 0. Thus b(�) must have a peak at some � = �0 > A, but our numerical

studies have not been able to con�rm this. We note that in order to solve (8.4) numerically,

we need the matching condition as � !1, and thus the value of c1 = b0(A).

Alternately, knowing the constant c that appears in the \near left tail" (i.e., the matching

region between the � and ! scales (cf. (8.30)) is suÆcient to uniquely determine f(�) in

(8.4). Let us de�ne

�1 = k �A log n� 1

2

A

A� 1
log log n (10.4)

�2 = k �A log n� 3

2

A

A� 1
log log n

and note that �1 (resp. �2) corresponds to the conjecture in (2.9) (resp. (2.7)). De�ne

k�(n) = k�(n;�) = b� log nc; for
1

log 2
< � < A:

Along the sequence k�(n) we have ! ! 0 and �1, �2 ! �1 so we are in the asymptotic

matching region of the ! and � scales, where (8.30) applies. In Table 8 we take � = 2 and

consider L
k�(n)
n for 10 � n � 200. We compute �1 and �2 from (10.4) with k = k�(n), use

these values to calculate the right side of (8.30) (up to the constant c) and set the result(s)

equal to the (numerical) value of Lk�n . This gives a transcendental equation for c, whose
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Table 8:

n k� Lk�n c (based on �1) c (based on �2)

10 4 .698(10�1) .556 .812

20 5 .231(10�2) .601 .989

30 6 .204(10�2) .485 .846

40 7 .615(10�2) .383 .692

50 7 .158(10�3) .448 .832

60 8 .275(10�2) .343 .651

70 8 .223(10�3) .376 .726

80 8 .113(10�4) .408 .798

90 8 .345(10�6) .439 .869

100 9 .150(10�3) .331 .662

110 9 .197(10�4) .348 .702

120 9 .209(10�5) .363 .741

130 9 .177(10�6) .380 .779

140 9 .120(10�7) .395 .816

150 10 .282(10�4) .304 .632

160 10 .619(10�5) .313 .655

170 10 .123(10�5) .322 .677

180 10 .221(10�5) .330 .698

190 10 .360(10�7) .339 .719

200 10 .529(10�8) .347 .740

numerical solution is given in Table 8, using both �1 and �2. While it is plausible that as

n!1, the numerical values of c do converge to a limit, the oscillatory decrease of Lk�n as

n!1 leads to signi�cant oscillations in c. These results support the \double exponential"

form of the distribution in the matching region, but they are inconclusive as to the value of

the coeÆcient B of the log logn correction term to E[Hn]�A log n.

Now consider the di�erential-delay equation (2.11). Choosing the normalization F (0) =

1, we can compute F (�) from the iteration scheme

FN+1(�) = 1� e�1=A
Z �e�1=A

0
[FN (u)]

2du; F0(�) = 1: (10.5)

The Nth iterate FN (�) corresponds to a polynomial approximation of degree 2N � 1 to the
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entire function F (�). This method is useful for calculating F (�) for moderate values of j�j.
The coeÆcients in the polynomial approximations have alternating signs, so all terms are

positive for � < 0. For j�j < 3 we found that the curves F7(�) and F8(�) are virtually

indistinguishable. In Table 9, we give F (�) to 3 signi�cant digits for certain � in the range

[{4,5]. This function grows rapidly as � ! �1 and our numerical studies con�rm the

asymptotic result in (8.28). Thus (for F (0) = 1) we obtain �2 � :066 in (8.28).

To summarize, our numerical studies con�rm the asymptotic analysis on the M , !,

� and j scales. They are not particularly conclusive on the � and � scales, due to the

respective asymptotic series involving inverse powers of log n.

Appendix A

We estimate the relative size of the polynomials P2j�2(n), Q2j�4(n) and R2j�6(n) in (6.6).

By considering their degrees we obviously have Q=P = O(n�2) and R=P = O(n�4) for

n ! 1 with j �xed. Now let n; j ! 1 at the same rate, with � = n=j > 1. In view of

(6.16) and (6.18) we have

Aj
m =

21�j

(j �m� 1)!
I(m; j):

We have shown that (cf. (6.24))

2n

n!
P2j�2(n) � 2n+1�jen�je(j�n) log j

(2�j)3=2

Z 1

0
ejF (x;�)G(x;�)dx (A.1)

� 2n+1�j

2�j2
en�je(j�n) log j

G(x�)pjFxx(x�)jejF (x�):
Now, Bj

m = Aj�1
m = 22�j

(j�m�2)!I1 where

I1 =
1

2�i

I
z�m�1[�(z)]j�m�2dz

and �(z) is de�ned in Lemma 1. Expanding I1, by the saddle point method we �nd that

I1 � 1

�(z0)
I

where I is given by Lemma 1(3). We thus have

Bj
m � 2(j �m)

�(z0)
Aj
m

and hence

2n

n!
Q2j�4(n) = 2n

j�3X
m=0

Bj
m

1

(n� 2j +m+ 4)!
(A.2)
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Table 9: Numerical Evaluation of F (�)

� F (�)

{4 802

{3 44.5

{2.5 15.9

{2 6.98

{1.5 3.64

{1 2.16

{.8 1.80

{.6 1.53

{.4 1.31

{.2 1.14

0 1

.2 .886

.4 .791

.6 .712

.8 .645

1 .588

1.5 .478

2 .399

2.5 .341

3 .296

4 .233

5 .191
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� 2n
j�3X
m=0

2(j �m)

�(z0(m=j))

1

n� 2j +m+ 4

1

n� 2j +m+ 3

Aj
m

(n� 2j +m+ 2)!

� 2n+1�jen�je(j�n) log j

(2�j)3=2

Z 1

0

2(1 � x)

j(� + x� 2)2
1

�(z0(x))
ejF (x;�)G(x;�)dx:

Evaluating the integral in (A.2) by Laplace's method and comparing the result to (A.1)

yields
Q2j�4(n)

P2j�2(n)
� 2

j

1� x�
�(z�)

1

(�+ x� � 2)2
=

2

n

z�
1� z�

: (A.3)

A completely analogous argument shows that

R2j�6(n)

P2j�2(n)
� 4

j2
(1� x�)

2

�2(z�)

1

(�+ x� � 2)4
=

4

n2

�
z�

1� z�

�2
: (A.4)

On the � scale we have 0 < z� < 1 so that the right side of (A.3) is O(n�1) and that of

(A.4) is O(n�2). This shows that F j
n= ~F

j
n = 1 + O(n�1) for a �xed � > 1. Since c2 = 0 in

(6.6) we can improve this to 1 +O(n�2).

For j �xed we can easily show that as n!1
Q

P
� 4(j � 1)

n2
;

R

P
� 16(j � 1)(j � 2)

n4
:

Thus on the j scale F j
n=

~F j
n = 1 + O(n�2), and since c2 = 0 this is really 1 + O(n�4).

However, as � # 1 we have

1� z� � k

n

1

logn

so that for � = k= log n �xed we have n(1� z�) = O(1). This shows that P , Q and R (and

indeed all the terms in (6.6)) become of comparable magnitude. This observation led us to

consider a new scale, namely the � scale, which we did in Section 7.

Appendix B

We analyze the recurrence (8.16). First we note that as N ! 1, (8.16) resembles the

simpler recurrence

2c(N) =
N�1X
`=1

c(`)c(N � `); N � 2:

Taking c(1) = 1 and introducing the generating function

C(z) =
1X

N=1

zN c(N)
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leads to

C2(z) = 2C(z) � 2z (B.1)

so that

C(z) = 1�p1� 2z

and hence

c(N) =

 
2N

N

!
2�N

2N � 1
� 2NN�3=2 1

2
p
�
; N !1: (B.2)

Now consider (8.16) and let

D(z) =
1X

N=1

d(N)zN :

We thus �nd that D(z) satis�es

D2(z) = 2D(z) �D

�
2

A
z

�
� (A� 1)z

d

dz
D

�
2

A
z

�
: (B.5)

We assume that near the dominant singularity

D(z) � D(z�)� �(z� � z)� [1 +O(z� � z)]; � > 0; 0 < � < 1 (B.6)

and note that the last two terms in the right side of (B.5) are analytic at z�. We thus use

(B.6) to approximate D(z) and D2(z) in (B.5) and expand the remaining terms in Taylor

series about z�. We thus obtain

D2(z�)� 2D(z�) = �D
�
2

A
z�

�
� z�(A� 1)

d

dz
D

�
2

A
z

�
jz=z� ; (B.7)

�2�D(z�) = �2�;

and then 2� = 1 and

�2 = A
d

dz
D

�
2

A
z

�����
z=z�

+ z�(A� 1)
d2

dz2
D

�
2

A
z

������
z=z�

: (B.8)

Hence D(z�) = 1 and then we rewrite (B.7) and (B.8) in terms of d(N), which yields

1 =
1X

N=1

[1 +N(A� 1)]

�
2z�
A

�N
d(N) (B.9)

and

�2 =
1

z�

1X
N=1

N [1 +N(A� 1)]

�
2z�
A

�N
d(N): (B.10)
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We view (B.9) as a transcendental equation for z�; once it is solved, � is easily computed

from (B.10). From (B.6) we �nd that since � = 1=2,

d(N) � z�N� N�3=2�
p
z�

2
p
�
; N !1: (B.11)

It follows that the terms in the series (B.9) decay rapidly as N !1, as N�1=2(2=A)N . To

solve (B.9) we compute the �rst N0 of the d(N) numerically from (8.16), then truncate the

limits on the sums in (B.9) and (B.10) at N = N0, solve (B.9) for z� and �nally compute �

from (B.10). For 10 � N0 � 25 this procedure yields the results below:

N0 z� 1=z� � �
p
z�=(2

p
�)

10 .25704 3.8903 2.6372 .37717

15 .25702 3.8906 2.6384 .37733

20 .25702 3.8906 2.6384 .37734

25 .25702 3.8906 2.6384 .37734

Thus, this scheme converges rapidly and yields the results in (8.18) and (8.19).

Appendix C

We discuss complex solutions to (8.8) with �A = A. Thus we are interested in solutions to

e�z = 2=(1 + Az) in the complex z-plane. We also note that setting gL(�) = e�=AG(�) in

(8.7) leads to

G(� + 1) =
2

A
e�1=A

Z 1

�
G(u)du: (C:1)

Since A satis�es e1=Ae�1 = 2=A, it follows that G0(�) = �e�1G(� � 1), which is a retarded

di�erential equation studied in [3]. It admits an in�nite number of exponential solutions,

whose properties are studied in [3, 17]. These correspond to solutions to (8.7), which we

denote by e�aj� where a0 = 1 � 1=A and order them as a0 < Re(a1) < Re(a2) < : : : . We

can take Im(aj) > 0, j � 1, since e��aj� is also a solution. The numerical value of a1 is

a1 = 2:856882062 : : : + i(7:461489285 : : :):

Here we shall argue that the solutions other than a0 cannot be relevant to the present

problem, as they lead to solutions of the non-linear problem (8.6) (with �A = A) that

corresponds to functions f(�) = 1� g(�) that are not probability distributions.
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First we consider the solution gL(�) = k1e
�a1� to (8.7). By using this as a starting point

for solving the non-linear problem (8.6) by successive iterations, we thus obtain

g(�) =
1X

m=1

kme
�ma1� (C:2)

where the km satisfy the recurrence

km

�
e�ma1 � 2

ma1A+ 1

�
= �

m�1X
`=1

k`km�`B(1 +Aa1`; 1 +Aa1(m� `));

where B is the Beta function. Setting

km = km1
[�(a1A+ 1)]m

�(ma1A+ 1)
Km

we obtain the new recurrence

Km

�
2� (ma1A+ 1)

�
2

1 + a1A

�m�
=

m�1X
`=1

K`Km�`; K1 = 1: (C:3)

By using ideas completely analogous to those in Appendix B, we �nd that for m!1

Km � L2m
�3=2Lm1

where
L1 � 2:017603 � :0570086 i

L2 � :2834684 � :00405513 i:

Thus, Km grows roughly geometrically and (C.2) de�nes an entire function of �. Taking

k1 = 1 we plot the real and imaginary parts of 1� g(�) = f(�) in Figure 2. Even over the

restricted range � 2 [�1; 1], this function(s) oscillates and cannot represent a probability

distribution.

The solution e�a1� can also be excluded by asymptotic matching to the �-scale expan-

sion. However, a mixture of exponentials, such as

gL(�) = C0e
�a0� + C1e

�a1� (C:4)

cannot be excluded by matching considerations alone. By the translation invariance of (8.6)

and the fact that C0 must be real, we can take C0 = 1. Then (C.4) can be used to construct

a solution to the full non-linear problem in the form

g(�) =
1X
`=0

1X
m=0

e�`a0�e�ma1�k(`;m) (C:5)
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Figure 2: The functions 1�<(g(�)) = <(f(�)) (left) and 1�=(g(�)) = =(f(�)) (right) for
gL(�) = e�a1� .

where k(`;m) are obtained recursively from

�
e�`a0e�ma1 � 2

1 +A(a0`+ a1m)

�
k(`;m) = �

X̀
`1=0

mX
m1=0

k(`1;m1)k(`� `1;m�m1)

� B(1 +Aa0`1 +Aa1m1; 1 +Aa0(`� `1) +Aa1(m�m1))

where k(0; 0) = 0, k(1; 0) = C0 = 1 and k(0; 1) = C1. Again we plot (cf. Figures 3 and 4)

(the real and imaginary parts of) 1 � g(�) in (C.5) for various values of C1. Again we see

that the solution is oscillatory. The amplitude of the oscillations is sensitive to the size of

C1, but they are present even for small C1 (cf. Figure 3).

We have also carried out further numerical experiments that show that solutions to

(8.6) involving mixtures of other exponentials (such as e�a2�) lead to more rather than less

oscillations. These studies, while not excluding complex solutions with complete vigor, do

strongly suggest that they are not at all relevant to the present application.
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Figure 3: The functions <(f(�)) (left) and =(f(�)) (right) for C1 = :1 and gL(�) = e�a0� +

C1e
�a1� .
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Figure 4: The functions <(f(�)) (left) and =(f(�)) (right) for C1 = 1 and gL(�) = e�a0� +
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